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ON THE OVERDETERMINED SYSTEM ABOUT SURFACES WITH
PARALLEL MEAN CURVATURE VECTOR FIELD

SHINYA HIRAKAWA

1. Introduction

The study of surfaces with parallel mean curvature vector field in complex
space forms generalizes the theory of constant mean curvature surfaces in three-
dimensional Euclidean space. Such surfaces are locally determined, firstly in
the case of four-dimensional real space forms, and secondly of two-dimensional
complex space forms. In the last case, Ogata [2] got the overdetermined system
of the immersions and solved it under the assumption that the Gaussian cur-
vatures of the surfaces are constant. Later, Kenmotsu-Zhou [1] solved it without
any additional conditions and determined locally the explicit representations of
such immersions. In this paper, we give another method to solve this system of
Ogata.

First, we explain the result of [2]. Let M be an oriented and connected two-
dimensional Riemannian manifold, X a complex two-dimensional complex space
form with constant holomorphic sectional curvature 4p. Let x: M — X be an
isometric immersion with parallel mean curvature vector field H with |H| = 2b >
0. And let 0 be the Kihler angle of x. Then on M’ ={pe M |0(p) # 0,n}
there exist a complex structure ¢, a real valued function a and a complex valued
function ¢ such that:

(1) dp =cot 0-(a—b)p A

2) d) = (a+Db)(¢+9),

(3) da = {2 cot 0 - (a—b)aJr%p sin 20}(¢+¢),
(4) deng=2cotl-(a—Db)cp A ¢,

(5) le|* = a? +2(3 sin® 6 — 2).

Since M is a real two-dimensional Riemannian manifold, there exists an
isothermal coordinate around each point of M. When we take the appropriate
isothermal coordinate (U, (u,v)), U < M', we can write ¢ = A(du+ v—1 dv),
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where A >0 is an isothermal factor on U. Then the overdetermined system

obtained in [2] is written as follows in this coordinate.

THEOREM 1. Under the notations above, there exist an isothermal coordinate
(u,v) around each point of M' and functions A, 0, a depending only on u-variable,

such that they satisfy the following differential equations:
di

(6) E:—Mzcotﬁ-(a—b), 4> 0,
do
(7) - =2Aa+D),
da 3 .
(8) duz/l{Z cot 0 - (afb)aJer sin 20},
9) log 74 <a2 +g(3 sin2 92)) = kyu+ ko,

where ki and k, are some real numbers.
Also, the function ¢ in (4) and (5) can be written as

(10) c= \/a2 +§(3 sin? 0 — 2)eV " 1(hiv/240)

where t is a real constant.

In [2], Ogata showed that conversely if we have a simply connected domain
M in (u,v)-plane and some real valued functions 4, 6, a on M which satisfy the
system of differential equations above, then there exists an immersion x : M — X
such that, with respect to the induced metric, its mean curvature vector field H
is parallel with |[H| =2b > 0 and its Kéhler angle is 6. Such an x is uniquely

determined up to holomorphic isometric transformations of X.
Kenmotsu-Zhou [1] solved this system (1)—(5) as follows:

THEOREM 2. On the Ogata’s overdetermined system we have ki = 0 and the

solutions are given by:
() When p >0, a and 6 must be constants and satisfy

T
=-b, 0=
a ) 27
(B) When p =0 and a is constant, we have a =0 or a = b or a = —b.
p =0 and a is not constant, 0 is determined as a function of a by
: —b)?
sin 0 = ¢ (a—b) ;
|al

where ¢; > 0 is a real constant.

When
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(y) When p <0, we have

a=—b, sinHE\/g or
ab<1§sm29>.

Remark. In [1] the solutions a =0 and a=b, in the case of p=0 are
missed.

In [1], the fact of k; = 0 is shown by studying the behavior of the solutions
of the overdetermined system. Once we prove the fact, it is easy to find all
solutions of the system (1)—(5). In this paper we prove k; =0 by the different
method from [1].

Acknowledgements. The author would like to express his gratitude to Pro-
fessor Katsuei Kenmotsu for his constant guidance and encouregement during the
course of this work. The author would like also to thank the members of the
geometry seminar of the Mathematical Institute of Tohoku University for their
kind advice.

2. Another proof of Theorem 2

We assume ¢ # 0, and represent ¢ = |c|e‘/’_“ on the points of ¢ # 0, where
7 is a real valued function. We know from (10) that k; = 0 if and only if 7 is
constant. To prove that 7 is constant, we show the following.

THEOREM 3.  The solution of the overdetermined system (1)—(5) satisfies either
O=n/2 or p=0 or 4a—4b+9bsin’> 0 = 0.

To prove Theorem 3, we prepare three lemmas.

LemMa 1. Assume ¢ #0 and 0 is a constant function. Then it holds that
0 =mn/2.

Proof. Since 0 is constant, we have df = 0. Hence by (2), a is a constant
function and it holds that a = —b. Then by (5) |c| is a constant function. From
this we have dc =+/—lcdr. By (4), we also have dc A ¢ = —4bcot 0-ch A ¢.
Since ¢ # 0 and |¢| is constant, it does not take the value 0. And since 7 is a real
valued function, we have v/—1dt = —4bcot 0- (¢ — ¢). By the exterior differ-
entiation of this equation, we obtain —4b cot 0 - (d¢ — d¢) = 0. It follows that
cotd =0 or dp—dp=0. Since d¢ is imaginary by (1), the later case also
implies cot @ = 0. This proves Lemma 1.
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LEMMA 2. Assume ¢ # 0, and put ¢ = |c|e\/’_1’ on the points of ¢ #0. Then
it holds that

(11) V—=1(2a*> + p(3 sin® 6 — 2)) dr
= —pcot@-(9bsin® O +4(a—b))(p—¢).
Proof. By (2), (3) and (5), we have

dc2 — d(|c|28\/—_12‘[)

= eﬁzr{ (—4 cot 0- (b —a)a® + %pa sin 26) (¢+9)
—&-%p sin 20 - (a + b)(p + ¢) + V—1(2a> + p(3 sin® 0 — 2)) dr}.
On the other hand, it follows from (4) that

dc? /\¢_:4cot9-(a—b)<a2+§(3 sin29—2)>eﬁ2’¢A(/§.

Compairing these two equations, we get

cot 0- (a — b)(4a* +2p(3sin> 0 —2))p A ¢
= {—4 cot 0 - (b—a)aﬂ—%p sin 20 - (2a+b)}¢ A

+V=1(2a* + p(3 sin* 0 — 2)) dr A §.
Simplifying this equation, we see that (11) holds, because 7 is a real valued

function. This proves Lemma 2.

LemMmA 3. When p = —3b?, there exists a solution of the system (1)—(5) such
that ¢ # 0 and 4(a —b) + 9b sin” 6 = 0.

Proof. For a solution 0(u) of the next differential equation
a_b
du 2
with the initial condition 6(0) = 6, 0 < 0y < sin”'\/8/9, we define
S —
8 — 9 sin® O(u)

8 — 9 sin” O(u)

a(u) = b(l — % sin’ O(u)).
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Then these functions satisfy the system (6)—(9) with p = —3h%. In this case we
have |¢|* = b2(8 — 9 sin® §)?/16, which is not zero on a neighborhood of u = 0.
This proves Lemma 3.

Now, we prove Theorem 3. By the exterior differentiation of (11), we have
(12)  V—=1(4cot - (a—b)a*+3psinOcos0-(2a+b))(p+ @) A dr
= p(—4a* — 9ab sin® 0 + 27b* cos® O — 5b% + 6p cos® 0)¢ A .
From (11) and (12), if p # 0, then putting x = sin? 6, we have
a*(32 — 24x) + a’(—64b + 136bx — 54bx?)
+ a*(32bh% — 148h°x + 126b%x* 4 28xp — 24x7)p)
+ a(—24bxp + 114bx*p — 81bxp)
+ 20b%xp — 42b°x%p + 27b%x%p + 12xp? — 30x%p? + 18x%p? = 0.

We denote by Pj(a,x) the polynomial defined by the left hand side of the equa-
tion above, where ¢ and x are indeterminates. By (2) and (3) we get

da = cot 0 - (Z(a — b)a+%px> 9+ ),

dx =cot 0-2x(a+b)(¢+ ¢).

If we assume 0 # 7/2, then the exterior differentiation of P;(a,x) = 0 gives us the
following:

a’ (256 — 240x) + a*(—640b + 1232bx — 540bx?)

+ a(512b% — 1432b%x + 11166°x* + 360xp — 336x%p)

+ a®(—128b% + 296b3x — 440bxp + 1296bx>p — 891bx°>p)

+ a(136b%xp — 384b%x?p + 216> X3 p + 24xp? — 36x7p* + 36x°p?)
+ 40b°xp — 168b°x%p + 162b°x>p + 24bxp?

— 156bx%p* 4 279bx3p? — ?bx‘*pz =0.
We denote by P>(a,x) the polynomial defined by the left hand side of this equa-
tion, where a and x are indeterminates.
We assume ¢ #0 and p #0 and 0 # /2 in what follows. If there exists
a solution of the system (1)—(5) in this case, then it must satisfy Pj(a,x) =0 and
Py(a,x) =0. Then Pj(a,x) and P>(a,x) must have a common factor f(a,x).
We find a necessary condition for Pj(a,x) and P>(a,x) to have the common
factor f(a,x). If we assume Jf/da =0, then the equation f(a,x)=0 is a
polynomial equation with respect to x only, and hence x must be a constant
function. Then by Lemma 1, we have 6 = n/2, which contradicts the assumption.
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Thus we have Jf /da # 0. It follows that if we substitute some number x = xy
into Pj(a,x) and P»(a, x), then the polynomials P;(a,x) and P>(a,x) must have
the common factor f(a,xo).

We can factorize Pj(a,1) as follows:

Pi(a,1) = (a+ b)(4a + 5b)(2a* + p).
So, if Pi(a,1) and P>(a, 1) have a common factor, then either (a + b) or (4a + 5b)
or (a+ +/—p/2) must be a factor of Py(a,1). Py(—b,1) is factorized by

Py(—b,1) = =b(2b* + p)(8b* + 3p).

NI —

Therefore, if P,(a,1) has a factor
Next, we factorize P>(—5b/4,1

—

a+b), p must be —2b> or —8h2/3.
as follows:

~

)i

Then, if Py(a,1) has a factor (4a + 5b), p must be —3b% or —25h2/8.

For the last case, we study P(a,1) with p = —24>. It is witten as

%MU=4MwﬁQCP —9Q@+%%+MW+%ﬂ

where Q(a) is a polynomial of a. In this case, to have a common factor, p must
be 0 or —2b% or —25h>/8.

It follows from the discussion above and the assumption p # 0 that p must
be —2b*> or —3b> or —8h%/3 or —25h%/8.

We observe that Pj(a,x) and P>(a,x) have no common factor except the
case of p= —3b>. To verify this, we need only to show that Pj(a,—1) and
Py(a,—1) have no common factor when p # —3b%. In these cases, we may
assume b = 1 because Pj(a,—1) and P>(a,—1) are homogeneous polynomials for
a and b.

To this end, it suffices to prove that they have no common factor over
rational field Q. For, if Pj(a,—1) and P>(a,—1) have a common factor, then
they have a common root a. Therefore since all their coefficients are rational,
the homomorphism Q[a] — C which is the identity on Q and maps a on o has a
non-zero kernel. In this case the kernel is an ideal which is principal, generated
by a single polynomial. Hence P;(a,—1) and P,(a,—1) have a common factor
with rational coefficients.

To see that Pj(a,—1) and P;(a, —1) have no common factor over Q, we show
they have no common factor over a prime field F,. We substitute p = —2b% and
x=—1 and b=1 into Pi(a,x) and P(a,x), and over F5 we have

Pz( > 1) — 2 (367 + p)(25B + 8p).

Pi(a,—1) =a*+a*+2a+3 (mod 5),
Py(a,—1) = a® + 3a* + 2a* + 2a* + 3a + 3 (mod 5).
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Using Euclidean algorithm, we see that these polynomials have no common
factor.

In the cases of p = —8b%/3 and —25h%/8, we substitute x = —1 and b =1
into Pj(a,x) and P»(a,x), and over Fj; we have

Pi(a,—1) =a* +10a’ + a* + 10a + 5 (mod 11),
Py(a,—1) = a® + 8a* +10a® + 34> + 4a+ 1 (mod 11).

We remark —8/3 =(—-8+11)/3=1 and —25/8 =(-25+33)/8=1 and 1/2 =
(I1+11)/2=6 (mod 11). Using Euclidean algorithm, we see that these poly-
nomials have no common factor.

When p = —3b2, we know that there is a solution which satisfies 4(a — b) +
9hsin”> 0 =0 and |¢| # 0 by Lemma 3. In this case, since a common factor of
Pi(a,1) and Py(a,1) is only (4a + 5b), the common factor of P;(a,x) and P(a, x)
is only 4(a — b) + 9bx.

As a result, we see that if ¢ # 0, then we have either § = n/2 or p =0 or
4a — 4b 4 9bx = 0, and moreover we have dt = 0 by (11). Hence 7 is a constant
function, and the function ¢ is written as

¢ = \/a2 +§(3 sin? 0—2)e\/‘_”,

where ¢ is a real constant.

When ¢ = 0, by the exterior differentiation of |¢|* = 0, we have either 0 = 7/2
or p=0 or 4a —4b + 9b sin*> 0 = 0.

Consequently, any solution of the overdetermined system (1)—(5) satisfies
either 0 = n/2 or p=0 or 4a —4b + 9b sin? @ = 0. This completes the proof of
Theorem 3.

In what follows, we find ¢ and 6 in these cases and prove Theorem 2.

() The case of 6 = x/2.

In this case ¢ must be a constant function and we get « = —b by (2). Also
we have p > —2b? because of |¢|* > 0.

(B) The case of p =0. ~

In this case we have da =2cot 6 (a — b)a(¢ + ¢) by (3), and we need to
consider two cases separately.

(p-1) The case when « is a constant function:

We have § =7/2 or a=0 or a=bh. When 0 =n/2, we have a = —b.

(p-2) The case when a is not a constant function:

We regard 0 as a function of a. Since d = (d0/da) da, we have

do
(a+b) —%2cot0~(a—b)a.

By the integration of this equation, we get
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2
sin® 0 = ¢, M,

la|
where ¢; is a positive constant.

(y) The case of 4a —4b 4 9bsin> 0 = 0.

In this case by the exterior differentiation of this equation, we have da =
—(9b/4) sin 20 d6. Substituting (2) and (3) into the formulas of da and d6
above, we obtain p = —3b%. Furthermore, if 0 is a constant function, then we
have a = —b and sin 0 = /8/9.

We obtained all solutions of the overdetermined system (1)—(5), and proved
Theorem 2.
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