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MEROMORPHIC FUNCTION OF INFINITE ORDER WITH
MAXIMUM DEFICIENCY SUM*

WEILING XIONG

Abstract

In this paper we prove the following theorem: Let f(z) be a meromorphic
function of infinite order. If 3, . d(a, f)+d(,f) =2, then for each positive
integer k, we have K(f%))=2k(1 —d(o0,f))/(1+k—ké(cwo, f)), where K(f¥)=
lim, o, (N(r, 1/f®) + N(r, f®))/T(r, f*)) exists. This result improves the results by
S. K. Singh and V. N. Kulkarni [1] and Mingliang Fang [2].

1 Introduction and results

In this paper, we assume that f(z) is a nonconstant meromorphic function
in the complex plane C. We shall use the standard notations of the Nevanlinna
theory of meromorphic functions (see [3]).

T(r, f),m(r, f),N(r, f),N(r, f),6(a, f),S(r, f) and so on.

We shall also use the following notations (see [4]):

rin ) = [T o = [ ML g,
1 Lt
mo(r f) = L ") b, Syirf) = J:S“’f) .

Similarly, we use the notations my(r,a, f) and Ny(r,a,f). Set

do(a, ) =1 _hlfli}fp To((r Z ;))

K(f") = lim sup N(r, 1/fT“Z) ; k)N)(r,f ),

In 1973, S. K. Singh and V. N. Kulkarni [1] proved the following result:

(k=0,1,2,...).
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THEOREM 1.1.  Suppose that f is a transcendental meromorphic function of
finite order satisfying

> d(a, f) +6(0, f) =2.

a## oo
Then
1 —6(0, f) N 2(1=0(o0, 1))
0w, ) = KV = s )

In 2000, Mingliang Fang [2] proved the following result:

THEOREM 1.2.  Suppose that f is a transcendental meromorphic function of
finite order satisfying

> (a, f)+6(0, f) =2.
a## oo
Then

@ 2k(1=5(c0, 1))
KUY =15 ko(co, )’

In this paper, we shall prove the following theorem:

THEOREM 1.3.  Suppose that f is a meromorphic function of infinite order. If
> dla f)+d(c0. f) =2,
az# oo

then for each positive integer k,

2k(1—d(e0, f))
A S S e

2 Lemmas

Lemma 1 ([4]). Suppose that f is a meromorphic function of infinite order.
Then for each complex number a,

0<d(a,f) <dola, /) <1, > dola,f)+do(0, ) <2.

az# oo

Lemma 2 ([5]). Suppose that f is a meromorphic function of infinite order
satisfying Y, ., 0(a, f) +0(co, f) =2. Then for each ke N,
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To(r, fY) = ((k + 1) = kdo(o0, f) + o(1)) To(r, /),

as r — oo through all values.
Using Lemma 2, we can prove

Lemma 3 ([5]). Suppose that f is a meromorphic function of infinite order
satisfying .., 0(a, f) +0(c0, ) =2. Then for each ke N,

T(r, f®) = ((k+ 1) = kd(o0, f) + o())T(r, [),

as r — oo through all values.

Proof. Because the paper [5] is written in Chinese, we give here a sketch of
the proof of Lemma 3. Set b= (k+ 1) —kd(o0, f), Fi(x) = To(e*, f®) and
Gy =b-Ty(e*, f). Then by Lemma 2 and by a similar method to the part (II)
of the proof of Theorem 1.3 below, we see that Fi(x) and Gj(x) satisfy the
conditions of Lemma 9. Thus we have

Fi(x)

=1.
% GY(v)

Hence we obtain the conclusion of Lemma 3.

LemmA 4 ([6]). Suppose that f is a transcendental meromorphic function, and
a; (i=1,2,...,p) be p distinct complex numbers. Then for each ke N,

;m(}’,a[,f) SM(V,%>+S(V,f)

LemmA 5 ([6]). Suppose that f is a transcendental meromorphic function of
infinite order, S(r,f) be any quantity satisfying

1
S(r,f) < Alog" T(R, f) + Blog* ﬁ—i-Clong R+ D,

where 0 <r < R, and A,B,C,D are positive constants. Then lim,_, So(r, f)/
TO(ra f) = 0.

Lemma 6 ([7]). Suppose that f is a transcendental meromorphic function.
Then for each positive number ¢y and for each k € N,

N(r, f) < %N(r,]%k)) +%N(r,f) +eoT(r, f)+ S, [).

Lemma 7. Suppose that f is a meromorphic function of infinite order. If
Y azon00(a, f) +00(c0, f) =2, then for each positive integer k,
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. m0(771/f(k)) . NO(nf) : NO(nf)
lim ————"——~> =2 —dy(o0, and lim = lim B
L () oo ) and I T ) =M T )
Proof. Since ), do(a, f)+0do(c0, f) =2, then for any positive number
&9, there exist distinct complex numbers @; (i =1,2,...,p) such that
P
S dolai, £) + (o0, f) = 2 — e, (1)
=1
By Lemma 4, we have
p
S mlran f) < ( ﬂk>+m f). @)
i=1

From (1), (2) and Lemma 5, we have

)4
1i¥gg;fg+§ Z o(ai, f) =2 —do(0, f) — &o.

Taking ¢y — 0, we deduce

M > 2 —6o(00, f). (3)

lim inf

=% TO(V, f)
On the other hand, by Lemma 6, we have

m(r,}%) < T(r,f<k)) — N(r7 j%) + S(r, f)
<T(r,f)+kN(r,f)— N(r,j%) + S(r, f)
ST(r, f)+ N, f)+keoT(r, )+ S(r, f). (4)
Thus we have
(1 ) £ Tolr )+ Nl )+ ool f) 4 500 1)
Hence we obtain

(k)
lim sup % <2 —0o(00, f) + keo.

Taking ¢y — 0, we deduce

)
111’2?13% <2 —3o(0, f). (5)



MEROMORPHIC FUNCTION OF INFINITE ORDER
From (3) and (5), we have

- mo(r, 1/f9)
lim ————= =2 —¢y(0, ).
r—o To(r, f) ol )
Choosing k =1, from (2) and (4) we have
P

Z(So(ahf) < 1+ liminf No(r.f) No(r, f)

<1+ limsu =2 —0p(00, f).
2 mint 7 ) S Tt ) 2 2l

From (1), we have

I
2—0d0(00, f) —eo < ¥ dolai, f)-
i=1
Taking ¢y — 0, we obtain
N ) No(r, f)
lim inf = limsu ,
r—o To(r, f) rﬂocp To(r, f)
hence
lim NO(raf) — lim Nﬁ(raf).
= To(r, ) == To(r, f)

This completes the proof of Lemma 7.

LemMa 8 ([8]). Suppose that f(r) is a nonnegative and increasing function
with lim,_,., f(r)/r*

‘=0 for each positive number o. We set F(x) = [y f(r) dr.
Then
. F(x)
lim ———~——=
x=o f2(x)/f(x)
LemMa 9 ([9]). Let f(x) and g(x) satisfy the following four conditions for
x>0

f'(x) and g'(x) are two continuous functions
(i) f(x) is an increasing convex function

(iti) 1/g(x) is a convex function

(iv) limy_o f'(x)/g'(x) = 1.

Then lim,_.., f'(x)/g'(x) = 1.

3 Proof of Theorem 1.3
Since »_,.. d(a, f)+d(w,f)=2, by Lemma 1 and Lemma 3, we have
5(00,/‘) :50(00,f) and

T(r,fY) = ((k +1) = kd(o0, ) +o())T(r, /),

(6)
as r — oo through all values.
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From (6), Lemma 3 and Lemma 7, we have

i M0l 1Y)

o To(r,f) :2—50<00,f), (7)
No(r, 1/f®) _ mo(r, 1/f®) To(r,f) _
rlﬂoc TO(V, f(k)) = rlﬂoo To(r7 ) rLIl’ﬂl TO(V, (k)) Ao, (8)
NO(r’fk) N()(V,f)‘f’kNo(r,f)

A To(r f®) A T To(r S0

1 (k+1)N0(raf) . TO(rvf)
TR AR T W)
where Ao = (k—1)(1—-6(0,f))/(1+k—kdé(co,f)) and By=(k+1)-
(1 =0d(0, f))/(1 + k —kd(0, f)).
(I) We shall first prove that either for any positive number f

(k) (k)
im M) oo and lim N ST _ 0,
rﬁ r—o0 I’ﬁ

= BOv (9)

or the conclusion of Theorem 1.3 holds. Since ), d(a, f)+d(0,f) =2,
f(z) is of regular growth [6]. Note that f(z) is a meromorphic function of
infinite order and regular growth. Then for any positive number S, we have
lim, ... T(r, f%))/rf = co. Thus we have

. T(r1/f®
@) If
.. N(r,l/f(k)) _
then

*) )
> liminf M fiminf L2/
r—0 T(}/’7 f(M) r—o0 B

Thus we have lim, ., N(r,1/f®) /¥ = 0.
(i) I

®)
lim inf % = .

r—0o0

: N(r, 1/f")
llrlgalp T(r, /®) =0,

then

N 1Y) om(r 1/f")
m g, gy 0 and lim ey = L

Thus we have
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) 1/1%)
lim m()(r ) /f ) _
P~ To(r’ f(k))

From (6) and (7), we obtain (oo, f) = 1. Therefore the conclusion of Theorem
1.3 holds.
(iii) Suppose that

- N(r 1/f0) o ON(n 1)
Then we have
. m(r,1/£%) B
WS T f)

Hence there exists an increasing sequence r, — co such that lim,,_,., m(r,,1/f%))/
T(r,, f%)) =1. By (6), we have

Tim %: 1+ k — kd(0, f). (11)
Hence by (7) and (11), we have

N g Mol U)o mo (e, 1/f)
B A TV R
BT m(r,,,l/fk)_
_nan}) T 1+ k —ko(oo, f).
This yields d(c0, f) = 1. Hence dy(c0, f) =1 by Lemma 1. Thus we have
. omo(r, 1/f%)
50(0, f<k)) = ll}llglf W
m()(}’,l/f(k>) : TO(V7f) 2—50(007f)

= ) A TG @)~ (kD) — k(. f)
by 6(o0, f) =do(o0, f) =1. Then

) 1/£6)
_ Uy _ i e Mo(r 1) mo(r, 1/f*))
1=00(0, /) = liminf ==y~ < limsup = o=y < 1.

Thus lim,_.., mo(r, 1/f%)/To(r, X)) exists. Therefore by using 'Hospital’s rule,

we obtain
mo(r, 1/f®) . m(r, 1/f D) L m(r 110
00(0. /) = lim ==y = Jim ==y = Jim Sy =00/,

that is, 5(0, f®) = 1. Hence lim, ., N(r,1/f®)/T(r, f®) =0. This is a con-
tradiction. Therefore we deduce that lim, .., N(r,1/f%))/rf = o or the con-
clusion of Theorem 1.3 holds in this case.
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Similarly, we have lim, ., N(r, f*))/rf = oo or the conclusion of Theorem
1.3 holds.
(I) Let F(x) = No(e*,1/f%)) and G(x) = 4oTo(e*, f*)). Then we have

er (k) X
F(x) = Jl M dt = Jo N(e",fzk)> dr, (12)
6= TS | e st an (13)

Since N(e*,1/f*)) is increasing, from the result of (I) and Lemma 8, we get

, N(e*, 1/f0)?
ti, 75/ (N’(e«n 1) =" "

Now we shall show that F(x) and G(x) satisfy the conditions of Lemma 9.

(@) From (12) and (13), we get F'(x) = N(e¥,1/f%)), G'(x) = 4oT(e*, f¥)).
Obviously F'(x) and G’(x) are continuous fuctions.

(i) Since 7'(r, f*)) is a convex function of log r, G'(x) > 0. Thus G(x) is
an increasing convex function.

(iii) Since F(x) > 0 and

o) ) )

From (14), if x is sufficiently large, we have

- (709)> 0

Thus F(x) is a convex function. From the result of (IT) and Lemma 9, we
obtain lim, ., N(r,1/f®)/T(r, f®) = Ay. Similarly, we have lim,_., N(r, f*))/
T(r,f®) = B,. Thus we obtain

- N(r 1/f®) + N(r, /)
K(f<k>) - rlglgc T(r, f(k))

The proof of Theorem 1.3 is now complete.

2(1 — 8(0, f))
1+k—ko(o, f)

:A0+B0:
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