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Abstract We obtain various characterizations of commutative Noetherian local rings

(R,m) in terms of homological dimensions of certain finitely generated modules. Our

argument has a series of consequences in different directions. For example, we establish

that R is Gorenstein if the Gorenstein injective dimension of the maximal ideal m of R

is finite. Moreover, we prove that R must be regular if a single ExtnR(I, J) vanishes for

some integrally closed m-primary ideals I and J of R and for some positive integer n.

1. Introduction

Throughout this article, R is a commutative Noetherian local ring with unique

maximal ideal m and residue field k, and all modules over R are assumed to be

finitely generated. It is well known that the projective dimension of an R-module

M is determined by the vanishing of ExtnR(M,k); that is, if ExtnR(M,k) = 0

for some positive integer n, then pd(M) ≤ n − 1. In fact, pd(M) = sup{i ∈ Z :

ExtiR(M,k) �= 0}. Furthermore, it follows from classical theorems of Auslander,

Buchsbaum, and Serre that the finiteness of the projective or the injective dimen-

sion of the residue field k characterizes the ring itself: R is regular if pd(k)<∞
or id(k)<∞ (see [11, Theorem 2.2.7 and Exercise 3.1.26]).

The main task in this article is to introduce a class of modules, called rigid-

test modules, that replace the residue field k in the aforementioned classical

results (see (2.3) for the definition). A special case of our main result, Theo-

rem 5.8, can be summarized as follows (see also Corollaries 6.1 and 6.11).

THEOREM 1.1

Let (R,m) be a local ring, and let M and N be nonzero R-modules. Assume that

N is a rigid-test module (e.g., N = k).

(i) If ExtnR(M,N) = 0 for some n≥ depth(N), then pd(M)≤ n− 1.

(ii) pd(M) = sup{i ∈ Z : ExtiR(M,N) �= 0}.
(iii) If pd(N)<∞ or id(N)<∞, then R is regular.
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To motivate our approach, let us note that Corso, Huneke, Katz, and Vasconcelos

[18, Corollary 3.3] established that integrally closed m-primary ideals are rigid-

test modules (see (A.2)). As an immediate consequence of Theorem 1.1, we have

the following result.

COROLLARY 1.2

Let (R,m) be a local ring of positive depth, and let I and J be integrally closed

m-primary ideals of R. If ExtnR(I, J) = 0 for some n≥ 1, then R is regular.

Our argument has applications in several directions. We use Theorem 1.1 and

deduce the following characterization of regularity from a beautiful result of

Avramov, Hochster, Iyengar, and Yao [10, Theorem 1.1] (see (6.7) and Corol-

lary 6.8).

COROLLARY 1.3

Let R be a complete local ring of prime characteristic p with a perfect residue

field, and let M and N be nonzero R-modules with ExtiR(
ϕn

M,N) = 0 for some

i≥ depth(N) and n≥ 1. If N is a rigid-test module, then R is regular.

Here ϕn

M is the R-module M with the R-action given by the nth iterate of the

Frobenius endomorphism ϕ (see (A.3)). As an example, we note that nonzero

modules of infinite projective dimension are rigid-test over R = Fp[[x, y, z]]/

(xy − z2), with p being an odd prime, and thus, Corollary 1.3 implies that

Extn+1
R (ϕ

e

M,ϕ
r

N) �= 0 for all positive integers e,n, r and for all nonzero R-

modules M,N (see (A.4) and (A.6)).

Theorem 1.1 determines the Gorensteinness of R via the Gorenstein injective

dimension, a refinement of the usual injective dimension introduced by Enochs

and Jenda [23]. We prove in Corollary 7.6 that R is Gorenstein if the Gorenstein

injective dimension Gid(m) of the maximal ideal m of R is finite. This, combined

with the results in the literature, seems to give a fairly complete picture: R is

Gorenstein if and only if at least one of the dimensions Gid(m), Gid(R), or Gid(k)

is finite (see also (7.7) and Avramov’s remark following Question 7.1).

A rigid-test module is, by definition, Tor-rigid (see [1]) and a test module (for

projectivity) in the sense of [14] (see (2.3)). Among those already discussed, there

are quite a few motivations to study test and rigid-test modules: it was established

in [14, Corollary 3.7] that if the dualizing module of a Cohen–Macaulay ring is a

test module, then there are no nonfree totally reflexive modules. Proposition 4.11

extends [14, Corollary 3.7] and establishes that there are no nonfree totally reflex-

ive modules if there exists a nonzero test module over R—not necessarily maxi-

mal Cohen–Macaulay—of finite injective dimension. Another motivation for us to

introduce rigid-test modules comes from the fact that the hypothesis—N is a test

module—in Theorem 1.1 cannot be dropped in general. Tor-rigidity has remark-

able consequences (see [1], [21]), but if N is a Tor-rigid module, which is not a test

module (i.e., not a rigid-test module), then the vanishing of ExtnR(M,N), even
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for all n� 0, does not necessarily force M to have finite projective dimension in

general (see Theorem 1.1 and Example 6.3).

We make various observations in Sections 3 and 4 and prove our main result,

Theorem 5.8, in Section 5. Sections 6 and 7 are devoted to applications of our

argument. We also collect some examples of test and rigid-test modules from the

literature in the Appendix.

2. Definitions

2.1
An R-module M is said to be Tor-rigid provided that the following holds for all

R-modules N (see [1]):

if TorRn (M,N) = 0 for some n≥ 1, then TorRn+1(M,N) = 0.

The notion of Tor-rigidity was initially used in the study of the Koszul complex; it

was later formulated and analyzed for modules by Auslander [1]. An interesting

result of Lichtenbaum [42, Theorem 3] shows that modules over regular local

rings and those of finite projective dimension over hypersurfaces—quotients of

power series rings over fields—are Tor-rigid.

2.2
An R-module M is said to be a test module for projectivity provided that the

following holds for all R-modules N (see [14, Definition 1.1]):

if pd(N) =∞, then TorRn (M,N) �= 0 for infinitely many integers n.

We will call a test module for projectivity simply a test module.

Motivated by a question of Lichtenbaum [42, page 226, question 4], we define the

following.

2.3
A Tor-rigid test module is called a rigid-test module. More precisely, M is called

a rigid-test module provided that the following holds for all R-modules N :

if TorRn (M,N) = 0 for some n≥ 1, then TorRn+1(M,N) = 0 andpd(N)<∞.

Dao, Li, and Miller [22] defined strong rigidity to study the Tor-rigidity of the

Frobenius endomorphism over Gorenstein rings.

2.4
An R-module M is said to be strongly rigid provided that the following holds

for all R-modules N (see [22, Definition 2.1]):

if TorRn (M,N) = 0 for some n≥ 1, then pd(N)<∞.
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It follows from the definition that rigid-test modules are strongly rigid, but we

do not know whether the converse is true in general. Most of our results work

for strongly rigid modules. However, to obtain the conclusion of Theorem 1.1(i)

when n≥ depth(N), we need Tor-rigidity (see Theorem 5.8 and Corollary 6.1).

This leads us to pose the following question for further study.

QUESTION 2.5

Let R be a local ring, and let M be an R-module. If M is strongly rigid, then

must M be a rigid-test module or, equivalently, must M be Tor-rigid?

We give some relations between the above definitions in diagram form:

Tor-rigid
(1)

(3)

test

(2)
(6)

rigid-test

(4)

(7)

strongly rigid
?

(5)

The implications in the diagram can be justified as follows. For (1) and (3), see

Example 6.3. For (2) and (6), see Example 6.4. For (4), (5), and (7), these follow

from the definitions (see (2.1), (2.3), and (2.4)).

3. Projective and injective dimensions via rigid modules

Let R be a local ring. If N is a nonzero rigid-test module over R, then the vanish-

ing of TorRi (N,N) is not mysterious at all: it follows from the definition—unless

R is regular—that TorRi (N,N) �= 0 for all i≥ 0 (see (2.3)). Hence, it seems inter-

esting to consider the vanishing of TorRi (M,N) when N is a rigid-test module

and M is an arbitrary R-module. In particular, we seek to find whether the

vanishing of TorRi (M,N) for all i � 0 yields the exact value of the projective

dimension of M . Auslander remarked that if depth(N) = 0 and pd(M) = s <∞,

then TorRs (M,N) �= 0 (see [1, Proposition 1.1]). Therefore, an immediate obser-

vation is the following.

3.1
If R is a local ring and N is a test module such that depth(N) = 0, then it follows

that pd(M) = sup{i ∈ Z : TorRi (M,N) �= 0} (see (2.2)).

A rigid-test module of positive depth does not necessarily detect the exact value

of the projective dimension via the vanishing of Tor in general (cf. Theorem 1.1).

EXAMPLE 3.2

Let R = k[[x, y, z]]/(xy), let T = R/(x), and let N = T ⊕ ΩT = R/(x) ⊕ R/(y).

Then depth(N) = 2 and N is Tor-rigid (see [48, Corollary 1.9]). Moreover, since
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pd(N) = ∞, it follows that N is a rigid-test module (see (A.4)). Setting M =

R/(z), we see that 1 = pd(M) �= sup{i ∈ Z : TorRi (M,N) �= 0}= 0.

If N is a rigid-test module that is not necessarily of depth zero, Proposition 3.3

can be useful to detect the projective dimension of M (see also Remark 3.4). In

the following, qsyz(N) denotes the largest integer n for which N can be an nth

syzygy module in a minimal free resolution of an R-module. The assumption that

depth(N) = qsyz(N) in Proposition 3.3 holds, for example, when N is reflexive

and Np is free for all prime ideals p of R with p �=m (see [24, Corollary 3.9]).

PROPOSITION 3.3

Let R be a local ring, and let M and N be nonzero R-modules. Assume that N

is a rigid-test module and that qsyz(N) = depth(N)≤ pd(M). Then

sup
{
i ∈ Z : TorRi (M,N) �= 0

}
= pd(M)− depth(N).

Proof

We may suppose that pd(M) < ∞ (see (2.3)). Set pd(M) = n, depth(N) = t,

and q = sup{i ∈ Z : TorRi (M,N) �= 0}. We proceed by induction on t and prove

that TorRi (M,N) �= 0 for all i= 0, . . . , n− t. Note that, since N is Tor-rigid, it is

enough to show that TorRn−t(M,N) �= 0.

If t= 0, then it follows from Auslander’s remark that TorRn (M,N) �= 0 (see

(3.1)). Hence, suppose that t≥ 1, and pick a nonzero divisor x on N . Then one

can see that there is a long exact sequence of the form

· · · → TorRn−t+1(M,N)→ TorRn−t+1(M,N/xN)→ TorRn−t(M,N)→ · · · .

It is easy to see that N/xN is rigid-test over R (see [14, Proposition 2.2]).

Thus, the induction hypothesis yields TorRn−t+1(M,N/xN) �= 0. Therefore,

TorRn−t(M,N) �= 0. In particular, we have q ≥ n− t.

Let p ∈Ass(TorRq (M,N)). Then the depth formula [1, Theorem 1.2] implies

that

(3.3.1) pd(Mp)− depthRp
(Np) = depth(Rp)− depthRp

(Mp)− depthRp
(Np) = q.

If depthRp
(Np)≥ depth(N), then it follows that

q = pd(Mp)− depthRp
(Np)≤ pd(M)− depth(N) = n− t.

This shows that q = n− t and, hence, completes the proof.

Next suppose that depthRp
(Np) < depth(N) = t. Since depth(N) = qsyz(N),

we know that N is a tth syzygy module. This implies that depthRp
(Np) ≥

min{t,depthRp} (see [11, Exercise 1.3.7]). Hence, depthRp
(Np) ≥ depthRp.

Therefore, by (3.3.1), we deduce that q = 0. Now the fact that TorRn−t(M,N) �= 0

yields n− t= 0; that is, q = n− t. �

REMARK 3.4

Jorgensen [34, Theorem 2.2] proved that if M is a module over a local ring
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R with pd(M) <∞, then qR(M,N) = sup{i ∈ Z : TorRi (M,N) �= 0} is equal to

sup{pdRp
(Mp)− depthRp

(Np) : p ∈ Supp(M ⊗R N)}. Therefore, if pd(M) <∞,

one can deduce from Jorgensen’s result that qR(M,N)≥ pd(M)− depth(N).

In the case in which qsyz(N) = depth(N) ≤ pd(M) < ∞, Proposition 3.3

establishes the equality qR(M,N) = pd(M)−depth(N) without appealing to [34,

Theorem 2.2]. Note that, by Example 3.2, the hypothesis depth(N)≤ pd(M) is

required, but we do not know whether the condition qsyz(N) = depth(N) is essen-

tial.

If (R,m, k) is a local ring and N is a nonzero R-module, then the k-vector

spaces ExtnR(k,N) are nonzero for all n, where depth(N) ≤ n ≤ id(N) (see [50,

Theorem 2]). In other words, if ExtnR(k,N) = 0 for some n ≥ depth(N), then

id(N)<∞. Since k is strongly rigid, this leads us to pose the following question

(see also (2.4)).

QUESTION 3.5

Let R be a local ring, and let M and N be nonzero R-modules. Suppose that M

is strongly rigid and ExtnR(M,N) = 0 for some n≥ depth(N). Then must N have

finite injective dimension?

In the case in which M is a test module (not necessarily strongly rigid) and R

has a dualizing complex (i.e., R is a homomorphic image of a Gorenstein ring), it

follows from [14, Theorem 3.2] that id(N)<∞ if and only if ExtiR(M,N) vanishes

for all i� 0. Here our aim is to examine the case in which M is strongly rigid

and a single ExtnR(M,N) vanishes for some n ≥ depth(N). In Proposition 3.6

we obtain a partial affirmative answer to Question 3.5 over Cohen–Macaulay

rings. This, in particular, gives an affirmative answer when R is Artinian (see

Corollary 3.8).

PROPOSITION 3.6

Let (R,m) be a Cohen–Macaulay local ring with a dualizing module, and let M

and N be nonzero R-modules. Suppose that the following hold.

(i) pdRp
(Mp)<∞ for all p ∈ Spec(R)−{m} (e.g., R has an isolated singu-

larity).

(ii) ExtjR(M,N) = 0 for some j ≥ dim(R) + 1.

(iii) M is strongly rigid.

Then id(N)<∞.

Proof

As R has a dualizing module, we can consider a maximal Cohen–Macaulay

approximation of N , that is, a short exact sequence of R-modules

(3.6.1) 0→ Y →C →N → 0,
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where C is maximal Cohen–Macaulay and id(Y ) < ∞. Set n = j − d where

d = dim(R). Applying HomR(M,−) to (3.6.1), we get the following long exact

sequence:

(3.6.2) · · · → ExtjR(M,Y )→ ExtjR(M,C)→ ExtjR(M,N)→ · · · .

Note that ExtjR(M,Y ) = 0. So it follows from (3.6.2) and (ii) that ExtjR(M,C) = 0.

Observe, by (3.6.1), that id(C)<∞ if and only if id(N)<∞. Therefore, we may

assume that N is maximal Cohen–Macaulay. Consider the following standard

spectral sequence:

Ep,q
2 = ExtpR

(
TorRq (N

†,M), ω
)

=⇒ Hp+q = Extp+q
R (M,N).

Here N† = Hom(N,ω) and ω is the dualizing module of R. Observe that

TorRq (M,N†) has finite length for all q ≥ 1: this follows from (i) and the fact

that N† is maximal Cohen–Macaulay (see [58, Lemma 2.2]). Therefore, Ep,q
2 = 0

if q ≥ 1 and p �= d. Furthermore,

ExtjR(M,N) =Hj ∼=Ed,n
2 = ExtdR

(
TorRn (M,N†), ω

)
.

Now, by (ii), the local duality theorem [11, Corollary 3.5.11(b)] yields that

TorRn (M,N†) = 0. Thus, (iii) gives the required conclusion (see also (2.4)). �

We will use the following observation several times (see Corollaries 6.1

and 6.13).

3.7
Let R be a local ring, and let M and N be nonzero R-modules. Suppose that

ExtnR(M,N) = 0 for some n ≥ depth(N). If depth(N) = 0, then Hom(M,N) �= 0

(see, e.g., [11, Proposition 1.2.3]). Therefore, n is positive.

COROLLARY 3.8

Let R be an Artinian ring, and let M and N be nonzero R-modules. If M is

strongly rigid and ExtnR(M,N) = 0 for some n≥ 0, then N is injective.

Proof

In view of (3.7), the required result follows from Proposition 3.6. �

If R is an Artinian hypersurface—that is, the quotient of a power series ring over

a field, M is an R-module of infinite projective dimension, and ExtnR(M,N) = 0

for some n≥ 0—then [8, Proposition 5.12] and [12, Corollary 4.7] show that N

is injective. One can recover this result from Corollary 3.8, since each module of

infinite projective dimension is strongly rigid over such an Artinian hypersurface

(see (A.4) and (A.6)).

COROLLARY 3.9

Let R be a d-dimensional excellent Cohen–Macaulay local ring, let N be a nonzero
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R-module, and let I be an integrally closed m-primary ideal of R. Suppose that

ExtnR(I,N) = 0 for some n≥ d. Then id(N)<∞.

Proof

It follows that I ⊗R R̂ is an integrally closed mR̂-primary ideal of R̂, where

R̂ is the m-adic completion of R (see, e.g., [31, Corollary 19.2.5]). So we may

assume that R is complete with a dualizing module. Note that, by (3.7), we have

n≥ 1. Moreover, I is strongly rigid, and Ip is free for all p ∈ Spec(R)−{m} (see

(A.2)). Thus, if ExtnR(I,N) = 0 for some n≥ d, then Proposition 3.6 implies that

id(N)<∞. �

COROLLARY 3.10

Let R be a d-dimensional complete Cohen–Macaulay local ring. If ExtnR(I,R) = 0

for some n ≥ d and some integrally closed m-primary ideal I of R, then R is

Gorenstein.

It was posed in [14, p. 303] whether or not the test property is preserved under

completion (see (2.2)). An affirmative answer has been recently obtained in [15].

3.11
Let R be a local ring, and let M be a nonzero R-module. Then M is a test module

over R if and only if M ⊗R R̂ is a test module over the m-adic completion R̂ of

R (see [15]).

In light of (3.11), the excellent hypothesis on R in Corollary 3.9 can be removed

provided there is an affirmative answer to the following longstanding open prob-

lem.

QUESTION 3.12

Let R be a local ring. If M is a Tor-rigid module over R, then must M ⊗R R̂ be

Tor-rigid over R̂?

REMARK 3.13

It is established in Corollary 3.9 that if Extn+1
R (R/I,N) = 0, then id(N) < ∞.

Since R/I has finite length, it is worth noting that the vanishing of ExtnR(M,N)

for an arbitrary R-module M of finite length does not necessarily force N to have

finite injective dimension in general. To see this we can use any module M that

has finite projective dimension. For example, if R= k[[x, y]]/(xy), M =R/(x+y),

and N = k, then ExtiR(M,N) = 0 for all i≥ 2, but id(N) =∞.

4. Auslander’s transpose and remarks on Tor-rigidity

4.1
Let M be an R-module with a projective presentation P1

f→ P0 →M → 0. Then

the transpose TrM of M is the cokernel of f∗ =HomR(f,R) and, hence, is given
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by the exact sequence 0→M∗ → P ∗
0 → P ∗

1 → TrM → 0 (see [3]). Note that the

transpose TrM is well defined up to projective summands. If n is a positive

integer, then TnM denotes the transpose of the (n− 1)st syzygy of M ; that is,

TnM = TrΩn−1M .

There are exact sequences of functors (see [3, Theorem 2.8])

(i) TorR2 (Tn+1M,−)→
(
ExtnR(M,R)⊗R −

)
→ ExtnR(M,−)� TorR1 (Tn+1M,−),

(ii) Ext1R(Tn+1M,−) ↪→TorRn (M,−)→Hom
(
ExtnR(M,R),−

)
→Ext2R(Tn+1M,−).

The next useful fact was initially addressed by Auslander [2]. Auslander’s original

remark is for regular local rings, but in the case in which Tor-rigidity holds, it

also holds over arbitrary local rings (see (2.1)).

4.2
Let M and N be nonzero R-modules. Suppose that N is Tor-rigid. Assume

further that ExtnR(M,N) = 0 for some nonnegative integer n. It follows from

(4.1)(i) that TorR1 (Tn+1M,N) = 0. This implies, since N is Tor-rigid, that

TorRi (Tn+1M,N) = 0 for all i≥ 1. We can now use (4.1)(i) once more and con-

clude that ExtnR(M,R) ⊗R N = 0. Therefore, ExtnR(M,R) = 0. In particular, if

M =N , then TorR1 (TrΩ
nM,ΩnM) = 0 so that [59, Lemma 3.9] implies ΩnM is

free; that is, pd(M)≤ n− 1 (see [2, Corollary 6]; see also [37]).

As ϕR is Tor-rigid over complete intersection rings, we deduce the following.

4.3
Suppose that R is an F-finite local complete intersection ring with prime char-

acteristic p. If ExtiR(
ϕn

R,ϕ
n

R) = 0 for some positive integers i and n, then it

follows from (A.3)(iii) and (4.2) that R is regular (cf. Corollary 1.3).

One can find remarkable applications of (4.2) in the literature. For example,

Jorgensen [35, Proposition 2.5] proved that if R is a complete intersection ring

and M is an R-module such that Ext2R(M,M) = 0, then pd(M)≤ 1; (4.2) plays

an important role in Jorgensen’s proof. On the other hand, Dao [20] exploited

(4.2) and obtained new results on the noncommutative crepant resolutions.

We give two applications of Auslander’s rigidity result recorded in (4.2).

The first one, (4.5), is an immediate observation, although it will be quite use-

ful later (see the proof of Proposition 4.11). Our second application is given in

Proposition 4.6: it yields a characterization of Cohen–Macaulay rings in terms of

Tor-rigidity. We proceed by recalling a remarkable result of Foxby.

4.4
R is Gorenstein if and only if there exists a nonzero finitely generated R-module

M such that pd(M)<∞ and id(M)<∞ (see [11, Exercise 3.1.25]).
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4.5
Let M be a nonzero Tor-rigid R-module. If id(M)<∞, then it follows from (4.2)

that pd(M)<∞ and hence, by (4.4), R is Gorenstein.

The Tor-rigidity hypothesis in (4.5) cannot be replaced with the test property:

a local ring admitting a nonzero test module of finite injective dimension is not

necessarily Gorenstein; however, such a ring R is G-regular (see [53]); that is,

G-dim(M) = pd(M) for all R-modules M (see (2.2), Example 6.4, and Corol-

lary 4.12).

The grade of a pair of nonzero modules (M,N), denoted by grade(M,N), is

defined as inf{i ∈ N ∪ {0} : ExtiR(M,N) �= 0}. Setting grade(M) = grade(M,R),

we see that grade(M)<∞.

PROPOSITION 4.6

Let R be a local ring, and let M and N be nonzero R-modules. Suppose that N is

Tor-rigid. Set grade(M) = n and grade(M,N) = s. Then s ≤ n, and

ExtiR(M,N) �= 0 for all i= s, . . . , n.

Proof

We have, by definition, that ExtnR(M,R) �= 0. If ExtnR(M,N) = 0, then it follows

from (4.2) that ExtnR(M,R) = 0, which is a contradiction. Therefore,

ExtnR(M,N) �= 0 and hence s ≤ n. Now suppose that ExtiR(M,N) = 0 for some

s < i < n. Set r =min{j ∈ Z : ExtjR(M,N) = 0 with s < j < n}. We know, since

r < n, that ExtrR(M,R) = 0. Therefore, TrM is stably isomorphic to ΩTr+1M .

Moreover, it follows from (4.2) that TorRi (Tr+1M,N) = 0 for all i ≥ 1. This

implies that TorRi (TrM,N) = 0 for all i≥ 1. Now we use (4.1)(i) and deduce that

Extr−1
R (M,N) = 0. This contradicts the choice of r and finishes the proof. �

Auslander [1, Theorem 4.3] proved that if R is a local ring and N is a nonzero

finitely generated Tor-rigid R-module, then every N -regular sequence is R-

regular. This shows that a local ring admitting a Tor-rigid maximal Cohen–

Macaulay module is Cohen–Macaulay. A consequence of Proposition 4.6 recovers

this fact and gives a characterization of the Cohen–Macaulay property of local

rings.

COROLLARY 4.7

Let R be a local ring, and let N be a nonzero Tor-rigid R-module.

(i) depth(N)≤ dim(M) + grade(M) for all nonzero R-modules M .

(ii) depth(N)≤ depth(R).

(iii) If N is maximal Cohen–Macaulay, then R is Cohen–Macaulay.

Proof

It follows from Proposition 4.6 that grade(M,N) ≤ grade(M). On the other

hand depth(N)−dim(M)≤ grade(M,N) (see [57, Theorem 2.1(a)]). This implies

depth(N) ≤ dim(M) + grade(M) and justifies (i). In particular, if M = k, we
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deduce that depth(N) ≤ dim(k) + grade(k) = depth(R) and hence (ii) follows.

Note that (iii) is an immediate consequence of (ii). �

It is an open question whether or not every complete Noetherian local ring has a

maximal Cohen–Macaulay module: this is known as the small Cohen–Macaulay

conjecture. However, in lower dimensions, we can use Corollary 4.7 and observe

the following.

4.8
Suppose that R is a local ring that is not Cohen–Macaulay.

(i) If R is one-dimensional and p is a minimal prime ideal of R, then R/p

is a maximal Cohen–Macaulay R-module that is not Tor-rigid. For example, if

we put R = k[[x, y]]/(x2, xy), then R/(x) is not a Tor-rigid R-module. In fact,

TorR1 (R/(x),R/(y)) = 0 �= TorR2 (R/(x),R/(y)) (see [42, Question 3]).

(ii) If R is a two-dimensional complete domain, then the integral closure R

of R in its field of fractions is a (finitely generated) maximal Cohen–Macaulay

R-module that is not Tor-rigid. For example, if R= k[[x4, x3y,xy3, y4]], then R=

R[[x2y2]] is not a Tor-rigid R-module.

One can also find examples of three-dimensional non–Cohen–Macaulay local rings

that admit maximal Cohen–Macaulay modules (see, e.g., Hochster [25, 5.4, 5.6,

and 5.9]). These modules are not Tor-rigid, for example, by (4.7).

Recall that an R-module C is called semidualizing if the natural map R→
Hom(C,C) is bijective and ExtiR(C,C) = 0 for all i≥ 1. If C is a semidualizing

module such that id(C)<∞, then R is Cohen–Macaulay and C is dualizing.

4.9
Let C be a semidualizing module over R. Then the C-projective dimension

C-pd(M) of a nonzero R-module M is defined as the infimum of the integers

n such that there exists an exact sequence

0→Cbn →Cbn−1 → · · · →Cb1 →Cb0 →M → 0,

where each bi is a positive integer. It follows that C-pd(M) = pd(HomR(C,M)),

and the C-injective dimension C-id(M) of M is defined similarly: C-id(M) =

id(C ⊗R M) (see [54, 1.6, 2.8, 2.9, and 2.11]). Note that if pd(C) < ∞, then

C ∼=R and hence C-pd(N) = pd(N) and C-id(N) = id(N).

4.10
Let M be a nonzero R-module, and let C be a semidualizing R-module. If

C-pd(M) < ∞ (resp., C-id(M) < ∞), then ExtiR(C,M) = 0 for all i ≥ 1 (resp.,

TorRi (C,M) = 0 for all i ≥ 1) (see [54, Corollary 2.9]). In particular, if M is a

nonzero test module and C-id(M)<∞ for some semidualizing R-module C, then

C ∼=R and hence id(M)<∞ (see (2.1) and (4.9)).
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PROPOSITION 4.11

Let R be a local ring, and let C be a semidualizing R-module. Suppose that M

is a nonzero test module over R. Assume further that C-id(M)<∞. If X is an

R-module such that ExtiR(X,R) = 0 for all i� 0, then pd(X)<∞.

Proof

Suppose that X is an R-module with ExtiR(X,R) = 0 for all i� 0. Note that, by

(4.10), we have id(M)<∞. This yields RHom(RHom(X,R),M)�X⊗L
RM (see

[16, A.4.24]). Therefore, TorRi (M,X) = 0 for all i� 0 so that pd(X)<∞. �

It was proved in [14, Corollary 3.7] that if the dualizing module of a Cohen–

Macaulay local ring R is a test module, then R is G-regular; that is, pd(M) =

G-dim(M) for all R-modulesM (see [53]). A straightforward application of Propo-

sition 4.11 extends this.

COROLLARY 4.12

A local ring admitting a nonzero test module of finite injective dimension is G-

regular.

Before we proceed to prove our main result, we give an overview of what has been

established so far in terms of the injective dimension of test and rigid modules.

4.13
Let R be a local ring, and let N be a nonzero R-module such that id(N)<∞.

(i) If N is Tor-rigid, then R is Gorenstein (see (4.5)).

(ii) If N is a test module over R, then R is G-regular (see Corollary 4.12).

(iii) If N is a rigid-test module over R, then it follows from (i) and (ii) that

R is regular (see also Question 2.5 and Corollary 6.11).

5. Main theorem

This section is dedicated to a proof of our main result, Theorem 5.8. In the

following, H-dim denotes a homological dimension of finitely generated modules

(see (5.2) and, e.g., [7, Theorems 8.6–8.8] for details). The special case—where

H is the projective dimension pd—is what we really need for the proof of Theo-

rem 1.1, stated in the introduction. However, one can follow our argument word

for word by replacing H-dim with projective dimension pd so there is no extra

penalty for this generality. Furthermore, such a generality is useful to examine

the Gorenstein dimension G-dim of Tor-rigid modules (see Corollary 6.13).

5.1
A finitely generated module M over a commutative Noetherian ring R is said to

be totally reflexive if the canonical map M → Hom(Hom(M,R),R) is bijective

and ExtiR(M,R) = 0 = ExtiR(HomR(M,R),R) for all i≥ 1 (see [3]).
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The infimum of nonnegative integers n for which there exists an exact

sequence 0 → Xn → · · · → X0 → M → 0 such that each Xi is totally reflexive

is called the Gorenstein dimension of M . If M has Gorenstein dimension n, we

write G-dim(M) = n. Therefore,M is totally reflexive if and only if G-dim(M)≤ 0,

where it follows by convention that G-dim(0) =−∞.

5.2
Throughout we suppose that H-dim satisfies the following conditions.

(i) G-dim(M)≤H-dim(M)≤ pd(M) for all R-modules M .

(ii) If H-dim(M) = 0, then TrM = 0 or H-dim(TrM) = 0 for all R-modules M .

Although we will not use it, we note that the complete intersection dimension

(see [9]) is an example of a homological dimension—in general, distinct from the

Gorenstein and projective dimensions—that satisfies the conditions in (5.2).

5.3
For our purposes we recall a few properties of H-dim (see [7, Theorems 3.1.2, 8.7,

and 8.8]).

(i) If one of the dimensions in (5.2)(i) is finite, then it equals the one on its

left.

(ii) If H-dim(M)<∞, then H-dim(M) = sup{i ∈ Z : ExtiR(M,R) �= 0}.
(iii) If H-dim(M)<∞, then H-dim(M)≤ depth(R).

If X and Y are nonzero R-modules and H-dim is a homological dimension of

modules, we consider the following condition for (X,Y,H).

5.4
If TorR1 (X,Y ) = 0, then H-dim(X) = depth(Y )− depth(X ⊗R Y ).

The condition in (5.4) is not restrictive for rigid modules. For example, Auslander

[1, Theorem 1.2] proved that if R is a local ring and X and Y are nonzero R-

modules where pd(X)<∞ and Y is Tor-rigid, then (5.4) holds for (X,Y,pd) (see

(2.1)).

Recently, Christensen and Jorgensen [17, Corollary 5.3] established a similar

result over AB rings: if R is AB and X and Y are nonzero R-modules either of

which is Tor-rigid, then (X,Y,G-dim) satisfies the condition in (5.4). Recall that

a Gorenstein local ring R is said to be AB (see [30]) if, for all R-modules M and

N , ExtiR(M,N) = 0 for all i� 0 implies that ExtiR(M,N) = 0 for all i > dim(R).

The class of AB rings strictly contains that of complete intersections (see [30]).

Next we summarize the two aforementioned results.
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5.5
Let R be a local ring, and let X and Y be nonzero R-modules. Then (X,Y,H) sat-

isfies the condition in (5.4) if at least one of the following conditions

holds.

(i) Y is a rigid-test module, and H-dim = pd (see (2.3) and [1, Theo-

rem 1.2]).

(ii) R is AB, X or Y is Tor-rigid, and H-dim = G-dim (see (2.1) and [17,

Corollary 5.3]).

Next is the key result we use for our proof of Theorem 5.8 (see also (4.1)).

5.6 (Auslander and Bridger; see [3, Chapter 2])
Let R be a local ring, let M be a nonzero R-module, and let n be a positive

integer. If M is n-torsion-free, then it is n-reflexive (i.e., if ExtiR(TrM,R) = 0

for all i = 1, . . . , n), then M ≈ Ωn
R(Tn+1(TrRM)); that is, M is isomorphic to

Ωn
R(Tn+1(TrRM)) up to a projective summand.

Recall that depth(0) =∞.

5.7 (see [3])
Let R be a local ring, and let M be an R-module. Then M is said to satisfy (S̃n)

if depthRp
(Mp)≥min{n,depth(Rp)} for all p ∈ Supp(M).

If the ring is Cohen–Macaulay, then (S̃n) coincides with Serre’s condition

(Sn) (see [24]), but in general (S̃n) is a weaker condition. For example, if R =

k[[x, y]]/(x2, xy), then, by definition, R satisfies (S̃n) for all nonnegative integers

n but fails to satisfy (S1) since depth(R) = 0 (see also the discussion following

[44, Definition 10]).

Theorem 5.8 is a generalization of a result of Jothilingam [38, Corollary 1]. We

give the argument in two steps as the conclusion of part (1) may be of independent

interest. It is already known that the vanishing of ExtiR(TrM,R) for all i= 1, . . . , r

forces M to be an rth syzygy module and that forces M to satisfy (S̃r) (see (5.7)

and [44, Propositions 11 and 40]).

THEOREM 5.8

Let R be a local ring, and let M and N be nonzero R-modules. Suppose that M

satisfies (S̃r) for some nonnegative integer r.

(1) If G-dim(TrM)<∞, then ExtiR(TrM,R) = 0 for all i= 1, . . . , r.

(2) Suppose that ExtnR(M,N) = 0 for some positive integer n.

(i) If N is strongly rigid and depth(R)≤ n+ r, then pd(M)≤ n− 1.

(ii) If N is Tor-rigid, depth(N) ≤ n + r, and (Tn+1M,N,H) satisfies the

condition in (5.4), then H-dim(M)≤ n− 1.
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Proof

We proceed to prove (1). Suppose that G-dim(TrM) < ∞ and r ≥ 1. If

G-dim(TrM) = 0, then ExtiR(TrM,R) = 0 for all i≥ 1 so that there is nothing to

prove. So we suppose that G-dim(TrM) ≥ 1 and set s = inf{i ≥ 1 :

ExtiR(TrM,R) �= 0}.
Let p ∈AssR(Ext

s
R(TrM,R)). Then we have

pRp ∈AssRp

(
ExtsRp

(TrRp
Mp,Rp)

)

and that s= inf{i≥ 1 : ExtiRp
(TrRp

Mp,Rp) �= 0}. It follows from the definition of

the transpose (see (4.1)) that there is an injection

0→ ExtsRp
(TrRp

Mp,Rp) ↪→Ts(TrRp
Mp),

which shows that pRp ∈AssRp
(Ts(TrRp

Mp)). Hence, depthRp
(Ts(TrRp

Mp)) = 0.

Since ExtiRp
(TrRp

Mp,Rp) = 0 for all i= 1, . . . , s− 1, we conclude from (5.6) that

Mp ≈Ωs−1
Rp

(
Ts(TrRp

Mp)
)
.

Note that s ≤ G-dimRp
(TrRp

Mp) ≤ depthRp. Therefore, depthRp
(Mp) = s − 1.

Furthermore, since M satisfies (S̃r), it follows that depthRp
(Mp) ≥

min{r,depthRp}. Hence, depthRp ≥ r + 1 and r ≤ s − 1. Consequently,

ExtiR(TrM,R) = 0 for all i= 1, . . . , r.

We now proceed to prove (2). If Tn+1M = 0, then ΩnM is free and hence

pd(M)≤ n− 1 (see (4.1)). In particular, this implies that H-dim(M)≤ n− 1 (see

(5.3)(i)). Therefore, we may suppose that Tn+1M �= 0. Since M satisfies (S̃r), it

follows that ΩnM satisfies (S̃n+r) (see (5.7)). Therefore, by the first part of the

theorem, we conclude that

(5.8.1) ExtiR(Tn+1M,R) = 0 for all i= 1, . . . , n+ r.

Note that, since ExtnR(M,N) = 0, we have by (4.1)(i)

(5.8.2) TorR1 (Tn+1M,N) = 0.

If (i) holds, then it follows from (2.4) and (5.8.2) that pd(Tn+1M) < ∞.

Therefore, since depth(R)≤ n+ r, we use (5.3)(i) and deduce

(5.8.3) H-dim(Tn+1M) = pd(Tn+1M)≤ depth(R)≤ n+ r.

On the other hand, if (ii) holds, then it follows from our assumption that

H-dim(Tn+1M) = depth(N)− depth(Tn+1M ⊗R N). Since depth(N) ≤ n+ r, we

obtain

(5.8.4) H-dim(Tn+1M)≤ n+ r.

Consequently, if either (i) or (ii) holds, then H-dim(Tn+1M) ≤ n + r, where

for part (i), H-dim(Tn+1M) = pd(Tn+1M) (see (5.8.3) and (5.8.4)). Recall that

H-dim(Tn+1M) = sup{i : ExtiR(Tn+1M,R) �= 0} < ∞ (see (5.3)(ii)). Since

H-dim(Tn+1M) ≤ n + r, it follows from (5.8.1) that H-dim(Tn+1M) = 0; that

is, H-dim(TrΩnM) = 0 (see (4.1)). Thus, by (5.2)(ii), we have H-dim(ΩnM) = 0.

This yields that H-dim(M)≤ n.
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If (i) holds, then since Extn(M,N) = 0, we conclude that H-dim(M)≤ n− 1

(see, e.g., [45, Chapter 19, Lemma 1(iii)]). On the other hand, if (ii) holds, then

since N is Tor-rigid, it follows from (5.8.2) and (4.1)(i) that Extn(M,R) = 0.

Therefore, we see that H-dim(M)≤ n− 1. �

6. Corollaries of the main theorem

In this section we give various applications of Theorem 5.8 and examine homolog-

ical dimensions of test and rigid-test modules. Corollary 6.1, a reformulation of

Theorem 5.8, is fundamental to our work: it shows that one can use an arbitrary

nonzero strongly rigid, or a rigid-test module N , just like the residue field k, to

determine the exact value of the projective dimension of M via the vanishing of

ExtiR(M,N). Besides this, Corollary 6.1 yields a series of related results. Among

those is Corollary 7.6, which proves, in particular, that R is Gorenstein if the

Gorenstein injective dimension (see [23]) of the maximal ideal m is finite.

Corollary 6.1 is well known for the special case in which N = k. Recall that

a rigid-test module is, by definition, strongly rigid, but we do not know whether

or not all strongly rigid modules are rigid-test (see Question 2.5).

COROLLARY 6.1

Let R be a local ring, and let M and N be nonzero R-modules.

(i) Suppose that ExtnR(M,N) = 0 for some n ≥ depth(R). Assume further

that N is strongly rigid. Then pd(M) = sup{i ∈ Z : ExtiR(M,N) �= 0} ≤ n− 1.

(ii) Suppose that ExtnR(M,N) = 0 for some integer n ≥ depth(N). Assume

further that N is a rigid-test module. Then pd(M) = sup{i ∈ Z : ExtiR(M,N) �=
0} ≤ n− 1.

Proof

Note that, for parts (i) and (ii), it suffices to prove that pd(M) cannot exceed

n− 1 (see, e.g., [45, Chapter 19, Lemma 1(iii)]).

Suppose (i). Suppose that n= 0. Then depth(R) = 0, and so by Corollary 4.7,

we have depth(N) = 0. However, this contradicts the fact that Hom(M,N) = 0.

Thus, n≥ 1. Now setting r = 0 in Theorem 5.8(2)(i), we conclude that pd(M)≤
n− 1.

Next assume (ii). Note that, by (3.7), n is a positive integer. Moreover, since

N is a rigid-test module, (5.4) holds for (Tn+1M,N,pd) (see (5.5)(i)). Therefore,

we obtain the required conclusion by setting r = 0 in Theorem 5.8(2)(ii). �

The conclusion of Corollary 6.1 is sharp: Example 6.2 shows that the condition

on n cannot be removed. Examples 6.3 and 6.4, respectively, highlight the fact

that the assumption “N is Tor-rigid” or “N is a test module” is not merely

enough to deduce that M has finite projective dimension (see (2.1), (2.2), and

(2.3)).
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EXAMPLE 6.2

Let k be a field, R = k[[x, y, z]]/(xy − z2), M = k, and N = Ω2k. Then N is a

rigid-test module, Ext1R(M,N) = 0, depth(N) = 2, and pd(M) =∞.

EXAMPLE 6.3

Let k be a field, R = k[[x, y]]/(xy), M = k, and N = R/(x + y). Then, since

pd(N) = 1, N is Tor-rigid. Furthermore, since R is not regular, N is not a test

module. Consequently, N is not a rigid-test or a strongly rigid module. Note that

pd(M) =∞ and ExtiR(M,N) = 0 for all i≥ 2.

EXAMPLE 6.4

Let k be a field, and put R= k[[x, y, z]]/(y2 − xz,x2y − z2, x3 − yz). Let N = ω,

the canonical module of R. As R is a one-dimensional domain with minimal

multiplicity, it is Golod (see [6, Example 5.2.8]). Hence, since pd(N) =∞, it fol-

lows from (A.4) that N is a test-module. Huneke and Wiegand [32, Example 4.8]

proved that there exists an R-module M such that M ⊗R N is torsion-free and

M has torsion. We now follow the proof of [32, Lemma 1.1].

Let M be the torsion-free part of M . Then, since R is a domain, there is

an exact sequence 0 → M → F → C → 0, where F is a free R-module. Ten-

soring this short exact sequence with N , we obtain an injection TorR1 (C,N) ↪→
M ⊗R N . Since M ⊗R N ∼= M ⊗R N and TorR1 (C,N) is torsion, we see that

TorR1 (C,N) = 0. Note that pd(C) =∞: otherwise M is free, and this would force

M to be free. Therefore, N is not a strongly rigid module. For completeness, we

also remark that N is not Tor-rigid (see (4.5)). Note that ExtiR(M,N) = 0 for all

i≥ 2 and pd(M) =∞.

Corollary 6.1 can be useful to determine the depth of Hom(M,N).

COROLLARY 6.5

Let R be a Cohen–Macaulay local ring, and let M and N be nonzero R-modules.

Assume that the following conditions hold:

(i) R has an isolated singularity; that is, Rp is regular for all p ∈ Spec(R)−
{m};

(ii) M is nonfree and maximal Cohen–Macaulay;

(iii) N is strongly rigid with depth(N)≥ 2.

Then depth(HomR(M,N)) = 2.

Proof

Note that depth(HomR(M,N)) ≥ min{2,depth(N)} = 2 (see [11, Exer-

cise 1.4.19]). Thus, it suffices to prove that depth(HomR(M,N)) ≤ 2. Suppose

that this is not so; that is, assume that depth(HomR(M,N))≥ 3. Then, by [33,

Lemma 1.1], we see either Ext1R(M,N) = 0 or 1≤ depth(Ext1R(M,N))<∞. Since

Ext1R(M,N) has finite length, it follows that Ext1R(M,N) = 0. Set d = dim(R).
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Then M =Ωd(X) for some finitely generated R-module X (see [40, A.15]). This

yields Extd+1
R (X,N) = 0. Now Corollary 6.1 shows that pd(X)<∞; that is, M

is free. So we conclude that depth(HomR(M,N)) = 2. �

COROLLARY 6.6

Let A = Q/(f), where Q = k[x1, . . . , x2s+1], with s ≥ 1, is a polynomial ring

over a perfect field k, and f is a nonconstant polynomial in Q. Set R = Am,

where m= (x1, . . . , x2s+1)A, and assume that f ∈m and Ap is regular for all p ∈
Spec(A)− {m}. If M and N are nonfree maximal Cohen–Macaulay R-modules,

then depth(HomR(M,N)) = 2.

Proof

In light of (A.4) and (A.8), the required conclusion follows immediately from

Corollary 6.5 (cf. [19, Theorem 3.4]). �

Corollary 1.3, stated in the introduction, is now a direct consequence of our

argument and the following special case of [10, Theorem 1.1] (see also (A.3)(i)).

6.7
Let R be a local ring of prime characteristic p, and let M be a nonzero finitely

generated R-module (see [10, Theorem 1.1]). If ϕe

M has finite flat dimension for

some positive integer e, then R is regular.

COROLLARY 6.8

Let R be an F-finite local ring of prime characteristic p, and let N be a nonzero

rigid-test module over R. If ExtjR(
ϕn

M,N) = 0 for some nonzero R-module M

and for some integers n≥ 1 and j ≥ depth(N), then R is regular.

Proof

Note that, as R is F-finite, ϕ
e

M is a finitely generated R-module. Thus, it follows

from Corollary 6.1(ii) that pd(ϕ
e

M)<∞. Now, by (6.7), R is regular. �

6.9
Proof of Corollary 1.3. As R is complete and k is perfect, it follows that R is

F-finite (see, e.g., [11, page 398]). So the result follows from Corollary 6.8.

A special case of Corollaries 6.1 and 6.8 has been established in [49, Theorem B]:

if R is a complete intersection ring of prime characteristic p and ExtnR(M,ϕ
i

R) = 0

for some n ≥ depth(R), then pd(M) <∞ (see (A.3)(iii)). We should note that

[49, Theorem B] does not require an F-finite ring and relies on methods different

from ours. As discussed in the introduction, our argument is not specific to

rings of characteristic p and gives useful information regarding the Frobenius

endomorphism even if the ring considered is not a complete intersection. For
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example, the next result, in view of (A.3)(ii), is immediate from Corollary 6.1

(cf. [49, Theorem A]).

COROLLARY 6.10

Let R be a one-dimensional F-finite Cohen–Macaulay local ring of prime char-

acteristic p, and let M be an R-module. Then ExtnR(M,ϕ
i

R) = 0 for some n≥ 1

and some i� 0 if and only if pd(M)<∞.

Corollary 6.1 yields a characterization of regularity in terms of C-pd and C-id

dimensions of strongly rigid modules (see also (2.4) and (4.9)).

COROLLARY 6.11

Let R be a local ring, let C be a semidualizing R-module, and let M be a nonzero

strongly rigid R-module. Assume that either C-pd(M) < ∞ or C-id(M) < ∞.

Then R is regular.

Proof

We start by noting that M is a test module (see (2.2)). Assume first that

C-id(M)<∞. Then it follows from (4.10) that id(M)<∞; that is, ExtiR(k,M) =

0 for all i� 0. Now Corollary 6.1(i) implies that pd(k)<∞ so that R is regular.

Next assume that C-pd(M)<∞. Then it follows from (4.10) that ExtiR(C,M) = 0

for all i ≥ 1. Hence, we can use Corollary 6.1(i) once more and deduce that

pd(M)<∞. This implies that R is regular. �

A special case of Corollary 6.11 is a characterization of regularity in terms of

integrally closed m-primary ideals (see (A.2)).

COROLLARY 6.12

Let (R,m) be a local ring, and let I be an integrally closed m-primary ideal of R.

Then R is regular if and only if there exists a semidualizing R-module C such that

C-id(ΩnI)<∞ or C-pd(ΩnI)<∞ for some nonnegative integer n. In particular,

R is regular if and only if id(I)<∞.

The conclusions of Corollaries 6.13 and 6.14 are known over complete intersection

rings (see [51, Theorem 3.6]). Here we are able to show that these results carry

over to AB rings. Recall that every complete intersection ring is AB, but not

vice versa (see the paragraph preceding (5.5)). Furthermore, in Corollary 6.15,

we obtain a nonvanishing result for Ext over hypersurfaces that are in the form

of (A.8).

COROLLARY 6.13

Let R be a local AB ring, and let M and N be nonzero R-modules. Assume that N

is Tor-rigid (e.g., N = k) and that ExtnR(M,N) = 0 for some n≥ depth(N). Then
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sup{i ∈ Z : ExtiR(M,N) �= 0} = G-dim(M) = depth(R) − depth(M) ≤
n− 1.

Proof

The bound on G-dim(M) follows from Theorem 5.8(ii): the conditions in (5.4)

hold for (Tn+1M,N,G-dim) (see (5.5)(ii)). Hence, since R is an AB ring, it suffices

to prove by [17, Proposition 3.2 and Theorem 6.1] that ExtiR(M,N) = 0 for all

i� 0.

As ExtnR(M,N) = 0 and N is a Tor-rigid module, it follows from the exact

sequence (4.1)(i) that TorRi (Tn+1M,N) = 0 for all i ≥ 1. This shows, by [17,

Proposition 3.2], that Tate Tor groups T̂or
R

i (Tn+1M,N) vanish for all i ∈ Z.

Note that G-dim(M)≤ n− 1 and G-dim(ΩnM) = 0 (see [3, Theorem 3.13]). We

now use [8, Section 4.4.7] and conclude, for all i≥ n+ 1, that

ExtiR(M,N)∼= Exti−n
R (ΩnM,N)∼= Êxt

i−n

R (ΩnM,N)

∼= T̂or
R

−i+n−1

(
Hom(ΩnM,R),N

)

∼= T̂or
R

−i+n+1(Tn+1M,N).

Therefore, we have ExtiR(M,N) = 0 for all i≥ n, and this proves our claim. �

COROLLARY 6.14

Let R be a local AB ring, and let M and N be nonzero R-modules such that

N is Tor-rigid. Assume that depth(N) ≤ G-dim(M). Then ExtiR(M,N) �= 0 for

all i, where depth(N) ≤ i ≤ G-dim(M). In particular, if depth(M) = 0, then

ExtiR(M,N) �= 0 for all i, where depth(N)≤ i≤ dim(R).

Proof

The first part is clear from Corollary 6.13. If depth(M) = 0, then G-dim(M) =

dim(R) so that the second part follows. �

If R is a hypersurface (the quotient of an equicharacteristic regular local ring)

and N is an R-module such that id(N) < ∞, then pd(N) < ∞ and hence it

follows from a result of Lichtenabum [42, Theorem 3] that N is Tor-rigid. Con-

sequently, when R is such a hypersurface and M and N are nonzero R-modules

such that pd(M) < ∞, depth(M) = 0, and id(N) < ∞, Corollary 6.14 implies

that ExtiR(M,N) �= 0 for all i, where depth(N)≤ i≤ dim(R). Over certain hyper-

surfaces, we know that all modules are Tor-rigid so that the nonvanishing of

ExtiR(M,N) occurs without any restriction on N . For example, Corollary 6.14

and (A.8) yield the following result.

COROLLARY 6.15

Let A = Q/(f), where Q = k[x1, . . . , x2s+1], with s ≥ 1, is a polynomial ring

over a perfect field k, and f is a nonconstant polynomial in Q. Set R = Am,
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where m = (x1, . . . , x2s+1)A, and assume that f ∈ m and Ap is regular for all

p ∈ Spec(A)−{m}. If M and N are nonzero R-modules such that depth(M) = 0,

then ExtiR(M,N) �= 0 for all i, where depth(N)≤ i≤ dim(R).

7. Gorenstein injective dimension of strongly rigid modules

Let (R,m, k) be a local ring. If R is Gorenstein and the injective dimension

id(m) of the maximal ideal m is finite, so is the injective dimension of k, and

hence, the Auslander–Buchsbaum formula implies that R is regular (see [11,

Exercise 3.1.26]). Our results in this section originated in an attempt to answer

the following question.

QUESTION 7.1

Let (R,m) be a local ring. Assume that id(m)<∞. Then must R be Gorenstein

or, equivalently, must R be regular?

Levin and Vasconcelos [41, Theorem 1.1] proved that R is regular if pd(mM)<

∞ for an R-module M with mM �= 0. They also remarked that an argument

analogous to that of [41, Theorem 1.1] would work just as well for finite injective

dimension.

Avramov [4] pointed out that an affirmative answer to Question 7.1 came

out in a discussion with himself and H.-B. Foxby in the summer of 1983. He

also referred us to Lescot’s explicit computation of the Bass series of m for an

example of a published treatment of this fact (see [39]). Avramov [5, Theorem 4]

proved that any submodule L of a finitely generated R-module M satisfying

L ⊇ mM � mL has the same injective complexity and curvature as the residue

field k. It follows, for example, if mnM �= 0 and id(mnM)<∞, then R is regular

(see also [5, Corollary 5] and the remark following it). A very special case of this

result—the case where n= 1 and M =R; that is, the case where id(m)<∞—also

follows from (4.5).

The Gorenstein injective dimension, introduced by Enochs and Jenda [23], is

a refinement of the classical injective dimension. We use Corollary 6.1 and prove

that R is Gorenstein if the Gorenstein injective dimension of an integrally closed

m-primary ideal of R is finite (see Corollary 7.6). This, in particular, refines

Question 7.1 and establishes that R is Gorenstein if and only if the Gorenstein

injective dimension of the maximal ideal m is finite. We proceed by recalling some

definitions.

7.2
An R-module M is said to be Gorenstein injective if there is an exact sequence

I• = · · · → I1
∂1−→ I0

∂0−→ I−1 → · · · of injective R-modules such that M ∼= ker(∂0)

and HomR(E,I•) is exact for any injective R-module E (see [23] and [16, Def-

inition 6.2.2]). The Gorenstein injective dimension of M , Gid(M), is defined as

the infimum of n for which there exists an exact sequence 0→M → J0 → · · · →
J−n → 0, where each Ji is Gorenstein injective.
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The Gorenstein injective dimension is a refinement of the classical injec-

tive dimension: Gid(M) ≤ id(M), with equality if id(M) <∞ (see [16, Proposi-

tion 6.2.6]). It follows that every module over a Gorenstein ring has finite Goren-

stein injective dimension. Hence, if (R,m) is Gorenstein but not regular, then

Gid(k)<∞= id(k).

Cohen–Macaulay local rings that admit a nonzero strongly rigid module of finite

Gorenstein injective dimension are Gorenstein.

PROPOSITION 7.3

Let R be a Cohen–Macaulay local ring. If Gid(M)<∞ for some nonzero strongly

rigid R-module M , then R is Gorenstein.

Proof

Assume that Gid(M)<∞ for some nonzero strongly rigid R-module M . Then,

since R is Cohen–Macaulay, there exists a nonzero finitely generated R-module N

such that id(N)<∞ and ExtiR(N,M) = 0 for all i� 0 (see [26, Theorem 2.22]).

Therefore, Corollary 6.1(i) shows that pd(N)<∞; that is, R is Gorenstein (see

(4.4)). �

In general, it is not known whether or not a local ring admitting a nonzero

module of finite Gorenstein injective dimension must be Cohen–Macaulay (see

[16]). Hence, in view of the foregoing result, it seems worth raising the following

question.

QUESTION 7.4

Let R be a local ring, and let M be a nonzero strongly rigid module over R. If

Gid(M)<∞, then must R be Gorenstein?

We are able to give an affirmative answer to Question 7.4 when M is an integrally

closed m-primary ideal. For that we need the following result of Yassemi.

7.5 (Yassemi [56, Theorem 1.3])
Let R be a local ring, and let M be a nonzero R-module. Assume that Gid(M)<

∞. Assume further that dim(M) = dim(R). Then R is Cohen–Macaulay.

An integrally closed m-primary ideal I of (R,m) is a strongly rigid module with

dim(I) = dim(R) (see (A.2)). So we deduce from Proposition 7.3 and (7.5) that

the following result holds.

COROLLARY 7.6

A local ring (R,m) is Gorenstein if and only if Gid(I) <∞ for some integrally

closed m-primary ideal I of R. In particular, (R,m) is Gorenstein if and only if

Gid(m)<∞.
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REMARK 7.7

It is known that if Gid(k) <∞ or Gid(R) < ∞, then R is Gorenstein (see [16,

Theorem 6.2.7] and [27, Theorem 2.1]). However, we do not know whether the

finiteness of Gid(m) directly implies the finiteness of Gid(k) or Gid(R) via the short

exact sequence 0→m→R→ k→ 0. Thus, as far as we know, Corollary 7.6, even

for the special case where I =m, is new.

Our final aim is to show in Proposition 7.13 that the finiteness of C-Gid(m) for

a semidualizing module C detects the dualizing module, that is, forces C to be

dualizing. We first record a few preliminary results.

7.8
Let C be a semidualizing R-module (see (4.9)). Then the C-Gorenstein injective

dimension C-Gid(M) of a nonzero R-module M can be defined as GidR�C(M),

where R � C is the trivial extension of R by C (see Holm and Jørgensen [28,

Theorem 2.16]). In particular, if C =R, then C-Gid(M) = Gid(M) (see (7.2)).

Proposition 7.9 is used for our proof of Proposition 7.13 for the case where R is

Artinian (see also (2.4)).

PROPOSITION 7.9

Let R be a Cohen–Macaulay local ring with a dualizing module, and let C be

a semidualizing R-module. Assume that M is a nonzero strongly rigid module

over R. Assume further that C-Gid(M)<∞. Then C is dualizing.

Proof

Note that ExtiR(C,ω) = 0 for all i≥ 1, where ω is the dualizing module. Hence,

X =RHomR(C,ω)� HomR(C,ω) is a maximal Cohen–Macaulay R-module. It

follows from [28, Theorem 4.6] that M is in the Bass class of R with respect to X .

In particular, ExtiR(X,M) = 0 for all i � 0 (see [28, Remark 4.1]). Therefore,

Corollary 6.1(i) implies that C ∼= ω. �

7.10
Let M be a nonzero R-module, and let C be a semidualizing R-module. Assume

that C-Gid(M) <∞. If dim(M) = dim(R), then dimR�C(M) = dim(R� C), so

that, by (7.5), R is Cohen–Macaulay. Therefore, if M is a strongly rigid module,

dim(M) = dim(R), and depth(R) = 0, then R is Artinian and it follows from

Proposition 7.9 that C is dualizing.

For the rest of our arguments, X denotes X/xX , where X is an R-module and

x is a nonzero divisor on R.



662 Zargar, Celikbas, Gheibi, and Sadeghi

7.11
Let (R,m) be a local ring, and let x ∈m−m2 be a nonzero divisor on R. Then

the surjective R-linear map f :m/xm � m/xR, given by f(y+ xm) = y+ xR for

all y ∈m, splits (see, e.g., the proof of [45, Theorem 19.2]). Therefore, there exists

an R-module N such that m∼=N ⊕m/xR.

7.12
Let R be a local ring, and let x ∈R. Assume that x is a nonzero divisor on R.

Then x is also a nonzero divisor on R�C, and hence, the following holds:

(7.12.1) R�C ∼=R�C.

Let M be an R-module. Assume that x is also a nonzero divisor on M .

Assume further that C-Gid(M)<∞ for some semidualizing R-module C. Then,

in view of (7.12.1), we deduce from [52, Lemma 2] that

(7.12.2) GidR�C(M) = GidR�C(M) = C-GidR(M)<∞.

PROPOSITION 7.13

Let R be a local ring. Assume that at least one of the following conditions holds:

(i) C-Gid(m)<∞ for some semidualizing R-module C,

(ii) C-Gid(M)<∞ for some maximal Cohen–Macaulay strongly rigid mod-

ule M .

Then C is dualizing.

REMARK 7.14

We already know from (7.10) that R must be Cohen–Macaulay in the case in

which (i) or (ii) holds in Proposition 7.13.

Proof of Proposition 7.13

We proceed by induction on d= depthR. If d= 0, then (7.10) gives the required

conclusion for both cases (i) and (ii). Hence, we assume that d ≥ 1 and pick a

nonzero divisor x on R such that x ∈m−m2.

First suppose that (i) holds; that is, C-Gid(m) <∞. It follows from (7.11)

that there exists an R-module N such that m∼=N ⊕m/xR. Therefore, we con-

clude from (7.12.2) that GidR�C(N ⊕m/xR) = GidR�C(m)<∞. Then [26, The-

orem 2.6] implies that GidR�C(m/xR)<∞. Hence, we obtain the following (see

also (7.10) and (7.12.1)):

GidR�C(m/xR) = GidR�C(m/xR) = C-GidR(m/xR)<∞.

Now the induction hypothesis forces C to be dualizing over R; that is, idR(C)<

∞. Consequently, idR(C)<∞ and, hence, C is dualizing over R.

Next assume (ii). Then it follows from (7.12.2) that C-GidR(M)<∞. More-

over, since M is maximal Cohen–Macaulay, x is a nonzero divisor on M . We can

easily observe, similar to [14, Proposition 2.2], that M is strongly rigid over R:
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here we include an argument since [14] deals with only test modules (see also

(2.2) and (2.4)).

Suppose that TorRn (M,L) = 0 for some R-module L and for some positive

integer n. Then, since M is a strongly rigid module over R and TorRi (M,L) ∼=
TorRi (M,L) for all i ≥ 0, we see that pdR(L) < ∞. Now the fact that x /∈ m2

implies that pdR(L) <∞ (see [6, Proposition 3.3.5(1)]). This proves that M is

strongly rigid over R. Thus, the induction hypothesis implies that C is dualizing

over R, and so C is dualizing over R. �

Proposition 7.13 naturally raises the following question (see (2.4)).

QUESTION 7.15

Let (R,m) be a local ring, and let C be a semidualizing R-module. If C-Gid(M)<

∞ for some nonzero strongly rigid R-module M , then must R be Cohen–

Macaulay?

The Cohen–Macaulay injective dimension CMid(M) (see [29, Definition 2.3]) of

an R-module M is defined as inf{C-Gid(M) : C is a semidualizing R-module}
(see also (7.8)). In view of this notation, Proposition 7.13 characterizes Cohen–

Macaulay rings in terms of the finiteness of the Cohen–Macaulay injective dimen-

sion of the maximal ideal m; that is, if CMid(m)<∞, then R is Cohen–Macaulay

with a dualizing module C.

Appendix. Some examples of test and rigid-test modules

There are quite a few examples of test and rigid-test modules in the literature.

In this section we catalog a few of them (see also [14, Theorem 1.4] for a charac-

terization of test modules over complete intersection rings). We start by pointing

out that test and Tor-rigid modules are distinct in general (see (2.1) and (2.2)).

A.1
Let S = k[[x, y, z]] be the formal power series over a field k, and let R be the

subring of S generated by monomials of degree 2; that is, the second Veronese

subring S. Then S = R ⊕R L, where L generates the class group of R (see,

e.g., [13, Remark 3.16]). Since S is a finite extension of R, [14, Proposition 2.4]

shows that L is a test module over R. On the other hand, by Dao’s remark [20,

Remark 2.6], L is not Tor-rigid.

Recall that all rigid-test modules are strongly rigid (see (2.3) and (2.4)).

A.2
If I is an integrally closed m-primary ideal of R and TorRn (R/I,N) = 0, then

pd(N) ≤ n − 1; that is, Ωi(R/I) is a rigid-test module for all i ≥ 0 (see [18,

Corollary 3.3]).
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A.3
Let R be an F-finite local ring of prime characteristic p, and let ϕn :R→R be

the nth iterate of the Frobenius endomorphism defined by r �→ rp
n

for r ∈R. If

M is a finitely generated R-module, then ϕn

M denotes the (finitely generated)

R-module M with the R-action given by r ·m= ϕn(r)m.

(i) ϕn

R is a test module over R for all n � 0 (see (2.2) and [46, Theo-

rem 2.2.8]).

(ii) If R is a one-dimensional Cohen–Macaulay local ring, then ϕn

R is a

rigid-test module over R for all n � 0 (see (2.3) and [46, Theorem 2.1.3 and

Corollary 2.2.12]).

(iii) If m[p] = 0 or R is a complete intersection ring, then ϕn

R is a rigid-test

module over R for all n≥ 1 (see (2.3) and [46, Corollary 2.2.9, Remark 2.2.10,

and Theorem 5.1.1]).

A.4
Let R be a Golod ring (e.g., R is a hypersurface). If M is an R-module with

pd(M) =∞, then M is a test module over R (see [6, Section 5] and [34, Theo-

rem 3.1]).

A.5
Let (R,m, k) be a two-dimensional complete normal local domain with an alge-

braically closed residue field k. Assume that R has a rational singularity; that

is, there exists a resolution of singularities X → Spec(R), a proper birational

morphism where X is a regular scheme, such that H1(X,OX) = 0 (see [40, Def-

inition 6.32] or [43]). It follows that R is a Cohen–Macaulay ring with minimal

multiplicity (see, e.g., [40, Corollary 6.36]). Thus, R is Golod [6, Example 5.2.8].

Hence, each R-module M with pd(M) =∞ is a test module over R (see (A.4)).

In particular, if R is not Gorenstein, then the dualizing module of R is a test

module.

A.6
Let R = k[[x1, . . . , xn]]/(f), where k is a field and n≥ 3. Assume that R has an

isolated singularity; that is, Rp is regular for all p ∈ Spec(R)−{m}. Let M be an

R-module. If n= 3 (i.e., dim(R) = 2) or dim(M)≤ 1 (e.g., M has finite length),

then M is Tor-rigid (see [21, Lemma 2.10, Theorem 3.4, and Corollary 3.6]).

A technical but rather important point for us is that a rigid-test module, unlike

the residue field k, may have arbitrary depth, and even if its depth is zero, it

does not have to have finite length in general. Here is such an example.
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A.7
Let k be a field, R= k[[x, y, z]]/(xy− z2), and M =m/xm. Then M is a rigid-test

module with depth(M) = 0 and dim(M) = 1 (see (A.4) and (A.6)).

The next result, in view of Dao [21, Lemma 2.10], is already known when f is

homogeneous. Recently, Walker [55] removed the homogeneity assumption (see

[47] and also the paragraph preceding Theorem 1.2 in [55]).

A.8
Let A=Q/(f), where Q= k[x1, . . . , x2s+1], with s≥ 1, is a polynomial ring (with

standard grading) over a perfect field k, and f is a nonconstant polynomial in Q.

Set R = Am, where m = (x1, . . . , x2s+1)A, and assume that f ∈ m and Ap is

regular for all p ∈ Spec(A) − {m}. Then all R-modules are Tor-rigid (see [21,

Lemma 2.10] and [55, Theorem 1.2]).
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