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ON THE OVERDETERMINED SYSTEM ABOUT SURFACES WITH

PARALLEL MEAN CURVATURE VECTOR FIELD

Shinya Hirakawa

1. Introduction

The study of surfaces with parallel mean curvature vector field in complex
space forms generalizes the theory of constant mean curvature surfaces in three-
dimensional Euclidean space. Such surfaces are locally determined, firstly in
the case of four-dimensional real space forms, and secondly of two-dimensional
complex space forms. In the last case, Ogata [2] got the overdetermined system
of the immersions and solved it under the assumption that the Gaussian cur-
vatures of the surfaces are constant. Later, Kenmotsu-Zhou [1] solved it without
any additional conditions and determined locally the explicit representations of
such immersions. In this paper, we give another method to solve this system of
Ogata.

First, we explain the result of [2]. Let M be an oriented and connected two-
dimensional Riemannian manifold, X a complex two-dimensional complex space
form with constant holomorphic sectional curvature 4r. Let x : M ! X be an
isometric immersion with parallel mean curvature vector field H with jHj ¼ 2b >
0. And let y be the Kähler angle of x. Then on M 0 ¼ fp A M j yðpÞ0 0; pg
there exist a complex structure f, a real valued function a and a complex valued
function c such that:

df ¼ cot y � ða� bÞf5f;ð1Þ

dy ¼ ðaþ bÞðfþ fÞ;ð2Þ

da ¼ 2 cot y � ða� bÞaþ 3

4
r sin 2y

� �
ðfþ fÞ;ð3Þ

dc5f ¼ 2 cot y � ða� bÞcf5f;ð4Þ

jcj2 ¼ a2 þ r

2
ð3 sin2 y� 2Þ:ð5Þ

Since M is a real two-dimensional Riemannian manifold, there exists an
isothermal coordinate around each point of M. When we take the appropriate

isothermal coordinate (U ; ðu; vÞ), U HM 0, we can write f ¼ lðduþ
ffiffiffiffiffiffiffi
�1

p
dvÞ,
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where l > 0 is an isothermal factor on U . Then the overdetermined system
obtained in [2] is written as follows in this coordinate.

Theorem 1. Under the notations above, there exist an isothermal coordinate
ðu; vÞ around each point of M 0 and functions l, y, a depending only on u-variable,
such that they satisfy the following di¤erential equations:

dl

du
¼ �2l2 cot y � ða� bÞ; l > 0;ð6Þ

dy

du
¼ 2lðaþ bÞ;ð7Þ

da

du
¼ 2l 2 cot y � ða� bÞaþ 3

4
r sin 2y

� �
;ð8Þ

log l4 a2 þ r

2
ð3 sin2 y� 2Þ

� �
¼ k1uþ k2;ð9Þ

where k1 and k2 are some real numbers.
Also, the function c in (4) and (5) can be written as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r

2
ð3 sin2 y� 2Þ

r
e

ffiffiffiffiffi
�1

p
ð�k1v=2þtÞ;ð10Þ

where t is a real constant.

In [2], Ogata showed that conversely if we have a simply connected domain
M in ðu; vÞ-plane and some real valued functions l, y, a on M which satisfy the
system of di¤erential equations above, then there exists an immersion x : M ! X
such that, with respect to the induced metric, its mean curvature vector field H
is parallel with jHj ¼ 2b > 0 and its Kähler angle is y. Such an x is uniquely
determined up to holomorphic isometric transformations of X.

Kenmotsu-Zhou [1] solved this system (1)–(5) as follows:

Theorem 2. On the Ogata’s overdetermined system we have k1 ¼ 0 and the
solutions are given by:

(a) When r > 0, a and y must be constants and satisfy

a1�b; y1
p

2
;

(b) When r ¼ 0 and a is constant, we have a1 0 or a1 b or a1�b. When
r ¼ 0 and a is not constant, y is determined as a function of a by

sin2 y ¼ c1
ða� bÞ2

jaj ;

where c1 > 0 is a real constant.
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(g) When r < 0, we have

a1�b; y1
p

2
or

a1�b; sin y1

ffiffiffi
8

9

r
or

a ¼ b 1� 9

4
sin2 y

� �
:

Remark. In [1] the solutions a1 0 and a1 b in the case of r ¼ 0 are
missed.

In [1], the fact of k1 ¼ 0 is shown by studying the behavior of the solutions
of the overdetermined system. Once we prove the fact, it is easy to find all
solutions of the system (1)–(5). In this paper we prove k1 ¼ 0 by the di¤erent
method from [1].

Acknowledgements. The author would like to express his gratitude to Pro-
fessor Katsuei Kenmotsu for his constant guidance and encouregement during the
course of this work. The author would like also to thank the members of the
geometry seminar of the Mathematical Institute of Tohoku University for their
kind advice.

2. Another proof of Theorem 2

We assume c2 0, and represent c ¼ jcje
ffiffiffiffiffi
�1

p
t on the points of c0 0, where

t is a real valued function. We know from (10) that k1 ¼ 0 if and only if t is
constant. To prove that t is constant, we show the following.

Theorem 3. The solution of the overdetermined system (1)–(5) satisfies either
y1 p=2 or r ¼ 0 or 4a� 4bþ 9b sin2 y1 0.

To prove Theorem 3, we prepare three lemmas.

Lemma 1. Assume c2 0 and y is a constant function. Then it holds that
y1 p=2.

Proof. Since y is constant, we have dy1 0. Hence by (2), a is a constant
function and it holds that a1�b. Then by (5) jcj is a constant function. From
this we have dc ¼

ffiffiffiffiffiffiffi
�1

p
c dt. By (4), we also have dc5f ¼ �4b cot y � cf5f.

Since c2 0 and jcj is constant, it does not take the value 0. And since t is a real
valued function, we have

ffiffiffiffiffiffiffi
�1

p
dt ¼ �4b cot y � ðf� fÞ. By the exterior di¤er-

entiation of this equation, we obtain �4b cot y � ðdf� dfÞ ¼ 0. It follows that
cot y ¼ 0 or df� df ¼ 0. Since df is imaginary by (1), the later case also
implies cot y ¼ 0. This proves Lemma 1.
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Lemma 2. Assume c2 0, and put c ¼ jcje
ffiffiffiffiffi
�1

p
t on the points of c0 0. Then

it holds that ffiffiffiffiffiffiffi
�1

p
ð2a2 þ rð3 sin2 y� 2ÞÞ dtð11Þ

¼ �r cot y � ð9b sin2 yþ 4ða� bÞÞðf� fÞ:

Proof. By (2), (3) and (5), we have

dc2 ¼ dðjcj2e
ffiffiffiffiffi
�1

p
2tÞ

¼ e
ffiffiffiffiffi
�1

p
2t

�
�4 cot y � ðb� aÞa2 þ 3

2
ra sin 2y

� �
ðfþ fÞ

þ 3

2
r sin 2y � ðaþ bÞðfþ fÞ þ

ffiffiffiffiffiffiffi
�1

p
ð2a2 þ rð3 sin2 y� 2ÞÞ dt

�
:

On the other hand, it follows from (4) that

dc25f ¼ 4 cot y � ða� bÞ a2 þ r

2
ð3 sin2 y� 2Þ

� �
e

ffiffiffiffiffi
�1

p
2tf5f:

Compairing these two equations, we get

cot y � ða� bÞð4a2 þ 2rð3 sin2 y� 2ÞÞf5f

¼ �4 cot y � ðb� aÞa2 þ 3

2
r sin 2y � ð2aþ bÞ

� �
f5f

þ
ffiffiffiffiffiffiffi
�1

p
ð2a2 þ rð3 sin2 y� 2ÞÞ dt5f:

Simplifying this equation, we see that (11) holds, because t is a real valued
function. This proves Lemma 2.

Lemma 3. When r ¼ �3b2, there exists a solution of the system (1)–(5) such
that c2 0 and 4ða� bÞ þ 9b sin2 y1 0.

Proof. For a solution yðuÞ of the next di¤erential equation

dy

du
¼ b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 9 sin2 yðuÞ

q

with the initial condition yð0Þ ¼ y0, 0 < y0 < sin�1
ffiffiffiffiffiffiffiffi
8=9

p
, we define

lðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 9 sin2 yðuÞ

q ;

aðuÞ ¼ b 1� 9

4
sin2 yðuÞ

� �
:
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Then these functions satisfy the system (6)–(9) with r ¼ �3b2. In this case we

have jcj2 ¼ b2ð8� 9 sin2 yÞ2=16, which is not zero on a neighborhood of u ¼ 0.
This proves Lemma 3.

Now, we prove Theorem 3. By the exterior di¤erentiation of (11), we haveffiffiffiffiffiffiffi
�1

p
ð4 cot y � ða� bÞa2 þ 3r sin y cos y � ð2aþ bÞÞðfþ fÞ5dtð12Þ

¼ rð�4a2 � 9ab sin2 yþ 27b2 cos2 y� 5b2 þ 6r cos2 yÞf5f:

From (11) and (12), if r0 0, then putting x ¼ sin2 y, we have

a4ð32� 24xÞ þ a3ð�64bþ 136bx� 54bx2Þ

þ a2ð32b2 � 148b2xþ 126b2x2 þ 28xr� 24x2rÞ

þ að�24bxrþ 114bx2r� 81bx3rÞ

þ 20b2xr� 42b2x2rþ 27b2x3rþ 12xr2 � 30x2r2 þ 18x3r2 ¼ 0:

We denote by P1ða; xÞ the polynomial defined by the left hand side of the equa-
tion above, where a and x are indeterminates. By (2) and (3) we get

da ¼ cot y � 2ða� bÞaþ 3

2
rx

� �
ðfþ fÞ;

dx ¼ cot y � 2xðaþ bÞðfþ fÞ:
If we assume y2 p=2, then the exterior di¤erentiation of P1ða; xÞ ¼ 0 gives us the
following:

a5ð256� 240xÞ þ a4ð�640bþ 1232bx� 540bx2Þ

þ a3ð512b2 � 1432b2xþ 1116b2x2 þ 360xr� 336x2rÞ

þ a2ð�128b3 þ 296b3x� 440bxrþ 1296bx2r� 891bx3rÞ

þ að136b2xr� 384b2x2rþ 216b2x3rþ 24xr2 � 36x2r2 þ 36x3r2Þ

þ 40b3xr� 168b3x2rþ 162b3x3rþ 24bxr2

� 156bx2r2 þ 279bx3r2 � 243

2
bx4r2 ¼ 0:

We denote by P2ða; xÞ the polynomial defined by the left hand side of this equa-
tion, where a and x are indeterminates.

We assume c2 0 and r0 0 and y2 p=2 in what follows. If there exists
a solution of the system (1)–(5) in this case, then it must satisfy P1ða; xÞ ¼ 0 and
P2ða; xÞ ¼ 0. Then P1ða; xÞ and P2ða; xÞ must have a common factor f ða; xÞ.

We find a necessary condition for P1ða; xÞ and P2ða; xÞ to have the common
factor f ða; xÞ. If we assume qf =qa ¼ 0, then the equation f ða; xÞ ¼ 0 is a
polynomial equation with respect to x only, and hence x must be a constant
function. Then by Lemma 1, we have y1 p=2, which contradicts the assumption.
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Thus we have qf =qa0 0. It follows that if we substitute some number x ¼ x0
into P1ða; xÞ and P2ða; xÞ, then the polynomials P1ða; x0Þ and P2ða; x0Þ must have
the common factor f ða; x0Þ.

We can factorize P1ða; 1Þ as follows:

P1ða; 1Þ ¼ ðaþ bÞð4aþ 5bÞð2a2 þ rÞ:

So, if P1ða; 1Þ and P2ða; 1Þ have a common factor, then either ðaþ bÞ or ð4aþ 5bÞ
or ðaG

ffiffiffiffiffiffiffiffiffiffiffi
�r=2

p
Þ must be a factor of P2ða; 1Þ. P2ð�b; 1Þ is factorized by

P2ð�b; 1Þ ¼ 1

2
bð2b2 þ rÞð8b2 þ 3rÞ:

Therefore, if P2ða; 1Þ has a factor ðaþ bÞ, r must be �2b2 or �8b2=3.
Next, we factorize P2ð�5b=4; 1Þ as follows:

P2 � 5b

4
; 1

� �
¼ � 9

16
bð3b2 þ rÞð25b2 þ 8rÞ:

Then, if P2ða; 1Þ has a factor ð4aþ 5bÞ, r must be �3b2 or �25b2=8.
For the last case, we study P2ða; 1Þ with r ¼ �2a2. It is witten as

P2ða; 1Þ ¼ 2 aþ
ffiffiffiffiffiffiffi
� r

2

r� �
a�

ffiffiffiffiffiffiffi
� r

2

r� �
QðaÞ þ 4a2ðaþ bÞð4aþ 5bÞ2;

where QðaÞ is a polynomial of a. In this case, to have a common factor, r must
be 0 or �2b2 or �25b2=8.

It follows from the discussion above and the assumption r0 0 that r must
be �2b2 or �3b2 or �8b2=3 or �25b2=8.

We observe that P1ða; xÞ and P2ða; xÞ have no common factor except the
case of r ¼ �3b2. To verify this, we need only to show that P1ða;�1Þ and
P2ða;�1Þ have no common factor when r0�3b2. In these cases, we may
assume b ¼ 1 because P1ða;�1Þ and P2ða;�1Þ are homogeneous polynomials for
a and b.

To this end, it su‰ces to prove that they have no common factor over
rational field Q. For, if P1ða;�1Þ and P2ða;�1Þ have a common factor, then
they have a common root a. Therefore since all their coe‰cients are rational,
the homomorphism Q½a� ! C which is the identity on Q and maps a on a has a
non-zero kernel. In this case the kernel is an ideal which is principal, generated
by a single polynomial. Hence P1ða;�1Þ and P2ða;�1Þ have a common factor
with rational coe‰cients.

To see that P1ða;�1Þ and P2ða;�1Þ have no common factor over Q, we show
they have no common factor over a prime field Fp. We substitute r ¼ �2b2 and
x ¼ �1 and b ¼ 1 into P1ða; xÞ and P2ða; xÞ, and over F5 we have

P1ða;�1Þ1 a4 þ a3 þ 2aþ 3 ðmod 5Þ;

P2ða;�1Þ1 a5 þ 3a4 þ 2a3 þ 2a2 þ 3aþ 3 ðmod 5Þ:

on the overdetermined system about surfaces 251



Using Euclidean algorithm, we see that these polynomials have no common
factor.

In the cases of r ¼ �8b2=3 and �25b2=8, we substitute x ¼ �1 and b ¼ 1
into P1ða; xÞ and P2ða; xÞ, and over F11 we have

P1ða;�1Þ1 a4 þ 10a3 þ a2 þ 10aþ 5 ðmod 11Þ;

P2ða;�1Þ1 a5 þ 8a4 þ 10a3 þ 3a2 þ 4aþ 1 ðmod 11Þ:

We remark �8=31 ð�8þ 11Þ=31 1 and �25=81 ð�25þ 33Þ=81 1 and 1=21
ð1þ 11Þ=21 6 ðmod 11Þ. Using Euclidean algorithm, we see that these poly-
nomials have no common factor.

When r ¼ �3b2, we know that there is a solution which satisfies 4ða� bÞþ
9b sin2 y1 0 and jcj2 0 by Lemma 3. In this case, since a common factor of
P1ða; 1Þ and P2ða; 1Þ is only ð4aþ 5bÞ, the common factor of P1ða; xÞ and P2ða; xÞ
is only 4ða� bÞ þ 9bx.

As a result, we see that if c2 0, then we have either y1 p=2 or r ¼ 0 or
4a� 4bþ 9bx1 0, and moreover we have dt1 0 by (11). Hence t is a constant
function, and the function c is written as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r

2
ð3 sin2 y� 2Þ

r
e

ffiffiffiffiffi
�1

p
t;

where t is a real constant.
When c1 0, by the exterior di¤erentiation of jcj2 1 0, we have either y1 p=2

or r ¼ 0 or 4a� 4bþ 9b sin2 y1 0.
Consequently, any solution of the overdetermined system (1)–(5) satisfies

either y1 p=2 or r ¼ 0 or 4a� 4bþ 9b sin2 y1 0. This completes the proof of
Theorem 3.

In what follows, we find a and y in these cases and prove Theorem 2.
(a) The case of y1 p=2.
In this case a must be a constant function and we get a1�b by (2). Also

we have rb�2b2 because of jcj2 b 0.
(b) The case of r ¼ 0.
In this case we have da ¼ 2 cot y � ða� bÞaðfþ fÞ by (3), and we need to

consider two cases separately.
(b-1) The case when a is a constant function:
We have y1 p=2 or a1 0 or a1 b. When y1 p=2, we have a1�b.
(b-2) The case when a is not a constant function:
We regard y as a function of a. Since dy ¼ ðdy=daÞ da, we have

ðaþ bÞ ¼ dy

da
2 cot y � ða� bÞa:

By the integration of this equation, we get
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sin2 y ¼ c1
ða� bÞ2

jaj ;

where c1 is a positive constant.
(g) The case of 4a� 4bþ 9b sin2 y1 0.
In this case by the exterior di¤erentiation of this equation, we have da ¼

�ð9b=4Þ sin 2y dy. Substituting (2) and (3) into the formulas of da and dy
above, we obtain r ¼ �3b2. Furthermore, if y is a constant function, then we
have a1�b and sin y1

ffiffiffiffiffiffiffiffi
8=9

p
.

We obtained all solutions of the overdetermined system (1)–(5), and proved
Theorem 2.
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