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Abstract We find a decomposition formula of the local Bayer–Macr̀ı map for the nef

line bundle theory on the Bridgeland moduli space over a surface. If there is a global

Bayer–Macr̀ı map, then such a decomposition gives a precise correspondence from

Bridgelandwalls toMoriwalls. As an application,we compute the nef cone of theHilbert

scheme S[n] of n-points over special kinds of a fibered surface S of Picard rank 2.

1. Introduction

Let S be a smooth projective surface over C. Let M be the Gieseker moduli

space of semistable sheaves with fixed Chern character ch over S. One viewpoint

for studying the birational geometry of M is to study the classification of line

bundles on M and different cones inside its real Néron–Severi group N1(M), such

as the nef cone Nef(M) and pseudoeffective cone Eff(M). Another viewpoint is

introduced by Bridgeland [10] with the idea of enlarging the category of coher-

ent sheaves Coh(S) to its bounded derived version Db(S) and studying moduli

spaces of Bridgeland semistable objects in Db(S). Let σ be a Bridgeland stability

condition, and let Mσ(ch) be the moduli space of σ-semistable objects in Db(S)

with the same invariant ch. The collection of all stability conditions forms an

interesting parameter space Stab(S), which is a C-manifold. Bridgeland identi-

fied M as Mσ(ch), for σ in a special chamber inside Stab(S). He envisioned that

the wall-chamber structures of Stab(S) will recover birational models of M .

When S is the projective plane P2 and ch = (1,0,−n), the moduli space M

is the Hilbert scheme P2[n] of n-points over P2. Arcara, Bertram, Coskun, and

Huizenga [2] found a precise relation between Bridgeland walls inside Stab(P2)

with respect to (1,0,−n) and Mori walls inside Eff(P2[n]) (see Corollary 4.14).

Bertram and Coskun [8] generalized the speculation to other rational surfaces.

Bayer and Macr̀ı [6], [5] linked the two viewpoints by establishing a line bundle

theory on Bridgeland moduli spaces. Let σ = σω,β be the stability condition

constructed by Arcara and Bertram [1], which depends on an ample line bundle

ω and another line bundle β over S. Assume that σ is in a chamber C. Bayer and
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Macr̀ı constructed a map by sending σ to a nef line bundle �σ on Mσ(ch), which

is called the local Bayer–Macr̀ı map. The line bundle �σ only depends on the

chamber C. When S is a K3 surface and ch is primitive, they constructed a global

Bayer–Macr̀ı map (by gluing the local Bayer–Macr̀ı maps; see Definition 3.6),

� : Stab†(S)→N1(M),

sending a stability condition σ to a line bundle �σ on M . The existence of the

global Bayer–Macr̀ı map is also known for the projective plane P2 with primitive

Chern character ch by Li and Zhao [20].

In this article, we find a decomposition of the line bundle �σω,β
. The decom-

position is classified into two cases according to the given Chern character ch.

The case for objects supported in dimension 1 is given in Lemma 4.5. The case

for objects supported in dimension 2 is given in Lemma 4.8. In this case, an

equivalent decomposition is also obtained by Bolognese, Huizenga, Lin, Riedl,

Schmidt, Woolf, and Zhao [9, Proposition 3.8]. If there is a global Bayer–Macr̀ı

map, we then obtain the precise correspondences from Bridgeland walls to Mori

walls for two such cases (see, resp., Theorems 4.10 and 4.13). By Mori walls,

we mean the walls that appear on the stable base locus decomposition of the

pseudoeffective cone Eff(M).

As an application of the main theorem, we compute the nef cone of the

Hilbert scheme S[n] of n-points over special kinds of a fibered surface S in The-

orem 5.2. Here S is either the Hirzebruch surface or an elliptic surface over P1

with a global section of Picard rank 2. The example suggests that, to obtain the

extremal nef line bundle, we cannot assume that ω is parallel to β.

Some of the techniques discussed in this article have been partially general-

ized by Coskun and Huizenga [13] to compute the nef cone of certain Gieseker

moduli spaces.

Outline of the article. Section 2 is a brief review of the notion of Bridgeland

stability conditions. Section 3 is a brief review of Bayer and Macr̀ı’s line bundle

theory on Bridgeland moduli spaces. The main theorems on the Bayer–Macr̀ı

decomposition are given in Section 4. In Section 5, we provide an application

of the main theorem. Some background on the large-volume limit is given in

Appendix 5. Some parallel computations by using Ẑω,β (see (A.6)) for a K3

surface are given in Appendix 5.

2. Bridgeland stability conditions

Let S be a smooth projective surface over C, and let Db(S) be the bounded

derived category of coherent sheaves on S. Denote the Grothendieck group of

Db(S) by K(S). A Bridgeland stability condition (see [10, Proposition 5.3])

σ = (Z,A) on Db(S) consists of a pair (Z,A), where Z :K(S)→ C is a group

homomorphism (called the central charge) and A ⊂ Db(S) is the heart of a

bounded t-structure satisfying the following three properties.
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(1) Positivity. For any 0 �=E ∈A, the central charge Z(E) lies in the semi-

closed upper half-plane R>0 · e(0,1]·iπ .

Let E ∈ A \ {0}. Define the Bridgeland slope (might be +∞-valued) and the

phase of E as

μσ(E) :=
−�(Z(E))

�(Z(E))
, φ(E) :=

1

π
arg

(
Z(E)

)
∈ (0,1].

For nonzero E,F ∈A, we have the equivalent relation:

μσ(F )< (≤)μσ(E)⇐⇒ φ(F )< (≤)φ(E).

For 0 �=E ∈A, we say E is Bridgeland (semi)stable if for any subobject 0 �= F �E

(0 �= F ⊆E) we have μσ(F )< (≤)μσ(E).

(2) Harder–Narasimhan property. By this property every object E ∈A has a

Harder–Narasimhan filtration 0 =E0 ↪→E1 ↪→ · · · ↪→En =E such that the quo-

tients Ei/Ei−1 are Bridgeland semistable with μσ(E1/E0)> μσ(E2/E1)> · · ·>
μσ(En/En−1).

(3) Support property. There is a constant C > 0 such that, for all Bridgeland-

semistable objects E ∈A, we have ‖E‖ ≤C|Z(E)|, where ‖ · ‖ is a fixed norm on

K(X)⊗R.

2.1. Bridgeland stability conditions on surfaces
Let S be a smooth projective surface. Fix ω,β ∈N1(S) := NS(S)R with ω ample.

Define

Zω,β(E) :=−
∫
S

e−(β+
√
−1ω). ch(E).

For E ∈Coh(S), denote its Mumford slope by

μω(E) :=

{
ω·ch1(E)
ch0(E) if ch0(E) �= 0,

+∞ otherwise.

Let Tω,β ⊂ Coh(S) be the subcategory of coherent sheaves whose Harder–

Narasimhan (HN) factors (with respect to Mumford stability) are of Mumford

slope strictly greater than ω.β. Let Fω,β ⊂Coh(S) be the subcategory of coherent

sheaves whose HN-factors (with respect to Mumford stability) are of Mumford

slope less than or equal to ω.β. Then (Tω,β ,Fω,β) is a torsion pair of Coh(S) (see

[1]). Define the heart Aω,β as the tilt of this torsion pair:

Aω,β :=
{
E ∈Db(S) :H−1(E) ∈ Fω,β ,H

0(E) ∈ Tω,β ,H
p(E) = 0 otherwise

}
.

LEMMA 2.1 ([1, Corollary 2.1])

Fix ω,β ∈NS(S)R with ω ample. Then σω,β := (Zω,β ,Aω,β) is a Bridgeland sta-

bility condition.
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2.2. Logarithm Todd class
Let X be a smooth projective variety over C. Let us introduce a formal variable t

and write

td(X)(t) := 1+
(
−1

2
KX

)
t+

1

12

(3

2
K2

X − ch2(X)
)
t2

+
(
− 1

24
KX .

(1

2
K2

X − ch2(X)
))

t3 +higher order of t4.

Taking the logarithm with respect to t and expressing it in the power series of t,

we obtain

ln td(X)(t) =−1

2
KXt− 1

12
ch2(X)t2 + 0 · t3 +higher order of t4.

In particular, the logarithm Todd class of a smooth projective surface S or a

smooth projective threefold X is given, respectively, by

ln td(S) :=
(
0,−1

2
KS ,−

1

12
ch2(S)

)
or

ln td(X) :=
(
0,−1

2
KX ,− 1

12
ch2(X),0

)
.

2.3. The Mukai pairing
We refer to [16, Section 5.2] for the details. Let X still be a smooth projective

variety of dimension n over C. Define the Mukai vector of an object E ∈Db(X)

by

v(E) := ch(E).e
1
2 ln td(X) ∈

⊕
Hp,p(X)∩H2p(X,Q) =:H∗

alg(X,Q).

Let A(X) be the Chow ring of X . The Chern character gives a mapping ch :

K(X)→A(X)⊗Q. There is a natural involution ∗ :A(X)→A(X),

v = (v0, . . . , vi, . . . , vn) �→ v∗ :=
(
v0, . . . , (−1)ivi, . . . , (−1)nvn

)
.

We call v∗ the Mukai dual of v. Denote E∨ :=RHom(E,OS). We have

ch(E∨) =
(
ch(E)

)∗
, v(E∨) =

(
v(E)

)∗
.e−

1
2KX .

Define the Mukai pairing for two Mukai vectors w and v by

(2.1) 〈w,v〉X :=−
∫
X

w∗.v.e−
1
2KX .

The Hirzebruch–Riemann–Roch theorem gives

χ(F,E) =

∫
X

ch(F∨). ch(E). td(X) =−
〈
v(F ), v(E)

〉
X
.

For a smooth projective surface S, the Mukai vector of E ∈Db(S) is

v(E) =
(
v0(E), v1(E), v2(E)

)
=

(
ch0, ch1−

1

4
ch0KS , ch2−

1

4
ch1 .KS +

1

2
ch0

(
χ(OS)−

1

16
K2

S

))
.(2.2)
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By (2.1) the Mukai pairing of w = (w0,w1,w2) and v = (v0, v1, v2) is

(2.3) 〈w,v〉S =w1.v1 −w0

(
v2 −

1

2
v1.KS

)
− v0

(
w2 +

1

2
w1.KS

)
− 1

8
w0v0K

2
S .

2.4. Central charge in terms of the Mukai pairing
LEMMA 2.2

The central charge Zω,β has the expression

(2.4) Zω,β(E) =
〈
�Zω,β

, v(E)
〉
S
, where �Zω,β

:= eβ−
3
4KS+

√
−1ω+ 1

24 ch2(S).

Moreover, the vector �Zω,β
(or simply �Z) is given by

�Zω,β
=

(
1, β − 3

4
KS ,−

1

2
ω2 +

1

2

(
β − 3

4
KS

)2

− 1

2

(
χ(OS)−

1

8
K2

S

))
+
√
−1

(
0, ω,

(
β − 3

4
KS

)
.ω

)
.(2.5)

Proof

We have

Zω,β(E) = −
∫
S

e−(β+
√
−1ω). ch(E)

= −
∫
S

e−(β+ln td(S)+
√
−1ω).

√
td(S). ch(E).

√
td(S).

Denote ch(F∨) := e−(β+ln td(S)+
√
−1ω). Then

ch(F )∗ = ch(F∨) = e−(β− 1
2KS+

√
−1ω)+ 1

12 ch2(S)

=
(
1,−

(
β − 1

2
KS +

√
−1ω

)
,
1

2

(
β − 1

2
KS +

√
−1ω

)2

+
1

12
ch2(S)

)
.

So

ch(F ) =
(
1,

(
β − 1

2
KS +

√
−1ω

)
,
1

2

(
β − 1

2
KS +

√
−1ω

)2

+
1

12
ch2(S)

)
= e(β−

1
2KS+

√
−1ω)+ 1

12 ch2(S).

Therefore,

Zω,β(E) =−
∫
S

ch(F∨).
√

td(S). ch(E).
√
td(S) =

〈
v(F ), v(E)

〉
S
.

So

�Zω,β
= v(F ) = ch(F ).e

1
2 ln td(S) = eβ−

3
4KS+

√
−1ω+ 1

24 ch2(S).

By using Noether’s formula

− 1

12
ch2(S) = χ(OS)−

1

8
K2

S

and direct computation, we get the concrete expression of �Z . �

Denote by Stab(S) the collection of all Bridgeland stability conditions. It is a

C-manifold of dimension Knum(S)⊗C, with two group actions: a left action by
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Aut(Db(S)) and a right action by G̃L+
2 (R) (see [10, Lemma 8.2]). The stability

σ is said to be geometric if all skyscraper sheaves Ox, x ∈ S, are σ-stable of the

same phase. We can set the phase to be 1 by a right group action. Denote by

Stab†(S) ⊂ Stab(S) the connected component containing the geometric stabil-

ity conditions. The stability σ is said to be numerical if the central charge Z

takes the form Z(E) = 〈π(σ), v(E)〉S for some vector π(σ) ∈Knum(S)⊗C. As in
[17, Remark 4.33], we further assume the numerical Bridgeland stability factors

through Knum(S)Q ⊗C→H∗
alg(S,Q)⊗C. Therefore, π(σ) ∈H∗

alg(S,Q)⊗C. For
a numerical geometric stability condition with skyscraper sheaves of phase 1, the

heart A must be of the form Aω,β (see [10, Proposition 10.3] and Huybrechts

[17, Theorem 4.39]). Therefore, Lemma 2.2 gives

(2.6) π(σω,β) =�Zω,β
∈H∗

alg(S,Q)⊗C.

2.5. Bertram’s nested wall theorem
We follow the notation from [23, Section 2] (but we use H instead of ω therein).

Fix an ample divisor H and another divisor γ ∈H⊥, that is, H.γ = 0. Denote

g :=H2, −d := γ2.

It is known by the Hodge index theorem that d≥ 0 and that d= 0 if and only if

γ = 0. Let ch = (ch0, ch1, ch2) be of Bogomolov type, that is, ch21−2ch0 ch2 ≥ 0.

Write it as

ch = (ch0, ch1, ch2) := (x, y1H + y2γ + δ, z),

where y1, y2 are real coefficients and δ ∈ {H,γ}⊥. Write the potential destabiliz-

ing Chern character as

ch′ = (ch′0, ch
′
1, ch

′
2) := (r, c1H + c2γ + δ′, χ),

where c1, c2 are real coefficients and δ′ ∈ {H,γ}⊥. A potential wall is defined as

W (ch, ch′) :=
{
σ ∈ Stab(S)

∣∣ μσ(ch) = μσ(ch
′)

}
.

A potential wall W (ch, ch′) is a Bridgeland wall if there are a σ ∈ Stab(S) and

objects E,F ∈Aσ such that ch(E) = ch, ch(F ) = ch′, and μσ(E) = μσ(F ). There

is a wall-chamber structure on Stab(S) with respect to ch (see [10], [11], [27]).

Bridgeland walls are R-codimension 1 in Stab(S) and separate Stab(S) into

chambers. Let E be an object that is σ0-stable for a stability condition σ0 in

some chamber C. Then E is σ-stable for any σ ∈ C. Choose

(2.7)

{
ω := tH,

β := sH + uγ,

for some real numbers t, s, u, with t positive. With a sign choice of γ, we further

assume u≥ 0. There is a half-three-space of stability conditions

Ωω,β =ΩtH,sH+uγ := {σtH,sH+uγ | t > 0, u≥ 0} ⊂ Stab†(S),
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which should be considered to be the u-indexed family of half-planes:

Π(H,γ,u) := {σtH,sH+uγ | t > 0, u is fixed}.

DEFINITION 2.3

A frame with respect to the triple (H,γ,u) is a choice of an ample divisor H on

S, another divisor γ ∈H⊥, and a nonnegative number u such that the stability

conditions σω,β are on the half-plane Π(H,γ,u) with (s, t)-coordinates as in (2.7).

We simply call this fixing a frame (H,γ,u), and we write σs,t := σtH,sH+uγ .

THEOREM 2.4 (Bertram’s nested wall theorem in (s, t)-model [23, Section 2])

Fix a frame (H,γ,u). The potential walls W (ch, ch′) (for the fixed ch and different

potential destabilizing Chern characters ch′) in the (s, t)-half-plane Π(H,γ,u) (t >

0) are given by nested semicircles with center (C,0) and radius R=
√
D+C2:

(2.8) (s−C)2 + t2 =D+C2,

where C =C(ch, ch′) and D =D(ch, ch′) are given by

C(ch, ch′) :=
xχ− rz + ud(xc2 − ry2)

g(xc1 − ry1)
,(2.9)

D(ch, ch′) :=
2zc1 − 2c2udy1 − xu2dc1 + 2y2udc1 − 2χy1 + ru2dy1

g(xc1 − ry1)
.(2.10)

• If ch0 = x �= 0, we have

D = −2y1
x

C +
ud(2y2 − ux) + 2z

gx
(2.11)

= −2y1
x

C +
(y21
x2

− F
)
,(2.12)

where F = F (ch) is independent of ch′,

(2.13) F (ch) :=
d

g

(
u− y2

x

)2

+
1

x2g
(y21g− y22d− 2xz).

Moreover, if ch is of Bogomolov type, that is, ch21−2ch0 ch2 ≥ 0, then F (ch)≥ 0

for all u.

• If ch0 = 0 and ch1 .H > 0, that is, x= 0 and y1 > 0, then ch′0 = r �= 0 and

C = z+duy2

gy1
is independent of ch′. We have

D = −2c1
r

C +
ud(2c2 − ur) + 2χ

gr
(2.14)

= −2c1
r

C +
( c21
r2

− F ′
)
,(2.15)

where F ′ = F ′(ch′) is independent of ch,

(2.16) F ′(ch′) :=
d

g

(
u− c2

r

)2

+
1

r2g
(c21g− c22d− 2rχ).

Moreover, if ch′ is of Bogomolov type, then F (ch′)≥ 0 for all u.
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Proof

We refer to Maciocia [23, Section 2]. The only unproved parts are (2.14) and

(2.15). It is an easy exercise to check them. �

2.6. From (s, t)-model to (s, q)-model

We follow the ideas of Li–Zhao [20] and consider a G̃L+
2 (R)-action on σω,β . The

potential walls in the (s, q)-plane are semilines.

DEFINITION 2.5

Fix a frame (H,γ,u). Define σ′
ω,β = (Z ′

ω,β ,A′
ω,β) as the right action of (

1 0
− s

t
1
t
)

on σω,β , that is, A′
ω,β =Aω,β and

(2.17) Z ′
ω,β(E) :=

(
�Zω,β(E)− s

t
�Zω,β(E)

)
+

1

t
i�Zω,β(E).

LEMMA 2.6

Fix a frame (H,γ,u). The above right action does not change the potential walls

W (ch, ch′) in the (s, t)-plane Π(H,γ,u).

Proof

This is a direct computation because the potential wall relation for Z ′
ω,β is equiv-

alent to the potential wall relation for Zω,β by using (2.17):

�Z ′(ch′)�Z ′(ch)−�Z ′(ch)�Z ′(ch′) = 0

⇔ �Z(ch′)�Z(ch)−�Z(ch)�Z(ch′) = 0. �

DEFINITION 2.7

Fix a frame (H,γ,u). We change the (s, t)-plane Π(H,γ,u) to the (s, q)-plane

Σ(H,γ,u) by keeping the same s and defining

(2.18) q :=
s2 + t2

2
.

Denote σs,q := σ′
tH,sH+uγ . The central charge (2.17) becomes

Zs,q(E) =
(
− ch2(E) + ch0(E)H2q

)
+

(
−1

2
ch0(E)γ2u2 + u ch1(E).γ

)
+ i

(
ch1(E).H − ch0(E)H2s

)
.

COROLLARY 2.8 (Bertram’s nested wall theorem in (s, q)-model)

Fix a frame (H,γ,u), and use the notation as above. The potential wallsW (ch, ch′)

in the (s, q)-plane Σ(H,γ,u) are given by semilines

q =Cs+
1

2
D

(
q >

s2

2

)
.
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• If x �= 0, then the potential walls are given by semilines passing through a

fixed point (y1

x , 12 (
y2
1

x2 − F )) with slope C =C(ch, ch′):

(2.19) q =C
(
s− y1

x

)
+

1

2

(y21
x2

− F
) (

q >
s2

2

)
,

where F = F (ch) as in (2.13) is independent of ch′.

• If x = 0 and y1 > 0, then r �= 0. The potential walls are given by parallel

semilines with constant slope C = z+duy2

gy1
:

(2.20) q =C
(
s− c1

r

)
+

1

2

( c21
r2

− F ′
) (

q >
s2

2

)
,

where F ′ = F ′(ch′) as in (2.16) is independent of ch.

Proof

This is a direct computation by using (2.8) and (2.18). �

REMARK 2.9

In the case of P2, the condition q > s2

2 is relaxed, q could be a little negative,

and the boundary is given by a fractal curve (see [20]).

2.7. Duality induced by derived dual
LEMMA 2.10 ([24, Theorem 3.1])

The functor Φ(·) :=RHom(·,OS)[1] induces an isomorphism between the Bridge-

land moduli spaces Mω,β(ch) and Mω,−β(− ch∗) provided these moduli spaces exist

and Zω,β(ch) belongs to the open upper half-plane.

Proof

This is a variation of Martinez’s duality theorem [24, Theorem 3.1], where the

duality functor is taken as RHom(·, ωS)[1]. �

COROLLARY 2.11

Fix the Chern character ch = (ch0, ch1, ch2). Assume that Zω,β(ch) belongs to the

open upper half-plane. The wall-chamber structures of σω,β with respect to ch are

dual to the wall-chamber structures of Φ(σω,β) with respect to Φ(ch) = − ch∗ =

(− ch0, ch1,− ch2) in the sense that

Φ(σω,β) = σω,−β .

Applying Φ again, we have Φ ◦ Φ(σω,β) = σω,β . Moreover, if we fix a frame

(H,γ,u), then σω,β ∈Π(H,γ,u) with coordinates (s, t) is dual to Φ(σω,β) ∈Π(H,−γ,u)

with coordinates (−s, t).

• If σω,β ∈ C, where C is a chamber with respect to ch in Π(H,γ,u), then we

have Φ(σω,β) ∈ DC, where DC is the corresponding chamber with respect to Φ(ch)

in Π(H,−γ,u).

• If σ := σω,β ∈W (ch, ch′) holds in Π(H,γ,u), then it also holds that Φ(σ) ∈
W (− ch∗,−ch′

∗
) in Π(H,−γ,u), and there are relations μΦ(σ)(− ch∗) = −μσ(ch),
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CΦ(σ)(− ch∗,−ch′
∗
) = −Cσ(ch, ch

′), DΦ(σ)(− ch∗,−ch′
∗
) = Dσ(ch, ch

′), and

RΦ(σ)(− ch∗,−ch′
∗
) =Rσ(ch, ch

′).

Proof

The proof is a direct computation. �

REMARK 2.12

The assumption that Zω,β(ch) belongs to the open upper half-plane means exactly

that we exclude the case �Zω,β(ch) = 0, which is equivalent to one of the follow-

ing three subcases:

• ch = (0,0, n) for some positive integer n;

• ch0 > 0 and �Zω,β(ch) = 0; or

• ch0 < 0 and �Zω,β(ch) = 0.

We call the first subcase the trivial chamber, the second subcase the Uhlenbeck

wall, and the third subcase the dual Uhlenbeck wall (see Definition A.4).

3. Bayer–Macrì’s nef line bundle theory

3.1. The local Bayer–Macrì map
Let S be a smooth projective surface over C. Let σ = (Z,A) ∈ Stab(S) be a

stability condition, and let ch = (ch0, ch1, ch2) be a choice of Chern character.

Assume that we are given a flat family (see [6, Definition 3.1]) E ∈ Db(M × S)

of σ-semistable objects of class ch parameterized by a proper algebraic space M

of finite type over C. Denote by N1(M) = NS(M)R the group of real Cartier

divisors modulo numerical equivalence. Write N1(M) as the group of real 1-

cycles modulo numerical equivalence with respect to the intersection pairing with

Cartier divisors. Bayer–Macr̀ı’s numerical Cartier divisor class �σ,E ∈N1(M) =

Hom(N1(M),R) is defined as follows: for any projective integral curve C ⊂M ,

(3.1) �σ,E
(
[C]

)
= �σ,E .C :=�

(
−Z(ΦE(OC))

Z(ch)

)
=�

(
−Z((pS)∗E|C×S)

Z(ch)

)
,

where ΦE : D
b(M)→Db(S) is the Fourier–Mukai functor with kernel E and OC

is the structure sheaf of C.

THEOREM 3.1 ([6, Theorem 1.1])

The divisor class �σ,E is nef on M . In addition, we have �σ,E .C = 0 if and only if,

for two general points c, c′ ∈C, the corresponding objects Ec,Ec′ are S-equivalent.

Here two semistable objects are S-equivalent if their Jordan–Hölder filtrations

into stable factors of the same phase have identical stable factors.

DEFINITION 3.2

Let C be a Bridgeland chamber with respect to ch. Assume the existence of the

moduli space Mσ(ch) for σ ∈ C with a universal family E . Then MC(ch) :=Mσ(ch)
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is constant for σ ∈ C. Theorem 3.1 yields a map

� : C −→ Nef
(
MC(ch)

)
,

σ �→ �σ,E ,

which is called the local Bayer–Macr̀ı map for the chamber C with respect to ch.

For any σ ∈ Stab†(S), after a G̃L+
2 (R)-action, we assume that σ = σω,β , that is,

skyscraper sheaves are stable of phase 1. Denote

v := v(ch) = ch ·e 1
2 ln td(S).

The local Bayer–Macr̀ı map is the composition of the following three maps:

Stab†(S)
π−→H∗

alg(S,Q)⊗C
I−→ v⊥ θC,E−−→N1

(
MC(ch)

)
.

• The map π forgets the heart: π(σω,β) :=�Zω,β
as in (2.6).

• For any � ∈H∗
alg(S,Q)⊗C, define I(�) := � �

−〈�,v〉S . One can check that

I(�) ∈ v⊥ (this also follows from Lemma 3.4), where the perpendicular relation

is with respect to the Mukai pairing:

(3.2) v⊥ :=
{
w ∈H∗

alg(S,Q)⊗R
∣∣ 〈w,v〉S = 0

}
.

• The third map θC,E is the algebraic Mukai morphism. More precisely, for a

fixed Mukai vector w ∈ v⊥ and an integral curve C ⊂MC(ch),

θC,E(w).[C] :=
〈
w,v

(
ΦE(OC)

)〉
S
.

DEFINITION 3.3

Define wσω,β
(ch) :=−�(〈�Z ,v〉S ·�Z). We simply write it as wω,β or wσ .

LEMMA 3.4

Fix the Chern character ch = (ch0, ch1, ch2). The line bundle class �σω,β
∈

N1(Mσω,β
(ch)) (if it exists) is given by

(3.3) �σω,β

R+
=== θσ,E(wω,β),

where wω,β ∈ v⊥ is given by

(3.4) wω,β =
(
�Z(ch)

)
��Z −

(
�Z(ch)

)
��Z .

Proof

By the definition, wω,β = |Z(E)|2I(�Z). Applying the Mukai morphism, we

get (3.3). Taking the complex conjugate of (2.4) we get 〈�Z ,v〉S = �Z(ch) −√
−1�Z(ch). The relation (3.4) thus follows from the definition of wω,β . By the

definition of �Z , we have 〈��Z ,v〉S +
√
−1〈��Z ,v〉S = 〈�Z ,v〉S = �Z(ch) +√

−1�Z(ch). We then obtain the perpendicular relation 〈wσ,v〉S = (�Z(ch))×
〈��Z ,v〉S − (�Z(ch))〈��Z ,v〉S = 0. �
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The Mukai morphism is the dual version of the Donaldson morphism (see

[6, Proposition 4.4, Remark 5.5]). The surjectivity of the Mukai morphism is not

known in general. We will compute the image of the local Bayer–Macr̀ı map in

Theorem 4.13.

Let E be a universal family over Mσ(ch). Denote by F the dual universal

family over MΦ(σ)(− ch∗). Then wω,−β(− ch∗) ∈ v(− ch∗)⊥.

LEMMA 3.5

Fix the Chern character ch. Let σ := σω,β , and assume that Zω,β(ch) belongs to

the open upper half-plane (Remark 2.12). Then

�σ ∼= �Φ(σ), that is, θσ,E
(
wω,β(ch)

) ∼= θΦ(σ),F
(
wω,−β(− ch∗)

)
.

Proof

This is a consequence of the isomorphism of the moduli spaces

Mσω,β
(ch)∼=Mσω,−β

(− ch∗)

induced by the duality functor Φ(·) =RHom(·,OS)[1]. �

3.2. The global Bayer–Macrì map
Let σ be in a chamber C. The line bundle �σ,E is only defined locally, that is, �σ,E ∈
N1(MC(ch)). If we take another chamber C′, we cannot say �σ,E ∈N1(MC′(ch))

directly. We want to associate to �σ,E the global meaning in the following way.

Let σ ∈ C and τ ∈ C′ be two generic numerical stability conditions in different

chambers with respect to ch. Assume that Mσ(ch) and Mτ (ch) are nonempty

and irreducible with universal families E and F , respectively. And assume that

there is a birational map between Mσ(ch) and Mτ (ch), induced by a derived

autoequivalence Ψ of Db(S) in the following sense: there exists a common open

subset U of Mσ(ch) and Mτ (ch), with complements of codimension at least 2,

such that, for any u ∈ U , the corresponding objects Eu ∈Mσ(ch) and Fu ∈Mτ (ch)

are related by Fu =Ψ(Eu). Then the Néron–Severi groups of Mσ(ch) and Mτ (ch)

can canonically be identified. So for a Mukai vector w ∈ v⊥, the two line bundles

θC,E(w) and θC′,F (w) are identified.

DEFINITION 3.6

Fix a base geometric numerical stability condition σ in a chamber. A global

Bayer–Macr̀ı map

� : Stab†(S)→N1
(
Mσ(ch)

)
is glued by the local Bayer–Macr̀ı map by the above identification.

THEOREM 3.7 ([5, Theorem 1.2] for K3, [20, Theorem 0.2] for P2)

Let S be a K3 surface or the projective plane P2. Let ch be a primitive character

over S. There is a global Bayer–Macr̀ı map.
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4. Bayer–Macrì decomposition

In this section, we give an intrinsic decomposition of the Mukai vector wω,β(ch)

in Lemmas 4.5 and 4.8, respectively, according to the dimension of the support

of objects with invariants ch. In particular, each component is in v⊥. So we

can apply θσ,E and obtain the intrinsic decomposition of �σω,β
. We call such a

decomposition of wω,β or �σω,β
the Bayer–Macr̀ı decomposition.

4.1. Preliminary computation by using �Z

LEMMA 4.1

If �Z(ch) = 0, then wσ
R+
===��Z . If �Z(ch)> 0, then

wσ
R+
=== μσ(ch)��Z +��Z

=
(
0, μσ(ch)ω+ β,−3

4
KS .

(
μσ(ch)ω+ β

))
+

(
1,−3

4
KS ,−

1

2
χ(OS) +

11

32
K2

S

)
)

+
(
0,0, β.

(
μσ(ch)ω+ β

)
− 1

2
(ω2 + β2)

)
.(4.1)

Proof

The case for �Z(ch) = 0 follows from (3.4). If �Z(ch) > 0, we divide (3.4) by

this positive number and obtain (4.1). The concrete formula is then derived by

(2.5). �

LEMMA 4.2

Fix a frame (H,γ,u). We have relations

μσ(ch)ω+ β = C(ch, ch′)H + uγ,(4.2)

β.
(
μσ(ch)ω+ β

)
− 1

2
(ω2 + β2) = −g

2
D(ch, ch′)− d

2
u2,(4.3)

where the numbers C(ch, ch′) and D(ch, ch′) are given by (2.9) and (2.10).

Proof

The proof is a direct computation by using Maciocia’s Theorem 2.4. For the

reader’s convenience, we give the details. For (4.2), we only need to check that

μσ(ch)t+ s=C(ch, ch′).

Recall that the wall equation is (s−C)2 + t2 =D+C2. Now

μσ(ch)t+ s =
z − sy1g+ uy2d+

x
2 (s

2g− u2d− t2g)

(y1 − xs)g
+ s

=
z + uy2d− x

2u
2d− xg

2 (s2 + t2)

(y1 − xs)g
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=
z + uy2d− x

2u
2d− xg

2 (2sC +D)

(y1 − xs)g
by using the wall equation.

So we only need to check that

(4.4) z + uy2d−
x

2
u2d− xg

2
(2sC +D) = (y1 − xs)gC.

If x= 0, then (4.4) is true since C = z+duy2

gy1
. If x �= 0, then (4.4) is still true by

using (2.11).

Let us prove (4.3). We have that

LHS of (4.3) = (sH + uγ).(CH + uγ)− g

2

(
t2 + s2 − d

g
u2

)
= sCg− u2d− g

2

(
2sC +D− d

g
u2

)
=RHS of (4.3). �

DEFINITION 4.3

Fix a frame (H,γ,u). Define the vector t(H,γ,u)(ch, ch
′) as(

1,CH + uγ − 3

4
KS ,−

3

4
KS .(CH + uγ)− 1

2
χ(OS) +

11

32
K2

S

)
,

where the center C =C(ch, ch′) is as in (2.9).

LEMMA 4.4

If �Zω,β(ch)> 0, then

(4.5) wσ∈W (ch,ch′)
R+
===

(g

2
D(ch, ch′) +

d

2
u2

)
(0,0,−1) + t(H,γ,u)(ch, ch

′).

Proof

This is a direct computation by using (4.1), (4.2), and (4.3). �

4.2. The local Bayer–Macrì decomposition
We decompose wσ into three cases according to the dimension of the support of

objects with invariants ch. Assume that there is a flat family E ∈Db(Mσ(ch)×S),

and denote the Mukai morphism by θσ,E .

4.2.1. Supported in dimension 0

Fix ch = (0,0, n), with n a positive integer. Fix a frame (H,γ,u). Since t >

0 is the trivial chamber and there is no wall on Π(H,γ,u), we obtain wσ
R+
===

��Z
R+
=== (0,H, (β − 3

4KS).H), and the nef line bundle �σ = θσ,E(0,H, (sH −
3
4KS).H) on the moduli space Mσ(ch)∼= Symn(S) (see [22, Lemma 2.10]), which

is independent of s.
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4.2.2. Supported in dimension 1

Fix a frame (H,γ,u). We assume that ch = (0, ch1, ch2) with ch1 .H > 0. Now the

center is given by C = z+duy2

gy1
, which is independent of ch′. So the vector

t(H,γ,u)(ch) := t(H,γ,u)(ch, ch
′)

is also independent of ch′. There is another special vector

w∞H,β
R+
=== (0,0,−1).

We get two well-defined line bundles in the following theorem:

(4.6) S := θσ,E(0,0,−1), T(H,γ,u)(ch) :=−θσ,E
(
t(H,γ,u)(ch)

)
.

LEMMA 4.5 (The local Bayer–Macrì decomposition in dimension 1)

Fix a frame (H,γ,u). Assume that ch = (0, ch1, ch2) with ch1 .H > 0.

(a) There is a decomposition

wσ∈W (ch,ch′)
R+
===

(g

2
D(ch, ch′) +

d

2
u2

)
(0,0,−1) + t(H,γ,u)(ch),

where (0,0,−1), t(H,γ,u)(ch) ∈ v⊥. Moreover, r = ch′0 �= 0, and the coefficient

before (0,0,−1) is expressed in terms of the potential destabilizing Chern char-

acter ch′ = (r, c1H + c2γ + δ′, χ):

(4.7)
g

2
D(ch, ch′) +

d

2
u2 =

χ− gCc1 + udc2
r

.

(b) Assume that there is a flat family E ∈Db(Mσ(ch)×S). Then the Bayer–

Macr̀ı nef line bundle on the moduli space Mσ(ch) has a decomposition

(4.8) �σ∈W (ch,ch′)
R+
===

(g

2
D(ch, ch′) +

d

2
u2

)
S − T(H,γ,u)(ch).

Proof

Part (a) follows from computation. The Mukai vector v is given by

v=
(
0, ch1, ch2−

1

4
ch1 .KS

)
.

So (0,0,−1) ∈ v⊥ by the definition in (3.2) and the formula (2.3). To show

t(H,γ,u)(ch) ∈ v⊥, we can either directly compute the Mukai pairing〈
t(H,γ,u)(ch),v

〉
S
=

(
CH + uγ − 3

4
KS

)
· ch1−

(
ch2−

1

4
ch1 .KS − 1

2
ch1 .KS

)
= 0

or note the relation (4.5) and the fact that wσ∈W (ch,ch′) ∈ v⊥, (0,0,−1) ∈ v⊥.

Then S and T(H,γ,u)(ch) are well defined in (4.6). Recall (2.10) for D(ch, ch′).

Since x = ch0 = 0, we obtain r �= 0. The relation (4.7) is then derived by using

(2.14). Part (b) follows from part (a) by applying the Mukai morphism θσ,E . �
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4.2.3. Supported in dimension 2

Assume that ch0 �= 0. If ch0 < 0, then we observe

w∞H,β
R+
===

(
0,H,

(ch1
ch0

− 3

4
KS

)
H

)
R+
===wσ∈DUW.

DEFINITION 4.6

Fix ch = (ch0, ch1, ch2) with ch0 �= 0, and define

w(ch) :=
(
1,−3

4
KS ,−

ch2
ch0

− 1

2
χ(OS) +

11

32
K2

S

)
,

m(L, ch) :=
(
0,L,

(ch1
ch0

− 3

4
KS

)
.L

)
, where L ∈N1(S),

u(ch) :=w(ch) +m
(1

2
KS , ch

)
=

(
1,−1

4
KS ,−

ch2
ch0

+
ch1 .KS

2ch0
− 1

2
χ(OS)−

1

32
K2

S

)
.

LEMMA 4.7

We have the following three perpendicular relations for Mukai vectors:

m(L, ch), w(ch), u(ch) ∈ v⊥.

Proof

The perpendicular relations can be checked directly by (3.2), (2.2), and (2.3). �

LEMMA 4.8 (The local Bayer–Macrì decomposition in dimension 2)

(a) If ch0 �= 0 and �Z(ch)> 0, then there is a decomposition (up to a positive

scalar)

wω,β(ch)
R+
=== μσ(ch)m(ω, ch) +m(β, ch) +w(ch)(4.9)

= μσ(ch)m(ω, ch) +m(α, ch) + u(ch),(4.10)

where m(ω, ch), m(β, ch), m(α, ch), w(ch), u(ch) ∈ v⊥.

(b) Assume that there is a flat family E . Then the Bayer–Macr̀ı line bundle

class �σω,β
has a decomposition in N1(Mσ(ch)):

(4.11) �σω,β

R+
=== μσ(ch)θσ,E

(
m(ω, ch)

)
+ θσ,E

(
m(β, ch)

)
+ θσ,E

(
w(ch)

)
.

Proof

Recall (4.1). To show (4.9), we only need to check that

(4.12)
ch1
ch0

.
(
μσ(ch)ω+ β

)
− ch2

ch0
= β.

(
μσ(ch)ω+ β

)
− 1

2
(ω2 + β2).

By the definition of the Bridgeland slope, we have

μσ(ch) =
ch2−1

2 ch0(ω
2 − β2)− ch1 .β

ω.(ch1− ch0 β)
.
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So

μσ(ch)ω.
(ch1
ch0

− β
)
=

ch2
ch0

− 1

2
(ω2 − β2)− ch1

ch0
.β.

Therefore, we have (4.12). Then (4.10) follows from (4.9) and the relation α =

β − 1
2KS . Part (b) follows directly by applying the Mukai morphism θσ,E . �

REMARK 4.9

An equivalent decomposition of wω,β(ch) in (4.9) is also obtained by Bolognese,

Huizenga, Lin, Riedl, Schmidt, Woolf, and Zhao [9, Proposition 3.8].

4.3. The global Bayer–Macrì decomposition
Assume the existence of the global Bayer–Macr̀ı map. Assume that W (ch, ch′) is

an actual Bridgeland wall.

4.3.1. Supported in dimension 1

THEOREM 4.10

Fix a frame (H,γ,u), and assume that ch = (0, ch1, ch2) with ch1 .H > 0. Assume

the existence of the global Bayer–Macr̀ı map, with the fixed base stability condition

in the Simpson chamber SC, that is, Mσ∈SC(ch) ∼= M(α,ω)(ch). Then there is a

correspondence from the Bridgeland wall W (ch, ch′) as semicircle (2.8) in the

half-plane Π(H,γ,u) with fixed center C (or, equivalently, as semiline (2.20) in

the plane Σ(H,γ,u) with fixed slope C) to the Mori wall inside the pseudoeffective

cone Eff(M(α,ω))(ch):

�σ∈W (ch,ch′)
R+
===

(g

2
D(ch, ch′) +

d

2
u2

)
S − T(H,γ,u)(ch)(4.13)

=
χ− gCc1 + udc2

r
S − T(H,γ,u)(ch).(4.14)

Proof

The center C = z+duy2

gy1
is independent of ch′. So is T(H,γ,u)(ch). The number

D(ch, ch′) is given by (2.15). Since the base stability condition σ ∈ SC, we obtain

S = θSC,E
(
(0,0,−1)

)
∈N1

(
M(α,ω)(ch)

)
,

T(H,γ,u)(ch) =−θSC,E
(
t(H,γ,u)(ch)

)
∈N1

(
M(α,ω)(ch)

)
.

Then (4.13) follows from (4.8) by fixing the above two line bundles S and

T(H,γ,u)(ch) in the Simpson moduli space. We obtain (4.14) by using (4.7). �

By using the Donaldson morphism λE , we have [18, Example 8.1.3]

S = λE(0,0,1) = (pM )∗
(
det(E)|M×{s}

)
.

The line bundle S is conjectured to induce the support morphism, which maps

E ∈Mσ∈SC(ch) to Supp(E). This is proved for the case in which S = P2 (see [28])

or S is a K3 surface (see [5, Lemma 11.3]).
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4.3.2. Supported in dimension 2

By applying the derived dual functor if necessary, we further assume that ch0 > 0

in Lemma 4.8. Recall Lemma 3.5 and Corollary 2.11. We obtain

wω,−β(− ch∗)
R+
=== μΦ(σ)(− ch∗)m(ω,− ch∗) +m(−β, ch) +w(− ch∗),

�σ ∼= �Φ(σ)
R+
=== μΦ(σ)(− ch∗)θΦ(σ),F

(
m(ω,− ch∗)

)
+ θΦ(σ),F

(
m(−β,− ch∗)

)
+ θΦ(σ),F

(
w(− ch∗)

)
.

Since μΦ(σ)(− ch∗) =−μσ(ch), we get

θΦ(σ),F
(
w(− ch∗)

) ∼= θσ,E
(
w(ch)

)
, θΦ(σ),F

(
m(ω,− ch∗)

) ∼=−θσ,E
(
m(ω, ch)

)
.

NOTATION 4.11

Assume that ch0 > 0. Let L be a line bundle on S. Denote

L̃ := θΦ(σ),F
(
m(L,− ch∗)

) ∼=−θσ,E
(
m(L, ch)

)
, B0 :=−θσ,E

(
u(ch)

)
.

Then we have

(4.15) θσ,E
(
w(ch)

)
=

1

2
K̃S −B0.

Recall α= β − 1
2KS . Denote

Bα := β̃ − θΦ(σ),F
(
w(− ch∗)

) ∼= β̃ − θσ,E
(
w(ch)

)
= α̃+B0.

Note that L̃, Bα, and B0 are line bundles on Mσ(ch).

ASSUMPTION 4.12

The Chern character ch = (ch0, ch1, ch2) satisfies condition (C) if the following

three assumptions hold:

• ch0 > 0;

• (Bogomolov type) ch21−2ch0 ch2 ≥ 0; and

• gcd(ch0, ch1 .H, ch2−1
2 ch1 .KS) = 1 for a fixed ample line bundle H (see

[18, Corollary 4.6.7]).

THEOREM 4.13

Fix ch, and assume that it satisfies condition (C). Assume the existence of the

global Bayer–Macr̀ı map, with the fixed base stability condition in the Gieseker

chamber GC, that is, Mσ∈GC(ch) ∼= M(α,ω)(ch). Then the following conclusions

hold.

(a) There is a Bayer–Macr̀ı decomposition for the line bundle �σω,β
:

�σω,β

R+
===

(
−μσω,β

(ch)
)
ω̃−Bα =

(
−μσω,β

(ch)
)
ω̃− α̃−B0.

(b) The line bundle ω̃ induces the Gieseker–Uhlenbeck morphism from the

(α,ω)-Gieseker semistable moduli spaceM(α,ω)(ch) to the Uhlenbeck space Uω(ch).
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(c) If ch0 = 2 and ∂M(α,ω)(ch) �= ∅, the divisor Bα is the α-twisted boundary

divisor of the induced Gieseker–Uhlenbeck morphism. In particular, in the case

of α= 0, the divisor B0 is the (untwisted) boundary divisor from the ω-semistable

Gieseker moduli space Mω(ch) to the Uhlenbeck space Uω(ch).

(d) Fix a frame (H,γ,u). Then there is a correspondence from the Bridge-

land wall W (ch, ch′) as semicircle (2.8) in the half-plane Π(H,γ,u) with center

C(ch, ch′) (or, equivalently, as semiline (2.19) in the plane Σ(H,γ,u) with slope

C(ch, ch′)) to the effective line bundle on the moduli space M(α,ω)(ch):

(4.16) �σ∈W (ch,ch′)
R+
===−C(ch, ch′)H̃ − uγ̃ +

1

2
K̃S −B0.

Proof

We identify ω̃ and Bα as line bundles on M(α,ω)(ch). Then (4.11) implies part

(a). Since −μσ∈UW(ch) = μΦ(σ)∈DUW(− ch∗) = +∞, we obtain

�σ∈UW
R+
=== ω̃.

Part (b) follows from [18, Theorem 8.2.8]. If ch0 = 2 and ∂M(α,ω)(ch) �= ∅, then
the Gieseker–Uhlenbeck morphism is a divisorial contraction by [18, Lemma

9.2.1], and Bα is the boundary divisor from the α-twisted moduli spaceM(α,ω)(ch)

to the Uhlenbeck space Uω(ch). In particular, B0 is the untwisted boundary divi-

sor. This shows part (c). Then (4.16) follows from a direct computation by using

(4.11), (4.2), and (4.15):

�σ∈W (ch,ch′)
R+
=== θσ,E

(
m

(
μσ(ch)ω+ β, ch

))
+ θσ,E

(
w(ch)

)
= −C(ch, ch′)H̃ − uγ̃ +

1

2
K̃S −B0. �

There are two line bundles L0, L1 on Gieseker moduli space introduced by Le

Potier. We follow the notation from [18, Definition 8.1.9]. Then

L0 =− ch0B0, L1 = ch0 H̃.

Arcara, Bertram, Coskun, and Huizenga [2] studied the Hilbert scheme of

n-points on the projective plane P2 and gave a precise conjecture between the

Bridgeland walls and Mori walls, which was one of the motivations of Bayer–

Macr̀ı’s line bundle theory. This conjecture was proved by Li and Zhao [19]. The

relation still holds for a more general primitive character (see [20]).

COROLLARY 4.14 (see [20])

Let S = P2, and denote by H the hyperplane divisor on P2. Fix ch primitive with

ch0 > 0. Assume that MH(ch) �= ∅. Then there is a relation

�σ∈W (ch,ch′)
R+
===−

(
C(ch, ch′) +

3

2

)
H̃ −B0.

Proof
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The existence of the global Bayer–Macr̀ı map was proved by Li and Zhao [20,

Theorem 0.2]. We then apply (4.16) with γ = 0 and KS =−3H . �

EXAMPLE 4.15

Assume that the irregularity of the surface is 0. If ch = (1,0,−n), then the

Gieseker–Uhlenbeck morphism is the Hilbert–Chow morphism h : S[n] → S(n),

which maps the Hilbert scheme of n-points on S to the symmetric product S(n).

In particular,

H̃ = L1 = h∗(OS(n)(1)
)
,

which induces the Hilbert–Chow morphism (see [18, Example 8.2.9]). The bound-

ary divisor of the Hilbert–Chow morphism is

(4.17) B :=
{
ξ ∈ S[n] :

∣∣Supp(ξ)∣∣ < n
}
.

It is known from [7, Appendix] that 1
2B is an integral divisor and B0 =−L0 =

1
2B.

5. A toy model: Fibered surface over P1 with a global section

We compute the nef cone of the Hilbert scheme S[n] of n-points over S by using

Theorem 4.13. Here let π : S → P1 be either a P1-fibered or an elliptic-fibered

surface over P1 with a global section E whose self-intersection number is −e.

We assume that all fibers are reduced and irreducible, and the Picard group of

S is generated by E and F , where F is the generic fiber class. We have the

intersection numbers

E.E =−e, E.F = 1, F 2 = 0.

• P1 fibration. In this case, F ∼= P1 and S is the Hirzebruch surface Σe with

integer e≥ 0. Then KS =−2(E+ eF )+ (e− 2)F . Here Σ0 is the surface P1×P1.

• Elliptic fibration. In this case, the generic fiber F is an elliptic curve. We

denote the surface by Se and further assume that e≥ 2. Then Se has the unique

section E and KS = (e− 2)F (see [26]).

Since the nef cone of S is generated by the two extremal nef line bundles

E + eF and F , any ample line bundle H , after rescaling, can be written as

H := λ(E + eF ) + (1− λ)F, 0< λ< 1.

Take γ such that H.γ = 0 and H2 = −γ2. Basic computation shows that γ =

±(−λ(E + eF ) + (1− λ+ eλ)F ). An (H,γ,u)-frame, with u≥ 0, is fixed by the

choice

γ :=−λ(E + eF ) + (1− λ+ eλ)F.

The two numbers λ and u are regarded as the initial values.

Fix ch = (1,0,−n), with integer n ≥ 2. The potential walls are given by

(s−C)2 + t2 =C2 +D with t > 0, where

C =C(ch, ch′) =
ch′2+ch′0 n− u ch′1 .γ

ch′1 .H
, D =D(ch, ch′) =−u2 − 2n

H2
.



Bayer–Macrì decomposition on Bridgeland moduli spaces 615

Recall s0 :=
ch1 .H
ch0 H2 = 0. The UW is given by s= s0 = 0. Therefore, C < 0.

One type of nef line bundle on S[n] is ω̃ for ω ∈ Amp(S), which induces a

Gieseker–Uhlenbeck morphism. By taking ω to be extremal, that is, ω =E+ eF

or F , we obtain two extremal nef line bundles on S[n]:

(5.1) ˜(E + eF ), F̃ .

To find the nef cone of S[n], we need to find the biggest nontrivial wall, that

is, the smallest value of C. Let us call such a wall the Gieseker wall.

LEMMA 5.1

If the Gieseker wall is given by a rank 1 wall, then

ch′ = (1,−F,0) or ch′ =
(
1,−E,

−e

2

)
.

Proof

The idea is the same as in [2] (see also [8]). Any destabilizing subsheaf of IZ
of rank 1 has the form L ⊗ IW with Chern character ch′ = (1,L, L

2

2 − w) for

some line bundle L and some ideal sheaf IW of length w ≥ 0. Then C(ch, ch′) =
L2

2 +n−uL.γ

L.H + w
−L.H . To guarantee L⊗IW as an object in the heart, we need L.H <

0. Then we write L=−(mF + kE), with two nonnegative integers m and k, and

(m,k) �= (0,0). To get the biggest nontrivial wall, we must take w = 0. Denote the

line bundle on S[n] corresponding to the destabilizing line bundle −(mF + kE)

by �(m,k). The locus contracted by �(0,1) is {Z ∈ S[n] | Z ⊂ E}. The locus

contracted by �(1,0) is {Z ∈ S[n] | Z ⊂ F,Z is linear equivalent to n(E ∩ F )}.
Assume that the smallest value is obtained by taking (m,k) �= (1,0) or (0,1).

Recall that the walls are nested. But the loci contracted by �(1,0) or �(0,1) are

also contracted by �(m,k), which is a contradiction. �

The line bundles �(1,0) and �(0,1) depend on the initial values λ and u. By

(4.16), we have

�(0,1)λ,u = n ˜(E + eF ) +
((1− λ

λ

)
n− u

(
2(1− λ) + eλ

))
F̃ +

1

2
K̃S −B0,

�(1,0)λ,u =
((

n− 1

2
e
)( λ

1− λ

)
+ u

(
λ+

( λ

1− λ

)
(eλ+ 1− λ)

))
˜(E + eF )

+
(
n− 1

2
e
)
F̃ +

1

2
K̃S −B0.

By taking λ to 0+ or 1−, respectively, we get two nef boundaries as in (5.1):

�(0,1)0+,u
R+
=== F̃ , �(1,0)1−,u

R+
=== ˜(E + eF ).

Moreover, �(0,1)λ,u is decreasing and �(1,0)λ,u is increasing with respect to λ.

The two types of loci are simultaneously contracted if and only if

�(0,1)λ,u = �(1,0)λ,u.
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The solutions are given by

(5.2) u= U(ch, λ) :=
n
λ − n− e

2

1λ

2 + e · λ
1−λ

and 0< λ< 1.

Moreover, with 0< λ< 1, we have

(5.3) �(0,1)λ,U(ch,λ) = �(1,0)λ,U(ch,λ) = n ˜(E + eF ) +
(
n− e

2

)
F̃ +

1

2
K̃S −B0.

THEOREM 5.2

(a) The nef cone Nef(Σ
[n]
e ) (e ≥ 0, n ≥ 2) is generated by the nonnegative

combinations of ˜(E + eF ), F̃ , and (n − 1) ˜(E + eF ) + (n − 1)F̃ − 1
2B. (See [8,

Theorems 1(2), 1(3)].)

(b) The nef cone Nef(S
[n]
e ) (e ≥ 2, n ≥ 2) is generated by the nonnegative

combinations of ˜(E + eF ), F̃ , and n ˜(E + eF ) + (n− 1)F̃ − 1
2B.

Proof

We only need to show that the Gieseker wall is not a higher rank wall in the case

of (5.2). Note that the bundle in (5.3) is independent of the λ. So it is enough

to check for the case λ = 1
2 . Now we have u = U(ch, 12 ) =

e
e+2 . The two walls

given by Lemma 5.1 coincide with the center C =−2n+ e
e+2 . By the estimation

formula from [8, Section 5], the center Ck of a rank k wall (k ≥ 2) is bounded by

C2
k ≤

(
u2 +

2n

H2

) (2k− 1)2

(2k− 1)2 − 1
≤

(
u2 +

2n

H2

)9

8
.

Now H2 = e
4u , and u= e

e+2 . It is easy to check that(
u2 +

8nu

e

)9

8
< (−2n+ u)2.

So C2
k < C2. Therefore, higher rank walls are strictly inside the wall given by

center C. By (4.16), the extremal nef line bundle corresponding to C is

n ˜(E + eF ) +
(
n− e

2

)
F̃ +

1

2
K̃S −B0.

The nef cone of S[n] is generated by the nonnegative combinations of

˜(E + eF ), F̃ , n ˜(E + eF ) +
(
n− e

2

)
F̃ +

1

2
K̃S −B0.

Recall that B0 =
1
2B in Example 4.15. The proof is completed by using KS =

−2(E + eF ) + (e− 2)F or (e− 2)F , respectively. �

The above computation suggests that the number u plays an important role in

order to find the extremal nef line bundle, and in general u �= 0, that is, ω is not

parallel to β. The nef cone of Σ
[n]
e has been obtained by Bertram and Coskun

[8]. The nef cone of S
[n]
2 (n≥ 2) has been obtained by J. Li and W.-P. Li [21].

Both of the results use the notion of k-very ample line bundles (see [7]).
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Appendix A. Twisted Gieseker stability and the large-volume limit

DEFINITION A.3 ([14, Definition 3.4], [15, Definition 4.1], [25, Definition 3.2])

Let ω,α ∈ NS(S)Q with ω ample. For E ∈ Coh(S), we denote the leading coef-

ficient of χ(E ⊗ α−1 ⊗ ω⊗m) with respect to m by ad. A coherent sheaf E of

dimension d is said to be α-twisted ω-Gieseker-(semi)stable if E is pure and, for

all 0 �= F � (⊆)E,

(A.4)
χ(F ⊗ α−1 ⊗ ω⊗m)

ad(F )
< (≤)

χ(E ⊗ α−1 ⊗ ω⊗m)

ad(E)
for m� 0.

We also write them as (α,ω)-Gieseker (semi)stability. Denote M(α,ω)(ch) (if it

exists) as the moduli space of (α,ω)-semistable sheaves E with ch(E) = ch.

PROPOSITION-DEFINITION A.4 ([22, Theorem 1.2])

Fix ch = (ch0, ch1, ch2). Fix a frame (H,γ,u), and consider σω,β on the (s, t)-half-

plane Π(H,γ,u) (Definition 2.3). Denote s0 :=
ch1 .H
ch0 H2 if ch0 �= 0. We always fix the

relation

(A.5) α= β − 1

2
KS .

TC. If ch = (0,0, n) with positive integer n, then there is no wall, and t > 0

is the trivial chamber in Π(H,γ,u). Additionally,

Mσω,β
(ch) =M(α,ω)(ch) = Symn(S).

SC. If ch0 = 0 and ch1 .H > 0, we define the chamber for t� 0 as the Simpson

chamber with respect to (H,γ,u). Then

Mσω,β∈SC(ch) =M(α,ω)(ch).

Additionally, the (α,ω)-Gieseker semistability is the Simpson semistability defined

by the slope ch2(E)−ch1(E).β
ω. ch1(E) .

GC. If ch0 > 0, we define the chamber for t� 0 and s < s0 as the Gieseker

chamber with respect to (H,γ,u). If ch satisfies condition (C), then

Mσω,β∈GC(ch)
∼=M(α,ω)(ch).

UW. If ch0 > 0, we define the wall t > 0 and s= s0, that is, �Z(ch) = 0 as the

Uhlenbeck wall with respect to (H,γ,u).

DGC. If ch0 < 0, we define the chamber for t � 0 and s > s0 as the dual

Gieseker chamber with respect to (H,γ,u). If −(ch)∗ satisfies condition (C), then

by Lemma 2.10,

Mσω,β∈DGC(ch)
∼=Mσω,−β∈GC

(
−(ch)∗

)
.

DUW. If ch0 < 0, we define the wall t > 0 and s= s0, that is, �Z(ch) = 0 as

the dual Uhlenbeck wall with respect to (H,γ,u). If −(ch)∗ satisfies condition (C),

then

Mσω,β∈DUW(ch)
∼= Uω

(
−(ch)∗

)
,
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where Uω(−(ch)∗) = UH(−(ch)∗) is the Uhlenbeck compactification of the moduli

space M lf
ω (−(ch)∗) of locally free sheaves with invariant −(ch)∗.

Appendix B. Bayer–Macrì decomposition on K3 surfaces by using σ̂ω,β

Let S be a smooth projective surface. By some physical hints (e.g., [3, Sec-

tion 6.2.3]), the central charge is often taken as (e.g., [11], [6])

(A.6) Ẑω,β(E) :=−
∫
S

e−(β+
√
−1ω). ch(E).

√
td (S).

Similarly to Lemma 2.2, one can check that

(A.7) Ẑω,β(E) =
〈
�Ẑ , v(E)

〉
S
, where �Ẑω,β

:= eβ−
1
2KS+

√
−1ω.

Write �Ẑω,β
as �Ẑ . Basic computation shows that

〈�Z ,�Z〉S = χ(OS)−
1

4
K2

S , 〈�Ẑ ,�Ẑ〉S =−1

8
K2

S .

Recall from [12] and [4] that a numerical stability condition σ is called reduced

if the corresponding π(σ) satisfies 〈π(σ), π(σ)〉S = 0.

In the following, we always assume that S is a smooth projective K3 sur-

face and assume that Ẑω,β(F ) /∈R≤0 for all spherical sheaves F ∈Coh(S). Then

σ̂ω,β = (Ẑω,β ,Aω,β) is a reduced numerical geometric Bridgeland stability condi-

tion (see [11, Lemma 6.2]). Let v = v(ch) ∈H∗
alg(S,Z) be a primitive class with

〈v,v〉S > 0. Define ŵω,β := ŵσ̂ :=−�(〈�Ẑ ,v〉S ·�Ẑ). Define �σ̂,E similarly to that

in (3.1) but use Ẑ instead. Then

�σ̂ω,β

R+
=== θσ̂,E(ŵω,β).

Fix a frame (H,γ,u). The potential walls Ŵ (ch, ch′) in the (s, t)-model are given

by semicircles (or in the (s, q)-model are given by semilines)

(A.8) (s−C)2 + t2 =C2 +D+
2

H2

(
or q =Cs+

1

2
D+

1

H2

)
,

where C and D are defined in Theorem 2.4. There is a global Bayer–Macr̀ı map

(see [5, Theorem 1.2]).

THEOREM A.5 (Bayer–Macrì decomposition on K3 surfaces)

Use the notation and assumptions as above.

• If ch0 = 0 and ch1 .H > 0, then the Bayer–Macr̀ı line bundle has a decom-

position

(A.9) �σ̂∈Ŵ (ch,ch′)

R+
===

(g

2
D(ch, ch′) +

d

2
u2

)
S − T(H,γ,u)(ch).

The line bundle S induces the support morphism.

• If ch0 > 0, then the Bayer–Macr̀ı line bundle has a decomposition

(A.10) �σ̂∈Ŵ (ch,ch′)

R+
===−CH̃ − uγ̃ −B0.

The line bundle ω̃ (or H̃) induces the Gieseker–Uhlenbeck morphism.
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