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ON G-FIBERINGS OVER THE CIRCLE

WITHIN A COBORDISM CLASS

Tamio Hara

Introduction

Conner and Floyd [1] have characterized those unoriented cobordism classes
that admit a representative which fibers over the circle S1. They have shown
that a closed manifold M is cobordant to a bundle over S1 if and only if
wðMÞ1 0 (mod 2), where w is the Euler characteristic. Let G be a finite abelian
group of odd order and NG

� the cobordism group of unoriented closed G-
manifolds. The purpose of this paper is to determine when a class b in NG

� has a
representative which fibers equivariantly over S1 such that the action of G takes
place within fiber. The author [3] has discussed such a question in case where
G ¼ Z2 r , the cyclic group of order 2r.

In Section 1, we first introduce an SK group SKG
� resulting from equivariant

cuttings and pastings (G-SK processes) of closed G-manifolds. The abbreviation
SK stands for Schneiden und Kleben in German. Kosniowski [7] has obtained
some generators of SKG

� as a free SK�-module, where SK� is an SK ring of closed
manifolds in Karras, Kreck, Neumann and Ossa [5] (Proposition 1.4). As an
example, we perform G-SK processes on some complex projective space with G-
action and write it by the above generators (Example 1.8).

In Section 2, we consider a notion of G-SK invariant studied in [5] and [7].
Let T be a map for closed G-manifolds which takes values in the ring Z of
rational integers and is additive with respect to the disjoint union of G-manifolds.
Such a T is said to be a G-SK invariant if it is invariant under G-SK processes.
Given a G-manifold M, let Ms be a G-submanifold of M consisting of those
points whose slice types containing s. Then a map ws defined by wsðMÞ ¼
wðMsÞ is a G-SK invariant. Further, for a subgroup H of G, the map wH

defined by wHðMÞ ¼ wðMHÞ is also a G-SK invariant, where MH ¼ fx A M j
hx ¼ x for any h A Hg. We see that wH ¼

P
s ws summing over all s with H

as an isotropy subgroup. The above T is considered to be an additive homo-
morphism T : SKG

� ! Z. We determine a form of T by using those ws and have
a base for a Z-module TG

� consisting of all G-SK invariants (Theorem 2.6).
In Section 3, we devote to a study of G-fiberings over S1. Let SKG

� be SKG
�
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factored by the equivariant cobordism relation. Let TG
� be a Z2-vector space

consisting of all homomorphisms T : SKG
� ! Z2. Such a map T is called a G-

SK invariant, namely a G-SK invariant (modulo 2) and simultaneously invariant
under equivariant cobordism. We first show that a G-SK invariant T which is
considered to take values in Z2 via the surjection Z ! Z2, is always a G-SK
invariants (Theorem 3.8). The kernel F G

� of the natural surjection j� : N
G
� !

SKG
� is exactly generated by those classes, each of which admits a representative

fibered equivariantly over S1. We characterize the elements of F G
� by using G-

SK invariants (Theorem 3.10 and Proposition 3.12). Finally, in case G ¼ Z7, we
give a non-zero element of F G

� by using the complex projective space with G-
action treated in Example 1.8 (Example 3.14).

1. Equivariant cutting and pasting

Let G be a finite abelian group. In this paper, a G-manifold means an
unoriented compact smooth manifold together with a smooth action of G. Let
Ni ði ¼ 1; 2Þ be m-dimensional G-manifolds and f;c : qN1 ! qN2 equivariant
di¤eomorphisms. Pasting along their boundaries, we have closed G-manifolds
M1 ¼ N1 Uf N2 and M2 ¼ N1 Uc N2. Then it is said that M1 and M2 are ob-
tained from each other by an equivariant cutting and pasting (G-SK process) [5,
7]. Let MG

m be the set of all m-dimensional closed G-manifolds. Then it is an
abelian semigroup with respect to the disjoint union þ and has a zero given by
the empty set j.

Definition 1.1. G manifolds M1 and M2 A MG
m are said to be G-SK

equivalent, in symbols M1 @M2, if there is a G manifold K A MG
m such that

M1 þ K and M2 þ K can be obtained from each other by a finite sequence of
equivariant cuttings and pastings.

The G-SK equivalence @ is an equivalence relation on the set MG
m and the

set GG
m ¼ MG

m =@ of all equivalence classes is a cancellative abelian semigroup.
Let denote by ½M � the class containing a G-manifold M. Denote by SKG

m

the Grothendieck group of GG
m . We then have a graded SK�-module SKG

� ¼
0

mb0
SKG

m given by the cartesian product of manifolds. Here SK� is an SK
ring of closed manifolds which is a polynomial ring over Z with a generator a
represented by the real projective plane RP2 [7; Theorem 2.5.1 (i)].

We assume for the remainder of this paper that G is an abelian group of odd
order. A G-module means a finite-dimensional real vector space together with a
linear action of G. For a subgroup H of G, let CðHÞ consist of all subgroups J
of H such that the quotient H=JGZd , a cyclic group of odd order d. Then, for
J A CðHÞ an irreducible H-module VðJ; jÞ is defined as follows: if d ¼ 1 then
VðH; 1Þ ¼ R with the trivial action of H, while if db 3 then VðJ; jÞ is the set C
of complex numbers with a generator h of H=J acting by multiplication by
expð2pimj=dÞ, where fmjg is the complete set of integers such that 0 < m1 <
m2 < � � � < mjðdÞ < d and each mj is prime to d (j, the Euler phi function). If M
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is a G-manifold and x A M, then there is a Gx-module Ux which is equivariantly
di¤eomorphic to a Gx-neighbourhood of x. Here Gx ¼ fg A G j gx ¼ xg is the
isotropy subgroup at x. The module Ux decomposes as Ux ¼ Rp lVx, where Gx

acts trivially on Rp and VGx
x ¼ f0g. We refer to the pair sx ¼ ½Gx;Vx� as a slice

type of x. By a G-slice type in general, we mean a pair s ¼ ½H;V � of a sub-
group H and an H-module V with VH ¼ f0g. More precisely, V is a product
of non-trivial irreducible H-modules VðJ; jÞ (J A CðHÞ with H=JGZd and
1a j < 1

2 jðdÞ þ 1) (cf. [7; Theorem 1.6.1]). We denote by s0 the slice type

½f1g; f0g�, where f1g is the trivial group. Let StðGÞ be the set of all G-slice
types. There is a partial ordering on StðGÞ such that ½H;V � � ½K ;W � if ½H;V �
is a slice type of G-manifold G �K W . Further, we give a total ordering on
StðGÞ, which preserves the one �, as follows. For any positive divisor k of jGj,
let LðkÞ be the set consisting of all subgroups H of G such that jHj ¼ k. First
order the elements in LðkÞ appropriately, then this ordering gives the one < on
the set of all subgroups of G, preserving inclusion of subgroups, that is, if HJK
then HaK . Moreover, for any H such an ordering leads to the one on the set
of non-trivial irreducible H-modules: VðJ1; j1Þ < VðJ2; j2Þ if J2 < J1 or J1 ¼ J2

and j1 < j2. Finally we order the elements in StðGÞ as follows:
(1) ½H;V � < ½K ;W � if dimðVÞ < dimðWÞ.
(2) Suppose that dimðVÞ ¼ dimðWÞ, then ½H;V � < ½K ;W � if H < K .
(3) Suppose that dimðVÞ ¼ dimðWÞ and H ¼ K , then ½H;V � < ½H;W � if

V < W in the ordering of H-modules induced lexicographically from the
one of irreducible H-modules (cf. [7; Section 1.7]).

Definition 1.2. Let W be a K-module and H a subgroup of K . Then
denote by WH an H-module W induced from HJK . Let fWkg be the set of
all non-trivial irreducible K-modules. If t ¼ ½K;W �, W ¼

Q
k W

aðkÞ
k ðaðkÞb 0Þ

is a slice type, then we define a slice type tH by tH ¼ ½H;V �, where V is the non-

trivial part of the H-module
Q

kðWkÞaðkÞH . Since ðWkÞf1g ¼ R2, we have that
tf1g ¼ s0 for any t. Let jtj ¼ dimðWÞ be the dimension of t.

Remark 1.3. (i) More precisely, let Wk ¼ VðL; jÞ for some LHK with
K=LFZa and the integer mj such that 0 < mj < a, ðmj; aÞ ¼ 1. Then ðWkÞH ¼
VðLVH; j 0Þ with 0 < mj 0 < b, ðmj 0 ; bÞ ¼ 1, where H=ðLVHÞ ¼ LH=LFZb.
The integer j 0 is determined by the action LH=L on ðWkÞH induced from the one
of K=L on Wk. We see that ðWkÞH is the trivial H-module R2 only if HJL.
It follows that the di¤erence jtj � jtH j is the sum of dimððWkÞHÞ ð¼ 2Þ with
HJL.

(ii) WH ¼ Rjtj�jtH j � V as an H-module and WH ¼ ðWHÞH ¼ Rjtj�jtH j � f0g
has slice types tU (HJU JK) as a K-invariant subspace of W . Note that
tU a t because jtU ja jtj.

Proposition 1.4 (cf. [7; Theorem 5.2.1]). SKG
� is a free SK�-module

with basis B ¼ fy½s�; s ¼ ½H;V � A StðGÞg, where y½s� ¼ ½G �H RPðV � RÞ� and
RPðV � RÞ denotes the real projective space of the product V � R.
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Now, by using the total ordering on StðGÞ, we rename the G-slice types:
s0 ¼ r0; r1; r2; . . . with the condition that if i < j then ri < rj. Set Fk ¼ frj;
ja kg, then Fk is a family of G-slice types in the sense of that in [7; Section 1.2].

Corollary 1.5. If a G-manifold M has slice types sx A Fk ðx A MÞ, then
the class ½M � is a linear combination over SK� by the elements y½rj� with rj A Fk.

Lemma 1.6. For G-modules Ui ði ¼ 1; 2Þ, let SðU1 �U2Þ be a G � S1-sphere,
that is the G-sphere together with the natural action of the circle group S1. Then
there is an SK equivalence:

2SðU1 �U2Þ @
ðS 1Þ

SðU1 � RÞ � SðU2Þ þ SðU1Þ � SðU2 � RÞ;

where we use a symbol @
ðS 1Þ

instead of @ because the above G-SK process is com-
patible with the action of S1.

Proof. Let N1 ¼ N2 ¼ SðU1Þ �DðU2Þ þDðU1Þ � SðU2Þ, where SðUiÞ and
the disk DðUiÞ are considered to be G � S1-spaces. Then we obtain the above
equivalence by pasting qN1 to qN2 by the natural G � S1-equivariant identi-
fications f and c. r

Lemma 1.7. For G-modules Vi such that V G
i ¼ f0g ði ¼ 1; 2Þ, we have the

following SK equivalences.

(i) SðR2kþ1 � V1Þ@ 2RP2k � RPðV1 � RÞ.
(ii) RPðV1 � RÞ � RPðV2 � RÞ@RPðV1V2 � RÞ.

Proof. We first consider (i). Let SKG
� ðpt; ptÞ be an SK group resulting

from cuttings and pastings of G-manifolds with boundary in [2, 4]. It fol-
lows that ½DðV1Þ� ¼ ½RPðV1 � RÞ� in SKG

� ðpt; ptÞ since V1 is a product of two-
dimensional irreducible G-modules (cf. [4; Lemma 3.8 and Example 3.9 (3.3)]).
Hence we obtain the equivalence in case k ¼ 0 : ½SðV1 � RÞ� ¼ 2½RPðV1 � RÞ� by

making use of the map D� : SK
G
� ðpt; ptÞ ! SKG

� given by D�ð½M �Þ ¼ ½M UM �,
the double of a G-manifold M. Further, when kb 1, set ðU1;U2Þ ¼ ðR2kþ1;V1Þ,
forgetting S1-action, in the equivalence in Lemma 1.6. Then

2SðR2kþ1 � V1Þ@P1 þ P2;ð1:7:1Þ

where P1 ¼ S2kþ1 � SðV1Þ and P2 ¼ S2k � SðV1 � RÞ. Since S2kþ1 @ j and
S2k @ 2RP2k, we have that 2SðR2kþ1 � V1Þ@P2 @ 2RP2k � 2RPðV1 � RÞ (cf. [7;
Theorem 2.5.1 (ii)]). Thus (i) follows since SKG

� has no torsion (cf. Proposition
1.4). Next we prove (ii). Let ðU1;U2Þ ¼ ðV1;V2 � RÞ, then 2SðV1V2 � RÞ@
SðV1 � RÞ � SðV2 � RÞ þ SðV1Þ � SðV2 � R2Þ by Lemma 1.6. It is seen that

SðV1Þ and SðV2 � R2Þ@ j since they are odd-dimensional G-manifolds (cf.
Proposition 1.4). Hence 4RPðV1V2 � RÞ@ 2RPðV1 � RÞ � 2RPðV2 � RÞ by (i),
which implies the result. r
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Example 1.8. Consider the case where G ¼ Zp ( p; odd prime). The non-
trivial irreducible G-modules are Vj ¼ C with a generator of G acting by
multiplication by expð2pij=pÞ (1a ja t ¼ 1

2 ðp� 1Þ). We denote by hað1Þ;
að2Þ; . . . ; aðtÞi a slice type s ¼ ½G;V � with V ¼

Q
1a jat V

að jÞ
j . Let M ¼

CPðC að0Þ � sÞ be the associated complex projective space of the product
C að0Þ � V with að0Þb 0. Then ½M � is represented by the generators of SKG

� in
Proposition 1.4 as

½M � ¼
X

0akat

aðkÞaaðkÞ�1y½sðkÞ�;ð1:8:1Þ

where sðkÞ ¼ s if k ¼ 0,

haðk � 1Þ þ aðk þ 1Þ; aðk � 2Þ þ aðk þ 2Þ; . . . ;
að0Þ þ að2kÞ; að2k þ 1Þ; . . . ; aðtÞ; 0; . . . ; 0i

if 1a k < 1
2 t,

haðk � 1Þ þ aðk þ 1Þ; aðk � 2Þ þ aðk þ 2Þ; . . . ;
að2k � tÞ þ aðtÞ; að2k � t� 1Þ; . . . ; að0Þ; 0; . . . ; 0i

if 1
2 ta k < t or

haðt� 1Þ; aðt� 2Þ; . . . ; að0Þi

if k ¼ t. To show (1.8.1), we use the relation in Lemma 1.6. Set ðU1;U2Þ ¼
ðV að0Þ

0 ;VÞ, where V0 ¼ C with the natural S1-action. Then

2SðV að0Þ
0 � VÞ @

ðS 1Þ
SðV að0Þ

0 � RÞ � SðVÞ þ SðV að0Þ
0 Þ � SðV � RÞ:ð1:8:2Þ

Next divide V as V ¼ V
að1Þ

1 � V 0 with V 0 ¼
Q

2a jat V
að jÞ
j and put ðU1;U2Þ ¼

ðV að1Þ
1 ;V 0Þ. Then

2SðVÞ @
ðS 1Þ

SðV að1Þ
1 � RÞ � SðV 0Þ þ SðV að1Þ

1 Þ � SðV 0 � RÞ:

Taking this to (1.8.2), we have

22SðV að0Þ
0 � VÞ @

ðS1Þ
SðV að0Þ

0 � RÞ � SðV að1Þ
1 � RÞ � SðV 0Þ

þ SðV að0Þ
0 � RÞ � SðV að1Þ

1 Þ � SðV 0 � RÞ

þ 2SðV að0Þ
0 Þ � SðV � RÞ:

Continuing such an SK process on SðV 0Þ inductively, we have

2 tSðV að0Þ
0 � VÞ @

ðS1Þ
Pþ

X
0ak<t

2 t�1�kPk;

where
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P ¼
Y

0a j<t

SðV að jÞ
j � RÞ

 !
� SðV aðtÞ

t Þ;

Pk ¼
Y

0a j<k

SðV að jÞ
j � RÞ

 !
� SðV aðkÞ

k Þ � S
Y

k< jat

V
að jÞ
j � R

 !
:

This induces an SK equivalence on the orbit spaces with respect to S1:

2 tCPðV að0Þ
0 � VÞ@Pþ

X
0ak<t

2 t�1�kPk:ð1:8:3Þ

Here, it follows from Lemma 1.7 that P fibers equivariantly over SðV aðtÞ
t Þ ¼

CPaðtÞ�1 with fiber

F ¼
Y

0a j<t

SððVj nVtÞað jÞ � RÞ@ 2 tRP
Y

0a j<t

ðVj nVtÞað jÞ � R

 !
ð1:8:4Þ

¼ 2 tRPðsðtÞ � RÞ

and Pk fibers equivariantly over SðV aðkÞ
k Þ ¼ CPaðkÞ�1 with fiber

Fk ¼
Y

0a j<k

SððVj nVkÞað jÞ � RÞ
 !

� S
Y

k< jat

ðVj nVkÞað jÞ � R

 !
ð1:8:5Þ

@ 2k
Y

0a j<k

RPððVj nVkÞað jÞ � RÞ � 2RP
Y

k< jat

ðVj nVkÞað jÞ � R

 !

@ 2kþ1RP
Y
j0k

ðVj nVkÞað jÞ � R

 !
¼ 2kþ1RPðsðkÞ � RÞ:

From these, we have P@CPaðtÞ�1 � F and Pk @CPaðkÞ�1 � Fk ð0a k < tÞ (cf.
[7; Theorem 2.4.1 (iv)]). It is seen that ½CPaðkÞ�1� ¼ aðkÞaaðkÞ�1 in SK� since
wðCPaðkÞ�1Þ ¼ aðkÞ (cf. [7; Theorem 2.5.1 (ii)]). Therefore we obtain the desired
equality by taking (1.8.4) and (1.8.5) in (1.8.3).

Remark 1.9. In case of G ¼ Z2 r , we have obtained a similar equality as
(1.8.1) by performing an SK process on G-manifolds with boundary (cf. [2;
Example 2.12 (ii)]).

2. G-SK invariants

In this section, we determine a form of G-SK invariants.

Definition 2.1. Let s ¼ ½H;V � A StðGÞ and M a G-manifold. Then define
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Ms to be the set consisting of those points x A M such that ðsxÞH ¼ s in the sense
of Definition 1.2.

Remark 2.2. Let MH be M with the induced action of H, then Ms is
precisely the set ðMHÞs ¼ fx A MH ; sx ¼ sg. Since s is maximal in the family
FðMHÞ ¼ fsx; x A MHg with respect to the partial ordering � given in Section 1,
Ms is a G-invariant submanifold of M with dimðMsÞ ¼ dimðMÞ � jsj by the slice
theorem (cf. [5; Chapter 3]). In case s ¼ s0, we have that Ms0

¼ M. The
submanifold MH of M decomposes as MH ¼

P
s Ms summing over all s with H

as an isotropy subgroup.

Example 2.3. For t ¼ ½K ;W � A StðGÞ, let M ¼ G �K RPðW � RÞ be a
representative of the class y½t� in B (cf. Proposition 1.4). The slice types of M
are the same as those of G �K ðW � RÞ (or W ) because W is a complex K-
module. If H is a subgroup of K , then MH ¼ G=K � RPðWH � RÞ with the
induced action of H given by hðð½g�; ½v; t�ÞÞ ¼ ð½g�; ½hv; t�Þ for h A H and ð½g�; ½v; t�Þ A
MH . On the other hand, if H is not a subgroup of K , then MH ¼ j. Hence it

follows that ½Ms� ¼ jG=K j½RPjtj�jtH j� ¼ jG=K jaðjtj�jtH jÞ=2 if s ¼ tH with HJK or
½Ms� ¼ 0 otherwise (cf. Remark 1.3 (ii) and [7; Theorem 1.7.1, Remark 1.7.2]).
We see that ½RP2m� ¼ am in SK2m by considering the SK process as in Lemma 1.7
(ii) when ðV1;V2Þ ¼ ðC ;C m�1Þ (cf. [7; Theorem 2.5.1]).

Definition 2.4. Let T : MG
m ! Z be an additive map, that is, if M ¼

M1 þM2 then TðMÞ ¼ TðM1Þ þ TðM2Þ. We call T a G-SK invariant or simply
an invariant if TðN1 Uf N2Þ ¼ TðN1 Uc N2Þ for any G-di¤eomorphisms f and
c : qN1 ! qN2 in Section 1. If M1 @M2, then TðM1Þ ¼ TðM2Þ. Thus the map
T induces an additive homomorphism T : SKG

m ! Z. The set TG
m consisting of

all these invariants is a Z-module under the natural addition.

Example 2.5. Given a slice type s A StðGÞ, let ws be a map defined by
wsðMÞ ¼ wðMsÞ for any G-manifold M. Then it is an invariant since M@M 0

implies Ms @M 0
s naturally. Note that ws0

¼ w since Ms0
¼ M. Further, for

any subgroup H of G, the map wH defined by wHðMÞ ¼ wðMHÞ is also an
invariant and the equality wH ¼

P
s ws holds in TG

m (cf. Remark 2.2).

Let H be a subgroup of G. Then, by using the total ordering on StðGÞ,
define inductively integers nHðKÞ for subgroups K with HJK JG as follows:

nHðHÞ ¼ 1; nHðKÞ ¼ jK=Hj �
X

HJLHK

nHðLÞ;

where LHK means that LJK but L0K. If H ¼ f1g, then the integers nf1gðKÞ
coincide with those ni in [6; Definition 5.3]. For s ¼ ½H;V � A StðGÞ and a sub-
group K with HHK , denote by SKðsÞ the set consisting of those slice types
t ¼ ½K ;W � such that tH ¼ s.
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Theorem 2.6. For s ¼ ½H;V � A StðGÞ, define ys by

ys ¼ jG=Hj�1
ws þ

X
HHKJG

nHðKÞ
X

t ASK ðsÞ
wt

0
@

1
A

8<
:

9=
;:

Then the set fys; jsja 2ng provides a basis for TG
2n as a free Z-module. On the

other hand, TG
2nþ1 ¼ f0g.

Proof. First we see that TG
2nþ1 ¼ f0g because SKG

2nþ1 ¼ f0g by Proposition
1.4. For s ¼ ½H;V � with jsja 2n, let gs : SK

G
2n ! SK2n�jsj be a map given by

gsð½M �Þ ¼ ½Ms� and fs a map defined by

fs ¼ jG=Hj�1
gs þ

X
HHKJG

nHðKÞ
X

t ASK ðsÞ
aðjtj�jsjÞ=2gt

0
@

1
A

8<
:

9=
;:ð2:6:1Þ

Now look at the basis elements of B in Proposition 1.4. Then, given m ¼
½K ;W � A StðGÞ the values fsðy½m�Þ which do not vanish are fmLðy½m�Þ ¼ aðjmj�jmLjÞ=2

ðLJKÞ. In fact, if s ¼ mL for some L ðJKÞ, then

fmLðy½m�Þ ¼ jG=Lj�1
gmLðy½m�Þ þ

X
LHUJK

nLðUÞaðjmU j�jmLjÞ=2gmU ðy½m�Þ
( )

ð2:6:2Þ

¼ jK=Lj�1
X

LJUJK

nLðUÞ
 !

aðjmj�jmLjÞ=2

¼ aðjmj�jmLjÞ=2

by Example 2.3 and the equality
P

LJUJK nLðUÞ ¼ jK=Lj. On the other
hand, if s B fmL;LJKg, then mU B SUðsÞ for U JK . This implies that
gsðy½m�Þ ¼ gtðy½m�Þ ¼ 0 in (2.6.1) and fsðy½m�Þ ¼ 0 (cf. Example 2.3). Therefore
each fs induces an SK�-homomorphism fs : SK

G
2� ¼

P
n SK

G
2n ! SK2��jsj ¼P

nbð1=2Þjsj SK2n�jsj of degree �jsj. Now we recall the ordering of G-slice types:
s0 ¼ r0; r1; r2; . . . with the condition that if i < j then ri < rj . This ordering
ensure that if m ¼ ½K;W � then mL < m for LHK . Let us define an SK�-
homomorphism f� by

f� ¼ lk frk : SK
G
2� ! A ¼ lkSK2��jrk j;

where frk ðy½rk�Þ ¼ ½ pt�k, the generator of SK2��jrk j GSK� as an SK�-module. We

can totally order the basis elements of B ¼ fy½rk�; kb 0g and B 0 ¼ f½pt�k; kb 0g
for A naturally. Then it follows from (2.6.2) that f� is isomorphic because the
matrix relative to the ordered bases B and B 0 is triangular with components 1 on
the diagonal. Now let T be an element of TG

2n , then there is a factorization

T : SKG
2n G

f�
lkSK2n�jrk j G

lkw
lkZ !T

0
Zð2:6:3Þ
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for some T 0, where the direct sum is taken over all k with jrkja 2n (cf. [7;
Theorem 2.5.1 (ii)]). This implies that T ¼

P
k T

0ð1kÞyrk , where yrk ¼ w � frk
and 1k ¼ 1 in the k-th copy of Z in lkZ. Note that frk; jrkja 2ng ¼
fs; jsja 2ng because the ordering on StðGÞ preserves the dimension jsj. Thus
the set fys; jsja 2ng provides a basis for TG

2n . r

Example 2.7. Suppose that G ¼ Zm (m; odd). Then, for s ¼ ½Zs;V � A
StðZmÞ with sjm, we have

ys ¼ ðm=sÞ�1 ws þ
X

s<tam; sjtjm
jðt=sÞ

X
t ASZtðsÞ

wt

0
@

1
A

8<
:

9=
;

because nZs
ðZ tÞ ¼ jðt=sÞ by definition. The set fys; jsja 2ng provides a basis

for TZm

2n .

Corollary 2.8. Let H be a subgroup of G. Then we haveX
HJKJG

nHðKÞwðMKÞ1 0 ðmodjG=HjÞ

for any G-manifold M. In particular, if H ¼ f1g, thenX
KJG

nf1gðKÞwðMKÞ1 0 ðmodjGjÞ

(cf. [6; Corollary 5.19]).

Proof. Consider a sum
P

s ysðMÞ summing over all s with H as an
isotropy subgroup. Then it follows from Example 2.5 and Theorem 2.6 that

X
s

ysðMÞ ¼ jG=Hj�1 wðMHÞ þ
X

HHKJG

nHðKÞwðMKÞ
( )

¼ jG=Hj�1
X

HJKJG

nHðKÞwðMKÞ;

which is an integer. This gives us the congruence. r

3. G-fiberings over the circle

In this section, a G-SK invariant is considered to take values in Z2 ¼ f0; 1g.
If m-dimensional G-manifolds M and M 0 are G-cobordant in the usual sense,
then we write M @

C
M 0.

Lemma 3.1 (cf. [5; Lemma 1.9] and [7; Corollary 2.3.2]). Let M and M 0 be
m-dimensional G-manifolds.
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(i) If M@M 0 (SK equivalence), then there is a G-manifold P which fibers
equivariantly over the circle S1 with the trivial action of G such that
M @

C
M 0 þ P.

(ii) If M @
C

M 0, then M@M 0 þQ, where

Q ¼
X

aðH;U1;U2Þ � G �H ðSðU1Þ � SðU2ÞÞ þ
X

bðH;UÞ � G �H SðUÞ

for some integers aðH;U1;U2Þ and bðH;UÞ. Here, the first sum is
taken over all subgroups HJG and all H-modules Ui satisfying that
ðU1ÞH ¼ f0g such that dimðU1Þ þ dimðU2Þ ¼ mþ 2, while the second sum
is taken over all H and all H-modules U such that dimðUÞ ¼ mþ 1.

The relations @ and @
C

are commutative with each other, i.e. given M and
M 0, the following (i) and (ii) are equivalent: (i) there is a G-manifold A such that

M@A @
C

M 0. (ii) there is a G-manifold B such that M @
C

B@M 0 (cf. [3;
Lemma 4.2]).

Definition 3.2. If such an A (or B) exists, then M and M 0 are said to be
G-SK equivalent.

We note that G-SK equivalence is an equivalence relation by the above
commutativity.

Definition 3.3 (cf. [5; Chapter 1]). Let SKG
m be MG

m factored by the G-SK

equivalence. In other words, SKG
m is SKG

m factored by the relation @
C

.

Let I Gm be the kernel of the natural surjection i� : SK
G
m ! SKG

m , that is the
subgroup of SKG

m generated by all elements ½M � � ½M 0� such that fMg ¼ fM 0g in

RG
m. Note that wðxÞ is even for any x A I Gm because so is wðMÞ � wðM 0Þ (cf. [1;

Section 1]).

Lemma 3.4. I G2n ¼ 2SKG
2n and I G2nþ1 ¼ f0g.

Proof. In case m ¼ 2n, it is su‰cient to show that I G2n J 2SKG
2n. Take an

element x ¼ ½M � � ½M 0� A I G2n, then x is expressed as

x ¼
X

aðH;U1;U2Þ½G �H ðSðU1Þ � SðU2ÞÞ� þ
X

bðH;UÞ½G �H SðUÞ�ð3:4:1Þ

by Lemma 3.1 (ii). First, note that dim SðU1Þ is odd by the condition
ðU1ÞH ¼ f0g. This implies that the first sum of the right-hand side vanishes
since ½SðU1Þ� ¼ 0 in SKH

� (cf. Proposition 1.4). On the other hand, since

U ¼ R2kþ1 � V for some slice type s ¼ ½H;V � ð2k þ jsj ¼ 2nÞ, we have that
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½G �H SðUÞ� ¼ 2aky½s� by Lemma 1.7 (i) and Example 2.3. Hence x A 2SKG
2n.

Finally, I G2nþ1 ¼ f0g since so is SKG
2nþ1. r

From the above, there exists an isomorphism SKG
m GSKG

m=2SKG
m . The

following theorem is therefore immediate by Proposition 1.4.

Theorem 3.5. SKG
2n is a Z2-module with basis fan�jsj=2y½s�; jsja 2ng. On

the other hand, SKG
2nþ1 ¼ f0g.

Definition 3.6. Let T : MG
m ! Z2 be an additive map. We say that

T is a G-SK invariant if TðMÞ ¼ TðM 0Þ for any M and M 0 A MG
m such that

they are G-SK equivalent. A G-SK invariant T induces a homomorphism
T : SKG

m ! Z2.

Example 3.7. Assume the M and M 0 are G-SK equivalent, i.e. there is a

G-manifold A such that M@A @
C

M 0, then we have Ms @As @
C

M 0
s for any

s A StðGÞ. This means that Ms and M 0
s are also G-SK equivalent. Thus,

ws ðmod 2Þ defined by wsðMÞ ¼ wðMsÞ reduced modulo 2 is a G-SK invariant.

Theorem 3.8. Let TG
m be the set of all G-SK invariants T : SKG

m ! Z2.
Then TG

2n is a Z2-module with basis fys ðmod 2Þ; jsja 2ng. On the other hand,
TG

2nþ1 ¼ f0g.

Proof. The isomorphism in (2.6.3) induces a map

lsys ðmod 2Þ : SKG
2n G

lys
lsZ !i lsZ2;ð3:8:1Þ

where the sums are taken over all s with jsja 2n and i : Z ! Z2 is the natural
surjection. Since the kernel of this map is 2SKG

2n ¼ I G2n by Lemma 3.4, the map
lsys ðmod 2Þ induces the isomorphism SKG

2n GlsZ2. This verifies that the
set fys ðmod 2Þ; jsja 2ng provides a basis for TG

2n . If m ¼ 2nþ 1, then TG
2nþ1

vanishes because so does SKG
2nþ1. r

Let F G
m be the kernel of the surjection j� : N

G
m ! SKG

m , that is the subgroup
of NG

m generated by all classes of the form fMg þ fM 0g such that ½M � ¼ ½M 0� in
SKG

m . Let us consider the class b which has a representative M 0 fibered equiv-
ariantly over the circle S1 with a fiber F such that the action of G takes place
within F . Then M 0 @S1 � F @ j and b A F G

m (cf. [7; Theorem 2.4.1 (i) and
(ii)]). It follows from Lemma 3.1 (i) that F G

m is precisely generated by all these
classes b.

Remark 3.9. Note that F G
0 ¼ f0g. On the other hand, we have that

F G
2nþ1 ¼ NG

2nþ1 because SKG
2nþ1 ¼ f0g. We can explain this from another point

of view as follows. We see that NG
� is multiplicatively generated over the co-

bordism ring N� by some even-dimensinal G-manifolds (cf. [7; Theorem 4.1.1]).
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Hence, if dimðMÞ ¼ 2nþ 1, odd, then fMg ¼
P

j ajLj, where aj A N� with
dimðajÞ, odd and Lj A NG

� with dimðLjÞ, even. Since wðajÞ ¼ 0, we see that each
aj has a representative which fibers over the circle (cf. [1; Section 1]). This
implies that fMg A F G

2nþ1 and hence F G
2nþ1 ¼ NG

2nþ1.

Now we consider a condition that a class fMg belongs to F G
2n. Given

fMg A F G
2n, let M 0 be a G-manifold such that M @

C
M 0 and it fibers equivariantly

over S1 with a fiber F . Then, for any s A StðGÞ we have that Ms @
C

M 0
s which

also fibers equivariantly over S1 with the fiber Fs. Hence a necessary condition
for fMg A F G

2n is that wðMsÞ1 0 ðmod 2Þ for any s. We have the following
theorem by Theorem 3.8.

Theorem 3.10. Let M be a 2n-dimensional G-manifold. Then fMg A F G
2n if

and only if ysðMÞ1 0 ðmod 2Þ for any slice types s A StðGÞ with jsja 2n.

The following corollary is immediate by Corollary 2.8.

Corollary 3.11. A necessary condition for a class fMg A F G
2n is that the

following congruence

wðMHÞ þ
X

HHKJG

nHðKÞwðMKÞ1 0 ðmod 2 � jG=HjÞ

holds for any subgroup H of G.

Proposition 3.12. Let G ¼ Zpr ( p; odd prime). Then fMg A F G
2n if and

only if

wðMsÞ1
X

l ASsþ1ðsÞ
wðMlÞ ðmod 2pr�sÞð3:12:1Þ

for any s ¼ ½Zps ;V � A StðGÞ with jsja 2n ð0a sa rÞ, where Ssþ1ðsÞ ¼ SZ
p sþ1

ðsÞ
and Srþ1ðsÞ ¼ j.

Proof. By Theorem 3.10, in order that fMg A F G
2n, a necessary and su‰cient

condition is that

pr�sysðMÞ ¼ ws þ
X
s<tar

ðpt�s � pt�s�1Þ
X

t ASt ðsÞ
wt

0
@

1
A1 0 ðmod 2pr�sÞð3:12:2Þ

for any s ¼ ½Zps ;V � A StðGÞ ð0a sa rÞ, where jðpt�sÞ ¼ pt�s � pt�s�1 in Ex-
ample 2.7 and an integer wðMnÞ is simply written as wn. We define an integer
hnðMÞ for n ¼ ½Zp t ;V � by

hnðMÞ ¼ wn �
X

o AStþ1ðnÞ
wo:
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Since Ssþ2ðsÞ is decomposed as Ssþ2ðsÞ ¼
P

l ASsþ1ðsÞ Ssþ2ðlÞ and so on, the right-

hand side of the congruence (3.12.2) is expressed by the sum of these hnðMÞ as

ws �
X

l ASsþ1ðsÞ
wl

0
@

1
Aþ p

X
l ASsþ1ðsÞ

wl �
X

m ASsþ2ðlÞ
wm

0
@

1
A

0
@

1
Að3:12:3Þ

þ p2
X

m ASsþ2ðlÞ
wm �

X
x ASsþ3ðmÞ

wx

0
@

1
A

0
@

1
A

þ � � � þ pr�s
X

t ASrðrÞ
wt 1 0 ðmod 2pr�sÞ:

If t ¼ ½Zpr ;V �, then the above congruence (when s ¼ t) implies that htðMÞ ¼
wt 1 0 ðmod 2Þ. We assume that hnðMÞ1 0 ðmod 2pr�t) for any n ¼ ½Zp t ;V �
ðs < ta rÞ. Then, by induction, it follows from (3.12.3) that hsðMÞ ¼ ws �P

l ASsþ1ðsÞ wl1 0 (mod 2pr�s) for s¼ ½Zps ;V �. Therefore the congruences (3.12.1)

are obtained. Conversely, let M satisfy (3.12.1), that is hsðMÞ1 0 ðmod 2pr�s)
for any s ¼ ½Zps ;V �. Taking these in the left-hand side of (3.12.3), we have that
ysðMÞ1 0 ðmod 2Þ. Thus fMg A F G

2n. r

Corollary 3.13. Let G ¼ Zpr ( p; odd prime). A necessary condition for a
class fMg A F G

2n is that the following congruences

wðMZp s Þ1 wðMZ
p sþ1 Þ ðmod 2pr�sÞ ð0a sa rÞ

hold, where wðMZ
p rþ1 Þ is regarded as zero.

Example 3.14. Finally we give a non-zero element of F G
2n in case G ¼ Z7.

The non-trivial irreducible G-modules are Vk ¼ C with a generator of G acting by
multiplication by expð2pik=7Þ ð1a ka 3Þ. Let hj denote the canonical complex
line bundle over CP j and hjk ¼ hj nC Vk the G-vector bundle over CP j given by
the tensor product of hj (with the trivial G-action) and the trivial vector bundle
Vk � CP j . For convenience, we denote h0k ¼ Vk and h1k ¼ Vk. Now consider a

G-manifold N ¼ CPðC s � ðV1Þ tðV2Þ tðV3ÞsÞ, the associated complex projective
space of a product of G-vector bundles nN ¼ C s � ðV1Þ tðV2Þ tðV3Þs over BN ¼ � �
ðCP1Þ tðCP1Þ tðCP1Þs ¼ ðCP1Þ2tþs (s; t; odd with s < t and � ¼ fptg, the one-
point set). We first show that a class fNg is a non-zero element in NG

2n, where
n ¼ 3sþ 4t� 1. For each s A StðGÞ, a G-vector bundle n is said to be of type s
if the subset fx A n; sx ¼ sg is precisely its base space B. Let NG

� ½s� denote the
bundle bordism group of all G-vector bundles of type s. Given a G-manifold
M, the normal bundle n over the fixed point set F G is the direct sum of those ns
(of type s) over Ms, where the sum is taken over all s with G as an isotropy
subgroup (cf. Remark 2.2). Hence there is a well-defined homomorphism n� :
NG

� !
P

s N
G
� ½s� given by n�ðfMgÞ ¼

P
sfnsg. For our element fNg, we have

n�ðfNgÞ ¼
P

1aia4fnig, where each ni is as follows:
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n1 ¼ CPs�1 � ðV1Þ tðV2Þ tðV3Þs ! B1ð3:14:1Þ

¼ CPðC s � f0gf0gf0gÞ ¼ CPs�1 � ðCP1Þ2tþs;

n2 ¼ CPððV1Þ tÞ � ðV1ÞsðV1Þ tðV2Þs ! B2

¼ CPðf0g � ðV1Þ tf0gf0gÞ ¼ CPððV1Þ tÞ � �ðCP1Þ tþs;

n3 ¼ CPððV2Þ tÞ � ðV2ÞsðV1Þ tþs ! B3

¼ CPðf0g � f0gðV2Þ tf0gÞ ¼ CPððV2Þ tÞ � �ðCP1Þ tþs;

n4 ¼ CPððV3ÞsÞ � ðV3ÞsðV2Þ tðV1Þ t ! B4

¼ CPðf0g � f0gf0gðV3ÞsÞ ¼ CPððV3ÞsÞ � �ðCP1Þ2t:

Let s ¼ ½G;V t
1V

t
2V

s
3 �, then it is known that NG

� ½s� is a free N�-module generated
by the classes of monomials

hJKL ¼ hjð1Þ1 � � � hjðtÞ1hkð1Þ2 � � � hkðtÞ2hlð1Þ3 � � � hlðsÞ3

with jð1Þb � � �b jðtÞb 0, kð1Þb � � �b kðtÞb 0 and lð1Þb � � �b lðsÞb 0 (cf. [7;
Lemma 3.4.4 and Theorem 4.1.1]). Let dimðhJKLÞ ¼ sþ 2tþ

P
jðpÞ þ

P
kðqÞþP

lðrÞ be the complex dimension of the total space. Now go back to the image
n�ðfNgÞ. It follows from (3.14.1) that Ns ¼ B1 þ B4 and ns ¼ n1 þ n4. From
the condition that s and t are odd with s < t, the monomial ðV1Þ tðV2Þ tðV3Þs in
n1 has the dimension 2sþ 4t, which is higher than that of the monomial in n4,

and its coe‰cient fCPs�1g ¼ fðRPðs�1Þ=2Þ2g0 0 in N� (cf. [8; Lemma 7]). This

ensure that fnsg0 0 in NG
� ½s� and fNg0 0 in NG

� . Next we study an SK class
½N �. By definition, N is fibered equivariantly over the first CP1 of the base

space BN ¼ ðCP1Þ2tþs with fiber F ¼ CPðC s � V1ðV1Þ t�1ðV2Þ tðV3ÞsÞ. Hence
N@CP1 � F (cf. [7; Theorem 2.4.1 (iv)]). Continuing this SK processes on F
inductively, we have

N@ ðCP1Þ2tþs �M;ð3:14:2Þ

where M ¼ CPðC s � V t
1V

t
2V

s
3 Þ. Now we apply the equality (1.8.1) for M.

Note that sð3Þ ¼ s and sð1Þ ¼ sð2Þ ¼ ½G;V sþt
1 V s

2 �. Then we have that

½N � ¼ ½ðCP1Þ2tþs�ð2sas�1y½s� þ 2ta t�1y½sð1Þ�Þ

in SKG
2n. Hence ½N � vanishes in SKG

2n and fNg A F G
2n by Lemma 3.4. The slice

types of N are s0; s and sð1Þ, and Ns0
¼ N, Ns ¼ B1 þ B4 and Nsð1Þ ¼ B2 þ B3

by (3.14.1). Thus wðNÞ ¼ 2sþ2tþ1ðsþ tÞ, wðNsÞ ¼ wðB1Þ þ wðB4Þ ¼ 2 sþ2tþ1s and
wðNsð1Þ Þ ¼ wðB2Þ þ wðB3Þ ¼ 2sþ2tþ1t. These imply that wðNÞ ¼ wðNsÞ þ wðNsð1Þ Þ ¼
wðNGÞ, wðNsÞ1 0 (mod 2) and wðNsð1Þ Þ1 0 (mod 2), from which the congruences
(3.12.1) are obviously satisfied.
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