
B. FOREMAN
KODAI MATH. J.
25 (2002), 167–190

CURVATURE CHARACTERIZATIONS OF TWISTOR SPACES OVER

FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS

Brendan Foremany

Abstract

In this paper, we study the complex contact structure of a twistor space over a self-

dual, Einstein 4-manifold with nonzero scalar curvature. Although the existence of

such a structure has been known and well utilized by researchers for several decades

now, the Hermitian geometry resulting from the complex contact structure is still in the

process of being fully developed. Here we give a characterization of such twistor spaces

as those satisfying a curvature (and hence purely geometric) identity. Later, we describe

how this result fits in with other areas of research in complex contact geometry.

1. Introduction

The study of the twistor spaces over Riemannian four-manifolds began with
the seminal results by Atiyah, Hitchin and Singer in [2] regarding the SOð4Þ-
splitting of the Weyl curvature tensor. Following the heels of this paper, were
the results found independently by Salamon ([23]) and Bérard-Bergery ([3]), which
characterized the defined almost complex structures on the twistor spaces accord-
ing to what was happening with the metric structure of the base manifold. In all
three lines of research, the object was to encode the information of the downstairs
manifold into the complex (or at least almost complex) geometry of the twistor
space.

Since the publication of these three important papers, the field of twistor
theory has exploded. Although for many researchers, the emphasis continues to
be what information about the base manifold can be gleaned from the twistor
space, many researchers have studied the twistor spaces as geometric objects of
their own. Most notable for our purposes here are the curvature equations
derived by Davidov and Muscarov in [8] and the famous Inverse Twistor Con-
struction (see [22]). Although this theorem generalizes to any odd dimension for
Z, this last theorem is stated by Swann in [24] as follows.

Theorem 1.1. Let Z be a three-dimensional complex manifold such that
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1. There is a holomorphic line bundle L over Z and a one-form y A W1ðZ;LÞ
such that y5dy vanishes nowhere, that is, Z is a complex contact
manifold;

2. The fibration Z ! M is not holomorphic, but the fibres are complex lines
with normal bundle 2Oð1Þ and these lines are transverse to the contact
distribution, that is, y is nowhere zero on the vertical fibres; and

3. Z admits a real structure s, that is, an anti-holomorphic involution such
that s preserves the vertical fibres and s�y ¼ y.

Then Z is the twistor space over a four-dimensional self-dual, Einstein Riemannian
manifold.

One aspect of twistor geometry that is still being developed is the rich
Hermitian geometry that arises from the complex contact structure. There has
been much work since the 1950s in this area regarding real contact geometry (see,
for example, [5]), but the complex contact side of things is still being mapped
out. In this paper, we will use this Hermitian geometry associated to the com-
plex contact structure to prove the following theorem.

Theorem 6.1. Let ðZ; JÞ be a three-dimensional manifold. Then Z is
biholomorphic to the twistor space of a self-dual, Einstein four-manifold with non-
zero scalar curvature, if and only if Z has a hermitian metric h and a J-invariant
splitting TZ ¼ VlH such that dimR H ¼ 4, V is totally geodesic (and hence
integrable), H is holomorphic with h bundlelike through V, and, for every unit
U A V, the Riemannian curvature of Z, R, satisfies

RXYU ¼ luðY ÞHX þ mvðY ÞJ 0X

� luðXÞHY � mvðXÞJ 0Y

þ ½n1hðJ 0X ;YÞ þ n2hðJ 00X ;YÞ�V ;

where V ¼ �JU , uðEÞ ¼ hðU ;EÞ, vðEÞ ¼ hðV ;EÞ and J 0 ¼ J �H and J 00 ¼ J �V
for some constants, l, m, n1 and n2, such that lþ m0 0 and n2 > 0.

The curvature identity in the theorem above is actually a generalization
of what is called a ‘‘normal complex contact structure.’’ This notion—derived
from an analogue in real contact geometry—was first developed by Ishihara and
Konishi in [17] but later expanded more satisfactorily by Korkmaz in [21]. More
recently, some work has been done regarding another category of normal com-
plex contact structures, of which the complex Heisenberg group is an element, in
[10] and [11].

After a brief tour of complex contact geometry in the first section, we
conduct a quick exposition of twistor theory over four-dimensional Riemannian
manifolds, including a few well-known results. Next, restricting our attention
to the twistor spaces over self-dual, Einstein four-manifolds with non-zero scalar
curvature, we explore some aspects of their holomorphic structures, including
their complex contact structures. This section ends with a very technical the-
orem detailing some Hermitian and curvature identities. In the fifth section, we
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detail some results regarding holomorphic subbundles of codimension one, so that
we can prove the main theorem in the sixth section. Finally, in the last section,
we discuss how this results fits within the current research in the Hermitian
geometry of complex contact manifolds, giving us the ability to re-state the
theorem in more aesthetically pleasing ways.

Unlike the seminal work by Davidov and Muscarov in [8], we will be using
the standard wedge coe‰cients for forms in order to conform with the currently
used terminology of complex contact geometry in [18], [21] and [11]. So, for
example, if a and b are vectors, then the 2-vector a5b is defined to be:

a5b ¼ 1

2
ðan b � bn aÞ:

A particular consequence of this is that, for any vectors E;F and 1-form b,

dbðE;F Þ ¼ 1

2
ðEbðF Þ � FbðEÞ � bð½E;F �ÞÞ:

I thank David Blair of Michigan State University, Johann Davidov and
Oleg Muscarov of the Bulgarian Academy of Sciences, and David Singer of Case
Western Reserve University, all of whom provided valuable help and inspiration
for this work.

2. A brief introduction to complex contact geometry

Although we will not be using too many of the ideas from this section, it will
be useful to give a brief explanation of the current terms regarding complex con-
tact geometry. Recall that a complex contact manifold is a complex manifold
ðZ; JÞ of complex dimension 2nþ 1 such that there is an open atlas U ¼ fOg of
Z for which the following statements hold:

1. On each O A U, there is a holomorphic 1-form h such h5ðdhÞn 0 0
everywhere on O.

2. For O;O 0 A U with respective 1-forms h, h 0, there is holomorphic function
f : OVO 0 ! C � such that h 0 ¼ f h.

If we define H1;0 ¼ ð6
O AU kerðhÞÞVT 1;0Z, then H1;0 is a well-defined, hol-

omorphic subbundle of T 1;0Z of maximal rank and complex dimension 2n, called
the holomorphic contact subbundle of Z. Set H ¼ fX A TRZ : X � iJX A H1;0g.
Thus, H is a subbundle of TZ with maximal rank, which is holomorphic in the
sense that there are local bases of H fX1; . . . ;X4ng such that LXj

J ¼ 0 for j ¼
1; . . . ; 4n. We will call H the holomorphic contact subbundle or simply the con-
tact subbundle.

Let ðZ; JÞ be a complex contact manifold with complex contact subbundle
H. We say that a set of C-valued 1-forms fpg whose domains cover Z is a
normalized contact structure, if any two 1-forms p; p 0 in this set with respective
domains O;O 0 satisfy:

1. H ¼ kerðpÞ on O.
2. On OVO 0, p 0 ¼ f p for some f : OVO 0 ! S1.
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Note that for any p in this set, p ¼ u� iv where u and v are real 1-forms such
that v ¼ u � J. By taking a hermitian metric on the complex line bundle L ¼
fo A L1;0Z : oðHÞ ¼ 0g, it is fairly easy to construct a normalized contact
structure on Z. This very construction shows that such structures are far from
unique. However, they are handy objects to use because of the next theorem
(See [9] for proof of all the following results).

Theorem 2.1. Given a normalized contact structure fpg on a complex contact
manifold Z, there is a unique, two-real-dimensional, J-invariant subbundle V of TZ
such that

1. TZGHlV.
2. For any element p ¼ u� iv of the normalized contact structure, there is a

local basis of V, fU ; JUg defined by:
(a) uðUÞ ¼ 1, vðUÞ ¼ 0, uðJUÞ ¼ 0, vðJUÞ ¼ �1,
(b) duðU ;X Þ ¼ 0, dvðJU ;XÞ ¼ 0 for any X A H.

Since there is a splitting TZGHlV, we have two natural projections TZ ! H
and TZ ! V. We will denote these respective projections by the same name as
their corresponding subbundles, H and V.

For a specific normalized contact structure, we define two new 2-forms, ĜG
and ĤH, by

ĜGðX ;YÞ ¼ duðHX ;HYÞ;
ĤHðX ;YÞ ¼ dvðHX ;HY Þ:

Then it is not di‰cult to show that

ĜG ¼ du� s5v;

ĤH ¼ dvþ s5u;

where s is a connection form of the bundle L. We call s the Ishihara-Konishi
connection of the normalized contact structure and ds its Ishihara-Konishi cur-
vature.

Given a normalized contact structure fpg, a hermitian metric h is called
associated to h, if it satisfies the following statements:

1. For any unit, vertical vector field U A GyðVÞ, the real endomorphism kU
defined by

kUðXÞ ¼ skewðX 7! H‘XUÞ
satisfies k2

U ¼ �idH, kJU ¼ J � kU ¼ �kU � J.
2. V ? H.

Thus, the covariant derivatives ‘U and ‘ðJUÞ of an associated metric induce
a quaternionic structure fkU ; kJU ; J 0 ¼ J �Hg on H. Associated metrics were
shown to exist in [18]. Note also that for any unit vertical vector U,

dsðU ; JUÞ ¼ 1

2
hðRUJUJU ;UÞ:
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3. The twistor space of a four-dimensional Riemannian manifold

Let ðM; h ; iÞ be a 4-dimensional Riemannian manifold. For any open set
U of M, there is an orthonormal, oriented basis fe1; e2; e3; e4g of TM with dual
basis fe1; e2; e3; e4g of T �M.

On L2 ¼ L2ðTMÞ, the Hodge star operator is an involution, i.e. �2 ¼ id.
So, the eigenvalues of � are þ1 and �1. In fact, the eigenspaces are locally
given by:

L2
þM ¼ hw1; w2; w3; w4i; L2

�M ¼ hw1;w2;w3;w4i;

where

w1 ¼ e15e2 � e35e4 w1 ¼ e15e2 þ e35e4

w2 ¼ e15e3 � e45e2 w2 ¼ e15e3 þ e45e2

w3 ¼ e15e4 � e25e3 w3 ¼ e15e4 þ e25e3:

The inner product h ; i on TM induces a metric on L2M by setting:

ha5b; g5di ¼ 1

2

ha; gi ha; di

hb; gi hb; di

����
���� for primitive 2-vectors;

and defining bilinearly on general 2-vectors.
The induced Levi-Civita connection on L2M from that of the original

Riemannian metric h ; i on TM is the bundle connection for this new metric on
L2M. Furthermore, taking fw1;w2;w3g as the oriented, orthonormal basis of
L2

�M, we have a well-defined cross-product on L2
�M with w1 � w2 ¼ w3.

The Riemannian curvature ~RR of ðM; h ; iÞ induces an operator R on L2M
by

hRðX5YÞ;Z5Wi ¼ �h ~RRXYZ;Wi:

Also, the bundle connection ‘ on L2M induces a bundle curvature given by:

R‘
X5Y ðZ5WÞ ¼ ~RRX5YZ5W þ Z5 ~RRX5YW :

It is well-known that the relationship between these curvatures on L2
� is given by:

hR‘
XYa; bi ¼ hRða� bÞ;X5Yi;

for a; b A L2
� (see [8] for details).

With respect to the basis fw1; w2; w3;w1;w2;w3g, we write R : L2
þ lL2

� !
L2

þ lL2
� as a block matrix:

R ¼ A1
tB

B A2

� �
;

where A1 and A2 are 3� 3 anti-symmetric matrices.
Recall the definition of the Weyl curvature tensor:
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~CCXYZ ¼ ~RRXYZ

þ 1

n� 2
ðh ~QQX ;ZiY � h ~QQY ;ZiX þ hX ;Zi ~QQY � hY ;Zi ~QQX Þ

� t

ðn� 1Þðn� 2Þ ðhX ;ZiY � hY ;ZiXÞ:

Let W : L2 ! L2 be defined by

hWðX5YÞ;Z5Wi ¼ �h ~CCXYZ;Wi:

It was proven by Atiyah, Hitchin and Singer in [2] that W preserves the fibration
L2 ¼ L� lLþ so that

R ¼
Wþ þ t

6
id tB

B W� þ t

6
id

0
B@

1
CA;

where Wþ and W� are the restrictions of W on Lþ and L�, respectively, and the
operator B, given by

B1
0 tB

B 0

� �
;

is the traceless Ricci operator. We say ðM; h ; iÞ is self-dual, if W� ¼ 0 and anti-
self-dual, if Wþ ¼ 0.

Set ZM ¼ f
P3

j¼1 ajwj A L2
� : ða1Þ2 þ � � � þ ða3Þ2 ¼ 1gGS2. Z is called the

twistor space of ðM; h ; iÞ. Let p : Z ! M be the natural projection. Each
element z A ZxM defines an almost complex structure Sz on TxM by:

hSzX ;Yi ¼ 2hz;X5Yi:

Since the space of almost complex structures compatible with a given inner
product and orientation of R4 is S2, we see that p�1ðxÞ is the space of all almost
complex structures which are compatible with ðTxM; h ; iÞ and which are oppo-
sitely oriented to the given orientation of fe1; e2; e3; e4g.

For z A Z, set Vz ¼ kerðp�Þz. Note that, if x ¼ pðzÞ, we can identify Vz

with all elements of ðL�MÞx which are orthogonal to z. So, if s is a section of
Z and X A TxM, we have h‘Xs; si ¼ ð1=2ÞXhs; si ¼ 0, i.e. ‘Xs A Vz (‘ here is
the bundle connection on L2M induced by the Riemannian connection of h ; i).

For X A TxM and section s of Z, set XH ¼ s�X � ‘X s and Hz ¼
fXH : X A TxM; sðxÞ ¼ zg, or equivalently

Hz ¼ fs�X : X A TxM; s a section of Z such that sðxÞ ¼ z and ‘s ¼ 0 at xg:
This definition gives us a splitting TM ¼ HlV. We denote the natural pro-
jections from TM to the respective subbundles by the same letter:

H : TM ! H; V : TM ! V:

Set J 0 ¼ J �H and J 00 ¼ J �V.
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4. Almost complex and hermitian structures on twistor spaces

4.1. The almost complex structure
We define an almost complex structure on Z as follows. Let z A Z. Define

J on TzZ by:

JX ¼ X � z if X A Vz

ðhorz � Sz � p�ÞX if X A Hz:

�

Lemma 4.1. Let z1; z2 A p�1ðpÞ, then

Sz1 � Sz2 ¼ �Sz1�z2 :

Proof. Without loss of generality, assume that z1 ¼ w1 and z2 ¼ w2, so that
we need only show that Sw1

� Sw2
¼ �Sw3

. Using the definitions of w1;w2 and
w3, it is easily seen that, with respect to the basis fe1; e2; e3; e4g,

Sw1
¼

0
BBBB@

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

1
CCCCA; Sw2

¼

0
BBBB@

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

1
CCCCA;

Sw3
¼

0
BBBB@

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

1
CCCCA:

���������

���������
���������

It is then easily verified that Sw1
� Sw2

¼ �Sw3
.

Then the following result is well-known (see [8]):

Theorem 4.2. The almost complex structure J is integrable if and only if h ; i
is self-dual. Furthermore, suppose that h ; i is self-dual, then H is holomorphic if
and only if h ; i is also Einstein.

4.2. Hermitian geometry of a twistor space
From this point on, we will assume that h ; i is self-dual and Einstein. For

t A R� ð0Þ, define the pseudo-Riemannian metric ht on Z by:

ht ¼ p�h ; iþ th ; iv;

where h ; iv is the restriction of the bundle metric on V. This metric is called the
Salamon-Bérard-Bergery metric with vertical coe‰cient t. For convenience, we’ll
refer to these as SBB metrics, and frequently the value for t will be explicitly
given or understood.

These metrics have many widely-known properties, the proofs and statements
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of which can be found in [8]. We will just list a few here. It should be noted
that most of these properties hold true for the SBB metric of the twistor space of
any four-dimensional Riemannian manifold, not necessarily only one that is self-
dual and Einstein.

Theorem 4.3. Let Z be the twistor space over a self-dual, Einstein four-
manifold ðM; h ; iÞ with SBB metric ht. Then the following statements are true.

1. ht is hermitian with respect to the complex structure J.
2. V is a totally geodesic foliation with respect to ht.
3. Let X be a horizontal vector in TzZ such that p�ðX Þ ¼ ~XX and W be

any vertical vector field defined in an open neighborhood of z. Then, by
identifying Vz with 2-vectors in ðL2

�MÞjpðzÞ that are perpendicular to z,

Hð‘XWÞz ¼ � 1

2
horzðð ~RRzðJW Þ ~XXÞÞ;

where horz : TxM ! TzZ is the horizontal lift.

4.3. Complex contact geometry of a twistor space
Suppose t > 0 so that ht is a Riemannian metric. Let U 0 be any local

vertical vector field on Z such that hU 0;U 0iv ¼ 1. Set

Ut ¼
1ffiffi
t

p U 0; Vt ¼ �JUt;

utðEÞ ¼ htðUt;EÞ; vtðEÞ ¼ htðVt;EÞ:
Then, for X ;Y A Hz with p ¼ pðzÞ, ~XX ¼ p�ðXÞ, ~YY ¼ p�ðYÞ,

2 dutðX ;Y Þ ¼ �utð½X ;Y �Þ
¼ �htðUt; ½X ;Y �Þ

¼ htðUt; ~RRpðX ;YÞzÞ

¼ th ~RRpðX ;Y Þz;Uti

¼
ffiffi
t

p
h ~RRpðX ;YÞz;U 0i

¼
ffiffi
t

p
hRðz�U 0Þ;X5Yi

¼
ffiffi
t

p t

6

� �
hz�U 0;X5Yi

¼
ffiffi
t

p t

12

� �
2hz�U 0;X5Yi

¼
ffiffi
t

p t

12

� �
hSz�U 0X ;Yi:

If we set htðkUt
X ;YÞ ¼ dutðX ;YÞ and kUt jV ¼ 0, then at z A Z, kUt

¼
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ffiffi
t

p
ðt=24ÞSz�U 0 . In particular, k2

Ut jH ¼ �idjH if and only if t ¼ ð24=tÞ2. We

also get the following relationship between dvt and dut.

Lemma 4.4. For X ;Y A Hz, dvtðX ;YÞ ¼ dutðJX ;Y Þ. Also, kVt
¼ kUt

� J ¼
�J � kUt

. Finally, kUt
X ¼ ‘XUt.

Proof. Let p ¼ pðzÞ; ~XX ¼ p�ðX Þ, and ~YY ¼ p�ðYÞ. From the above work,
we have:

2 dvtðX ;Y Þ ¼
ffiffi
t

p t

12

� �
hSz�V 0 ~XX ; ~YYi

¼
ffiffi
t

p t

12

� �
hSJU 0�z

~XX ; ~YYi

¼
ffiffi
t

p t

12

� �
hSðU 0�zÞ�z

~XX ; ~YYi

¼ �
ffiffi
t

p t

12

� �
hSU 0 ~XX ; ~YYi:

Also, using the above work,

2 dutðJX ;YÞ ¼
ffiffi
t

p t

12

� �
hSz�U 0 � Sz

~XX ; ~YYi

¼ �
ffiffi
t

p t

12

� �
hSðz�U 0Þ�z

~XX ; ~YYi

¼ �
ffiffi
t

p t

12

� �
hSU 0 ~XX ; ~YYi:

This proves the first equation as well as the relation kVt
¼ kUt

� J.
Note that

dutðX ; JY Þ ¼ htðkUt
X ; JY Þ ¼ �htðJ � kUt

X ;YÞ
as well as

2 dutðX ; JYÞ ¼
ffiffi
t

p t

12

� �
hSz�U 0 ~XX ;Sz

~YYi

¼ �
ffiffi
t

p t

12

� �
hSz � Sz�U 0 ~XX ; ~YYi

¼
ffiffi
t

p t

12

� �
hSz�ðz�U 0Þ � Sz

~XX ; ~YYi

¼ �
ffiffi
t

p t

12

� �
hSU 0 � Sz

~XX ; ~YYi

¼ 2htðkUt
� JX ;Y Þ
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Thus, kUt
� J ¼ �J � kUt

. Finally, by its definition, ht is a bundlelike metric on
Z with respect to the fibration p : Z ! M, that is, ðLUt

htÞðX ;YÞ ¼ 0. This is
equivalent to

0 ¼ htð‘XUt;Y Þ þ htð‘YUt;XÞ:
Thus,

htðkUt
X ;YÞ ¼ dutðX ;YÞ

¼ 1

2
ðXutðY Þ � YutðX Þ � utð½X ;Y �ÞÞ

¼ � 1

2
htðUt;‘XY � ‘XYÞ

¼ 1

2
htð‘XUt;Y Þ � 1

2
htð‘YUt;XÞ

¼ htð‘XUt;YÞ
This proves the lemma.

All of these results allow us to prove the following proposition.

Proposition 4.5. Let ðM; gÞ be a 4-dimensional Riemannian manifold with
twistor space Z. Then ðZ; J;HÞ is a complex contact manifold if and only if g is
self-dual and Einstein.

Proof. Clearly, we need only to show that if H is holomorphic, then H is
a complex contact structure.

Fix t > 0. Let U be a local unit vertical vector field on Z with respect to ht.
Let u ¼ ut and v ¼ vt be the 1-forms as defined in the previous paragraph. Set

p ¼ u� iv ð00Þ:
Then H ¼ kerðpÞ so that p A V� VH?. Note also that

dp ¼ du� i dv;

which is nondegenerate on H.
Also, pðT 0;1MÞ ¼ ð0Þ. Since H is holomorphic, there exists a local func-

tion f such that the 1-form o ¼ f p is holomorphic. Then

o5do ¼ ð f pÞ5ðdf 5pþ f dpÞ

¼ f 2p5dp:

Since dp is non-degenerate on H, we know that p5dp (and hence o5do) is
nowhere zero on its domain. This proves that H is a complex contact structure.

By combining the above result with the work from the previous paragraph,
we get the following proposition.
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Proposition 4.6. Suppose that ðM; gÞ is a self-dual, Einstein manifold with
scalar curvature t. Then the SBB metric ht is associated to the complex contact
structure H if and only if t ¼ ð24=tÞ2.

From this point on, we will drop the subscripts of ‘‘t’’ when they are easily
understood. For any vertical, unit vector U, define the local 1-form sU by

sUðEÞ ¼ �hð‘EU ; JUÞ:

It is easily seen that sJU ¼ sU and that dsU is a globally-defined 2-form on Z.
The following technical proposition has several identities that we will need

for the main theorem. Note that the first and second are true for any associated
metric of a complex contact manifold, whereas the rest are particular to the
associated metric of twistor spaces. Recall that J 0 ¼ J �H and J 00 ¼ J �V.

Proposition 4.7. Let U be a vertical vector field. Set V ¼ �JU and
s ¼ sU . Let u and v be the 1-forms corresponding to U and V with respect to
h. Then, for E;F A TZ,

1. hðkUE;F Þ ¼ ðdu� s5vÞðE;F Þ.
2. ‘UkU ¼ �sðUÞkJU .
3. dsðE;FÞ ¼ thðJ 00E;FÞ þ ðt=24ÞhðJ 0E;FÞ:
4. dsðE;FÞ ¼ ð1=2ÞhðREFU ;VÞ þ tðt=24Þ2hðJ 0E;FÞ.
5. hðREFU ;VÞ ¼ 2thðJ 00E;F Þ þ 2ðt=24Þð1� tðt=24ÞÞhðJ 0E;F Þ.
6. ‘JUkU ¼ ðt=24Þð1� 2tðt=24ÞÞJ 0 � sðJUÞkJU .
7. ‘UJ ¼ ðt=24Þð1� 2tðt=24ÞÞkJU .

Proof. Proof of 1. By definition, hðkUX ;YÞ ¼ duðX ;YÞ for two hori-
zontal vectors X and Y. Now suppose that W ¼ U or V and F ¼ U ;V or in
H. Then

2 duðW ;FÞ ¼ �uð½W ;F �Þ
¼ �hð‘WF ;UÞ þ hð‘FW ;UÞ
¼ hð‘WU ;FÞ � hð‘FU ;WÞ
¼ �sðF ÞvðWÞ þ sðWÞvðFÞ
¼ 2ðs5vÞðW ;F Þ:

This proves the first statement.
Proof of 2. Let ~kkU be the 2-form given by ~kkUðE;FÞ ¼ hðkUE;F Þ. Then,

by 1.,

d ~kkU ¼ �ds5vþ s5dv

Now,

3 d ~kkUðE;F ;GÞ ¼ hðð‘EkUÞF ;GÞ þ hðð‘GkU ÞE;FÞ þ hðð‘FkUÞG;EÞ:
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So, for Y ;Z A H,

3ðs5dvÞðU ;Y ;ZÞ ¼ hðð‘UkUÞY ;ZÞ þ hðð‘ZkUÞU ;YÞ þ hðð‘YkUÞZ;UÞ:

Hence,

hðð‘UkUÞY ;ZÞ ¼ ðs5dvÞðU ;Y ;ZÞ � hðð‘ZkUÞU ;YÞ � hðð‘YkUÞZ;UÞ
¼ sðUÞ dvðY ;ZÞ � hð‘ZU ; kUYÞ � hð‘Y ðkUZÞ;UÞ
¼ sðUÞ dvðY ;ZÞ � hð‘ZU ; kUYÞ þ hðkUZ;‘YUÞ
¼ sðUÞ dvðY ;ZÞ � hðkUZ; kUYÞ þ hðkUZ; kUY Þ
¼ sðUÞhðkVY ;ZÞ
¼ �sðUÞhðkJUY ;ZÞ:

This proves the second statement.
Proof of 3. Let U be any unit vertical field with respect to ht and X be a

horizontal vector field. Set V ¼ �JU . Since V is totally geodesic with respect
to ht,

0 ¼ htðRXUU ;VÞ
¼ htð‘X‘UU ;VÞ � htð‘U‘XU ;VÞ � htð‘½X ;U �U ;VÞ

¼ htð‘X ðsðUÞUÞ;VÞ � htð‘UðsðXÞV þ 2kUX Þ;VÞ � sð½X ;U �Þ
¼ XsðUÞ �UsðXÞ � sð½X ;U �Þ
¼ 2 dsðX ;UÞ:

So, we see that dsðV;HÞ ¼ 0.
Now, suppose that X ;Y A Hz with p ¼ pðzÞ, ~XX ¼ p�ðXÞ, ~YY ¼ p�ðY Þ. Then,

from the identities of Theorem 4.3, we get

2 dsðX ;Y Þjz ¼ XsðYÞjz � YsðX Þjz � sð½X ;Y �Þjz
¼ XhDp�YU ; z�Ui� YhDp�XU ; z�Ui� hD½p�X ;p�Y �U ; z�Ui

¼ hR‘ð ~XX ; ~YYÞU ; z�Ui

¼ t

6
hð ~XX5 ~YYÞ�; zi

¼ t

12
htðJ 0X ;YÞ:

Finally, th ; iv is the standard metric on S2 with sectional curvature
ffiffi
t

p
. So,

for any vertical vectors W1;W2,

dsðW1;W2Þ ¼ thJW1;W2i
v:

Proof of 4. Let E;F A TZ. Then
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2 dsðE;FÞ ¼ EsðF Þ � FsðEÞ � sð½E;F �Þ
¼ Ehð‘FU ;VÞ � Fhð‘EU ;VÞ � hð‘½E;F �U ;VÞ

¼ hð‘E‘FU ;VÞ þ hð‘FU ;‘EVÞ � hð‘F‘EU ;VÞ
� hð‘EU ;‘FVÞ � hð‘½E;F �U ;VÞ

¼ hðREFU ;VÞ þ hðkUF ; kVEÞ � hðkUE; kVFÞ
¼ hðREFU ;VÞ � hðkUF ; kJUEÞ þ hðkUE; kJUF Þ
¼ hðREFU ;VÞ þ hððkUkJU � kJUkUÞE;F Þ

¼ hðREFU ;VÞ þ 2t
t

24

� �2
hðJ 0E;F Þ

Proof of 5. This comes from combining statements 3. and 4.
Proof of 6. By statement 1., for Y ;Z A H,

hðð‘VkUÞY ;ZÞ þ hðð‘YkUÞZ;VÞ þ hðð‘ZkUÞV ;Y Þ
¼ ð�ds5vþ s5dvÞðV ;Y ;ZÞ:

Now,

LHS ¼ �hðð‘JUkUÞY ;ZÞ þ hð‘Y ðkUZÞ;VÞ � hðkU‘ZV ;YÞ
¼ �hðð‘JUkUÞY ;ZÞ � hðkUZ;‘YVÞ � hðkUkVZ;Y Þ
¼ �hðð‘JUkUÞY ;ZÞ þ hðkUZ; kJUYÞ þ hðkUkJUZ;YÞ

¼ �hðð‘JUkUÞY ;ZÞ � t
t

24

� �2
hðZ; JYÞ þ t

t

24

� �2
hðJZ;Y Þ

¼ �hðð‘JUkUÞY ;ZÞ � 2t
t

24

� �2
hðZ; JYÞ;

whereas

RHS ¼ �ds5vðY ;Z;VÞ þ sðVÞ dvðY ;ZÞ
¼ �dsðY ;ZÞ þ sðJUÞhðkJUY ;ZÞ

¼ � t

24
hðJY ;ZÞ þ sðJUÞhðkJUY ;ZÞ:

Thus,

�hðð‘JUkUÞY ;ZÞ � 2t
t

24

� �2
hðZ; JYÞ ¼ � t

24
hðJY ;ZÞ þ sðJUÞhðkJUY ;ZÞ:

This proves the statement.
Proof of 7. Note that by substituting ‘‘JU ’’ for ‘‘U ’’ in statement 6, we

get:
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‘UkJU ¼ � t

24
1� t

t

24

� �
J 0 þ sðUÞkU :

It is easily seen that ‘UJ ¼ ‘UJ
0. Then

‘UJ ¼ �‘UðkJU � kUÞ
¼ �ð‘UkJU ÞkU � kJU‘UkU

¼ � � t

24
1� 2t

t

24

� �
J 0 þ sðUÞkU

� �
kU � kJU ð�sðUÞkJU Þ

¼ t

24
1� 2t

t

24

� �
kJU :

5. Holomorphic subbundles of complex codimension one

In this section, we will study some of the properties of a holomorphic
subbundle with codimension one for a complex manifold. Throughout this
section, we will assume that ðZ; JÞ is a complex manifold with TZ ¼ HlV
where both H and V are J-invariant and dimC V ¼ 1.

Recall that H is holomorphic if and only if it is locally spanned by a set
of infinitesimal automorphisms of J, i.e. there is a local basis fX1; . . . ;X2Ng such
that LXj

J ¼ 0 for each j. This is equivalent to the dual subbundle V� being
holomorphic, that is, there is a local holomorphic 1-form, o, such that
H ¼ kerðoÞ. Thus, H is holomorphic if and only if there is a complex-valued
1-form o such that

H ¼ kerðoÞ; qo ¼ 0:

We will use this fact to show the following proposition.

Proposition 5.1. Let ðZ; JÞ be a complex manifold with J-invariant sub-
bundle fibration TZ ¼ HlV. Let u and v ¼ u � J be a pair of local 1-forms
such that HH kerðuÞV kerðvÞ. If H is holomorphic, then, for X ;Y A H,

duðX ;YÞ ¼ �duðJX ; JYÞ
dvðX ;YÞ ¼ duðJX ;YÞ:

Proof. Let X and Y be local holomorphic sections of H, i.e. as explained
above, X ;Y A H and LXJ ¼ LYJ ¼ 0. Then

duðJX ; JY Þ ¼ JXuðJY Þ � JYuðJXÞ � uð½JX ; JY �Þ
¼ �uð½JX ; JY �Þ

¼ �uðJ 2½X ;Y �Þ
¼ uð½X ;Y �Þ
¼ �duðX ;YÞ:
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Since H is spanned by a basis of holomorphic sections, we know that the first
part of the proposition holds in general.

Similarly, using the same X and Y as described above, we have

dvðX ;Y Þ ¼ XvðY Þ � YvðXÞ � vð½X ;Y �Þ

¼ �vð½X ;Y �Þ

¼ �u � Jð½X ;Y �Þ

¼ �uð½JX ;Y �Þ

¼ duðJX ;Y Þ:

This proves the proposition.

6. Main theorem

We are now in a suitable position to state and prove the main theorem.

Theorem 6.1. Let ðZ; JÞ be a three-dimensional manifold. Then Z is biho-
lomorphic to the twistor space of a self-dual, Einstein four-manifold with non-zero
scalar curvature, if and only if Z has a hermitian metric h and a J-invariant
splitting TZ ¼ VlH such that dimR H ¼ 4, V is totally geodesic (and hence
integrable), H is holomorphic with h bundlelike through V, and, for every unit
U A V, the Riemannian curvature of Z, R, satisfies

RXYU ¼ luðY ÞHX þ mvðY ÞJ 0X

� luðXÞHY � mvðXÞJ 0Y

þ ½n1hðJ 0X ;YÞ þ n2hðJ 00X ;YÞ�V ;

where V ¼ �JU , uðEÞ ¼ hðU ;EÞ, vðEÞ ¼ hðV ;EÞ and J 0 ¼ J �H and J 00 ¼ J �V
for some constants, l, m, n1 and n2, such that lþ m0 0 and n2 > 0.

Proof. Let Z be the twistor space of a four-dimensional self-dual, Einstein
manifold ðM; h ; iÞ with scalar curvature t0 0. Let h ¼ ht be the SBB metric
on Z for some t > 0. We will first prove a number of claims, which, when taken
together, will give us the desired curvature condition.

Before we go on to the claims, recall that the O’Neill tensors T and A are
defined by:

AðE;FÞ ¼ H‘HEVF þV‘HEHF ;

TðE;FÞ ¼ H‘VEVF þV‘VEHF :

Since V is totally geodesic, we know that T ¼ 0.

Claim 1. Suppose X ;Y AH. Then RXYU¼2ðt=24Þð1�tðt=24ÞÞhðJ 0X ;Y ÞV .
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By one of O’Neill’s equations, hðRXYZ;UÞ ¼ �hðð‘ZAÞðX ;Y Þ;UÞ for any
Z A H. By 4.3, at z A Z, hðð‘ZAÞðX ;Y Þ;UÞ ¼ th‘ZRðX ;Y Þ; z�Ui. Further-
more, since R ¼ constantðidÞ on L�, ‘R ¼ 0. Thus, hðRXYZ;UÞ ¼ 0, or
HRXYU ¼ 0. The fifth equation of Proposition 4.7 gives the rest of the claim.

Claim 2. RUVU ¼ 2tV .

Since V is totally geodesic, we know that HRUV ¼ 0. Proposition 4.7, part 5
tells us then that RUVU ¼ 2tV .

Claim 3. HRUYU ¼ �tðt=24Þ2Y for Y A H.

HRUYU ¼ H‘U‘YU �H‘Y‘UU �H‘½U ;Y �U

¼ H‘UðkUY þ sðYÞUÞ þH‘Y ðsðUÞJUÞ �HkU ½U ;Y �
¼ H‘UðkUY Þ þ sðUÞH‘Y ðJUÞ �HkU ð‘UYÞ þHkU‘YU

¼ Hð‘UkUÞY þ sðUÞkJUY þ kUkUY

¼ �sðUÞkJUY þ sðUÞkJUY � t
t

24

� �2
Y

¼ �t
t

24

� �2
Y

Claim 4. HRXVU ¼ ðt=24Þð1� tðt=24ÞÞJX for X A H.

For X ;Z A H,

hðRXVU ;ZÞ ¼ hð‘X‘VU � ‘V‘XU � ‘½X ;V �U ;ZÞ

¼ hð‘X ðsðVÞVÞ;ZÞ � hð‘V ðsðXÞV þ kUXÞ;ZÞ
� hð‘‘XVU ;ZÞ þ hð‘‘VXU ;ZÞ

¼ sðVÞhð‘XV ;ZÞ � hð‘V ðkUX Þ;ZÞ
� hð‘kVXU ;ZÞ þ hðkU‘VX ;ZÞ

¼ sðVÞhðkVX ;ZÞ � hðð‘VkUÞX ;ZÞ � hðkUkVX ;ZÞ
¼ sðJUÞhðkJUX ;ZÞ þ hðð‘JUkUÞX ;ZÞ þ hðkUkJUX ;ZÞ

¼ sðJUÞhðkJUX ;ZÞ þ h
t

24
1� 2t

t

24

� �
JX ;Z

� �
� sðJUÞhðkJUX ;ZÞ

þ t
t

24

� �2
hðJ 0X ;ZÞ

¼ h
t

24
1� t

t

24

� �
J 0X ;Z

� �
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Combining Claims 1 through 4, we get

RXYU ¼ t
t

24

� �2
uðYÞHX þ t

24
1� t

t

24

� �
vðY ÞJ 0X

� t
t

24

� �2
uðX ÞHY � t

24
1� t

t

24

� �
vðX ÞJ 0Y

þ 2
t

24
1� t

t

24

� �� �
hðJ 0X ;YÞ þ 2thðJ 00X ;Y Þ

� �
V :

In this context, the coe‰cients m and l as indicated in the main theorem are
given by:

l ¼ t
t

24

� �2
;

m ¼ t

24
1� t

t

24

� �
;

so that lþ m ¼ t=240 0.

We now suppose that Z satisfies the given curvature identity. Since
hðRJUUU ; JUÞ ¼ 1, the leaves of the foliation V foliate 2-spheres in Z. By
Theorem 4.4 in [13] and the fact that S2 is simply-connected, Z fibres over a
4-manifold M ¼ Z=V. Let p be the projection from Z to M. The metric h is
bundle-like with respect to V on Z, so that there is a Riemannian metric g on M
such that the projection p : ðZ; hÞ ! ðM; gÞ is a Riemannian submersion.

Let Zg be the twistor space of ðM; gÞ with projection pg : Zg ! M. View-
ing Zg as the space of almost complex structures on M, which are hermitian with
respect to g, we define a map f : Z ! Zg as follows.

For z A Z and x ¼ pðzÞ, let fðzÞ A ðpgÞ�1ðxÞ be the almost complex structure
on TxM given by:

fðzÞX ¼ ðp� � J � horzÞðX Þ for each X A TxM;

where horz : TxM ! Hz is the horizontal lift.
Since all of the maps involved with the definition of f are clearly continuous,

f is a continuous map. Also, f maps the vertical leaves of Z to the vertical
leaves of Zg, that is, restricted to a vertical leaf of Z, f is simply a continuous
map from S2 to S2. Thus, if we can show that f is locally one-to-one, i.e. an
immersion, we will have proven the theorem.

Let x A M; z A p�1ðxÞ. Let U be a unit vector in Vz and extend it as a
geodesic vector field about a neighborhood of z. Let t 7! gðtÞ A p�1ðxÞ be the
unique geodesic such that gð0Þ ¼ z and g�ð0Þ ¼ Uz. Since fðgðtÞÞ ¼ p� � J �
horgðtÞ A Zg, we know that f�ðUÞ0 0 if and only if

d

dt
ððp� � J � horgðtÞÞX Þt¼0 0 0 for any nonzero X A TxM:
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Fix a nonzero X A TxM. Let fcsg be the local family of isometries which
generate U (so that gðtÞ ¼ ctðzÞ). In order to continue, we will need some very
technical results derived from the curvature identity.

Let V ¼ �JU . Set kUE ¼ H‘EU , so that duðX ;YÞ ¼ hðkUX ;Y Þ for any
X ;Y A H, where the 1-form u is defined by uðEÞ ¼ hðU ;EÞ. Also, set sðEÞ ¼
�hð‘EU ; JUÞ.

Since h is a bundlelike metric, kU is skew-symmetric with respect to h.
Also, the first equation of Proposition 5.1 tells us that kU � J ¼ �J � kU , whereas
the second tells us that kJU ¼ J � kU .

Claim. LUJ ¼ ððlþ mÞ=lÞkJU on H.

Proof of Claim. Using the fact that V is totally geodesic, for Y ;Z A H,

�lhðY ;ZÞ ¼ hðRUYU ;ZÞ
¼ hð‘U‘YU � ‘Y‘UU � ‘½U ;Y �U ;ZÞ

¼ hð‘U ðkUY Þ � ‘Y ðsðUÞVÞ � ‘‘UYU þ ‘‘YUU ;ZÞ

¼ hð‘U ðkUY Þ � sðUÞ‘YV � kUð‘UY Þ þ k2
UY ;ZÞ

¼ hðð‘UkUÞY þ sðUÞkJUY ;ZÞ þ hðk2
UY ;ZÞ:

Since the transformation ‘UkU þ sðUÞkJU is skew-symmetric and k2
U þ id is

symmetric (with respect to h),

‘UkU þ sðUÞkJU ¼ 0; k2
U ¼ �lid on H:

Note that this also implies that kU � kJU ¼ �kJU � kU ¼ lJ 0.
Similarly,

�mhðJX ;ZÞ ¼ hðRXJUU ;ZÞ
¼ hð‘X‘JUU � ‘JU‘XU � ‘½X ;JU �U ;ZÞ

¼ hð‘X ð�sðJUÞJUÞ � ‘JU ðkUXÞ � ‘‘X ðJUÞU þ ‘‘JUXU ;ZÞ

¼ �sðJUÞhð‘X ðJUÞ;ZÞ � hðð‘JUkUÞX ;ZÞ � hðkU � kJUX ;ZÞ
¼ �sðJUÞhðkJUX ;ZÞ � hðð‘JUkUÞX ;ZÞ � lhðJX ;ZÞ:

Thus, ‘JUkU ¼ �sðJUÞkJU � ðm� lÞJ 0, or

‘UkJU ¼ sðUÞkU þ ðm� lÞJ 0:

Then,

l‘UJ ¼ �‘U ðkJU � kUÞ
¼ �ð‘UkJU Þ � kU � kJU � ð‘UkUÞ
¼ �ðsðUÞkU þ 2ðm� lÞJ 0Þ � kU � kJU � ð�sðUÞkJU Þ
¼ ðm� lÞkJU :
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Now, suppose that X is a horizontal, projectable vector field. Then

HðLUJÞX ¼ Hð½U ; JX � � J½U ;X �Þ
¼ H‘UðJXÞ �H‘JXU � J 0‘UX þ J 0‘XU

¼ Hð‘UJÞX �H‘JXU þ J 0‘XU

¼ m� l

l

� �
kJU � kUJX þ JkUX

¼ m� l

l
þ 2

� �
kJUX

¼ lþ m

l

� �
kJUX :

This proves the claim.

Now, continuing with the proof of the main theorem,

d

dt
ððp� � J � horgðtÞÞXÞt¼0 ¼

d

dt
ððp� � J � ðc�tÞ� � horgð0ÞÞX Þt¼0

¼ lim
t!0

1

t
½ðp� � J � ðc�tÞ� � horgð0ÞÞX � ðp� � J � horgð0ÞÞX �

¼ lim
t!0

1

t
½p� � ððctÞ�J � ðc�tÞ� � JÞ � horgð0ÞX �

¼ ðp� �LUJ � horgð0ÞÞX

¼ lþ m

l

� �
ðp� � kJU � horgð0ÞÞX

0 0:

Thus, f�ðUÞ0 0, and that proves the theorem.

7. Remarks

The main theorem had its origin in a desire to understand the low-
dimensional twistor spaces from a complex contact perspective. This had
already been achieved to some extent in the higher dimensions by Theorem 6.1
in [11], which we restate here.

Theorem 7.1. Let M be a complex contact manifold with contact subbundle
H and normalized contact structure fp ¼ u� ivg. Let TM ¼ HlV be the cor-
responding splitting with local vertical vector fields fU ;Vg corresponding to the
real forms u and v. Suppose g is an associated metric on M. Then ðM; gÞ is
isometric to a twistor space for a quaternionic-Kähler manifold with positive scalar
curvature if and only if
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RXYU ¼ uðY ÞX � uðXÞY þ vðYÞJX � vðX ÞJY þ 2gðJX ;Y ÞV ;

RXYV ¼ �vðYÞX þ vðX ÞY � uðYÞJX þ uðX ÞJY � 2gðJX ;YÞU :

This theorem and the main theorem of this paper both spring from two current
topics in complex contact geometry: normal complex contact manifolds and
fibrated complex contact manifolds.

7.1. Normal complex contact manifolds
The first subject area that motivates Theorem 6.1 is that of normal complex

contact manifolds. Modelled after the original definition in the real contact
category, a normal complex contact manifold is a complex contact manifold Z
with associated metric h such that, for every unit U A V, and any X ;Y ;Z A TZ,

hðRXYU ;ZÞ ¼ uðYÞhðX ;ZÞ � vðYÞðhðJX ;ZÞ � dsðX ;ZÞÞ
� uðXÞhðY ;ZÞ þ vðXÞðhðJY ;ZÞ � dsðY ;ZÞÞ
þ vðZÞ½�2hðJ 0X ;Y Þ þ dsðX ;Y Þ � dsðkUX ; kUY Þ�V :

By setting ds] to be the ð1; 1Þ-tensor defined by hðds]ðEÞ;F Þ ¼ dsðE;F Þ, we
can rewrite this definition as follows:

RXYU ¼ uðYÞX � vðY ÞJX � uðXÞY þ vðX ÞJY

þ vðYÞds]ðX Þ � vðX Þ ds]ðY Þ
þ ½�2hðJ 0X ;YÞ þ dsðX ;YÞ � dsðkUX ; kUYÞ�V :

This concept was originally due to Ishihara and Konishi in [17] but was
recently redefined by Korkmaz in [21]. Using this definition, we can rewrite
Theorem 6.1 as follows.

Theorem 7.2. A three-dimensional complex manifold ðZ; JÞ is biholomorphic
to the twistor space of a self-dual, Einstein four-manifold with non-zero scalar
curvature if and only if Z is a normal complex contact manifold such that the
Ishihara-Konishi curvature ds is non-degenerate on TZ and positive on V.

Proof. First, we show that the SBB metrics such that t ¼ ðt=24Þ�2, i.e.
those which are associated to the complex contact structure, are normal. Note
that Proposition 4.7 already tells us that ds is non-degenerate on TZ and positive
on V.

Using the proof of Theorem 6.1, we see that, for an SBB metric such that
t ¼ ðt=24Þ�2,

RXYU ¼ uðYÞHX þ t

24
� 1

� �
vðYÞJ 0X � uðX ÞHY � t

24
� 1

� �
vðXÞJ 0Y

þ 2
t

24
� 1

� �
hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ
" #

V :
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Now, we use Proposition 4.7 to show that the right-hand side of the
definition of normality gives us the same expression as above. The following
computation uses two crucial facts. First, v ¼ u � J, so that v � J ¼ �u.
Also, we can rewrite the vertical bundle metric hðJ 00�; �Þ by hðJ 00E;F Þ ¼
�2ðu5vÞðE;F Þ.

RHS ¼ uðYÞX � vðY ÞJX � uðXÞY þ vðXÞJY

þ vðYÞ t

24

� ��2

J 00X þ t

24
J 0X

 !
� vðX Þ t

24

� ��2

J 00Y þ t

24
J 0Y

 !

þ
"
�2hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ þ t

24
hðJ 0X ;Y Þ

� t

24
hðJ 0kUX ; kUY Þ

#
V

¼ uðYÞX þ vðY Þ �JX þ t

24

� ��2

J 00X þ t

24
J 0X

 !

� uðXÞY � vðXÞ �JY þ t

24

� ��2

J 00Y þ t

24
J 0Y

 !

þ �2hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ þ 2 � t

24
hðJ 0X ;Y Þ

" #
V

¼ uðYÞHX þ uðY ÞvðXÞV þ vðY Þ �J 0X þ t

24
J 0X

� �

þ vðYÞv �JX þ t

24

� ��2

J 00X

 !
V

� uðXÞHY � uðX ÞvðY ÞV � vðXÞ �J 0Y þ t

24
J 0Y

� �

� vðXÞv �JY þ t

24

� ��2

J 00Y

 !
V

2
t

24
� 1

� 	
hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ
" #

V

¼ uðYÞHX þ uðYÞvðXÞV þ t

24
� 1

� �
vðYÞJ 0X � t

24

� ��2

� 1

 !
vðY ÞuðX ÞV
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� uðXÞHY � uðX ÞvðYÞV � t

24
� 1

� �
vðXÞJ 0Y

þ t

24

� ��2

� 1

 !
vðX ÞuðY ÞV

2
t

24
� 1

� �
hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ
" #

V

¼ uðYÞHX þ t

24
� 1

� �
vðY ÞJ 0X � uðXÞHY � t

24
� 1

� �
vðXÞJ 0Y

2
t

24
� 1

� �
hðJ 0X ;YÞ þ t

24

� ��2

hðJ 00X ;YÞ
" #

V :

Thus, every associated SBB metric is a normal complex contact metric.

We now assume that ðZ; hÞ is a normal complex contact manifold. From
page 1357 of [21], we know that

hðð‘EJÞF ;GÞ ¼ �uðEÞðdsðG; kUFÞ � 2hðkJUF ;GÞÞ
þ vðEÞðdsðG; kJUFÞ � 2hðkUF ;GÞÞ:

In particular, hðð‘UJÞY ;ZÞ ¼ dsðZ; kUYÞ � 2hðkJUY ;ZÞ. Given that kU � kJU ¼
�kJU � kU , it is easily seen that Hð‘UJÞkU ¼ kUð‘UJÞH. Also, ð‘JÞJ ¼
�Jð‘JÞ. Combining both of these facts with the above identity, we find that,
for any X ;Y A TZ,

dsðkUX ; kUYÞ ¼ �dsðHX ;HYÞ;
dsðJX ; JYÞ ¼ �dsðX ;Y Þ:

Now, since dimR H ¼ 4, dimR V ¼ 2, ds is nondegenerate on H and
positive on V, we know that, for any X ;Y A TZ,

dsðX ;Y Þ ¼ a1hðJ 0X ;YÞ þ a2hðJ 00X ;YÞ;
for some a1 0 0 and a2 > 0. Substituting this into the definition for normality
and simplifying, we get that, for any X ;Y A TZ,

RXYU ¼ uðY ÞHX þ ða1 � 1ÞvðYÞJ 0X

� uðX ÞHY � ða1 � 1ÞvðXÞJ 0Y

þ ½2ða1 � 1ÞhðJ 0X ;Y Þ þ 2a2hðJ 00X ;YÞ�V :

With l ¼ 1, m ¼ a1 � 1, n1 ¼ 2ða1 � 1Þ and n2 ¼ 2a2, Theorem 6.1 then gives the
result.

7.2. Fibrated complex contact manifolds
The other subcategory of complex contact manifolds that motivates these

results is that of fibrated complex contact manifold. A fibrated complex contact
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manifold is a complex contact manifold Z foliated by leaves of V in such a way
that a fibration is formed,

R ! Z ! Z=V ¼ M:

In this case, R is necessarily a one-dimensional complex manifold with constant
curvature, so that R can only be C , the hyperbolic plane, S2 up to a subgroup of
isometries.

A variety of fibrated complex contact manifolds are well-known. Twistorial
complex contact manifolds are clearly examples of S2-fibrated complex contact
manifolds. The complex Heisenberg group is an example of a C-fibration; in
fact, in [10], the author has shown that one can construct a complex torus fibra-
tion for every possible dimension. More recently, Blair, Davidov and Muscarov
have recently constructed a so-called hyperbolic twistor space, which gives an
example with vertical leaves forming the hyperbolic plane (see [6]).

Characterizing fibrated complex contact manifolds by their vertical leaves
remains an unsolved problem. In the case at hand, it is unknown whether
twistor spaces over quaternionic Kähler manifolds with nonzero scalar curvature
are the only S2-fibrated complex contact manifolds. Scrutiny of the proof of
Theorem 6.1 reveals that we can rewrite it as follows.

Theorem 7.3. A three-dimensional complex manifold ðZ; JÞ is biholomorphic
to the twistor space of a self-dual, Einstein four-manifold with non-zero scalar
curvature if and only if Z is an S2-fibrated complex contact manifold with a
bundlelike associated metric such that rankðHLUJÞ ¼ 4 for every non-zero U A V.

The condition regarding LUJ corresponds roughly with conditions 2 and 3
of Theorem 1.1. This makes it seem likely that there are other S2-fibrated com-
plex contact manifolds which are not twistorial, although the author is not aware
of any such examples.
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