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UNIQUENESS OF ENTIRE FUNCTIONS AND FIXED POINTS
JianMING CHANG AND MINGLIANG FANG'

Abstract

Let f be a nonconstant entire function. If f, f’ and f” have the same fixed
points, then f = f’.

1. Introduction

Let f be a nonconstant meromorphic function in the whole complex plane.
We use the following standard notation of value distribution theory,

T(r7f)7m(r7f)7 N("’f)’ N(r7f)7 ctt
(see Hayman [1], Yang [6]). We denote by S(r, f) any function satisfying

S(r, f) = o{T(r, 1)},

as r — +o0, possibly outside a set of r of finite linear measure.

Let g be a meromorphic function, and let a,b be two complex numbers. If
g(z) = b whenever f(z) =a, then we denote it by f(z) =a= g(z) =b. Thus
f(z)=a< g(z) =a means f(z) =a if and only if g(z) =a.

In 1986, Jank-Muse-Volkmann [3] proved the following result.

THEOREM A. Let f be a nonconstant entire function, and a be a nonzero
value. If f(z)=a<f'(z)=a, and f'(z)=a=f"(z) =a, then = f'.

In this paper, we extend Theorem A as follows.
THEOREM 1. Let f be a nonconstant entire function, and let a,c be two

nonzero constants. If f(z)=a=f'(z)=a, f'(z) =a=f"(z) =c¢, then either
f(z) = Ae“/* 4 (ac — a®)/c or f(z) = Ae*/" + a, where A is a nonzero constant.
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COROLLARY 2. Let [ be a nonconstant entire function, and let a be a nonzero
constant. If f(z)=a=f'(z)=a, f'(z) =a= f"(z) = a, then either f = [ or
f=f+a

Remark. In Corollary 2, the case f = f'+a occurs.
Let f(z) =a+ Ae”. Then f'(z) = Ae”, f"(z) = Ae”. Obviously, f sat-
isfies f(z)=a=f'(z)=a, f'(z)=a=f"(z)=a, and f = f' +a.

The main result of this paper is the following

THEOREM 3. Let f be a nonconstant entire function. If f(z) =z & f'(z) =
z, and f'(z) =z=f"(z) =z, then = f'.

If f(z9) = zo, then z; is called a fixed point of f.

COROLLARY 4. Let [ be a nonconstant entire function. If f, f' and f" have
the same fixed points, then [ = f.

2. Proof of Theorem 1
Set

S+ 27 ()
fO—a @ -a

Let f(zo) =a. Then by the assumptions we may suppose that, near z,

(2.1) ¥ (2)

22 f()=a+a(z=z0)+5(E—2) +bz—2)"+ 0z =)*),

where b = f®)(z))/6 is a constant. Thus we have
23) f1(2) = a+e(z — z0) +3b(z — 20)*> + O((z — z0)°),
. £"(2) = ¢+ 6b(z — z0) + O((z — z0)%).

Hence

of'(2) +af"(z) _ 2
(5 —a —Z_ZO+6b+0(z—zo),

2cf"(z)  2¢
f’(z)—a_z—zo+6b+0(z_zo)'

Thus we obtain

(2.4) Y(z0) = 0.

Next we consider two cases.
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Case 1. f"/f'=c/a, that is ¢f’ =af”. Then we get
A X s
(2.5) fl(z) = Lelelz f(z) = gelelo7 1 B,
a

where A4 # 0, B are two constants.
If there exists zo satisfying f(z9) = a, then by the assumptions and (2.5) we
obtain

2
ﬂ@:Ang+E%£ﬂ

If there doesn’t exist zy satisfying f(z9) = @, then by (2.5) we get
f(2) = a+ Ael/?

where A4 is a nonzero constant.

Cast 2. f"/f"# c¢/a. Then by the assumptions we have

(2.6) N(r,ﬁ) < N<rﬁ) < T(rj;—) +0(1)

= N(r,]}—/:> +S(r, f) = N(r,%) + S(r, f).

In the following, we consider two subcases.

Casg 2.1. ¢y #0. Then by (2.1) and (2.4) we get
(2.7) N(r, fl—a> < N(r, llp> < T(r,y)+ 0(1)

<N, (r’f'l—a) + S(r, f),

where Ny(r,1/(f" — a)) is the counting function for those zero points of f’(z) —a
which are not zero points of f(z) —a.
Thus by the assumption and (2.7) we obtain

(2.8) 2N Q%) < N(r, J,L_a) + S0, f).

On the other hand, by Nevanlinna first fundamental theorem we have

(gt en(oh) e

<T(r f) - N(r, fl) +S(r, f)
<T(rf)— N(rfl) +S(r, f)
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1 1
=T V’fTa — N V,F +S(V,f)
mlr ! +N|(r ! N : + S, f)
= _— _— —_ r,— .
’f—a 7f_a 7f/ b

Thus

(2.9) N(r,%) < N(r, ﬁ) + S(r, f).

Hence by (2.6), (2.8) and (2.9) we get

(2.10) N(nﬁ) _ N(r, f%) + S f) = S(r, f).

By Milloux’s inequality (see [1, 6])

(2.11) T(r,f)sN<r,f1_a>+N<r,f,1_a>+S( f)
Thus by (2.10) and (2.11) we get T'(r,f) = S(r, f), a contradiction.

Case 2.2. y=0. That is

of (@) +af"(2) _ 2¢/"(2)
212) CE RN ACED)
Thus by f(z) =a= f'(z) =a and (2.12) we deduce that f(z) =a < f'(z) = a.
Hence, f"(z) =0=f'(z) =0
Set

(2.13) #() =

Since f"/f' % c/a, we get ¢ # 0.
Let f'(z0) =0 and f"(z9) #0. Then by (2.12) we get

af"(z) — ¢/ '(2)
f@)—a

ac — a*
(2.14) S(z0) = 2 e
Differentiating the two sides of (2.12) we get
(2.15) [¢f"(2) + af " (2)][f (z) — 4] —Jz" "(2)[ef"(z) +af" ()]
[f(z) — 4]
_2d"@S(z) —a] — 2 [f/(Z)]Z.

) —
() = a®

Thus by (2.14), (2.15), f'(z0) =0 and f"(z9) # 0, we obtain

(2.16) 1" (z0) = .
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Hence we have

(2.17) Bz0) = 25

Next we divide two subcases.

Cast 2.2.1. ¢(z) # —2c?>/a. Then by (2.17),
_ 1 — 1 — 1
(2.18) N(r,}m) —N(r,f//) SN<r’¢+2c2/a> <T(r,¢)+S(r,f).

Obviously, by (2.13), Logarithmic Derivative Lemma (see [1, 6]) and the
assumptions we get

(2.19) T(r,¢) =S, f).
Thus we get
/1 — 1
(2.20) N(r f> — N(r, f”) =S(r, f).
By f7(z) =0=f'(z) =0, (2.13) and (2.19) we have
(2.21) N( fi) < ) T(r,¢)+O(1) = S(r, f).
Hence
(2.22) N (r, %) = S(r. f).

Thus by Milloux’s inequality, (2.22) and (2.6), we get T(r, f) = S(r, f), a con-
tradiction.

CasE 2.2.2. ¢ = —2c¢*/a. That is

(2.23) ") o )+ 2 1) ] =0,

for zeC.

If there exists zo such that f”(zp) =0, then by f"(z) =0=f'(z) =
(2.23) we get f'(zo) =0 and f(zo) = a, which contradicts f(z) =a = f'(z
Hence, f"(z) #0.

Solving the equation (2.23) we obtain

(2.24) f(2) = c1e"* 4 2™ +a,
2

0a
)=

where 4; and 4, are solutions of the equation az? — ¢z + 2¢?/a = 0, and ¢y, ¢, are
two constants.

Thus
(2.25) ["(2) = c1ijer + crige.
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Since f"(z) #0, we deduce from (2.25) that either ¢; =0 or ¢; =0. Without
loss of generality, we assume that ¢, = 0, then

(2.26) f(z) = cre™* +a.
Thus by f'(z) =a=f"(z) =c and (2.26) we get
f(z2) = 4e'/)* 1 a.

The proof of Theorem 1 is complete.

3. Proof of Theorem 3

Firstly, we consider the case that f is a transcendental entire function.
Obviously, we have

(=) ol

< T(r f) + 80, /)
Hence by Nevanlinna’s first fundamental theorem, we have
(3.1) T(r,f—z)+T(r,f —z)
1 1 ,
SN(r’f—Z> +N(r’f/—Z> +T(V7f)+S(V7f)

By f(z) =z f'(z) =z and f'(z) =z=f"(z) =z, it is easy to see that

1 1 :
(32) N(r,m) :N<V,E)+S(V,f)
Thus by (3.1) and (3.2) we have

1
(33) T(r,f>szzv(r, f_Z>+S(r,f)-
Set
N CE
(3.4) HE =5 1o
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If H=0, then by (3.4) we get

e _ =
fl(z)—1 " z—-1'
Thus we have
(3.5) f'(z)=1+C(z—1)e7,
(3.6) f(z2)=z+C(z—2)e" + A.

where 4, C (#0) are two constants.

Hence by (3.5), (3.6) and f(z) = z < f'(z) = z, we know that f’(z) = z have
the unique solution zy =2 — A with zy # 0,1. But it is clear that f’'(z) = z have
infinitely many solutions, a contradiction. Hence H # 0, that is

/") z
f(z) =1 # z—1"

Thus by the assumption of the theorem, we have

(3.7) N(r,f L Z> < N(r, %) + Oflog 1)
< T(r, H) + S(r, )

=1
< N(r,f/l_ 1> +8(r, f)
Hence by (3.7) and (3.3) we get
(3.8) T(r, f) < 2N (r, J%l) +S(r, /).
Set
a9) PEACE WO

f@ -z flz)-z’

_E=0f"() = =[f'(z) = 1]
(3.10) W(z) = = .

Obviously, by Logarithmic Derivative Lemma (see [1, 6])
(3.11) m(r,¢) = S(r, f), m(r, ) = S(r, f).

Let zo satisfy f(z9) = zo and zp # 0,1. Then by assumption we may assume
that, near z
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(3.12) f(z):zo+zo(zfzo)+%0(z—zo)2+f///6(20)(2720)3+...7
Thus we have
(3.13) P/ =204 20lz — 20) + L (2 =z
. z) = zo 4+ zo(z — z¢) + > (z—2z0) "+~
(3.14) 1) = 20+ 1" (@) e —20) + .
By (3.12)—(3.14) we get
(315) N(V,¢)=S(V,f), N(V,lﬁ):S(V,f).
Thus we have
(3.16) T(r,¢)=S(r.f), T(ry)=S(r[).
By (3.12)—(3.14) and (3.9)—(3.10) we get
B f///(ZO) — 2
$(z0) = ﬂ’
and

¥(z0) = f"(20) — 20 — 1.

Thus we obtain
2(20 — 1)¢(Z()) + I,D(Z()) +1=0.
If 2(z—=1)¢(z) +(z) + 1 #0, then by (3.16)

1 1
(3.17) NG’E) SN<V’2(Z—1)¢+W+1) + O(log r)
<T(r,¢)+T(r,y)+ S, f)< S [f).
Thus by (3.3) and (3.17) we get a contradiction: T(r, f) = S(r, f). Hence
(3.18) 2z-1Dg(z) +y(z)+1=0.

Now let z; satisfy f'(z;) =1 and z; # 1. Then by f(z) =z < f'(z) = z, we
know that f(z;) # z;. Thus by (3.12) and (3.13) we have

(3.19) #(z1) =f”2(lzl_) - L
_ @ =1f"(z)
(320) W(Z]) - f(zl) — 7 .

Hence by (3.18)—(3.20) we obtain
2f(z1) =21 = 1f"(z1) = f(z1) — 2.
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If 2f(z1) —z1—1=0, then f(z;) =z, a contradiction. Hence 2f(z;)—

z1—1#0. Thus

11 _ f(Zl) —Z1
(3.21) f (Zl)_—2f(21)f2r1'
Therefore by (3.19)—(3.21) we get
_ 1—71(z1)
(3.22) $(z1) = G D) =5 = 1]
o Z1 — 1
(3.23) V(z1) = e —m -1
By (3.9), (3.10) and (3.21) we get
oy ") ! f(z0) = 1]
324 d@)= P 7y g +(21 —D2f(z1) —z1 — 1)*
and
(3.25) Y'(z1) = & — D7) z 7 ]

fz)—z1 2f(z)—z— 1
By (3.18) we get

(3.26) 2¢(2) +2(z — 1)¢'(2) + ¥'(z) = 0.
Thus we have
(3.27) 2¢(z1) +2(z1 = 1)¢'(z1) + ¥/ (z1) = 0.

By (3.22)-(3.24) and (3.27) we get

(3.28) 2[(1 _fiz)lz)] W(z) + 21" (z1) + 29 (z1) +
Z] —

By (3.25) we get
(3.29) f"(z1) =

2[f(z) — 1]
(21— 1)°

W' (z20) + ¥ ()I/ (z) = =1]

Z]—l

Thus by (3.28) and (3.29) we have

2[1 = f(z1)] 20" (z1) + ¥ (2)][f (21) = z1]
(z1—1)° 2 -1

2
PO ) e =0
(21 =1)

(3.30)

W(z1) +

+2y(z1)

By (3.23) we get

Wi (z1) + ¥ (21) =

0.
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z1+ 1 z1—1

Hence by (3.30) and (3.31), we have

(3:32)  2(z1— DY/ (z1) + ¥ (z1) + 2(z1 — Y2 (z1) + (221 = 3)(z1) = 0.
Let

A=2(z =Y (2) +¥7(2) +2(z = DY2(2) + (22 = 3y (2).
If A0, then

(3.33) N(nﬁ) < N(r, %) +0(log ) < T(r,A) + S(r.f) < S(r, f).

Thus by (3.8) and (3.33) we get a contradiction: T'(r, f) = S(r, f).
Hence, A =0, that is
(3.34) 20z = DY/ (2) +¥7(2) +2(z — DYP(2) + (22 = 3)Y(z) = 0.

Obviously, by (3.34), ¢ is an entire function. We claim that ¥ is not
transcendental. Indeed, if y is transcendental, then by (3.34) we have

3T(r,0) = 3m(r, ) = m(r, )
=m(r,2(z — DY+ 2z =3 +2(z — 1Y)

<m(r,¥) +m<r,2(z— Dy + (22 —3)+2(z — 1)%)

<2m(r, ) + S(r, ) = 2T (r, ) + S(r, ).

Thus we get a contradiction: T (r,y) = S(r,). Hence ¢ is a polynomial.
Next, by simple computation, we deduce that either y =0 or yy = —1.
If y =0, Then by (3.10) we get

z=1S"(2) ==[f"(=) - 1],

which means H =0, a contradiction.
If Y = —1, then by (3.18) we know ¢ =0. Thus by (3.9) we have

S -1 _ f"z-1
f@) =z fl5) -z

Next we can easily deduce that f = f’.

Now we prove that f can not be a polynomial.

By simple computation, f can not be a polynomial with deg f < 2. Next
we prove that f can not be a polynomial with deg /' > 3. Suppose that there
exists such polynomial f* with f(z) =z< f'(z) =z and f'(z) =z=f"(z) =z,
and d =deg f > 3. Let z1,23,...,z, be the fixed points of f. Then we have
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(3.35) fE@)=z+Az—z21)"(z—2)" - (z—z,)™,
(3.36) ') =z+Bz—z)(z=2) o =z,
and

(3.37) f"2)=z+Clz—z1)"(z—=22)" -+ (z — z4)""p(2),

where p (#£0) is a polynomial, and A4, B,C are three non-zero constants and
{o5}:{B;}:{r;} (G=1,2,...,n) are positive integers satisfying

(3.38) zn:oq,:d, Zn:ﬂj:d—l,
=1 =1

From (3.35) and (3.36) we obtain

n
7 tdegp=d-2.
Jj=1

(3.39) 1+4Y o(z—z)" ' [[e-2)7 =2+ B] [ — 2)".
i=1 J# J=1
If o; > 2, then by (3.39) we get z; = 1. Similarly, we know that if f; > 2,
then z; = 1. Without loss of generality, we assume that j =1. Thus by (3.35)—
(3.36) and (3.38) we have

(3.40) fE@)=z+AEz-1)"(z—2z3) (2 — z,),
(3.41) ') =z+Bz=1)""z=2)(z—z).

If oy > 3, then by (3.40) we get f(1) =1 and f”(1) =0, which contradicts
f(z)=z=f"(z) =z. Thusa; =2. Hence by (3.37)—(3.38), and (3.41) we have

(3.42) flz)=z+Bz—=1)(z—z22) -+ (z — z,).
(3.43) f"2)=z+Clz—=1)(z—2z2) - (2 — zp).

Thus by (3.42) and (3.43) we get a contradiction: deg f’/ =deg f”. The
proof of Theorem 3 is complete.
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