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DARBOUX TRANSFORMATIONS AND ISOMETRIC IMMERSIONS OF
RIEMANNIAN PRODUCTS OF SPACE FORMS

QuN HE AND YI-BING SHEN

Abstract

By using the Darboux transformation in Soliton theory, we give the explicit con-
struction for local isometric immersions of the Riemannian product M" (c;) x M3*(c2)
into space forms M™(c) with flat normal bundle via purely algebraic algorithm.

§0. Introduction

The problem on isometric immersions of Riemannian manifolds into space
forms is an interesting classical problem. There are a lot of nonexistence results
in this area (([CK], [Hi], [Pe], [Xa], etc.). Recently, it has been found that the
integrability condition for isometric immersions of space forms, i.c., Gauss-
Codazzi-Ricci equations, is equivalent to the condition of a family of connections
to be flat ([FP], [Ter]). This enable us to apply the soliton theory to the study of
some problems on isometric immersions of space forms. For instance, some
Bicklund transformations for such isometric immersions were considered in [FP]
and [TU]. The Darboux transformation method for the explicit expressions of
such isometric immersions via purely algebraic algorithm has been given in [Zh,
HS], respectively. It is natural to consider the problem on isometric immersions
of Riemannian product M{"(c;) x M,?(c,) into space forms M"™(c).

The purpose of this paper is to apply the Darboux transformation method
to the study of local isometric immersions from the Riemannian product of
space forms into space forms with flat normal bundle. Some fundamental
theory on local isometric immersions of M|"(c;) x M,?(c,) into M"™(c) with ¢ =
c1c2/(c1 + ¢3) is developed in §1. In §2, a zero curvature condition for such local
isometric immersions is given, i.e., a family of connection 1-forms including one
parameter are flat. It is different from [FP]. In §3, the Darboux transforma-
tions for the explicit expressions of such isometric immersions are shown. This is
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a purely algebraic algorithm. Finally, in §4, we give an explicit construction of
such isometric immersions from a trivial (degenerated) isometric immersion via
the Darboux transformation for the twisted so(p,q,r)-hierarchy. It is possible
that the method of this paper may be used to study local isometric immersions of
the Riemannian product of several space forms into space forms.

§1. Isometric immersions of Riemannian products

Let M"(c) denote an n-dimensional space form of constant curvature ¢. Let
r.: M"(c) — R™" be the following standard isometric embedding:

m 1
M"™(c) = {(xo,xl,...,xm) eR™!| in + x5 =—2} for ¢ >0,
¢
=

m l
M’”(c):{(xo,xl,...,x,,,)eR’”’l in—xgz—c—z} for ¢ <0,
A=l

M™(0) = {(x0,X1,...,Xn) € R | xg = 0}.

Consider a locally isometric immersion ¢ : M" (¢;) x M5*(¢;) > U — M"(c)
with ¢; #0 and ¢ = cj¢c/(c1 + ¢2), where m > n; + n, = n and, without loss of
generality, ¢ = +1 or 0. We shall make use of the following convention on the
ranges of indices unless otherwise stated:

L jok,...=1,...0n; ¢q,8¢t...=n+1,....n
ILJK,...=1,....n; r=12; of,...=1,....m—n.

Then the composition map r=r.o¢p: U — RZ,"“ is a local isometric immersion
into R"™''. Set

J. = ((C) 10 ), so.m+1)={Xesi(m+1,R)| XJ. +J.XT =0}
Denote by SO.(m+ 1) the Lie group of which the Lie algebra is so.(m + 1).
Consider a framing field ¥ = (eg, e1,...,e,): U — SO (m+1) in R™! so that
r=J2e, {e;} and {e;} are tangent to M["(c;) and M,?(c,) respectively, and
{en+o} are normal to M| x M, in M"™(c). Clearly, ¢y is normal to M"(c) for
c#0. Let ZE=¥"'4d¥ be the pull back of the Maurer-Cartan form of
SO.(m+ 1) by ¥, which is an so.(m + 1)-valued 1-form. We then have

0 —c0f —c0f o

d¥ = Y=
{ ’ where E = O o 0 b
‘P(O) = Im+1, 92 0 () ﬂz
0 Bl =B
where 0, = (0',...,0™)" and 6, = (0"*',...,0")" are dual fields of {¢;} and {e,}
respectively, w; = (w;) and w, = (wy) are the Levi-Civita connection 1-forms of

(1.1)

b
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M"(c1) and M,?(c2) respectively, f; = (wj n4s) and fy = (wy n14) are the second
fundamental form of the isometric immersion ¢, 1 = (@Wy44,44+p) is the normal
connection of ¢.

The integrability condition for the existence of such a framing field ¥ is that
E satisfies the Maurer-Cartan equation

dE4+EZAE =0,

ie.,
db, +w, A 0. =0,
dw,+w,./\w,.—COrAO,T—ﬁ,.A[)’,.T:
dp,+p. Arn+w, A, =0,

(1.2) B+ An B

dp+nnan—PBL A =B ABy=0,
/31/\/?2T+001/\02T:0,
0f ABL+0) AB,=0.

Since M|"(c1) and M;?(c;) have constant curvatures ¢; and ¢, respectively, then

(1.3) do, + o, A o, = 0, A QrT.
It follows from (1.2), and (1.3) that
(1.4) B ABT +(c—c)0 A0T =0
If the normal bundle of ¢ is flat, then
(1.5) dq+nan=p{ A+ Apy=0.
Set
for ¢, =0,
(1.6) & = sgn(c), { Ve for ¢, #0,

e=sgn(c—c), vi=¢ec/[c—cl, vm=+]|c—cqcl

Clearly, we see that &, vy, ¢, x, # 0, and & = sgn(c — ¢;) = sgn(c — ¢;) when ¢ # 0.
Noting that ¢ =1 or 0, thus, (1.2)s and (1.4) can be rewritten as

Bi A BT +evivaly A0 =0,

1.7
(.7 B A BT +ev?0, A0 = 0.

DErINITION 1.1, Let ¢ : M{" x M,*> — M™ be an isometric immersion. If
Weingarten endomorphisms for ¢ preserve TM; and TM, invariant, respectively,
i.e., f, and f, can be expressed linearly by 0, and 6, respectively, then the second
fundamental form of ¢ is called to be separable.

For ¢ # O and ¢ >0, (1.7) implies that the second fundamental form v, =
> O nta ® 0" and the symmetric bilinear form = v101 ® 0 + vz()2 ® 0, are
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exteriorly orthogonal, and they can be simultaneously diagonalized for m =
2n —1 by virtue of Cartan’s theorem [Mo]. Thus, the immersion ¢ has flat
normal bundle. Hence, in the way similar to the case of isometric immersions of
space forms [Mo], we have the following

PROPOSITION 1.2.  There is no isometric immersion ¢ : M{"(c1) x M,*(c2) —
M?>=2(c) with ¢ = cie2/(c1 + ) > c1. Moreover, if ¢: M{"(c1) x My*(c2) —
M*=Y(¢) is a local isometric immersion with ¢ = cica/(c) + c2) > ci, lhen the
normal connection of ¢ is flat.

In general, if the isometric immersion ¢ has flat normal bundle, then the
second fundamental of ¢ can be simultaneously diagonalized. In addition, if the
second fundamental form of ¢ is separable, then we can choose the tangent
frame fields {e;} to M|"(c1) and {e} to M,?(c») such that w;,., = bi,0' and
W5, n+q = bsy0°.  Moreover, we can choose a parallel normal frame fields {e,} so
that # = 0.

On putting

=3 T0", wa=> Tl
k

q
we have from (1.2), (1.4) and (1.7)
> bibjy +evi =0, (i # )
> bubu+ev; =0, (s#1)
> " bisbgy + &viva =0,

¢ = (bin— bi)Ty, (i, ),k #)

(bss = bin) T = (byy — by)TL, (q,5.1 #)
) ) (0 #))

e/(by) = (b — b)), (s #1)
)=e

Set
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Then we see from (1.8), ; that BJBT = diag(p,,...,p,), where
(1.10) meJravl, me+8v2

LemMmA 1.3, Let ¢ : M{"(c1) X M3y (¢2) > U — M"™(c) be a locally isometric
product immersion with flat normal bundle and the separable second fundamental
form. Assume that p; #0 for all I where p; are smooth functions defined by
(1.10).  Then there exist a line of curvature coordinates (x;,xs) on U such that the
first and second fundamental forms of ¢ can be given by

I—Za dx? —I—Za dx?,

(1.11)
I = Z (Z azbm dx + Zazbw dx; )enﬂ
Proof. Since p; # 0 then we can write p; = +(a;) > with a; > 0. It follows
from (1.8) and (1.10)
(1.12) ej(a;) = a,-l"l-j’:, e(as) = a,I;.

For any point x € U, if we choose ¢,; at x so that by(x) #0, bpp(x)=--- =
bi,m—n(x) =0, then it follows from (1.8), and (1.10), that

2
evi

b]](x)

By taking o =j =1 in (1.8),, we see from (1.13) that TX(x) =0. Since x is
arbitrary, then it follows that TX =0 for i k,1 distinct. We know that the
components T} i of wy are independent of the choice of the fields of normal
frames. Thus, we have F =0 for i, j, k distinct. By the same reason, we have

also Il =0 for ¢,s,t d1st1nct Hence, by using (1.12) and the skew-symmetry,
we conclude that

(1.13) byt (x) = — (i#1), b}(x)+evi=p #0.

(114 =W g @)y g, ) g l@) g
ai a; Ay a;

As the same as in [Mo], it is easy from (1.14) to see that there exist a line of
curvature coordinates (x;,x;) on U so that d/dx; = ase;, 0/dx; = ases, 0' = a; dx;,
0° = ay dx,. Thus, the first and second fundamental forms of ¢ are given by

(1.11). O

DEFINITION 1.4. Let ¢: M”" — M"™ be an isometric immersion. Denote
by A: the Weingarten endomorphism with respect to ¢e T*M. If for any
& e T+ M, the rank of A4; is equal to min{n,m — n}, then the normal bundle of ¢
is said to be nondegenerate.
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DeriNITION 1.5, Let (M1,g1) and (M>,g>) be two Riemannian manifolds,
and ¢ : M| x My, — M an isometric immersion of Riemannian product. If for a
Ee TH(M, x M), there exist functions A; and /, such that h: = g + A2g2
where h: is the second fundamental tensor of ¢ with respect to &, then ¢ is
called to be special quasiumbilical with respect to &. In particular, a special
quasiumbilical immersion ¢ with respect to & e T+ (M; x M) is umbilical when
}.1 = 12.

In the case that ¢ > 0, if ¢ # 0, then we see from (1.8),_; that rank B = n,
which implies that m —n >n—1 and p; >0 for all 1. If ¢ =¢; =0, then we
see that m —n > ny — 1. In particular, when either m —n=n—1 for ¢ #0 or
m—n=ny — 1 for ¢ = ¢; =0, then the normal bundle of ¢ is nondegenerate and
¢ satisfies one of the following conditions:

(i) @ is not special quasiumbilical;
(1.15) (ii) ¢ is special quasiumbilical with respect to some &e T+ (M x M>),
ie., /’lé = Alg1 + Aagr, and Ayvy # Apvs.

In the case that ¢ <0, if either m—n<n—1for c#0 or m—n<mny —1
for ¢=c¢; =0, then ¢ is special quasiumbilical with respect to some &€
T+(M, x M), satisfying Ajv; = J,v2. Hence, if the immersion ¢ satisfies one
of (1.15), then we have either m —n>n—1 for ¢#0 or m—n>n, — 1 for
c=c; =0.

For simplicity, in the following, we assume always that m=2n—1=
2(n; +mnp) — 1. In such a case, B of (1.9) is a non-degenerate n x n matrix, and
p; # 0 where only one of {p;} has the same sign as & and the remains are
positive. Without loss of generality, suppose that p, = (a,) %, p, = &(a,) 2. On
putting

ary = arbpy,  aw =via;,  ag =vaas, A= (ay),
we see that A satisfies 4,47 =J,. So, by Lemma 1.3, we have immediately
PROPOSITION 1.6.  Let ¢ : M["(¢1) x M3*(¢2) > U — M*~Y(¢) be a locally
isometric immersion with the flat normal bundle and the separable second fun-
damental form. If ¢ satisfies one of (1.15), then there exist a line of curvature

coordinates (x;,x;) such that the first and second fundamental forms of ¢ can be
written as

1= Zalz dx; + Zaf dx?,
1= Z (Z aittiy dx; + Z Ay, dxf) Cnis
i N

(1.16)

o

and
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(1.17) A= (ay):R"— SO,(n),

where a;; = via;, dg, = Vds.

COROLLARY 1.7. Under the same hypothesis as in Proposition 1.5, if ¢ # 0,
then there exist a line of curvature spherical (hyperbolic) coordinates {x;, xs} such
that the first and second fundamental forms of ¢ can be written as

=Y "a}dx}]+) a}dx],
i s
1= Z (Z V1didiy dx,»z + Z Valsy dxf) Cnig,

(1.18)

o

where A = (ayy) : R" — SO.(n), ay, = a; (resp. ag, = as) are dependent only on Xx;
(resp. Xy).

§2. The zero-curvature condition
Consider the Lie algebra

&1

(2.1) $0p(m+3)={Xeslm+3)|XJ+JXT =0}, J=

The Lie group SO..(m + 3) corresponding to so..(m + 3) is
SOe(m+3)={AeSL(m+3)|AJA" = J}.

We now define a family of so.(m + 3, C)-valued 1-forms parameterized by
Le C* = C\{0} as follows

0 0 —gr0f 0 0 0

0 0 0 —epkaly 0 0
(22) @} _ K1(91 0 w1 0 iﬁl /lv161
’ 0 K2(92 0 (00))] lﬁz /111262

0 0 —IBl By 0

0 0 —dev0f —Jembi 0 0

LemMa 2.1. There exists a locally isometric immersion ¢ : M]"(c1) x
M}?(c2) > U — M"(c) with flat normal bundle and the separable second fun-
damental form if and only if

(2.3) d(:)/l + éi A C:)/l =0
for Ae C™.
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Proof. By (2.2), it is easy to see that (2.3) is equivalent to

do, +w, A0, =0,
dow, + o, A 0, — ¢0, A H,T =0,
B ARl +ev20, A0 =0,

(2.4) By A BT 4 evivaly A 0 =0,
dn+nnarn=0, H,TAﬂ,;o,
Bl AP+ BT APy =0,

dﬂr+ﬁrA’7+wl‘Aﬁ}':0’

On the other hand, since f, and f, may be expressed by 0, and 0,
respectively, then (1.2); is equivalent to (2.4),. Hence, (2.4) is equivalent to
(1.2)~(1.4). O

In the following, we assume m = 2n — 1. Under the same hypothesis as in
Proposition 1.6, we set

a‘ai . .
fi==L= (i#), fi=0, fu=

dj ”t

0,4

(S;él)7 f:VA':Oa

1
T T Ky 'viby
(25) bl :Kl(ala"'vanl) ) bZZKZ(an1+1>-"7al’l) ) b= <K;1V2b2)’

o1 = diag(dxi,...,dx,, ), 0, =diag(dx,+1,...,dx,),
Ay = (ain), Ax=(ay), F1= (fl)v F> = (fy).
We then see that
b=AE,eS"(c), Fregln), ={Y = (yy) € gl(n,) | yii = 0},
where E, = diag(0,...,0,1). Choose parallel frame fields in the normal bundle
——

n—1

so that # =0. Thus, E of (1.1) and ®; of (2.2) are reduced as

0 fczcl’lblTél facz’lszéz 0
06 S R TT 0 ad |
Ky 02b; 0 (02)) 0245
0 —Als —ATo, 0
0 0  —ebld 0 0 0
0 0 0 —e3b70, 0 0
~ 01by 0 w1 0 201 Ay Ay 'idby
T ®=1"0 5 0 w 16245 /lzc;*vzézbz
0 0 —476, 7476, 0 0
0 0 —Jexi'wblo, —Jexs'vabTs, 0 0



DARBOUX TRANSFORMATIONS AND ISOMETRIC IMMERSIONS 329

LEMMA 2.2. Let h: R" — R*? satisfy the equation dh = h®,. Write h as
a row vector

1 1 nm m n-—-1 1

(617 627 N, Mo Ca C)v

where C satisfies that {(0) = KTINVIfIN(O) + 15 E(0). Then h= (&,ny,15,0) :
R" — R*" satisfies the equation dh = hE, where & = Kl’lfl + Kz’lfz.

Proof. Since h satisfies dh = h®;, then we have from (2.7)
d&, = n,0,b;,
dn, = nw, — LATS, — (6., + e v, O)bT6,,
d{ = n6141 + 10242,
dc = Kflvliy]é]bl + K;1V277252b2 = Kflvl dé + Kglvz dé,.
By the last equation and the initial condition, we see that
C =7 vié) + 15 né,.
It follows that
e1&y + eyl = kT Y (181 + evieyDE 4 evivany &)
= CKfl(Kflfl + Kglfz) = cxflf.
In the similar way, we can obtain &¢&, + ex; 1sz~ = cK; 1¢. Hence, we have
dé = Kk7'101b1 + K5 ' 130203,
dn, = n.0, — CArTé,. - cx;lfb,,Tér,
d{ = n6141 + 10242,
ie., h=(&n,n, () satisfies dh = hE. O

For simplicity, we write a p x (2n+ 2) matrix .# as a row matrix

1 1 n ny n ny
(D a® ™ a® S ).

Particularly, we write a (2n+ 2) x (2n+ 2) matrix .# as a block matrix

1 1 ni n ny n
w03 ) a8 (6 1
w03 04 05 (26 1
WY By B3 08 05 06 n
G I C- R R C T B R D) "y )
WY D 53 58 55) (56) n
WO 6 63 e 65)  (66) ny



330 QUN HE AND YI-BING SHEN

By using the guage transformation

- I, 0

(2.8) ©;,=HO;H ' -dHH™' where H= ( (;rz A) € SO, (2n +2),
we obtain

0 0 —glblTél 0 0 0

0 0 0 —82[)2]-52 0 0

51b1 0 (6] 0 151 0

29 @ - )
( ) * 0 (52[)2 0 (09)) 0 A(Sz

0 0 — 0 0 H 0

0 0 0 —AJ:0, 0 &
where

w; =0,F, —F'6,, % =0 F —Fd, 91 =J.00F,J, — Fada,

(2.10) J. = (Inz_l 0).
0 e

It is easy to see that d®, + ®, A ®, = 0 if and only if d®, + ®, A ©; = 0,
which is equivalent to that (Fj, F>, A) satisfies the following system of PDE:

dAr - _'grAr;
(2.11) { db, = —39,b,,
do, + o, A o, — &0,b, A b,,Tér =0,

i.e., the Gauss-Codazzi-Ricci equations for the isometric immersion ¢.

On putting
0 0 0 0 0 O 0 0 0 0 -—ebl 0
00 0 0 0 0 00 0 0 0 —gbl
|00 0 0 a0 o0 0 0 0 - 0
(oo o o 0 &I O O O O O -FlJ |
0 0 -6 0 0 O by 0 F 0 0 0
00 0 -6, 0 O 0 b 0 P 0 0
1
-1 0
In+2 O / Il’ll
2.12 = =
ey a=(" ) . " ,
0 I,
_Inz

we have
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0, =al+ [a,v],
(2.13)
bl = 0(51)7 bz = 0(62)7 F1 = li<53>7 F2 = 0(64).

With respect to ¢ and ¢’, the Lie algebra 4 = so,,(2n + 2) has the Cartan
decompositions ¥ = 2@ A = P’ @ A", respectively. Let

Y, ={ye%|la,y)=0}, % ={ze%|tr(zy)=0 for ye%,},
hoo = {X (1) € A% |0X (Mo = X(~7),0' X(2)a" = X(3)}.

Clearly, a is (2N A"')-valued 1-form, v: U — g NZNA#" is a smooth map.
Thus, ©; is a A, »%-valued 1-form.
Consider the system
{d(D;' = (D;L(Cl/l + [a, U]) = (I)/1®)~’
®,(0) = Lo,

of which the integrability condition is (2.11). For the solution @, to (2.14), we
have

T
(55) (56)
(2.15) 4= (I)O(65) (Do(éél)la A(0).
7,0 7,0,

(2.14)

Set ®; = Q1 H ' (0)®;H, where

1

1 0 0 0 Ky V2
01 0 0 xi'm
Or=10 0 I, 0 0
0 0 0 Ay(0) 0
0 0 0 4,0 0
Then @, satisfies
dd),l = d),lé;u.
Write
~ - - - 1 1 ~ S -
(1)1:(1‘1,1'2,61,...,82,1), r=—r;+—13, T:(r,el,...,ez,,,l).
K1 K2

By a straightforward calculation, one can see that é,(0)= vlkl’lrl 0)+
w21y ' (0). So, it follows from Lemma 2.2 that W satisfies the following system

KUt 00 o\

d¥ =¥, Y(0O)=| 0 0 I, 0 0 ,
0 0 0 407" 4,07

where E is defined in (2.6). Set
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1 1
=K1 EKQ 0 0 0

< . 2
0 0 0 4,007 407,
Then ¥ : U — SO.(2n) satisfies the system (1.1). Hence, we obtain

(2.16) r=J20: =J20, 01 H ' (0)®, (7 ' HY + 1, ' H®P))
= 00 "o} + 1, '),

where

2 2 2 _ 2 _

ikl i,cz 0 wb]T(O) ¢(2 = car) sz(O)JF
(2.17) 0|2 2 2K, 210
‘ 0 0 I, 0 0
0 0 0 A1 (0" A>(0)7J,

is a constant 2n x (2n 4 2) matrix. Summing up and combining Proposition 1.6,
we have proved the following

THEOREM 2.3. Let U < M{"(ci) x My*(c2) be a simply-connected domain
around the origin x =0, and ¢ : U — M?*"~'(c), n=n, +ny, a locally isometric
immersion, of which the first and second fundamental forms can be written as
(1.16). Then there exists a smooth map (F\,Fy,b): U — gl(ny), x gl(ny), X
S"=1(e) such that ©; defined by (2.9) is a flat connection and the system (2.14) has
a unique solution ®; satisfying

(2.18) r=r.op= Q(Kl_l(Dgl) +1c2_1(1)(12)).

Conversely, for a map (Fy,F>,b): R" — gl(n), x gl(ny), x S"™(e), if (2.14)
has a unique solution ®,, then there exists a smooth map A = (a;): U — O,(n)
such that b = AE,. Moreover, if U = {x e R"|a;(x) # 0,a,(x) #0 for all i,s} is
not empty, then there exists an isometric immersion ¢ : U — M*~'(c) with flat

normal bundle such that the first and second fundamental forms of ¢ are given by
(1.16), and (2.18) holds.

§3. Darboux transformation

We now consider the Darboux transformation for solutions of the system
(2.14). Since ©; = al+ [a,u] is a Aq %-valued 1-form, then @, satisfies the
following K’/(K N K')-reality condition (cf. [TU]):

B SN =J, [A)=[f(), af(Da=[f(=4), df(Ad" = [f(I).

Let O, be an open neighborhood around co in CU{o} = S?, and let

G" ={f:0, — GL(N,C)| f is a holomorphic rational fraction
satisfying (3.1), and f(o0) = Iy},

(G™)y. o =1{f(2) € G™| f(4) satisfies (3.1)}.
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A map n: V — CV is called a J-Hermitian projection if
nt=n Jn*t=nl.

Clearly, n’ = I — z is also a J-Hermitian projection if 7 is one. Thus, a simple
element of G” is of the form [TU]:

A—u o—a

2 =n =1-

(3.2) hy,z(A) n+/1_&7z T3
for e C* = C\{0}. Let 7 be a diagonal complex matrix satisfying t> =a. A
direct computation yields the following

e

LemMa 3.1. Let my be a J-Hermitian projection in CV satisfying
7o =Ty, OTMYOTMY = MYOMT, O Moo = Ty.

If m=1""not, then f(2) = hyah som0 € (G"), . for x € V—1R.

Let @, be a solution to (2.14), L a constant complex s x N matrix satisfying
(3.3) LJoLT =0, span{Lg'} =span{L}, det(LJLT) #0.
Set
Ty = JLT(LJLT)_IL7 n=1"'nr,
h=Lt®, 7 =Jh*(hJh*)"'h,
Y, = hy  ®ihyz, h=Lta¥_,, 7y=Jh"(hJk*) "k

Let
a=vV—1u for ue R\{0},
| S P , _dh B .
Azthh, A—ihjh, h_ﬁ’ p=—h'ath”.

Then it is easy to see that m satisfies conditions in Lemma 3.1, p is a real skew-
symmetric s x s matrix, A and A all are real symmetric invertible s x s matrices.
Hence, we may write the following Darboux matrix [HS]:

2 /—I,Lt B 2\/—_1/1 ~
3.4)  Di=hy, .,k ol e vas o A
(3.4) Vol V= 7 ( AV —1u l)(

R ——— [ 4
A—v—1lu ?
oYM Ay,
A+vV—=1u
NI A ”_’“‘J(ah* A YA (ha — upA~"h)

Y

L2 A A~ (ho — upA~"h),
22 + u?
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dD - - 5

(3.5) dy = ( dz 1) =2V —lu(fy — &iy)

7=0

= V=1 {(ch* 4 uh* A" p)A~" (ha — upA~—"'h) — h*A~"h}.

Thus, in the similar way as in [HS], we have following

THEOREM 3.2. Let ®, be a solution of the system (2.14), and L a real
constant s x N matrix. Set h = Lt® /, for pe R\{0}. Then there is an open
neighbourhood U around the origin 0 such that on U, ®; = DA(O)A(I);VD;V satisfies
the system (2.14) with & = v+ (dy),. : U — GNP N A", namely, ai+ [a, D) is a
Ao.o'G-valued 1-form, where D; and dy are defined by (3.4) and (3.5), respectively.

In the following, we take N = 2(n+1). By Theorem 2.3 and Theorem 3.2,
it is sufficient to find the Darboux matrix (3.4) preserving b(x) e S""!(e).

LemmA 3.3.  Let @, be a solution of the system (2.14), L a complex constant
s X 2(n+1) matrix. Assume that g€ C and h= L®, = (&,&,n,1,01,0).
Then d((.by — 40¢,) = 0.
Proof. Since h satisfies the equation dh = h®,,, i.e.,
dé. =n,0,b,,
dny = —e1&1b{ 61 + o1 — A(i01,
dn, = —exéyby 63 + mywy — JoJ(r02,
d¢, = im0, + (.9,
then, by (2.11), we get
d((.b, — Aé,) = (dC)b, + ¢, db, — Ao dE,
= (Aon,0r + {3) by — o %br — Aon,0:b, = 0. O

Let we R\[0}, h= Le® 1, = (&1, &1y, m, V=101, V=105) satisfying

d¢, = 1,0,by,

dn, = —&1&1b[ 61 + nyor + ulid1,

dn, = —e282b] 63 + 1,07 + ulaJ,65,

A, = un,d, + ,9,.
By Theorem 3.2 and Lemma 3.3, if we choose L such that L satisfies (3.3) and
(3.7) LOb(0) —uL™M =0, LOpy(0)" —uL® =0,

then there exists an open neighbourhood U around the origin 0 such that s =

(61 ) 627 ’71 9 ’727 \/__ICI ) \/__1C2) SatiSﬁes

(3.6)
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hJoh* = e1&E] + e&é +mnl +nang — 4L = GG =0,
(3.8) det(hJh*) #0, (b1 — pé, =0,

span{/c’} = span{h},
in U. Thus, (3.4) can be written as

(3.9)
D, =1- ~221u )
2+
per L AE 0 perél A 0 —JerEl AN 0
0 Uerly Aré, 0 uerll Ay 0 —eré] Aol
i Arg 0 uni Avny 0 —n{ Axly 0
0 iy Arg, 0 un3 Arn, 0 —inIAG |
VISUNIS 0 W Ay 0 1AL 0
0 YIREUNI 0 YNREUNUN 0 103 Al
where

Ar=A+up)™", A= (A—pp),
1
(3.10)  A=ZhJh’ =00 + GG = a&iél +adé +mnl +mn;

p=—holh* = + 000 —a&ié] — il —ninl —nm; .

Here h' = dh/du = (&), &, ny,n5, V=11, V—=10). B
Set @, = ®,D;. It is easy from Theorem 3.2 to sce that @, satisfies the
system (2.14) with & = v+ (di),.. Thus, by (2.13) and (2.15), we have

Fi = (%) 5 = Fir = 2u(CT Aimy) s
F= (%) 5 = F — 2u(J.L Aings) o
b= = by — 2 My = @)
by = 0 = by~ S L Wiy = w3 a1, 1)
i (2 3 Yao—ama00 0 )
qu)éﬁ) ng)ésé)Jg 0 JL MG

Since (b, = ué,, then b7 = (;'vib[ 15" vab]) = AE,. Noting that 4 € O,(n),
we see that b e S"!(¢). Hence, we have the following

(3.11)

THEOREM 3.4. Let ¢: M{"(c1) x My*(c2) — M*1(c), n=ny +ny, be a
local isometric immersion whose first and second fundamental forms can be written
as (1.16). Suppose that @, is a solution of the system (2.14), ue R\{0}, and L
is a real constant s x 2(n+1) matrix satisfying (3.7). Let h= Lt® 5, and

®;, =D,D; where D, is the Darboux matrix given by (3.4). If a;(0) #0,
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as(0) # 0 for all j,s, then there exist an open neighbourhood U around the origin
0e M"(c1) x Mj?(c2) and a local isometric immersion ¢: U — M*~'(¢c) such
that ¥ =r.0 ¢ can be expressed explicitly by

s An- _1&01 1502 A 10 12
(3.12) F=0D;'(0)(x; I(Dg : t i, 1<1>§ )) = 0D (0)®1 (x; ng ) T ng ))a
where Q is a constant matrix defined by (2.17) with A(0), b1(0) and by(0).

Remark. The above process of the Darboux transformation is purely alge-
braic. Hence, starting from a special solution ®; to (2.14) for which the corre-
sponding r = Q(Kfld)(ll) + Ky 1<I)§2>) may be degenerated, we can repeat the pro-
cesses via the purely algebraic algorithm and obtain a sequence of solutions to

(2.14): ©; — O, > ®, — - -, from which we obtain a sequence of local isometric
immersions from M"(¢;) x M5?(c2) to M~ !(c).

§4. The construction of local isometric immersions from a trivial solution

For ¢ # 0 we may take the following trivial solution of (2.11):

Ly 0 0 0
1
0 & 0 —
_ _ V2 _ io 1%
(41) F =0, A= 0 0 L., 0| b=AE,, &=/l X
-1
0 — 0 &
V2
Set
K1 KoEé
4.2 kf=——=, ky=—.
(4.2) =5 ke,
For ¢ =¢; =0, we may take the following trivial solution of (2.11):
F,=0, A=1, b=AE,
and set

ki =1, kQZVEIKz.

Thus, by writting b7 = (0, ..., k,), the solution to (2.14) can be expressed as
a block matrix

43) @, = (@), with @7 =0 for i+j=odd, i,j=1,...,6

where

1 1
®m=Pmﬁnd%% ®@=7@@L+da
1 L2

k
@213) _ _gl(q)gsl))r = —g (o’ o ’O’X_l Ym)»
1
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k
<D§24) _ 782(¢342))T =—& (0, 0,2 Yn)a
) X2

Mk
1 X - 1>)7

1

A
q)g~26) B 8—2((1)262))T =& <0a .. 707%(Xn - 1)>a
2

X)), O = diag(Xo 11, ., Xo),

CI)ENB) = diag(X1, ...
. A

CI)E:?)S) — _CDEVSS) = dlag(Y] gee ey Yl’ll—l ,)? Ynl) 5
1

. y
o™ = _ 0l = —d1ag<Y,,l+1, o Yn,l,j{— Yn>,
2

1
an,l ,P ()Lzan + 81k12)) ,

CI)ENSS) = diag (Xl, e
1

. 1 .
q)gv66) — dlag <A/i11+1a o 7an1 7)? (E/LZXn + 82k22)) s
2

n=xn)= \V 2 +'Slklz, 12 = xa(4) = \ el? Jr'Szkzz,

X, = cos(y1Xn, ),  Xu = cos(xaXn),

X; = cos(Axp) (I # ny,n),
Yy, =sin(y;x,,), Yn=sin(yyxn).

Y =sin(Ax;) (I # ni,n),
For pe R, we choose the following constant 2 x 2(n + 1) matrix L:
L, 0 Ly 0 Ls O
44) L=(" ’ ° :
0 L, 0 Ly 0 Lg

b 0 -y 0 it lyim 0
N (0 lé 0 hys1 Iy 0 ln+n1+1 "'1211)’
such that
DNB=N"Prald £0, > B +el, =Y Itall #0,
(4.5) J J s#n B
klln+m - ,UZO =0, kabyy — /llé =0.

It is easy to see that L defined by (4.4) satisfies (3.3) and (3.7). Thus, we have

hy 0 hys 0 —1hs 0 )
h=Lt® =
VI (o 0 he 0 /—The
él 0 My My 0 V_lCl”'V_lgnl 0
0 \/__1§)11+1 e \/__lgn 7

0 62 0 77m+1 Ny
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where
& = ly cos(y;V—1xn,) — Ly V=17V sin(yV=1x,,) = 5 'ki&,
& = Iy cos(yV=1x,) = L,V=1p; 'k sin(poV=1x,) = kol
np = I ch(uxy) + ly sh(uxy), (1 # ny,n)
(4.6) = Iy, COS(Vl\/_an) 10\/_k1 71 SIH(VI\/_XVII)
= 1, cos(p,V—1x,) — )V =1k 1y, sin(p, V—1x,),
Cz = Iy sh(uxr) + by ch(pxy), (1 # ny,n),
7= —V=15(V-1u).
It is clear that
hi(0)=L; fori=1,...,6.
When y, =0, we have
&=y, &=1 Gi=bn G =lin.

It is easy to see that p = —h'cJh* is a 2 x 2 diagonal matrix. Since p is skew-
symmetric, then we get p =0. Thus, by (3.9)~(3.11), we have

Al O
A:<0 A2>’ AI:h5h5T:Zi:C,»2, AzzhéhZZS:Cf,

1
DY = ey (U 10080 = 26030 0, =2k s, 0, =2y s )
(4.7) !
2 1 T
DY = gy O (0 )8 = 26ak305, 0, ~2pkal e 0, ~2kalh)
;o ki T2 ko T T
by = - (=28, hs, hsh? — )T, by = "2 (=20 heh! = )7,
Al ! AZ
and
(4.8)
2 s 2, - V2.
Inlfl - EhghS 7A71Cn]h5T 0 7A71Cn1h5T
2 - 2 2 2
——luhs & 1-—=0( 0 £—£c2
- A" A 2 AT
A= Y 5 2t (c#0),
~ ~a EE ~
O ?Cnhg In2_1 - thgh6 —Egnhg
2 .- 2
0 ‘fc,% - £ — 1 s eé(l = —52)
2
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2

L, — —hThs 0
~ Al
4= 2 (CIO),
0 I, —A—zhgh6

where
h1:<éla"'7é,n1—l)7 il2:(§n1+17"'a§n—l)'

By Theorem 3.4, if @;(0) # 0, a,(0) # 0 for all j,s, then there exist an open
neighbourhood U around the point x =0 in M|"(¢;) x M,?*(¢c;) and a non-
degenerated locally isometric immersion ¢ : U — M?"~!(c), such that its position
vector in R* i

F=r.05= 0D (0)(x'® + ' &) = 0D (0)@ (1 ' DY + 15 ' DY),

where Q is a constant matrix defined by (2.17) with A(0), b;(0) and b,(0).
Hence, it is sufficient to choose suitably L such that

(4.9) br #0, Y 12 =12, #0, Y 12— #0.

i#n S#N

Thus, starting from a trivial solution ®; and using the Darboux transformation
®, =®,;D; and (3.12), we can construct a series of locally isometric immersions
from M["(c1) x My*(c2) to M*"7!(c).

Remark. It should be remarked that we may choose constant matrices
L satisfying (4.5) and (4.9) in a quite arbitrary way. For example, according to
the signs of y? = p? — g1k? and y3 = g — e2k3, we can choose L as follows. If
yf >0 and y% < 0, then L may be taken as

L:<,u‘1klln, 0 Ly 0 Ls o)
0 Wkl 0 Ly 0 Lg
where
Ly= (I, by, ), Ls = (Iy,... . 1),
Ly=(bists 1 02,0,0), Lo = (Lyi1s s bya, V=1 psly 1, 1, 1),
such that
L#0, Y =12 #0, > I (eap ks —e— 1)}, #0.

i#n s#n—1,n
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