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Abstract We study the existence condition of μ-stable sheaves on Enriques surfaces.

We also give a different proof of the irreducibility of the moduli spaces of rank 2 stable

sheaves.
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0. Introduction

Let X be an Enriques surface defined over an algebraically closed field k of

characteristic not equal to 2. A number of authors have studied moduli spaces of

stable sheaves on X , in particular in cases where the nonemptiness of the moduli

spaces is completely determined (see [8], [14], [28]) and where the irreducibility

of the moduli spaces is proved if X is unnodal and the associated Mukai vector is

primitive (see [8], [14], [24]). In this article, we discuss the existence problem of

μ-stable sheaves on Enriques surfaces. We also offer a remark on the irreducibility

of the moduli spaces.

For a coherent sheaf E on X or an element E of K(X), let v(E) :=

ch(E)
√
tdX ∈H∗(X,Q) be the Mukai vector of E. We introduce the Mukai pair-

ing on H∗(X,Q) by 〈x, y〉 :=−
∫
X
x∨ ∧ y, where for x= (x0, x1, x2) ∈H∗(X,Q),

x∨ := (x0,−x1, x2). Then

(0.1)
(
v
(
K(X)

)
, 〈 , 〉

)
is the Mukai lattice of X . For a Mukai vector v, we use the expressions

v = (r, ξ, a) = r+ ξ + a�X , r ∈ Z, ξ ∈NSf(X),
r

2
+ a ∈ Z,
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where �X ∈H4(X,Z) is the fundamental class of X , and NSf(X) is the torsion-

free quotient of NS(X); that is, NSf(X) = NS(X)/ZKX . The quotient NSf(X)

is nothing but the numerical equivalence class group Num(X) of X .

For the Mukai vector v ∈H∗(X,Q) of a torsion-free sheaf, we assume that a

polarization H is general with respect to v (see Definition 0.2). We point out that

the problem of constructing μ-stable locally free sheaves was studied by Kim in

the rank 2 case and by Nuer [14] in the rank 4 case.

For a Mukai vector v, M(v) denotes the moduli stack of coherent sheaves E

with v(E) = v. Let H be an ample divisor on X . Let MH(v)ss (resp., MH(v)s)

denote the substack of M(v) consisting of (Gieseker) semistable sheaves (resp.,

stable sheaves). Let MH(v) be the moduli scheme of S-equivalence classes of

semistable sheaves, and let MH(v) be the open subscheme consisting of stable

sheaves. If v = (r, ξ, a) with r > 0, then MH(v)μss (resp., MH(v)μs) denotes the

substack of M(v) consisting of μ-semistable sheaves (resp., μ-stable sheaves). As

in [24], we also introduce MH(v,L)ss (resp., MH(v,L)s, MH(v,L),MH(v,L))

as the locus of MH(v)ss (resp., MH(v)s, MH(v),MH(v)) consisting of E with

c1(E) = L in NS(X), where [L mod KX ] = ξ.

For a K3 surface, the existence condition of μ-stable sheaves was completely

described in [23]. For an Enriques surface, we get a similar result.

THEOREM 0.1 (Theorem 2.1)

Let v = (lr, lξ, s2 ) be a Mukai vector such that gcd(r, ξ) = 1 and 〈v2〉 ≥ 0. Let H

be a general polarization with respect to v. Then MH(v,L)ss contains a μ-stable

sheaf if and only if

(i) there is no stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉=−1,−2,

and 〈v2〉 ≥ 0; or

(ii) there is a stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉=−1, and

〈v2〉 ≥ l2; or

(iii) there is a stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉 = −2,

and 〈v2〉 ≥ 2l2.

Moreover, if lr > 1, then under the same condition, MH(v,L)ss contains a μ-

stable locally free sheaf.

In the second part of the article, we will study the irreducibility of the moduli

spaces MH(v,L)ss. The irreducibility of these moduli spaces on an arbitrary

surface was proved by Gieseker and Li [4] and O’Grady [15, Theorem D] when

the expected dimension d is larger than a constant N(r) that depends only on

the rank r. We can expect a better estimate for N(r) in the Enriques case,

as occurs for K3 and Abelian surfaces, since an Enriques surface also has a

numerically trivial canonical divisor. Let v = (r, ξ, s2 ) be a primitive Mukai vector

on an Enriques surface. If r is odd, then the irreducibility of MH(v,L)ss was

proved in [24]. If r = 2, then the irreducibility was investigated by Kim [8] and

Nuer [14] if X is unnodal. Kim reduced the problem to the cases where s= 1,2
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and proved the irreducibility for s= 1. For the second case, Nuer reduced to the

first case. Then by using Bridgeland stability, Nuer [14, Theorem 1.1] completed

the proof of irreducibility for the even rank case. In this article, we will give a

different proof of the irreducibility for r = 2. Combining a deformation argument

with results in [24] and [28], we get the following result.

THEOREM 0.2

Let v = (r, ξ, s2 ) be a primitive Mukai vector on an Enriques surface X, let L be a

divisor on X with [L mod KX ] = ξ, and let H be an ample divisor general for v.

Then we have the following.

(1) MH(v,L)ss is connected.

(2) If X is unnodal or 〈v2〉 ≥ 4, then MH(v,L)ss is irreducible.

The strategy of our proof is the same as our proof for the similar problem on K3

surfaces (see [24, Theorem 3.18]). Thus we reduce the problem to the moduli of

stable 1-dimensional sheaves by a relative Fourier–Mukai transform associated

to an elliptic fibration. Then by a detailed estimate of the locus of stable sheaves

whose supports are reducible or nonreduced, we show that the moduli space

is birationally equivalent to an Abelian fiber space over an open subset of a

projective space. Unlike in the case of K3 surfaces, we need the Mukai vector

to be primitive. Indeed, if the Mukai vector is of the form v =m(r, ξ, s2 ) (m,r ∈
Z>0, ξ ∈NS(X), 2 | r − s, and 2 � r), then we cannot reduce to the rank 0 case.

Moreover, it is not so easy to study stable 1-dimensional sheaves on nonreduced

curves. Hence we can only deal with 1-dimensional sheaves on nonreduced curves

of multiplicity 2, which is sufficient to treat the primitive case. We give partial

generalizations in Remarks 4.3 and 4.4. In the course of the proof, we also show

that [17, Assumption 2.16] holds for v = (0, ξ, s2 ) such that ξ is primitive (see

Corollary 4.5). In particular, we get the following corollary by [17, Theorem 5.1]

and [28].

COROLLARY 0.3 ([3, p. 83])

We have that b2(MH(v,L)) = 11 if X satisfies (1.3) and v = (r, ξ, s2 ) is a primitive

Mukai vector such that 2 | r, 2 � ξ, and 〈v2〉 ≥ 4.

NOTATION

For an Enriques surface X , let � : X̃ →X be the covering K3 surface, and let

ι : X̃ → X̃ be the covering involution.

0.1. Preliminaries
An Enriques surface X is nodal if there is a smooth rational curve, and X is

unnodal if X is not nodal (see [3, p. 178]). For an unnodal Enriques surface,

every effective divisor D is nef, and D is ample if and only if (D2)> 0. Polarized

Enriques surfaces form 10-dimensional moduli spaces, and general members are

unnodal.
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We collect some properties of the Mukai lattice of Enriques surfaces.

(i) We have an isomorphism of lattices:

(0.2)
(
v
(
K(X)

)
, 〈 , 〉

)∼=(
1 0

0 −1

)
⊕
(
0 1

1 0

)
⊕E8(−1).

(ii) For a Mukai vector v = (r, ξ, s2 ), 〈v2〉 is even if and only if r is even.

(iii) A Mukai vector v = (r, ξ, s2 ) ∈ v(K(X)) is primitive if and only if r, s ∈ Z,

2 | (r+ s), ξ ∈NSf(X), and gcd(r, ξ, r+s
2 ) = 1.

(iv) For a primitive Mukai vector v = (r, c1,
s
2 ), we set �(v) := gcd(r, c1, s).

Then �(v) = 1,2 (see [5, Lemma 2.5]).

Thanks to the Auslander–Buchsbaum formula, the following facts are well

known for a purely 1-dimensional sheaf on a smooth projective surface.

LEMMA 0.4

Let X be a smooth projective surface.

(1) A 1-dimensional coherent sheaf E is purely 1-dimensional if and only if

there is an injective homomorphism ϕ : V−1 → V0 of locally free sheaves V−1, V0

of the same rank and cokerϕ=E. Thus we have a locally free resolution of E:

(0.3) 0→ V−1
ϕ→ V0 →E → 0.

(2) A coherent sheaf E is purely 1-dimensional if and only if RHomOX
(E,

OX)[1] ∈Coh(X) and is purely 1-dimensional.

DEFINITION 0.1

For a coherent sheaf E on X , rkE denotes the rank of E. For a purely 1-

dimensional sheaf E on X , Div(E) denotes the effective divisor C such that E

is an OC -module and c1(E) = C. By using a locally free resolution (0.3), DivE

is given by the Cartier divisor detϕ.

0.2. Stabilities and their moduli stacks
Let X be a smooth projective surface, and let H be an ample divisor on X .

DEFINITION 0.2

(1) A torsion-free sheaf E is μ-semistable (resp., μ-stable) if

(0.4)
(c1(F ),H)

rkF
≤
(<)

(c1(E),H)

rkE

for any subsheaf F of E with 0< rkF < rkE.

(2) A polarization H is general with respect to v if for any μ-semistable

sheaf E with v(E) = v and any subsheaf F of E,

(0.5)
(c1(F ),H)

rkF
=

(c1(E),H)

rkE
⇐⇒ c1(F )

rkF
=

c1(E)

rkE
.
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DEFINITION 0.3 (see [10], [25])

Let G be an element of K(X) with rkG> 0.

(1) A torsion-free sheaf E is G-twisted semistable (resp., G-twisted stable)

if

(0.6)
χ(G,F (nH))

rkF
≤
(<)

χ(G,E(nH))

rkE
(n� 0)

for any subsheaf F of E with 0< rkF < rkE.

(2) A purely 1-dimensional sheaf E is G-twisted semistable (resp., G-twisted

stable) if

(0.7)
χ(G,F )

(c1(F ),H)
≤
(<)

χ(G,E)

(c1(E),H)

for any proper subsheaf F �= 0 of E.

(3) Since G-twisted semistability depends only on v(G), we also define w-

twisted semistability as a G-twisted semistability, where v(G) =w.

(4) MG
H(v)ss (resp., MG

H(v)s) denotes the moduli stack of G-twisted semis-

table sheaves (resp., G-twisted stable sheaves).

REMARK 0.1

(1) G-twisted semistability depends only on c1(G)/ rkG.

(2) If H is general with respect to v, then G-twisted semistability is inde-

pendent of the choice of G.

Let us recall a quotient stack description of MH(v)μss and its open substacks.

For an ample divisor H ′ on X , let Q(mH ′, v) be the open subscheme of the

quot-scheme QuotOX(−mH′)⊕N/X consisting of points

(0.8) λ :OX(−mH ′)⊕N →E

such that

(i) v(E) = v,

(ii) λ induces an isomorphism H0(X,O⊕N
X )∼=H0(X,E(mH ′)), and

(iii) Hi(X,E(mH ′)) = 0, i > 0.

Let OQ(mH′,v)×X(−mH ′)⊕N → Qv be the universal quotient. We set Vv :=

OX(−mH ′)⊕N . For our purpose, the choice of mH ′ is not so important. Hence

we simply denote Q(mH ′, v) by Q(v). Let M(v) be the moduli stack of coherent

sheaves E with v(E) = v, and let qv : Q(v) → M(v) be the natural map. We

denote the pullbacks q−1
v (MH(v)μss), q−1

v (MH(v)ss), . . . by Q(v)μss,Q(v)ss, . . . ,

respectively. If we choose a suitable Q(v), then qv :Q(v)μss →MH(v)μss is sur-

jective and MH(v)μss is a quotient stack of Q(v)μss by the natural action of

GL(N):

(0.9) MH(v)μss ∼=
[
Q(v)μss/GL(N)

]
.
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From now on, we assume that qv :Q(v)μss →MH(v)μss is surjective. We have

(0.10) dimMH(v)μss = dimQ(v)μss − dimGL(N).

REMARK 0.2

Since PGL(N) acts freely on QH(v)s, we have dimMH(v)s = dimMH(v)− 1.

LEMMA 0.5

Let M be an irreducible component of MH(v)μss. Then dimM≥ 〈v2〉.

Proof

We take a quotient (0.8). Then we see that Ext2(kerλ,E) = 0. By the deformation

theory of the quot-scheme, the Zariski tangent space of the quot-scheme at (0.8)

is Hom(kerλ,E) and the obstruction space is Ext1(kerλ,E)∼=Ext2(E,E). Hence

the dimension of an irreducible component of Q(v)μss containing the point (0.8)

is at least

dimHom(kerλ,E)− dimExt1(kerλ,E) =N2 − χ(E,E) = 〈v2〉+dimGL(N).

Hence we get the claim. �

The following formula is used frequently in this article.

LEMMA 0.6 ([9, Lemma 5.2])

Let F(v1, v2) be the stack of filtrations 0⊂E1 ⊂E such that E1 is a coherent sheaf

with v(E1) = v1 and E2 :=E/E1 is a coherent sheaf with v(E2) = v2. We have a

morphism pv1,v2 :F(v1, v2)→M(v1)×M(v2) by sending E1 ⊂E to (E1,E/E1).

We set

N n(v1, v2)

:=
{
(E1,E2) ∈M(v1)×M(v2)

∣∣ dimHom
(
E1,E2(KX)

)
= n

}
,

Fn(v1, v2)

:= p−1
v1,v2

(
N n(v1, v2)

)
=
{
(F1 ⊂E) ∈ F(v1, v2)

∣∣ dimHom
(
F1, (E/F1)(KX)

)
= n

}
.

(0.11)

Then

(0.12) dimFn(v1, v2) = dimN n(v1, v2) + 〈v1, v2〉+ n.

Proof

Since dimExt2(E2,E1) = dimHom(E1,E2(KX)) = n, the same proof of [9, Lem-

ma 5.2] works. �

1. The dimension of moduli stacks

In this section, we assume that X is an Enriques surface, and we estimate the

dimension of various substacks of MH(v). We also show that MH(v)ss is a
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reduced stack if 〈v2〉> 0 or v is a primitive and isotropic Mukai vector. Before

giving estimates, we first recall the nonemptiness of the moduli stacks.

THEOREM 1.1 ([14, Theorem 1.1], [28, Theorem 3.1])

Let X be an Enriques surface over k. We take r, s ∈ Z (r > 0) and L ∈ NS(X)

such that r+s is even. We set ξ := [L mod KX ]. Assume that gcd(r, ξ, r+s
2 ) = 1;

that is, the Mukai vector v := (r, ξ, s2 ) is primitive. Then MH(v,L)s �= ∅ for a

general H if and only if

(i) �(v) = 1 and 〈v2〉 ≥ −1, or

(ii) �(v) = 2 and 〈v2〉 ≥ 2, or

(iii) �(v) = 2, 〈v2〉= 0, and L≡ r
2KX mod 2, or

(iv) 〈v2〉 = −2, L ≡ D + r
2KX mod 2, where D is a nodal cycle, that is,

(D2) =−2 and H1(OD) = 0.

By taking a direct sum, we get the following corollary of Theorem 1.1.

COROLLARY 1.2

Let v = (r, ξ, s2 ) be a primitive Mukai vector with 〈v2〉> 0. Then MH(lv,L)ss �= ∅
for a general H , where [L mod KX ] = lξ.

LEMMA 1.3

Let v = (r, ξ, s2 ) be a Mukai vector with 〈v2〉> 0. Then

(1) MH(v,L)s is reduced and dimMH(v,L)s = 〈v2〉,
(2) MH(v,L)s is normal, unless

(i) v = 2v0 with 〈v20〉= 1 and L≡ r
2KX mod 2, or

(ii) 〈v2〉= 2.

Proof

(1) We introduce the substack

MH(v,L)ssing :=
{
E ∈MH(v,L)s

∣∣ Ext2(E,E) �= 0
}

=
{
E ∈MH(v,L)s

∣∣E ∼=E(KX)
}
,

(1.1)

which is expected to be the singular locus of MH(v,L)s. Indeed, the singular

locus of MH(v,L)s is contained in MH(v,L)ssing, and they coincide if

dimMH(v,L)ssing < 〈v2〉 by the deformation theory of coherent sheaves. So we

will estimate dimMH(v,L)ssing. We set v = (r, c1,
s
2 ). If r is odd, then

MH(v,L)ssing = ∅ since det(E(KX)) ∼= (detE)(KX). Hence we assume that r

is even. By [7] (see also Remark 1.1) or [18], dimMH(v,L)ssing is odd and

dimMH(v,L)ssing ≤ 〈v2〉
2 + 1. Moreover, if the equality holds, then 2 | c1 and

L≡ r
2KX mod 2, and if v is primitive, then 〈v2〉 ≡ 0 mod 8 (see Lemma 1.4).



872 Kōta Yoshioka

In particular, we have

〈v2〉 − dimMH(v,L)ssing ≥
{ 〈v2〉

2 − 1, 〈v2〉 ≡ 0 mod 4,
〈v2〉
2 , 〈v2〉 ≡ 2 mod 4.

Since MH(v,L)s \ MH(v,L)ssing is smooth of dimension 〈v2〉, by the proof of

Lemma 0.5, we see that MH(v,L)s is a locally complete intersection stack of

dimMH(v,L)s = 〈v2〉. In particular, MH(v,L)s is reduced.

(2) In order to prove the normality of MH(v,L)s, it is sufficient to prove

(1.2) 〈v2〉 − dimMH(v,L)ssing ≥ 2.

If 〈v2〉 ≥ 6, then obviously (1.2) holds. If 〈v2〉 = 4 and v does not satisfy (i),

then dimMH(v,L)ssing <
〈v2〉
2 + 1 = 3, which implies that dimMH(v,L)ssing ≤ 1.

In particular, 〈v2〉 − dimMH(v,L)ssing ≥ 3. Therefore (2) holds. �

LEMMA 1.4 (Nuer [14], Saccà [17, Theorem 2.9])

Assume that

(1.3) �∗(Pic(X)
)
=Pic(X̃);

thus ι acts on Pic(X̃) trivially.

Let v := (r, ξ, s2 ) be a primitive Mukai vector. Then MH(v,L)s is smooth of

dimMH(v,L)s = 〈v2〉, unless �((r, ξ, s2 )) = 2 and L≡ r
2KX mod 2.

Proof

By using (−1)-reflection (see Remark 1.1), we may assume that MH(v,L)s con-

sists of μ-stable locally free sheaves. Assume that E ∼=E(KX). Then r is even and

there is a locally free sheaf F such that �∗(F ) = E. Then �∗(E)∼= F ⊕ ι∗(F ).

By our assumption on X , ι∗(c1(F )) = c1(F ) and c1(F ) = c1(�
∗(L)), where L ∈

Pic(X). Hence detF =�∗(L) and �∗(c1(E)) = c1(F )+ ι∗(c1(F )) = 2�∗(c1(L)).

Then

(1.4) c1(E) = c1
(
�∗(F )

)
= c1

(
�∗
(
det(F )

))
+
(r
2
− 1

)
KX = 2c1(L) +

r

2
KX

by [28, Lemma 3.5]. Hence c1(E)≡ r
2KX mod 2. �

REMARK 1.1

In [7], it is assumed that E ∈MH(v)ssing is locally free. Indeed MH(v)s is iso-

morphic to a moduli stack of μ-stable locally free sheaves by using an autoequiv-

alence Φ of D(X) called (−1)-reflection in [24, Section 4]. A similar claim to [26,

Theorem 1.7] holds for Φ (see [28, Remark 2.19]) and for a sufficiently large n

(depending only on v),

(1.5) Φ(E) = ker
(
H0

(
E(nH)

)
⊗OX⊕H0

(
E(KX+nH)

)
⊗OX(KX)→E(nH)

)
is a μ-stable locally free sheaf. Thus we can reduce the general case to the case

of μ-stable locally free sheaves.
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LEMMA 1.5

Let v be a Mukai vector with 〈v2〉> 0. We set

(1.6) MH(v)pss :=
{
E ∈MH(v)ss

∣∣E is properly semistable
}
.

Assume that H is general with respect to v. Then

(1) dimMH(v)pss ≤ 〈v2〉−1; moreover, dimMH(v)pss ≤ 〈v2〉−2 unless v =

2v0 with 〈v20〉= 1;

(2) MH(v)s �= ∅ and dimMH(v)ss = 〈v2〉.

Proof

We set v = lv0, where v0 is primitive and l ∈ Z>0. We first note that the first

claim of (1) implies (2) by Lemma 0.5, Lemma 1.3, and Corollary 1.2. The proof

of (1) is almost the same as that of [9, Lemma 3.2]. So we only remark that [9,

Lemma 5.1] is replaced by Lemma 0.5, and [9, (3.4)] is replaced by

dimJ(v1, v2)≤ 〈v2〉 −
(
〈v1, v2〉 −max{l2/l1 − 1,0}

)
,

where J(v1, v2) is the substack whose member E fits in an exact sequence

(1.7) 0→E1 →E →E2 → 0

such that E1 is a stable sheaf with v1 := l1v0 and E2 is a semistable sheaf with

v2 := l2v0. We note that −1 on the right-hand side comes from the vanishing

Hom(E1,E2(KX)) = 0 for a general stable sheaf E1, since E1 is not rigid. We

first assume that 〈v20〉 ≥ 2. Then

〈v1, v2〉 −max{l2/l1 − 1,0}= l1l2〈v20〉 −max{l2/l1 − 1,0} ≥ 2.

Hence dimJ(v1, v2)≤ 〈v2〉 − 2, so the second claim of (1) holds if 〈v20〉> 1, and

a fortiori the first claim. So we may assume that 〈v20〉= 1. Then the first claim

of (1) clearly holds from the dimension estimate on J(v1, v2), so let us prove the

second claim. We set

Hk :=
{
(E1,E2) |E1 ∈MH(v1)

s,E2 ∈MH(v2)
ss,dimHom

(
E1,E2(KX)

)
= k

}
.

For (E1,E2) ∈Hk, E2/(E1(KX)⊕k) is a semistable sheaf with the Mukai vector

v2 − kv1 by [9, Lemma 3.1]. Hence E1 is determined by E2 as a factor of a

Jordan–Hölder filtration of E2. Moreover, if k ≥ 2, then E2 is properly semistable.

Therefore dimH1 ≤ 〈v22〉 and dimHk ≤ 〈v22〉 − 1 for k > 1. If k ≥ 2, then

〈v1, v2〉+ k+dimHk ≤ 〈v2〉 −
(
〈v1, v2〉+ 〈v21〉+ 1− k

)
≤ 〈v2〉 − 2.

(1.8)

If k = 1 and l1l2 ≥ 2, then

〈v1, v2〉+ k+dimHk ≤ 〈v2〉 −
(
〈v1, v2〉+ 〈v21〉 − 1

)
≤ 〈v2〉 − 2.

(1.9)

Therefore dimJ(v1, v2)≤maxk(dimHk + 〈v1, v2〉+ k)≤ 〈v2〉 − 2 if l1l2 ≥ 2. The

remaining case is v = 2v0, which is excluded. Therefore (1) holds. �
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COROLLARY 1.6

Let v = (r, ξ, s2 ) be a Mukai vector with 〈v2〉> 0. Then for a general polarization

H , we have the following.

(1) MH(v,L)ss is reduced and dimMH(v,L)ss = 〈v2〉.
(2) MH(v,L)ss is normal, unless

(i) v = 2v0 with 〈v20〉= 1 and L≡ r
2KX mod 2, or

(ii) 〈v2〉= 2.

Proof

By Lemmas 1.3 and 1.5, (1) holds. Moreover, (2) also holds unless (i) v = 2v0 with

〈v20〉= 1 or (ii) 〈v2〉= 2. Therefore we will treat the moduli stack MH(2v0,L)
ss

with 〈v20〉= 1 and L �≡ r
2KX mod 2. By Lemma 1.3(2), MH(2v0,L)

s is normal.

We will prove that MH(2v0,L)
ss is smooth in a neighborhood of the bound-

ary. Since 〈v20〉= 1, rkv0 is odd, which implies that r
2KX ≡KX mod 2. Since 2 | ξ

in NSf(X), we have L= 2D,2D +KX (D ∈NS(X)). Therefore L= 2D by L �≡
r
2KX ≡KX mod 2. Assume that E ∈MH(2v0,L)

ss is S-equivalent to E1 ⊕E2.

By detE1 = (detE∨
2 )(L) and the fact that rkv0 is odd, Hom(Ei,Ej(KX)) = 0

for all 1≤ i, j ≤ 2. Thus Ext2(E,E) = Hom(E,E(KX))∨ = 0, which implies that

MH(2v0,L)
ss is smooth at E. Therefore MH(2v0,L)

ss is a normal stack. �

1.1. Isotropic case
Let v = (r, ξ, s2 ) be a primitive and isotropic Mukai vector, and take a general

polarization H with respect to v.

LEMMA 1.7

(1) If �(v) = 1, then MH(v)s =MH(v)ss is a reduced stack of dimMH(v)s =

〈v2〉= 0.

(2) If �(v) = 2 and L ≡ r
2KX mod 2, then MH(v,L)s = MH(v,L)ss is

smooth of dimMH(v,L)s = 1 and MH(v,L+KX)ss = ∅.

Proof

(1) Assume that �(v) = 1. Since 2 � ξ, by the proof of Lemma 1.3, we see that

dimMH(v)ssing =−1. Thus MH(v)s is reduced and dimMH(v)s = 0.

(2) If �(v) = 2 and L≡ r
2KX mod 2, then there is an irreducible component

M of the coarse moduli scheme MH(v,L) =MH(v,L) with dimM ≥ 2 (see [14,

Theorem 5.2], [28, Section 3]). Since the Zariski tangent space Ext1(E,E) of

MH(v,L) at E ∈MH(v,L) satisfies

dimExt1(E,E) = dimHom
(
E,E(KX)

)
+ 1≤ 2,

M is smooth of dimension 2 and E(KX)∼=E for E ∈M . Since the Mukai lattice

is unimodular, MH(v,L) is a fine moduli space. Then by using the Fourier–

Mukai transform, we see that MH(v,L) itself is smooth of dimMH(v,L) = 2 and

MH(v,L+KX) = ∅ (see also the proof of [27, Lemma 3.1.6]). For the claim on

dimMH(v,L)ss, we recall Remark 0.2. �
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We next study the nonprimitive case. We assume that H is a general polarization

with respect to lv. Then H is also a general polarization with respect to l′v for

1≤ l′ ≤ l. For E0 ∈MH(l0v)
s, we set

(1.10) J (l,E0) :=
{
E ∈MH(lv)ss

∣∣E is generated by E0(pKX), p ∈ Z
}
,

where l0 | l.

REMARK 1.2

If �(v) = 2, then E0(KX) ∼= E0 for all E0 ∈ MH(v)s, and if �(v) = 1, then

E0(KX)�E0 for a general E0 ∈MH(v)s.

LEMMA 1.8

We have dimJ (l,E0)≤−1.

Proof

For F ∈ {E0(pKX) | p ∈ Z}, we set

(1.11) J (l,E0, F
⊕n) :=

{
E ∈ J (l,E0)

∣∣ dimHom(F,E) = n
}
.

For E ∈ J (l,E0, F
⊕n), we have an exact sequence

(1.12) 0→Hom(F,E)⊗ F →E →E′ → 0

andE′ ∈ J (l−nl0,E0, F (KX)⊕n′
) (n′ ≥ 0). Let p : J (l,E0, F

⊕n)→J (l−nl0,E0)

be the morphism sending E ∈ J (l,E0, F
⊕n) to E′ in (1.12). Then the proof of

Lemma 0.6 implies that

(1.13) dimp−1(E′)≤ nn′ − n2, E′ ∈ J
(
l− nl0,E0, F (KX)⊕n′)

.

Then the same proof of [9, (3.8)] works here. �

PROPOSITION 1.9

Assume that X is an Enriques surface. Let v be an isotropic and primitive Mukai

vector.

(1) Assume that MH(lv)s is nonempty. Then l= 1,2.

(2) MH(2v,L)s �= ∅ if and only if �(v) = 1 and L≡ 0 mod 2. Moreover,

MH(2v)s =
{
�∗(F )

∣∣ F ∈Mw
�∗(H)(w)

s, ι∗(F )� F
}
,

where w =�∗(v). In particular, MH(2v)s is smooth of dimension 1.

(3) We have dimMH(lv)ss ≤ l. If �(v) = 1, then dimMH(lv)ss ≤ [ l2 ].

Proof

(1) Since H is general, MH(lv)s is the same as the moduli stack of v-twisted

stable sheaves. Let w be a primitive and isotropic Mukai vector of X̃ with�∗(v) =

mw (m ∈ Z>0). For E ∈MH(lv)s, �∗(E) is w-twisted semistable with respect to

�∗(H). Indeed, by the uniqueness of the Harder–Narasimhan filtration of �∗(E),

it is ι-invariant. Since � is étale, it comes from a filtration on X . In order to show
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l = 1,2, we first treat the case where �∗(E) is properly w-twisted semistable in

(a), and then we treat the other case in (b).

(a) Assume that �∗(E) is not w-twisted stable, and let F be a w-twisted

stable proper subsheaf of �∗(E) with

(1.14)
χ(�∗(E), F (n�∗(H)))

rkF
=

χ(�∗(E),�∗(E)(n�∗(H)))

rk�∗(E)
(n ∈ Z).

Then ι∗(F ) is also a w-twisted stable subsheaf of �∗(E) with

(1.15)
χ(�∗(E), ι∗(F )(n�∗(H)))

rk ι∗(F )
=

χ(�∗(E),�∗(E)(n�∗(H)))

rk�∗(E)
(n ∈ Z).

If ι∗(F ) ∼= F , then we can introduce an action of ι on F , and hence there is a

coherent sheaf E1 on X such that F ∼=�∗(E1). Since

Hom
(
F,�∗(E)

)
= Hom

(
E1,�∗

(
�∗(E)

))
= Hom

(
E1,E ⊕E(KX)

)
,

we see that E1 or E1(KX) is a subsheaf of E, which shows that E is properly

v-twisted semistable. Hence ι∗(F )� F . We note that φ : F ⊕ ι∗(F )→�∗(E) is

injective. Indeed, let G be a w-twisted stable subsheaf of kerφ with

(1.16)
χ(�∗(E),G(n�∗(H)))

rkG
=

χ(�∗(E),�∗(E)(n�∗(H)))

rk�∗(E)
(n ∈ Z).

Then G → F and G → ι∗(F ) are isomorphic or zero. Since F and ι∗(F ) are

subsheaves of �∗(E), we get G ∼= F and G ∼= ι∗(F ), which is a contradiction.

Therefore φ is injective. By the v-twisted stability of E, φ is also surjective.

Thus F ⊕ ι∗(F ) ∼=�∗(E). Then �∗(F )⊕2 ∼= E ⊕ E(KX) implies that �∗(F ) ∼=
E ∼= E(KX). By [27, Lemma 2.3.6], F is a factor of a Jordan–Hölder filtration

of a w-twisted semistable sheaf of Mukai vector w, and hence rkF ≤ rkw and

the equality holds if and only if v(F ) = w. Hence lm rkw = rkE ≤ 2 rkw, which

shows that lm≤ 2. Moreover, lm= 2 implies that v(F ) =w.

(b) If �∗(E) is w-twisted stable, then by using [27, Lemma 2.3.6], we have

rkE ≤ rkw, which shows that l=m= 1.

(2) In the proof of (1), for E ∈MH(2v)s, we have �(v) = 1 and E =�∗(F )

with ι∗(v(F )) = v(F ). In particular, v(F ) =w and MH(2v)s is smooth of dimen-

sion 1. By (1.3) and 4 | rkE, we have 2 | c1(E) in NS(X).

We note that for a primitive and isotropic Mukai vector v with �(v) = 1,

w :=�∗(v) is a primitive and isotropic Mukai vector on X̃ such that ι∗(w) =w.

For such a vector w, we have Mw
�∗(H)(w)

s �= ∅ (see [27, Corollary 1.3.3]), and the

fixed point set of the ι∗-action on Mw
�∗(H)(w)

s is 1-dimensional by Lemma 1.7.

For F ∈Mw
�∗(H)(w)

s with ι∗(F ) �= F , ι∗(F )⊕ F ∼=�∗(�∗(F )) does not contain

an ι-invariant proper subsheaf G satisfying (1.16) for E =�∗(F ), where �∗(F )

is a stable sheaf with respect to H . Therefore (2) holds.

(3) We have a decomposition

MH(lv) =
⋃

(n1l1,...,ntlt)∈Sl

∏
i

SniMH(liv),
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where

Sl :=
{
(n1l1, . . . , ntlt)

∣∣∣ l1 < l2 < · · ·< lt, n1, . . . , nt ∈ Z>0,
∑
i

nili = l
}
.

We have a morphism φ :MH(lv)ss →MH(lv). Let x be a point of MH(lv). Then

there are stable sheaves Ei ∈MH(kiv)
s such that Ei � Ej(pKX) for i �= j and

x=
⊕t

i=1

⊕
pEi(pKX)⊕nip . Since

Hom(Ei,Ej) = Ext2(Ei,Ej) = 0

for i �= j and χ(Ei,Ej) = 0, for E ∈ φ−1(x), there are Gi ∈ J (
∑

p nipki,Ei)

and E =
⊕

iGi. By Lemma 1.8, we see that dimφ−1(x) ≤ −t. We note that

dimMH(v(Ei))
s = 1,2 by (1), (2), and Lemma 1.7. We set

t1 :=
{
i
∣∣ dimMH

(
v(Ei)

)
= 1

}
, t2 :=

{
i
∣∣ dimMH

(
v(Ei)

)
= 2

}
.(1.17)

Then we have

dimMH(lv)ss ≤ max
x∈MH(lv)

{−t+ t1 + 2t2}= max
x∈MH(lv)

t2 ≤ l.

Moreover, if �(v) = 1, then dimMH(v(Ei)) = 2 implies that v(Ei) = 2v, which

implies that t2 ≤ l/2. Hence the second claim also holds. �

REMARK 1.3

Assume that �(v) = 1. If l is even, then
⊕l/2

i=1Ei (Ei ∈MH(2v)s) forms a com-

ponent of dimension l/2. If l is odd, then F ⊕
⊕(l−1)/2

i=1 Ei (F ∈MH(v)s,Ei ∈
MH(2v)s) forms a component of dimension (l − 1)/2. Thus the equality holds

in (3).

REMARK 1.4

Assume that �(v) = 1. If E is a singular point of MH(v)s, then E(KX)∼=E, and

hence E =�∗(F ) (F ∈ Coh(X̃)). In this case, �∗(E) is properly w-semistable

and l=m= 1.

REMARK 1.5

Let π :X → C be an elliptic surface, and let mD be a tame multiple fiber. Let

v := (0, rD,d) be a primitive Mukai vector; that is, gcd(r, d) = 1. For a semistable

sheaf E with v(E) = lv and Div(E) = lrD, we will show in Lemma 3.9 that E is S-

equivalent to
⊕

iEi, where Ei ∈MH(v)s. Assume thatm � r. Then Ei⊗KX �Ei,

which implies that dimMH(v)s = 0. Hence we see that dimMH(lv)ss ≤ [ lm0

m ],

where m0 = gcd(r,m).

2. μ-stability

In this section, we continue to assume that X is an Enriques surface, and we

study the existence condition of μ-stable locally free sheaves. For a Mukai vector

v of rkv > 0, we have a decomposition v = (lr, lξ, s2 ), where gcd(r, ξ) = 1, l ∈ Z>0,

s ∈ Z, lr− s ∈ 2Z. We divide this into three cases.
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(A) There is no stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉 =
−1,−2.

(B) There is a stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉=−1.

(C) There is a stable sheaf E such that v(E) = (r, ξ, b) and 〈v(E)2〉=−2.

REMARK 2.1

We note that r is odd for case B and even for case C.

We use a case-by-case approach to prove the following result.

THEOREM 2.1

Let v = (lr, lξ, s2 ) be a Mukai vector such that gcd(r, ξ) = 1 and 〈v2〉 ≥ 0. Let H be

a general polarization with respect to v. Then for L ∈NS(X) with [L mod KX ] =

lξ, MH(v,L)ss contains a μ-stable sheaf if and only if

(A) there is no stable sheaf E such that v(E) = (r, ξ, b), 〈v(E)2〉 = −1,−2,

and 〈v2〉 ≥ 0; or

(B) there is a stable sheaf E such that v(E) = (r, ξ, b), 〈v(E)2〉 = −1, and

〈v2〉 ≥ l2; or

(C) there is a stable sheaf E such that v(E) = (r, ξ, b), 〈v(E)2〉 = −2, and

〈v2〉 ≥ 2l2.

Moreover, if lr > 1, then under the same condition, MH(v,L)ss contains a μ-

stable locally free sheaf.

By Corollary 1.2, MH(v,L)μss �= ∅ if 〈v2〉> 0. Hence it is sufficient to compute

the codimension of MH(v,L)μss \MH(v,L)μs. Although the arguments in this

section are similar to those of [23], we repeat them here since several estimates

are slightly different. Throughout this section, H is a general polarization with

respect to v.

2.1. Case A
In this section, we treat case A. Let v := l(r+ ξ) + a�X ∈H∗(X,Q) be a Mukai

vector. We first estimate the dimension of various locally closed substacks of

M(v).

LEMMA 2.2

If MH(v)μss �= ∅, then 〈v2〉 ≥ 0. If the equality holds, then MH(v)μss =MH(v)ss

and E ∈MH(v)ss is S-equivalent to
⊕

iEi, where the Ei’s are μ-stable locally

free sheaves with v(Ei) ∈Qv.

Proof

Let E be a μ-semistable sheaf of v(E) = v, and choose a Jordan–Hölder filtration

of E with respect to μ-stability whose factors are μ-stable sheaves Ei (1≤ i≤ s).
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We set

(2.1) v(Ei) := li(r+ ξ) + ai�X , 1≤ i≤ s.

By our assumption, 〈v(Ei)
2〉= li(li(ξ

2)− 2rai) �=−1,−2. Thus 〈v(Ei)
2〉 ≥ 0 for

all i. Since

(2.2)
〈v2〉
l

=
s∑

i=1

〈v(Ei)
2〉

li
,

we get 〈v2〉 ≥ 0. Assume that 〈v2〉= 0. Then 〈v(Ei)
2〉= 0 for all i. Since

〈v(Ei)
2〉

rk(Ei)2
= (ξ2)− 2

ai
rli

,

χ(Ei)

rk(Ei)
=

1

2
+

ai
rli

,

(2.3)

we see that χ(Ei)/ rk(Ei) = χ(E)/ rk(E) for all i. Thus E is semistable. Since

E∨∨
i are μ-stable locally free sheaves with 〈v(E∨∨

i )2〉 ≥ 0 and 0 = 〈v(Ei)
2〉 =

〈v(E∨∨
i )2〉 + 2rkEiχ(E

∨∨
i /Ei), we see that χ(E∨∨

i /Ei) = 0. Thus all Ei’s are

locally free, which shows that E is also locally free. �

COROLLARY 2.3

If 〈v2〉= 0, then MH(v)μss consists of locally free sheaves.

DEFINITION 2.1

Let w = l0(r+ ξ)+a0�X (l0 > 0) be a primitive Mukai vector such that 〈w2〉= 0.

Since a0/l0 = (ξ2)/(2r), w is uniquely determined.

By Lemma 2.2 and Corollary 2.3, MH(w)μss consists of μ-stable locally free

sheaves. Since l0(ξ
2)− 2a0r = 0, l0r is even. In particular, a0 ∈ Z.

LEMMA 2.4

For a Mukai vector u= (lr, lξ, a), r | 〈u,w〉.

Proof

We note that l0r is even and a0 ∈ Z. If r is even, then a ∈ Z. If r is odd, then l0
is even. Hence l0a ∈ Z. Then 〈u,w〉= (la0 − l0a)r is divisible by r. �

LEMMA 2.5

(1) We have that

(2.4) dim
(
MH(v)μss \MH(v)ss

)
≤ 〈v2〉 − 1.

(2) Assume that 〈v2〉> 0. Then

(2.5) dim
(
MH(v)μss \MH(v)s

)
≤ 〈v2〉 − 1.

In particular, if MH(v)μss �= ∅, then MH(v)s �= ∅ and dimMH(v)μss = 〈v2〉.



880 Kōta Yoshioka

Proof

By Lemma 1.5, it is sufficient to prove (1). Let F be a μ-semistable sheaf of

v(F ) = v. We assume that F is not semistable. Let

(2.6) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

be the Harder–Narasimhan filtration of F . We set

(2.7) vi := v(Fi/Fi−1) = li(r+ ξ) + ai�X , 1≤ i≤ s.

Since χ(Fi/Fi−1)/ rk(Fi/Fi−1)>χ(Fi+1/Fi)/ rk(Fi+1/Fi), we get that

(2.8)
a0
l0

≥ a1
l1

>
a2
l2

> · · ·> as
ls
,

where the leftmost inequality is a consequence of 〈w2〉= 0, 〈v2i 〉 ≥ 0, and (2.3).

Let FHN(v1, v2, . . . , vs) be the substack of MH(v)μss whose element E has the

Harder–Narasimhan filtration of the above type. We will prove that dimFHN(v1,

v2, . . . , vs)≤ 〈v2〉 − 1. Since

Hom
(
Fi/Fi−1, Fj/Fj−1(KX)

)
= 0

for i < j, [9, Lemma 5.3] implies that

(2.9) dimFHN(v1, v2, . . . , vs) =

s∑
i=1

dimMH(vi)
ss +

∑
i<j

〈vj , vi〉.

For i < j, by using Lemma 2.2 and (2.8), we see that

〈vi, vj〉= lilj(ξ
2)− (liaj + ljai)r

= lilj(ξ
2)− 2ljair+ (ailj − ajli)r

= lj
(
li(ξ

2)− 2air
)
+ (ailj − ajli)r

≥ (ailj − aj li)r ≥ r/2≥ 1,

(2.10)

where the inequality r ≥ 2 comes from our assumption for case A. Hence if

〈v2i 〉> 0 for all i, then, by using Lemma 1.5, we see that

(2.11) dimFHN(v1, v2, . . . , vs) = 〈v2〉 −
∑
i<j

〈vi, vj〉 ≤ 〈v2〉 − 1.

Assume that 〈v2i 〉 = 0; that is, vi = l′iw, l′i ∈ Z. Then i = 1 and r | 〈vj ,w〉 by

Lemma 2.4. Hence

〈v1, vj〉 − l′1 = l′1
(
〈w,vj〉 − 1

)
≥ l′1(r− 1)> 0.

(2.12)

In this case, by using Proposition 1.9, we see that

(2.13) dimFHN(v1, v2, . . . , vs)≤ 〈v2〉 −
(∑
i<j

〈vi, vj〉 − l′1

)
≤ 〈v2〉 − 1.

Hence we get our lemma. �
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PROPOSITION 2.6

Assume that 〈v2〉> 0. Then for a general H ,

(2.14) dim
(
MH(v)s \MH(v)μs

)
< 〈v2〉.

In particular, MH(v)μs �= ∅. Moreover, there is a μ-stable locally free sheaf in

each irreducible component.

Proof

Let E be a stable sheaf with v(E) = v, and let E1 be a μ-stable subsheaf of E

such that E/E1 is torsion-free. We set

v1 := v(E1) = (l1r, l1ξ, a1),

v2 := v(E/E1) = (l2r, l2ξ, a2).
(2.15)

Since χ(E1)/ rkE1 <χ(E)/ rkE, we get 〈v(E1)
2〉> 0 and

(2.16)
a1
l1

<
a2
l2
.

Let J(v1, v2) be the substack of MH(v)s consisting of E which has a subsheaf

E1 ⊂ E. We will use Lemma 0.6 to estimate dimJ(v1, v2). By [9, Lemma 3.1],

dimHom(E1, (E/E1)(KX))≤ l2/l1. We will bound the dimension of the substack

Nn(v1, v2) :=
{
(E1,E2) ∈MH(v1)

μs ×MH(v2)
μss

∣∣ dim(E∨∨
1 /E1) = n,

dimHom
(
E1,E2(KX)

)
�= 0

}
.

(2.17)

For a fixed E2 ∈MH(v2)
μss,

(2.18) #
{
E∨∨

1

∣∣E1 ∈MH(v1)
μs,Hom

(
E1,E2(KX)

)
�= 0

}
<∞.

Indeed the double dual of the graded object associated to the Jordan–Hölder

filtration with respect to μ-stability is well defined and E∨∨
1 must be one of

these stable factors. For a locally free sheaf, let QuotnF/X be the quot-scheme

parameterizing all quotients F → A such that A is a 0-dimensional sheaf of

χ(A) = n. In [19, Theorem 0.4, Section 5], we computed the number of rational

points of QuotnF/X over finite fields, which implies that

(2.19) dimQuotnF/X = (rkF + 1)n.

Since E1 ∈MH(v1)
μs is simple, we see that

dim
{
E1 ∈MH(v1)

μs | dim(E∨∨
1 /E1) = n,Hom

(
E1,E2(KX)

)
�= 0

}
≤ (rkv1 + 1)n− 1.

(2.20)

Since E∨∨
1 is μ-stable, Lemma 2.2 implies that 〈v(E∨∨

1 )2〉 ≥ 0. Then we get

(2.21) dimMH(v1)
ss = 〈v21〉= 2l1rn+

〈
v(E∨∨

1 )2
〉
≥ 2l1rn.

Since r ≥ 2, we get

dimNn(v1, v2)≤ dimMH(v1)
μs +dimMH(v2)

μss −
(
(l1r− 1)n+ 1

)
≤ dimMH(v1)

μs +dimMH(v2)
μss − 2

(2.22)
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if n > 0. If n = 0, then the same inequality also holds, since 〈v21〉 > 0 = 2l1rn.

Moreover, if 〈v22〉= 0, then by Lemma 2.2, Hom(E1,E2) �= 0 implies that v(E∨∨
1 ) ∈

Qv2, which shows that l1 ∈ l0Z. Therefore Nn(v1, v2) = ∅ unless l1 ∈ l0Z.

If 〈v22〉 > 0, then Lemma 2.5 implies that dimMH(v2)
μss = 〈v22〉. We also

have dimMH(v1)
μs = 〈v21〉 by 〈v21〉> 0. Hence Lemma 0.6 and (2.22) imply that

dimMH(v)s − dimJ(v1, v2) =min
(
〈v1, v2〉 −

l2
l1

+ 2, 〈v1, v2〉
)

= l1
〈v22〉
2l2

+ l2
〈v21〉
2l1

−max
( l2
l1

− 2,0
)
> 0.

(2.23)

We next treat the case where 〈v22〉= 0. Then v2 = l′2w, l
′
2 ∈ Z. By Proposition 1.9,

dimMH(v2)
μss ≤ 〈v22〉+ l′2. If l1 ∈ l0Z, then l2/l1 ≤ l′2. In this case, by using (2.22)

and Lemma 2.4, we see that

dimMH(v)s − dimJ(v1, v2)≥ 〈v1, v2〉 − l2/l1 − l′2 + 2

≥ l′2
(
〈v1,w〉 − 2

)
+ 2> 0.

(2.24)

If l1 /∈ l0Z, then since Nn(v1, v2) = ∅, we see that

(2.25) dimMH(v)s − dimJ(v1, v2) = l′2
(
〈v1,w〉 − 1

)
> 0

by Lemma 2.4.

We will prove that there is a μ-stable locally free sheaf. Let MH(v)nlf be the

closed substack of MH(v)μs consisting of nonlocally free sheaves. By (2.19), we

have

dimMH(v)nlf ≤max
b>0

(
dimMH(v+ b�X)μs + (rl+ 1)b

)
≤ 〈v2〉+ δ− (rl− 1),

(2.26)

where

(2.27) δ =

⎧⎪⎪⎨⎪⎪⎩
l
l0
, v+ b�X = l

l0
w, �(w) = 2,

[ l
2l0

], v+ b�X = l
l0
w, �(w) = 1,

0, otherwise.

If �(w) = 1, then

(rl− 1)− δ ≥ l

l0
(rl0 − 1/2)− 1> 0,

since rl0 is even. If �(w) = 2, then

(rl− 1)− δ ≥ l

l0
(rl0 − 1)− 1> 0,

unless rl0 = 2, l = l0. In this case, we see that r = 1 and w = 2eξ. Since u :=

(1, ξ, (ξ
2)+1
2 ) is a Mukai vector satisfying 〈u2〉 = −1, this case does not occur.

Therefore dimMH(v)nlf < 〈v2〉 and the last claim holds. �
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2.2. Case B
Assume that r | (ξ2) + 1. Then v0 := (r, ξ, a0) is a primitive Mukai vector with

〈v20〉 = −1, where a0 :=
(ξ2)+1

2r ∈ Z + 1
2 . We take a general polarization H with

respect to v0. Let F be the μ-stable locally free sheaf with v(F ) = v0.

LEMMA 2.7

If there is a μ-stable sheaf E with v(E) = lv0 + b�X , then 〈v(E)2〉 ≥ l2 or E ∼=
F,F (KX).

Proof

If rkE = r, then l= 1 and b≤ 0, which implies the claim. Assume that rkE > r.

By the μ-stability of E,F , Hom(F,E) = Hom(E,F (KX)) = 0. Hence 0 ≥
χ(F,E) =−〈v0, v(E)〉= l+ br. Since 〈v(E)2〉= l(−l−2br), we get the claim. �

REMARK 2.2

Since l = gcd(rkE,c1(E)) ∈ Z, we have v(E), lv0 ∈ v(K(X)), which implies that

b ∈ Z.

LEMMA 2.8 (see [22, Lemma 4.4])

Let v be an arbitrary Mukai vector of rkv > 0. Let MH(v)μss be the moduli

stack of μ-semistable sheaves E of v(E) = v, and let MH(v)pμss be the closed

substack of MH(v)μss consisting of properly μ-semistable sheaves. We assume

that 〈v2〉 ≥ l2. Then

(1)

(2.28) 〈v2〉 − dimMH(v)pμss ≥ 〈v2〉
2l

− l

2
+ 1

unless r = 1 and l= 2;

(2) if MH(v)μss is not empty, then there is a μ-stable locally free sheaf E of

v(E) = v in each irreducible component, unless v = (2,0,−1)eξ;

(3) if v = (2,0,−1)eξ, then there is an irreducible component of MH(v,L)ss

containing μ-stable locally free sheaves.

Proof

(1) By Lemma 0.5, we get that

(2.29) dimMH(v)μss ≥ 〈v2〉.

We will show that

(2.30) dimMH(v)pμss ≤ 〈v2〉 −
( 〈v2〉

2l
− l

2
+ 1

)
.

For this purpose, we estimate the moduli number of Jordan–Hölder filtrations.

Let E be a μ-semistable sheaf of v(E) = v, and let

(2.31) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft =E
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be a Jordan–Hölder filtration of E with respect to μ-stability. We set Ei :=

Fi/Fi−1. We also set

v(E) := lv0 + a�X , v(Ei) := liv0 + ai�X .

By Lemma 2.7, 〈v2i 〉 �= 0. Hence dimMH(vi)
μs = 〈v2i 〉. Let J(v1, v2, . . . , vt) be the

substack of MH(v)μss such that E ∈MH(v)μss has a filtration (2.31). By using

Lemma 0.6 successively, we see that

dimJ(v1, v2, . . . , vt)

≤
∑
i

dimMH(vi)
μs +

∑
i<j

(
dimExt1(Ej ,Ei)− dimHom(Ej ,Ei)

)
=−χ(E,E) +

∑
i>j

χ(Ej ,Ei) +
∑
i<j

dimExt2(Ej ,Ei).

(2.32)

Since 〈v(Ei), v(Ej)〉=−lilj − r(liaj + ljai), we see that

(2.33)
∑
i>j

χ(Ej ,Ei) =−
∑
i>j

〈
v(Ej), v(Ei)

〉
=−

∑
i

(l− li)〈v(Ei)
2〉

2li
.

We set maxi{li}= (l− k). If 〈v(Ei)
2〉=−1 for all i, then v(Ei) = v0 for all i. As

〈v(E)2〉 ≥ l2, this is impossible. So there is an integer i0 such that 〈v(Ei0)
2〉 ≥ 0.

Since (l − k) + (t− 1)≤
∑

i li = l, we obtain that t≤ k + 1. Since l − li − k ≥ 0

and 〈v(Ei)
2〉 ≥ −1, we get that∑
i>j

〈
v(Ej), v(Ei)

〉
= k

∑
i

〈v(Ei)
2〉

2li
+
∑
i

(l− li − k)〈v(Ei)
2〉

2li

= k
〈v(E)2〉

2l
+
∑
i

(l− li − k)〈v(Ei)
2〉

2li

≥ k
〈v(E)2〉

2l
−
∑
i 	=i0

(l− li − k)

2

≥ k
〈v(E)2〉

2l
− (l− 1− k)k

2
.

Assume that Ext2(Ej ,Ei) = 0 for some i < j. Then we get that∑
i<j

dimExt2(Ej ,Ei)≤
(k+ 1)k

2
− 1.

Then the moduli number of these filtrations is bounded by

(2.34) 〈v2〉 − k
〈v2〉
2l

+
(l− 1− k)k

2
+

(k+ 1)k

2
− 1≤ 〈v2〉 − 1− k

( 〈v2〉
2l

− l

2

)
.

Therefore we get a desired estimate for this case.

Assume that Ext2(Ej ,Ei) �= 0 for all i < j. Then E∨∨
i

∼= E∨∨
j (KX). In par-

ticular, li = lj for all i < j. Suppose first that li ≥ 2 for all i. Then li = l − k
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implies that k ≤ l− 2 and ∑
i>j

〈vi, vj〉= k
〈v2〉
2l

.

Since 4≤ l1 + l2 = 2(l− k)≤
∑

i li = l, we have 2≤ l/2≤ k. Hence the dimension

of these filtrations is bounded by

〈v2〉 − k
〈v2〉
2l

+
(k+ 1)k

2
≤ 〈v2〉 − k

( 〈v2〉
2l

− l− 1

2

)
≤ 〈v2〉 −

( 〈v2〉
2l

− l

2
+ 1

)
.

(2.35)

If instead li = 1 for all i, then we must have t= 2, and hence l = 2. Indeed,

if we have h < i < j, then E∨∨
h

∼= E∨∨
i (KX), E∨∨

h
∼= E∨∨

j (KX), and E∨∨
i

∼=
E∨∨

j (KX), from which it follows that E∨∨
i

∼= E∨∨
i (KX). As rkEi is odd, this

is impossible, so t= 2 as claimed, and l= 2 follows from this and li = 1.

Assume that r > 1. Then a general member E1 ∈MH(v1)
μs is locally free

by a similar estimate to (2.26). If there is a nonzero homomorphism φ : E1 →
E2(KX), then φ is injective and cokerφ is 0-dimensional by the μ-stability of

E1 and E2. Since E1 is locally free, E1
∼= E2(KX). In particular v1 = v2 and

v = 2v1. Since 〈v2〉 ≥ l2, 〈v21〉 = 〈v22〉 > 0. Then for a general locally free sheaf

E1, we have Hom(E1,E2(KX)) = 0. Therefore for a general filtration, we have

Ext2(E2,E1) = 0, which shows that the same estimate of (2.34) holds. Therefore

(1) holds.

(2) The existence of a locally free sheaf follows from Lemma 2.7 and the

last paragraph of the proof of Proposition 2.6, unless r = 1 and l = 2. So we

assume that r = 1 and l = 2. This case is treated by Kim [8]. For completeness,

we give a different argument. If E2 is not locally free or detE1 = detE2, then

Ext2(E2,E1) = 0 for a general filtration, and hence the same estimate of (2.34)

holds. On the other hand, if E2 is locally free and E1 = IZ ⊗ E2(KX) (which

implies that E is not locally free), then we only have the estimate

(2.36) 〈v2〉 − k
〈v2〉
2l

+
(l− 1− k)k

2
+

(k+ 1)k

2
≤ 〈v2〉 −

( 〈v2〉
2l

− l

2

)
.

In this case, if 〈v2〉> 4, then there is a μ-stable locally free sheaf.

(3) We set v := (2,0,−1). We have thatMH(v,0)ss contains a μ-stable locally

free sheaf by the proof of (2). Indeed, we have detE1 = detE2, which shows (2.34).

We next treat MH(v,KX)ss. By the proof of (2), it is sufficient to construct a

μ-semistable locally free sheaf E of v(E) = v and detE =OX(KX). Indeed, for

an irreducible component containing a locally free sheaf, E1 is a locally free sheaf

and there is an ideal sheaf of two points with E2 =E1(KX)⊗ IZ′ , which shows

(2.34).

For the ideal sheaf IZ of two points, we have

Hom
(
IZ(KX),OX

)
=Ext2

(
IZ(KX),OX

)
= 0.
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Hence dimExt1(IZ(KX),OX) = 1. We take a nontrivial extension

(2.37) 0→OX →E → IZ(KX)→ 0.

Since Ext1(IW (KX),OX) = 0 for c2(IW ) = 0,1, if E is not locally free, then

E∨∨ ∼=OX ⊕OX(KX), which shows that the exact sequence (2.37) splits. There-

fore E is locally free. �

REMARK 2.3

For surjective homomorphisms φ1 :OX → kx ⊕ ky and φ2 :OX(KX)→ kx ⊕ ky ,

the kernel E of

OX ⊕OX(KX)
(φ1,φ2)−→ kx ⊕ ky

is a stable nonlocally free sheaf. Then they form an irreducible component of

MH(v,KX)ss consisting of nonlocally free sheaves. Therefore MH(v,KX)ss has

at least two irreducible components. Combining [24, Remark 4.1], the

MH(2v0,L)
ss are reducible if 〈v20〉= 1 and L≡KX mod 2.

By the reflection associated to v0 (see [24]), we get the following result.

PROPOSITION 2.9

Assume that 2br− l > 0; that is, 〈(lv0 − b�X)2〉= l(2br− l)> 0. Then

MH(lv0 − b�X)ss ∼=MH

(
(2br− l)v∨0 − b�X

)ss
.

2.3. Case C
Assume that there is a stable sheaf E0 such that v(E0) = (r, ξ, a0) and 〈v(E0)

2〉=
−2. Thus we assume that r is even, r | (ξ2)/2+1, and ξ ≡D+ r

2KX mod 2, where

D is a nodal cycle (see Theorem 1.1). We set v0 = (r, ξ, a0). As in the proof of

Lemma 2.7, we have the following.

LEMMA 2.10

If MH(v)μs �= ∅, then 〈v2〉 ≥ 2l2 or v = v0.

PROPOSITION 2.11

Assume that 〈v2〉 ≥ 2l2. Then MH(v)μs �= ∅. Moreover, each irreducible compo-

nent contains a μ-stable locally free sheaf.

Proof

By Lemma 0.5, we get that

(2.38) dimMH(v)μss ≥ 〈v2〉.

We will show that

(2.39) dimMH(v)pμss ≤ 〈v2〉 −
( 〈v2〉

2l
− l+ 1

)
.
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For this purpose, we estimate the moduli number of Jordan–Hölder filtrations.

Let E be a μ-semistable sheaf of v(E) = v, and let

(2.40) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft =E

be a Jordan–Hölder filtration of E with respect to μ-stability. We set Ei :=

Fi/Fi−1. We also set

v(E) := lv0 + a�X , v(Ei) := liv0 + ai�X .

By Lemma 2.10, 〈v2i 〉 �= 0. Hence

(2.41) dimMH(vi)
μs =

{
〈v2i 〉, if vi �= v0,

〈v2i 〉+ 1=−1, if vi = v0.

Since 〈v2〉> 0, there is an integer i0 such that vi �= v0. Let J(v1, v2, . . . , vt) be the

substack of MH(v)μss such that E ∈MH(v)μss has a filtration (2.40). By using

[9, Lemma 5.2] successively, we see that

dimJ(v1, v2, . . . , vt)

≤
∑
i

dimMH(vi)
μs +

∑
i<j

(
dimExt1(Ej ,Ei)− dimHom(Ej ,Ei)

)
≤−χ(E,E) +

∑
i>j

χ(Ej ,Ei) +
∑
i<j

dimExt2(Ej ,Ei) + (t− 1).

(2.42)

By the same computation of [22, Lemma 4.4], we get the desired estimate. Hence

the existence of a locally free sheaf follows by Lemma 2.10 and the last paragraph

of the proof of Proposition 2.6. �

By the (−2)-reflection associated to v0, we also get the following.

PROPOSITION 2.12

Assume that br− l > 0; that is, 〈(lv0 − b�X)2〉= 2l(br− l)> 0. Then

MH(lv0 − b�X)ss ∼=MH

(
(br− l)v∨0 − b�X

)ss
.

3. Moduli spaces on elliptic surfaces

3.1. f -semistability
In this section, we study moduli spaces of semistable sheaves on elliptic sur-

faces. Then we apply the results to the moduli spaces on Enriques surfaces, since

Enriques surfaces have elliptic fibrations. Since we use the Bogomolov inequality,

we assume that the characteristic of k is zero or the Bogomolov inequality holds.

In particular, we can apply the results for moduli spaces on Enriques surfaces by

Theorem 1.1.

Let π :X →C be an elliptic surface such that every fiber is irreducible. Let

f be a fiber of π. We have a homomorphism

(3.1)
τ : K(X) → Z⊕NS(X)⊕Z,

E �→
(
rkE,c1(E), χ(E)

)
.
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We set K(X)top :=K(X)/ker τ . For e ∈K(X)top, let M(e) be the moduli stack

of coherent sheaves E whose topological invariants are e. Let MH(e)ss (resp.,

MH(e)s) be the substack of M(e) consisting of semistable sheaves (resp., stable

sheaves). Let E be a torsion-free sheaf on X . We denote by e ∈K(X) the class

of E in K(X). Let H be an ample divisor on X , and set Hf :=H +nf , where n

is a sufficiently large integer depending on e. Let D be a curve on X such that

(D,f) = 0. For a coherent sheaf F on D, we set

deg(F ) := χ(F )− χ(OD) = χ(F ),

degE(F ) := deg(E∨ ⊗ F ) = rk(E)degF −
(
c1(E), c1(F )

)
= χ(E,F ).

(3.2)

DEFINITION 3.1

For a coherent sheaf E, we set

Δ(E) := 2 rkEc2(E)− (rkE − 1)
(
c1(E)2

)
.

DEFINITION 3.2

(1) A torsion-free sheaf E is f -semistable if for all subsheaves F �= 0 of E,

(c1(F ), f)

rkF
≤ (c1(E), f)

rkE
.

If the inequality is strict for all subsheaves F of E with 0< rkF < rkE, then E

is f -stable.

(2) LetMf (e)
ss be the substack ofM(e) consisting of f -semistable sheavesE.

REMARK 3.1

(1) The f -semistability of E is equivalent to the semistability of the restric-

tion E ⊗ k(η) of E to the generic fiber; f -semistability is an open condition.

Indeed, E is f -semistable if and only if E|π−1(t) is semistable for a point t ∈ C,

which is an open condition.

(2) Mf (e)
ss is not bounded in general. For a positive number B, let Mf (e)

ss
B

be the open substack of Mf (e)
ss consisting of E such that for any subsheaf F

of E,

(c1(F ),H)

rkF
≤ (c1(E),H)

rkE
+B.

Then Mf (e)
ss
B is bounded (see [11], [12]) and Mf (e)

ss =
⋃

B Mf (e)
ss
B .

LEMMA 3.1

We set

(3.3) N(H,e) :=
(H,f)2(rke)2Δ(e)− 2(H2)

4(H,f)
.

Then we have the following results.

(1) For rational numbers n1, n2 with n1, n2 >N(H,e), H+n1f and H+n2f

are not separated by a wall with respect to e. Thus MH+n1f (e)
ss =MH+n2f (e)

ss.
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(2) A torsion-free sheaf E is semistable with respect to H+nf (n >N(H,e))

if and only if E is f -semistable and for any subsheaf F �= 0 with (rkEc1(F )−
rkFc1(E), f) = 0,

(3.4)
χ(F (kH))

rkF
≤ χ(E(kH))

rkE
(k� 0).

Proof

(1) Assume that there is a wall between H + n1f and H + n2f (N(H,e)< n1 <

n2). Then by [20, Definition 2.1], there is an exact sequence

(3.5) 0→E1 →E →E2 → 0

such that

(i) E1 and E2 are (H + λf)-semistable, and

(ii) ξ := rkE2c1(E1)− rkE1c1(E2) ∈ (H + λf)⊥ (n1 ≤ λ≤ n2).

We express ξ as ξ = xH + yf +D (D ∈H⊥ ∩ f⊥). Then y = − ((H2)+λ(H,f))
(f,H) x.

Since x(H,f) = (ξ, f) is an integer, if x �= 0, then we get

(ξ2) =−x2
(
(H2) + 2(H,f)λ

)
+ (D2)

≤− ((H2) + 2(H,f)λ)

(H,f)2

<− (rke)2Δ(e)

2
.

(3.6)

By [20, Lemma 2.1], we see that −(ξ2)≤ (rke)2Δ(e)/2 (see also [24, Section 5]).

Hence we get x= 0. Thus there is no wall between H + n1f and H + n2f (n1 <

n2).

(2) Let E be a torsion-free sheaf with a topological invariant e. By (1), the

following conditions are equivalent.

(a) For a rational number n >N(H,e),

(3.7)
(c1(F ),H + nf)

rkF
≤ (c1(E),H + nf)

rkE

for all subsheaves F �= 0 of E; that is, E is μ-semistable with respect to H +nf .

(b) For any rational number n >N(H,e),

(3.8)
(c1(F ),H + nf)

rkF
≤ (c1(E),H + nf)

rkE

for all subsheaves F �= 0 of E.

(c) We have that

(3.9)
(c1(F ), f)

rkF
<

(c1(E), f)

rkE
or

(3.10)
(c1(F ), f)

rkF
=

(c1(E), f)

rkE
,

(c1(F ),H)

rkF
≤ (c1(E),H)

rkE

for all subsheaves F �= 0 of E.
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Obviously (b) ⇔ (a) and (b) ⇒ (c) hold. We prove that (c) implies (a). For

a torsion-free sheaf E satisfying (c), let N(E)(>N(H,e)) be a rational number

satisfying

(3.11) N(E)>
(
rkEc1(F )− rkFc1(E),H

)
for all subsheaves F of E. Let F be a subsheaf of E. By (c), it is sufficient to

prove that (rkEc1(F ) − rkFc1(E),H + nf) < 0 for n ≥ N(E) if (rkEc1(F ) −
rkFc1(E), f)< 0. By (3.11),(

rkEc1(F )− rkFc1(E),H + nf
)

=
(
rkEc1(F )− rkFc1(E),H

)
+ n

(
rkEc1(F )− rkFc1(E), f

)
<N(E)− n≤ 0.

(3.12)

Therefore (a) holds. Hence the claim holds. �

DEFINITION 3.3

A torsion-free sheaf E is semistable with respect to Hf if E is semistable with

respect to H + nf for all n� 0.

PROPOSITION 3.2

Let n be a rational number with n > N(H,e) + 2. Assume that (ε, x) ∈ (H⊥ ∩
f⊥)Q × Q satisfies |(ε2)| < (H,f) and |x| < 1. Then M(H+ε)+(n+x)f (e)

ss =

M(H+ε)f (e)
ss. Thus for a chamber C with Hf ∈ C, there is ε ∈ (H⊥ ∩ f⊥)Q such

that (H + ε)f ∈ C.

Proof

Since n >N(H,e) + 2, we get

n+ x >N(H,e) + 2− |x|>N(H,e) + 1>N(H + ε,e).

Applying Lemma 3.1(1), we get M(H+ε)+(n+x)f (e)
ss =M(H+ε)f (e)

ss. �

LEMMA 3.3 (Bogomolov inequality)

If Mf (e)
ss �= ∅, then Δ(e)≥ 0.

Proof

If E is an f -stable sheaf E, then it is Hf -stable, and hence Δ(E) ≥ 0 by the

Bogomolov inequality.

We next treat the general case. We note that E ∈Mf (e)
ss is a successive

extension of f -stable sheaves Ei with (c1(Ei), f)/ rkEi = (c1(E), f)/ rkE. For an

extension

0→E1 →E →E2 → 0
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of Ei ∈Mf (ei)
ss with (c1(E1), f)/ rkE1 = (c1(E2), f)/ rkE2, we have

Δ(E) = rkE
Δ(E1)

rkE1
+ rkE

Δ(E2)

rkE2
− ((rkE1c1(E2)− rkE2c1(E1))

2)

rkE1 rkE2

≥ rkE
Δ(E1)

rkE1
+ rkE

Δ(E2)

rkE2
.

(3.13)

Hence by the induction of rkE, we get the claim. �

DEFINITION 3.4

We set

(3.14) N := NSf(X)/
(
Qf ∩NSf(X)

)
.

Let V be the set of (D,n) ∈N ×Z such that

D = rkEc1(E1)− rkE1c1(E) mod Qf,

n=Δ(E1),
(3.15)

where E1 is a subsheaf of E ∈Mf (e)
ss satisfying

(1) E/E1 is a torsion-free sheaf, and

(2) (rkEc1(E1)− rkE1c1(E), f) = 0.

LEMMA 3.4

(1) V is a finite set.

(2) There is a small neighborhood U of NS(X)R ∩H⊥ ∩ f⊥ such that for

ε ∈ U ∩NS(X)Q and any (D,n) ∈ V ,

(D,H + ε)≥ 0 =⇒ (D,H)≥ 0.

Proof

(1) We note that E1 and E2 := E/E1 are f -semistable sheaves. Hence Δ(E1),

Δ(E2) ≥ 0 by Lemma 3.3. Since rkE2c1(E1) − rkE1c1(E2) = rkEc1(E1) −
rkE1c1(E), (3.13) implies that

(rkE)2Δ(E)≥−(D2)≥ 0,

Δ(E)≥Δ(E1) = n≥ 0.
(3.16)

Since N ∩ f⊥ is negative definite, the choice of D is finite. Therefore V is a finite

set.

(2) This is obvious. �

DEFINITION 3.5

Let VB,H be the set of τ ∈ τ(K(X)), where there is an exact sequence

(3.17) 0→E1 →E →E2 → 0
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such that E ∈Mf (e)
ss
B , E2 is a torsion-free sheaf, and E1 satisfies

τ(E1) = τ,(
rkEc1(E1)− rkE1c1(E), f

)
= 0,(

rkEc1(E1)− rkE1c1(E),H
)
≥ 0.

(3.18)

LEMMA 3.5

We have that VB,H is a finite set.

Proof

By

(3.19) B(rkE)2 >B rkE rkE1 ≥
(
rkEc1(E1)− rkE1c1(E),H

)
≥ 0

and Lemma 3.4, we get the claim. �

PROPOSITION 3.6

We can take ε ∈ (H⊥ ∩ f⊥)Q satisfying the following properties:

(i) |(ε2)|< (H,f);

(ii) for E ∈Mf (H,e)ssB , let

(3.20) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

be the Harder–Narasimhan filtration with respect to (H + ε) + nf , where n >

N(H,e) + 1; then

(1) Ei := Fi/Fi−1 are semistable sheaves with respect to (H + ε)f ,

(2) (rkEc1(Ei)− rkEic1(E), f) = 0,

(3) H + ε is general with respect to τ(Ei) for all i.

Proof

For E ∈Mf (e)
ss, let N(E) be a number such that

(3.21) N(E)>
(
rk(E)c1(F )− rk(F )c1(E),H + ε

)
for all subsheaves F of E. Let

(3.22) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E

be the Harder–Narasimhan filtration with respect to (H + ε) +N(E)f . We set

Di := (rkE)c1(Fi)− (rkFi)c1(E) ∈NS(X).

Then (Di,H+ε+N(E)f)≥ 0 for all i. If (Di, f)< 0, then by (3.21) and (Di, f) ∈
Z, we have (

Di,H + ε+N(E)f
)
<N(E) +N(E)(Di, f)≤ 0.

Therefore (Di, f)≥ 0. On the other hand, E ∈Mf (e)
ss implies that (Di, f)≤ 0.

Therefore we have (Di, f) = 0, which implies that (Di,Δ(Fi)) ∈ V , where Di =

Di mod Qf . Since E is f -semistable, every Fi is f -semistable. We set Ei :=
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Fi/Fi−1. Then the Ei’s are f -semistable, and hence Δ(Ei)≥ 0. By using (3.13)

and (rkEc1(Ei)− rkEic1(E), f) = 0, we see that Δ(Ei)<Δ(E). Hence

N(H + ε,Ei)<N(H + ε,e)<N(H,e) + 1.

Applying Lemma 3.1 to Ei, the Ei’s are semistable with respect to (H + ε)+nf

for all n >N(H,e) + 1. Since

(3.23)
(c1(Ei)

rkEi
− c1(Ei+1)

rkEi+1
,H + ε+ nf

)
is independent of n, (3.22) is the Harder–Narasimhan filtration with respect to

(H + ε) + nf for all n >N(H,e) + 1.

By Lemma 3.4(2), we get (Di,H) ≥ 0. Thus τ(Fi) ∈ VB,H . Since VB,H is a

finite set, we can take ε such that H + ε is general for all (r2, ξ2, χ2)− (r1, ξ1, χ1),

where (ri, ξi, χi) ∈ VB,H (i = 1,2) satisfies r2 > r1. Therefore H + ε is general

with respect to τ(Ei). �

3.2. Some estimates on substacks

LEMMA 3.7

For E ∈Mf (e)
ss, there is an exact sequence

(3.24) 0→ Ẽ →E → F → 0

such that

(i) Ẽ|D is a stable purely 1-dimensional sheaf for every fiber D with reduced

structure,

(ii) F is a purely 1-dimensional sheaf supported on fibers, and

(iii) Hom(E′, F ) = 0 if E′ is a coherent sheaf of rank r on X such that E′
|D

is a semistable sheaf of degree (c1(E),D) for every D.

By these properties, Ẽ and F are uniquely determined by E.

Proof

If E|D is not purely 1-dimensional or purely 1-dimensional but not semistable,

then we take a surjective homomorphism φ : E → E|D → G such that G is a

semistable 1-dimensional sheaf with degE(G) < 0. We set E′ := kerφ. Then E′

is an f -semistable sheaf with rkE′ = rkE and (c1(E
′),D) = (c1(E),D). If E′

|D is

not semistable, then we continue the same procedure. Since

0≤Δ(E′) =Δ(E) + 2degE G<Δ(E),

we finally get a desired subsheaf Ẽ of E. We set F :=E/Ẽ. Since F is a succes-

sive extension of semistable 1-dimensional sheaves G with degE(G)< 0, we have

Hom(E′, F ) = 0. �

For the quotient F of E in (3.24), let

(3.25) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F
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be the Harder–Narasimhan filtration of F with respect to H . We remark that

semistability is independent of the choice of H by the irreducibility of fibers of π.

Then

(3.26) Hom
(
Fi/Fi−1, Fj/Fj−1(KX)

)
= 0, i < j.

By the construction of F , degE(Fi/Fi−1)< 0 for all i. In particular,

(3.27) Hom
(
Ẽ,Fi/Fi−1(KX)

)
= 0

for all i. Let

(3.28) Fi−1 = Fi−1,0 ⊂ Fi−1,1 ⊂ · · · ⊂ Fi−1,n(i−1) = Fi = Fi,0

be a filtration of Fi such that Fi,j/Fi,j−1 are stable sheaves; thus, Fi/Fi−1 is

S-equivalent to
⊕n(i−1)

j=1 Fi−1,j/Fi−1,j−1. We set Ei,j := ker(E → F/Fi,j). Then

we have a filtration

0⊂ Ẽ = E0,0 ⊂E0,1 ⊂ · · · ⊂E0,n(0) =E1,0 ⊂E1,1 ⊂ · · · ⊂Es−1,n(s−1) =Es =E

such that Ei,j/Ei,j−1
∼= Fi,j/Fi,j−1. By Lemma 3.9, Fi,j/Fi,j−1 are stable sheaves

on a reduced and irreducible divisor Dij . Since the Ei,j ’s are torsion-free and

Ei,j → Fi,j/Fi,j−1 are surjective, we have

rkE = rkEi,j ≥ rkFi,j/Fi,j−1.

Let fi ∈K(X)top be the class of Fi/Fi−1, and let ẽ ∈K(X)top be the class of Ẽ.

We set

(rijDij , dij) :=
(
c1(Fij/Fi,j−1), χ(Fij/Fi,j−1)

)
,

where rij , dij ∈ Z and gcd(rij , dij) = 1. Then

0< rij ≤ r,

−degE(Fi,j/Fi,j−1) = rij
(
c1(E),Dij

)
− rdij > 0,

Δ(E) = 2
∑
i,j

(
rij
(
c1(E),Dij

)
− rdij

)
+Δ(Ẽ).

(3.29)

Hence we see that the choice of fi is finite.

PROPOSITION 3.8

Let F(ẽ, f1, . . . , fs) be the stack of filtrations

(3.30) 0⊂ Ẽ = F̃0 ⊂ F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃s−1 ⊂ F̃s =E

such that Ẽ ∈Mf (ẽ)
ss satisfies Lemma 3.7(i) and F̃i/F̃i−1 ∈MH(fi)

ss for all i.

Then

(3.31) dimF(ẽ, f1, . . . , fs) =−
∑
i

χ(fi, ẽ) + dimMf (ẽ)
ss +

∑
i

MH(fi)
ss.
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Proof

By (3.26), (3.27), and the Serre duality, we have

Ext2(Fj/Fj−1, Fi/Fi−1) = 0, i < j,

Ext2(Fi/Fi−1, Ẽ) = 0, 1≤ i≤ s.
(3.32)

Then the proof of [9, Lemma 5.3] implies that

dimF(ẽ, f1, . . . , fs)

=−
∑
i

χ(fi, ẽ)−
∑
i<j

χ(fj , fi) + dimMf (ẽ)
ss +

∑
i

MH(fi)
ss

=−
∑
i

χ(fi, ẽ) + dimMf (ẽ)
ss +

∑
i

MH(fi)
ss.

(3.33)

�

LEMMA 3.9

Let D be a reduced and irreducible curve on X with (D2) = 0. For an element

G1 ∈ K(X) with rkG1 > 0, let E be a G1-twisted stable purely 1-dimensional

sheaf such that Div(E) = rD and χ(E) = d. Then E is a stable sheaf on D. In

particular, gcd(r, d) = 1.

Proof

We note that OD(D) is a numerically trivial line bundle on D. Let T be the tor-

sion submodule of E|D. Then E′ :=E|D/T has the Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs =E′.

We set (c1(Fi/Fi−1), χ(Fi/Fi−1)) := (riD,di). Then ri ∈ Z>0,
∑s

i=1 ri ≤ r and

d1
r1

>
d2
r2

> · · ·> ds
rs

.

By the G1-twisted stability of E, we have

(rkG1)d− (c1(G1), rD)

(rD,H)
≤ (rkG1)ds − (c1(G1), rsD)

(rsD,H)
,

where the inequality is strict unless E ∼= Fs/Fs−1. Hence d/r ≤ ds/rs.

There is a positive integer k such that E is an O(k+1)D-module and

E(−kD)
kD→ E is nonzero. Then we have a nonzero homomorphism

E|D(−kD) → E. Then Hom(Fi/Fi−1(−kD),E) �= 0 for some i, which implies

that di/ri ≤ d/r. Then i= s and d/r = ds/rs. By the stability of E, E → Fs/Fs−1

is an isomorphism. In particular, E is a stable sheaf on D. Since D is a reduced

and irreducible curve of g(D) = 1, there is an elliptic surface X ′ with a section

such that D is a fiber. We set m := gcd(r, d) and (r′, d′) := (r/m,d/m). For a

general polarization H ′ on X ′, we consider the moduli space Y :=MH′(0, r′f, d′)

of stable sheaves F of dimension 1 on X ′ whose Chern character is (0, r′f, d′),

where f is a fiber. Let E be a universal family. Then by the general theory of

Fourier–Mukai transforms (see [27, Proof of Lemma 2.3.6]), we see that E is
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a successive extension of E|X′×{y} (y ∈ Y ). Since E is stable, m = 1. Therefore

gcd(r, d) = 1. �

COROLLARY 3.10

For E ∈ MH(0, rf, d)ss, we have a decomposition E ∼=
⊕

iEi such that Di :=

Supp(Ei) are fibers of π with reduced scheme structure, the Ei’s are successive

extensions of stable sheaves Eij on Di with
χ(Eij)

rk(Eij)(Di,H) =
d

r(f,H) , and Di∩Dj =

∅ for i �= j.

LEMMA 3.11

Let D be a reduced and irreducible curve on X with (D2) = 0. For a torsion-free

sheaf E on X, E|nD is semistable if and only if E|D is semistable. Moreover, if

E|D is semistable, then E is locally free in a neighborhood of D.

Proof

We have a filtration

(3.34) 0⊂E(−nD)⊂E
(
−(n− 1)D

)
⊂E

(
−(n− 2)D

)
⊂ · · · ⊂E(−D)⊂E.

We set L :=OD(−D). Then E(−kD)/E(−(k+ 1)D)∼=E|D ⊗L⊗k and χ(E|D ⊗
L⊗k) = χ(E|D) for 0< k < (n−1). Hence E|nD is semistable if and only if E|D is

semistable. If E|D is semistable, then E|D is purely 1-dimensional, which shows

that E is locally free in a neighborhood of D. �

3.3. For the case of an unnodal Enriques surface
Let X be an unnodal Enriques surface. Let U := Ze1 + Ze2 be a hyperbolic

sublattice of the lattice H2(X,Z)f . We assume that e1, e2 are effective and that

|2e1| gives an elliptic fibration π :X → P1. Since X is unnodal, every fiber of π

is irreducible. Let 2Π1,2Π2 be the multiple fibers of π. Let η ∈ P1 be the generic

point of P1. Let u := (r, de2,0) be a primitive and isotropic Mukai vector. We note

that r is even. We assume that gcd(r, d) = 1. For a Mukai vector v ∈ (0, re1, d)
⊥,

we can write

v = lu+ ne1 + δ + a�X ,

where l, n, a ∈ Z and δ ∈ U⊥. If v is primitive and �(v) = 2, then 2 | l,2 | n,2 | δ
and 2 � a. We can easily show the following claims.

LEMMA 3.12

Let vi := liu + nie1 + δi + ai�X (i = 1,2) be two primitive Mukai vectors with

li, ni, ai ∈ Z and δi ∈ U⊥.

(1) We have that

(3.35) 〈v1, v2〉=
l2
2l1

〈v21〉+
l1
2l2

〈v22〉 −
1

2l1l2

〈
(l2δ1 − l1δ2)

2
〉
.
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(2) If �(v1) = 2, then

(3.36) 〈v1, v2〉= (l1n2 + l2n1)d+ (δ1, δ2)− (l1a2 + l2a1)r ∈ 2Z.

Moreover, if �(v2) = 2 also holds, then 〈v1, v2〉 ∈ 4Z.

Let E be a f -stable sheaf with v(E) = lu+ ne1 + δ + a�X , where l, n, a ∈ Z and

δ ∈ U⊥. Since the f -stability implies the Hf -stability, rkE = lr is even, and X

is unnodal, we have 〈v(E)2〉 ≥ 0. Then as in the proof of Lemma 3.3, by using

Lemma 3.12, we get the following inequality.

LEMMA 3.13

If Mf (v)
ss �= ∅, then 〈v2〉 ≥ 0.

PROPOSITION 3.14

Assume that r is even and (r, d) = 1. We set

v := lu+ ne1 + δ + a�X , l, n, a ∈ Z, δ ∈ U⊥.

(1) Assume that 〈v2〉> 0. Then MHf
(v)ss is an open and dense substack of

Mf (v)
ss. In particular, dimMf (v)

ss = 〈v2〉.
(2) Assume that 〈v2〉= 0. Then dimMf (v)

ss ≤ [ l2 ].

Proof

It is sufficient to prove the claim for bounded substacks Mf (v)
ss
B , B ∈Q. Replac-

ing Hf by (H + ε)f in Proposition 3.6, we may assume that (1), (2), and (3) in

Proposition 3.6 hold for the Harder–Narasimhan filtration

(3.37) 0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

of F ∈ Mf (v)
ss
B . Indeed, if M(H+ε)f (v)

ss is dense, then since Proposition 3.2

implies that M(H+ε)f (v)
ss ⊂MHf

(v)ss, MHf
(v)ss is also dense.

By the boundedness of Mf (v)
ss
B (or Lemma 3.5), the choice of v(Fi/Fi−1)

(1≤ i≤ s) is finite. We set

(3.38) vi := v(Fi/Fi−1) = liu+ nie1 + δi + ai�X , 1≤ i≤ s.

By Lemma 3.13, 〈v2i 〉 ≥ 0 for all i. Let FHN(v1, v2, . . . , vs) be the substack of

MH(v)μss whose element E has the Harder–Narasimhan filtration of the above

type.

(1) Assume that 〈v2〉> 0. We will prove that

(3.39) dimFHN(v1, v2, . . . , vs)< 〈v2〉.
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Since Hom(Fi/Fi−1, Fj/Fj−1(KX)) = 0 for i < j, [9, Lemma 5.3] implies that

dimFHN(v1, v2, . . . , vs)

=

s∑
i=1

dimMH(vi)
ss +

∑
i<j

〈vj , vi〉

= 〈v2〉 −
(∑
i<j

〈vj , vi〉+
s∑

i=1

(
〈v2i 〉 − dimMH(vi)

ss
))

.

(3.40)

If vi is isotropic, then we write vi = kiui, where ui is primitive and ki ∈ Z>0.

By Proposition 1.9, dimMH(vi)
ss ≤ ki/2, ki according as �(ui) = 1,2. If there

is vp with 〈v2p〉 > 0, then Lemma 3.12 implies that 〈vp, vi〉 = ki〈vp, ui〉 ≥ ki,2ki
according as �(ui) = 1,2. Hence (3.39) holds. Assume that all vi are isotropic. By

Lemma 3.12, 〈v, vi〉> 0 for all i. Hence for all i, there is a positive integer n(i)

such that 〈vi, vn(i)〉> 0. We set ε := �(ui) + �(uj)− 2. Then

2εkikj − dimMH(vi)
ss − dimMH(vj)

ss > 0.

Hence ∑
i∈{i|i<n(i)}

〈vi, vn(i)〉>
∑
i

dimMH(vi)
ss.

Therefore (3.39) holds.

(2) Assume that 〈v2〉 = 0. By Lemma 3.13, Lemma 3.12(1), and 〈v2〉 =∑
i〈v2i 〉 +

∑
i 	=j〈vi, vj〉, we see that 〈vi, vj〉 = 0 for i �= j, every vi in (3.38) is

isotropic, and dimMH(vi)
ss ≤ [ki/2], ki according as �(ui) = 1,2. If �(ui) = 2,

then li ≥ 2ki. Hence dimMH(vi)
ss ≤ li/2 for all i. Therefore

dimFHN(v1, v2, . . . , vs) =
∑
i

dimMH(vi)
ss ≤ l

2
.

�

DEFINITION 3.6

(1) Let MH(v)ss∗ be the open substack of MH(v)ss consisting of E such that

E|π−1(t) is semistable for all t ∈ P1. By Lemma 3.11, MH(v)ss consists of E such

that E|π−1(t)red is semistable for all t ∈ P1, where π−1(t)red is the reduced part

of π−1(t).

(2) Let Mf (v)
ss
∗ be the open substack of Mf (v)

ss consisting of E such that

E|π−1(t)red is semistable for all t ∈ P1.

PROPOSITION 3.15

We set v := lu+ne1+δ+a�X , where l, n, a ∈ Z, l > 0, and δ ∈ U⊥. Then Mf (v)
ss
∗

is an open and dense substack of Mf (v)
ss.

Proof

For E ∈Mf (v)
ss, we have the filtration (3.24). For the filtration (3.25), we set

vi := v(Fi/Fi−1) = ki(0, rie1, di),
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where (0, rie1, di) are primitive. By Proposition 3.8,

〈v2〉 − dimF(ṽ, v1, . . . , vs)

=
∑
i

lki(rid− rdi)−
∑
i

dimMH(vi)
ss −

(
dimMf (ṽ)

ss − 〈ṽ2〉
)
.

(3.41)

We first assume that ṽ is isotropic. Then dimMf (ṽ)
ss − 〈ṽ2〉 ≤ [ l2 ] by Proposi-

tion 3.14(2). If �((0, rie1, di)) = 2, then ri is even. In this case, we have (rid−
rdi) ∈ 2Z. Hence

lki(rid− rdi)− dimMH(vi)
ss −

(
dimMf (ṽ)

ss − 〈ṽ2〉
)

≥min
{
lki −

[ki
2

]
−
[ l
2

]
,2lki − ki −

[ l
2

]}
> 0.

(3.42)

If ṽ is not isotropic, then by using Proposition 3.14(1), we get 〈v2〉 − dimF(ṽ,

v1, . . . , vs)> 0. Therefore our claim holds. �

By the proof of Proposition 3.15, we can compute the boundary components of

Mf (v)
ss
∗ . Indeed, we see that

(3.43) lki(rid− rdi)− dimMH(vi)
ss −

(
dimMf (ṽ)

ss − 〈ṽ2〉
)
= 1

implies that (l, ki) = (1,1), (1,2), (2,1). If 〈v2〉− dimF(ṽ, v1, . . . , vs) = 1, then we

see that s = 1 and rid − rdi = 1 for �(vi) = 1 and s = 1 and rid − rdi = 2 for

�(vi) = 2. Thus a general member E of Mf (v)
ss \ Mf (v)

ss
∗ fits in an exten-

sion

(3.44) 0→E′ →E → F → 0,

where E′ ∈Mf (ṽ1)
ss and F ∈MH(v1)

ss.

Assume that l = 1. Then dimMf (ṽ)
ss = 0, and hence we only need to con-

sider E fitting in (3.44). We take integers (p, q) such that 0 < p ≤ r and pd −
rq = 1, and we set u1 := (0, pe1, q). Let F(v − u1, u1)

s be the open substack

parameterizing torsion-free sheaves E fitting in the extension (3.44) such that

Div(F ) = pΠi. Then it defines a divisor Di on Mf (v)
ss.

We note that MH(2u1, pf)
s consists of stable locally free sheaves of rank p

and degree 2q on a smooth fiber f . Let F(v − 2u1,2u1)
s be the open substack

parameterizing torsion-free sheaves E fitting in the extension (3.44) such that

Div(F ) = pf . Then it defines a divisor D3 on Mf (v)
ss.

We set u2 := (0,2p′e1,2q
′), where 0< p′ ≤ r, (p′, q′) = (p±r/2, q±d/2). Then

u2 is a primitive Mukai vector with 〈v,u2〉 = (2p′)d− r(2q′) = 2. We note that

MH(u2, p
′f)s consists of stable locally free sheaves of rank p′ and degree 2q′ on a

smooth fiber. Let F(v−u2, u2)
s be the open substack parameterizing torsion-free

sheaves E fitting in the extension (3.44) such that Div(F ) = p′f . Then it defines

a divisor D4 on Mf (v)
ss.
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Since l= 1, we have Mf (v)
ss =MHf

(v)ss, and hence

(3.45) MHf
(v)ss =MHf

(v)ss∗ ∪D1 ∪D2 ∪D3 ∪D4

up to codimension 2.

EXAMPLE 3.1

For v = (2, e2 + ne1 + δ, a) with u= (2, e2,0), we have

(p, q) = (1,0),

(p′, q′) = (p, q) +
1

2
(r, d) =

(
2,

1

2

)
.

(3.46)

In particular, u1 = (0, e1,0) and u2 = (0,4e1,1). As we will see in the next section,

(3.45) holds without removing codimension 2 subsets.

4. Irreducibility

4.1. Unnodal case
Assume that X is an unnodal Enriques surface and that f is a smooth fiber of

the elliptic fibration π :X → P1 defined by |2e1|. Let v = (r, ξ, s2 ) be a primitive

Mukai vector such that r is even. Then for L ∈NS(X) with [L mod KX ] = ξ, we

have an equality of “Hodge polynomials” of the stacks defined in [24] (see [28,

Proposition 2.4, Theorem 2.6])

e
(
MH

(
v,L+

r

2
KX

)ss)
= e

(
MHf

(v′,L′ +KX)ss
)
,

where Hf = H + nf (n � 0), v′ = (2, ζ, s
′

2 ), [L
′ mod KX ] = ζ , L ≡ L′ mod 2,

〈v2〉 = 〈v′2〉, and ζ = 0 if �(v) = 2. Assume that �(v) = �(v′) = 2. Then v′ =

(2,0,−2n) for some n ∈ Z. We set v′′ = (4,2(e2 + (n + 1)e1),1). Then

e(MHf
(v′,L′ +KX)ss) = e(MHf

(v′′,L′′)ss), where L′ ≡ L′′ mod 2. In order to

prove the irreducibility of MH(v,L)ss, it is sufficient to prove the irreducibility

for the following two cases:

(1) v = (2, e2 + ne1 + δ, a),

(2) v = (4,2(e2 + (n+ 1)e1),1).

In particular, u= (2, e2,0) in the notation of Section 3.3. We note thatMH(0, f,1)

is a fine moduli space, that it is isomorphic to X , and that it parameterizes

torsion-free sheaves of rank 1 on a reduced and irreducible fiber π−1(t) and

stable vector bundles of rank 2 and degree 1 on Πi. Thus

MH(0, f,1) =
⋃
t∈P1

0

Pic
1

π−1(t) ∪MΠ1(2,1)∪MΠ2(2,1),

where π has reduced fibers over P1
0, Pic

1

π−1(t) are the compactified Jacobians of

degree 1, and MΠi(2,1) are the moduli spaces of stable vector bundles of rank

2 and degree 1 on Πi. We take an identification MH(0, f,1) ∼= X . Let E be a
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universal family on X ×X . By [2],

(4.1) E|X×{x} ⊗KX
∼= E|X×{x}, x ∈X,

and

(4.2)
ΦE

X→X : D(X) → D(X),

E �→ Rp2∗
(
p∗1(E)⊗E

)
is an equivalence, that is, a Fourier–Mukai transform, where pi : X × X → X

(i= 1,2) are projections. We consider a contravariant Fourier–Mukai transform

(4.3)
Ψ : D(X) → D(X),

E �→ RHomp2

(
p∗1(E),E

)
.

Since Ψ(OX) is a line bundle, replacing the universal family, we may assume that

Ψ(OX) =OX . We set Ψi(E) :=H0(Ψ(E)[i]) ∈Coh(X).

LEMMA 4.1

We have Ψ(0,0,1) = (0,2e1,1), Ψ(0,4e1,1) = (0,−2e1,1), and Ψ(0, e1,0) =

(0,−e1,0).

Proof

Wenote that Ψ(kx) = E|{x}×X [−2]. Hence c1(Ψ(kx)) = 2e1. Since 1 = χ(OX , kx) =

−〈Ψ(kx),Ψ(OX)〉, we have Ψ(0,0,1) = (0,2e1,1). Since Ψ(E|X×{x}) = kx[−2], we

have Ψ(0,2e1,1) = (0,0,1). Since

(0,4e1,1) = 2(0,2e1,1)− (0,0,1),

2(0, e1,0) = (0,2e1,1)− (0,0,1),
(4.4)

we have

Ψ(0,4e1,1) = (0,−2e1,1),

Ψ(0, e1,0) = (0,−e1,0).
(4.5)

�

For cases (1) and (2), by [27, Proposition 3.4.5], Ψ induces an isomorphism

(4.6) Ψ :MHf
(v)ss →MG′

H′(w)ss,

where w = (0, ξ, a) with (ξ, e1) = 1,2, MG′

H′(w)ss is the moduli stack of G′-twisted

semistable sheaves, and H ′ ∈ NS(X)Q and G′ ∈K(X) depend on the choice of

H and v.

REMARK 4.1

Since H is a general polarization, MG
Hf

(v)ss is independent of the choice of G.

Hence we do not need to consider twisted semistability.

We have a support map

(4.7)
ϕ : MG′

H′(w,L)ss → |L|,
E �→ detE.
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LEMMA 4.2

We have that MH(v)ss∗ is isomorphic to the open substack MG′

H′(w)ss∗ of MG′

H′(w)ss

consisting of G′-twisted semistable sheaves E such that Div(E) is flat over P1.

Proof

As we remarked, Ψ induces an isomorphism MHf
(v)ss →MG′

H′(w)ss. In partic-

ular, Ψ(E)[1] = Ψ1(E) is a sheaf for E ∈MHf
(v)ss (see [27, Proposition 3.4.5]).

By Ψ2(E) = 0 and rkΨ(E) = 0, Ψ(E)[1] is represented by a two-term complex

of locally free sheaves of the same rank, and we have

Supp
(
Ψ1(E)

)
=
{
x ∈X

∣∣ Ext1(E,E|X×{x}) �= 0
}

=
{
x ∈X

∣∣Hom(E,E|X×{x}) �= 0
}
.

(4.8)

For E ∈MH(v)ss∗ , the semistability of E|π−1(t) implies that E|π−1(t) is a successive

extension of E|X×{x} (x ∈ π−1(t)). Hence Hom(E,E|X×{x}) = 0 for a general point

of x ∈ π−1(t). Then by (4.8), Supp(Ψ1(E)) does not contain a fiber, which implies

that Div(Ψ1(E)) is flat over P1.

Conversely for L ∈MG′

H′(w)ss∗ , L
∗ := L∨[1] is a purely 1-dimensional sheaf on

X (see Lemma 0.4). Hence

E := Ext1p1

(
p∗2(L),E

)
= p1∗

(
p∗2(L

∗)⊗E
)

is a locally free sheaf on X such that E|π−1(t) is semistable for all t ∈ P1. Indeed,

if there is a quotient E|π−1(t) → F with v(F ) = (0, ae1, b), a > 2b, then Ψ(F )[1] is

a torsion sheaf on π−1(t) with an injective homomorphism Ψ1(F )→Ψ1(E) = L,

which is a contradiction. Therefore the claim holds. �

For case (1), we have w = (0, ξ, a) with (ξ, e1) = 1. We take L ∈NS(X) with [L

mod KX ] = ξ. Then for E ∈ MG′

H′(w,L)ss∗ , Div(E) is integral. Let |L|∗ be the

open subscheme parameterizing integral curves. Then ϕ :MG′

H′(w,L)ss∗ → |L|∗ is

a family of compactified Jacobians over |L|∗. By [1], all fibers are irreducible of

dimension (L2)/2. Hence MG′

H′(w,L)ss∗ is irreducible. Thus, by Proposition 3.15,

we have the following.

PROPOSITION 4.3

We have that MG′

H′(w,L)ss is irreducible.

We note that |L| \ |L|∗ is a Cartier divisor consisting of three irreducible compo-

nents:

Γi :=
{
D ∈ |L|

∣∣Πi ⊂D
}

(i= 1,2),

Γ′ :=
{
D ∈ |L|

∣∣ π−1(t)⊂D, t ∈ P1
}
.

(4.9)

Hence MHf
(v)ss \MHf

(v)ss∗ is also a Cartier divisor. Then (3.45) holds without

removing codimension 2 subsets.
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REMARK 4.2

Set-theoretically, we have ϕ−1(Γi) = Ψ(Di) (i = 1,2) and ϕ−1(Γ′) = Ψ(D3) ∪
Ψ(D4).

Let u1 and u2 be the Mukai vectors in Example 3.1. From the exact sequence

0→ Ẽ →E → F → 0

in (3.44)withF ∈MH(u1, pΠi)
s∪MH(2u1, pf)

s∪MH(u2, p
′f)s and Ẽ ∈Mf (v−

v(F ))ss∗ ,

(4.10) Ext2(F,E|X×{x}) = Hom(E|X×{x}, F )∨ = 0

for all x ∈ X by (4.1), 1
2 = d

r > q
p = 0, and 1

2 = d
r > q′

p′ = 1
4 . Since Hom(F,

E|X×{x}) = 0 for a general x ∈X , we see that

Ψ(Ẽ)[1],Ψ(E)[1],Ψ(F )[1] ∈Coh(X),

and we have an exact sequence

0→Ψ1(F )→Ψ1(E)→Ψ1(Ẽ)→ 0.

By using Lemma 4.1, we have the following description of the boundary divisors.

(i) For a general member E ∈Ψ(Di) (i= 1,2), Div(E) = Πi +C, where C

is flat over π.

(ii) For a general member E ∈Ψ(Di) (i= 3,4), Div(E) = f +C, where C is

flat over π.

By this description of the boundary, we have the following claim.

PROPOSITION 4.4

We set

|L|nr :=
{
D ∈ |L|

∣∣D is not reduced
}

and MG′

H′(w,L)ssnr = ϕ−1(|L|nr). Then codimMG′
H′ (w,L)ss(MG′

H′(w,L)ssnr)≥ 2.

For a general G′′, we also have a morphism

(4.11) ψ :MG′′

H′ (w,L)ss → |L|.

COROLLARY 4.5 (see [17, Assumption 2.16])

For the morphism (4.11), we also have

codimMG′′
H′ (w,L)ss ψ

−1
(
|L|nr

)
≥ 2.

Proof

We note that G′′-twisted semistability of E is independent of the choice of G′′ if

Div(E) is irreducible. Since MG′′

H′ (w,L)ss and MG′

H′(w,L)ss are irreducible with

torsion canonical bundles, we have a birational map

ξ :MG′′

H′ (w,L)ss · · · →MG′

H′(w,L)ss
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such that ξ induces an isomorphism in codimension 1 and ψ = ϕ ◦ ξ. Hence we

have a one-to-one correspondence of divisors. Therefore the claim holds. �

We next treat case (2). Since Ψ(v) = 2Ψ((2, e2 + (n + 1)e1,0)) + (0,2e1,1) by

Lemma 4.1, we set w = (0,2ξ, a) with gcd(2, a) = 1. Let L be a divisor with [L

mod KX ] = ξ. We will prove the irreducibility of MG′

H′(w,2L)ss and MG′

H′(w,2L+

KX)ss. In order to prove the irreducibility of MG′

H′(w,2L)ss, we consider the

support map ϕ :MG′

H′(w,2L)ss → |2L|. We set

N1 :=
{
D ∈ |2L|

∣∣D = 2C
}
,

N2 :=
{
D ∈ |2L|

∣∣D =C1 +C2, (C1, e1) = (C2, e1) = 1,C1 �=C2

}
,

(4.12)

and

(4.13) Mi :=
{
E ∈MG′

H′(w,2L)ss∗
∣∣Div(E) ∈Ni

}
.

LEMMA 4.6

We have dimM1 ≤ 7
2 (L

2)− 1.

Proof

Let E ∈ MG′

H′(w,2L)ss satisfy Div(E) = 2C, C ∈ |L + εKX | (ε = 0,1). Assume

that E is not an OC -module. Then we have an exact sequence

E(−C)
ψ→E →E|C → 0

with imψ �= 0. SinceE is pure, imψ is purely 1-dimensional. For the 0-dimensional

submodule T of E|C , we set E0 =E|C/T and E1 = ker(E →E0). Then we have

an exact sequence

(4.14) 0→E1 →E →E0 → 0

and an injective homomorphism E0(−C) ∼= imψ ⊂ E1. Since Div(E0(−C)) =

Div(imψ) �= 0, Div(E0) = Div(E0(−C)) =C and Div(E1) =C. In particular, E0

and E1 are OC -modules. If C is smooth, the locus of E fitting into (4.14) is of

dimension 2(C2) = 4g(C)− 4 by [6, Proposition 2.1], where we used Remark 0.2.

Since dim |C| = (C2)/2, M1 is of dimension 5(L2)/2 in a neighborhood of E.

Assume that C is singular. We set v(Ei) = vi := (0,C, ai). Since v(E0(−C)) =

(0,C, a0 − (C2)), we have

v(E1) = v1 =
(
0,C, a0 − (C2) + k

)
, k ≥ 0.

Since 2a0 − (C2) + k = a is odd, k ≥ 1. Since C is an integral curve, and E0 and

E1 are torsion-free sheaves of rank 1 on C, they are stable sheaves on C. We set

n := χ(E0)− χ(E1) = (C2)− k.

Let P be a smooth point of C. Then E1 and E2 are locally free OC -modules in

a neighborhood of P . Hence

dimHom
(
E1,E0(KX)

)
≤ dimHom

(
E1,E0

(
KX − (n+ 1)P

))
+ n+ 1

= (C2)− k+ 1≤ (C2).
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We set

(4.15) Mi :=
{
E ∈MG′

H′(vi,C)ss∗
∣∣Div(E) is singular

}
.

Since all fibers of ϕ :MG′

H′(vi,C)ss∗ → |C|∗ are of dimension (C2)/2 by [1], we get

(4.16) dimM0 ×|C| M1 ≤ (C2)/2− 1 + 2
(
(C2)/2

)
,

and hence

(4.17) dimM0 ×|C| M1 + 〈v0, v1〉+ (C2)≤ 7

2
(C2)− 1,

which shows the locus of E fitting into (4.14) such that Ei ∈Mi is at most of

dimension 7(C2)/2− 1 by Lemma 0.6.

Assume that E is an OC -module. If C is smooth, then E is a stable locally

free sheaf of rank 2 on C. Hence the dimension of M1 is dim |C|+4(g(C)− 1) =

5(C2)/2 in a neighborhood of E. We assume that C is singular. We set a= 2k+1.

Let OC(1) be a line bundle of degree 1 on C. Since χ(E(−k)) = 1, we have a

homomorphism OC(k)→E. Hence we get an exact sequence

(4.18) 0→E1 →E →E0 → 0

such that E0 and E1 are torsion-free of rank 1 and E1 contains OC(k). We set

v(Ei) = vi = (0,C, ai). Then

a1 = χ(E1) = χ
(
OC(k)

)
+ l (l≥ 0),

a0 = a− a1 = 2k+ 1− χ
(
OC(k)

)
− l.

(4.19)

Since χ(OC(k)) = k− (C2)
2 , we have

χ(E0)− χ(E1) = (2k+ 1)− 2χ
(
OC(k)

)
− 2l= 1+ (C2)− 2l.

Hence dimHom(E1,E0(KX))≤ (C2) + 2− 2l. If l≥ 1, then

(4.20) dimM0 ×|C| M1 + 〈v0, v1〉+ (C2)≤ 7

2
(C2)− 1.

If l= 0, then E1 =OC(k). Hence

−1 + dimM0 + 〈v0, v1〉+ (C2) + 2≤−1 + (C2)− 1 + 2(C2) + 2

= 3(C2).
(4.21)

Since (C2)/2 ≥ 1, 7(C2)/2 − 1 − 3(C2) ≥ 0. Hence the locus of E fitting into

(4.18) is at most of dimension 7(C2)/2− 1 by Lemma 0.6. Therefore we get the

claim. �

LEMMA 4.7

We have dimM2 ≤ 4(L2)− 2.

Proof

For E ∈M2, we have an exact sequence

(4.22) 0→E1 →E →E2 → 0,
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where DivE = C1 + C2, Div(E1) = C1, and Div(E2) = C2. By the flatness of

Div(E), C1 and C2 are integral curves and C1 �= C2. By the stability of E, we

have

(4.23)
a

(2L,H)
≤ χ(E2)

(C2,H)
,

χ(E2)− (C1,C2)

(C2,H)
≤ a

(2L,H)
.

We set vi := v(Ei) = (0,Ci, ai). By (4.23), the choice of vi is finite. Since

(Ci, e1) = 1, the vi’s are primitive with �(vi) = 1. Hence dimMG′

H′(vi)
ss = 〈v2i 〉=

(C2
i ). Let J(v1, v2) be the substack of M2 such that Ei ∈MG′

H′(vi,Ci)
ss. Since C1

and C2 are different integral curves, we have Hom(E1,E2(KX)) = 0, and hence

dimJ(v1, v2) = dimMG′

H′(v1,C1)
ss +dimMG′

H′(v2,C2)
ss + (C1,C2)

= (C2
1 ) + (C2

2 ) + (C1,C2) = 4(L2)− (C1,C2).
(4.24)

Since X is unnodal, we have (C2
1 ), (C

2
2 ) ≥ 0 (see Section 0.1). If (C2

1 ),

(C2
2 )> 0, then (C1,C2)

2 ≥ (C2
1 )(C

2
2 )≥ 4. Hence (C1,C2)≥ 2. If one of (C2

i ) = 0,

then (C1,C2) = (2L,Ci) − (C2
i ) = 2(L,Ci) ≥ 2. Therefore dimJ(v1, v2) ≤

4(L2)− 2. �

We set MG′

H′(w,2L)ss0 :=MG′

H′(w,2L)ss∗ \ (M1 ∪M2).

PROPOSITION 4.8

We have that MG′

H′(w,2L)ss0 is an open and dense substack of MG′

H′(w,2L)ss. In

particular, it is irreducible.

Proof

By Lemma 4.6 and Lemma 4.7, we get the first assertion. For an integral curve

C ∈ |2L|, ϕ−1(C) is irreducible by [1]. Hence the irreducibility follows. �

We next show the irreducibility of MG′

H′(w,2L+KX)ss. We note that C1 �= C2

for any C1 + C2 ∈ |2L +KX |. So we do not need to worry about nonreduced

curves in this case, and the analogue of Lemma 4.7 is enough. Hence we get the

following.

PROPOSITION 4.9

We have that MG′

H′(w,2L+KX)ss is irreducible.

By Propositions 4.3, 4.8, and 4.9, Theorem 0.2 holds if X is unnodal.

REMARK 4.3

For w = (0,2ξ,2b), we define Mi(⊂ MG′

H′(w,2L)ss∗ ) in a similar way. Then we

see that dimM1 ≤ 7
2 (L

2) and dimM2 ≤ 4(L2) − 2. Hence MG′

H′(w,2L)ss and

MG′

H′(w,2L + KX)ss are irreducible. In particular, MH(2v,L)ss is irreducible,

where v is primitive, rkv is even, and �(v) = 1.
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REMARK 4.4

For a divisor D′ := 2mD+KX such that D(∈NS(X)) is primitive, D′ is not lin-

early equivalent to pC, p≥ 2. Hence we also see that MH(2mv,L)ss is irreducible,

if v is primitive and L �= 2L′, L′ ∈NS(X).

4.2. General cases
We will treat a general case by the arguments in [28, Section 3]. Let (X ,H)→ S

be a general deformation of (X,H) such that a general member is not nodal

and (X0,H0) = (X,H) (0 ∈ S). Let L be a family of divisors such that L0 =

L ∈ NS(X). Then we have a family of moduli spaces of semistable sheaves

φ : M(X ,H)(v,L) → S. Since Pic(Xs) = H2(Xs,Z) is locally constant, we may

assume that Hs is general with respect to v for all s ∈ S. Let M0 be the open

subscheme of M(X ,H)(v) such that E ∈ Coh(Xs) belongs to M0 if and only if

Hom(E,E(KXs)) = 0. Then M0 is smooth over S. By Lemma 1.3, M0 is a dense

subscheme of M(X ,H)(v,L). Since (M0)s is irreducible for any unnodal surface

Xs, M0 is irreducible, which implies that M(X ,H)(v,L) is also irreducible. By the

Zariski connectedness theorem, all fibers are connected. In particular, MH(v,L)

is connected. If 〈v2〉 ≥ 4, then MH(v,L) is irreducible by Lemmas 1.3 and 1.5(1).

Therefore we get the following.

THEOREM 4.10

Let v = (r, ξ, a) be a primitive Mukai vector such that r is even. Then MH(v,L)ss

is connected for a general H . Moreover, if 〈v2〉 ≥ 4, then MH(v,L)ss is irreducible

for a general H .

REMARK 4.5

Let v be a primitive Mukai vector. By [24, Remark 4.1], the proof of [28, Theo-

rem 2.6], and [28, Remark 2.19], we have

e
(
MH(mv)ss

)
= e

(
MH(mw)ss

)
,

where w = (1,0,− s
2 ) if rkv is odd, and w = (2, ξi,− s

2 ) (1≤ i≤ 210) with

{ξi mod 2 | 1≤ i≤ 210}=NSf(X)⊗Z/2Z= (Z/2Z)⊕10

if rkv is even. By the works of Gieseker and Li [4] or O’Grady [15], moduli stacks

are asymptotically irreducible.

If rkw = 1, then there is N1(m) such that MH(mw,L)ss is irreducible for

〈w2〉 ≥N1(m). Assume that rkw = 2. For each (m rkw,mξi), there is N(m,ξi)

such that MH(mw,L)ss is irreducible if 〈w2〉 ≥ N(m,ξi). We set N2(m) :=

maxiN(m,ξi). Then MH(mv,L)ss is irreducible if 〈v2〉 ≥ N(m) :=

max{N1(m),N2(m)}.
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Appendix

A.1 Relative Fourier–Mukai transforms
Let π : X → C be an elliptic surface, and let f be a smooth fiber of π. Let

e ∈K(X)top be the class of a coherent sheaf E with rkE = r and (c1(E), f) = d.

Assume that gcd(r, d) = 1. Then MHf
(e)ss =MHf

(e)s is smooth of dimension

−χ(e,e) + pg , where pg := dimH2(X,OX) is the geometric genus of X . In this

case, Bridgeland [2, Theorem 1.1] showed that a suitable relative Fourier–Mukai

transform induces a birational map between MHf
(e) and the moduli of stable

sheaves of rank 1. In this section, we slightly refine the correspondence and

compare the Picard groups. We assume that every fiber is irreducible. Then, as

we will easily see from Proposition 3.8, the birational map is a regular map up

to codimension 1 for many cases; however, it is not if r = 2. In order to treat this

case, we use a composition of a Fourier–Mukai transform and the taking dual

functor as in (4.3).

We first assume that there are no multiple fibers. Then we have a refinement

of Proposition 3.8. Let

0⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = F

be the filtration in (3.25). Since there are no multiple fibers, we can set(
c1(Fi/Fi−1), χ(Fi/Fi−1)

)
:= li(rif, di),

where li, ri, di ∈ Z, gcd(ri, di) = 1, and li > 0. We set μmin(E) := ds/rs. We define

F(ẽ, f1, . . . , fs) as in Proposition 3.8. Then we have the following.

PROPOSITION A.1

We have codimF(ẽ, f1, . . . , fs) =
∑

i li((rid− rdi)− 1).

Proof

We note that E ⊗ KX
∼= E for E ∈ MH((0, rif, di))

ss = MH((0, rif, di))
s and

dimMH((0, rif, di))
ss = 1. Then we see that every member of MH(fi)

ss is gen-

erated by elements of MH((0, rif, di))
s. Hence we get dimMH(fi)

ss = li. Then

by Proposition 3.8,

(A.1) dimF(ẽ, f1, . . . , fs) =
∑
i

li(rid− rdi) + dimMHf
(ẽ)ss +

∑
i

li.

Since χ(ẽ, fi) = χ(fi, ẽ), we get

dimMHf
(e)ss =−χ(e,e) + pg

=−χ(ẽ, ẽ)−
∑
i

2χ(ẽ, fi) + pg

= dimMHf
(ẽ)ss + 2

∑
i

li(rid− rdi).

(A.2)

Hence the claim holds. �
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Let Y :=MH(0, r′f, d′) be a fine moduli space of stable sheaves on X , and let

P be a universal family on X × Y . Then Y has an elliptic fibration π′ : Y → C.

We also denote a smooth fiber of π′ by f ; pX :X × Y →X and pY :X × Y → Y

denote the projections. We consider a contravariant functor

(A.3)
ΦP

X→Y ◦DX : D(X) → D(Y ),

E �→ RHompY

(
p∗X(E),P

)
.

By the Grothendieck–Serre duality, DY ◦ ΦP
X→Y

∼= Φ
P∨[2]⊗p∗

X(ωX)
X→Y ◦DX . Hence

ΦP
Y→X ◦DY is the inverse of ΦP

X→Y ◦DX . Assume that r′d− rd′ > 0. Then we

have the following.

LEMMA A.2

For E ∈MHf
(e)ss, ΦP

X→Y (E
∨)[1] ∈Coh(Y ). Moreover, if μmin(E)≥ d′/r′, then

ΦP
X→Y (E

∨)[1] is torsion-free. In particular, ΦP
X→Y (E

∨)[1] is f -semistable.

Proof

We note that

P|X×{y} ⊗KX
∼=P|X×{y}

for all y ∈ Y by the general theory of Fourier–Mukai transforms (see [2]). By the

Serre duality and the torsion-freeness of E,

Ext2(E,P|X×{y}) = Hom(P|X×{y},E)∨ = 0.

Hence H2(ΦP
X→Y (E

∨)) = 0. We note that Hom(E,P|X×{y}) = 0 if E|π−1(π′(y)) is

semistable. Since E|f is semistable for a general fiber of π, Hom(E,P|X×{y}) = 0

for a general y ∈ Y . Since H0(ΦP
X→Y (E

∨)) is torsion-free, H0(ΦP
X→Y (E

∨)) = 0.

Therefore ΦP
X→Y (E

∨)[1] ∈Coh(Y ).

Assume that μmin(E) ≥ d′/r′. If Hom(E,P|X×{y}) �= 0, then Fs/Fs−1 in

(3.25) is a semistable sheaf with μ(Fs/Fs−1) = d′/r′ and we have a surjective

homomorphism Fs/Fs−1 → P|X×{y}. Assume that Fs/Fs−1 is S-equivalent to⊕k
i=1Ei, where the Ei’s are stable 1-dimensional sheaves with μ(Ei) = d′/r′.

Then P|X×{y} ∈ {E1, . . . ,Ek}. Therefore H1(ΦP
X→Y (E

∨)) is torsion-free (see [24,

Lemma 2.6]). Since semistability is preserved under any Fourier–Mukai transform

on an elliptic curve, H1(ΦP
X→Y (E

∨)) is f -semistable (see Remark 3.1). �

PROPOSITION A.3

Let e′ ∈ K(Y ) be the class of an ideal sheaf IZ ∈ HilbbY . Assume that r ≥ 2.

Then there is a (contravariant) Fourier–Mukai transform D(X)→D(Y ) which

induces an isomorphism

MHf
(e)ss \ Z →MH′

f
(e′)ss \ Z ′,

where 2b = −χ(e,e) + χ(OX), Z ⊂ MHf
(e)ss, and Z ′ ⊂ MH′

f
(e′)ss are closed

substacks with

dimZ,dimZ ′ ≤ dimMH′
f
(e)ss − 2.
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Proof

Let (p, q) be a pair of integers such that dp − rq = 1 and 0 < p < r. We first

assume that p ≤ r/2. If two integers x, y satisfy dx − ry = m (m = 1,2), then

(x, y) =m(p, q) + n(r, d), where n ∈ Z. If 0 < x ≤ r, then we get n = 0; that is,

(x, y) =m(p, q). If a pair (x, y) of integers satisfy x > 0 and y/x < d/r, then we

have y/x≤ q/p or x≥ r+ p > r by [22, Lemma 5.1].

For the filtration (3.25), we have 0< ri ≤ r and di/ri < d/r. Hence we have

(A.4)
q

p
≥ d1

r1
>

d2
r2

> · · ·> ds
rs

.

Assume that

(A.5) codimF(ẽ, f1, . . . , fs) =
∑
i

li
(
(rid− rdi)− 1

)
≤ 1.

Then rid− rdi = 1,2 and 0< ri ≤ r imply that (ri, di) = (p, q), (2p,2q). We set

Z :=
{
E ∈MHf

(e)ss
∣∣ μmin(E)< q/p

}
.

Then dimZ ≤ dimMHf
(e)ss− 2 by Proposition A.1. For (r′, d′) = (p, q), we con-

sider the Fourier–Mukai transform (A.3). Then

(A.6) rkΦ
P[1]
X→Y (e

∨) =−χ(e,P|X×{y}) = pd− rq = 1.

Hence we may assume that Φ
P[1]
X→Y (e

∨) = e′. Then

r = χ(e∨, kx) = χ
(
e′,P|{x}×Y [1]

)
.

Hence we have τ(P|{x}×Y ) = (0, r′f,−r). We set

Z ′ :=
{
E ∈MHf

(e′)ss
∣∣ μmin(E)<−r/p

}
.

Since r/p ≥ 2, we have dimZ ′ ≤ dimMHf
(e)ss − 2 by Proposition A.1. Hence

Φ
P[1]
X→Y ◦DX induces an isomorphism

MHf
(e)ss \ Z →MH′

f
(e′)ss \ Z ′

by Lemma A.2. We next assume that p > r/2. In this case, we have r ≥ 3. Then

the closed substack W of MHf
(e)ss consisting of nonlocally free sheaves is of

codimension r − 1 ≥ 2. For the topological invariant e∨, (x, y) = (r − p, q − d)

satisfies 0< r − p < r/2 and (−d)x− ry = 1. Applying the first part, we have a

similar isomorphism. Thus Φ
P∨[2]
X→Y induces an isomorphism

MHf
(e)ss \ Z →MH′

f
(e′)ss \ Z ′,

where (r′, d′) = (r − p, d − q), Z consists of E which is nonlocally free or

μmin(E
∨) < −(d − q)/(r − p) = −d′/r′, and Z ′ consists of F with μmin(F ) ≤

−r/(r − p) = −r/r′. Indeed, we note that Q := P∨[1] is the universal family

on MH(0, r′f,−d′) ×X by Lemma 0.4(2) and the irreducibility of fibers of π.

Since Φ
P∨[2]
X→Y (E) = Φ

Q[1]
X→Y ◦ DX(E∨), we get the isomorphism, where we use

μmin(F ) �=−r/r′ for the local freeness of E. �
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For e ∈K(X)top, we set

K(X)e :=
{
α ∈K(X)

∣∣ χ(α,e) = 0
}
.

We have a homomorphism

(A.7)
θe : K(X)e → Pic

(
MHf

(e)
)
,

α �→ detp!
(
E ⊗ p∗X(α∨)

)
,

where E is a universal family. We note that θe can be defined even if there is

no universal family by using a family on a quot-scheme. For the Fourier–Mukai

transform Φ in Proposition A.3, we have a commutative diagram

(A.8)

K(X)e
Φ−−−−→ K(Y )e′

θe

⏐⏐! ⏐⏐!θe′

Pic
(
MHf

(e)
)

Pic
(
MH′

f
(e′)

)
COROLLARY A.4

Assume that dimMHf
(e)≥ 4+q(X) and k =C. Then we have an exact sequence

0−→ ker τ −→K(X)e
θe−→ Pic

(
MHf

(e)
)
/Pic

(
Alb

(
MHf

(e)
))

−→ 0.

Proof

By Proposition A.3 and (A.8), it is sufficient to prove the claim for e′. In this case,

we note that π1(HilbbY )
∼= π1(Y ) (see [16, Section 1]), H1(HilbbY ,Z) =H1(Y,Z),

and

H2(HilbbY ,Z) =H2(Y,Z)⊕
2∧
H1(Y,Z)⊕Zδ,

where 2δ is the exceptional divisor of the Hilbert–Chow map. Then it is easy to

see that the claim holds (see [21, Section 3.2]). �

REMARK A.1

Assume that dimMHf
(e)s > dimPic0(X). If r′ > r and dr′ − rd′ = 1, then

Φ
P[1]
X→Y (E

∨) is not torsion-free for any E ∈ MHf
(e)ss. Indeed there is a quo-

tient E → F such that τ(F ) = (0, r0f, d0), where dr0 − rd0 = 1 and 0 < r0 ≤ r.

Since d0/r0 < d′/r′, we see that ΦP[1](F∨) is a torsion subsheaf of Φ
P[1]
X→Y (E

∨).

We slightly generalize Proposition A.3 to the case where there is a multiple fiber.

Let mf0 be a multiple fiber of π. Let F be a semistable sheaf on mf0, and set

τ(F ) = li(0, rif0, di). Then

dimMH(0, lirif0, lidi)
ss ≤ [limi/m], mi := gcd(ri,m)

by Remark 1.5. Since (c1(E), f0) = (c1(E), f)/m = d/m for E ∈ MHf
(e)ss, we

have χ(E,F ) = rdi − rid/m. Let (p, q) be a pair of integers such that dp− rq =

1 and 0 < p < r. Assume that mp ≤ r. If rid/m − rdi = 1 (0 < ri ≤ r), then

(ri, di) = (mp, q). If rid/m− rdi = 2 (0 < ri ≤ r) and m | ri, then we also have
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(ri, di) = (2mp,2q) by 0< 2p, ri/m≤ r. If rid/m− rdi ≥ 3, then

li(rid/m− rdi)− li ≥ 2li ≥ 2.

If rid/m− rdi = 2 and mi <m (i.e., m � ri), then we have

li(rid/m− rdi)− limi/m≥ 3li/2.

Therefore there is a closed substack Z of MHf
(e)ss such that Φ

P[1]
X→Y (E) is

torsion-free for E ∈ MHf
(e)ss \ Z and dimZ ≤ dimMHf

(e)ss − 2, where Y =

MH(0, pf, q). Then we also see that Proposition A.3 holds if mp≤ r for all mul-

tiple fibers mf0. In particular, for an unnodal Enriques surface, Proposition A.3

holds.

Let X be an unnodal Enriques surface. As we noted in Remark A.1, a relative

Fourier–Mukai transform does not preserve stability for any member ofMHf
(v)ss

in general. However, we have the following result.

PROPOSITION A.5

For Y :=MH(0, r′(2e1), d
′) (gcd(2r′, d′) = 1), let ΦP

X→Y :D(X)→D(Y ) be the

Fourier–Mukai transform by a universal family P. Then for the Mukai vector

v = lu + ne1 + δ + a�X in Section 3.3, ΦP
X→Y preserves stability for a general

member of MHf
(v)ss.

Proof

By Propositions 3.15 and 3.14, Mf (v)
ss
∗ is an open and dense substack of

MHf
(v)ss. We note that E ∈Mf (v)

ss
∗ is a locally free sheaf by Definition 3.6. Let

C be the reduced subscheme of π−1(t). Then E|C is a semistable locally free sheaf

and P|X×{y} a stable sheaf on C, where π′(y) = t. If χ(E ⊗P|X×{y}) = 0, then

Lemma 4.2 implies that Ψ(E∨)[1] = Φ
P[1]
X→Y (E) is a 1-dimensional stable sheaf.

If χ(E∨,P|X×{y})< 0, then Hom(E∨,P|X×{y}) = 0 for all y ∈ Y , which implies

that Φ
P[1]
X→Y (E) is a locally free sheaf. By the proof of Lemma A.2, Φ

P[1]
X→Y (E)

is f -semistable. Applying Proposition 3.14, Φ
P[1]
X→Y (E) is a stable sheaf for a

general E.

Assume that χ(E∨,P|X×{y}) > 0. Since Ext1(E∨,P|X×{y}) = Hom(E,

(P|X×{y})
∨[1])∨ = 0, ΦP

X→Y (E) is a locally free sheaf. By using Propositions

3.15 and 3.14 again, we see that ΦP
X→Y (E) is a stable sheaf for a general E ∈

MHf
(v)ss. �

In particular, if r is even and gcd(r/2, (c1, e1)) = 1, then for Y =MH(0, r′(2e1), d
′)

with d′r/2− r′(c1, e1) = 1, ΦP
X→Y induces a birational map

MHf

(
r, c1,

s

2

)
· · · →MHf

(
2, ζ,

s′

2

)
,

where ζ ∈ Pic(X) and (ζ2)− 2s′ = (c21)− rs.
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REMARK A.2

If r = 4, then Nuer [14, Section 6] constructed birational maps of the moduli

spaces by using (−1)-reflections.
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