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ON G-FIBERINGS OVER THE CIRCLE
WITHIN A COBORDISM CLASS

Tamio HarA

Introduction

Conner and Floyd [1] have characterized those unoriented cobordism classes
that admit a representative which fibers over the circle S'. They have shown
that a closed manifold M is cobordant to a bundle over S' if and only if
2(M) =0 (mod 2), where y is the Euler characteristic. Let G be a finite abelian
group of odd order and ‘R*G the cobordism group of unoriented closed G-
manifolds. The purpose of this paper is to determine when a class £ in ‘ﬁf has a
representative which fibers equivariantly over S' such that the action of G takes
place within fiber. The author [3] has discussed such a question in case where
G = Z,», the cyclic group of order 2.

In Section 1, we first introduce an SK group SK resulting from equivariant
cuttings and pastings (G-SK processes) of closed G-manifolds. The abbreviation
SK stands for Schneiden und Kleben in German. Kosniowski [7] has obtained
some generators of SK*G as a free SK,.-module, where SK, is an SK ring of closed
manifolds in Karras, Kreck, Neumann and Ossa [5] (Proposition 1.4). As an
example, we perform G-SK processes on some complex projective space with G-
action and write it by the above generators (Example 1.8).

In Section 2, we consider a notion of G-SK invariant studied in [5] and [7].
Let T be a map for closed G-manifolds which takes values in the ring Z of
rational integers and is additive with respect to the disjoint union of G-manifolds.
Such a T is said to be a G-SK invariant if it is invariant under G-SK processes.
Given a G-manifold M, let M, be a G-submanifold of M consisting of those
points whose slice types containing ¢. Then a map y, defined by y, (M) =
#(M,) is a G-SK invariant. Further, for a subgroup H of G, the map y/
defined by y" (M) = y(M") is also a G-SK invariant, where M%7 = {xe M |
hx = x for any he H}. We see that y/ =3y, summing over all ¢ with H
as an isotropy subgroup. The above T is considered to be an additive homo-
morphism 7 : SK¢ — Z. We determine a form of 7 by using those y, and have
a base for a Z-module 7.¢ consisting of all G-SK invariants (Theorem 2.6).

*

In Section 3, we devote to a study of G-fiberings over S!. Let SKC be SKS
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factored by the equivariant cobordism relation. Let Z,¢ be a Z-vector space
consisting of all homomorphisms 7 : SK¢ — Z,. Such a map 7 is called a G-
SK invariant, namely a G-SK invariant (modulo 2) and simultaneously invariant
under equivariant cobordism. We first show that a G-SK invariant 7" which is
considered to take values in Z, via the surjection Z — Z,, is always a G-SK
invariants (Theorem 3.8). The kernel F¢ of the natural surjection j, : %% —
SKC is exactly generated by those classes, each of which admits a representative
fibered equivariantly over S'. We characterize the elements of F.¢ by using G-
SK invariants (Theorem 3.10 and Proposition 3.12). Finally, in case G = Z;, we
give a non-zero element of F¢ by using the complex projective space with G-
action treated in Example 1.8 (Example 3.14).

1. Equivariant cutting and pasting

Let G be a finite abelian group. In this paper, a G-manifold means an
unoriented compact smooth manifold together with a smooth action of G. Let
N; (i=1,2) be m-dimensional G-manifolds and ¢,y : IN; — N, equivariant
diffeomorphisms. Pasting along their boundaries, we have closed G-manifolds
M, =N{Us N, and My = Ny Uy N,. Then it is said that M; and M, are ob-
tained from each other by an equivariant cutting and pasting (G-SK process) [5,
7]. Let .4C be the set of all m-dimensional closed G-manifolds. Then it is an
abelian semigroup with respect to the disjoint union + and has a zero given by
the empty set 0.

DEFINITION 1.1. G manifolds M, and M, e .#¢ are said to be G-SK

‘m

equivalent, in symbols M| ~ M,, if there is a G manifold K € .Z¢ such that

M; + K and M, + K can be obtained from each other by a finite sequence of
equivariant cuttings and pastings.

The G-SK equivalence ~ is an equivalence relation on the set .#¢ and the
set FmG = /%”f" /~ of all equivalence classes is a cancellative abelian semigroup.
Let denote by [M] the class containing a G-manifold M. Denote by SKH(,,;
the Grothendieck group of T'°. We then have a graded SK,-module SK¢ =
@mzo SKG given by the cartesian product of manifolds. Here SK. is an SK
ring of closed manifolds which is a polynomial ring over Z with a generator «
represented by the real projective plane RP? [7; Theorem 2.5.1 (i)].

We assume for the remainder of this paper that G is an abelian group of odd
order. A G-module means a finite-dimensional real vector space together with a
linear action of G. For a subgroup H of G, let C(H) consist of all subgroups J
of H such that the quotient H/J =~ Z,, a cyclic group of odd order d. Then, for
J e C(H) an irreducible H-module V(J,j) is defined as follows: if d =1 then
V(H,1) = R with the trivial action of H, while if d > 3 then V' (J, ) is the set C
of complex numbers with a generator s of H/J acting by multiplication by
exp(2nim;/d), where {m;} is the complete set of integers such that 0 < m; <
my < -+ < myg) < d and each m; is prime to d (p, the Euler phi function). If M
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is a G-manifold and x € M, then there is a G,-module U, which is equivariantly
diffeomorphic to a G,-neighbourhood of x. Here G, = {ge G|gx = x} is the
isotropy subgroup at x. The module U, decomposes as U, = R’ @ V,, where G,
acts trivially on R? and VXG* ={0}. We refer to the pair o, = [G,; V5] as a slice
type of x. By a G-slice type in general, we mean a pair ¢ = [H; V] of a sub-
group H and an H-module V with V# = {0}. More precisely, V' is a product
of non-trivial irreducible H-modules V(J,j) (J e C(H) with H/J =~ Z,; and
1 <j<lp(d)+1) (cf. [7; Theorem 1.6.1]). We denote by gy the slice type
[{1};{0}], where {1} is the trivial group. Let S?(G) be the set of all G-slice
types. There is a partial ordering on S#(G) such that [H; V] <X [K; W] if [H; V]
is a slice type of G-manifold G xg W. Further, we give a total ordering on
St(G), which preserves the one =, as follows. For any positive divisor k of |G|,
let L(k) be the set consisting of all subgroups H of G such that |H| = k. First
order the elements in L(k) appropriately, then this ordering gives the one < on
the set of all subgroups of G, preserving inclusion of subgroups, that is, if H = K
then H < K. Moreover, for any H such an ordering leads to the one on the set
of non-trivial irreducible H-modules: V(J1, 1) < V(J2, o) if Jo < Jy or J; = J,
and j; < j,. Finally we order the elements in S#(G) as follows:

(1) [H; V] < [K; W] if dim(V) < dim(W).

(2) Suppose that dim(V) = dim(W), then [H; V] < [K; W] if H < K.

(3) Suppose that dim(V)=dim(W) and H =K, then [H; V]| < [H; W] if

V' < W in the ordering of H-modules induced lexicographically from the
one of irreducible H-modules (cf. [7; Section 1.7]).

DEerFINITION 1.2. Let W be a K-module and H a subgroup of K. Then
denote by Wy an H-module W induced from H = K. Let {W;} be the set of
all non-trivial irreducible K-modules. If r=[K; W], W =T]], W,f(k) (a(k) = 0)
is a slice type, then we define a slice type ty by vy = [H; V], where V' is the non-
trivial part of the H-module Hk(Wk)ﬁ,(k). Since (W), = R’ we have that
Ty = 0o for any 7. Let [t| = dim(W) be the dimension of .

Remark 1.3. (i) More precisely, let Wy = V(L,j) for some L < K with
K/L ~ Z, and the integer m; such that 0 < m; < a, (m;,a) =1. Then (Wy), =
V(LNH,j") with 0 <my <b, (mj,b)=1, where H/(LNH)=LH/L ~ Z).
The integer j’ is determined by the action LH /L on (W), induced from the one
of K/L on Wy. We see that (W), is the trivial H-module R? only if H < L.
It follows that the difference |7| — |ty| is the sum of dim((Wy),) (=2) with
Hc L

(ii) Wy = R x v as an H-module and WH = (Wy)" = Rl » {0}
has slice types 7y (H < U = K) as a K-invariant subspace of W. Note that
Ty < 7 because |ty| < |7l

ProposITION 1.4 (cf. [7; Theorem 5.2.1]). SKC is a free SK.-module
with basis B = {ylo];0 =[H;V]e St(G)}, where y[o] =[G xyg RP(V x R)| and
RP(V x R) denotes the real projective space of the product V x R.
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Now, by using the total ordering on S#(G), we rename the G-slice types:
@0 = Py, P1, P2, - -- With the condition that if i < j then p; <p;. Set F = {p;
J <k}, then Z is a family of G-slice types in the sense of that in [7; Section 1.2].

COROLLARY 1.5. If a G-manifold M has slice types o€ F, (x€ M), then
the class [M] is a linear combination over SK. by the elements y|p;] with p; € F.

LemMA 1.6.  For G-modules U; (i =1,2), let S(U; x U,) be a G x S'-sphere,
that is the G-sphere together with the natural action of the circle group S'. Then
there is an SK equivalence:

1
25(Uy x Us) X S(Uy x R) x S(Us) + S(UL) x S(Us x R),

s, .
where we use a symbol ) instead of ~ because the above G-SK process is com-
patible with the action of S'.

Proof. Let Ny =N, =S(U;) x D(U,) + D(U;) x S(U,), where S(U;) and
the disk D(U;) are considered to be G x S'-spaces. Then we obtain the above
equivalence by pasting dN; to ON, by the natural G x S'-equivariant identi-
fications ¢ and . O

LemMA 1.7.  For G-modules Vi such that V. = {0} (i=1,2), we have the
Sfollowing SK equivalences.

(i) S(R**! x V)) ~2RP* x RP(V| x R).

(i) RP(Vy x R) x RP(V2 x R) ~ RP(V\ V> x R).

Proof. We first consider (i). Let SKY(pt, pt) be an SK group resulting
from cuttings and pastings of G-manifolds with boundary in [2, 4]. It fol-
lows that [D(V})] = [RP(V) x R)] in SK%(pt, pt) since V; is a product of two-
dimensional irreducible G-modules (cf. [4; Lemma 3.8 and Example 3.9 (3.3)]).
Hence we obtain the equivalence in case k = 0: [S(V] x R)] = 2[RP(V) x R)] by
making use of the map %, : SKC(pt, pt) — SKC given by Z.([M]) = [M U M],
the double of a G-manifold M. Further, when k > 1, set (U, Us) = (R**1, 1),
forgetting S'-action, in the equivalence in Lemma 1.6. Then

(1.7.1) 2S(R¥**! % V) ~ Py + P,

where Py = S**1 x S(V)) and P, =S%* x S(V; x R). Since S**!' ~( and
S% ~ 2RP%* we have that 2S(R**! x V|) ~ P, ~ 2RP?% x 2RP(V| x R) (cf. [7;
Theorem 2.5.1 (ii)]). Thus (i) follows since SK¢ has no torsion (cf. Proposition
1.4). Next we prove (ii). Let (U, Uy) = (V1,V2 x R), then 2S(V1V> x R) ~
S(Vi x R) x S(V2 x R) +S(V1) x S(V2 x R*) by Lemma 1.6. It is seen that
S(V1) and S(V, x R*) ~ 0 since they are odd-dimensional G-manifolds (cf.
Proposition 1.4). Hence 4RP(V1V> x R) ~2RP(V) x R) X 2RP(V, x R) by (i),
which implies the result. ]
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Example 1.8. Consider the case where G = Z, (p; odd prime). The non-
trivial irreducible G-modules are V; = C with a generator of G acting by
multiplication by exp(2nij/p) (1<j<t=1(p—1)). We denote by <a(l),
a(2),....a(r)> a slice type o=[GV] with V=[] V" Let M=
CP(C a0) g) be the associated complex projective space of the product
C‘© x v with a(0) > 0. Then [M] is represented by the generators of SKC in
Proposition 1.4 as

(1.8.1) (M] = > a(k)a @ ylow),

where o) =0 if k=0,

Calk — 1) +a(k + 1),a(k —2) + a(k +2),...,

a(0) + a(2k), a2k +1),...,a(1),0,...,0>
if 1<k<it
Calk — 1) +a(k + 1),alk —2) + a(k +2), ...,

a2k — 1) + a(t),a(2k — t — 1),...,a(0),0,...,0>

if 1r<k<tor
a(t —1),a(t - 2),...,a(0)>

if k=1t To show (1.8.1), we use the relation in Lemma 1.6. Set (U, U,) =

(VO“(O), V), where ¥, = C with the natural S'-action. Then
1
(182) 25 x 1) X s(110 % R) x S(V) + (V@) x S(V x R).

Next divide V as V = Vf'(l) x V' with V' =T],_,, Vja(j) and put (U, U,) =
(VD y’). Then ‘

1
25(v) &

SV x Ry x S(V') + S(V™) x S(V' x R).
Taking this to (1.8.2), we have

1
22570 % 1) X 5@ x Ry x S(v#Y x R) x S(V')
+ SV % R) x S(V{Vy x S(V' x R)
+ 28V x S(V x R).
Continuing such an SK process on S(V’) inductively, we have
1
RUTERIL N SERRTN
0<k<t

where
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P= ( [T s x R)) x S,

0<j<t
P = < [T s % R)> x S(V" My x S( IT v x R).
0<j<k k<j<t
This induces an SK equivalence on the orbit spaces with respect to S':
(1.8.3) 2CP(Vy x V)~ P+ Y 27 KP
0<k<t

Here, it follows from Lemma 1.7 that P fibers equivariantly over S( I/,“<’)) =
CP0O-1 with fiber

0<j<t 0<j<t

(1.8.4) F= ][ s(v®mn™ xR~ 2pr< IT e x R)

= ZIRP(O'W X R)

and Py fibers equivariantly over S(V“*)) = CcP«®)-1 with fiber

(1.8.5) Fi _< H S((VJ@ Vk)a(j) ~ R)) x S( H (V;@ Vk)a(./) > R)

0<j<k k<j<t

~ 25 T RP((V; @ V)“Y x R) x 2RP< 1 ;e v ><R>

0<j<k k<j<t

~ 2"+‘RP(H(V,~ ® Vi)V x R) — 2 IRP(o (1) X R).
Jj#k

From these, we have P ~ CP“0~! x F and Py ~ CP*¥-1 x F, (0 <k < 1) (cf.
[7; Theorem 2.4.1 (iv)]). It is seen that [CP“%)~1] = a(k)a“®)-1 in SK, since
2(CP“N)=1y = (k) (cf. [7; Theorem 2.5.1 (ii)]). Therefore we obtain the desired
equality by taking (1.8.4) and (1.8.5) in (1.8.3).

Remark 1.9. In case of G = Z,,, we have obtained a similar equality as

(1.8.1) by performing an SK process on G-manifolds with boundary (cf. [2;
Example 2.12 (ii)]).

2. G-SK invariants

In this section, we determine a form of G-SK invariants.

DEerFINITION 2.1.  Let 0 = [H; V] € St(G) and M a G-manifold. Then define
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M, to be the set consisting of those points x € M such that (o.), = o in the sense
of Definition 1.2.

Remark 2.2. Let My be M with the induced action of H, then M, is
precisely the set (Mpy), = {x € Mpy;0. =0}. Since ¢ is maximal in the family
F (My) = {oy;x € My} with respect to the partial ordering < given in Section 1,
M, is a G-invariant submanifold of M with dim(M,) = dim(M) — |o| by the slice
theorem (cf. [5; Chapter 3]). In case o =gy, we have that M, = M. The
submanifold M# of M decomposes as M* =" M, summing over all ¢ with H
as an isotropy subgroup.

Example 2.3. For 7=[K;W]eSt(G), let M =GxgRP(W xR) be a
representative of the class y[z] in 4 (cf. Proposition 1.4). The slice types of M
are the same as those of G xx (W x R) (or W) because W is a complex K-
module. If H is a subgroup of K, then My = G/K x RP(Wy x R) with the
induced action of H given by (([g], [v, 1])) = ([g], [hv, f]) for h € H and ([g], [v,1]) €
Mpy. On the other hand, if H is not a subgroup of K, then M = @. Hence it
follows that [M,] = |G/K|[RP"-1] = |G/K|a\F=l7uD/2 if ¢ = 7;; with H < K or
[M,] = 0 otherwise (cf. Remark 1.3 (ii) and [7; Theorem 1.7.1, Remark 1.7.2]).
We see that [RP?"] = o™ in SK>,, by considering the SK process as in Lemma 1.7
(ii) when (Vy,V3) = (C,C™ ") (cf. [7; Theorem 2.5.1]).

DeFmiTION 2.4, Let T: ﬂnf — Z be an additive map, that is, if M =
M| + M, then T(M) = T(M,)+ T(M,). Wecall T a G-SK invariant or simply
an invariant if T(N;UgNo) = T(Ny Uy N») for any G-diffeomorphisms ¢ and
Y : ON; — 0N, in Section 1. If M} ~ M,, then T(M;) = T(M;). Thus the map
T induces an additive homomorphism 7 : SKS — Z. The set 7,¢ consisting of

all these invariants is a Z-module under the natural addition.

Example 2.5. Given a slice type o€ St(G), let y, be a map defined by
2s(M) = y(M,) for any G-manifold M. Then it is an invariant since M ~ M’
implies M, ~ M, naturally. Note that y, =y since M, = M. Further, for
any subgroup H of G, the map y” defined by y" (M) = y(M") is also an
invariant and the equality 7 =3 y, holds in 7,% (cf. Remark 2.2).

Let H be a subgroup of G. Then, by using the total ordering on S#G),
define inductively integers ny(K) for subgroups K with H = K = G as follows:

ng(H) =1, np(K)=|K/H| = > nu(L),

HclLcK

where L = K means that L < K but L # K. If H = {1}, then the integers n,(K)
coincide with those n; in [6; Definition 5.3]. For ¢ = [H; V'] € St(G) and a sub-
group K with H = K, denote by k(o) the set consisting of those slice types
7= [K; W] such that 1y =o.
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THEOREM 2.6. For o = [H; V] e St(G), define 6, by

:|G/H_]{Xa+ Z nH(K)< Z XT)}.
HcKcsG 1€ Ik (0)

Then the set {0,;|0| < 2n} provides a basis for 7,° as a free Z-module. On the
other hand, 7,5, = {0}.

Proof. First we see that 7,0, = {0} because SK , = {0} by Proposition
1.4. For ¢ = [H; V] with |g| < 2n, let g, : SK — SK;, |,/ be a map given by
gs([M]) = [M,] and f, a map deﬁned by

261)  fo=|G/H'Sge+ > n (Z allf=lel/ )}

HcKcG Te Ik

Now look at the basis elements of # in Proposition 1.4. Then, given u=
[K; W] e St(G) the values f,(y[x]) which do not vanish are f, (y[u]) = all#=luD/2
(L= K). In fact, if 0 =y, for some L (= K), then

(262) [, (VW) =1G/LI” {gm )+ ”L(U)O‘(ﬂU_#L)/zgﬂu(J’[ﬂ])}

LcUcK

= |K/L|‘l ( Z nL(U)> ollel=luel)/2
— glld=lucl)/2

by Example 2.3 and the equality ) ,_,-xn(U)=|K/L|. On the other
hand, if o¢ {y ;L =K}, then py¢ Fy(o) for U< K. This implies that
go(¥[H]) = g:(¥[1]) =0 in (2.6.1) and f;(y[y]) =0 (cf. Example 2.3). Therefore
each f, induces an SK,-homomorphism f,:SKS =3, SK{ — SK», |, =
Zn>(1 /2)lol SK»,_|s of degree —|g|. Now we recall the ordering of G-slice types:

= PosP1: P2 - -~ With the condition that if i < j then p; <p;. This ordering
ensure that if u=[K;W] then y, <u for L= K. Let us define an SK,-
homomorphism f, by

f* = ('Bkj‘;)k : SKzgi — A= ('BkSKh—\pk\a

where £, (y[p]) = [pt];, the generator of SK,,_|, | = SK, as an SK.-module. We
can totally order the basis elements of 4 = {y[p;];k > 0} and 2’ = {[p1],; k > 0}
for A naturally. Then it follows from (2.6.2) that f; is isomorphic because the
matrix relative to the ordered bases % and %’ is triangular with components 1 on
the diagonal. Now let T be an element of Z,C, then there is a factorization

Dix

fi
(2.6.3) T:SKS 2 @SKoyip = O1Z - .z
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for some 7', where the direct sum is taken over all k with |p;| <2n (cf. [7;
Theorem 2.5.1 (ii)]). This implies that 7 =", T'(1x)0,,, where 0, = yo f,
and 1y =1 in the k-th copy of Z in @;Z. Note that {p;;|p.| <2n}=
{o;|o] < 2n} because the ordering on S#(G) preserves the dimension |o|. Thus
the set {0,;|o| <2n} provides a basis for 7,°. O

Example 2.7. Suppose that G=Z, (m; odd). Then, for 0 =[Z;V]e
St(Z,,) with s|lm, we have

O =(m/s) e+ D ot/ D x
s<t<m,s|tlm €S 7,(0)
because nz (Z;) = ¢(t/s) by definition. The set {0,;|o| < 2n} provides a basis
for f/‘zf”’.
COROLLARY 2.8. Let H be a subgroup of G. Then we have
Y m(K)y(M*) =0 (mod|G/H|)
HSK<G
for any G-manifold M. In particular, if H = {1}, then
Yy (K)z(M*) =0 (mod|G])
KcG
(cf. [6; Corollary 5.19]).

Proof. Consider a sum ). _0,(M) summing over all ¢ with H as an
isotropy subgroup. Then it follows from Example 2.5 and Theorem 2.6 that

Y 0s(M) = |G/H|™" {X(MH) + Y nH(K)X(MK)}

HcKcG

=|G/HI™" Y nu(K)y(M¥),
HSK<sG

which is an integer. This gives us the congruence. O

3. G-fiberings over the circle

In this section, a G-SK invariant is considered to take values in Z, = {0, 1}.

If m-dimensional G-manifolds M and M’ are G-cobordant in the usual sense,
. C .
then we write M ~ M'.

LemMa 3.1 (cf. [5; Lemma 1.9] and [7; Corollary 2.3.2]). Let M and M' be
m-dimensional G-manifolds.
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(i) If M ~ M’ (SK equivalence), then there is a G-manifold P which fibers
equigariantly over the circle S' with the trivial action of G such that
M~ M +P.

(i) If M < M', then M ~ M' + Q, where

Q=) a(H, Uy, Uy)-Gxpu (S(Uh) x S(U2)) + > _b(H,U)- G xp S(U)

for some integers a(H,U;,Uy) and b(H,U). Here, the first sum is
taken over all subgroups H = G and all H-modules U; satisfying that
(U = {0} such that dim(U,) + dim(Us) = m + 2, while the second sum
is taken over all H and all H-modules U such that dim(U) =m+ 1.

The relations ~ and < are commutative with each other, i.e. given M and
M’ the following (i) and (ii) are equivalent: (i) there is a G-manifold A4 such that
M~A45 M. (i) there is a G-manifold B such that M SB~M (cf. [3;
Lemma 4.2]).

_ DeriNiTiON 3.2, If such an 4 (or B) exists, then M and M’ are said to be
G-SK equivalent.

We note that G-SK equivalence is an equivalence relation by the above
commutativity.

DEFINITION 3.3 (cf. [5; Chapter 1]). Let SKY be .#¢ factored by the G-SK
equivalence. In other words, SKC is SKC factored by the relation <.

Let 1.¢ be the kernel of the natural surjection i, : SKS — SK<, that is the
subgroup of SKC generated by all elements [M] — [M'] such that {M} = {M'} in
RY Note that y(x) is even for any x e I.¢ because so is y(M) — y(M') (cf. [1;

Section 1]).

LemMA 3.4, IG =2SK{ and I | = {0}.

Proof. In case m = 2n, it is sufficient to show that I, < 2SKZ. Take an
element x = [M] — [M'] e IZ, then x is expressed as

(34.1) x=) a(H,U;,U)[G xpu (S(Ur) x S(U2))] + Y b(H, U)[G xy S(U)]

by Lemma 3.1 (ii). First, note that dim S(U;) is odd by the condition
(U ={0}. This implies that the first sum of the right-hand side vanishes
since [S(U;)]=0 in SK” (cf. Proposition 1.4). On the other hand, since
U=R ! xV for some slice type o = [H; V] (2k +|o| =2n), we have that
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[G xp S(U)] = 2¢*y[o] by Lemma 1.7 (i) and Example 2.3. Hence x e 2SK{.
Finally, 7, = {0} since so is SKy_ . O

From the above, there exists an isomorphism SK¢ ~ SK?/2SKS. The
following theorem is therefore immediate by Proposition 1.4.

THEOREM 3.5. S_Kan is a Zy-module with basis {a"19/2y[a];|o| < 2n}. On
the other hand, SK$, , = {0}.

DeFINITION 3.6, Let T :.#% — Z, be an additive map. We say that
T is a G-SK invariant if T(M)= T(M') for any M and M’ e .#C such that
they are G-SK equivalent. A G-SK invariant T induces a homomorphism
T : S_K,f — Z>.

Example 3.7. Assume the M and M’ are G-SK equivalent, 1e there is a
G-manifold A such that M ~ 4 < M', then we have M, ~ A, < M/ for any
o€ S{(G). This means that M, and M. are also G-SK equlvalent Thus,
%, (mod 2) defined by y,(M) = y(M,) reduced modulo 2 is a G-SK invariant.

THEOREM 3.8. Let 7,9 be the set of all G-SK invariants T : SKS — Z,.
Then 7,¢ is a Zy-module with basis {0, (mod 2);|a| <2n}. On the other hand,

J2n+l {O}

Proof. The isomorphism in (2.6.3) induces a map

(3.8.1) ®,0, (mod2): Sk ¥ @,z % ®,2,,

where the sums are taken over all ¢ with || <2n and i: Z — Z, is the natural
surjection. Since the kernel of this map is 2SK{ = IC by Lemma 3.4, the map
®,0, (mod 2) induces the isomorphism SK{ =~ @,Z,. This verifies that the
set {0, (mod 2);|o| <2n} provides a basis for 7,9. If m=2n+1, then 7,7,
vanishes because so does SK, . O

Let F¢ be the kernel of the surjection j, : #% — SKG, that is the subgroup
of NG generated by all classes of the form {M} + {M } such that [M] = [M'] in
SK,, G Let us consider the class  which has a representative M’ fibered equiv-
ariantly over the circle S' with a fiber F such that the action of G takes place
within F. Then M'~S'x F~(Q and feF m G (cf. [7; Theorem 2.4.1 (i) and
(ii)]). Tt follows from Lemma 3.1 (i) that F is precisely generated by all these
classes f.

Remark 3.9. Note that FZ ={0}. On the other hand, we have that
FZ = =N .1 because SK¢ .| = {0} We can explain this from another point
of view as follows. We see that ‘Jt is multiplicatively generated over the co-
bordism ring 9%, by some even- -dimensinal G-manifolds (cf. [7; Theorem 4.1.1]).
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Hence, if dim(M )—2n+1 odd, then {M} =3} a;L;, where a; €. with
dlm(aj) odd and L; e NE with dlm( L;), even. Since )((a,) = 0, we see that each
a; has a representatlve ‘which fibers over the c1rcle (cf. [1; Section 1]). This

implies that {M} € F., and hence F); | = 9{2”“

Now we consider a condition that a classC{M } belongs to Fl. Given
{M} e FZ, let M’ be a G-manifold such that M ~ M’ and it fibers equivariantly

over S! with a fiber F. Then, for any o € St(G) we have that M, M . which
also fibers equivariantly over S! with the fiber F,. Hence a necessary condition
for {M} e FZ is that y(M,) =0 (mod2) for any 6. We have the following
theorem by Theorem 3.8.

THEOREM 3.10. Let M be a 2n-dimensional G-manifold. Then {M} e FS if
and only if 0,(M) =0 (mod 2) for any slice types o€ St(G) with |a| < 2n.

The following corollary is immediate by Corollary 2.8.

COROLLARY 3.11. A necessary condition for a class {M} e F? is that the
following congruence

2M™T)+ Y ng(K)y(M¥) =0 (mod2-|G/H|)

HcK<sG

holds for any subgroup H of G.

PROPOSITION 3.12. Let G=Z, (p; odd prime). Then {M} e FZ if and
only if
(3.12.1) A(My)= > x(M;) (mod2p")
reFi1(o)
for any o = [Z,:; V] € S1(G) with |o] < 2n (0 < s <r), where %1(0) = 9z ., (0)
and Y, (o) = 0.

Proof. By Theorem 3.10, in order that {M} € F\?, a necessary and sufficient
condition is that

(3.122) p U 0.(M)=yz,+ > (p —p) ( > x,) =0 (mod 2p’™)

s<t<r e (0

for any o=[Z,,V]eSi(G) (0 <s<r), where p(p'*) =p~*—p! in Ex-
ample 2.7 and an integer y(M,) is simply written as y,. We define an integer
hy(M) for v=1[Z,;V] by

hv(M) =Xy — Z Ao+

we S (v)
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Since S;12(0) is decomposed as S42(0) = 32, c 4. (») Ls+2(4) and so on, the right-
hand side of the congruence (3.12.2) is expressed by the sum of these /,(M) as

(3.12.3) (XU— > m) +p( > ()a— > )@))
re%i1(0) 1€ 5511(0) ueSia(4)
+07 0 DY - D e

ueFia(4) e S
4o p Z 2. =0 (mod 2p™™).
te%(p)

If t=[Z,;V], then the above congruence (when ¢ = 1) implies that /(M) =
Z: =0 (mod 2). We assume that i,(M)=0 (mod2p"™) for any v=[Z,; V]
(s <t<r). Then, by induction, it follows from (3.12.3) that /,(M) =y, —
Y iesnio) X =0 (mod 2p™°) for 6 = [Z,:; V']. Therefore the congruences (3.12.1)
are obtained. Conversely, let M satisfy (3.12.1), that is s,(M) =0 (mod 2p"*)
for any o = [Z,s; V]. Taking these in the left-hand side of (3.12.3), we have that
0,(M) =0 (mod2). Thus {M} e FS. O

CoROLLARY 3.13. Let G = Z, (p; odd prime). A necessary condition for a
class {M} e F? is that the following congruences

2(M?r) = (M%) (mod 2p™) (0<s<r)

hold, where y(M?%) is regarded as zero.

Example 3.14. Finally we give a non-zero element of Fz(,i in case G = Z;.
The non-trivial irreducible G-modules are V;, = C with a generator of G acting by
multiplication by exp(2zik/7) (1 <k <3). Let 5; denote the canonical complex
line bundle over CP/ and Nix =n; ®c Vi the G-vector bundle over CP/ given by
the tensor product of 1 (with the trivial G-action) and the trivial vector bundle
Vi x CP/. For convenience, we denote 7y, = Vi and 5, = V,. Now consider a
G-manifold N = CP(C* x (V1)'(V2)'(V3)"), the associated complex projective
space of a product of G-vector bundles vy = C* x (V1)'(V2)'(V3)* over By =  x
(CP")(CPY)'(CP")* = (CP")** (s,; odd with s< ¢ and * = {pt}, the one-
point set). We first show that a class {N} is a non-zero element in %5, where
n=3s+4t—1. For each g€ St(G), a G-vector bundle v is said to be of type o
if the subset {x € v;o, = g} is precisely its base space B. Let (o] denote the
bundle bordism group of all G-vector bundles of type o. Given a G-manifold
M, the normal bundle v over the fixed point set F¢ is the direct sum of those v,
(of type o) over M,, where the sum is taken over all ¢ with G as an isotropy
subgroup (cf. Remark 2.2). Hence there is a well-defined homomorphism v, :
N — > N0 given by v.({M}) =3 {v,}. For our element {N}, we have
v.({N}) = > <icaivi}, where each v; is as follows:
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(3.141)  w=CP-(1)'()'(B) - B
= CP(C* x {0}{0}{0}) = CP*!. (CP)**,
v =CP(()")-(N)' (") (12)" — B

(
(
= CP({0} x (V1){0}{0}) = CP((}1)") - x(CP))"™,
v3=CP((V2)") - (V2)'(V1)™ — By
(
(
(

= CP({0} x {0}(}2)'{0}) = CP((V2)") - (CP)"™,
v =CP((13)") - (13)'(V2)'(V1)" — By

= CP({0} x {0}{0}(13)") = CP((13)") - x(CP")™.

Let o = [G; V{ V4 V53], then it is known that %[o] is a free N,-module generated
by the classes of monomials

MykrL = Uiyt Wio1Men2 = M2z == Migs)3

with j(1) >--->j(t) =0, k(1) > --- = k() =0 and /(1) = --- = I(s) = 0 (cf. [7;
Lemma 3.4.4 and Theorem 4.1.1]). Let dim(r,x,) =s+2t+ > j(p) + > k(q) +
> 1(r) be the complex dimension of the total space. Now go back to the image
v.({N}). It follows from (3.14.1) that N, = B; + B4 and v, = " +V4 From
the condition that s and ¢ are odd with s < #, the monomial (V;)(V2)’ (V3)

vi has the dimension 2s+ 4¢, which is higher than that of the monomial in vy,
and its coefficient {CP*'} = {(RP¢1/2)2} 20 in N, (cf. [8; Lemma 7]). This
ensure that {v,} # 0 in 9%%6] and {N} # 0 in 9. Next we study an SK class
[N]. By definition, N is fibered equivariantly over the first CP! of the base
space By = (CPY)*™* with fiber F = CP(C*x Vi(V1)"'(V2)'(V3)*). Hence
N ~ CP! x F (cf. [7; Theorem 2.4.1 (iv)]). Continuing this SK processes on F
inductively, we have

(3.14.2) N ~ (CPY*™ x M,

where M = CP(C* x V{V{Vy). Now we apply the equality (1.8.1) for M.
Note that o3y =0 and 6(1) = 01p) = [G; V{"'V5]. Then we have that

[N] = [(CP")*)(250" ' y[o] + 200 ylon)])

in SK7. Hence [N] vanishes in SK5 and {N} € F,% by Lemma 3.4. The slice
types of N are g9,0 and o(j), and No, = N, N, = By + By and Noy, = B>+ B3
by (3.14.1). Thus x(N) =224 (s+1), x(Ny) = x(By) + x(Bs) = 2°"**1s and
*(No,) = x(B2) + x(B3) = 2°"**!1. These imply that z(N) = x(No) + x(Ny,)) =
2(N9), x(Ny) =0 (mod 2) and y(N, o0,) = 0 (mod 2), from which the congruences
(3.12.1) are obviously satisfied.
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