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Abstract This short paper gives a necessary and sufficient condition for the Daugavet

equation ‖I + T‖ = 1 + ‖T‖. A new characterization of the solution of the Daugavet

equation in termsof invariant affine subspaces is given.Wealso study thenotions ofalter-

natively convex or smooth (acs) and locally uniformly alternatively convex or smooth

(luacs).

1. Introduction

We remind the reader that the first person to study the equation ‖I + T‖ =

1+ ‖T‖ was Daugavet. Indeed, in 1963 Daugavet [3] proved that every compact

operator T : C[0,1]→ C[0,1] satisfies the equation ‖I + T‖ = 1 + ‖T‖. In 1965,

Foias and Singer [4] extended Daugavet’s result to arbitrary atomless C(K)-

spaces. This paper gives a necessary and sufficient condition for the Daugavet

equation ‖I+T‖= 1+‖T‖ under the assumption that X∗ is alternatively convex

or smooth (acs). In particular, we show that it is not necessary to assume that T

is a compact operator. Namely, we find a new technique for solving the Daugavet

equation.

For a vector z in a Banach space X , consider the state space

Uz :=
{
x∗ ∈X∗ : x∗(z) = ‖z‖,‖x∗‖= 1

}
.

By the Hahn–Banach theorem we get Uz �= ∅ for all z �= 0. In this paper, for a

normed space X , we denote by S(X) the unit sphere in X and by ExtS(X) the

set of all its extremal points. Given a normed space X and a Banach space Y ,

both over the same field K ∈ {R,C}, we write K(X;Y ) for the space of all compact

operators going from X into Y , and K(X) :=K(X;X). The next theorem plays

a crucial role in our investigations. The next result is well known.

THEOREM 1.1 (see [2])

For each f ∈ ExtS(K(X;Y )∗) there exist y∗ ∈ ExtS(Y ∗) and x∗∗ ∈ ExtS(X∗∗)

such that f(K) = (x∗∗ ⊗ y∗)(K∗) for every K ∈K(X;Y ).
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We write B(X) for the space of all bounded operators going from X into X . K(X)

is said to be an M -ideal in B(X) if B(X)∗ =K(X)∗⊕1K(X)⊥, where K(X)⊥ :=

{f ∈ B(X)∗ :K(X)⊂ kerf}, and if f = f1 + f2 is the unique decomposition of f

in B(X)∗, then ‖f‖= ‖f1‖+ ‖f2‖.
We remind the reader when K(X) is an M -ideal in B(X). Hennefeld [6] has

proved that the K(lp)’s are M -ideals when p ∈ (1,∞). It is known that K(l1) and

K(l∞) are not M -ideals (see [8]).

An affine subspace in X is a set A such that, for every x ∈ A, A− x is a

linear subspace in X . We say that an affine subspace A is nontrivial if dimA≥ 1

and 0 /∈A; in particular, A �=X . It means that A is not a linear subspace.

2. Main result

In [7] the following notion was introduced. We say that a Banach space X is

alternatively convex or smooth (acs) if for all x, y ∈ S(X) and x∗ ∈ S(X∗) the

implication

x∗(x) = 1, ‖x+ y‖= 2 ⇒ x∗(y) = 1(2.1)

holds. We remark that smooth spaces (or strictly convex spaces) are acs.

LEMMA 2.1

Let X be a Banach space such that X∗ is acs. Assume that K(X) is an M -ideal

in B(X). Let T ∈ B(X). Suppose that ‖T‖ = 1, dist(T,K(X)) < 1, and assume

that T is weakly compact. The following conditions are equivalent:

(a) ‖I + T‖= 2;

(b) the number 1 is an eigenvalue of T ∗;

(c) there is a nontrivial closed invariant affine subspace for T .

Moreover, the implications (c)⇒(b)⇒(a) and (b)⇒(c) do not depend on the extra

assumptions (i.e., M -ideal, acs, dist(T,K(X))< 1).

Proof

For the proof of (c)⇒(b) fix arbitrarily a nontrivial closed affine subspace A such

that T (A) ⊂ A. Fix a ∈ A. The Hahn–Banach theorem implies that there is a

linear functional z∗ such that z∗(a) �= 0 and

(2.2) A− a⊂ kerz∗.

Fix a Banach limit L : l∞ →K. Define the mapping y∗ :X →K by

y∗(x) := L
(
z∗(x), z∗(Tx), z∗(T 2x), z∗(T 3x), . . .

)
for x ∈X.

Fix x in X . Note that |z∗(Tnx)| ≤ ‖z∗‖ · ‖Tn(x)‖ ≤ ‖z∗‖ · ‖x‖ for all n ∈N. Thus,

(z∗(x), z∗(Tx), z∗(T 2x), z∗(T 3x), . . .) ∈ l∞. So, y∗ is a well-defined function. It is

easy to check that the above mapping is a continuous linear functional; that is,

y∗ ∈ X∗. Furthermore, for all x ∈ X , by a property of the Banach limits, we
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have

y∗(x) = L
(
z∗(x), z∗(Tx), z∗(T 2x), z∗(T 3x), . . .

)

= L
(
z∗(Tx), z∗(T 2x), z∗(T 3x), . . .

)
= y∗(Tx).

It follows that y∗ = y∗ ◦ T , which means y∗ = T ∗y∗. Since T (A) ⊂ A, Tna ∈ A
for all n. Then, by (2.2) we have Tn(a)− a ∈ ker z∗. From this it is immediate to

infer that z∗(Tna) = z∗(a) for all n. Therefore,

y∗(a) = L
(
z∗(a), z∗(Ta), z∗(T 2a), z∗(T 3a), . . .

)

= L
(
z∗(a), z∗(a), z∗(a), z∗(a), . . .

)
= z∗(a) �= 0,

and hence y∗ �= 0. Thus, we obtain T ∗y∗ = y∗ and y∗ �= 0. The proof of this

implication is complete.

We will prove (b)⇒(a). From the assumption we have T ∗y∗ = y∗ for some

y∗ ∈X∗ \{0}. Without loss of generality, we may assume that ‖y∗‖= 1, and then

2 = ‖y∗ + y∗‖ = ‖y∗ + T ∗y∗‖ = ‖(I∗ + T ∗)(y∗)‖ ≤ ‖I∗ + T ∗‖ = ‖I + T‖. On the

other hand, we have ‖I + T‖ ≤ ‖I‖+ ‖T‖= 2.

In order to prove (a)⇒(c), assume that ‖I + T‖= 2. First, we want to show

that UI+T ⊂ UI ∩ UT . Let f ∈ UI+T . Then f(I + T ) = 2 and ‖f‖= 1. So it suf-

fices to show that f(I) = 1 and f(T ) = 1. Note that 2 = f(I + T ) = f(I) + f(T ),

|f(I)| ≤ 1, and |f(T )| ≤ 1. Hence, f(I) = 1, f(T ) = 1, and we may consider

UI+T ⊂ UI ∩ UT as shown. Note that UI+T is a nonempty weak*-closed subset

of the weak*-compact unit ball of B(X)∗. In particular, UI+T is weak*-compact

and convex. The Krein–Milman theorem implies that there is an extremal point

e of the set UI+T . The set UI+T is an extremal subset of clball(B(X)∗), so every

extreme point of UI+T is an extreme point of clball(B(X)∗). Thus, we obtain

e ∈ ExtS(B(X)∗).

We want to show that e ∈ ExtS(K(X)∗). From the assumption, we have that

B(X)∗ = K(X)∗ ⊕1 K(X)⊥. Let e = e1 + e2 be the associated decomposition of

e; that is, e1 ∈ K(X)∗ and e2 ∈ K(X)⊥. Then 1 = ‖e1‖ + ‖e2‖. From this it is

very easy to prove that e ∈ ExtS(K(X)∗) or e ∈ ExtS(K(X)⊥). So it suffices

to prove that e2 = 0. Suppose this is not so. Thus, e2 �= 0. By the assumption,

dist(T,K(X))< 1. From this it is immediate to infer that there exists a compact

operator W ∈ K(X) such that ‖T −W‖ < 1. Hence, 1 = e2(T ) = e2(T −W ) ≤
‖T −W‖ < 1, a contradiction. Thus, e = e1 ∈ ExtS(K(X)∗). By Theorem 1.1,

e= b∗∗ ⊗ a∗ for some b∗∗ ∈ ExtS(X∗∗) and a∗ ∈ ExtS(X∗).

To summarize, it has been shown that b∗∗ ⊗ a∗ ∈ UI+T , b
∗∗ ⊗ a∗ ∈ UI , and

b∗∗ ⊗ a∗ ∈ UT , which yields b∗∗(a∗ + T ∗a∗) = ‖I + T‖, b∗∗(a∗) = ‖I‖, and

b∗∗(T ∗a∗) = ‖T‖. It follows easily that ‖a∗+T ∗a∗‖= 2, ‖a∗‖= 1, and ‖T ∗a∗‖= 1.

Consider a functional x∗∗
o ∈ SX∗∗ such that x∗∗

o (a∗) = 1. By the acs prop-

erty of X∗ one has x∗∗
o (T ∗a∗) = 1. Therefore, x∗∗

1 := x∗∗
o ◦ T ∗ attains the value 1

at a∗ and hence belongs to SX∗∗ . Again, using (2.1), we obtain x∗∗
1 (T ∗a∗) = 1.

Applying the same argument inductively shows that x∗∗
o ((T ∗)na∗) = 1 for all
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n= 0,1,2, . . . . This implies that
(
(T ∗∗)nx∗∗

o

)
(a∗) = 1(2.3)

for all n = 0,1,2, . . . . Recall that the function Q : X∗ → X∗∗∗ defined by

Qy∗(x∗∗) := x∗∗(y∗) for all x∗∗ in X∗∗ is a linear isometry of X∗ into X∗∗∗.

Define a functional h : X∗∗ → K by the formula h := Qa∗. It follows that

h ∈X∗∗∗ and h((T ∗∗)n(x∗∗
o )) = 1 for all n. It follows from (2.3) that

h
(
(T ∗∗)nx∗∗

o

)
= 1(2.4)

for all n. Fix a Banach limit L : l∞ → K. Define the mapping y∗∗∗ : X∗∗ → K

by

y∗∗∗(x∗∗) := L
(
h(x∗∗), h

(
(T ∗∗)x∗∗), h

(
(T ∗∗)2x∗∗), h

(
(T ∗∗)3x∗∗), . . .

)

for x∗∗ ∈X∗∗. Therefore, by (2.4) and by the properties of the Banach limits, we

have y∗∗∗(x∗∗
o ) = L(1,1,1, . . .) = 1, so y∗∗∗ �= 0.

In a similar way as in the proof of the implication (c)⇒(b) we obtain the

equality y∗∗∗ = y∗∗∗ ◦ T ∗∗. Therefore, if we define a closed affine subspace A′′ ⊂
X∗∗ by A′′ := (y∗∗∗)−1({1}), then we have T ∗∗(A′′)⊂A′′ and 0 /∈A′′.

It is standard that X ⊂ X∗∗ and T ∗∗|X = T . Define a closed affine sub-

space A ⊂ X by the formula A := X ∩ A′′. Since T is weakly compact, it fol-

lows that T ∗∗(X∗∗) ⊂ X . Since codimA′′ = 1 and 0 /∈ A′′, we obtain ∅ �= A ⊂
X and 0 /∈ A �= X . It is a straightforward verification to show that T (A) ⊂
A.

The equivalence of (a), (b), and (c) is proved, but we show that the impli-

cation (b)⇒(c) does not depend on the extra assumptions. Indeed, suppose

T ∗y∗ = y∗ �= 0; that is, y∗ ◦ T = y∗. If A := (y∗)−1({1}), then T (A) ⊂ A and

0 /∈A. �

Two vectors x and y in a normed space satisfy ‖x+ y‖= ‖x‖+ ‖y‖ if and only if

‖αx+βy‖= ‖αx‖+ ‖βy‖ holds for α,β ≥ 0. In particular, a continuous operator

T ∈ B(X) satisfies the Daugavet equation if and only if the operator T
‖T‖ satisfies

the Daugavet equation. From here we get the following consequence.

THEOREM 2.2

Assume that X is a Banach space such that X∗ is acs. Suppose that K(X) is

an M -ideal. Let T ∈ B(X), dist(T,K(X)) < ‖T‖. Then a continuous operator

T satisfies the Daugavet equation if and only if there exists a nontrivial closed

invariant affine subspace for T
‖T‖ .

Which Banach spaces X have the property that there is a bounded operator on X

with no nontrivial closed invariant linear subspaces? The question is unanswered

even if X is a Hilbert space. However, for certain specific classes of operators we

can prove that the set of invariant subspaces is not trivial.
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THEOREM 2.3

Let X, B(X), K(X), and T be as in Lemma 2.1. If T satisfies the Daugavet

equation, then T has a nontrivial closed invariant linear subspace.

Proof

Define W := T
‖T‖ . By Lemma 2.1, there is a y∗ �= 0 with W ∗y∗ = y∗. This implies

that N := cl(I −W )(X) �=X . Note that W (N)⊂N , and so T (N)⊂N . �

REMARK 2.4

Let T ∈ B(l2) be the operator defined by T (x1, x2, . . .) := (0, x1, x2, . . .). It is easy

to see that T has a nontrivial closed invariant linear subspace. On the other hand,

there is no nontrivial closed invariant affine subspace for T (see the implications

(b)⇔(c) in Lemma 2.1).

3. The anti-Daugavet property

For terminology and notation, we follow [7]. We say that a Banach space X is

locally uniformly alternatively convex or smooth (luacs) if for all xn, y ∈ S(X)

and x∗ ∈ S(X∗) the implication

x∗(xn)→ 1, ‖xn + y‖→ 2 ⇒ x∗(y) = 1

holds. Clearly, luacs implies acs.

We say that a Banach space X has the anti-Daugavet property for a class

M of operators if, for T ∈M, the equivalence

‖I + T‖= 1+ ‖T‖ ⇔ ‖T‖ ∈ σ(T )

holds. We set MX := {T ∈ B(X) : dist(T,K(X))< ‖T‖}. Clearly, K(X)⊂MX .

THEOREM 3.1

Let X be a Banach space such that X∗ is acs. Suppose that K(X) is an M -ideal.

Then the space X has the anti-Daugavet property for the class MX .

Proof

It is easy to see that ‖T‖ ∈ σ(T ) ⇔ ‖T ∗‖ ∈ σ(T ∗). It follows from Lemma 2.1

that X has the anti-Daugavet property for MX . �

The acs and luacs spaces were originally introduced in [7] to obtain geometric

characterizations of the anti-Daugavet property, which was introduced in the

same paper. Clearly, rotundity and smoothness both imply acs. Note that, by

compactness, in the case dimX <∞ the notions of acs and luacs spaces coincide.

Clearly, luacs implies acs. Hardtke [5] proved the following theorem.

THEOREM 3.2 ([5, Proposition 2.15])

If X∗ is acs, then X is acs.
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In some sense, the above result can be extended.

THEOREM 3.3

Let K(X) be an M -ideal. If X∗ is acs, then X is luacs.

Proof

In [7] it was proved that X has the anti-Daugavet property for compact operators

if and only if X is luacs (see [7, Theorem 4.3]). It is easy to check that ‖T‖ ∈
σ(T )⇔‖T ∗‖ ∈ σ(T ∗). Therefore, from Lemma 2.1 (i.e., (a)⇔(b)) it follows that

X has the anti-Daugavet property for compact operators. So, X is luacs. �

Combining Theorems 3.2 and 3.3, we immediately get the following result.

THEOREM 3.4

Let X be a reflexive Banach space. Let K(X) be an M -ideal in B(X). The Banach

space X is acs if and only if X is luacs.

Now we demonstrate how the Daugavet equation, a purely isometric property,

can be used to obtain some geometrical conclusion regarding operator spaces.

Namely, we are able to prove the following criterion for checking when K(X) is

not an M -ideal in B(X). From Theorem 3.3, we obtain the next result.

THEOREM 3.5

If X∗ is acs and X is not luacs, then K(X) is not an M -ideal.

4. Daugavet equation and eigenvalues

Abramovich, Aliprantis, and Burkinshaw proved the following theorem (see [1,

Corollary 2.4]). In the present section, we will generalize Theorem 4.1. The

method of proof presented here is different from that of [1].

THEOREM 4.1

Let 1< p <∞. A compact operator T ∈ B(lp) satisfies the Daugavet equation if

and only if its norm ‖T‖ is an eigenvalue of T .

The authors of [1] proved a far more general theorem in that they assumed only

uniform convexity; here we prove the special case of �p and do not generalize

their original version. We want to show that it is not necessary to assume that

T is a compact operator. So, our result also generalizes and complements Theo-

rem 4.1.

PROPOSITION 4.2

Let 1 < p < ∞, T ∈ B(lp). Suppose that dist(T,K(lp)) < ‖T‖. The operator T

satisfies the Daugavet equation if and only if its norm ‖T‖ is an eigenvalue of T .
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Proof

It is helpful to recall that K(lp) and K((lp)∗) are M -ideals (see [6]). The spaces lp

and (lp)∗ are strictly convex. Therefore, the spaces lp and (lp)∗ are acs. Note that

Lemma 2.1(a) is obviously self-dual. So, all one has to do is apply Lemma 2.1 to

the dual of lp and the adjoint of T . �
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