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A FAMILY OF POLYNOMIALS WITH THE UNIQUENESS
PROPERTY FOR LINEARLY NON-DEGENERATE HOLOMORPHIC
MAPPINGS

MANABU SHIROSAKI

§1. Introduction

Let 4 be a family of nonconstant holomorphic mappings of C into P"(C)
and P be a homogeneous polynomial of n+1 variables. We call P has the
uniqueness property for # if P(f) # 0 for any f € # and P(f) = oP(g) implies
f =g for any two elements f and g of # where f and § are reduced rep-
resentations of f and g, respectively, and « is an entire function without zeros.
Such an example was first given by Yi for nonconstant entire functions in [Y],
and it was a polynomial of one variable.

The author gave polynomials with the uniqueness property for algebraically
non-degenerate holomorphic mappings in [S1], and for linearly non-degenerate
holomorphic mappings in [S2]. The former has several irreducible components,
but the number of irreducible components does not depend on #n, and it is not
easy to judge the irreducibility of the latter.

In this paper, we give homogencous polynomials with the uniqueness
property for linearly non-degenerate holomorphic mappings, whose degrees are
lower than that in [S2], and irreducible ones for example.

However the problem of the uniqueness of nonconstant holomorphic map-
pings is very difficult. The author has not yet found homogeneous polynomials
with the uniqueness property for nonconstant holomorphic mappings.

§2. Known results

First, we introduce a useful theorem by Green and Fujimoto. We mean a
nonzero entire function by an entire function with a point whose value is not
zero. For two nonzero entire functions f and g, we say that they are equivalent
if the ratio f/g is constant. This introduces an equivalence relation in each set
of nonzero entire functions. The following lemma due to H. Fujimoto and M.
Green is the key lemma for our theorem (cf. [F, Corollary 6.4] and [G, p. 70]):
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LemmA 2.1. Let fy,..., [, be nonzero entire functions such that f' +---+
f4 =0, where d is a positive integer. If d >n>, then

S =0

fiel

for each equivalence class I of {fo, ..., fu}. Especially each class has at least two
elements.

DeriNITION 2.2. Let f be a holomorphic mapping of C into P"(C). A
representation f = (fy,..., f,) of f is a holomorphic mapping of C into C""!
such that £71(0) # C and f(z) = (fo(z) : --- : f(z)) for each z € C\ f'(0), where
(zo:---:z,) is a homogeneous coordinate system. A representation f is called
to be reduced if £7'(0) = 0.

DEerINITION 2.3. A holomorphic mapping f of C into P"(C) is linearly non-
degenerate if its image is not contained in any hyperplane of P"(C). This is
equivalent to that fj,..., f, are linearly independent over C, where (fy,..., f,) is
a representation of f.

For a very special case of the result of [S2], we introduce

THEOREM 2.4. For d > (2n — 1)2, the polynomial

.
13, _11.2 13 \d
(" + 2 201 +231)
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has the uniqueness property for linearly non-degenerate holomorphic mappings.

The least degree of the polynomials of the above theorem is 13(2n — 1)2.

§3. Uniqueness of holomorphic mappings

Let v; (j=0,...,q) be g+1 row vectors of C""'| where ¢>n+1.
Define the set Q := {o = (op,...,0) : 00, ...,0, are distinct integers, 0 < o, ...,
oy < gq,}. For each element o = (ag,...,a,) € Q, we put &= {og,...,a,}, and
associate the matrix

Take a positive integer d, and we assume:
(Al) v; (0 <j<gq) are in general position; _ S
(A2) take any oo/, 8,8 € Q. Ifa#ao/, B #p', and if & # B or o’ # B', then
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d d
det 4, ” det Ap
det A, det Ay )
For two vectors z = (zp,...,2z,) and w= (w,...,w,), we define z-w=
zowo + -+ zyw,. Let (zo:---:2z,) be a homogeneous coordinate system of
P"(C) and write z=(zp,...,2z,). Define the homogeneous polynomial P by

Pzo,...,20) = Y0 (0-2)" = 0.
Then we have the following:

THEOREM 3.1. Suppose d > (2q+ 1)>. Then, the polynomial P has the
uniqueness property for linearly non-degenerate holomorphic mappings of C into
P"(C), ie., for linearly non-degenerate holomorphic mappings f and g of C into
P"(C) with reduced representations f and g, respectively,

q

W) SN =03 (1 -9)?
=0

Jj=0 J

for an entire function ¢ without zeros implies f = g.

Proof. At the beginning of the proof, we note that none of v;- f, v;- g is
identically equal to zero by linear non-degeneracy of f/ and g and we may assume
that ¢ =1 by changing reduced representations.

We apply Lemma 2.1 to (1) considering linear non-degeneracy of f and g.

Then there exists a permutation ¢ of 0,...,q and d-th roots wy,...,w, of 1 such
that
(2) v f=wp,;9 (0<j<gq).
For each arbitrary o € O, we get by (2)
(3) A = QaAa(zx) g,
where o(o) = (o(),...,0(xy)) € Q and

Wy O

Q, =
0 Wy,

Take o, e Q with @ #f. By deleting ’f from the equation (3) and its cor-
respondence for f, we get A/;A;IQQAU(GC) 'g =QpA,p'9. By linear non-
degeneracy of g we have

ApA; QAo = QpAo(p);

thus, A,'Q, 4, = A;'QpA,p. By taking d-th powers of determinants of
both sides, (det Apg/det A,)" = (det Aq(p)/det Aa(i))d. The assumption (A2)

requires & = o(a), f = o(ff), which induce that ¢ is the identity. Hence, we have,
by (3),
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4) Af =QA'g,

where 4= Aq;. . and Q=Qq, . ,. The equation (2) for j=n+1 is
Upil - f = Wpi1Vpy1 - g. By deleting f from this and (4), 0,147 'QA'g=
Wni1Vps1'g is obtained. Since ¢ is linearly non-degenerate, v,.147'QA4 =
wu11V,41, and hence,

(5) V1A' Q = Wi 1vpn A
By the assumption (Al), there exist nonzero constants ao,...,a, such that

Upyl = Ao0o + - -+ + Ay0y.

Then, v,.147" = (ao,...,a,). Therefore, we can get from (5) (woay, .. .,w,a,) =
Wui1(ao, ..., a,), and thus wg =--- = w, = w,41, which implies f =g by (4).
Q.E.D.

Remark 3.2. From (1), we can induce f = g, where ¢ is an entire function
such that l//d =q.

Example 3.3. Here, we give an example for the above theorem.

Let v =(1,0,...,0), v =(0,1,0,...,0),...,0,=(0,...,0,1), 0,4 =
(ao,...,a,). The condition (Al) is equivalent to a; #0 (0 <j<wn). Since
det A j-1,j+1,..n+1) = (=1)"7a; (0<j<n)and det 4, =1, (A2) is equiv-
alent to the condition that

(=) Nayfar)? # (-1)"(a,/a,)?

for all 0 <j k,u,v<n+1 such that j#k, u#v and (j,k)# (u,v), where
ans1 = —1. 1If ay,...,a, satisfies the above conditions, the homogeneous poly-
nomial

Zg+~~~+z,‘,1+(a020+~~+a,,z,,)d

has the property of Theorem 3.1 for d > (2n+ 3)2.

Now, we consider the non-singularity of the hypersurface defined by the
zero set of the polynomial. It is non-singular if and only if the equations
2+ aj(aozo + - + anzn) ' =0 (0 <j < n) have no common solution except
for (0,...,0), and it is fulfilled if

Hodo — 1 Nod1 e Noln
Mdo ma—1 .- man
# 0,
77na0 ”nal T ”nan - 1
for any (d — 1)-th roots #,,...,n, of —ao,...,—a,, respectively. Hence, if

Moo + -+ 1y # 1
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for any (d — 1)-th roots #,,...,n, of —ao,...,—a,, respectively, the considering
hypersurface is non-singular. For more explicit example, let 3 =p; < --- < p, be
prime numbers and py = 1. Put a; = 1/(2/"!p;) (0 <j < n), then all above con-
ditions are satisfied. Also, for n > 2 the least degree (212 + 3)* of the polynomial
is smaller than those of previous results.
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