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Abstract We complete the construction of the fundamental diagram of various partial

compactifications of themoduli spaces ofmixedHodge structures with polarized graded

quotients. The diagram includes the space of nilpotent orbits, the space of SL(2)-orbits,

and the space of Borel–Serre orbits.We give amplifications of this fundamental diagram

and amplify the relations of these spaces. We describe how this work is useful in under-

standing asymptotic behaviors of Beilinson regulators and of local height pairings in

degeneration. We discuss mild degenerations in which regulators converge.
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0. Introduction

0.1. The fundamental diagram and its amplification

0.1.1

Let D be the period domain which classifies mixed Hodge structures with polar-

ized graded quotients with respect to the weight filtration (see [11], [22]), with

fixed Hodge numbers of graded quotients. In Parts I–III [15, I–III] of this series
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of articles, we constructed extended period domains in the diagram

DSL(2),val
η→
⊂

DBS,val

↓ ↓
Γ\DΣ,val ← D�

Σ,val

ψ→ DSL(2) DBS

↓ ↓
Γ\DΣ ← D�

Σ

which we call the fundamental diagram, as the mixed Hodge versions of the

extended period domains in [17] for the pure case. We have constructed the

maps in the diagram except the map η. In this Part IV of our series of articles,

we define the injective map η. There is a big issue concerning this map η, which

did not appear in the pure case, as we explain below soon. In this Part IV, we

amplify this fundamental diagram as in Sections 0.1.4 and 0.2.3 below, and we

remedy the issue as a result of the amplification.

0.1.2

The spaces in the fundamental diagram in Section 0.1.1 are topological spaces,

the right six spaces have D as dense open sets, and the left two spaces have the

quotient Γ\D of D by a discrete group Γ as dense open subsets. These left two

spaces have sheaves of holomorphic functions extending that of Γ\D (though

these spaces need not be complex analytic spaces) and have log structures, and

the right four spaces have sheaves of real analytic functions extending that of D

(though these spaces need not be real analytic spaces) and have log structures.

The maps in the fundamental diagram except η respect these structures.

Among these eight spaces, the main spaces are the three spaces Γ\DΣ (the

space of nilpotent orbits), DSL(2) (the space of SL(2)-orbits), and DBS (the space

of Borel–Serre orbits). We defined and studied DBS in [15, I], DSL(2) in [15, II],

and Γ\DΣ in [15, III]. The other five spaces appear to help the connection of

these three spaces.

The map ψ in the center of the fundamental diagram connects the four spaces

in the world of nilpotent orbits on the left with the world of SL(2)-orbits. We call

ψ the Cattani–Kaplan–Schmid (CKS) map, for it is obtained in the pure case

by using the work of Cattani, Kaplan, and Schmid [9] on the relation between

nilpotent orbits and SL(2)-orbits.

However, to connect the world of SL(2)-orbits and the world of Borel–Serre

orbits on the right, the map η has the following defect. Though the map η is a

natural map and is continuous in the pure case (see [17]), a big issue is that, in

the mixed case, the map η is not necessarily continuous (see Section 3.5).

0.1.3

To remedy this issue and to amplify the connections of the spaces in the funda-

mental diagram, we will introduce new spaces

D�
SL(2) and D�

SL(2) in the world of SL(2)-orbits (see Section 2) and
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D�
Σ,[val] and D�

Σ,[:] in the world of nilpotent orbits (see Section 4).

These spaces are topological spaces, and the first two have sheaves of real analytic

functions and log structures. They have the following special properties.

The space D�
SL(2) has better relations to Borel–Serre orbits than DSL(2) (see

Section 3.4), and this space remedies the above issue. The spirit of the definition

of D�
SL(2) (see Section 2) is near that of DBS.

As is shown in Section 5, the space D�
SL(2) has better relations to nilpotent

orbits of mild degeneration (see Section 0.2 for the meaning of mildness) than

DSL(2), though among DSL(2), D
�
SL(2), and D�

SL(2), DSL(2) is the best for the

relation with general nilpotent orbits. In the pure case, we have

DSL(2) =D�
SL(2) =D�

SL(2).

The space D�
Σ,[val] has a nice relation to DSL(2),val (see Section 4), which

D�
Σ,val does not have. The space D

�
Σ,[:] is a quotient of D�

Σ,[val] and also a quotient

of D�
Σ,val and has a nice relation to DSL(2) (see Section 4).

The symbols � and � are used to express that the spaces are shiny like

stars and diamonds in the relations to Borel–Serre orbits and nilpotent orbits,

respectively. The symbol [:] is used because D�
Σ,[:] is regarded as a space of ratios.

The symbol [val], is similar to [:], is used because D�
Σ,[val] is the valuative space

associated to D�
Σ,[:] for a certain log structure.

Actually, as is explained in [15, II], DSL(2) has two structures DI
SL(2) and

DII
SL(2) of a topological space with sheaves of real analytic functions and log

structures. Everything in this introduction is true for DII
SL(2).

0.1.4

By using the above spaces, we have the following amplified fundamental diagram

and supplemental amplifications in Sections 0.1.5 and 0.2.3, which connect the

“three worlds” better.

D�
SL(2),val

η�

→
⊂

DBS,val

↓ ↓
D�

Σ,[val]

ψ→ DSL(2),val DBS

↓ ↓
Γ\DΣ,val ← D�

Σ,val → D�
Σ,[:]

ψ→ DSL(2)

↓ ↓
Γ\DΣ ← D�

Σ

This diagram is commutative, and the maps respect the structures of the spaces.

As indicated in this diagram, the valuative space D�
SL(2),val associated to D�

SL(2)

has an injective morphism η� :D�
SL(2),val →DBS,val (see Theorem 3.4.4), which

is an improved version of η, and a proper surjective morphism D�
SL(2),val →

DSL(2),val (see Theorem 2.5.5). Here morphism means a morphism of topological

spaces endowed with sheaves of real analytic functions and with log structures.
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As also indicated in the diagram, the CKS map ψ :D�
Σ,val →DSL(2) factors as

D�
Σ,val→D�

Σ,[:]→DSL(2), and we have a continuous map ψ :D�
Σ,[val]→DSL(2),val

(see Theorem 4.5.2).

0.1.5

In the case in which Σ is the fan Ξ of all rational nilpotent cones of rank at

most 1, we have

D�
Ξ,[val] =D�

Ξ,[:] =D�
Ξ,val =D�

Ξ.

Furthermore, in this case, we have a CKS map ψ :D�
Ξ→D�

SL(2),val, and hence,

the three worlds are connected directly by (see Theorem 6.2.2)

D�
Ξ

ψ→D�
SL(2),val

η�

→
⊂

DBS,val.

0.1.6

As is described above, the spaces DSL(2), D
�
SL(2), and DBS are related via their

associated valuative spaces DSL(2),val, D�
SL(2),val, and DBS,val. The associated

valuative space is a kind of a projective limit of blowups. In Section 2, we will

construct also spaces D�,+
SL(2), D

�,−
SL(2), and D�,BS

SL(2) which are related to D�
SL(2) via

kinds of blowups and blowdowns and which work as bridges between DSL(2),

D�
SL(2), and DBS before going to the valuative spaces (see Section 2).

0.1.7

A nilpotent orbit appears as the limit of a variation of mixed Hodge structure in

degeneration. SL(2)-orbits are simpler objects, and Borel–Serre orbits are further

simpler. The theory of SL(2)-orbits (see [21], [9] for the pure case and [19], [14]

for the mixed case) tells us that, roughly speaking, an SL(2)-orbit is associated

to a nilpotent orbit, and we can read real analytic behaviors of the degeneration

better by looking at the simpler object SL(2)-orbit. The map ψ gives the SL(2)-

orbit associated to a nilpotent orbit.

We hope that the above extended period domains and their relations are

useful in the study of degeneration of mixed Hodge structures. Actually, as illus-

trated in Section 0.3 below and in Section 7, our theory has an application to

the study (see [5]) of asymptotic behaviors of degenerations of Beilinson regu-

lators and local height pairings. In these subjects, the asymptotic behaviors are

understood by degeneration of mixed Hodge structures.

0.2. Mild degenerations

0.2.1

We will define the subsets

Dmild
Σ ⊂DΣ, D�,mild

SL(2) ⊂D�
SL(2), Dmild

BS ⊂DBS

of elements with mild degenerations. Any element of D�
SL(2) is regarded as having

mild degeneration.
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0.2.2

Let Dmild
Σ be the subset of DΣ consisting of all points p satisfying the following

condition: for any element N of the monodromy cone associated to p, there is a

splitting of W which is compatible with N . (The splitting can depend on N and

need not have any relation with the Hodge filtration.)

Denote the subset D
(A)
BS of DBS [15, I, Section 8.1] by Dmild

BS . Let Dmild
BS,val ⊂

DBS,val be the inverse image of Dmild
BS . There is also a subset D�,mild

SL(2) of D�
SL(2)

consisting of A-orbits (see Section 2) whose inverse image D�,mild
SL(2),val in D�

SL(2),val

coincides with the inverse image of Dmild
BS,val under η

�. We also have the mild parts

of D�
Σ,[:] and D�

Σ,[val]; that is, let D�,mild
Σ,[:] and D�,mild

Σ,[val] be the inverse images of

Γ\Dmild
Σ in D�

Σ,[:] and in D�
Σ,[val], respectively. All these mild parts Γ\Dmild

Σ ,

Dmild
BS , . . . , and so on are open sets of Γ\DΣ, DBS, . . . , and so on, respectively.

0.2.3

For mild degenerations, we can replace the upper right part of the amplified fun-

damental diagram by the following commutative diagram (maps respect struc-

tures of the spaces) which contains the space D�
SL(2) and its associated valuative

space D�
SL(2),val (see Theorem 5.1.10).

D�,mild
Σ,[val]

ψ→ D�
SL(2),val → D�,mild

SL(2),val

η�

→
⊂

Dmild
BS,val

↓ ↓ ↓ ↓
D�,mild

Σ,[:]

ψ→ D�
SL(2) → D�,mild

SL(2) Dmild
BS

↓
DSL(2)

0.2.4

In the applications of our work as in Section 7, the following part of the funda-

mental diagrams in Sections 0.1 and 0.2 becomes important.

D�,mild
Σ,[:] → D�

SL(2)

∩ ↓
D�

Σ,[:] → DSL(2)

Via this diagram, we can understand degeneration of mixed Hodge structure in

the space DSL(2) and understand mild degeneration better in D�
SL(2). The right

vertical arrow is usually not injective, and hence, D�
SL(2) can give information

about mild degeneration which is lost in DSL(2). This is explained in Section 0.3

below and explained more precisely in Section 7.

0.3. Relations with regulators and local height pairings
We illustrate the relations of this work to the work [5].
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0.3.1

Let S be a smooth curve over C, and let f : X → S be a proper surjective

morphism from a smooth algebraic variety X . Let 0 ∈ S be a point, and assume

that X �X0→ S � {0} is smooth and X is of semistable reduction at 0 ∈ S.

For Z ∈Kn(X �X0) (n ≥ 1), the asymptotic behavior of the regulator of

the restriction Z(t) ∈Kn(Xt) of Z to Xt (t ∈ S � {0}, t→ 0) is studied in [5]

by using our theory of degeneration of mixed Hodge structure. For each r ≥ 0,

Z defines a variation of mixed Hodge structure HZ on S � {0} with an exact

sequence 0→Hm(X/S)(r)→HZ → Z→ 0, where m= 2r− n− 1, Hm(X/S) is

the mth direct image Rmf∗Z on S � {0} with Hodge filtration, and (r) is the

Tate twist. The (rth) regulator of Z(t) is determined by the fiber HZ(t) of HZ

at t.

0.3.2

We describe how our theory is related to this subject. Our description in the

rest of Section 0.3 is rough and imprecise. More precise matters are described in

Section 7.2, and details are given in [5].

We have the period map(
S � {0}

)
×Kn(X �X0)→ Γ\D, (t,Z) 
→ class

(
HZ(t)

)
.

By [15, III], this extends to

S ×Kn(X �X0)→ Γ\DΞ, Slog ×Kn(X �X0)→ Γ\D�
Ξ,

where Slog is the space associated to S defined in [13]. If Z comes from Kn(X),

then HZ has mild degeneration at 0 ∈ S (see Proposition 7.2.3). The diagram in

Section 0.2.4 produces the following commutative diagram.

Slog ×Kn(X) → Γ\D�,mild
Ξ → Γ\D�

SL(2)

↓ ∩ ↓
Slog ×Kn(X �X0) → Γ\D�

Ξ → Γ\DSL(2)

0.3.3

We can prove that, for Z ∈Kn(X), the regulator of Z(t) converges when t→ 0

(see Theorem 7.2.4). In fact, this is a consequence of the fact that the period

map S � {0} → Γ\D, t 
→ class(HZ(t)) induced by Z extends to a continuous

map Slog→ Γ\D�
SL(2) as indicated by the upper row of the above diagram. We

recover the limit of the regulator of Z(t) for t→ 0 from the image of a point b of

Slog over 0 in Γ\D�
SL(2). On the other hand, for Z ∈Kn(X �X0), which need

not come from Kn(X), the regulator of Z(t) need not converge when t→ 0, and

the image of b in Γ\DSL(2) tells us how rapidly it diverges. When Z comes from

Kn(X), the image of b in Γ\DSL(2) has less information than the image of b in

Γ\D�
SL(2) and cannot tell us the limit of the regulator of Z(t).
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0.3.4

We have a similar story for the asymptotic behavior of the local height pairing

(at the Archimedean place). This is introduced in Section 7.4.

0.4. Organization of this article
The organization of this article is as follows. Section 1 consists of preparation.

In Section 2, we consider the new space D�
SL(2) of SL(2)-orbits. In Section 3,

we consider the spaces DSL(2),val and D�
SL(2),val of valuative SL(2)-orbits and

the space DBS,val of valuative Borel–Serre orbits. In Section 4, we consider the

new spaces D�
Σ,[val] and D�

Σ,[:] in the world of nilpotent orbits and improve CKS

maps by using these spaces. In Section 5, we consider the new space D�
SL(2) of

SL(2)-orbits and construct mild CKS maps. In Section 6, we give complementary

results on properties of extended period domains, on relations of nilpotent orbits,

SL(2)-orbits, and Borel–Serre orbits, and on extended period maps. In Section 7,

we illustrate the relations to the work [5] and give examples.

In Appendix, we give corrections to [17] and supplements to [15, III]. Sec-

tions A.1 and A.3 in this appendix are directly related to Section 5.5 of this

article.

1. Preliminaries

1.1. The setting
We recall the basic setting and the notation used throughout this series of articles.

1.1.1

We fix Λ = (H0,W, (〈·, ·〉w)w, (hp,q)p,q), where H0 is a finitely generated free Z-

module, W is a finite increasing rational filtration on H0,R =R⊗H0, 〈·, ·〉w for

each w ∈Z is a rational nondegenerate R-bilinear form grWw ×grWw →R which is

symmetric if w is even and is antisymmetric if w is odd, and hp,q is a nonnegative

integer given for each (p, q) ∈Z2, satisfying the following conditions (1)–(3):

(1)
∑

p,q h
p,q = rankZ(H0),

(2)
∑

p+q=w hp,q = dimR(grWw ) for any w ∈Z,

(3) hp,q = hq,p for any (p, q).

1.1.2

Let D be the classifying space of gradedly polarized mixed Hodge structures

in [22] associated to the data fixed in Section 1.1.1. As a set, D consists of all

increasing filtrations F on H0,C = C ⊗H0 such that (H0,W, (〈·, ·〉w)w, F ) is a

gradedly polarized mixed Hodge structure with dimCF p(grWp+q)/F
p+1(grWp+q) =

hp,q for all p, q.

The space D is an open subset of a simpler complex analytic manifold Ď

[15, I, Section 1.5], which is defined by replacing the condition of positivity for

〈·, ·〉w in the definition of D with the weaker condition that F p(grWw ) is the exact

annihilator of Fw−p+1(grWw ) for 〈·, ·〉w.
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1.1.3

For A= Z,Q,R,C, let GA be the group of the A-automorphisms of (H0,A,W )

whose grWw ’s are compatible with 〈·, ·〉w for all w. Here H0,A =A⊗H0. Then GC

(resp., GR) acts on Ď (resp., D). For A=Q,R,C, let gA be the associated Lie

algebra of GA.

Let GA,u = {γ ∈ GA | grW (g) = 1}, gA,u = {N ∈ gA | grW (N) = 0}. Then

GA/GA,u is isomorphic to GA(gr
W ) :=

∏
wGA(gr

W
w ) and gA/gA,u is isomorphic

to gA(gr
W ) :=

∏
w gA(gr

W
w ), where GA(gr

W
w ) (resp., gA(gr

W
w )) is “the GA (resp.,

gA) for gr
W
w .”

1.1.4

For each w ∈Z, let D(grWw ) be the D for the graded quotient ((H0 ∩Ww)/(H0 ∩
Ww−1), 〈·, ·〉w, (hp,q)p+q=w). Let D(grW ) =

∏
w∈ZD(grWw ). Then the canonical

morphism

D→D(grW ), F 
→ F (grW ) :=
(
F (grWw )

)
w∈Z

is surjective.

1.1.5

Let W ′ be a finite increasing filtration on H0,R. A splitting of W ′ is an isomor-

phism

s : grW
′
:=

⊕
w

grW
′

w
�→H0,R

of R-vector spaces such that, for any w ∈ Z and v ∈ grW
′

w , s(v) ∈W ′
w and v =

(s(v) mod W ′
w−1).

Let spl(W ′) be the set of all splittings of W ′. Consider the case W ′ =W .

Then spl(W ) is regarded as a GR,u-torsor.

Let Dspl := {s(F ) | s ∈ spl(W ), F ∈ D(grW )} ⊂ D be the subset of R-split

elements. Here s(F )p := s(
⊕

w F p
(w)) for F = (F(w))w ∈D(grW ). Then, Dspl is a

real analytic closed submanifold of D, and we have a real analytic isomorphism

spl(W )×D(grW )
∼→Dspl, (s,F ) 
→ s(F ). Let Dnspl :=D�Dspl.

1.2. Canonical splitting of the weight filtration and the invariant δ of nonsplitting

1.2.1

We review the fact that the weight filtration of an R-mixed Hodge structure has

a canonical splitting over R (which does not split the Hodge filtration except

the case of an R-split mixed Hodge structure) and the fact that there is an

important map δ which tells us how the R-mixed Hodge structure is far from

R-split. We review that we have an isomorphism of real analytic manifolds [15,

II, Proposition 1.2.5]

D
∼=→

{
(F, s, δ) ∈D(grW )× spl(W )×L | δ ∈ L(F )

}
,

x 
→
(
x(grW ), splW (x), δW (x)

)
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by using the canonical splitting splW (x) of W associated to x and the invariant

δW (x) of nonsplitting associated to x. L and L(F ) are explained in Section 1.2.2,

δW (x) is explained in Section 1.2.3, and splW (x) is explained in Section 1.2.5

below.

1.2.2

Let L = W−2EndR(grW ) be the set of all R-linear maps δ : grW → grW such

that δ(grWw )⊂
⊕

w′≤w−2 gr
W
w′ for all w ∈Z [15, II, Section 1.2.1]. This is a finite-

dimensional weighted R-vector space.

For F ∈D(grW ), let L(F ) be the weighted subspace of L consisting of all ele-

ments whose (p, q)-Hodge components for F are 0 unless p < 0 and q < 0. That is,

L(F ) is the set of all δ ∈ L such that δ(Hp,q
F )⊂

⊕
p′<p,q′<q H

p′,q′

F for all p, q ∈Z.

Here Hp,q
F denotes the (p, q)-Hodge component of F (grWp+q) (see [15, II, Sec-

tion 1.2.1]).

1.2.3

We explain δW (x) ∈ L(x(grW )). For x ∈D, there is a unique pair of s′ ∈ spl(W )

and δ ∈ L(x(grW )) such that (see [9, Proposition 2.20])

x= s′
(
exp(iδ)x(grW )

)
.

We write δW (x) (or δ(x)) for this δ.

1.2.4

Roughly speaking, δW (x) is the invariant of the mixed Hodge structure x which

measures how x is far from Dspl in D. We have δW (x) = 0 if and only if x ∈Dspl

(Section 1.1.5).

This δW (x) plays important roles in our series of articles. It is related to

the regulator in number theory and in arithmetic geometry as is discussed in [5]

and in Section 7 of this article. Hence, we call δW (x) the regulator of the mixed

Hodge structure x.

1.2.5

We explain splW (x) ∈ spl(W ). Let x ∈ D, and let s′ ∈ spl(W ) and δ be as in

Section 1.2.3. Then the canonical splitting s= splW (x) of W associated to x is

defined by

s= s′ exp(ζ),

where ζ = ζ(x(grW ), δ) is a certain element of EndR(grW ) determined by x(grW )

and δ = δW (x) roughly as in the following way.

Let δp,q (p, q ∈Z) be the (p, q)-Hodge component of δ with respect to x(grW ).

Then the (p, q)-Hodge component ζp,q of ζ = ζ(x(grW ), δ) with respect to x(grW )

is given as a certain universal Lie polynomial of δp′,q′ (p
′, q′ ∈Z, p′ ≤−1, q′ ≤−1)

(see [9, Lemma 6.60] and [14, Section 1, Appendix] for more explanations).
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For x ∈D, xspl := s(x(grW )) ∈Dspl with s= splW (x) is called the associated

R-split mixed Hodge structure. We have x ∈Dspl if and only if x= xspl.

1.2.6

We have the following action of the group
∏

w∈ZAutR(grWw ) on D, which we

call the lifted action. For a= (aw)w ∈
∏

w∈ZAutR(grWw ), a sends x ∈D to x′ ∈
D, which is characterized by x′(grWw ) = awx(gr

W
w ), splW (x′) = splW (x), and

δW (x′) = Ad(a)δW (x). In other words, a sends the Hodge filtration F ∈ D to

the Hodge filtration sF a(s
−1
F (F )), where sF := splW (F ) and s−1

F (F ) denotes the

filtration on grWC =
∏

w grWw,C induced by F via s−1
F : H0,C

∼=→ grWC . This lifted

action will be used in Section 2.

1.3. Spaces with real analytic structures and with fs log structures with sign
This is essentially a review of [15, II, Section 3.1].

1.3.1

Endow Rn (n≥ 0) with the sheaf ORn of real analytic functions. Let B′
R be the

category of locally ringed spaces S over R satisfying the following condition (i)

locally on S.

(i) There are n≥ 0 and a morphism ι : S→Rn of locally ringed spaces over

R such that ι is injective, the topology of S coincides with the topology induced

from that of Rn, and the map ι−1(ORn)→OS is surjective.

For an object S of B′
R, we often call the structural sheaf OS the sheaf of real

analytic functions on S (though S need not be a real analytic space).

Let CR be the category of locally ringed spaces S over R satisfying the

following condition (ii).

(ii) For any open set U of S and for any n≥ 0, the canonical map Mor(U,

Rn)→OS(U)n is bijective.

1.3.2

We have

B′
R ⊂ CR.

For the proof, see [15, II, Lemma 3.1.2].

1.3.3

For a topological field K and for a locally ringed space S over K, the following

three conditions (i)–(iii) are equivalent.

(i) For any s ∈ S, the map K →OS,s/ms (ms denotes the maximal ideal

of OS,s) is an isomorphism. Furthermore, for any open set U of S and for any

f ∈OS(U), the map U →K, s 
→ f(s) is continuous. Here f(s) denotes the image

of f in OS,s/ms =K.

(ii) Let O′
S be the sheaf on S of all K-valued continuous functions. Then

there is a homomorphism OS →O′
S of sheaves of rings over K.
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(iii) Let S′ be the topological space S endowed with the sheaf of all K-valued

continuous functions. Then there is a morphism of locally ringed spaces S′→ S

over K whose underlying map S′→ S is the identity map.

If these equivalent conditions are satisfied, then there is only one homomor-

phism OS →O′
S of sheaves of rings over K, and there is only one morphism

S′→ S of locally ringed spaces over K lying over the identity map of S. These

can be proved easily.

1.3.4

Note that objects of CR satisfy the equivalent conditions in Section 1.3.3 with

K =R.

1.3.5

Let S be a locally ringed space over R satisfying the equivalent conditions in

Section 1.3.3 with K = R. By a log structure with sign on S, we mean a log

structure M on S endowed with a submonoid sheaf M>0 of M satisfying the

following (i) and (ii).

(i) M>0 ⊃O×
S,>0. Here O×

S,>0 denotes the subgroup sheaf of O×
S consisting

of all local sections whose values are greater than 0.

(ii) The map M>0 × {±1} →M , (f, ε) 
→ εf is an isomorphism of sheaves.

Here we regard {±1} ⊂O×
S ⊂M .

Note that the map O×
S,>0 × {±1} → O×

S , (f, ε) 
→ εf is an isomorphism.

Indeed, if f ∈ O×
S has value greater than 0 (resp., less than 0) at s ∈ S, then f

(resp., −f ) belongs to O×
S,>0 on some open neighborhood of s. Hence, this map

is surjective. The injectivity is clear.

1.3.6

In [15, II, Section 3.1], we defined the notion of log structure with sign in a more

restrictive situation where S is an object of CR requiring that M be integral

(i.e., the canonical map M →Mgp is injective), and the presentation of the

definition there was more complicated. So here we are improving the generality

and the presentation of the definition. (But in this article, we do not need this

generalization.) If M is integral, then the present definition is equivalent to the

definition in [15, II, Definition 3.1.5], which uses a subgroup sheaf Mgp
>0. The

relation with the present definition is that Mgp
>0 in [15, II, Definition 3.1.5] is

obtained from M>0 in the present definition as Mgp
>0 = (M>0)

gp, and M>0 here

is obtained from Mgp
>0 there as M>0 =M ∩Mgp

>0. To prove the equivalence, the

nontrivial point is to show that

(1) M>0 ∩O×
S =O×

S,>0

for a log structure with sign in the present sense. We prove (1). If f ∈M>0 ∩O×
S

has a value less than 0 at s ∈ S, then −f belongs to O×
S,>0 ⊂M>0 on some open
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neighborhood of s, and this contradicts condition (ii) in Section 1.3.5. Hence,

f ∈O×
S,>0.

Note that (1) implies condition (3) in [15, II, Definition 3.1.5] on M ; that

is, the values of f ∈M>0 are at least 0. (The values of f mean the values of the

image of f in OS .) Indeed, for s ∈ S, if the image of f in Ms belongs to O×
S,s,

then it belongs to O×
S,>0,s by the above (1), and hence, f has value greater than

0 at s. If the image of f in Ms does not belong to O×
S,s, then f has value 0 at s.

1.3.7

Let B′
R(log) be the category of objects of B′

R (see Section 1.3.1) endowed with a

finitely generated and saturated (fs) log structure with sign. Let CR(sat) be the

category of objects of CR endowed with a saturated log structure with sign.

Here a log structure M on a locally ringed space S is said to be saturated if all

stalks of M are saturated in the following sense. We say a commutative monoid

S is saturated if it is integral (i.e., the canonical map S → Sgp is injective) and

if, for any a ∈ Sgp such that an ∈ S ⊂ Sgp for some integer n≥ 1, we have a ∈ S .
We have

B′
R(log)⊂ CR(sat).

1.3.8. Examples

(1) The object Rn
≥0 of B′

R(log). The sheaf O of real analytic functions is the

inverse image of the sheaf of real analytic functions on Rn. The log structure M

with sign is as follows. M (resp., M>0) is the multiplicative submonoid sheaf of

O generated by O× (resp., O×
>0) and the coordinate functions t1, . . . , tn.

(2) A real analytic manifold with corners [6, Appendix] is regarded as an

object of B′
R(log). The log structure with sign is given as follows. Let S be

a real analytic manifold with corners, and let O be the sheaf of real analytic

functions. If S is an open set of Rn
≥0 (endowed with the sheaf of real analytic

functions), then the log structure with sign (M,M>0) is defined as the inverse

image of that of Rn
≥0. In this situation, the canonical map M →O is injective,

and hence, M and M>0 are regarded as subsheaves of O. In general, S is locally

isomorphic to an open set of Rn
≥0, and the log structure with sign on S induced

from such an isomorphism is independent of the choice of the isomorphism (M

and M>0 are independent of the choice as subsheaves of O). By this, we have

that a real analytic manifold with corners equals an object of B′
R(log) which is

locally isomorphic to an open subobject of Rn
≥0 (n≥ 0).

(3) The real toric variety Hom(S,Rmult
≥0 ) for an fs monoid S. (Here Rmult

≥0

is the set R≥0 regarded as a multiplicative monoid.) This is also an object of

B′
R(log). (The above (1) is the case S =Nn of this (3).)

The sheaf O of real analytic functions is defined as follows. Take a surjec-

tive homomorphism Nn → S of monoids for some n ≥ 0. It gives an embed-

ding Hom(S,Rmult
≥0 )⊂Rn. We say that an R-valued function on an open set of
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Hom(S,Rmult
≥0 ) is real analytic if it is locally a restriction of a real analytic func-

tion on an open set of Rn. This defines O, and it is independent of the choice of

the surjective homomorphism Nn→S .
The log structureM is the one associated to the canonical embedding S →O.

M>0 is the submonoid sheaf of M generated by O×
>0 and the image of S .

(4) The compactified vector space. Let V be a finite-dimensional graded R-

vector space V =
⊕

w∈Z,w≤−1 Vw of weight at most −1. Then we have a real

analytic manifold with corners V̄ (see [15, I, Section 7]). It is covered by two

open sets V and V̄ � {0}. Here V has the usual sheaf of real analytic functions

and the trivial log structure, and V̄ � {0} is described as follows. For a ∈R>0

and v ∈ V , let a ◦ v =
∑

w awvw ∈ V , where vw denotes the component of v of

weight w. By choosing a real analytic closed submanifold V (1) of V � {0} such

that R>0 × V (1) → V � {0}, (a, v) 
→ a ◦ v is an isomorphism of real analytic

manifolds, we have an isomorphism of real analytic manifolds with corners

R≥0 × V (1) ∼= V̄ � {0}

extending the above isomorphism. We will denote this extended isomorphism as

(a, v) 
→ a ◦ v.
For example, in the cases V = L and V = L(F ) (see Section 1.2.2), we have

the compactified vector spaces L̄ and L̄(F ), respectively. We can identify L̄(F )

with the closure of L(F ) in L̄.

PROPOSITION 1.3.9

Let S be an fs monoid, and consider the real toric variety T := Hom(S,Rmult
≥0 ).

Then if S is an object of CR(sat), we have a natural bijection between the set

of all morphisms S → T in CR(sat) and the set of all homomorphisms S →
Γ(S,MS,>0).

Proof

Since S ⊂ Γ(T,MT,>0), a morphism S→ T induces S → Γ(S,MS,>0). It is easy

to see that this correspondence is bijective. �

1.3.10

If M is an fs log structure with sign, then locally we have a chart S →M whose

image is contained in M>0. (Here S is an fs monoid.) In fact, if S →M is a chart,

the composition S →M ∼=M>0×{±1}→M>0 ⊂M is also a chart. We will call

such a chart S →M>0 a positive chart.

PROPOSITION 1.3.11

(1) The category B′
R(log) has fiber products.

(2) A fiber product in B′
R(log) is a fiber product in CR(sat).

We have already proved (1) in [15, II, Proposition 3.1.7]. We give here a proof

which proves both (1) and (2).
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Proof

For a diagram S1 → S0 ← S2 in B′
R(log), locally on S0, S1, S2, we can find fs

monoids S0,S1,S2 with homomorphisms S1←S0→S2 and a morphism ιj : Sj →
Tj := Hom(Sj ,Rmult

≥0 ) of B′
R(log) for each j = 0,1,2, satisfying the following con-

ditions (i) and (ii).

(i) The diagram

S1 → S0 ← S2

↓ ↓ ↓
T1 → T0 ← T2

is commutative.

(ii) For each j = 0,1,2, the underlying map Sj → Tj of ιj is injective, the

topology and the log structure of Sj with sign are induced from those of Tj , and

the homomorphism ι−1
j (OTj )→OSj is surjective.

This is proved by using positive charts (see Section 1.3.10) on S0, S1, S2 which

are compatible.

To prove Proposition 1.3.11, it is sufficient to prove that, in this situation,

we have the fiber product S3 of S1 → S0 ← S2 in CR(sat) which belongs to

B′
R(log). Let S3 be the pushout of the diagram S1 ← S0 → S2 in the category

of fs monoids. This S3 is obtained from the pushout S ′
3 of S1 ← S0 → S2 in

the category of commutative monoids as follows. S3 is the submonoid of (S ′
3)

gp

consisting of all elements a such that, for some integer n≥ 1, an belongs to the

submonoid of (S ′
3)

gp generated by the images of S1 and S2. Let T3 be the real

toric variety Hom(S3,Rmult
≥0 ), let S′

3 be the fiber product of S1→ S0← S2 in the

category of topological spaces, and let T ′
3 be the fiber product of T1→ T0← T2

which is identified with Hom(S ′
3,R

mult
≥0 ) as a topological space. As a topological

space, we define S3 as the fiber product of S′
3 → T ′

3 ← T3. Let ι3 : S3 → T3 be

the canonical injection. We define the structure sheaf OS3 on S3 as follows. For

j = 0,1,2, let Ij be the kernel of ι−1
j (OTj )→OSj . Let I3 be the ideal of ι−1

3 (OT3)

generated by the images of I1 and I2. Define OS3 = ι−1
3 (OT3)/I3. Define the log

structure with sign on S3 as the inverse image of that of T3. Then S3 is clearly

an object of B′
R(log).

We prove that S3 is the fiber product of S1→ S0← S2 in CR(sat). By Propo-

sition 1.3.9, for an object X of CR(sat) and j = 0,1,2,3, a morphism X → Sj

corresponds in a one-to-one manner to a homomorphism Sj → Γ(X,MX,>0)

such that the associated morphism X → Tj has the following two properties

(1) and (2).

(1) The image of the set X in Tj is contained in Sj .

(2) The image of Ij in OX is 0.

Since Γ(X,MX,>0) is a saturated monoid, a homomorphism S ′
3 → Γ(X,

MX,>0) and a homomorphism S3 → Γ(X,MX,>0) correspond in a one-to-one

manner. These prove that S3 is the fiber product of S1→ S0← S2 in CR(sat). �
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1.3.12

The proof of Proposition 1.3.11 shows that the underlying topological space of a

fiber product in B′
R(log) need not be the fiber product of the underlying topo-

logical spaces. We consider this point.

We call a homomorphism S0 →S1 of saturated commutative monoids (see

Section 1.3.7) universally saturated if, for any saturated commutative monoid S2
and any homomorphism S0→S2, the pushout of S1←S0→S2 in the category

of commutative monoids is saturated.

For a morphism S1 → S0 of B′
R(log), we say f is universally saturated if,

for any s1 ∈ S1 with image s0 in S0, the homomorphism MS0,s0 →MS1,s1 is

universally saturated. (The last condition is equivalent to the condition that the

homomorphism (MS0/O×
S0
)s0 → (MS1/O×

S1
)s1 is universally saturated.)

The following can be proved easily. Let f : S1→ S0 be a morphism in B′
R(log).

Let the triple of homomorphisms Sj →MSj (j = 0,1) and h : S0→S1 be a chart

of f . If h is universally saturated, then f is universally saturated. Conversely, if

f is universally saturated, then locally on S0 and S1, there are positive charts

(see Section 1.3.10) and a homomorphism h of charts as above such that h is

universally saturated.

LEMMA 1.3.13

Let S1 → S0 be a universally saturated morphism in B′
R(log), let S2 → S0 be a

morphism in B′
R(log), and let S3 be the fiber product of S1 → S0 ← S2 in the

category B′
R(log). Then the underlying topological space of S3 is the fiber product

of the underlying topological spaces of Sj (j = 0,1,2).

This follows from the proof of Proposition 1.3.11.

PROPOSITION 1.3.14

(1) For r ≥ 1, the homomorphism N→Nr, m 
→ (m,m, . . . ,m) is univer-

sally saturated.

(2) For any saturated commutative monoid S, the homomorphisms {1}→ S
and S → {1} are universally saturated.

(3) Let Sj (j = 0,1,2) be saturated commutative monoids, let S0→S1 be a

universally saturated homomorphism, let S0 →S2 be a homomorphism, and let

S3 be the pushout of S1 ← S0 → S2 in the category of commutative monoids.

Then the homomorphism S2→S3 is universally saturated.

(4) Let Sj → S ′
j (j = 1, . . . , n) be universally saturated homomorphisms of

saturated commutative monoids. Then the homomorphism
∏n

j=1 Sj →
∏n

j=1 S ′
j

is universally saturated.

(5) A homomorphism S → S ′ of saturated commutative monoids is univer-

sally saturated if and only if the induced homomorphism S/S× → S ′/(S ′)× is

universally saturated.
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(6) For a saturated commutative monoid S and for a ∈ S, the canonical

homomorphism S →S[1/a] is universally saturated. Here S[1/a] denotes the sub-
monoid {xa−n | x ∈ S, n≥ 0} of Sgp.

Proof

The proofs of (1), (2), (5), and (6) are easy, and (3) is evident. We can prove (4)

by induction on n as follows. We may assume n≥ 2. Then the homomorphism

between products in (4) is the composition (
∏n−1

j=1 Sj)×Sn→ (
∏n−1

j=1 S ′
j)×Sn→

(
∏n−1

j=1 S ′
j) × S ′

n in which the first homomorphism is universally saturated by

induction on n and by (3) and the second homomorphism is universally saturated

by (3). �

COROLLARY 1.3.15

For a diagram S1 → S0 ← S2 in B′
R(log), the underlying topological space of

the fiber product is the fiber product of the underlying topological spaces in the

following cases (i) and (ii).

(i) The case where at least one of S1→ S0 and S2→ S0 is strict. Here for a

morphism f :X→ Y of locally ringed spaces with log structures, we say f is strict

if the log structure of X coincides with the inverse image of the log structure of

Y via f .

(ii) The case where the log structure of S0 is trivial.

The following will be used many times in this article.

1.3.16

Let X be an object of B′
R(log), and let Y be a subset of X . Assume that the

following condition (C) is satisfied.

(C) The homomorphism from OX to the sheaf of R-valued continuous func-

tions on X is injective.

Then we have a structure on Y as an object of B′
R(log), which also satisfies

(C), as follows. The topology of Y is the one as a subspace of X . OY is the sheaf

of R-valued functions on Y which are locally restrictions of functions in OX . The

log structure with sign is the pullback of that of X .

For an object S of B′
R(log) which satisfies (C), the map Mor(S,Y ) →

Mor(S,X) is injective and the image coincides with {f ∈Mor(S,X) | f(S)⊂ Y }.

1.4. Review of toric geometry
We recall toric varieties over a field and the real toric varieties associated to fans

by comparing them.
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1.4.1

Let L be a finitely generated free Abelian group, and let N := Hom(L,Z). We

will denote the group law of L multiplicatively and that of N additively.

For a rational finitely generated sharp cone σ in NR, define an fs monoid

S(σ) by

S(σ) :=
{
l ∈ L | l(σ)≥ 0

}
.

For a rational fan Σ in NR, we have a toric variety torick(Σ) over a field k asso-

ciated to Σ, which is an fs log scheme over k, and a real toric variety |toric|(Σ),
which is an object of B′

R(log). We review these.

1.4.2

The toric variety torick(Σ) over k is described as

torick(Σ) =
⋃
σ∈Σ

Spec
(
k
[
S(σ)

])
(an open covering),

where k[S(σ)] denotes the semigroup algebra of S(σ) over k and Spec(k[S(σ)]) is
endowed with the standard log structure. It represents the contravariant functor

from the category (fs/k) of fs log schemes over k to the category of sets, which

sends S to the set of all homomorphisms h : L→Mgp
S satisfying the following

condition.

(C) Let s ∈ S. Then there exists σ ∈ Σ such that, for any homomorphism

a : (MS/O×
S )s̄→N, the homomorphism a ◦ h : L→Q belongs to σ. Here s̄ is a

geometric point over s.

Note that this condition is equivalent to the following condition.

(C′) Étale locally on S, there is σ ∈Σ such that h(S(σ))⊂MS .

The set torick(Σ)(k) of all k-rational points of torick(Σ) is identified with

the set of pairs (σ,h) consisting of σ ∈ Σ and a homomorphism h : S(σ)× →
k×. The point corresponding to this pair is the element of Spec(k[S(σ)])(k) =
Hom(S(σ), k) which sends a ∈ S(σ)× to h(a) and sends a ∈ S(σ)� S(σ)× to 0.

1.4.3

The real toric variety |toric|(Σ) is described as

|toric|(Σ) =
⋃
σ∈Σ

Hom
(
S(σ),Rmult

≥0

)
(an open covering),

where Hom(S(σ),Rmult
≥0 ) is regarded as an object of B′

R(log) as in Section 1.3.8(3).

It represents the contravariant functor from CR(sat) to the category of sets, which

sends S to the set of all homomorphisms h : L→Mgp
S,>0 satisfying the following

condition.

(C) Let s ∈ S. Then there exists σ ∈ Σ such that, for any homomorphism

a : (MS/O×
S )s̄→N, the homomorphism a ◦ h : L→Q belongs to σ.



306 Kato, Nakayama, and Usui

Note that this condition is equivalent to the following condition.

(C′) Locally on S, there is σ ∈Σ such that h(S(σ))⊂MS,>0.

The set |toric|(Σ) is identified with the set of pairs (σ,h) consisting of σ ∈Σ

and a homomorphism h : S(σ)× → R>0. The point corresponding to this pair

is the element of Hom(S(σ),Rmult
≥0 ) which sends a ∈ S(σ)× to h(a) and sends

a ∈ S(σ) � S(σ)× to 0. By this understanding, we can regard |toric|(Σ) as a

closed subset of toricR(Σ)(R).

1.4.4

The set |toric|(Σ) is also identified with the set of all pairs (σ,Z) consisting of

σ ∈Σ and a subset Z of Hom(L,Rmult
>0 ) which is a Hom(L/S(σ)×,Rmult

>0 )-orbit.

In fact, (σ,Z) corresponds to (σ,h) in Section 1.4.3, where h is the restriction of

any element of Z to S(σ)×.

1.4.5

If Σ is finite and Σ′ is a rational finite subdivision of Σ, we have a proper surjective

morphism torick(Σ
′)→ torick(Σ). In the case k = R, this induces a morphism

|toric|(Σ′)→ |toric|(Σ) which is proper and surjective.

1.4.6

A morphism S′→ S in the category (fs/k) (resp., B′
R(log)) is called a log modi-

fication if, locally on S, there are a homomorphism S →MS (resp., S →MS,>0)

with S a sharp fs monoid and a rational finite subdivision Σ′ of the fan Σ of

all faces of the cone Hom(S,Radd
≥0 )⊂Hom(Sgp,Radd) such that S′ is isomorphic

over S to S ×torick(Σ) torick(Σ
′) (resp., S ×|toric|(Σ) |toric|(Σ′)). The underlying

map of topological spaces of a log modification is proper and surjective.

1.4.7

We introduce a functor [Σ] associated to a fan Σ, and consider its relation to log

modification. Let L and N be as in Section 1.4.1. For a rational fan Σ in NR, let

[Σ] be the contravariant functor from (fs/k) (resp., B′
R(log)) to the category of

sets which sends S to the set of all homomorphisms h : L→Mgp
S /O×

S satisfying

the condition (C) in Section 1.4.2 (resp., Section 1.4.3). In the present situation,

(C) is equivalent to (C′) with MS (resp., MS,>0) replaced by MS/O×
S .

Let S be an object of (fs/k) (resp., B′
R(log)), and assume that we are given

h ∈ [Σ](S). This induces a continuous map S→Σ which sends s ∈ S to the unique

cone σ ∈ Σ such that S(σ) ⊂ L coincides with the inverse image of (MS/O×
S )s

under L→ (Mgp
S /O×

S )s.

Assume Σ is finite, and let Σ′ be a rational finite subdivision of Σ. Then we

have a morphism of functors [Σ′]→ [Σ]. The contravariant functor Mor(·, S)×[Σ]

[Σ′] from (fs/k) (resp., B′
R(log)) to the category of sets is represented by a log

modification S′→ S. In fact, locally on S, h : L→Mgp
S /O×

S lifts to a morphism
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S→ torick(Σ) (see Section 1.4.2) (resp., S→ |toric|(Σ) (see Section 1.4.3)), and

this functor is represented by S×torick(Σ) torick(Σ
′) (resp., S×|toric|(Σ) |toric|(Σ′)).

1.4.8

This section will be used in Sections 2.4–2.6. Let S1 be an fs monoid, let T :=

Hom(S1,Rmult
>0 ), and let Z be a T -torsor. The purpose of this section is to intro-

duce an object Z̄ of B′
R(log) and to give a set-theoretical description (1) below

of a log modification of Z̄.

Let T̄ := Hom(S1,Rmult
≥0 )⊃ T , and let Z̄ := Z×T T̄ . We regard Z̄ as an object

of B′
R(log) as follows. Take r ∈ Z. Then we have the bijection T → Z, t 
→ tr,

and this induces a bijection T̄ → Z̄. Via the last bijection from the real toric

variety T̄ , we obtain a structure of Z̄ as an object of B′
R(log). This structure is

independent of the choice of r.

We prepare notation. For s ∈ Z̄, we define a subgroup T (s) of T and a

T (s)-orbit Z(s) inside Z as follows. In the case Z = T and hence Z̄ = T̄ , s is

a homomorphism S1 → Rmult
≥0 . In this case, let T (s) be the subgroup of T =

Hom(S1,Rmult
>0 ) consisting of all elements which kill s−1(R>0) ⊂ S1, and let

Z(s)⊂ T be the set of all elements of S1→Rmult
>0 whose restriction to s−1(R>0)

coincides with the homomorphism induced by s. Then Z(s) is a T (s)-orbit. In

general, take r ∈ Z, consider the induced isomorphism Z̄ ∼= T̄ , let t be the image

of s in T̄ , let T (s) := T (t), and let Z(s) be the T (s)-orbit in Z corresponding to

the T (t)-orbit Z(t) in T via the isomorphism Z ∼= T . Then T (s) and Z(s) are

independent of the choice of r.

Consider L and N in Section 1.4.1, let σ be a rational finitely generated sharp

cone in NR, and let Σ be the fan of all faces of σ. Assume that we are given a

homomorphism S(σ)→S1. Then we have a morphism of functors Mor(·, Z̄)→
[Σ], where [Σ] is as in Section 1.4.7. This morphism is obtained as follows. The

homomorphism S(σ)→S1 induces Mor(·, T̄ )→ [Σ]. Take r ∈ Z. Then r gives an

isomorphism Z̄ ∼= T̄ and, hence, the composite morphism Mor(·, Z̄)∼=Mor(·, T̄ )→
[Σ]. This composite morphism is independent of the choice of r.

Assume further that the homomorphism S(σ)→S1 is universally saturated

(Section 1.3.12). Let Σ′ be a rational finite subdivision of Σ, and let E be the

log modification of Z̄ which represents the fiber product Mor(·, Z̄)×[Σ] [Σ
′] (Sec-

tion 1.4.7). We give a description of E as a set.

For s ∈ Z̄ and for σ′ ∈ Σ′ such that the image τ of s in Σ coincides with

the image of σ′ in Σ, let T (s,σ′) be the subgroup of T (s) consisting of all

elements whose image in Hom(L/S(τ)×,Rmult
>0 ) is contained in its subgroup

Hom(L/S(σ′)×,Rmult
>0 ). Then we have the following.

(1) There is a canonical bijection between E and the set of all triples (s,σ′,

Z ′), where s ∈ Z̄, σ′ is an element of Σ′ whose image in Σ coincides with the

image of s in Σ, and Z ′ is a T (s,σ′)-orbit in Z(s).

In fact, if Z = T , then E = T̄ ×|toric|(Σ) |toric|(Σ′), and hence, the bijection is

given by Section 1.4.4. In general, for r ∈ Z, if t denotes the image of s under the

isomorphism Z̄ ∼= T̄ , we have T (s,σ′) = T (t, σ′), the isomorphism Z ∼= T sends a
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T (t, σ′)-orbit in T to a T (s,σ′)-orbit in Z, and the induced composite bijection

from the set of triples (s,σ′,Z ′) to E is independent of the choice of r.

2. The new space D�
SL(2) of SL(2)-orbits

In [15, II], we defined and studied the space DSL(2) of SL(2)-orbits. Here we intro-

duce a variant D�
SL(2). It is an object of the category B′

R(log) (see Section 1.3.7).

Recall thatDBS is an object of B′
R(log),DSL(2) has two structuresD

I
SL(2) and

DII
SL(2) as objects of B′

R(log), and the identity map of DSL(2) gives a morphism

DI
SL(2)→DII

SL(2) of B′
R(log). We will relate the three spaces D�

SL(2), D
II
SL(2), and

DBS in the following way. These three spaces are not connected directly, but as

we will see in this section, they are connected as in the diagram

D�,+
SL(2) → D�

SL(2) → D�,−
SL(2) ← D�,BS

SL(2)

↓ ↓
DII

SL(2) DBS

in B′
R(log) in which the horizontal arrows are log modifications (Section 1.4.6)

and the left vertical arrow is proper surjective.

As will be seen in Section 3, this diagram will induce morphisms

D�
SL(2),val→DII

SL(2),val, D�
SL(2),val→DBS,val

of associated valuative spaces, which appeared in Section 0, since log modi-

fications induce isomorphisms of the associated valuative spaces D�,+
SL(2),val

∼=→
D�

SL(2),val

∼=→ D�,−
SL(2),val

∼=← D�,BS
SL(2),val. In the pure case, the arrows in DSL(2) ←

D�,+
SL(2)→D�

SL(2)→D�,−
SL(2) are isomorphisms.

In Section 2.1, we review SL(2)-orbits in the pure situation. In Section 2.2, we

continue reviews of [15, II]. In Section 2.3, we define the spaces D�
SL(2) and D�,−

SL(2).

After preparations in Section 2.4, we connect D�
SL(2) and DII

SL(2) in Section 2.5

by introducing the space D�,+
SL(2), and we connect D�,−

SL(2) and DBS in Section 2.6

by introducing the space D�,BS
SL(2). In Section 2.7, we show that our spaces of

SL(2)-orbits belong to a full subcategory B′
R(log)+ of B′

R(log) consisting of nice

objects.

2.1. Review of SL(2)-orbits in the pure case
Let the setting be as in Section 1.1, and assume that we are in the pure situation

of weight w.

2.1.1

In this pure case, an SL(2)-orbit in n variables means a pair (ρ,ϕ), where ρ is a

homomorphism SL(2,C)n→G(C) of algebraic groups defined over R and ϕ is

a holomorphic map P1(C)n→ Ď, satisfying

ϕ(gz) = ρ(g)ϕ(z) for g ∈ SL(2,C)n and z ∈P1(C)n,

ϕ(hn)⊂D
(
h is the upper half-plane {x+ iy | x, y ∈R, y > 0}

)
,
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ρ∗
(
filpz

(
sl(2,C)n

))
⊂ filpϕ(z)(gC)

(
z ∈P1(C)n, p ∈Z

)
.

Here ρ∗ denotes the homomorphism sl(2,C)n → gC of Lie algebras induced by

ρ, and fil•z and fil•ϕ(z) are filtrations given by z and ϕ(z), respectively (see [15, II,

Section 2.1.2]).

2.1.2

Let (ρ,ϕ) be an SL(2)-orbit in n variables. Define the associated homomorphisms

τ, τ� :Gn
m,R→AutR(H0,R) of algebraic groups as

τ�(t) = ρ(g1, . . . , gn), where t= (tj)1≤j≤n and

gj =

(
1/

∏n
k=j tk 0

0
∏n

k=j tk

)
,

τ(t) =
( n∏
j=1

tj

)w

· τ�(t).

The image of the homomorphism τ� is contained in GR.

For 1 ≤ j ≤ n, we define the increasing filtration W (j) on H0,R as follows.

We have H0,R =
⊕

1≤j≤n,k∈ZH0,R(j, k), where H0,R(j, k) is the part of H0,R on

which the action τ of Gn
m,R is given by (t�)1≤�≤n 
→ tkj . Define W (j) by W

(j)
k =⊕

k′≤kH0,R(j, k′). We call W (j) (1≤ j ≤ n) the associated weight filtrations.

2.1.3

Let (ρ,ϕ) be an SL(2)-orbit in n variables.

For 1≤ j ≤ n, the following conditions (i)–(iii) are equivalent.

(i) The jth component SL(2,C)→G(C) of ρ is trivial.

(ii) ϕ factors through the projection P1(C)n → P1(C)n−1 which removes

the jth component.

(iii) Either j ≥ 2 and W (j) =W (j−1), or j = 1 and W (1) =W (i.e., W
(1)
w =

H0,R and W
(1)
w−1 = 0).

2.1.4

We consider the following equivalence relation on SL(2)-orbits. We say an SL(2)-

orbit in n variables (ρ,ϕ) is nondegenerate if there is no j (1 ≤ j ≤ n) which

satisfies the equivalent conditions in Section 2.1.3. For a nondegenerate SL(2)-

orbit (ρ,ϕ) in n variables and for a nondegenerate SL(2)-orbit (ρ′, ϕ′) in n′

variables, (ρ,ϕ) and (ρ′, ϕ′) are equivalent if and only if n = n′ and there is

t ∈Rn
>0 such that

ρ′(g) = τ�(t)ρ(g)τ�(t)−1, ϕ′(z) = τ�(t)ϕ(z)

for any g ∈ SL2(C)n and z ∈P1(C)n. Here τ� is the homomorphism associated

to (ρ,ϕ) in Section 2.1.2. We have the same equivalence relation when we replace

τ�(t) in the above by τ(t) in Section 2.1.2 associated to (ρ,ϕ).
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Any SL(2)-orbit uniquely factors through a nondegenerate SL(2)-orbit, called

the associated nondegenerate SL(2)-orbit, which is described as below. Two SL(2)-

orbits are equivalent if and only if their associated nondegenerate SL(2)-orbits

are equivalent in the above sense.

For an SL(2)-orbit (ρ,ϕ) in n variables, the associated nondegenerate SL(2)-

orbit (ρ′, ϕ′) is as follows. Let J = {a(1), . . . , a(r)} (a(1)< · · ·< a(r)) be the set

of j (1≤ j ≤ n) such that the jth component of ρ is nontrivial. Then (ρ′, ϕ′) is

the SL(2)-orbit in r variables defined by

ρ(g1, . . . , gn) = ρ′(ga(1), . . . , ga(r)), ϕ(z1, . . . , zn) = ϕ′(za(1), . . . , za(r)).

This number r is called the rank of the (equivalence class of the) SL(2)-orbit

(ρ,ϕ).

2.1.5

The set DSL(2) is defined as the set of all equivalence classes of SL(2)-orbits

(ρ,ϕ) such that all members of the set of weight filtrations associated to (ρ,ϕ)

(see Section 2.1.2) are rational (i.e., defined already on H0,Q).

D is embedded in DSL(2) as the set of classes of SL(2)-orbits of rank 0.

2.1.6

Let p ∈DSL(2). We define objects

τ�p , τp,Z(p),W(p)

associated to p. Let n be the rank of p. Let (ρ,ϕ) be a nondegenerate SL(2)-

orbit which represents p. The homomorphism τ� (resp., τ ) (see Section 2.1.2)

associated to (ρ,ϕ) depends only on the class p (it does not depend on the choice

of (ρ,ϕ)). We denote it as τ�p (resp., τp).

The subset{
ϕ
(
(iyj)1≤j≤n

)
| yj ∈R>0(1≤ j ≤ n)

}
= τ�(Rn

>0)ϕ(i) = τ(Rn
>0)ϕ(i)⊂D

(i := (i, . . . , i) ∈ hn) depends only on the class p. We denote it as Z(p) and call it

the torus orbit associated to p.

The family {W (j) | 1 ≤ j ≤ n} of weight filtrations associated to (ρ,ϕ) (see

Section 2.1.2) depends only on the class p. Let W(p) = {W (j) | 1≤ j ≤ n}, and
call it the set of weight filtrations associated to p. It consists of n elements (see

[15, II, Proposition 2.1.13]).

2.1.7

DSL(2) has a structure as an object of B′
R(log). For this, see [15, II, Section 3.2].

A basic property of the topology of DSL(2) is that if p ∈DSL(2) is the class of an

SL(2)-orbit (ρ,ϕ), then p is the limit of ϕ(iy1, . . . , iyn) ∈D, where yj ∈R>0 and

yj/yj+1→∞ (1≤ j ≤ n, yn denotes 1).
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2.2. Reviews of DSL(2)(gr
W ) and DSL(2)(gr

W )∼

We now consider the mixed Hodge situation. We review the spaces DSL(2)(gr
W )

and DSL(2)(gr
W )∼ considered in [15, II] and prepare notation which we will use

later. Actually there was an error concerning the definition of DSL(2)(gr
W )∼ in

[15, II]. We correct it in Remark 2.2.3.

2.2.1

Let

DSL(2)(gr
W ) :=

∏
w∈Z

DSL(2)(gr
W
w ),

where DSL(2)(gr
W
w ) denotes the space DSL(2) (see Section 2.1) for the graded

quotient grWw .

2.2.2

The set DSL(2)(gr
W )∼ is defined as follows (cf. [15, II, Section 3.5.1]). By an

SL(2)-orbit on grW of rank n, we mean a family (ρw, ϕw)w∈Z of SL(2)-orbits

(ρw, ϕw) on grWw in n variables in the sense of Section 2.1.1 satisfying the following

condition (1).

(1) For each 1≤ j ≤ n, there is a w ∈ Z such that the jth component of ρw
is nontrivial.

The equivalence relation is defined as follows. For an SL(2)-orbit (ρw, ϕw)w
on grW of rank n, the homomorphisms τ, τ� :Gn

m,R→AutR(grWw ) associated to

the SL(2)-orbit (ρw, ϕw) in n variables of weight w for w ∈Z (see Section 2.1.2)

define homomorphisms

τ, τ� :Gn
m,R→

∏
w∈Z

AutR(grWw )

of algebraic groups, respectively.

An SL(2)-orbit (ρw, ϕw)w on grW of rank n and an SL(2)-orbit (ρ′w, ϕ
′
w)w on

grW of rank n′ are equivalent if and only if n′ = n and (ρ′w(g))w =

τ�(t)(ρw(g))wτ
�(t)−1, (ϕ′

w(z))w = τ�(t)(ϕw(z))w for some t ∈ Rn
>0. (We have

the same equivalence relation when we replace τ� here by τ .)

The set DSL(2)(gr
W )∼ is defined as the set of all equivalence classes of SL(2)-

orbits (ρw, ϕw)w on grW such that the weight filtrations on grWw associated to

(ρw, ϕw) are rational (i.e., defined over Q) for any w ∈Z.

REMARK 2.2.3

In the definition of DSL(2)(gr
W )∼ in [15, II, Section 3.5.1], we forgot to put the

condition of the rationality of the associated weight filtrations. This error does

not affect the rest of [15, II].

2.2.4

We have the embedding

D(grW )
⊂→DSL(2)(gr

W )∼
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by identifying D(grW ) with the set of SL(2)-orbits on grW of rank 0. We have a

map

DSL(2)(gr
W )∼→DSL(2)(gr

W ), p 
→
(
p(grWw )

)
w
,

which sends the class p of (ρw, ϕw)w to (the class p(grWw ) of (ρw, ϕw))w.

2.2.5

For p ∈ DSL(2)(gr
W )∼, we define a finite set W(p) of increasing filtrations on

grW =
∏

w grWw as follows. Let (ρw, ϕw)w be an SL(2)-orbit on grW in n variables

which represents p, let W (w,j) (w ∈ Z,1 ≤ j ≤ n) be the jth weight filtration

on grWw associated to the SL(2)-orbit (ρw, ϕw)w on grWw in n variables, and let

W (j) =
⊕

wW (w,j). Let W(p) := {W (j) | 1≤ j ≤ n}. Then W(p) is independent

of the choice of the representative (ρw, ϕw)w of p.

By an admissible set of weight filtrations on grW [15, II, Section 3.2.2], we

mean a set of increasing filtrations on grW which coincides with the set W(p)

of weight filtrations associated to some point p of DSL(2)(gr
W )∼. An admissible

set Φ of weight filtrations on grW has a natural structure of a totally ordered

set (given by the variance of W ′(grW ) for W ′ ∈ Φ; see [15, II, Section 2.1.11,

Proposition 2.1.13]). For any p ∈DSL(2)(gr
W )∼ of rank n such that Φ =W(p), if

(W (j))1≤j≤n denotes the family of weight filtrations associated to p, then W (j) ≤
W (k) for this order if and only if j ≤ k. By using this ordering, we will identify

Φ with the totally ordered set {1, . . . , n}. By this, we will identify GΦ
m, ZΦ, and

so on with Gn
m, Zn, and so on.

Let W be the set of all admissible sets of weight filtrations on grW . Let

W(grWw ) be the set of all admissible sets of weight filtrations on grWw ; that is,

W(grWw ) = {W(p) | p ∈DSL(2)(gr
W
w )} (see Section 2.1.6). We have a map

W→
∏
w

W(grWw ), Φ 
→
(
Φ(w)

)
w
,

where Φ(w) := {W ′(grWw ) |W ′ ∈Φ,W ′(grWw ) �=W (grWw )}. This map sends W(p)

for p ∈DSL(2)(gr
W )∼ to (W(p(grWw )))w.

2.2.6

For Φ ∈ W and Q = (Q(w))w ∈
∏

wW(grWw ) such that Φ(w) ⊂ Q(w) for any

w ∈Z, let

GΦ
m→

∏
w∈Z

GQ(w)
m

be the homomorphism which sends (tW ′)W ′∈Φ to (t′w,j)w∈Z,j∈Q(w), where t′w,j

is the product of tW ′ for all elements W ′ of Φ such that W ′(grWw ) = j. If p ∈
DSL(2)(gr

W )∼ and p′ = (p(grWw ))w ∈DSL(2)(gr
W ), then for Φ =W(p) and Q(w) =

W(p(grWw )) (w ∈ Z), τ�p coincides with the composition GΦ
m →

∏
wG

Q(w)
m →

GR(grW ), where the first arrow is as above and the second arrow is τ�p′ .
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2.2.7

Let p ∈DSL(2)(gr
W )∼ (resp., p ∈DSL(2)(gr

W )). We define objects

Sp,X(Sp)
+,Ap,Bp, Āp, B̄p, τ

�
p , τp, τ̃

�
p , τ̃p,Z(p)

associated to p. Let

Sp =GW(p)
m

(
resp.,

∏
w

GW(pw)
m

)
.

Then the character group X(Sp) of Sp is identified with
∏

wZW(p) (resp.,∏
wZW(pw)). We define the submonoid X(Sp)

+ of X(Sp) as the part correspond-

ing to NW(p) (resp.,
∏

wNW(pw)).

Let Ap be the connected component in Sp(R) which contains the unit ele-

ment. We identify

Ap =Hom
(
X(Sp),R

mult
>0

)
=R

W(p)
>0

(
resp.,

∏
w

R
W(pw)
>0

)
.

Let

Āp =Hom
(
X(Sp)

+,Rmult
≥0

)
=R

W(p)
≥0

(
resp.,

∏
w

R
W(pw)
≥0

)
⊃Ap,

B̄p =R≥0 × Āp ⊃Bp =R>0 ×Ap.

We regard Āp and B̄p as real toric varieties (see Section 1.3.8(3)). We define

homomorphisms

τp, τ
�
p : Sp→

∏
w

AutR(grWw )

of algebraic groups over R and a subset Z(p) of D(grW ).

Assume first p ∈DSL(2)(gr
W )∼. For an SL(2)-orbit (ρw, ϕw)w on grW of rank

n which represents p, the associated homomorphisms τ, τ� : Sp =G
W(p)
m,R =Gn

m→∏
wAutR(grWw ) depend only on p. We denote τ as τp and τ� as τ�p . The set

Z(p) :=
{(

ϕw(iy1, . . . , iyn)
)
w
| yj ∈R>0(1≤ j ≤ n)

}
=
{
τp(t)

(
ϕw(i)

)
w
| t ∈Ap

}
=
{
τ�p (t)

(
ϕw(i)

)
w
| t ∈Ap

}
⊂D(grW ) =

∏
w∈Z

D(grWw )
(
where i= (i, . . . , i) ∈ hn

)
depends only on p.

Next for p ∈DSL(2)(gr
W ), define τp and τ�p as (τpw)w and (τ�pw

)w, respectively,

and let Z(p) =
∏

w Z(pw) (see Section 2.1.6). Both for p ∈DSL(2)(gr
W )∼ and for

p ∈DSL(2)(gr
W ), we call Z(p) the torus orbit of p. It is an Ap-torsor.

We define extended homomorphisms

τ̃p, τ̃
�
p :Gm × Sp→

∏
w

AutR(grWw ),

for t0 ∈Gm and t ∈ Sp, by

τ̃p(t0, t) = (tw0 )wτp(t) = τp(t)(t
w
0 )w,
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τ̃�p (t0, t) = (tw0 )wτ
�
p (t) = τ�p (t)(t

w
0 )w.

Here (tw0 )w acts on grWw as the multiplication by tw0 .

2.2.8

Let Φ ∈W . By a splitting of Φ [15, II, Section 3.2.3], we mean a homomorphism

α= (αw)w :GΦ
m→

∏
wAutR(grWw ) of algebraic groups over R such that, for any

W ′ ∈ Φ and k ∈ Z, W ′
k coincides with the sum of the parts of grW of α-weight

m for all m ∈ZΦ such that m(W ′)≤ k.

For a splitting α of Φ, let α� :GΦ
m→GR(grW ) be the homomorphism whose

GR(grWw )-component α�
w is t = (tj)j∈Φ 
→ (

∏
j∈Φ tj)

−w · αw(t). Note that the

actions of α(t) and α�(t) (t ∈RΦ
>0) on D(grW ) are the same.

A splitting of Φ exists: if p ∈ DSL(2)(gr
W )∼ and Φ =W(p), then τp is a

splitting of Φ. In this case, for α = τp, α� in the above coincides with τ�p in

Section 2.2.7.

Let Q= (Q(w))w ∈
∏

wW(grWw ). By a splitting of Q, we mean a family α=

(αw)w, where αw is a splitting of Q(w). Let α� = (α�
w)w.

2.2.9

Let Φ ∈ W . By a distance to Φ-boundary [15, II, Section 3.2.4], we mean a

real analytic map β : D(grW )→RΦ
>0 such that β(α(t)x) = tβ(x) (t ∈RΦ

>0, x ∈
D(grW )) for any splitting α of Φ. (The last condition is equivalent to β(α�(t)x) =

tβ(x) (t ∈RΦ
>0, x ∈D(grW ).) A distance to Φ-boundary exists [15, II, Proposi-

tion 3.2.5].

Let Q= (Q(w))w ∈
∏

wW(grWw ). By a distance to Q-boundary, we mean a

family (βw)w∈Z, where βw is a distance to Q(w)-boundary for the pure situation

grWw .

2.2.10

In [15, II], we endowed DSL(2)(gr
W ) and DSL(2)(gr

W )∼ with structures as objects

of B′
R(log). These spaces satisfy condition (C) in Section 1.3.16, that is, the sheaf

of real analytic functions is a subsheaf of the sheaf of all R-valued continuous

functions. DSL(2)(gr
W ) is just the product of DSL(2)(gr

W
w ) (see Section 2.1.7) in

B′
R(log). The canonical map DSL(2)(gr

W )∼ → DSL(2)(gr
W ) (see Section 2.2.4)

is a morphism in B′
R(log), and it is a log modification (see Section 1.4.6) as is

explained in [15, II, Theorem 3.5.9, Section 3.5.10]. We review some properties

of these spaces.

2.2.11

Let p ∈ DSL(2)(gr
W )∼ (resp., p ∈ DSL(2)(gr

W )), and let r ∈ Z(p) (see

Section 2.2.7). Then p is the limit of τp(t)r= τ�p (t)r, where t ∈Ap tends to 0 ∈ Āp.

Here 0 ∈ Āp denotes (0, . . . ,0) ∈RΦ
≥0, where Φ =W(p) (resp.,

∏
wR

Q(w)
≥0 , where

Q(w) =W(p(grWw ))) (see Section 2.2.5) in the identifications Āp =RΦ
≥0 (resp.,∏

wR
Q(w)
≥0 ) ⊃Ap =RΦ

>0 (resp.,
∏

wR
Q(w)
>0 ).
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2.2.12

For Φ ∈W , let

DSL(2)(gr
W )∼(Φ) =

{
p ∈DSL(2)(gr

W )∼ | W(p)⊂Φ
}
.

For Q= (Q(w))w∈Z ∈
∏

w∈ZW(grWw ), let

DSL(2)(gr
W )(Q) =

{
p ∈DSL(2)(gr

W ) | W(pw)⊂Q(w) for all w ∈Z
}
.

Then DSL(2)(gr
W )∼(Φ) (resp., DSL(2)(gr

W )(Q)) is open in DSL(2)(gr
W )∼ (resp.,

DSL(2)(gr
W )). When Φ (resp., Q) moves, these open sets cover DSL(2)(gr

W )∼

(resp., DSL(2)(gr
W )). If Φ ∈W , Q= (Q(w))w ∈

∏
wW(grWw ), and Φ(w)⊂Q(w)

(see Section 2.2.5) for any w ∈ Z, then the map DSL(2)(gr
W )∼ → DSL(2)(gr

W )

induces a map DSL(2)(gr
W )∼(Φ)→DSL(2)(gr

W )(Q).

2.2.13

Let Φ ∈W (resp., Q = (Q(w))w ∈
∏

wW(grWw )), and let β be a distance to Φ-

boundary (resp., Q-boundary). Then the map β extends uniquely to a morphism

β :DSL(2)(gr
W )∼(Φ)→RΦ

≥0

(
resp., DSL(2)(gr

W )(Q)→
∏
w

R
Q(w)
≥0

)

of B′
R(log). The log structure with sign of DSL(2)(gr

W )∼(Φ) (resp., DSL(2)(gr
W )

(Q)) coincides with the inverse image of the canonical log structure with sign of

RΦ
≥0 (resp.,

∏
wR

Q(w)
≥0 ) (see Section 1.3.8(1)).

For a distance β to Φ-boundary (resp., Q-boundary), each component βj

(j ∈Φ) (resp., βw,j (w ∈Z, j ∈Q(w))) of β is a section of the log structure MS ,

where S =DSL(2)(gr
W )∼(Φ) (resp.,DSL(2)(gr

W )(Q)). We have a chartNΦ→MS

(resp.,
∏

wNQ(w)→MS) defined as m 
→
∏

j β
m(j)
j (resp., m 
→

∏
w β

m(w,j)
w,j ). The

induced homomorphism from NΦ (resp.,
∏

wNQ(w)) to MS/O×
S is independent

of the choice of β. If Φ =W(p) (resp., Q(w) =W(pw)) for p ∈ S, then this induces

an isomorphism from NΦ (resp.,
∏

wNQ(w)) to (MS/O×
S )p.

If Φ(w) ⊂ Q(w) (cf. Section 2.2.5) for any w ∈ Z, we have a commutative

diagram ∏
wNQ(w) → MS/O×

S

(
S :=DSL(2)(gr

W )
)

↓ ↓
NΦ → MS′/O×

S′
(
S′ :=DSL(2)(gr

W )∼
)

where the left vertical arrow is the homomorphism induced from the homomor-

phism GΦ
m→

∏
wG

Q(w)
m (see Section 2.2.6) on the character groups.

2.2.14

Let Φ ∈W (resp., Q ∈
∏

wW(grWw )), let α be a splitting of Φ (resp., Q), and let

β be a distance to Φ-boundary (resp., Q-boundary). Then the map D(grW )→
D(grW ), x 
→ α(β(x))−1x = α�(β(x))−1x extends uniquely to a morphism (see

[15, II, Proposition 3.2.6])

bα,β :DSL(2)(gr
W )∼

(
resp., DSL(2)(gr

W )
)
→D(grW ).
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2.3. The space D�
SL(2)

We define the space D�
SL(2), comparing it with the space DII

SL(2), which we defined

in [15, II]. We also define a related space D�,−
SL(2).

2.3.1

Let D�
SL(2) (resp., D�,−

SL(2), DSL(2)) be the set of all pairs (p,Z), where

p ∈ DSL(2)(gr
W )∼ (resp., DSL(2)(gr

W ), DSL(2)(gr
W )∼) and Z is a subset of D

satisfying the following two conditions (i) and (ii). Denote τ�p (resp., τ�p , τp) by

αp, and denote τ̃�p (resp., τ̃�p , τ̃p) by α̃p.

(i) Z is either

(i.A) an αp(Ap)-orbit in D or

(i.B) an α̃p(Bp)-orbit in Dnspl (see Section 1.1.5)

for the lifted action (see Section 1.2.6).

(ii) The image of Z in D(grW ) coincides with the torus orbit Z(p) (see

Section 2.2.7) of p.

We call an element (p,Z) an A-orbit if it satisfies (i.A) and a B-orbit if it

satisfies (i.B). This is similar to the case of DBS, which also consists of AP -orbits

and BP -orbits for Q-parabolic subgroups P of GR(grW ) (see [15, I, Section 5.1,

Definition 5.3]).

2.3.2

We embed D in D�
SL(2) (resp., D�,−

SL(2), DSL(2)) by F 
→ (F (grW ),{F}). We have

canonical maps

D�
SL(2)→DSL(2)(gr

W )∼, D�,−
SL(2)→DSL(2)(gr

W ),

DSL(2)→DSL(2)(gr
W )∼

defined by (p,Z) 
→ p. We have a canonical map

D�
SL(2)→D�,−

SL(2), (p,Z) 
→ (p′,Z ′), p′ :=
(
p(grWw )

)
w
, Z ′ := τ�p′(Ap′)Z.

2.3.3

The style of the definition of the set DSL(2) in Section 2.3.1 is slightly different

from the one in [15, II, Section 2.5]. We explain the relation between the two

styles. Let (p,Z) ∈DSL(2) in the present style, and let (ρw, ϕw)w be an SL(2)-orbit

on grW which represents p. If (p,Z) is an A-orbit (see Section 2.3.1), then it is

the class of ((ρw, ϕw)w,r) ∈D′
SL(2),n in [15, II, Section 2.3.1] with r ∈ Z. If (p,Z)

is a B-orbit (see Section 2.3.1), then it is the class of ((ρ′w, ϕ
′
w)w,r) ∈D′

SL(2),n+1

in [15, II, Section 2.3.1], where r ∈ Z and ρ′w (resp., ϕ′
w) is the composition

SL(2,R)n+1 → SL(2,R)n → GR(grWw ) (resp., P1(C)n+1 → P1(C)n → D(grWw ))

of the projection to the last n factors and ρw (resp., ϕw).
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2.3.4

Let D�,mild
SL(2) (resp., D�,−,mild

SL(2) ) be the subset of D�
SL(2) (resp., D�,−

SL(2)) consisting

of all A-orbits. (We do not define the mild part of DSL(2). The part of A-orbits

in DSL(2) does not fit our formulation of the mild part.)

2.3.5

Consider the following three situations (a)–(c).

(a) D=D�
SL(2), E=DSL(2)(gr

W )∼.

(b) D=D�,−
SL(2), E=DSL(2)(gr

W ).

(c) D=DSL(2), E=DSL(2)(gr
W )∼.

We endow D with a structure of an object of B′
R(log) as follows in Sections 2.3.6–

2.3.11. In situation (c), this coincides with the structure DII
SL(2) treated in [15,

II].

2.3.6

In situations (a) and (c) (resp., situation (b)) in Section 2.3.5, for Φ ∈W (resp.,

Q ∈
∏

wW(grWw )), let D(Φ) (resp., D(Q)) be the inverse image of E(Φ) (resp.,

E(Q)) (see Section 2.2.12) in D.

2.3.7

In situations (a)–(c) in Section 2.3.5, for x = (p,Z) ∈ D, splW (r) for r ∈ Z is

independent of the choice of r. We denote this splW (r) (r ∈ Z) by splW (x).

2.3.8

In situations (a) and (c) (resp., situation (b)) in Section 2.3.5, let Φ ∈W (resp.,

Q = (Q(w))w ∈
∏

wW(grWw )), let α be a splitting of Φ (resp., Q) (see Sec-

tion 2.2.8), and let β be a distance to Φ-boundary (resp., Q-boundary) (see

Section 2.2.9).

In situations (a) and (b) (resp., situation (c)), for x ∈ D, let δα,β(x) ∈
L (see Section 1.2.2) be Ad(α�(β(p)))−1δW (x) (resp., Ad(α(β(p)))−1δW (x)),

where p denotes the image of x in D(grW ) (for α�, see Section 2.2.8). Let

D′ =D(Φ) (resp., D(Q)). Then, for x= (p,Z) ∈D′ and r ∈ Z, δα,β(τ
�
p (t)r) (resp.,

δα,β(τp(t)r)) converges in L̄ (see Section 1.3.8(4)) when t ∈Ap tends to 0 in Āp,

and the limit depends only on x and is independent of the choice of r. We denote

this limit by δα,β(x). We have δα,β(x) ∈ L̄(bα,β(p)), where bα,β(p) is as in Sec-

tion 2.2.14.

These δα,β(x) and bα,β(p) (x= (p,Z)) are described as follows. In situations

(a) and (c) (resp., situation (b)), let α′ and (α�)′ be the restrictions of α and

α� (see Section 2.2.8) to the subgroup G
W(p)
m (resp.,

∏
wG

W(pw)
m ) of GΦ

m (resp.,∏
wG

Q(w)
m ), respectively. Since both α′ and τp split W(p) (resp., (W(pw))w),

there is u ∈
∏

wAutR(grWw ) such that, for all W ′ ∈W(p) (resp., for all w ∈Z and

all W ′ ∈ W(pw)), u preserves W ′ and induces the identity maps on grW
′
and
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such that

τp(t) = uα′(t)u−1, τ�p (t) = u(α�)′(t)u−1

for any t ∈G
W(p)
m (resp.,

∏
wG

W(pw)
m ). Take r ∈ Z, and let r̄ be the image of r

in Z(p) (see Section 2.2.7). Then we have

bα,β(p) = bα,β(u
−1r̄),

δα,β(x) = Ad
(
uα�

(
β(u−1r̄)

))−1
δW (r)

(
resp., Ad

(
uα

(
β(u−1r)

))−1
δW (r)

)
.

These are shown in [15, II, Section 3.3.9] in situation (c). The proofs for situations

(a) and (b) are similar.

PROPOSITION 2.3.9

Consider the three situations in Section 2.3.5. In situations (a) and (c), let Φ ∈
W , D′ =D(Φ), and E′ = E(Φ). In situation (b), let Q ∈

∏
wW(grWw ), D′ =D(Q),

and E′ = E(Q). In situations (a) and (c) (resp., situation (b)), fix a splitting α

of Φ (resp., Q) and a distance β to Φ-boundary (resp., Q-boundary). Then we

have a bijection

ν :D′→
{
(p, s, δ) ∈ E′ × spl(W )× L̄ | δ ∈ L̄

(
bα,β(p)

)}
(where L̄(·) is as in Section 1.3.8(4)) defined as x 
→ (p, s, δ), where p is the image

of x in E, s= splW (x) (see Section 2.3.7), and δ = δα,β(x) (see Section 2.3.8).

Proof

The inverse map of ν is defined as (p, s, δ) 
→ (p,Z), where Z is as follows. Con-

sider situations (a) and (c) (resp., situation (b)). Take u ∈GR(grW ) for p as in

Section 2.3.8.

In the case δ ∈ L⊂ L̄, Z is the subset ofD whose image inD(grW )×spl(W )×
L under the map in Section 1.2.1 is{(

r, s,Ad
(
uα�

(
β(u−1r)

))
δ
)
| r ∈ Z(p)

}
(
resp.,

{(
r, s,Ad

(
uα

(
β(u−1r)

))
δ
)
| r ∈ Z(p)

})
.

In the case δ = 0◦δ′ ∈ L̄�L with δ′ ∈ L�{0} (see Section 1.3.8(4)), Z isR>0◦Z ′,

where Z ′ is the above set Z for (p, s, δ′). �

PROPOSITION 2.3.10

Let the three situations be as in Section 2.3.5.

(1) In situations (a) and (c) (resp., situation (b)), endow D(Φ) (resp., D(Q))

(see Section 2.3.6) with a structure of an object of B′
R(log) by using the bijection

ν in Proposition 2.3.9. (The target of ν is regarded as an object of B′
R(log) by

regarding it as Y in X = E′× spl(W )×L̄ in Section 1.3.16.) Then this structure

is independent of the choice of (α,β).

(2) There is a unique structure on D as an object of B′
R(log) such that, for

any Φ ∈W (resp., Q ∈
∏

wW(grWw )), D′ :=D(Φ) (resp., D′ :=D(Q)) is an open



Classifying spaces of degenerating mixed Hodge structures, IV 319

subset and the restriction of this structure to D′ coincides with the structure given

in (1).

Proof

For situation (c), this follows from [15, II, Proposition 3.2.9, Theorem 3.2.10].

The proofs for situations (a) and (b) are similar. �

2.3.11

The structures of D�
SL(2), D

�,−
SL(2), and DII

SL(2) as objects of B′
R(log) are given

by situations (a), (b), and (c) in Proposition 2.3.10, respectively. In situations

(a)–(c) in Section 2.3.5, the canonical map D→ E is evidently a morphism of

B′
R(log).

2.3.12

Via the bijection ν of Proposition 2.3.9, A-orbits in D′ correspond to elements

(p, s, δ) of the target of ν such that δ ∈ L. Hence, the subset of D consisting of all

A-orbits is open inD. Elements (p,Z) of D′ such that Z ⊂Dspl (see Section 1.1.5)

correspond to elements (p, s, δ) of the target of ν such that δ = 0.

2.3.13

Consider situations (a)–(c) in Section 2.3.5. In situation (c), we consider the

structure DII
SL(2) of DSL(2).

In Theorem 2.3.14 below, we extend the result [15, II, Theorem 3.4.4] on

the local structure of DII
SL(2) to all situations in Section 2.3.5. This section is a

preparation for it.

Let p ∈ E. We consider the local structure of D around the inverse image of

p in D.

Consider situations (a) and (c) (resp., situation (b)). Let Φ :=W(p) (resp.,

Q= (Q(w))w with Q(w) :=W(pw)). Fix r ∈ Z(p).

Let Kr be the maximal compact subgroup of GR(grW ) associated to r [15,

II, Section 3.4.1], and let K ′
r ⊂Kr be the isotropy subgroup of GR(grW ) at r. We

use the notation in Section 2.2.7. Let R be an R-subspace of gR(grW ) satisfying

the following conditions (C1) and (C2).

(C1) gR(grW ) = Lie(τ�(Ap))⊕R⊕ Lie(Kr).

(C2) R =
∑

m∈X(Sp)
R ∩ ((gR)m + (gR)−m). Here (·)m denotes the part of

weight m for the adjoint action of Sp via τ�p . (The definition of the part (·)m
does not change if we replace τ�p by τp.)

Let S be an R-subspace of Lie(Kr) such that Lie(Kr) = Lie(K ′
r)⊕ S.

For a subset J of Φ (resp., for J = (J(w))w∈Z, J(w)⊂Q(w)), let SJ be the

subset of S consisting of all elements k such that exp(k)r ∈ (Kr∩GR,J(gr
W )) · r,

where GR,J (gr
W ) is the subgroup of GR(grW ) consisting of all g ∈GR(grW ) such

that gW ′ =W ′ for any W ′ ∈ J (resp., for any w ∈Z and any W ′ ∈ J(w)).
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We define an object Y of B′
R(log) as follows. Let

X = Āp × gR(grW )× gR(grW )× gR(grW )× S.

Note that Āp is RΦ
≥0 (resp.,

∏
wR

Q(w)
≥0 ) (Section 2.2.7).

Let Y be the subset of X consisting of all elements (t, f, g, h, k) satisfying

the following conditions (i)–(iv). In (ii) and (iv) below, let J = {j ∈ Φ | tj = 0}
(resp., J = (J(w))w∈Z with J(w) = {j ∈Q(w) | tw,j = 0}).

For χ ∈X(Sp), write χ= χ+(χ−)
−1 with χ+, χ− ∈X(Sp)

+, which are defined

as follows. In the identification X(Sp) =
∏

wZQ(w), if we denote by m(w, j) ∈ Z

the (w, j)-component of χ for w ∈Z and j ∈Q(w), then the (w, j)-component of

χ+ is max(m(w, j),0) and the (w, j)-component of χ− is max(−m(w, j),0).

(i) For any χ ∈ X(Sp), t(χ+)gχ = t(χ−)fχ and t(χ+)hχ = t(χ−)gχ. Here

fχ, gχ, hχ denote the χ-component for the adjoint action of Sp via τ�p , and

t(χ+), t(χ−) ∈R≥0 are defined by the understanding Āp =Hom(X(Sp)
+,Rmult

≥0 ).

(ii) Let χ ∈X(Sp). If t(χ+) = 0, then gχ = fχ = 0. If t(χ−) = 0, then gχ =

hχ = 0. In other words, if m(j) ∈ Z for j ∈ Φ (resp., m(w, j) ∈ Z for w ∈ Z

and j ∈ Q(w)) denotes the j-component (resp., (w, j)-component) of χ in the

identification X(Sp) = ZΦ (resp.,
∏

wZQ(w)), then fχ = 0 unless m(j) ≤ 0 for

any j ∈ J (resp., unless m(w, j)≤ 0 for any w ∈ Z and j ∈ J(w)), gm = 0 unless

m(j) = 0 for any j ∈ J (resp., unless m(w, j) = 0 for any w ∈ Z and j ∈ J(w)),

and hm = 0 unless m(j)≥ 0 for any j ∈ J (resp., unless m(w, j)≥ 0 for any w ∈Z

and j ∈ J(w)).

(iii) gχ ∈R and fχ + hχ−1 ∈R for any χ ∈X(Sp).

(iv) k ∈ SJ .

Regard X as an object of B′
R(log) in the natural way, and regard Y ⊂X as

an object of B′
R(log) by Section 1.3.16. Let

Y0 =
{
(t, f, g, h, k) ∈ Y | t ∈Ap

}
⊂ Y.

THEOREM 2.3.14

Consider the three situations in Section 2.3.5. Let the notation be as in Sec-

tion 2.3.13.

(1) For a sufficiently small open neighborhood U of (0,0,0,0,0) in Y , there

exists a unique open immersion U → E in B′
R(log) which sends (t, f, g, h, k) ∈

U ∩ Y0 to

exp(f)τ�p (t) exp(k)r= exp(f)τp(t) exp(k)r

of D(grW )⊂ E. This morphism sends (0, . . . ,0) ∈ Y to p.

(2) Let L̄= L̄(r), L= L(r). Then for a sufficiently small open neighborhood

U of (0,0,0,0,0) in Y , there exists a unique open immersion U × spl(W )× L̄→
D in B′

R(log) having the following property. In situations (a) and (b) (resp.,

situation (c)), it sends (t, f, g, h, k, s, δ) ∈ Y × spl(W )× L, where (t, f, g, h, k) ∈
U ∩ Y0, s ∈ spl(W ), and δ ∈ L, to the element of D whose image in D(grW )×
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spl(W )×L under the isomorphism from Section 1.2.1 is(
exp(f)τ�p (t) exp(k)r, s,Ad

(
exp(f)τ�p (t) exp(k)

)
δ
)

(
resp.,

(
exp(f)τp(t) exp(k)r, s,Ad

(
exp(f)τp(t) exp(k)

)
δ
))
.

(3) For a sufficiently small open neighborhood U of (0,0,0,0,0) in Y , the

diagram

U × spl(W )× L̄ → D

↓ ↓
U → E

is Cartesian in B′
R(log) and in the category of topological spaces.

(4) In situations (a) and (c) (resp., situation (b)), the image of the map

in (1) is contained in E(Φ) (resp., E(Q)) and the image of the map in (2) is

contained in D(Φ) (resp., D(Q)), where Φ=W(p) (resp., Q= (W(pw))w).

(5) The underlying maps of the morphisms in (1) and (2) are described in

Section 2.3.15 below.

Proof

In situation (c), this is given in [15, II, Theorem 3.4.4, Section 3.4.12]. The proofs

for situations (a) and (b) are similar. �

2.3.15

The maps in Theorem 2.3.14(1) and 2.3.14(2) are induced from the maps

Y → E, Y × spl(W )× L̄→D,

respectively, defined as follows.

The first map sends (t, f, g, h, k) ∈ Y to the following element p′ ∈ E. Assume

we are in situation (a) or (c) (resp., situation (b)). Let J = {j ∈ Φ | tj = 0}
(resp., J = (J(w))w∈Z, where J(w) = {j ∈ Q(w) | tw,j = 0}). Define pJ ∈ E as

follows. Let n= �(Φ) (resp., n(w) = �(Q(w)) for w ∈Z). Let (ρ,ϕ) be the SL(2)-

orbit on grW which represents p (resp., (ρw, ϕw) for w ∈ Z be the SL(2)-orbit

on grWw in n(w) variables which represents pw) such that r = ϕ(i, . . . , i) (resp.,

rw = ϕw(i, . . . , i)). Write J = {j1, . . . , jm}, j1 < · · ·< jm (resp., J(w) = {jw,1, . . . ,

jw,m(w)}, j1 < · · · < jm(w)). Then pJ is the class of the following SL(2)-orbit

(ρ′, ϕ′) on grW of rank m (resp., the family (ρ′w, ϕ
′
w)w of SL(2)-orbits in m(w)

variables):

ρ′(g1, . . . , gm) = ρ(g′1, . . . , g
′
n), ϕ

′(z1, . . . , zm) = ϕ(z′1, . . . , z
′
n(w))(

resp., ρ′w(g1, . . . , gm(w)) = ρw(g
′
1, . . . , g

′
n(w)), ϕ

′
w(z1, . . . , zm(w))

= ϕw(z
′
1, . . . , z

′
n(w))

)
.

Here g′j = gk and z′j = zk, where k is the smallest among integers a such that

1≤ a≤m (resp., 1≤ a≤m(w)) and j ≤ ja if such an a exists, and g′j = 1 and

z′j = i if such an a does not exist.
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Let A′ be the set of all elements t′ of Ap such that t′j = tj for any j ∈Φ� J

(resp., t′w,j = tw,j for any w ∈Z and any j ∈Q(w)� J(w)). Then

p′ = exp(f)τp(t
′) exp(k)pJ

with t′ ∈A′. This p′ is independent of the choice of t′ ∈A′.

Next the second map Y × spl(W )× L̄→D sends (t, f, g, h, k, s, δ) to (p′,Z) ∈
D, where p′ is as above and Z ⊂D is as follows. Consider situations (a) and (b)

(resp., situation (c)). If δ ∈ L⊂ L̄, Z is the subset of D whose image under the

embedding D→D(grW )× spl(W )× L̄ in Section 1.2.1 is the set of elements(
exp(f)τ�p (t

′) exp(k)r, s,Ad
(
exp(f)τ�p (t

′) exp(k)
)
δ
)

(
resp.,

(
exp(f)τp(t

′) exp(k)r, s,Ad
(
exp(f)τp(t

′) exp(k)
)
δ
))
,

where t′ ranges over all elements of A′. If δ ∈ L̄� L and δ = 0 ◦ δ(1) for δ(1) ∈
L � {0} (see Section 1.3.8(4)), Z is the subset of D whose image under the

embedding D→D(grW )× spl(W )× L̄ in Section 1.2.1 is the set of elements(
exp(f)τ�p (t

′) exp(k)r, s,Ad
(
exp(f)τ�p (t

′) exp(k)
)
(c ◦ δ(1))

)
(
resp.,

(
exp(f)τp(t

′) exp(k)r, s,Ad
(
exp(f)τp(t

′) exp(k)
)
(c ◦ δ(1))

))
,

where t′ ranges over all elements of A′ and c ranges over all elements of R>0.

The part for DSL(2) of the following proposition is [15, II, Theorem 3.5.15].

PROPOSITION 2.3.16

Consider the situations in Section 2.3.5. Fix any F ∈D(grW ), and let L̄= L̄(F )

(see Section 1.3.8(4)). Then D is an L̄-bundle over E× spl(W ) as an object of

B′
R(log). Consequently, the map D→ E× spl(W ) is proper.

Proof

This follows from Theorem 2.3.14. �

Note that L̄(F ) for all F ∈D(grW ) are isomorphic to each other as objects of

B′
R(log).

PROPOSITION 2.3.17

The map D�
SL(2) → D�,−

SL(2) (see Section 2.3.2) is a morphism of B′
R(log). The

following diagram is Cartesian in B′
R(log) and also Cartesian in the category of

topological spaces:

D�
SL(2) → D�,−

SL(2)

↓ ↓
DSL(2)(gr

W )∼ → DSL(2)(gr
W ).

Proof

We deduce this from Theorem 2.3.14. Let p ∈DSL(2)(gr
W )∼, and let p′ be the

image of p in DSL(2)(gr
W ). Take R and S for situation (b) in Section 2.3.5 as
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in Section 2.3.13 by using p′ as p in Section 2.3.13, and write this R as R′.

Let C be an R-subspace of gR(grW ) such that Lie(τ�p′(Ap′)) is the direct sum of

Lie(τ�p (Ap)) and C. Let R=C⊕R′. Then R and S satisfy the conditions on R and

S in Section 2.3.13 for situation (a) in Section 2.3.5 and for p. The homomorphism

Sp→ Sp′ (see Section 2.2.6) induces a homomorphism X(Sp′)+→X(Sp)
+ and,

hence, a morphism Āp = Hom(X(Sp)
+,Rmult

≥0 )→ Āp′ = Hom(X(Sp′)+,Rmult
≥0 ).

Let Y be the Y in Section 2.3.13 defined by (p,R,S) for situation (a) in Sec-

tion 2.3.5, and let Y ′ be the Y in Section 2.3.13 defined by (p′,R′, S) for situation

(b) in Section 2.3.5.

For (t, f, g, h, k) ∈ Y , since g ∈R=C⊕R′, we can write g = c+g′ with c ∈C

and g′ ∈ R′ in a unique way, and we have (t′, f ′, g′, h′, k) ∈ Y ′, where t′ is the

image of t in Āp′ , f ′ = f − c, and h′ = h− c. We have a morphism Y → Y ′ which

sends (t, f, g, h, k) ∈ Y to (t′t′′, f ′, g′, h′, k) ∈ Y ′, where t′′ is the unique element

of Ap′ such that τ�p′(t′′) = exp(c). For a sufficiently small open neighborhood U of

(0,0,0,0,0) in Y and for a sufficiently small open neighborhood U ′ of (0,0,0,0,0)

in Y ′ such that the image of U in Y ′ is contained in U ′, we have commutative

diagrams

U → E

↓ ↓
U ′ → E′

U × spl(W )× L̄ → D

↓ ↓
U ′ × spl(W )× L̄ → D′

where E=DSL(2)(gr
W )∼, E′ =DSL(2)(gr

W ), D=D�
SL(2), and D′ =D�,−

SL(2). This

reduces Proposition 2.3.17 to Theorem 2.3.14. �

2.4. Basic facts on SL(2)-orbits and Borel–Serre orbits
This section is a preparation for the rest of Section 2. In Sections 2.4.1–2.4.3, we

review the space DBS defined and studied in [15, I], and then in Sections 2.4.5–

2.4.10 we give some basic facts about the spaces D�
SL(2), D

�,−
SL(2), D

II
SL(2), and

DBS.

2.4.1

We review the definition of the set DBS shortly (see [15, I] for details).

Parabolic subgroups play central roles in the theory of Borel–Serre spaces.

Following [6], for a linear algebraic group Z over a field, we call an algebraic

subgroup P of Z a parabolic subgroup if it is geometrically connected and Z/P

is a projective variety.

In our setting, there are bijections

{Q-parabolic subgroup of G}

↔
{
Q-parabolic subgroup of G(grW )

}
↔

{
family (Pw)w∈Z of Q-parabolic subgroups Pw of G(grWw )

}
.
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The bijection from the last set to the second set is given by (Pw)w 
→
∏

w Pw, and

the bijection from the second set to the first set is given by taking the inverse

image under GR→GR(grW ).

Let P be a Q-parabolic subgroup of GR(grW ). Let Pu be the unipotent

radical of P , let SP be the largest Q-split torus in the center of P/Pu, and let

AP (resp., BP ) be the connected component including 1 of the topological group

SP (R) (resp., (Gm × SP )(R)).

For each p ∈D(grW ), we have a canonical homomorphism SP → P of alge-

braic groups over R such that the composition SP → P → P/Pu is the identify

map, which we call the Borel–Serre lifting at p and denote by t 
→ tp. This tp is

characterized by the following two properties.

(i) The image of tp in P/Pu coincides with t.

(ii) θKp(tp) = t−1
p , where θKp : GR(grW )→ GR(grW ) denotes the Cartan

involution associated to the maximal compact subgroup Kp (cf. [15, I, 2.1]) of

GR(grW ) associated to p.

We have the following action of BP on D, which we call the Borel–Serre

action and denote as (b,F ) 
→ b ◦ F (b ∈ BP , F ∈ D). For b = (c, a) ∈ BP with

c ∈ R>0 and a ∈ AP , we define b ◦ F := (cw)waF (grW )F , where aF (grW ) is the

Borel–Serre lifting of a at F (grW ), (cw)w is the element of
∏

wAutR(grWw ) which

acts on grWw as the multiplication by cw, and (cw)waF (grW ) acts on D by the

lifted action from Section 1.2.6. The action of AP on D and the action of BP on

Dnspl are fixed-point-free.

DBS is defined as the set of pairs (P,Z), where P is a Q-parabolic subgroup

of GR(grW ) and Z is either

(i) an AP -orbit in D or

(ii) a BP -orbit in Dnspl

for the Borel–Serre action.

In case (i), we call (P,Z) an AP -orbit. In case (ii), we call (P,Z) a BP -orbit.

We denote by Dmild
BS the subset of DBS consisting of AP -orbits. This subset

was written as D
(A)
BS in [15, I].

2.4.2

We review the structure of DBS as an object of B′
R(log). (Actually it is a real

analytic manifold with corners.)

For a Q-parabolic subgroup P of GR(grW ), let

DBS(P ) =
{
(Q,Z) ∈DBS |Q⊃ P

}
.

Then DBS(P ) forms an open covering of DBS when P varies. DBS is also covered

by the open sets Dmild
BS (Section 2.4.1) and DBS,nspl, where DBS,nspl denotes

the subset of DBS consisting of all elements (P,Z) such that Z ⊂ Dnspl. The

structures of Dmild
BS (P ) :=DBS(P )∩Dmild

BS and DBS,nspl(P ) :=DBS(P )∩DBS,nspl

as objects of B′
R(log) are described as follows.
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Let X(SP ) be the character group of SP , and let Δ(P )⊂X(SP ) be the set

of simple roots (see [6]). This set Δ(P ) is characterized by the following two

properties (i) and (ii).

(i) Let n be the rank of SP . Then Δ(P ) is of order n and generates Q⊗
X(SP ) over Q.

(ii) Let X(SP )
+ be the submonoid of X(SP ) generated by Δ(P ). Lift SP to

a subtorus of P . Then X(SP )
+ coincides with the submonoid of X(SP ) generated

by χ−1, where χ ranges over all elements of X(SP ) which appear in the adjoint

action of SP on Lie(P ).

Define a real toric variety (see Section 1.3.8(3)) ĀP and B̄P as

ĀP := Hom
(
X(SP )

+,Rmult
≥0

)
=R

Δ(P )
≥0 ⊃AP =Hom

(
X(SP ),R

mult
>0

)
=R

Δ(P )
>0 ,

B̄P :=R≥0 × ĀP ⊃BP =R>0 ×AP .

For a Q-parabolic subgroup Q of GR(grW ) with Q⊃ P , there is a canonical

injection Δ(Q)→Δ(P ), and Q 
→Δ(Q)⊂Δ(P ) is a bijection from the set of all

Q-parabolic subgroups of GR(grW ) such that Q⊃ P to the set of all subsets of

Δ(P ). This is explained as follows.

For such Q, we have Qu ⊂ Pu, the composition SQ→Q/Qu→Q/Pu is injec-

tive, and the image of this composite map is contained in SP ⊂ P/Pu ⊂Q/Pu.

Hence, AQ is regarded as a subgroup of AP . There is a unique injection Δ(Q)→
Δ(P ) such that the composition R

Δ(Q)
>0

∼=AQ ⊂AP =R
Δ(P )
>0 coincides with the

map f 
→ g, where g(j) = f(j) for j ∈Δ(Q) and g(j) = 1 for j ∈Δ(P )�Δ(Q).

We have bijections

Dmild
BS (P )∼=D×AP ĀP , DBS,nspl(P )∼=Dnspl ×BP B̄P ,

which send the element (Q,Z) of Dmild
BS (P ) (resp., DBS,nspl(P )) to the class of

(z,h) (resp., (z, h̃)), where z ∈ Z and h ∈ ĀP =R
Δ(P )
≥0 (resp., h̃= (0, h) ∈ B̄P =

R≥0 ×R
Δ(P )
≥0 ) is defined by

h(j) = 0 for j ∈Δ(Q)⊂Δ(P ), h(j) = 1 for j ∈Δ(P )�Δ(Q).

The right-hand sides of these bijections are regarded as objects of B′
R(log) [15,

I, Section 8] as is explained below, and the left-hand sides have the structures as

objects of B′
R(log) for which these bijections are isomorphisms of B′

R(log).

There is a closed real analytic submanifold D(1,A) (resp., D(1,B)) of D (resp.,

Dnspl) such that we have an isomorphism AP ×D(1,A)
∼=→D (resp., BP ×D(1,B)

∼=→
Dnspl), (a,F ) 
→ a ◦ F of real analytic manifolds. This induces a bijection ĀP ×
D(1,A)→D×AP ĀP (resp., B̄P ×D(1,B)→Dnspl×BP B̄P ), and by this,D×AP ĀP

(resp., Dnspl ×BP B̄P ) has a structure of an object of B′
R(log). This structure is

independent of the choice of D(1,A) (resp., D
(1,B)
nspl ).

2.4.3

The definition of the set DBS can be rewritten in a style which is similar to

the definitions of the spaces of SL(2)-orbits in Section 2.3. Let DBS(gr
W ) =
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∏
w∈ZDBS(gr

W
w ), where DBS(gr

W
w ) is the space DBS for the graded quotient grWw .

For p = (Pw,Zw)w∈Z ∈DBS(gr
W ), we denote

∏
w∈ZZw ⊂D(grW ) as Z(p). We

call Z(p) the torus orbit of p, and we call
∏

w∈ZPw ⊂GR(grW ) the Q-parabolic

subgroup of GR(grW ) associated to p. Then, DBS is understood as the set of

pairs (p,Z), where p ∈DBS(gr
W ) and Z is a subset of D satisfying the following

conditions (i) and (ii).

(i) Z is either:

(i.A) an AP -orbit in D for the Borel–Serre action, or

(i.B) a BP -orbit in Dnspl for the Borel–Serre action.

Here P is the Q-parabolic subgroup of GR associated to p.

(ii) The image of Z in D(grW ) coincides with the torus orbit Z(p) of p.

2.4.4

In the rest of Section 2.4, we consider situations (a)–(c) in Section 2.3.5 and also

situation

(d) D=DBS, E=DBS(gr
W ).

2.4.5

For x ∈D, we define objects

Sx,X(Sx)
+, T (x), T̄ (x),Z(x), Z̄(x)

associated to x.

In situations (a)–(c), write x= (p,Z) (p ∈ E, Z ⊂D). In situation (d), write

x= (P,Z).

In situations (a)–(c), let Sx = Sp if x is an A-orbit, and let Sx =Gm × Sp if

x is a B-orbit (see Sections 2.2.7, 2.3.1). In situation (d), let Sx = SP if x is an

AP -orbit, and let Sx =Gm × SP if x is a BP -orbit (see Section 2.4.1).

We define a submonoid X(Sx)
+ of the character group X(Sx) of Sx as fol-

lows. In situations (a)–(c), let X(Sx)
+ := X(Sp)

+ if x is an A-orbit (see Sec-

tion 2.2.7), and let X(Sx)
+ := N × X(Sp)

+ ⊂ Z × X(Sp) = X(Sx) if x is a

B-orbit. In situation (d), let X(Sx)
+ := X(SP )

+ if x is an AP -orbit, and let

X(Sx)
+ :=N×X(SP )

+ ⊂Z×X(SP ) =X(Sx) if x is a BP -orbit, where X(SP )
+

is as in Section 2.4.2.

Let T (x) be the connected component of Sx(R) containing the unit element.

Let

T̄ (x) := Hom
(
X(Sx)

+,Rmult
≥0

)
⊃ T (x) = Hom

(
X(Sx)

+,Rmult
>0

)
.

We regard T̄ (x) as a real toric variety.

Define Z(x) := Z. We call Z(x) the torus orbit associated to x.

T (x) acts on Z(x), and Z(x) is a T (x)-torsor. Let Z̄(x) := Z(x)×T (x) T̄ (x).

Then Z̄(x) has the unique structure of an object of B′
R(log) such that, for any

r ∈ Z(x), the bijection T̄ (x)→ Z̄(x) induced from the bijection T (x)→ Z(x),

t 
→ tr becomes an isomorphism in B′
R(log). We call Z̄(x) the extended torus
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orbit associated to x. In Section 2.4.8 below, we will embed Z̄(x) in D satisfying

x ∈ Z̄(x).

2.4.6

This section is a preparation for Proposition 2.4.7. Consider the three situations

in Section 2.3.5.

In situations (a) and (b) (resp., situation (c)), we have a global section β�
0

(resp., β0) of MD/O×
D
defined as follows. In situations (a) and (c) (resp., situation

(b)), let Φ ∈W (resp., Q= (Q(w))w ∈
∏

wW(grWw )), let D′ =D(Φ) (resp., D′ =

D(Q)), let α be a splitting of Φ (resp., Q), and let β be a distance to Φ-boundary

(resp., Q-boundary). Fix a real analytic closed submanifold L(1) of L� {0} such
that R>0 × L(1) → L � {0}, (a, δ) 
→ a ◦ δ is an isomorphism of real analytic

manifolds, and let R≥0×L(1)
∼=→ L̄�{0} be the induced isomorphism in B′

R(log).

Let D′
nspl be the open subset of D′ defined by δ �= 0 via the bijection ν

in Proposition 2.3.9 associated to (α,β). Then in situations (a) and (b) (resp.,

situation (c)), we have the composite morphism D′
nspl→ L̄�{0} ∼=R≥0×L(1)→

R≥0, where the first arrow is ν. We denote this composite morphism Dnspl(Φ)→
R≥0 by β�

0 (resp., β0). Then as is easily seen, this β�
0 (resp., β0) belongs toMD′

nspl
,

the class of β�
0 (resp., β0) in MD′

nspl
/O×

D′
nspl

is independent of the choices of α, β,

and L(1), this class extends uniquely to a section of MD′/O×
D′ which is trivial on

the part of A-orbits of D, and this local section of MD/O×
D

on D′ =D(Φ) (resp.,

D′ =D(Q)) extends, when Φ (resp., Q) moves, to a global section β�
0 (resp., β0)

of MD/O×
D

on D uniquely.

PROPOSITION 2.4.7

Consider the four situations in Section 2.4.4. For x ∈ D, we have a canonical

isomorphism

(MD/O×
D
)x ∼=X(Sx)

+.

Proof

We first consider situations (a)–(c). Write x= (p,Z). As in Section 2.2.13, we have

a canonical isomorphism (ME/O×
E
)p ∼=X(Sp)

+. In the case when x is an A-orbit,

we have (ME/O×
E
)p

∼=→ (MD/O×
D
)x. If x is a B-orbit, we have N× (ME/O×

E
)p

∼=→
(MD/O×

D
)x, where 1 ∈N is sent to β�

0 in situations (a) and (b) and to β0 in

situation (c).

We next consider situation (d). Write x = (P,Z). Assume first that x is

an AP -orbit. Consider the composite morphism S :=Dmild
BS (P )∼= ĀP ×D(1,A)→

ĀP =R
Δ(P )
≥0 , where the first isomorphism is as in Section 2.4.2. For j ∈Δ(P ), let

βj : S→R≥0 be the j-component of this composite morphism. Then βj is a sec-

tion ofMS , and the class of βj inMS/O×
S is independent of the choice ofD(1,A) in

Section 2.4.2. We have a canonical isomorphism X(Sx)
+ =NΔ(P )

∼=→ (MS/O×
S )x

which sends m ∈NΔ(P ) to the class of
∏

j∈Δ(P ) β
m(j)
j . Assume next that x is a

BP -orbit. Consider the composite morphism S :=DBS,nspl(P )∼= B̄P ×D(1,B)→
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B̄P = R≥0 × R
Δ(P )
≥0 , where the first isomorphism is as in Section 2.4.2. Let

βBS
0 : S → R≥0 be the first component of this composite morphism, and for

j ∈ Δ(P ), let βj : S → R≥0 be the j-component of this composite morphism.

Then βBS
0 and βj (j ∈Δ(P )) are sections of MS , and their classes in MS/O×

S

are independent of the choice of D(1,B) in Section 2.4.2. We have an isomor-

phism X(Sx)
+ ∼= N ×NΔ(P ) → (MS/O×

S )x which sends (m0, (m(j))j∈Δ(P )) ∈
N×NΔ(P ) to the class of (βBS

0 )m0 ·
∏

j∈Δ(P ) β
m(j)
j . �

2.4.8

Let situations (a)–(d) be as in Section 2.4.4. Let x ∈ D. The inclusion map

Z(x)→D extends uniquely to a morphism

Z̄(x)→D

of B′
R(log). This morphism is described as follows.

Assume first that we are in one of the situations (a)–(c). Write x = (p,Z),

and fix r ∈ Z(p). Consider the morphism Y × spl(W )× L̄→D in Section 2.3.15

defined for (p,r,R,S) by fixing R and S (see Section 2.3.13). Then the morphism

Z̄(x)→D is the composite morphism Z̄(x)→ Y × spl(W )× L̄→D, where the

first morphism is as follows. Let F be an element of Z(x) whose image under the

embedding D→D(grW )× spl(W )×L is (r, s, δ). Let t ∈ Āp. Then the first mor-

phism sends (F, t) ∈ Z̄(x) = Z(x)×T (x) T̄ (x) to (t,0,0,0,0, s, δ) ∈ Y ×spl(W )× L̄,

and if x is a B-orbit, then for (c, t) ∈ B̄p (c ∈R≥0), the first morphism sends

(F, (c, t)) ∈ Z̄(x) to (t,0,0,0,0, s, c ◦ δ) ∈ Y × spl(W )× L̄.

Next assume that we are in situation (d). Write x= (P,Z). If x is an AP -

orbit, then this morphism Z̄(x)→ D is the composition Z̄(x) = Z ×AP ĀP ⊂
D×AP ĀP

∼=Dmild
BS (P ). If x is a BP -orbit, then this morphism is the composition

Z̄(x) = Z ×BP B̄P ⊂Dnspl ×BP B̄P
∼=DBS,nspl(P ).

This morphism Z̄(x)→D is injective and strict (Corollary 1.3.15) and sends

0 ∈ Z̄(x) to x. Here 0 denotes the class of (r,0), where r ∈ Z(x) and 0 ∈ T̄ (x)

is the homomorphism (MD/O×
D
)x →Rmult

≥0 which sends any nontrivial element

of (MD/O×
D
)x to 0. (Then 0 ∈ Z̄(x) is independent of the choice of r.) We will

identify Z̄(x) with its image in D, which coincides with the closure of Z(x) in D.

2.4.9

Consider situations (a)–(d) as in Section 2.4.4. In Lemma 2.4.10 below, we give

descriptions of log modifications of D as sets by using the extended torus orbit

Z̄(x)⊂D associated to x ∈D (Section 2.4.8), which we will use in Sections 2.5

and 2.6. Let U be an open set of D. Let L and N be as in Section 1.4.1, let Σ

be a finite rational fan in NR, and let Σ′ be a rational finite subdivision of Σ.

Let Mor(·,U) → [Σ] be a morphism of functors (see Section 1.4.7) such

that, for any x ∈ U , if σ denotes the image of x in Σ (see Section 1.4.7), then

the homomorphism S(σ)→ (MU/O×
U )x is universally saturated. For x ∈ U and

σ′ ∈ Σ′ whose images in Σ coincide, we define a subgroup T (x,σ′) of T (x) =

Hom((Mgp
U /O×

U )x,
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Rmult
>0 ) as follows. Let σ be the image in Σ. Then the homomorphism L→

(Mgp
U /O×

U )x factors through L/S(σ)×. T (x,σ′) is the inverse image of Hom(L/

S(σ′)×,Rmult
>0 )⊂Hom(L/S(σ)×,Rmult

>0 ) in T (x). Let U ′→ U be the log modifi-

cation which represents the functor Mor(·,U)×[Σ] [Σ
′] (Section 1.4.7).

LEMMA 2.4.10

Let the notation and the assumptions be as in Section 2.4.9. There exists a canon-

ical bijection between U ′ and the set of all triples (x,σ′,Z ′), where x ∈ U , σ′ is

an element of Σ′ whose image in Σ coincides with the image of x in Σ, and Z ′

is a T (x,σ′)-orbit in Z(x).

Proof

Let x ∈ U , and let U ′′ be the fiber product of Z̄(x)→ U ← U ′. Then the fiber

on x of U ′→ U coincides with the fiber on x of U ′′→ Z̄(x). Since U ′′ represents

the functor Mor(·,U)×[Σ] [Σ
′], this lemma follows from Section 1.4.8. �

2.5. Relations with DSL(2) and D�
SL(2)

We connect the spaces D�
SL(2) and DII

SL(2) by introducing a new space D�,+
SL(2) of

SL(2)-orbits.

2.5.1

We define a log modification (see Section 1.4.6)

D�,+
SL(2)→D�

SL(2).

On D := D�
SL(2), there is a unique section βtot of MD/O×

D
such that, for any

Φ ∈W , the restriction of βtot to D(Φ) coincides with the image of the product∏
j∈Φ βj in MD/O×

D
, where β = (βj)j∈Φ is a distance to Φ-boundary. Let β�

0

be the section of MD/O×
D

defined in Section 2.4.6. Consider the homomorphism

N2→MS/O×
S , (a, b) 
→ βa

tot(β
�
0)

b.

Take L = Z2 in Section 1.4.1, and let Σ be the fan of all faces of the cone

R2
≥0 ⊂N2

R =R2, so we have a morphism Mor(·,D)→ [Σ]. Let Σ′ be the rational

finite subdivision of Σ consisting of the cones

σ1 :=
{
(x, y) ∈R2

≥0 | x≥ y
}
, σ2 :=

{
(x, y) ∈R2

≥0 | x≤ y
}

and their faces. Let D�,+
SL(2) be the log modification of D which represents the

fiber product Mor(·,D)×[Σ] [Σ
′] (see Section 1.4.7).

D�,+
SL(2) is covered by the open sets D�,+

SL(2)(σj) for j = 1,2 corresponding to

the cone σj , which represents Mor(·,D)×[Σ] [face(σj)], where face(σj) denotes the

fan of all faces of σj . On the open set U =D�,+
SL(2)(σ1) (resp., U =D�,+

SL(2)(σ2)),

the pullback of βtot/β
�
0 (resp., β�

0/βtot) in Mgp
U /O×

U belongs to MU/O×
U .
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2.5.2

Since the restriction of β�
0 to D�,mild

SL(2) is trivial, the canonical morphism D�,+
SL(2)→

D�
SL(2) is an isomorphism over D�,mild

SL(2) , and hence, D�,mild
SL(2) is embedded in D�,+

SL(2)

as an open set. Via this, D ⊂D�,mild
SL(2) is embedded in D�,+

SL(2) as an open set.

2.5.3

We describe D�,+
SL(2) as a set. We have

Σ = {τ1,2, τ1, τ2, τ0}, Σ′ = {σ1, σ2, σ0, τ1, τ2, τ0},

where

τ1,2 :=R2
≥0, τ1 :=R≥0 × {0}, τ2 := {0} ×R≥0, τ0 :=

{
(0,0)

}
,

σ0 :=
{
(x,x) | x ∈R≥0

}
.

So, Σ is the set of all faces of τ1,2, and face(σj) = {σj , τj , σ0, τ0} for j = 1,2. The

image of x = (p,Z) ∈ D�
SL(2) in Σ is τ0 if and only if x ∈ D, τ1 if and only if

x ∈D�,mild
SL(2) �D, τ2 if and only if x is a B-orbit and p ∈D(grW ), and τ1,2 if and

only if x is a B-orbit and p /∈D(grW ).

We apply Lemma 2.4.10 to describe the log modification D�,+
SL(2) of D

�
SL(2) as a

set. For this, we show that the homomorphism N2→ (MD/O×
D
)x (D :=D�

SL(2)),

given by (βtot, β
�
0) in Section 2.5.1, is universally saturated for any x ∈D. If the

image of x in Σ is τ0 or τ1 (resp., τ2 or τ1,2), then this homomorphism has the

shape N2→Nr, (a, b) 
→ (b, . . . , b) (resp., N2→N×Nr, (a, b) 
→ (a, b, . . . , b)) for

some integer r ≥ 0 and, hence, is universally saturated by Proposition 1.3.14.

By Lemma 2.4.10, we have the following list of points of D�,+
SL(2).

(1) (x, τj ,Z(x)) (x ∈D�
SL(2) and the image of x in Σ is τj). (Here j = 0,1,2.)

(2) (x,σj ,Z(x)) (x ∈D�
SL(2) and the image of x in Σ is τ1,2). (Here j = 1,2.)

(3) (x,σ0,Z
′) (x= (p,Z) ∈D�

SL(2), the image of x in Σ is τ1,2, and Z ′ is a

τp(Ap)-orbit in Z(x)).

Actually, in (3), what Lemma 2.4.10 directly tells is that a τ�p (T (x,σ0))-

orbit Z ′ in the τ̃�p (Bp)-orbit Z(x) appears instead of a τp(Ap)-orbit in Z(x). But

τ�p (T (x,σ0)) = τp(Ap) inside τ̃�p (Bp).

2.5.4

We have a map D�,+
SL(2)→DSL(2) defined as follows.

(1) (x, τj ,Z) (x= (p,Z) with image τj in Σ for j = 0,2) and (x,σ2,Z) (x=

(p,Z) with image τ1,2 in Σ) are sent to (p,Z) ∈DSL(2).

(2) (x, τ1,Z) (x= (p,Z) with image τ1 in Σ) and (x,σ1,Z) (x= (p,Z) with

image τ1,2 in Σ) are sent to (p,Zspl) ∈DSL(2). Here Zspl = {Fspl | F ∈ Z}, where
Fspl is as in Section 1.2.5.

(3) (x,σ0,Z
′) (x = (p,Z) with image τ1,2 in Σ and Z ′ is a τp(Ap)-orbit

inside Z) is sent to (p,Z ′) ∈DSL(2).
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THEOREM 2.5.5

(1) The identity map of D extends uniquely to a morphism D�,+
SL(2)→DII

SL(2)

in B′
R(log). Its underlying map of sets is the map in Section 2.5.4. This map is

proper and surjective.

(2) Let U be the open set DII
SL(2),nspl ∪D of DII

SL(2). Then the inverse image

of U in D�,+
SL(2) coincides with the open set D�,+

SL(2)(σ2), and the induced morphism

D�,+
SL(2)(σ2)→ U of B′

R(log) is an isomorphism.

Proof

We prove (1). It is sufficient to prove that the map in Section 2.5.4 is a morphism

D�,+
SL(2)→DII

SL(2) of B′
R(log). For an admissible set of weight filtrations Φ on grW ,

let D�,+
SL(2)(Φ)⊂D�,+

SL(2) be the inverse image of D�
SL(2)(Φ)⊂D�

SL(2). It is sufficient

to prove that the induced map D�,+
SL(2)(Φ)→DII

SL(2)(Φ) is a morphism in B′
R(log).

Let D�,+
SL(2),nspl ⊂D�,+

SL(2) be the inverse image of the open set D�
SL(2),nspl of

D�
SL(2). Then D�,+

SL(2)(σ1) is the union of the two open sets D�,mild
SL(2) (which is

embedded in D�,+
SL(2)) and D�,+

SL(2),nspl ∩D�,+
SL(2)(σ1), and D�,+

SL(2)(σ2) is contained

in D�,+
SL(2),nspl.

Take a splitting α of Φ and a distance β to Φ-boundary. First, the induced

map D�,mild
SL(2) (Φ)→ DII

SL(2)(Φ) is a morphism in B′
R(log), because this map is

embedded in a commutative diagram

D�,mild
SL(2) (Φ)

⊂→ DSL(2)(gr
W )∼(Φ)× spl(W )×L

↓ ↓
DII

SL(2)(Φ)
⊂→ DSL(2)(gr

W )∼(Φ)× spl(W )× L̄

where the horizontal arrows are the maps ν in Proposition 2.3.9 associated to

(α,β) and the right vertical arrow is the morphism (p, s, δ) 
→ (p, s,∑
w≤−2(

∏
j∈Φ βj(p))

−wδw), and because the structure of DII
SL(2)(Φ) as an object

of B′
R(log) is induced from that of DSL(2)(gr

W )∼ × spl(W )× L̄ in the sense of

Section 1.3.16.

Next we consider the induced map D�,+
SL(2),nspl(Φ)→DII

SL(2)(Φ). Take a closed

real analytic subset L(1) of L�{0} such that R>0×L(1)→L�{0}, (a, δ) 
→ a◦δ
is an isomorphism, and consider the induced isomorphism R≥0×L(1)

∼=→ L̄�{0}.
Let β�

0 : D�
SL(2),nspl(Φ)→ R≥0 be the composition D�

SL(2),nspl(Φ)→ L̄ � {0} ∼=
R≥0×L(1)→R≥0, where the first arrow is induced by the map ν in Proposition

2.3.9 associated to (α,β). For j = 1,2, let Uj :=D�,+
SL(2),nspl(Φ)∩D

�,+
SL(2)(σj). When

we regard βj (j ∈ Φ) and β�
0 as sections of MUj , then in Mgp

Uj
, (

∏
j∈Φ βj)/β

�
0

belongs to MU1 and β�
0/

∏
j∈Φ βj belongs to MU2 . Furthermore, β�

0/
∏

j∈Φ βj on

U2 is the pullback of the section β0 of the log structure of DSL(2),nspl(Φ) which is

defined as the composition DSL(2),nspl(Φ)→ L̄�{0} ∼=R≥0×L(1)→R≥0, where

the first arrow is induced by ν of Proposition 2.3.9 associated to (α,β).
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The induced maps Uj →DII
SL(2)(Φ) for j = 1,2 are morphisms, because they

are embedded in the commutative diagrams

U1
⊂→ DSL(2)(gr

W )∼(Φ)× spl(W )× (R≥0 ×L(1))×R≥0

↓ ↓
DII

SL(2)(Φ)
⊂→ DSL(2)(gr

W )∼(Φ)× spl(W )× L̄,

U2
⊂→ DSL(2)(gr

W )∼(Φ)× spl(W )×L(1) ×R≥0

↓ ‖
DII

SL(2),nspl(Φ)
⊂→ DSL(2)(gr

W )∼(Φ)× spl(W )×L(1) ×R≥0.

Here in both diagrams, the lower horizontal arrows are induced by ν in

Proposition 2.3.9 associated to (α,β) and the isomorphism L̄�{0} ∼= L(1)×R≥0.

In the first diagram, the part U1→R≥0×L(1) in the upper row is the composition

U1 →D�
SL(2),nspl → L̄� {0} ∼=R≥0 × L(1), the map from U1 to the last R≥0 in

the upper row is (
∏

j∈Φ βj)/β
�
0 , and the right vertical arrow is (p, s, t, δ, t′) 
→

(p, s,
∑

w≤−2(tt
′)−wδw). In the second diagram, the part U2→L(1) in the upper

row is the composition U2→D�
SL(2),nspl→ L̄�{0} ∼=R≥0×L(1)→L(1), the map

U2→R≥0 in the upper row is β�
0/

∏
j∈Φ βj , and the right vertical arrow is the

identity map.

The surjectivity ofD�,+
SL(2)→DII

SL(2) is easily seen. The map is proper, because

D�,+
SL(2) and DII

SL(2) are proper over DSL(2)(gr
W )∼ × spl(W ). This completes the

proof of (1).

We prove (2). It is easy to check that the inverse image of U in D�,+
SL(2) is

D�,+
SL(2)(σ2) and that the map D�,+

SL(2)(σ2)→ U is bijective. Hence, for the proof of

(2), it is sufficient to prove that the converse map DII
SL(2),nspl→D�,+

SL(2)(σ2) is a

morphism in B′
R(log). This is a morphism as is seen from the last commutative

diagram above. (In the upper row of this diagram, the structure of the space of

U2 as an object of B′
R(log) is induced from that of DSL(2)(gr

W )∼ × spl(W ) ×
L(1) ×R≥0 in the sense of Section 1.3.16.) �

2.5.6

In Proposition 2.5.7, we consider when the identity map of D extends to an

isomorphism D�
SL(2)

∼=DII
SL(2) in B′

R(log).

Let λ :DSL(2)→D�
SL(2) be the map which coincides on DSL(2),nspl ∪D with

the composition of morphisms DII
SL(2),nspl ∪D ∼=D�,+

SL(2)(σ2)→D�
SL(2) in B′

R(log)

and which coincides on DSL(2),spl := {(p,Z) ∈DSL(2) | Z ⊂Dspl} with the com-

position of two isomorphisms DSL(2),spl
∼=DSL(2)(gr

W )∼× spl(W )∼=D�
SL(2),spl :=

{(p,Z) ∈D�
SL(2) | Z ⊂Dspl} in B′

R(log).

PROPOSITION 2.5.7

The following conditions (i)–(vii) are equivalent.

(i) Either D =Dspl or DSL(2)(gr
W ) =D(grW ).
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(ii) The identity map of D extends to an isomorphism DII
SL(2)

∼=D�
SL(2) in

B′
R(log).

(iii) The identity map of D extends to a homeomorphism DII
SL(2)

∼=D�
SL(2).

(iv) The map λ :DI
SL(2)→D�

SL(2) (see Section 2.5.6) is continuous.

(v) The identity map of D extends to a continuous map D�
SL(2)→DII

SL(2).

(vi) The map D�,mild
SL(2) →DSL(2) is injective.

(vii) The map DSL(2),nspl→D�
SL(2) is injective.

Proof

(i) ⇒ (ii). If L(F ) = 0 (see Section 1.2.2) for any F ∈D(grW ), then the isomor-

phism in Section 1.2.1 extends to isomorphisms from DII
SL(2) and D�

SL(2) onto

DSL(2)(gr
W )∼ × spl(W ) in B′

R(log). If DSL(2)(gr
W ) =D(grW ), then the isomor-

phism in Section 1.2.1 extends to isomorphisms from DII
SL(2) and D�

SL(2) onto

{(F, s, δ) ∈D(grW )× spl(W )× L̄ | δ ∈ L̄(F )} in B′
R(log).

(ii) ⇒ (iii). This is clear.

(iii) ⇒ (iv), (v), and (vi). This is clear.

(v) ⇒ (vii). If (v) is satisfied, then the composition DII
SL(2),nspl→D�

SL(2)→
DII

SL(2) will be the inclusion map.

We prove (iv) ⇒ (i), (vi) ⇒ (i), and (vii) ⇒ (i).

In the rest of this proof, assume D �=Dspl and DSL(2)(gr
W ) �=D(grW ). That

is, assume (i) does not hold. Then there is x= (p,Z) ∈D�,mild
SL(2) with p of rank 1

such that Z ⊂Dnspl. Let xspl := (p,Zspl) ∈D�,mild
SL(2) . We have x �= xspl.

We prove (iv) ⇒ (i). Take r ∈ Z. Then when t ∈ R>0 tends to 0, τ�p (t)r

converges to x and τ�p (t)rspl converges to xspl in D�
SL(2).

CLAIM

Let y = (p,Zspl) ∈DSL(2). Then when t ∈R>0 converges to 0, τ�p (t)r and τ�p (t)rspl
converge to y in DI

SL(2).

We prove the claim. Let s := splW (p) = splW (r). By [15, II, Proposition 3.2.12],

it is sufficient to prove that, when t ∈R>0 tends to 0, (sτp(t)s
−1)−1(sτ�p (t)s

−1)r

and (sτp(t)s
−1)−1(sτ�p (t)s

−1)rspl converge to rspl. The former is equal to

s(t−w)ws
−1r and hence converges to rspl. Here (t−w)w denotes the linear auto-

morphism of grW =
∏

w grWw that acts on grWw as the multiplication by t−w. The

latter is equal to rspl. This proves the claim.

By the claim, if the continuous map DI
SL(2)→D�

SL(2) exists, it should send

y to x and also to xspl �= x, which is a contradiction.

We prove (vi)⇒ (i). The elements x and xspl of D
�,mild
SL(2) have the same image

(p,Zspl) ∈DII
SL(2). Hence, the map D�,mild

SL(2) →DSL(2) is not injective.

We prove (vii) ⇒ (i). Take r ∈ Z. Take a ∈R>0 � {1}, and let r′ = a ◦ r.
Then the elements of DSL(2),nspl of the forms (p, τp(R>0)r) and (p, τp(R>0)r

′)
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for the lifted action (see Section 1.2.6) are different, but they have the same image

(p,R>0 ◦Z) in D�
SL(2). Hence, the map DSL(2),nspl→D�

SL(2) is not injective. �

2.6. Relations with DBS and D�
SL(2)

We connect the spaces D�,−
SL(2) and DBS by introducing a new space D�,BS

SL(2) of

SL(2)-orbits.

2.6.1

For Q= (Q(w))w ∈
∏

w∈ZW(grWw ), let

GR(grW )Q :=
∏
w

GR(grWw )Q(w), where

GR(grWw )Q(w) :=
{
g ∈GR(grWw ) | gW ′ =W ′ for all W ′ ∈Q(w)

}
.

Let GR(grW )Q,u be the unipotent radical of GR(grW )Q.

2.6.2

Let p ∈DSL(2)(gr
W ). We define a set P(p) of Q-parabolic subgroups of GR(grW ).

Let X(Sp) be the character group of the torus Sp (see Section 2.2.7) associated

to p. For χ ∈X(Sp), let

gR(grW )χ =
{
v ∈ gR(grW ) |Ad

(
τ�p (t)

)
v = χ(t)v for all t ∈ Sp

}
.

Let P(p) be the set of all Q-parabolic subgroups P of GR(grW ) satisfying the

following conditions (i) and (ii).

(i) P ⊃GR(grW )Q and Pu ⊃GR(grW )Q,u, where Q= (W(pw))w.

(ii) There is a subset I of X(Sp) such that Lie(P ) =
∑

χ∈I gR(grW )χ.

2.6.3

We define D�,BS
SL(2) as a set. D�,BS

SL(2) is the set of all triples (p,P,Z), where p ∈
D�,−

SL(2)(gr
W ), P ∈ P(p), and Z ⊂D, satisfying the following conditions (i) and (ii).

Let Ap,P ⊂ Ap be the inverse image of AP ⊂ P/Pu under the composite map

Ap→GR(grW )Q/GR(grW )Q,u→ P/Pu. Let Bp,P =R>0 ×Ap,P ⊂Bp.

(i) Z is either an τ�p (Ap,P )-orbit in D or a τ̃�p (Bp,P )-orbit in Dnspl.

(ii) The image of Z in D(grW ) is contained in the torus orbit Z(p).

For w ∈ Z, we denote by DSL(2)(gr
W
w )BS the set D�,BS

SL(2) for grWw . Let

DSL(2)(gr
W )BS :=

∏
wDSL(2)(gr

W
w )BS. We have an evident map D�,BS

SL(2) →
D�

SL(2)(gr
W )BS.

PROPOSITION 2.6.4

(1) We have a canonical map

D�,BS
SL(2)→D�,−

SL(2), (p,P,Z) 
→
(
p, τ�p (Ap)Z

)
.
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(2) We have a canonical map

D�,BS
SL(2)→DBS, (p,P,Z) 
→ (P,AP ◦Z).

Here ◦ denotes the Borel–Serre action with respect to P .

Proof

It is clear that (1) holds.

We prove (2). It is sufficient to prove that, for r ∈ Z and t ∈ Ap,P , we

have τ�p (t)r= (τ�p (t) mod Pu)◦r. This follows from θKr(τ
�
p (t)) = τ�p (t)

−1 (see [16,

Lemma 3.8]), where θKr denotes the Cartan involution GR(grW )→ GR(grW )

associated to the maximal compact subgroup Kr of GR(grW ). �

We give D�,BS
SL(2) a structure of an object of B′

R(log).

The following Lemma 2.6.5 and Sections 2.6.6–2.6.12 are preparations.

LEMMA 2.6.5

Let L and N be as in Section 1.4.1. Let R be a finite subset of L such that

R−1 =R and such that the Q-vector space Q⊗L is generated by R.

(1) Let σ be a rational finitely generated sharp cone in NR, and let S(σ) =
{l ∈ L | h(l)≥ 0 for all h ∈ σ} be the corresponding fs submonoid of L such that

S(σ)gp = L. Then σ satisfies the following condition (i) if and only if S(σ) sat-

isfies the following conditions (ii.1) and (ii.2).

(i) There exists a subset R′ of R such that R=R′ ∪ (R′)−1 and such that

σ =
{
h ∈NR | h(l)≥ 0 for all l ∈R′}.

(ii.1) R⊂ S(σ)∪ S(σ)−1.

(ii.2) For any l ∈ S(σ), there is an integer n≥ 1 such that ln belongs to the

submonoid of L generated by S(σ)∩R.

(2) The set of all σ satisfying condition (i) in (1) is a rational fan whose

support is the whole NR.

(3) Assume that we are given a subset R+ of R which generates Q ⊗ L

over Q. Let ν := {h ∈ NR | h(R+) ⊂ R≥0}. Then the σ’s as above such that

σ ⊂ ν form a rational finite subdivision of ν.

Proof

The proof of (1) is straightforward.

We prove (2). Let I be the set of all cones σ satisfying condition (i) in (1).

We first prove that I is a fan.

We prove that if σj ∈ I (j = 1,2), then σ1 ∩ σ2 is a face of σ1. Let R′
j ⊂R,

and assume R = R′
j ∪ (R′

j)
−1 and σj = {h ∈ NR | h(l) ≥ 0 for all l ∈ R′

j}. Let
R′ =R′

1 ∪R′
2. Then σ1 ∩ σ2 = {h ∈NR | h(l)≥ 0 for all l ∈R′}. Since R′ �R′

1 ⊂
(R′

1)
−1, σ1 ∩ σ2 is a face of σ1.
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We prove that if σ ∈ I , then any face τ of σ belongs to I . Since τ is a face of σ,

we have S(τ) = S(σ)[b−1] = {ab−n | a ∈ S(σ), n≥ 0} for some b ∈ S(σ). By con-

dition (ii.2) in (1) for S(σ), there exist n≥ 1, a1, . . . , ar ∈ S(σ)∩R, and m(j)≥ 1

(1≤ j ≤ r) such that bn =
∏r

j=1 a
m(j)
j . We have S(τ) = S(σ)[1/

∏r
j=1 aj ]. For the

set R′ ⊂R such that R=R′ ∪ (R′)−1 and σ = {h ∈NR | h(l)≥ 0 for all l ∈R′},
we have τ = {h ∈NR | h(l)≥ 0 for all l ∈R′ ∪ {a−1

1 , . . . , a−1
r }}. Hence, τ ∈ I .

These prove that I is a fan. We show that
⋃

σ∈I σ =NR. Let h ∈NR. Let

R′ = {l ∈ R | h(l)≥ 0}. Then R = R′ ∪ (R′)−1. For σ := {h′ | h′(l)≥ 0 for all l ∈
R′} ∈ I , we have h ∈ σ. This completes the proof of (2).

We prove (3). By (2), we have ν =
⋃

σ∈I(σ ∩ ν). It is sufficient to prove that

σ ∩ ν ∈ I for any σ ∈ I . For R′ ⊂R such that R=R′ ∪ (R′)−1 and σ = {h ∈NR |
h(l)≥ 0 for all l ∈R′}, we have σ ∩ ν = {h ∈NR | h(l)≥ 0 for all l ∈R′ ∪R+} ∈
I . �

2.6.6

Let Q= (Q(w))w ∈
∏

wW(grWw ). Let L be the character group of
∏

w∈ZG
Q(w)
m ,

and let N = Hom(L,Z). We have the situation of Section 1.4.1. As in Sec-

tion 1.4.1, we denote the group law of L multiplicatively, though L is identified

with
∏

wZQ(w).

Let P(Q) be the set of all Q-parabolic subgroups P of GR(grW ) satisfying

the following conditions (i) and (ii).

(i) P ⊃GR(grW )Q.

(ii) Take a splitting α = (αw)w of Q. For χ ∈ L, let gR(grW )χ be the part

of gR(grW ) on which the adjoint action of
∏

wG
Q(w)
m via α� is given by χ. Then

there is a subset I of L such that Lie(P ) =
∑

χ∈I gR(grW )χ.

Under condition (i), condition (ii) is independent of the choice of α. This

is because if α′ is another splitting of Q, then α′(t) = gα(t)g−1 for some g ∈
GR(grW )Q ⊂ P .

2.6.7

Let the notation be as in Section 2.6.6. Taking a splitting α of Q, define a subset

R(Q) =
{
χ ∈ L | gR(grW )χ �= 0

}
,

where gR(grW )χ is defined with respect to α. This set is independent of the

choice of α, because all splittings of Q are conjugate by elements of GR(grW )Q.

Let L+ =
∏

wNQ(w) ⊂
∏

wZQ(w) = L. We will apply Lemma 2.6.5 by taking

R(Q) and R(Q) ∩ L+ as R and R+, respectively. We show that R+ generates

the Q-vector space Q ⊗ L, as is assumed in Lemma 2.6.5(3). Let w ∈ Z, and

take p ∈DSL(2)(gr
W
w ) such that Q(w) =W(pw). Let n be the rank of p, take a

representative of p, let N1, . . . ,Nn ∈ gR(grWw ) be the monodromy logarithms of

the representative, and identify Q(w) with {1, . . . , n} (see Section 2.2.5). Then

Ad(τ�p (t))Nj = t−2
j Nj . Hence, R(Q(w))+ generates the Q-vector space QQ(w).

Hence, R(Q)+ generates the Q-vector space Q⊗L=
∏

wQQ(w).
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Let P ′(Q) be the set of all rational finitely generated sharp cones σ in NR

satisfying the following conditions (i) and (ii).

(i) There is a subset R′ of R(Q) such that R(Q) =R′∪ (R′)−1 and such that

σ = {h ∈NR | h(χ)≥ 0 for all χ ∈R′}.
(ii) σ ⊂

∏
wR

Q(w)
≥0 in NR =

∏
wRQ(w).

That is, P ′(Q) is the set of σ considered in Lemma 2.6.5(3). Hence, P ′(Q) is

a rational fan in NR and is a rational finite subdivision of the cone
∏

wR
Q(w)
≥0 ⊂

NR.

2.6.8

Let the notation be as in Sections 2.6.6 and 2.6.7. We have P(Q) =
∏

wP(Q(w)),

where the element (Pw)w of the left-hand side corresponds to the element
∏

w Pw

of the right-hand side. We have R(Q) =
∏

wR(Q(w)) in X(
∏

wG
Q(w)
m ) =∏

wX(G
Q(w)
m ). We have P ′(Q) =

∏
wP ′(Q(w)), where the element (σw)w of the

left-hand side corresponds to the element
∏

w σw of the right-hand side.

PROPOSITION 2.6.9

Let the notation be as in Sections 2.6.6 and 2.6.7. For P ∈ P(Q), let

σP =
{
h ∈NR | h(χ)≥ 0 for all χ ∈R(Q) such that gR(grW )χ−1 ⊂ Lie(P )

}
.

Then σP ∈ P ′(Q), and we have a bijection

P(Q)→P ′(Q), P 
→ σP .

Proof

By Section 2.6.8 and by the fact σP =
∏

w σPw , we can (and do) assume that we

are in the pure situation of weight w. We denote Q(w) by Q.

Take p ∈DSL(2) such that W(p) =Q, and take τp as a splitting α of Q. Let

n = �(Q) be the rank of p. Let N1, . . . ,Nn be the monodromy logarithms of p.

We identify Q with {1, . . . , n}.
We prove that σP ∈ P ′(Q) for P ∈ P(Q). Let R′ = {χ ∈ L | Lie(P ) ∩

Lie(GR)χ−1 �= 0}. Since α�(
∏

wG
Q(w)
m ) ⊂ P and since P is parabolic, we have

R(Q) =R′∪(R′)−1. By property (ii) of P in Section 2.6.6, we have Lie(GR)χ−1 ⊂
Lie(P ) for χ ∈ R′. Hence, σP = {h ∈ NR | h(χ) ≥ 0 for all χ ∈ R′}. It remains

to prove that σP ⊂RQ
≥0 in NR =RQ. Since Nj ∈ Lie(P ) and Ad(τ�p (t))(Nj) =

t−2
j Nj (1≤ j ≤ n), for any χ ∈ L+, χ2 is contained in the submonoid of L gener-

ated by R′. This proves that h(χ)≥ 0 for any h ∈ σP and χ ∈ L+. This implies

σP ⊂RQ
≥0. Thus, we have a map P(Q)→P ′(Q).

Next we define a map P ′(Q)→P(Q). Let σ ∈ P ′(Q), and let S(σ) ⊂ L be

the corresponding fs submonoid of L. For χ ∈ L, let V [χ] ⊂ H0,R be the sum

of the χ′-components (H0,R)χ′ of H0,R for all χ′ ∈ L such that χ(χ′)−1 ∈ S(σ).
For χ,χ′ ∈ L, we have V [χ]⊃ V [χ′] if and only if χ(χ′)−1 ∈ S(σ). Let P be the
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algebraic subgroup of GR consisting of all elements which preserve V [χ] for all

χ ∈ L. We prove P ∈ P(Q).

Since L = S(σ) ∪ S(σ)−1 (see Lemma 2.6.5), we have either V [χ] ⊃ V [χ′]

or V [χ] ⊂ V [χ′]. As in [16, Section 2.7], this totally ordered property of the

set {V [χ] | χ ∈ L} shows that P is a parabolic subgroup of GR. We show that

P is defined over Q. For χ ∈ L, let U [χ] =
∑

χ′(H0,R)χ′ , where χ′ ranges over

all elements of L such that χ(χ′)−1 ∈ L+. Then U [χ] =
⋂

W ′∈QW ′
m(W ′), where

m(W ′) ∈Z is the W ′-component of χ ∈ L=ZQ. Since the W ′’s are rational, U [χ]

is rational. Since V [χ] is the sum of U [χ′] for all χ′ such that χ(χ′)−1 ∈ S(σ), V [χ]

is also rational. Hence, P is rational. Properties (i) and (ii) of P in Section 2.6.6

are checked easily.

As is easily seen, the maps P(Q)→P ′(Q) and P ′(Q)→P(Q) are the inverses

of each other. �

2.6.10

Let the notation be as in Proposition 2.6.9. Via the bijection in Proposition

2.6.9, we identify the fan P ′(Q) with the set P(Q) of Q-parabolic subgroups of

GR(grW ).

Let Σ be the fan of all faces of the cone ν :=
∏

wR
Q(w)
≥0 ⊂ NR. By the

canonical homomorphism S(ν) = L+ =
∏

wNQ(w) → ME′/O×
E′ , where

E′ = DSL(2)(gr
W )(Q) (see Proposition 2.4.7), we have a morphism Mor(·,

DSL(2)(gr
W )(Q))→ [Σ]. Consider the diagrams

Mor(·,DSL(2)(gr
W )(Q))→ [Σ]← [P(Q)], DSL(2)(gr

W )→Σ←P(Q).

LEMMA 2.6.11

Let p ∈ DSL(2)(gr
W )(Q). Then P(p) ⊂ P(Q). For P ∈ P(Q), P ∈ P(p) if and

only if the image v of P in Σ coincides with the image of p in Σ.

Proof

It is clear that P(p)⊂ P(Q). To prove the rest, we may assume Q(w) =W(pw)

(w ∈Z). It is sufficient to prove that, in this case, for P ∈ P(Q), Pu ⊃GR(grW )Q,u

if and only if the image of P under the map P(Q)→ Σ coincides with the face

ν of ν. Let σ ∈ P ′(Q) be the cone in NR corresponding to P , and let S := S(σ)
be the corresponding fs monoid in L. Then the image of σ in Σ is ν if and only

if S× ∩L+ = {1}. By the proof of Proposition 2.6.9, we have

Lie(Pu) =
∑

χ∈S�S×

gR(grW )χ−1 , Lie
(
GR(grW )Q,u

)
=

∑
χ∈L+

�{1}
gR(grW )χ−1 .

Hence, Pu ⊃GR(grW )Q,u if L+�{1} ⊂ S�S×, that is, if L+∩S× = {1}. Let w ∈
Z, and let N1, . . . ,Nn ∈ Lie(GR(grWw )Q(w),u) (n = �(Q(w))) be the monodromy

logarithms of pw. If Pu ⊃GR(grW )Q,u, then Nj ∈ Lie(Pu). Since Ad(τ�p (t))Nj =

t−2
j Nj (1≤ j ≤ n), this proves L+ � {1} ⊂ S � S×. �
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2.6.12

Let the notation be as in Section 2.6.10. We show that the object of B′
R(log) which

represents the fiber product of Mor(·,D�,−
SL(2)(Q))→ [Σ]← [P(Q)] is identified, as

a set, with the inverse image of D�,BS
SL(2)(Q) of D′ :=D�,−

SL(2)(Q)⊂D :=D�,−
SL(2) in

D�,BS
SL(2) (see Proposition 2.6.4). By Lemmas 2.4.10 and 2.6.11, a point of this

fiber product is identified with a triple (x,P,Z), where x ∈D′, P ∈ P(p), Z ⊂D,

satisfying the following condition (i). Let S = S(σ) be the fs submonoid of L cor-

responding to the cone σ ∈ P ′(Q) which corresponds to P . Write x= (p,Z ′) ∈D′,

and define a subgroup T (x,P ) of T (x) = Hom((Mgp
D
/O×

D
)x,R

mult
>0 ) as follows. If x

is an A-orbit, let T (x,P ) = Hom(L/S×,Rmult
>0 )⊂Hom(L,Rmult

>0 ) =Ap = T (x). If

x is a B-orbit, let T (x,P ) =R>0×Hom(L/S×,Rmult
>0 )⊂R>0×Hom(L,Rmult

>0 ) =

Bp = T (x).

(i) Z is a T (x,P )-orbit in Z ′.

We prove this by showing the following claim.

CLAIM

T (x,P ) = Ap,P if x is an A-orbit and T (x,P ) = Bp,P if x is a B-orbit (see

Section 2.6.3).

Let Sp,P =Hom(L/S×,Gm)⊂Hom(L,Gm) = Sp. Then Sp,P coincides with the

part of Sp consisting of all elements whose adjoint action on Lie(P/Pu) is trivial.

That is, Sp,P is the inverse image in Sp of the center of P/Pu. Since Sp,P is

Q-split, the image of Sp.P in P/Pu is contained in SP . This proves that Ap,P

coincides with the connected component of Sp,P (R) containing the unit element.

This proves the above claim.

Since Z ′ = τ�p (Ap)Z, a triple (x,P,Z) as above corresponds to a point (p,P,Z)

of D�,BS
SL(2)(Q) (see Section 2.6.3) in a one-to-one manner.

2.6.13

For Q ∈
∏

wW(grWw ), we define the structure ofD�,BS
SL(2)(Q) as an object of B′

R(log)

by identifying it as a log modification of D�,−
SL(2)(Q) by Section 2.6.12. When Q

moves, these structures on D�,BS
SL(2)(Q) glue globally to a structure of D�,BS

SL(2) as an

object of B′
R(log).

For a Q-parabolic subgroup P of GR(grW ), let

D�,BS
SL(2)(P ) =

{
(p,P ′,Z) ∈D�,BS

SL(2) | P
′ ⊃ P

}
.

Then D�,BS
SL(2)(P ) is an open set of D�,BS

SL(2), and when P moves, we have a covering

of D�,BS
SL(2) by these open sets.
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PROPOSITION 2.6.14

The diagram

D�,BS
SL(2) → D�,−

SL(2)

↓ ↓
DSL(2)(gr

W )BS → DSL(2)(gr
W )

is Cartesian in B′
R(log) and also in the category of topological spaces.

Proof

This is because D�,BS
SL(2)(Q) represents the fiber product of Mor(·,D�,−

SL(2))(Q)→
[Σ] ← [P(Q)] and DSL(2)(gr

W )BS(Q) represents the fiber product of Mor(·,
DSL(2)(gr

W ))→ [Σ]← [P(Q)]. �

PROPOSITION 2.6.15

Let F ∈D(grW ), L̄= L̄(F ). Then D�,BS
SL(2) is an L̄-bundle over DSL(2)(gr

W )BS ×
spl(W ).

Proof

This follows from Proposition 2.6.14 and the corresponding result for D�,−
SL(2). �

2.6.16

For p ∈ DSL(2)(gr
W ) and P ∈ P(p), let Sp,P ⊂ Sp be the torus defined in Sec-

tion 2.6.12, let X(Sp,P ) be the character group of Sp,P , and let X(Sp,P )
+ =

S/S×, where S := S(σP ) (see Lemma 2.6.5) with σP the cone corresponding to

P (see Proposition 2.6.9). Define a real toric variety Āp,P by

Āp,P := Hom
(
X(Sp,P )

+,Rmult
≥0

)
⊃Ap,P =Hom

(
X(Sp,P ),R

mult
>0

)
.

We have a canonical morphism

Āp,P → Āp

induced from the homomorphism X(Sp)
+→X(Sp,P )

+ which is induced by the

inclusion map Sp,P → Sp.

LEMMA 2.6.17

(1) The homomorphism X(SP )→X(Sp,P ) induced by Sp,P → SP (see Sec-

tion 2.6.12) sends X(SP )
+ to X(Sp,P )

+.

(2) The map Ap,P → AP extends uniquely to a morphism Āp,P → ĀP in

B′
R(log).

Proof

We prove (1). As a monoid, X(SP )
+ is generated by Δ(P ) (see Section 2.4.2). For

χ ∈Δ(P ), χ−1 appears in Lie(P ). Hence, the image of χ−1 in X(Sp,P ) appears

in Lie(P ). Hence, the image of χ in X(Sp,P ) belongs to X(Sp,P )
+.
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Then (2) follows from (1). In fact, the homomorphism X(SP )
+→X(Sp,P )

+

in (1) induces the morphism Hom(X(SP )
+,Rmult

≥0 )→ Hom(X(Sp,P )
+,Rmult

≥0 ).

�

2.6.18

In Theorem 2.6.19, we will consider the local structure of D�,BS
SL(2), comparing

it with the local structure of DBS. Here we give preparations. We consider the

following two situations (bd) and (d).

(bd) D=D�,BS
SL(2) and E=DSL(2)(gr

W )BS.

(d) D=DBS and E=DBS(gr
W ).

Fix p ∈ E and r ∈ Z(p) (see Section 2.2.7). In situation (bd) (resp., (d)), fix

P ∈ P(p) (resp., fix a Q-parabolic subgroup P of GR(grW ) such that p ∈ E(P )).

Let R be an R-subspace of gR(grW ) satisfying the following conditions (C1) and

(C2).

(C1) gR(grW ) = Lie(τ�(Ap,P )) ⊕ R ⊕ Lie(Kr) (resp., gR(grW ) =

Lie((AP )r)⊕R⊕Lie(Kr), where (AP )r denotes the Borel–Serre lifting from Sec-

tion 2.4.1 of AP at r).

(C2) R⊂ Lie(P ).

These conditions on R are similar to those in Section 2.3.13. Like in Sec-

tion 2.3.13, let S be an R-subspace of Lie(Kr) such that Lie(Kr) = Lie(K ′
r)⊕S.

We define an object Y of B′
R(log) as follows. Let

Y = ĀP ×R× S in situation (d).

In situation (bd), we define Y as follows. Let

X = Āp,P ×R× S.

Let Y be the subset of X consisting of all elements (t, f, k) satisfying the following

conditions (i) and (ii).

(i) If χ ∈ X(Sp) and t(χ+) = 0, then fχ = 0. In other words, if m(w, j)

denotes the (w, j)-component of χ ∈ X(Sp) =
∏

wZQ(w), then fχ = 0 unless

m(w, j)≤ 0 for any w ∈ Z and j ∈ J(w). Here χ+, fχ, and J(w) are as in Sec-

tion 2.3.13.

(ii) k ∈ SJ . Here SJ is as in Section 2.3.13.

Regard X as an object of B′
R(log) in the natural way, and regard Y ⊂X as

an object of B′
R(log) by Section 1.3.16. In both situations (bd) and (d), let

Y0 =
{
(t, f, k) ∈ Y | t ∈Ap.P

}
⊂ Y.

THEOREM 2.6.19

Let the notation be as in Section 2.6.18. Consider situation (bd) where D=D�,BS
SL(2)

and E=DSL(2)(gr
W )BS (resp., (d) where D=DBS and E=DBS(gr

W )).
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(1) For a sufficiently small open neighborhood U of (0,0,0) in Y , there exists

a unique open immersion U → E in B′
R(log) which sends (t, f, k) ∈ U ∩ Y0 to the

element

exp(f)τ�p (t) exp(k)r
(
resp., t ◦ exp(f) exp(k)r

)
of D(grW )⊂ E.

(2) Let L̄ = L̄(r) and L = L(r). Then for a sufficiently small open neigh-

borhood U of (0,0,0) in Y , there exists a unique open immersion U × spl(W )×
L̄→ D in B′

R(log) having the following property. It sends (t, f, k, s, δ) ∈ Y ×
spl(W ) × L, where (t, f, k) ∈ U ∩ Y0, s ∈ spl(W ), and δ ∈ L, to the element of

D (resp., to the element t ◦ x, where x is the element of D) whose image in

D(grW )× spl(W )×L under the isomorphism from Section 1.2.1 is(
exp(f)τ�p (t) exp(k)r, s,Ad

(
exp(f)τ�p (t) exp(k)

)
δ
)

(
resp.,

(
exp(f) exp(k)r, s,Ad

(
exp(f) exp(k)

)
δ
))
.

(3) For a sufficiently small open neighborhood U of (0,0,0) in Y , the diagram

U × spl(W )× L̄ → D

↓ ↓
U → E

is Cartesian in B′
R(log) and in the category of topological spaces.

(4) The image of the map in (1) is contained in E(Q) ∩ E(P ) with Q =

(W(pw))w (resp., in E(P )), and the image of the map in (2) is contained in

D(Q)∩D(P ) (resp., in D(P )).

(5) The underlying maps of the morphisms in (1) and (2) are described as

in Section 2.6.20 below.

2.6.20

The maps in Theorem 2.6.19(1) and 2.6.19(2) are induced from the maps

Y → E, Y × spl(W )× L̄→D,

respectively, defined as follows.

We first consider situation (bd) in Section 2.6.18. Let A′ be the subset

of Ap,P = Hom(X(Sp,P ),R
mult
>0 ) consisting of all elements whose restriction to

t−1(R>0)∩X(Sp,P )
+ coincides with the restriction of t :X(Sp,P )

+→R≥0, where

t ranges over Āp,P . Let J = (J(w))w for t be as in Section 2.6.18, and let

pJ ∈DSL(2)(gr
W ) be as in Section 2.3.15 for J . Then the first map Y → E sends

(t, f, k) to

p′ := exp(f)τ�p (t
′) exp(k)pJ , where t′ ∈A′.

The second map Y × spl(W )× L̄→D sends (t, f, k, s, δ) to the following ele-

ment (p′, P ′,Z) of D=D�,BS
SL(2) (see Section 2.6.3), where P ′ and Z are as follows.

Let Āp,P → ĀP =R
Δ(P )
≥0 be the morphism in Lemma 2.6.17. Let I = {j ∈Δ(P ) |

tj = 0}, where tj denotes the j-component of the image of t in R
Δ(P )
≥0 . Then P ′
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is the Q-parabolic subgroup of GR(grW ) such that P ′ ⊃ P that corresponds to

the subset I of Δ(P ) (see Section 2.4.2).

If δ ∈ L, then Z is the subset of D whose image under the embedding D→
D(grW )× spl(W )×L is the set{(

exp(f)τ�p (t
′) exp(k)r, s,Ad

(
exp(f)τ�p (t

′) exp(k)
)
δ
)
| t′ ∈A′}.

If δ = 0 ◦ δ(1) ∈ L̄�L (δ(1) ∈ L� {0}) (see Section 1.3.8(4)), then Z is the subset

of D whose image under the embedding D→D(grW )× spl(W )×L is the set{
(exp(f)τ�p (t

′) exp(k)r, s,Ad
(
exp(f)τ�p (t

′) exp(k)
)
(c ◦ δ(1)) | t′ ∈A′, c ∈R>0

}
.

Next consider situation (d) in Section 2.6.18. In this situation, the first map

sends (t, f, k) to t◦ exp(f) exp(k)r. The second map sends (t, f, k, s, δ) with δ ∈ L

to the element t ◦ x and sends (t, f, k, s,0 ◦ δ) with δ ∈ L� {0} to the element

(0, t) ◦ x, where x is the element of D whose image in D(grW ) × spl(W ) × L
(see Section 1.2.1) is (exp(f) exp(k)r, s,Ad(exp(f) exp(k))δ). Here we denote by

(t, x) 
→ t ◦ x the morphisms ĀP ×D(grW )→ DBS(gr
W ), ĀP ×D→ DBS, and

B̄P × Dnspl → DBS, which extend the morphisms AP × D(grW )→ DBS(gr
W ),

AP ×D→DBS, and BP ×D→DBS, defined by (t, x) 
→ t ◦ x, respectively.

2.6.21

We prove Theorem 2.6.19. The theorem is clear in situation (d) in Section 2.6.18.

We consider situation (bd) in Section 2.6.18. We reduce the theorem in this

situation to Theorem 2.3.14.

It is easily seen that the validity of the theorem does not depend on the

choices of R and S. We take any S satisfying the condition in Section 2.3.13 and,

hence, the condition in Section 2.6.18. We choose R in the following way.

Let Q = (Q(w))w, where Q(w) =W(grWw ). Take a splitting α of Q, and

let R(Q) be as in Section 2.6.7. Let σP ∈ P ′(Q) be the cone corresponding to

P ∈ P(Q) (see Proposition 2.6.9), and let S := S(σP ) be the corresponding fs

submonoid of X(Sp). Note that R(Q)⊂ S ∪ S−1 (see Lemma 2.6.5).

Choose a subset I1 of R(Q) ∩ S ∩ S−1 such that R(Q) ∩ S ∩ S−1 is the

disjoint union of {1}, I1, and I−1
1 . Let I2 :=R(Q)∩S−1�R(Q)∩S ∩S−1. Hence,

R(Q) is the disjoint union of {1}, I1, I−1
1 , I2, and I−1

2 . Choose an R-subspace

C of gR(grW ) such that the subspace gR(grW )1 = {v ∈ gR(grW ) | Ad(τ�p (t))v =
v for all t ∈Ap} of gR(grW ) coincides with the direct sum of Lie(τ�p (Ap)), C, and

gR(grW )1 ∩ Lie(Kr). Let

R′ =C ⊕
( ⊕
χ∈I1∪I2

gR(grW )χ

)
.

Then R′ ⊂ Lie(P ), and R′ satisfies conditions (C1) and (C2) on R of Sec-

tion 2.3.13. (Here we used the fact that the Cartan involution θKr associated to

the maximal compact subgroup Kr of GR(grW ) sends gR(grW )χ to gR(grW )χ−1

for any χ ∈X(Sp), and Lie(Kr) coincides with {v ∈ gR(grW ) | θKr(v) = v}.)
Take an R-subspace C ′ of gR(grW ) such that Lie(τ�p (Ap)) = Lie(τ�p (Ap,P ))⊕

C ′. We take R :=C ′ ⊕R′ as R of Section 2.6.18.
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Define X and Y of Section 2.6.18 by using these R and S. Denote by X ′ and

Y ′, respectively, the X and Y of Section 2.3.13 defined by taking R′ and S as R

and S of Section 2.3.13.

As in Section 2.6.10, let Σ be the fan of all faces of the cone Hom(X(Sp)
+,

Radd
≥0 ) =

∏
wR

Q(w)
≥0 . Let Σ′ be the fan of all faces of the cone σP .

Then D�,BS
SL(2)(Q) ∩ D�,BS

SL(2)(P ) represents the fiber product of Mor(·,
D�

SL(2)(Q))→ [Σ]← [Σ′]. On the other hand, the fiber product of Mor(·,X ′)→
[Σ] ← [Σ′] is represented by X ′′ := Hom(S,Rmult

≥0 ) × gR(grW ) ×
gR(grW ) × gR(grW ) × S, and the fiber product of Mor(·, Y ′)→ [Σ]← [Σ′] is

represented by the inverse image Y ′′ of Y ′ in X ′′ under the canonical map

X ′′ → X ′, where Y ′′ is endowed with the structure of an object of B′
R(log)

by using the embedding Y ′′ → X ′′ (see Section 1.3.16). We identify X with

Hom(S,Rmult
≥0 )×R′ × S via the isomorphism Hom(S,Rmult

≥0 )∼= Āp,P ×C ′.

To reduce Theorem 2.6.19 to Theorem 2.3.14, it is sufficient to prove the

following (*).

(*) If (t, f, g, h, k) ∈ Y ′′, then (t, f, k) ∈ Y in X = Hom(S,Rmult
≥0 )× R′ × S.

We have an isomorphism

Y ′′ ∼=→ Y, (t, f, g, h, k) 
→ (t, f, k)

in B′
R(log).

Before the proof of (*), we note the following (1) and (2).

(1) Let (t, f, g, h, k) ∈X ′′ (t ∈Hom(S,Rmult
≥0 ), f, g, h ∈ gR(grW ), k ∈ S). Then

(t, f, g, h, k) belongs to Y ′′ if and only if the conditions (i)–(iv) in Section 2.3.13,

among which (iii) and (iv) are modified as follows, are satisfied. We replace

R in (iii) in Section 2.3.13 by R′. In (iv) in Section 2.3.13, we define J =

(J(w))w∈Z, where J(w) = {j ∈ Q(w) | tw,j = 0}. Here tw,j ∈ R≥0 denotes the

(w, j)-component of the image of t in Āp. Then k ∈ SJ .

(2) Let (t, f, k) ∈X (t ∈Hom(S,Rmult
≥0 ), f ∈R′, k ∈ S). Then (t, f, k) belongs

to Y if and only if the following conditions (2.i) and (2.ii) are satisfied.

(2.i) Let χ ∈X(Sp). If t(χ+) = 0, then fχ = 0.

(2.ii) The same as the form of (iv) in the above (1).

Now we prove the assertion (*). Let (t, f, g, h, k) ∈ Y ′′. We first prove that

(t, f, k) ∈ Y . To show this, it is sufficient to prove f ∈R′. Let χ ∈R(Q). If t(χ−) �=
0, since t(χ+)gχ = t(χ−)fχ and gχ ∈ R′, we have fχ = t(χ−)

−1t(χ+)gχ ∈ R′.

Assume t(χ−) = 0. If χ ∈ S , then t(χ+) = t(χ−)t(χ) = 0. Hence, fχ = 0. If χ /∈ S ,
then χ ∈ S−1, and hence, fχ ∈ gR(grW )χ ⊂R′.

We next prove that Y ′′→ Y is an isomorphism. For this, we define a mor-

phism Y → X ′′ of the converse direction by (t, f, k) 
→ (t, f, g, h, k) with g =∑
χ∈S−1 t(χ−1)fχ and h =

∑
χ∈S−1 t(χ−1)2fχ. We show that the image of this

morphism is contained in Y ′′. Let χ ∈ R(Q). We prove t(χ+)gχ = t(χ−)fχ and

t(χ+)hχ = t(χ−)gχ. If χ ∈ S−1, we have t(χ+)gχ = t(χ+)t(χ
−1)fχ = t(χ−)fχ and

t(χ+)hχ = t(χ+)t(χ
−1)2fχ = t(χ−)gχ. If χ /∈ S−1, we have fχ = 0 by the defini-

tion of R′, and hence, gχ = hχ = 0 by the definitions of g and h. If t(χ+) = 0,
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then fχ = 0 and hence gχ = 0. We prove that if t(χ−) = 0, then gχ = hχ = 0. In

the case t(χ+) = 0, then fχ = 0 and hence gχ = hχ = 0. In the case χ ∈ S , we
have t(χ+) = t(χ−)t(χ) = 0. In the case t(χ+) �= 0 and χ /∈ S , we have χ ∈ S−1

and t(χ−) = t(χ+)t(χ
−1) and hence t(χ−1) = 0. Hence, gχ = t(χ−1)2fχ = 0 and

hχ = 0 similarly. We prove gχ, hχ+fχ−1 ∈R′. If χ ∈ S−1, then gχ = t(χ)−1fχ ∈R′

and hχ = t(χ−1)2 ∈ R′ and hence hχ + fχ−1 ∈ R′. If χ /∈ S−1, then gχ = hχ = 0

and hence hχ + fχ−1 = fχ−1 ∈R′.

Thus, we have a morphism Y → Y ′′. It is clear that the composition Y →
Y ′′→ Y is the identity morphism. We prove that the composition Y ′′→ Y → Y ′′

is also the identify morphism. Let (t, f, g, h, k) ∈ Y ′′, and let (t, f, g′, h′, k) be

the image of (t, f, k) ∈ Y under Y → Y ′′. We prove g′χ = gχ and h′
χ = hχ for

any χ ∈R(Q). Assume first χ ∈ S−1. If t(χ+) �= 0, then gχ = t(χ+)
−1t(χ−)fχ =

t(χ−1)fχ = g′χ, and we have similarly hχ = h′
χ. If t(χ+) = 0, then t(χ−) =

t(χ+)t(χ
−1) = 0, and hence fχ = gχ = hχ = 0, and we have g′χ = 0 and h′

χ = 0 by

fχ = 0. Next assume χ /∈ S−1. Then by the definition of R′, we have aχ = 0 for

any a ∈R′. Since fχ, gχ, hχ + fχ−1 ∈R′, we have fχ = gχ = hχ = 0, and we have

g′χ = h′
χ = 0 by fχ = 0. Theorem 2.6.19 is proved.

THEOREM 2.6.22

(1) The identity map of D extends uniquely to a morphism D�,BS
SL(2) →DBS

in B′
R(log). It sends (p,P,Z) ∈D�,BS

SL(2) to (P,AP ◦Z) ∈DBS.

(2) The diagram

D�,BS
SL(2) → DBS

↓ ↓
DSL(2)(gr

W )BS → DBS(gr
W )

is Cartesian in B′
R(log) and also in the category of topological spaces.

(3) The inverse image of Dmild
BS in D�,BS

SL(2) coincides with D�,BS,mild
SL(2) .

Proof

Let (p,P,Z) ∈ D�,BS
SL(2), and take r ∈ Z. We compare situations (bd) and (d) in

Theorem 2.6.19 by taking p, r for both situations (bd) and (d), and by taking

R and S for these situations as follows. Take R and S for situation (d). Take

this S as S for situation (bd). Let C be an R-subspace of Lie((AP )r) such that

Lie((AP )r) = Lie(τ�(Ap,P ))⊕C, and take C⊕R as the R for situation (bd). Then

Theorem 2.6.22(1) and 2.6.22(2) follow from Theorem 2.6.19, Lemma 2.6.17, and

the fact that(
τ�(t) mod Pu

)
◦ exp(f) exp(k)r= exp(f)τ�p (t) exp(k)r.

Theorem 2.6.22(3) is clear. �

2.7. The category B′
R(log)+

The aim of this section is to define a full subcategory B′
R(log)+ of B′

R(log),

consisting of nice objects, and prove that the spaces of SL(2)-orbits in Section 2
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belong to B′
R(log)+ (see Theorem 2.7.14). We also discuss full subcategories

B′
R(log)[+] and B′

R(log)[[+]] of B′
R(log) such that

B′
R(log)⊃B′

R(log)+ ⊃B′
R(log)[+] ⊃B′

R(log)[[+]].

2.7.1

We first define a full subcategory B′
R(log)[[+]] of B′

R(log). We define standard

objects of B′
R(log)[[+]]. Take n≥ 0, a real analytic manifold A, and a real analytic

closed submanifold AJ of A for each subset J of {1, . . . , n} satisfying A∅ = A,

AJ ⊂AJ ′ if J ⊃ J ′. Define

Y =
{
(t, x) ∈Rn

≥0 ×A | x ∈AJ(t)

}
,

where J(t) = {j | 1 ≤ j ≤ n, tj = 0}. We regard Y as an object of B′
R(log) by

taking Rn
≥0 ×A as X in Section 1.3.16, where the log structure of X with sign

is induced from that of Rn
≥0 (see Section 1.3.8(1)).

Let B′
R(log)[[+]] be the full subcategory of B′

R(log) consisting of all objects

which are locally isomorphic to open subobjects of Y as above. Real analytic

manifolds with corners belong to B′
R(log)[[+]].

2.7.2

We next define a full subcategory B′
R(log)[+] of B′

R(log). We define standard

objects of B′
R(log)[+]. Take an fs monoid S , a real analytic manifold A, and a

real analytic closed submanifold AI of A for each face I of S satisfying AS =A,

AI ⊂AI′ if I ⊂ I ′. Define

Y =
{
(t, x) ∈Hom(S,Rmult

≥0 )×A | x ∈AI(t)

}
,

where I(t) is the face {a ∈ S | t(a) �= 0} of S . We regard Y as an object of B′
R(log)

by taking Hom(S,Rmult
≥0 )×A as X in Section 1.3.16, where the log structure of

X with sign is induced from that of Hom(S,Rmult
≥0 ) (see Section 1.3.8(3)).

Let B′
R(log)[+] be the full subcategory of B′

R(log) consisting of all objects

which are locally isomorphic to open subobjects of Y as above. Since a standard

object of B′
R(log)[[+]] is the case S =Nn of a standard object of B′

R(log)[+], we

have B′
R(log)[+] ⊃B′

R(log)[[+]].

The following Lemmas 2.7.3 and 2.7.4 are proved easily.

LEMMA 2.7.3

Let S be an object of B′
R(log)[+]. Then S belongs to B′

R(log)[[+]] if and only if,

for any s ∈ S, (MS/O×
S )s is isomorphic to Nr for some r ≥ 0 (which may depend

on s).

LEMMA 2.7.4

Let S′→ S be a log modification in B′
R(log). If S belongs to B′

R(log)[+], then S′

also belongs to B′
R(log)[+].
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2.7.5

We define a full subcategory B′
R(log)+ of B′

R(log). Let B′
R(log)+ be the full

subcategory of B′
R(log) consisting of all objects S such that, locally on S, there

is a log modification S′→ S such that S′ belongs to B′
R(log)[[+]]. We have clearly

B′
R(log)[[+]] ⊂B′

R(log)+.

LEMMA 2.7.6

Let S be an object of B′
R(log)+, and assume that (Mgp

S /O×
S )s is of rank at most

1 as an Abelian group for any s ∈ S. Then S belongs to B′
R(log)[[+]].

Proof

This is because any log modification S′→ S is an isomorphism. �

PROPOSITION 2.7.7

We have that B′
R(log)[+] ⊂B′

R(log)+.

Proof

Let S be an object of B′
R(log)[+]. Locally on S, by the resolution of singularities

in toric geometry (see [18, p. 23]), there exists a log modification S′ → S such

that, for any s ∈ S′, (MS′/O×
S′)s ∼=Nr for some r. By Lemmas 2.7.3 and 2.7.4,

S′ belongs to B′
R(log)[[+]]. �

PROPOSITION 2.7.8

Let S′→ S be a log modification in B′
R(log). Then, S belongs to B′

R(log)+ if and

only if S′ belongs to B′
R(log)+.

Proof

First assume that S belongs to B′
R(log)+. We prove that S′ belongs to B′

R(log)+.

We may assume that S belongs to B′
R(log)[[+]]. Locally on S, there is a log

modification S′′→ S which is a composition S′′→ S′→ S, where the first arrow

is a log modification and the second arrow is the given morphism, such that,

for any s ∈ S′′, (MS′′/O×
S′′)s ∼=Nr for some r. By Lemmas 2.7.3 and 2.7.4, S′′

belongs to B′
R(log)[[+]]. Hence, S′ belongs to B′

R(log)+.

Next assume that S′ belongs to B′
R(log)+. We prove that S belongs to

B′
R(log)+. By the assumption, there are an open covering (Uλ)λ of S′ and a

log modification Vλ→ Uλ for each λ such that Vλ belongs to B′
R(log)[[+]]. Since

S′→ S is proper, locally on S, we can take a finite covering (Uλ)λ. Hence, locally

on S, there is a log modification S′′→ S having the following properties (i)–(iii).

(i) S′′ → S is a composition S′′ → S′ → S, where the first arrow is a log mod-

ification and the second arrow is the given morphism. (ii) For each λ, we have

a morphism Uλ ×S′ S′′ → Vλ over Uλ which is a log modification. (iii) For any

s ∈ S′′, (MS′′/O×
S′′)s ∼=Nr for some r ≥ 0. By Lemmas 2.7.3 and 2.7.4, Uλ×S′ S′′

belongs to B′
R(log)[[+]]. Since (Uλ×S′ S′′)λ is an open covering of S′′, S′′ belongs

to B′(log)[[+]]. Hence, S belongs to B′
R(log)+. �
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PROPOSITION 2.7.9

The category B′
R(log)+ (resp., B′

R(log)[+], B′
R(log)[[+]]) is stable in B′

R(log) under

taking finite products.

Proof

This is clear for B′
R(log)[+] and B′

R(log)[[+]]. The part for B′
R(log)+ follows from

the part for B′
R(log)[[+]]. �

LEMMA 2.7.10

Let Y ⊂Hom(S,Rmult
≥0 )×A be a standard object of B′

R(log)[+] in Section 2.7.2,

let S be an object of B′
R(log)[[+]], and let S→Hom(S,Rmult

≥0 ) be a morphism in

B′
R(log). Then the fiber product of S→Hom(S,Rmult

≥0 )← Y in B′
R(log) belongs

to B′
R(log)[[+]].

Proof

Working locally on S, we may assume that S is an open set of the standard

object Rn
≥0 ×A′ in Section 2.7.1 (A′ here plays the role of A in Section 2.7.1),

and that we have a commutative diagram of functors

Mor(·, S) → Mor(·,Hom(S,Rmult
≥0 ))

↓ ↓
Mor(·,Rn

≥0) → [Σ′] → [Σ]

where Σ is the fan of all faces of the cone Hom(S,Radd
≥0 ) and Σ′ is the fan of

all faces of the cone Rn
≥0 ⊂Rn. Then the fiber product in the problem coincides

with the space {
(t, a, a′) ∈Rn

≥0 ×A×A′ | a ∈AI(t), a
′ ∈A′

J(t)

}
,

where J(t) = {j | 1 ≤ j ≤ n, tj = 0} and I(t) is the face of S which corresponds

to the image of t under Rn
≥0→Σ′→Σ. �

LEMMA 2.7.11

Let Y ⊂Hom(S,Rmult
≥0 )×A be a standard object of B′

R(log)[+] in Section 2.7.2,

let S be an object of B′
R(log)+, and let S→Hom(S,Rmult

≥0 ) be a strict morphism

in B′
R(log). Then the fiber product of S→Hom(S,Rmult

≥0 )← Y in B′
R(log) belongs

to B′
R(log)+.

Proof

Since S→Hom(S,Rmult
≥0 ) is strict, working locally on Hom(S,Rmult

≥0 ) and on S,

we have a rational finite subdivision Σ′ of the cone Hom(S,Radd
≥0 ) such that the

fiber product S′ of S→Hom(S,Rmult
≥0 )← |toric|(Σ′) belongs to B′

R(log)[[+]] and

such that S(σ′) for all σ′ ∈Σ′ are isomorphic toNr×Zm for some r,m. Replacing

S by S′ and replacing S by S(σ′) (σ′ ∈Σ′), we are reduced to Lemma 2.7.10. �
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PROPOSITION 2.7.12

Let n ≥ 0, and let V be a finite-dimensional R-vector space endowed with an

action of Gn
m. Let Y be the subset of Rn

≥0 × V × V consisting of all elements

(t, u, v) satisfying the following conditions (i) and (ii) for any χ ∈ X(Gn
m). In

the following, we write χ= χ+(χ−)
−1 as in Section 2.3.13.

(i) t(χ+)vχ = t(χ−)uχ.

(ii) If t(χ+) = 0, then uχ = vχ = 0.

Endow Y with the structure of an object of B′
R(log) by the embedding Y →

Rn
≥0 × V × V as in Section 1.3.16. Let S be an object of B′

R(log)+, assume

that we are given a strict morphism S→Rn
≥0, and let E be the fiber product of

S→Rn
≥0← Y in B′

R(log). Then E belongs to B′
R(log)+.

Proof

In Section 1.4.1, we take L=X(Gn
m). Let L+ ⊂ L be the submonoid correspond-

ing to Nn in the identification L = Zn. Take a finite subset R of L such that

{χ ∈ L | Vχ �= 0} ⊂ R, R = R−1, and R+ := R ∩ L+ generates L+ as a monoid.

Let Σ be the fan of all faces of the cone Rn
≥0 ⊂ Rn = NR, and let Σ′ be the

rational finite subdivision of Σ defined in Lemma 2.6.5(3) with respect to R and

L+.

Let Y ′, S′, E′ be the fiber products of Y →Rn
≥0← |toric|(Σ′), S→Rn

≥0←
|toric|(Σ′), E → Rn

≥0 ← |toric|(Σ′), respectively. (We identify Rn
≥0 with

|toric|(Σ).) For σ′ ∈ Σ′, let Y ′(σ′), S′(σ′), E′(σ′) be the open sets of Y ′, S′,

E′, respectively, corresponding to σ′. These are the fiber products of Y →Rn
≥0←

Hom(S(σ′),Rmult
≥0 ), S → Rn

≥0 ← Hom(S(σ′),Rmult
≥0 ), and E → Rn

≥0 ←
Hom(S(σ′),Rmult

≥0 ), respectively. In particular, Y ′(σ′) ⊂ Hom(S(σ′),Rmult
≥0 ) ×

V × V .

We prove that Y ′(σ′) is isomorphic to a standard object of the category

B′
R(log)[+] (see Section 2.7.2). Since R⊂ S(σ′)∪S(σ′)−1 (see Lemma 2.6.5), we

can take subsets R1 and R2 such that R is the disjoint union of R1 and R2 and

such that R1 ⊂ S(σ′) and R2 ⊂ S(σ′)−1. Consider the map

Y ′(σ′)→Hom
(
S(σ′),Rmult

≥0

)
× V, (t, u, v) 
→

(
t,

∑
χ∈A1

vχ +
∑
χ∈A2

uχ

)
.

This induces an isomorphism

Y ′(σ′)
∼=→

{
(t, x) ∈Hom

(
S(σ′),Rmult

≥0

)
× V | x ∈ VI(t)

}
(1)

in B′
R(log), where I(t) denotes the face {χ ∈ S(σ′) | t(χ) �= 0} of S(σ′), and for a

face I of S(σ′), we define

VI = {x ∈ V | xχ = 0 if χ ∈ L and χ+ /∈ I}.

The inverse map of (1) is given by (t, x) 
→ (t, u, v), where u=
∑

χ∈R1
t(χ)xχ +∑

χ∈R2
xχ and v =

∑
χ∈R1

xχ +
∑

χ∈R2
t(χ−1)xχ. We omit more details of the

proof of this isomorphism (1), for the argument is straightforward and similar to
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the proof of Y ′′ ∼= Y in the proof of Theorem 2.6.19 (see Section 2.6.21). Note that

the right-hand side of (1) is a standard object of B′
R(log)[+] (see Section 2.7.2).

By Lemma 2.7.11, the fiber product E′(σ′) of S′(σ′)→Hom(S(σ′),Rmult
≥0 )←

Y ′(σ′) belongs to B′
R(log)+. Hence, E′ belongs to B′

R(log)+. By Proposition

2.7.8, this proves that E belongs to B′
R(log)+. �

PROPOSITION 2.7.13

We have that D�,BS
SL(2) belongs to B′

R(log)[+].

This follows form Theorem 2.6.19 for situation (bd) in Section 2.6.18 and from

Proposition 2.7.12.

THEOREM 2.7.14

The spaces DI
SL(2), D

II
SL(2), D

�
SL(2), D

�,+
SL(2), D

�,−
SL(2), D

�,BS
SL(2), DSL(2)(gr

W )∼, and

DSL(2)(gr
W ) belong to B′

R(log)+.

REMARK 2.7.15

We think that Theorem 2.7.14 is a version for the spaces of SL(2)-orbits, treated

in Section 2, of the following results (1) and (2) on the spaces of Borel–Serre

orbits and of nilpotent orbits.

(1) The space DBS of Borel–Serre orbits is a real analytic manifold with

corners (see [15, I]).

(2) For a weak rational fan Σ in gR and for a neat subgroup Γ of GZ which

is strongly compatible with Σ, the space Γ\DΣ is a log manifold (see [15, III,

Theorem 2.5.2]).

These results (1) and (2) tell us that DBS and Γ\DΣ are beautiful spaces.

Theorem 2.7.14 also says that the spaces of SL(2)-orbits are beautiful spaces.

2.7.16

We prove Theorem 2.7.14. Theorem 2.7.14 for D�,BS
SL(2) follows from Proposition

2.7.13 and Proposition 2.7.7. Theorem 2.7.14 for D�
SL(2), D

�,+
SL(2), and D�,−

SL(2) fol-

lows from that for D�,BS
SL(2) by Proposition 2.7.8. In the pure situation, this implies

that DSL(2)(gr
W
w ) belongs to B′

R(log)+ for any w; hence, DSL(2)(gr
W ) belongs to

B′
R(log)+, and hence, DSL(2)(gr

W )∼ belongs to B′
R(log)+ by Proposition 2.7.8.

Theorem 2.7.14 for DII
SL(2) follows from that for DSL(2)(gr

W )∼ by Propositions

2.3.16 and 2.7.9.

Finally we prove that DI
SL(2) belongs to B′

R(log)+. We apply Proposition

2.7.12. Let x = (p,Z) ∈ DSL(2), fix r ∈ Z, and let r̄ = r(grW ) ∈ D(grW ). Let n

be rank(p) if x is an A-orbit, and let n = rank(p) + 1 if x is a B-orbit. Let

V = Lie(GR,u), where GR,u denotes the unipotent radical of GR. We define the

action of Gn
m on V as follows. In the case in which x is an A-orbit (resp., a B-

orbit), lift the homomorphism τp (resp., τ̃p) :G
n
m→GR(grW ) (see Section 2.2.7)
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to τx :Gn
m→GR by using the splitting splW (r) of W . We consider the adjoint

action of Gn
m on Lie(GR,u) via τx. Define Y ⊂Rn

≥0 × V × V as in Proposition

2.7.12. Then by [15, II, Theorem 3.4.6], in the case where x is an A-orbit (resp., a

B-orbit), there are an open neighborhood S of y := (p, δW (r)) in DSL(2)(gr
W )∼×

L(r̄) (resp., y := (p,0◦δW (r)) in DSL(2)(gr
W )∼×(L̄(r̄)�{0})), a strict morphism

S→Rn
≥0 which sends y to 0 = (0, . . . ,0), an open neighborhood U of (y,0,0,0)

in the fiber product of S → Rn
≥0 ← Y (here (0,0,0) ∈ Rn

≥0 × V × V ), and an

open immersion U →DI
SL(2) which sends (y,0,0,0) to x. By Proposition 2.7.12,

U is an object of B′
R(log)+. This shows that DI

SL(2) is an object of B′
R(log)+.

Theorem 2.7.14 is proved.

LEMMA 2.7.17

Let n≥ 0. Then the part of DSL(2)(gr
W )∼ consisting of points of rank at most n

is open in DSL(2)(gr
W )∼.

Proof

This part is the union of open sets DSL(2)(gr
W )∼(Φ), where Φ ranges over all

admissible sets of weight filtrations on grW associated to points of rank at most n.

�

2.7.18

We denote the above part of DSL(2)(gr
W )∼ by (DSL(2)(gr

W )∼)≤n. In the pure

situation, this part is written as DSL(2),≤n.

PROPOSITION 2.7.19

(1) Let U be the inverse image of (DSL(2)(gr
W )∼)≤1 in D�

SL(2) (resp.,

DII
SL(2)). Then U is an object of B′

R(log)[[+]].

(2) Let U be the inverse image of
∏

wDSL(2)(gr
W
w )≤1 in D�,−

SL(2). Then U is

an object of B′
R(log)[[+]].

Proof

We prove (1). By Theorem 2.7.14, Section 2.2.13 (which describes the stalks of

MS/O×
S for S =DSL(2)(gr

W )∼), and Lemma 2.7.6, (DSL(2)(gr
W )∼)≤1 belongs to

B′
R(log)[[+]]. Hence, U belongs to B′

R(log)[[+]] by Propositions 2.3.16 and 2.7.9.

We prove (2). Similarly, DSL(2)(gr
W
w )≤1 belongs to B′

R(log)[[+]], and hence,∏
wDSL(2)(gr

W
w )≤1 belongs to B′

R(log)[[+]] by Proposition 2.7.9. Hence, U belongs

to B′
R(log)[[+]] by Propositions 2.3.16 and 2.7.9. �

3. Valuative Borel–Serre orbits and valuative SL(2)-orbits

In this section, we study the spaces DBS,val, DSL(2),val, and D�
SL(2),val and their

relations.
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3.1. The associated valuative spaces
In Section 3.1,

(1) for an object S of B′
R(log), we define a locally ringed space Sval over R

with a “valuative log structure with sign,” and

(2) more generally, for a field K endowed with a nontrivial absolute value

| · | : K → R and for a locally ringed space S over K endowed with an fs log

structure satisfying the conditions in Section 1.3.3, we construct a topological

space Sval.

In (2), Sval is merely a topological space and does not have more structures

as in (1). Note that (1) becomes important in the rest of Section 3, and (2) will

become important in Section 4. Furthermore, (1) is shortly explained in [15, II,

Section 3.7]. We call Sval the valuative space associated to S.

3.1.1

Let L be an abelian group whose group law is written multiplicatively. A sub-

monoid V of L is said to be valuative if V ∪ V −1 = L. An integral monoid V is

said to be valuative if it is a valuative submonoid of V gp. For an fs monoid S ,
let V (S) be the set of all valuative submonoids V of Sgp such that V ⊃ S and

V × ∩ S = S×.

3.1.2

Let K be a field endowed with a nontrivial absolute value | · | :K→R. Let S be

a locally ringed space over K satisfying the equivalent conditions in Section 1.3.3

and endowed with an fs log structure. Let Sval be the set of all triples (s,V,h),

where s ∈ S, V ∈ V ((MS/O×
S )s) (see Section 3.1.1), and by denoting by Ṽ the

inverse image of V in Mgp
S,s, h is a homomorphism (Ṽ )× → Rmult

>0 extending

f 
→ |f(s)| on O×
S,s. Here Rmult

>0 denotes the set R>0 regarded as a multiplicative

group.

3.1.3

There is a variant, which we denote by Sval(K), of Sval. Let Sval(K) be the set

of all triples (s,V,h), where s and V are as above but h is a homomorphism

(Ṽ )×→K× extending f 
→ f(s) on O×
S,s. In [17, Section 3.6], in the case K =C,

this space Sval,(C) was denoted by Sval. But in this article, we consider only Sval

in the sense of Section 3.1.2 except in the proof of Theorem 6.3.1, and we hope no

confusion occurs in this article. If we want to avoid confusion in a forthcoming

work, we will denote Sval in Section 3.1.2 by Sval(|·|). We will call Sval(K) the

valuative space of K-points associated to S and call Sval(|·|) the valuative space

of absolute values associated to S.

3.1.4

In the case in which K =R and MS is a log structure with sign (as in the case

S ∈ B′
R(log)) (Section 1.3.5), Sval is identified with the set of all triples (s,V,h),
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where s ∈ S, V is an element of V ((MS/O×
S )s), and by denoting by Ṽ>0 the

inverse image of V in Mgp
S,>0,s, h is a homomorphism (Ṽ )×>0→Rmult

>0 extending

f 
→ f(s) on O×
S,>0,s.

3.1.5

Let S be as in Section 3.1.2. The topology of Sval is defined as follows. Let

(s0, V0, h0) ∈ Sval. Assume that we are given a chart S →MS near the point

s0 ∈ S. We introduce a fundamental system of neighborhoods of the point (s0, V0,

h0) ∈ Sval.

Let U be a neighborhood of s0 in S, let I be a finite subset of Sgp such

that, for any f ∈ I , the image f̄s0 of f in (Mgp
S /O×

S )s0 is contained in V0, and

let ε > 0. Let B(U, I, ε) be the set of all points (s,V,h) of Sval satisfying the

following conditions (i)–(iii).

(i) s ∈ U .

(ii) For any f ∈ I , the image f̄s of f in (Mgp
S /O×

S )s belongs to V .

(iii) For any f ∈ I , |h(f)− h0(f)|< ε. Here we define h(f) (resp., h0(f)) to

be 0 unless f̄s ∈ V × (resp., f̄s0 ∈ V ×
0 ).

Define a topology of Sval so that the sets B(U, I, ε), where U , I , and ε

vary, form a fundamental system of neighborhoods of the point (s0, V0, h0). This

topology is independent of the choice of a chart S and, hence, is well defined

globally.

We now consider the relation of Sval and the projective limit of toric varieties

for the subdivisions of fans. This will be used to prove properties of Sval and to

endow Sval in the case in which S ∈ B′
R(log) with a structure of a locally ringed

space over R and a log structure with sign.

3.1.6

Let the notation be as in Section 1.4.1. Let V be a valuative submonoid of L.

For a submonoid S of L, we say that V dominates S if S ⊂ V and S× = S ∩V ×.

For a rational finitely generated sharp cone σ in NR, we say that V dominates

σ if V dominates S(σ) := {l ∈ L | l(σ)≥ 0}.
For a rational fan Σ in NR, V dominates some cone in Σ if and only if

S(σ)⊂ V for some σ ∈Σ. If V dominates a cone in Σ, then such a cone is unique

and is the smallest cone σ ∈Σ such that S(σ)⊂ V .

If Σ′ is a rational finite subdivision of Σ, then V dominates some cone in Σ

if and only if V dominates some cone in Σ′. In this case, if V dominates σ′ ∈Σ′,

then V dominates the smallest cone σ ∈Σ such that σ′ ⊂ σ.

LEMMA 3.1.7

Let Σ be a finite rational fan in NR. Then we have a bijection from the set

of all valuative submonoids V of L, which dominate some cone in Σ, onto the

projective limit lim←−Σ′, where Σ′ ranges over all finite rational subdivisions of Σ.



354 Kato, Nakayama, and Usui

This bijection sends V to (σΣ′)Σ′ , where σΣ′ denotes the cone in Σ′ dominated

by V . The inverse map is given by (σΣ′)Σ′ 
→
⋃

Σ′ S(σΣ′).

Proof

This is straightforward. �

LEMMA 3.1.8

Let Σ be a finite rational fan in NR. Then we have the following bijection from

lim←−Σ′ |toric|(Σ′), where Σ′ ranges over all finite rational subdivisions of Σ, to the

set of all pairs (V,h) of a valuative submonoid V of L dominating some cone in Σ

and a homomorphism h : V ×→R>0. If (xΣ′)Σ′ is an element of lim←−Σ′ |toric|(Σ′)

and (σΣ′ , hΣ′) (where σΣ′ ∈Σ′, hΣ′ : S(σΣ′)→R≥0) is the pair corresponding to

xΣ′ (Section 1.4.1), then the pair (V,h) corresponding to (xΣ′)Σ′ is as follows:

V =
⋃

Σ′ S(σΣ′), and h is the homomorphism V × → R>0 whose restriction to

S(σΣ′)× is hΣ′ for any Σ′.

Proof

This can be shown by using Lemma 3.1.7. �

PROPOSITION 3.1.9

Let S be as in Section 3.1.2, and assume that we are given a chart S →MS with

S an fs monoid, let L = Sgp, let N = Hom(L,Z), and let Σ be the fan in NR

of all faces of the cone Hom(S,Radd
≥0 ). Here Radd denotes R≥0 regarded as an

additive monoid. Then we have a Cartesian diagram of topological spaces

Sval → lim←−Σ′ |toric|(Σ′)

↓ ↓
S → |toric|(Σ) = Hom(S,Rmult

≥0 )

where Σ′ ranges over all finite rational subdivisions of Σ, and the lower row sends

s ∈ S to the homomorphism f 
→ |f(s)| (f ∈ S).

Proof

For s ∈ S, let S(s) = S(σ), where σ is the element of Σ such that the image

of s in |toric|(Σ) corresponds to a pair (σ,h) for some h : S(σ)× →Rmult
>0 (see

Section 1.4.1). Then S(s)× coincides with the inverse image of O×
S,s under the

canonical map Sgp →Mgp
S,s, and S(s) is generated by S and S(s)×. We have

S(σ)/S(σ)×
∼=→ (MS/O×

S )s.

By Lemma 3.1.8, the fiber product S ×|toric|(Σ) lim←−Σ′ |toric|(Σ′) is identified

with the set of all triples (s,V,h), where s ∈ S, V is a valuative submonoid

of Sgp such that V ⊃ S and V × ∩ S = S(s)×, and h is a homomorphism V ×→
Rmult

>0 whose restriction to S(s)× coincides with the composition S(s)×→O×
S,s→

Rmult
>0 , where the last map is f 
→ |f(s)|. By the isomorphism S(σ)/S(σ)×

∼=→
(MS/O×

S )s, a valuative submonoid V of Sgp such that V ⊃ S and V ×∩S = S(s)×
corresponds bijectively to a valuative submonoid V ′ of (Mgp

S /O×
S )s containing
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(MS/O×
S )s and (V ′)×∩ (MS/O×

S )s = {1}. Furthermore, if Ṽ ′ denotes the inverse

image of V ′ in Mgp
S,s, (Ṽ

′)× is the pushout of V × ← S(s)× →O×
S,s. Hence, h

corresponds to a homomorphism h′ : (Ṽ ′)× → Rmult
>0 whose restriction to O×

S,s

coincides with f 
→ |f(s)|. Hence, we have a bijection (s,V,h) 
→ (s,V ′, h′) from

the fiber product to Sval. In the converse map (s,V ′, h′) 
→ (s,V,h), V is the

inverse image of V ′ under the canonical map Sgp → (Mgp
S /O×

S )s and h is the

homomorphism V ×→Rmult
>0 induced by h′. By using these explicit constructions

of the bijection between Sval and the fiber product, it is easy to see that this

bijection is a homeomorphism. �

COROLLARY 3.1.10

For S as in Section 3.1.2, the map Sval→ S is proper.

LEMMA 3.1.11

Let S and S′ be as in Section 3.1.2, and assume that we are given a strict

morphism S′ → S of locally ringed spaces over K with log structures (for the

word “strict,” see Corollary 1.3.15). Then the canonical map S′
val→ S′ ×S Sval

is a homeomorphism.

Proof

For any s′ ∈ S′ with image s in S, the canonical map (MS/O×
S )s→ (MS′/O×

S′)s′

is an isomorphism from the assumption. From this, we see that the map S′
val→

S′×S Sval is bijective. Since this map is continuous and since both S′
val and S′×S

Sval are proper over S
′ (see Corollary 3.1.10), this map is a homeomorphism. �

LEMMA 3.1.12

Let S be as in Section 3.1.2, and let |S| be the topological space S with the

sheaf of all R-valued continuous functions. Endow |S| with the log structure M|S|
associated to the composition MS →OS →O|S|, where the second arrow is f 
→
|f |, which we regard as a prelog structure. Here |f | denotes the function s 
→
|f(s)|. Then M|S| is an fs log structure, and we have a canonical homeomorphism

|S|val∼=Sval.

Proof

If S →MS is a chart with S an fs monoid, then the composition S →MS →
M|S| is also a chart. Hence, M|S| is an fs log structure. The canonical map

(MS/O×
S )s→ (M|S|/O×

|S|)s is an isomorphism for any s ∈ S, and hence, we have

a canonical bijection |S|val→ Sval. It is easy to see that this is a homeomorphism.

�

3.1.13

Assume now that S is an object of B′
R(log) (see Section 1.3.7). We endow Sval

with a sheaf OSval
of rings and a log structure MSval

with sign as follows. Locally

on S, take a positive chart S →MS,>0 (see Section 1.3.10), let Σ be the fan
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of faces of the cone Hom(S,Radd
≥0 ), and for a rational finite subdivision Σ′ of Σ,

regard S(Σ′) := S×|toric|(Σ) |toric|(Σ′) as an object of B′
R(log) by taking the fiber

product in B′
R(log). Here we use the fact that the underlying topological space of

this fiber product is the same as the fiber product of the underlying topological

spaces by Corollary 1.3.15(i) and by the fact that S→ |toric|(Σ) is strict.
We define OSval

(resp., MSval
) as the inductive limit of OS(Σ′) (resp., MS(Σ′))

by using Proposition 3.1.9. This sheaf of rings and the log structure with sign

are independent of the choice of the chart and, hence, are defined globally. In

fact, if we have two charts S →MS,>0 and S ′ →MS,>0, then there is a third

chart S ′′ →MS,>0 with homomorphisms S → S ′′ and S ′ → S ′′ of charts. It is

easy to see that the sheaf of rings and the log structure with sign given by the

chart S (resp., S ′) are isomorphic to the ones given by the chart S ′′, and that

the composite isomorphisms between the ones given by the chart S and the ones

given by the chart S ′ are independent of the choice of the third chart S ′′.

We call OSval
the sheaf of real analytic functions.

3.1.14

A log modification S′→ S in B′
R(log) induces an isomorphism

(S′)val
∼=→ Sval

of locally ringed spaces over R with log structures with sign.

Proof

This is clear. �

3.1.15

For S ∈ B′
R(log) and for x= (s,V,h) ∈ Sval, V is identified with the inverse image

of (MSval
/O×

Sval
)x under the canonical map (Mgp

S /O×
S )s → (Mgp

Sval
/O×

Sval
)x, and

h : Ṽ ×
>0→Rmult

>0 coincides with the composition Ṽ ×
>0→OSval,>0,x→Rmult

>0 , where

the first arrow is induced from Ṽ>0 ⊂MS,>0,s→MSval,>0,x and the second arrow

is f 
→ f(x).

3.1.16

Let S be a locally ringed space. Then a log structureM on S is said to be valuative

if it is integral and satisfies the following condition: for any local section f of Mgp,

locally we have either f ∈M or f−1 ∈M , that is, every stalk of M is valuative.

By Section 3.1.15, for S ∈ B′
R(val), the log structure of Sval is valuative.

3.1.17

Let S1, T , T̄ , Z, Z̄, T (s)⊂ T , and Z(s)⊂ Z (for s ∈ Z̄) be as in Section 1.4.8.

We give a description (1) below of the valuative space Z̄val associated to Z̄ as a

set. This will be used in Section 3.3.3.

For a valuative submonoid V of Sgp
1 , let T (V ) := Hom(Sgp

1 /V ×,R>0)⊂ T =

Hom(S1,Rmult
>0 ). Then we have the following.
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(1) Z̄val is identified with the set of all triples (s,V,Z ′), where s ∈ Z̄, V is a

valuative submonoid of Sgp
1 such that V ⊃ S1 and such that V ×∩S1 =Ker(S1→

(MZ̄/O×
Z̄
)s), and Z ′ is a T (V )-orbit in Z(s). (Note that Z(s) is a T (s)-torsor

and T (V )⊂ T (s).)

This is proved as follows. Let L = Sgp
1 , and let Σ be the fan of all faces

of the cone Hom(S1,Radd
≥0 )⊂NR =Hom(L,R). Then by Proposition 3.1.9, Z̄val

is the projective limit of the log modifications of Z̄ corresponding to rational

finite subdivisions Σ′ of Σ. By Lemma 3.1.7, the projective limit of the sets Σ′ is

identified with the set of valuative cones V as above. Hence, the above description

(1) of Z̄val follows from the descriptions of log modifications of Z̄ in Section 1.4.8

as sets by taking the projective limit.

3.2. The category CR(val)+

We define categories CR(val) and CR(val)+ ⊂ CR(val). In Section 3.3, we will see

that the valuative spaces associated to the spaces of SL(2)-orbits and the space

of Borel–Serre orbits belong to CR(val)+.

3.2.1

Let CR(val) be the category of objects of CR (see Section 1.3.1) endowed with a

valuative log structure (see Section 3.1.16) with sign. We have CR(sat)⊃ CR(val)

(see Section 1.3.7).

PROPOSITION 3.2.2

Let S be an object of B′
R(log)+. Then Sval belongs to CR(val).

For the proof, we use the following lemma.

LEMMA 3.2.3

Let (Sλ)λ be a directed projective system in CR, let S be the projective limit of

the topological spaces Sλ, and endow S with the inductive limit of the inverse

images of OSλ
. Assume that there is an open set S′ of S satisfying the following

conditions (i) and (ii).

(i) S′ belongs to CR.

(ii) For any open set U of S, the map OS(U)→OS(U ∩ S′) is injective.

Then S ∈ CR.

Proof

Let F be the sheaf on S of morphisms to Rn of locally ringed spaces over R,

where Rn is endowed with the sheaf of all real analytic functions. We have a

morphism a : F → On
S by f 
→ (f∗(tj))1≤j≤n, where the tj ’s are the standard

coordinate functions of Rn. We also have a morphism b :On
S →F , which comes

from the fact that, since Sλ belongs to CR, On
S is regarded as the inductive limit

of the inverse images of sheaves on Sλ of morphisms to Rn. As is easily seen, the
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composition ab :On
S →On

S is the identity morphism. We prove that ba : F →F
is the identity morphism. Let f ∈ F(U) with U an open set of S. It is easy to see

that f and ba(f) induce the same underlying continuous maps U →Rn, which

we denote by g. It remains to prove that the homomorphisms g−1(ORn)→OU

given by f and ba(f) coincide. Since OS(V )→OS(V ∩ S′) is injective for any

open set V of U , it is sufficient to prove that the restrictions of f and ba(f) to

U ∩S′ coincide. But S′ belongs to CR, and hence, ba gives the identity morphism

of F|S′ . �

3.2.4

We prove Proposition 3.2.2. By Section 3.1.14, it is sufficient to prove this for

objects of B′
R(log)[[+]]. As in Section 2.7.1, let Y ⊂Rn

≥0×A be a standard object

of B′
R(log)[[+]]. It is sufficient to prove that Yval belongs to CR. Let L = Zn,

let Σ be the set of all faces of the cone Rn
≥0 ⊂ Hom(L,Radd) = Rn, and for

a rational finite subdivision Σ′ of Σ, let Y (Σ′) = {(t, x) ∈ |toric|(Σ′) × A | x ∈
AJ(t)}, where J(t) = {j | 1 ≤ j ≤ n, tj = 0} with tj the jth component of the

image of t in |toric|(Σ) =Rn
≥0. We apply Lemma 3.2.3 by taking the projective

system (Y (Σ′))Σ′ in CR as (Sλ)λ and by taking the open set Rn
>0 × A of Yval

as S′. Then the projective limit S in Lemma 3.2.3 is Yval. The injectivity of

OS(U)→OS(U ∩S′) for any open set U of Yval is seen easily. Hence, Yval belongs

to CR by Lemma 3.2.3.

3.2.5

We define a full subcategory CR(val)+ of CR(val). This is the category of all

objects which are locally isomorphic to open subobjects of Sval with objects S of

B′
R(log)+. We can replace B′

R(log)+ by B′
R(log)[[+]] in this definition to get the

same category CR(val)+. Hence, CR(val)+ is the category of objects which are

locally an open subobject of

Yval =
{
(t, x) ∈ (Rn

≥0)val ×A | x ∈AJ(t)

}
.

Here n, A, (AJ)J , and Y are as in Section 2.7.1, and J(t) = {j | 1≤ j ≤ n, tj = 0},
where tj denotes the jth component of the image of t in Rn

≥0.

PROPOSITION 3.2.6

For any object S of B′
R(log) and for any object X of CR(val), the canonical

map Mor(X,Sval)→Mor(X,S) is bijective. Consequently, if S is an object of

B′
R(log)+, then Sval represents the functor X 
→ Mor(X,S) from CR(val) to

(Sets).

Proof

It is sufficient to prove that, in the situation of Proposition 3.1.9, the canonical

map Mor(X,S ×|toric|(Σ) |toric|(Σ′))→Mor(X,S) is bijective. Here S ×|toric|(Σ)

|toric|(Σ′) denotes the fiber product in B′
R(log). By Proposition 1.3.11, it is the

fiber product in CR(sat). Hence, it is sufficient to prove that the map Mor(X,
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|toric|(Σ′))→Mor(X, |toric|(Σ)) is bijective. This last fact is reduced to Propo-

sition 1.3.9. �

PROPOSITION 3.2.7

(1) The category CR(val)+ has finite products. We will denote the product in

CR(val)+ as X ×val Y .

(2) A finite product in CR(val)+ is a finite product in CR(val).

(3) The functor B′
R(log)+→CR(val)+, S 
→ Sval preserves finite products.

(4) For objects S1, . . . , Sn of CR(val)+, the product of S1, . . . , Sn in the cat-

egory CR(sat) exists. As a topological space, it is the product of the topological

spaces Sj . We will denote this product in CR(sat) by S1 ×sat · · · ×sat Sn.

Proof

If Y and Y ′ are objects of B′
R(log)+, then by Proposition 2.7.9, (Y ×Y ′)val is an

object of CR(val)+, and for any object X of CR(val)+, we have

Mor
(
X, (Y × Y ′)val

)
=Mor(X,Y × Y ′) =Mor(X,Y )×Mor(X,Y ′)

=Mor(X,Yval)×Mor
(
X, (Y ′)val

)
,

where the first and the third equalities follow from Proposition 3.2.6, and the

second equality follows from Proposition 1.3.11(2). This proves (1), (2), and (3).

We prove (4). Locally on each Sj , we have Sj = (S′
j)val for an object S′

j of

B′
R(log)+. Locally in each S′

j , take a chart Sj →MS′
j
, let Σj be the fan of all faces

of the cone Hom(Sj ,Radd
≥0 ), and consider S = lim←−

∏n
j=1 S

′
j ×|toric|(Σj) |toric|(Σ′

j),

where Σ′
j ranges over all rational finite subdivisions of Σj . Endow S with the

inductive limit of the inverse images of O and the log structures with sign of∏n
j=1 S

′
j×|toric|(Σj) |toric|(Σ′

j). Then S belongs to CR(sat) by Lemma 3.2.3 and is

the product of Sj in CR(sat). This locally constructed S glues to a global S. �

The following lemma will be used in Section 3.4.

LEMMA 3.2.8

Let n ≥ 0, and let Sj → S′
j (1 ≤ j ≤ n) be morphisms in CR(val)+ having the

Kummer property of log structure in the sense (K) below. Let S (resp., S′) be

the product S1×sat · · ·×sat Sn (resp., S′
1×sat · · ·×sat S

′
n) in the category CR(sat),

and let Sval = S1 ×val · · · ×val Sn (resp., S′
val = S′

1 ×val · · · ×val S
′
n) be the product

in the category CR(val)+ (see Proposition 3.2.7).

(K) We say that a morphism X→ Y of locally ringed spaces with log structure

has the Kummer property of log structure if, for any x ∈X and the image y of

x in Y , the homomorphism (MY /O×
Y )y → (MX/O×

X)x is injective, and for any

a ∈ (MX/O×
X)x, there is m≥ 1 such that am belongs to the image of (MY /O×

Y )y.
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Then the diagram

Sval → S′
val

↓ ↓
S → S′

is Cartesian in the category of topological spaces.

Proof

The set Sval is identified with the set of all triples (s,V,h), where s ∈ S, V is a val-

uative submonoid of (Mgp
S /O×

S )s such that V ⊃ (MS/O×
S )s and V ∩(MS/O×

S )s =

{1}, and h is a homomorphism (Ṽ )×→R>0, where Ṽ denotes the inverse image

of V in MS,>0,s such that the restriction of h to O×
S,>0,s coincides with f 
→ f(s).

Furthermore, (MS/O×
S )s

∼=
∏n

j=1(M
gp
Sj
/O×

Sj
)sj , where sj denotes the image of

s in Sj . Similar statements hold for S′. From these, we see that the diagram

is Cartesian in the category of sets. Since Sval and the fiber product E of

S → S′ ← S′
val in the category of topological spaces are proper over S, we see

that the canonical map Sval→E is a homeomorphism. �

3.3. DBS,val, DI
SL(2),val, D

II
SL(2),val, D

�
SL(2),val

3.3.1

We define

DBS,val, DI
SL(2),val, DII

SL(2),val, D�
SL(2),val

as the valuative spaces associated to the objects

DBS, DI
SL(2), DII

SL(2), D�
SL(2)

of B′
R(log) (see Section 3.1.13), respectively. By Theorem 2.7.14, Proposition

3.2.2, and Section 3.2.5, they belong to CR(val)+. We call DBS,val the space of

valuative Borel–Serre orbits, and we call the other spaces DI
SL(2),val and so on

spaces of valuative SL(2)-orbits.

DI
SL(2),val and DII

SL(2),val are identified as sets because DI
SL(2) and DII

SL(2) are

identified as sets and the morphism DI
SL(2)→DII

SL(2) is strict (see Lemma 3.1.11).

They are denoted by DSL(2),val when we regard them just as sets.

3.3.2

Since a log modification induces an isomorphism of associated valuative spaces

(see Section 3.1.14), we have

D�,+
SL(2),val

∼=→D�
SL(2),val

∼=→D�,−
SL(2),val

∼=←D�,BS
SL(2),val.

Hence, the morphisms

D�,+
SL(2)→DII

SL(2), D�,BS
SL(2)→DBS

(see Sections 2.5, 2.6) induce morphisms

D�
SL(2),val→DII

SL(2),val, D�
SL(2),val→DBS,val.
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3.3.3

These valuative spaces are described as sets as follows. Let situations (a)–(d)

and the notation be as in Sections 2.4.4 and 2.4.5. By Section 3.1.17, we have

the following. As a set, Dval is identified with the set of all triples (x,V,Z),

where x ∈ D, V is a valuative submonoid of (Mgp
D

/O×
D
)x = X(Sx) such that

X(Sx)
+ ⊂ V and X(Sx)

+ ∩ V × = {1}, and Z is a T (V )-orbit in the T (x)-torsor

Z(x). Here

T (V ) := Hom
(
X(Sx)/V

×,Rmult
>0

)
⊂ T (x) = Hom

(
X(Sx),R

mult
>0

)
.

3.3.4

Let the notation be as in Section 3.3.3. For a point z = (x,V,Z) ∈Dval, the stalk

(MDval
/O×

Dval
)z is described as follows. In situations (a)–(c), (MDval

/O×
Dval

)z =

V/V ×. In situation (d), (MDval
/O×

Dval
)z = V ′/(V ′)×, where V ′ = V ∩(X(Sx)

+)gp.

3.3.5

In [16, Definition 2.6] and [17, Definition 5.1.6], which treated the pure case, we

defined the set DBS,val in a different style. Following the style in [16, 2.6] and

[17, 5.1.6], we can define DBS,val also as the set of all triples (T,V,Z), where T is

an R-split torus in GR(grW ), V is a valuative submonoid of the character group

X(T ) of T , and Z ⊂D, satisfying the following conditions (i)–(iv).

(i) Let T>0 be the connected component of T (R) containing the unit ele-

ment. Then Z is either a T>0-orbit for the lifted action in Section 1.2.6 or an

R>0 × T -orbit in Dnspl for the lifted action. Here t ∈R>0 acts on grW by the

multiplication by tw on grWw .

(ii) Let r ∈ Z, let r̄ := r(grW ) ∈ D(grW ), let Kr̄ be the maximal compact

subgroup of GR(grW ) associated to r̄, and let θKr̄ :GR(grW )→GR(grW ) be the

Cartan involution associated to Kr̄. Then θKr̄(t) = t−1 for any t ∈ T .

(iii) V × = {1}.
(iv) Consider the direct sum decomposition grW =

⊕
χ∈X(T )(gr

W )χ by the

action of T . Then for any χ ∈ X(T ), the subspace
⊕

χ′∈V −1χ(gr
W )χ′ is Q-

rational.

The relation with the presentation in Section 3.3.3 of DBS,val is as follows.

(P,V,Z) ∈DBS,val in the presentation in Section 3.3.3 corresponds to (T,V ′,Z)

in the above presentation, where T ⊂ SP is the annihilator of V × in SP and

V ′ = V/V × ⊂X(T ). The group T (V ) in Section 3.3.3 coincides with T>0 in the

above (i).

Conversely, for a triple (T,V,Z) here, the corresponding triple in the presen-

tation of DBS,val in Section 3.3.3 is (P,V ′,Z), where P is the Q-parabolic sub-

group of GR(grW ) defined as the connected component (as an algebraic group)

of the algebraic subgroup of GR(grW ) consisting of all elements which preserve

the subspaces
⊕

χ′∈V −1χ(gr
W )χ′ of grW , and V ′ is the inverse image of V under

the homomorphism X(SP )→ X(T ) induced by the canonical homomorphism

T → SP .
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3.3.6

We describe the map D�
SL(2),val→DII

SL(2),val. This map is described as x= (p,V,

Z) 
→ (p,V ′,Z ′), using Section 3.3.3 as follows.

(0) On D, this map is the identity map.

(1) For an A-orbit which does not belong to D, V ′ = V and Z ′ = Zspl.

(2) Assume that (p,V,Z) is a B-orbit, let n be the rank of p, and identify

X(Sx) =Z×X(Sp) with Z×Zn. Let e= (1,−1, . . . ,−1) ∈Z×Zn.

(2.1) Assume −e /∈ V (hence e ∈ V ). Then V ′ = {a= (a0, a1, . . . , an) ∈Zn+1 |
a− a0e ∈ V }, and Z ′ = Z.

(2.2) Assume e,−e ∈ V . Then V ′ = {a ∈Zn | (0, a) ∈ V }, and Z ′ = Z.

(2.3) Assume e /∈ V (hence −e ∈ V ). Then V ′ = {a ∈ Zn | (0, a) ∈ V }, and
Z ′ = Zspl.

3.4. The morphism η� :D�
SL(2),val→DBS,val

3.4.1

The map η� : D�
SL(2),val → DBS,val is described as follows. This description is

similar to the pure case in [16, Theorem 3.11] and [17, Theorem 5.2.11].

The map η� sends (p,V,Z) ∈D�
SL(2),val in the presentation of D�

SL(2),val in

Section 3.3.3 to (T,V ′,Z) ∈DBS,val in the presentation ofDBS,val in Section 3.3.5,

where T and V ′ are as follows. Let T ′ ⊂ Sp be the annihilator of V × ⊂X(Sp).

Then T is the image of T ′ → GR(grW ) under τ�p . V ′ is the inverse image of

V/V × ⊂X(T ′) under the homomorphism X(T )→X(T ′) induced by the canon-

ical homomorphism T ′→ T .

3.4.2

We also have the following description of η� by regarding D�
SL(2),val as D

�,BS
SL(2),val.

Let the notation be as in Section 2.6. By Section 3.1.17, an element of D�,BS
SL(2),val

is written as (p,P,V,Z), where p ∈ DSL(2)(gr
W ), P ∈ P(p), V is a valuative

submonoid ofX(Sp,P ) such thatX(Sp,P )
+ ⊂ V andX(Sp,P )

+∩V × = {1}, and Z

is either a τ�(Hom(X(Sp,P )/V
×,R>0))-orbit in D or a τ̃�(R>0×Hom(X(Sp,P )/

V ×,R>0))-orbit in Dnspl for the lifted action such that the image of Z in D(grW )

is contained in Z(p). The map η� sends (p,P,V,Z) ∈ D�,BS
SL(2),val to (P,V ′,Z) ∈

DBS,val in the presentation of DBS,val as a set in Section 3.3.3, where V ′ ⊂X(SP )

is the inverse image of V under the homomorphism X(SP )→X(Sp,P ) induced

by the canonical homomorphism Sp,P → SP .

LEMMA 3.4.3

The morphism η� :D�
SL(2),val→DBS,val has the Kummer property of log structure

in the sense of Lemma 3.2.8 (K).
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Proof

Let x= (p,P,V,Z) ∈D�,BS
SL(2),val =D�

SL(2),val (see Section 3.4.2), and let y be the

image of x in DBS,val. By Section 3.3.4, in the case of an A-orbit (resp., a B-

orbit), V is a valuative submonoid of X(Sp,P ) (resp., Z×X(Sp,P )), and the stalk

of M/O× of D�
SL(2),val at x is identified with V/V ×. On the other hand, the stalk

of M/O× of DBS,val at y is identified with V ′/(V ′)×, where in the case of an

A-orbit (resp., a B-orbit), V ′ is the inverse image of V in (X(SP )
+)gp (resp.,

Z× (X(SP )
+)gp) for the canonical map (X(SP )

+)gp ⊂X(SP )→X(Sp,P ). Note

that (X(SP )
+)gp is of finite index in X(SP ). Furthermore, since the kernel of

Sp,P → SP is finite, the cokernel of X(SP )→X(Sp,P ) is finite. Hence, the map

V ′/(V ′)×→ V/V × is injective, and for any element a of V/V ×, there is m≥ 1

such that am belongs to the image of V ′/(V ′)×. �

THEOREM 3.4.4

The map η� :D�
SL(2),val→DBS,val in CR(val)+ has the following properties.

(1) The map η� :D�
SL(2),val→DBS,val is injective.

(2) Let Q ∈
∏

wW(grWw ), and define the open set D�
SL(2),val(Q) of D�

SL(2),val

as the inverse image of the open set DSL(2)(gr
W )(Q) of DSL(2)(gr

W ). Then the

topology of D�
SL(2),val(Q) coincides with the restriction of the topology of DBS,val

through η�.

(3) The diagram

D�
SL(2),val

η�

→ DBS,val

↓ ↓∏
wDSL(2)(gr

W
w )val

η→
∏

wDBS(gr
W
w )val

is Cartesian in the category of topological spaces.

Proof

We prove (3) first. For each x= (xw)w ∈
∏

wDSL(2)(gr
W
w )val, for the image y =

(yw)w of x in
∏

wDBS(gr
W
w )val, and for each w ∈Z, there is an open neighborhood

Uw of xw and an open neighborhood Vw of yw having the following properties

(i) and (ii).

(i) The image of Uw in DBS(gr
W
w )val is contained in Vw.

(ii) Let U be the inverse image of
∏

w Uw in D�
SL(2),val, and let V be the

inverse image of
∏

w Vw in DBS,val. Take any F ∈ D(grW ), and let L̄ = L̄(F ).

Then we have a commutative diagram

U ∼=
∏

val,w Uw ×val spl(W )×val L̄

↓ ↓
V ∼=

∏
val,w Vw ×val spl(W )×val L̄

where
∏

val,w is the product in CR(val)+, the upper row is an isomorphism over∏
val,w Uw, and the lower row is an isomorphism over

∏
val,w Vw.
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By Lemmas 3.2.8 and 3.4.3, the following diagram is Cartesian in the cate-

gory of topological spaces:∏
val,w Uw ×val spl(W )×val L̄ →

∏
val,w Vw ×val spl(W )×val L̄

↓ ↓∏
w Uw × spl(W )× L̄ →

∏
w Vw × spl(W )× L̄

Theorem 3.4.4(3) follows from these two Cartesian diagrams.

Next we prove (1). The injectivity was proved in [16, Theorem 3.11] in the

pure case. Hence, the map
∏

wDSL(2)(gr
W
w )val →

∏
wDBS(gr

W
w )val is injective.

By (3), this proves the injectivity of D�
SL(2),val→DBS,val.

We prove (2). Assume first that we are in the pure situation of weight w. Let

T1 be the topology of DSL(2) defined in [15, II], and let T1,val be the topology of

DSL(2),val defined in this article. Let T2,val be the topology of DSL(2),val which is

the weakest topology satisfying the following two conditions (i) and (ii).

(i) For any open set U of DBS,val, the pullback of U in DSL(2),val is open.

(ii) For any Q ∈
∏

wW(grWw ), DSL(2),val(Q) is open.

Let T2 be the topology of DSL(2) as a quotient space of DSL(2),val which is

endowed with the topology T2,val. Recall that in [16] and [17], which treated the

pure case, the topologies of DSL(2) and DSL(2),val were defined as T2 and T2,val,
respectively (not as in the present series of articles). The study of T2 in [17,

Section 10] and the study of T1 in [15, II, Section 3.4] show that T1 = T2. Since
the map η� from DSL(2),val with T1,val to DBS,val is continuous as we have seen

in Section 2.6, we have that T1,val ≥ T2,val. Since the map DSL(2),val → DSL(2)

is proper for T1,val (see Corollary 3.1.10) and also for T2,val (see [17, Theorem

3.14]), we have T1,val = T2,val.
Thus, we have proved (2) in the pure case. By (3), we have a Cartesian

diagram of topological spaces

D�
SL(2),val → DBS,val

↓ ↓
(
∏

wDSL(2)(gr
W
w )val)× spl(W ) → (

∏
wDBS(gr

W
w )val)× spl(W )

The vertical arrows are proper by Proposition 2.3.16 and [15, I, Corollary 8.5].

Hence, (2) is reduced to the pure case. �

3.4.5

As in Theorem 3.4.4(2), the topology of D�
SL(2),val(Q) coincides with the induced

topology from DBS,val. We show an example in which the topology of D�
SL(2),val is

not the induced one from DBS,val. This example is pure of weight 3. So D�
SL(2),val

is written as DSL(2),val below.

Let H0,Z = H ′
0,Z ⊗ Sym2(H ′

0,Z), where H ′
0,Z is a free Z-module of rank 2

with basis e1, e2. Hence, H0,Z is of rank 6. The intersection form 〈·, ·〉 on H0,Z

is b⊗Sym2(b), where b is the antisymmetric bilinear form on H ′
0,Z characterized
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by 〈e1, e2〉=−1. We have the following SL(2)-orbit (ρ,ϕ) in two variables:

ρ(g1, g2) = g1 ⊗ Sym2(g2), ϕ(z1, z2) = F (z1)⊗ Sym2F (z2)

(g1, g2 ∈ SL(2), z1, z2 ∈ C), where F (z) is the decreasing filtration on H ′
0,C

defined by

F (z)2 = 0⊂ F (z)1 =C · (ze1 + e2)⊂ F (z)0 =H ′
0,C.

The associated homomorphism τ� : G2
m → GR is as follows. τ�(t1, t2) acts on

e2⊗ e22 by t1t
3
2, on e2⊗ e1e2 by t1t2, on e2⊗ e21 by t1t

−1
2 , on e1⊗ e22 by t−1

1 t2, on

e1 ⊗ e1e2 by t−1
1 t−1

2 , and on e1 ⊗ e21 by t−1
1 t−3

2 . The associated weight filtrations

W (1) and W (2) are as follows:

W
(1)
1 = 0⊂W

(1)
2 = e1 ⊗ Sym2H ′

0,R =W
(1)
3 ⊂W

(1)
4 =H0,R,

W
(2)
−1 = 0⊂W

(2)
0 =Re1 ⊗ e21 =W

(2)
1 ⊂W

(2)
2

=W
(2)
1 +Re1 ⊗ e1e2 +Re2 ⊗ e21 =W

(2)
3

⊂W
(2)
4 =W

(2)
3 +Re1 ⊗ e22 +Re2 ⊗ e1e2 =W

(2)
5 ⊂W

(2)
6 =H0,R.

Let

Φ = {W (1),W (2)}.

We show that DSL(2),val(Φ) is not open for the topology induced from the

topology of DBS,val. Let V be the valuative submonoid of X(G2
m) which is, under

the identification X(G2
m) = Z2, identified with the set of all (a, b) ∈ Z2 satis-

fying either (a > 0) or (a = 0 and b ≥ 0). Consider the point x := (p,V,Z) ∈
DSL(2),val, where p is the class of this SL(2)-orbit and Z is the torus orbit

{F (iy1)⊗ Sym2F (iy2) | y1, y2 ∈R>0} of p. The map DSL(2),val→DBS,val sends

x to y := (T,V,Z) in the presentation in Section 3.3.5 of DBS,val, where T is

the image of τ� = τ�p :G2
m→GR and we regard V as a submonoid of X(T ) via

the canonical isomorphism G2
m
∼= T given by τ�p . In the presentation of DBS,val

in Section 3.3.3, this point y coincides with (P,V ′,Z), where P and V ′ are as

follows. P is the Q-parabolic subgroup of GR consisting of all elements which

preserve the following subspaces W ′
w (w ∈Z):

W ′
1 =Re1 ⊗ e21, W ′

2 =W ′
1 +Re1 ⊗ e1e2, W ′

3 =W ′
2 +Re1 ⊗ e22,

W ′
4 =W ′

3 +Re2 ⊗ e21, W ′
5 =W ′

4 +Re2 ⊗ e1e2.

We have SP
∼=G3

m. The inclusion map T → P induces a canonical homomorphism

T → SP . V
′ ⊂X(SP ) is the inverse image of V under the canonical homomor-

phism X(SP )→X(T )∼=X(G2
m).

Let f be the element of Lie(Pu) which sends e2 ⊗ e21 to e1 ⊗ e22 and kills

e1 ⊗ Sym2H ′
0,R, e2 ⊗ e1e2, and e2 ⊗ e22. For c ∈R, we have the SL(2)-orbit in

two variables (ρ(c), ϕ(c)) defined by

ρ(c)(g1, g2) = exp(cf)ρ(g1, g2) exp(−cf), ϕ(c)(z1, z2) = exp(cf)ϕ(z1, z2).
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The associated weight filtrations of (ρ(c), ϕ(c)) are exp(cf)W (1) and exp(cf)W (2).

Since f respects W (1) but not W (2), {exp(cf)W (1), exp(cf)W (2)} = {W (1),

exp(cf)W (2)} is not contained in Φ if c �= 0. If c ∈ Q, then the filtration

exp(cf)W (2) is rational, and hence, (ρ(c), ϕ(c)) determines an element p(c) of

DSL(2). Let x(c) := (p(c), V,Z(c)) ∈DSL(2),val, where V is the same as above and

Z(c) is the torus orbit of p(c).

Now, when c ∈ Q � {0} converges to 0 in R, the image y(c) of x(c) in

DBS,val converges to y. This is because P acts on DBS,val(P ) continuously in

the natural way, y ∈DBS,val(P ), and y(c) = exp(cf)y for this action of P . Since

y(c) /∈ DSL(2),val(Φ), DSL(2),val(Φ) is not open for the topology induced by the

topology of DBS,val.

The set {x(c) | c ∈Q} is discrete in DSL(2),val, though the image {y(c) | c ∈Q}
in DBS,val has the topology of the subspace Q of R via the correspondence

y(c)↔ c. Thus, the topology of DSL(2),val is not the induced topology from

DBS,val.

3.5. The map η :DSL(2),val→DBS,val

3.5.1

We define a canonical map

η :DSL(2),val→DBS,val

following the method in the pure case (see [17]). But we will see that this map

need not be continuous. η is the unique map such that, for any x ∈DSL(2) and any

x ∈DSL(2),val lying over x, the restriction of η to the subset Z̄(x)val of DSL(2),val

(note x̃ ∈ Z̄(x)val) is the unique morphism in CR(val)+ whose restriction to Z(x̃)

is the inclusion morphism Z(x̃)
⊂→D ⊂DBS,val.

The map η coincides with the composition of the two maps DSL(2),val →
D�

SL(2),val

η�
val−→DBS,val, where the first arrow is the following map λval. The restric-

tion of λval to DSL(2),nspl,val is the morphism on the associated valuative spaces

induced from the morphism λ :DII
SL(2),nspl→D�

SL(2) in Section 2.5.6. The restric-

tion of λval to DSL(2),spl,val is the morphism on the associated valuative spaces

induced from the isomorphism η :DII
SL(2),spl

∼=→D�
SL(2),spl in Section 2.5.6.

The composition DSL(2),val
λval−→ D�

SL(2),val → DSL(2),val is the identity map.

By Theorem 3.4.4(1), the map η :DSL(2),val→DBS,val is injective.

PROPOSITION 3.5.2

(1) The restriction of η to the open set DII
SL(2),nspl,val ∪D of DII

SL(2),val is a

morphism in CR(val).

(2) For any Φ ∈W , the topology of DII
SL(2),nspl,val(Φ)∪D coincides with the

topology induced from the topology of DBS,val.
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Proof

This restriction of η to DII
SL(2),nspl,val ∪D is the composition DII

SL(2),nspl,val∪D→

D�
SL(2),val

η�
val−→DBS,val, where the first arrow is the open immersion induced from

the isomorphism DII
SL(2) ∪D ∼=D�,+

SL(2)(σ2) in Theorem 2.5.5(2). This proves (1).

By this, (2) follows from Theorem 3.4.4(2). �

PROPOSITION 3.5.3

The equivalent conditions (i)–(vii) of Proposition 2.5.7 are equivalent to each of

the following conditions.

(viii) The identity map of D extends to an isomorphism DII
SL(2),val

∼=
D�

SL(2),val in CR(val).

(ix) The map λval :D
I
SL(2),val→D�

SL(2),val (Section 3.5.1) is continuous.

(x) The map η :DII
SL(2),val→DBS,val is continuous.

(xi) The map η :DI
SL(2),val→DBS,val is continuous.

(xii) The map D�,mild
SL(2),val→DSL(2),val is injective.

Proof

(ii) ⇒ (viii). Take the associated valuative spaces.

The implications (viii) ⇒ (ix) and (viii) ⇒ (xii) are clear.

The implications (viii) ⇒ (x) and (x) ⇒ (xi) are easily seen.

(xi) ⇒ (ix). Use the fact that the topology of D�
SL(2),val(Φ) is the restriction

of the topology of DBS,val (see Theorem 3.4.4(2)).

(ix) ⇒ (iv). This is because DI
SL(2),val → DI

SL(2) is proper surjective (see

Corollary 3.1.10).

(xii) ⇒ (i). The proof of (vi) ⇒ (i) of Proposition 2.5.7 actually proves this.

In that proof, assuming (i) does not hold, we used x = (p,Z) ∈D�,mild
SL(2) with p

of rank 1 such that x �= xspl. Since p is of rank 1, these x and xspl are regarded

canonically as elements of D�,mild
SL(2),val whose images in DSL(2),val coincide. �

4. New spaces D�
Σ,[:] and D�

Σ,[val] of nilpotent orbits

In this Section 4, we define and consider the new spaces D�
Σ,[:] and D�

Σ,[val] of

nilpotent orbits (nilpotent i-orbits, to be precise, in our terminology).

In Sections 4.1–4.3, for a topological space S endowed with an fs log structure

on the sheaf of all R-valued continuous functions, we define topological spaces

S[:] (the space of ratios, Section 4.2) and S[val] (see Section 4.3), and we define

proper surjective continuous maps S[:] → S, Sval→ S[:], and S[val]→ S[:], where

Sval is as in Section 3.1. As will be explained in Section 4.4, in the case S =D�
Σ,

we obtain the new spaces of nilpotent i-orbits D�
Σ,[:] as S[:] and D�

Σ,[val] as S[val],

and Sval coincides with D�
Σ,val, which we have already defined in [15, III]. We



368 Kato, Nakayama, and Usui

construct CKS maps D�
Σ,[:]→DI

SL(2) and D�
Σ,[val]→DI

SL(2),val in Section 4.5. We

have already constructed the CKS map D�
Σ,val→DI

SL(2) in [15, III].

4.1. The space of ratios in toric geometry

4.1.1

The space of ratios which we consider appears in the following way. Consider

S = Spec(k[T1, T2]) with k a field. Regarding S as the toric variety associated

to the cone R2
≥0 ⊂R2, consider the toric varieties over k associated to rational

finite subdivisions of the cone R2
≥0 (see Section 1.4.1), and let X be the projective

limit of these toric varieties regarded as topological spaces with Zariski topology.

It is the projective limit obtained by blowing up the origin s = (0,0) ∈ S first

and then continuing to blow up the intersections of irreducible components of

the inverse image of Spec(k[T1, T2]/(T1T2))⊂ S on the blowup.

Let X0 ⊂X be the inverse image of s, and endow X0 with the topology as a

subspace of X . Then we have the following continuous surjective map from X0

to the interval [0,∞] ⊃R>0 despite the fact that the Zariski topology and the

topology of real numbers are very different in nature. If x ∈X0, then the image

of x in [0,∞] is defined as

sup
{
a/b | (a, b) ∈N2 �

{
(0,0)

}
, T b

1/T
a
2 ∈OX,x

}
= inf

{
a/b | (a, b) ∈N2 �

{
(0,0)

}
, T a

2 /T
b
1 ∈OX,x

}
.

Here N= Z≥0, and OX is the inductive limit of the inverse images on X of the

structural sheaves of the blowups. The image of x in [0,∞] is, roughly speaking,

something like the ratio log(T1)/ log(T2) at x.

In the definition below, this [0,∞] is the space R(N2) of ratios of the fs

monoid N2 = (MS/O×
S )s which is generated by the classes of T1 and T2. The

above relation with the projective limit of blowups is generalized in Proposition

4.1.11.

4.1.2

In this Section 4.1, the notation S is used for an fs monoid. We denote the

semigroup law of S multiplicatively unless we assume and state that S =Nn. So

the neutral element of S is denoted by 1.

4.1.3

For a sharp fs monoid S , let R(S) be the set of all maps r : (S ×S)� {(1,1)}→
[0,∞] satisfying the following conditions (i)–(iii).

(i) r(g, f) = r(f, g)−1.

(ii) r(f, g)r(g,h) = r(f,h) if {r(f, g), r(g,h)} �= {0,∞}.
(iii) r(fg,h) = r(f,h) + r(g,h).

We endow R(S) with the topology of simple convergence. It is a closed subset of

the product of copies of the compact set [0,∞] and hence is compact.
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REMARK 4.1.4

From condition (i), we have r(f, f) = 1. (Conversely, r(f, f) = 1 and (ii) imply (i).)

From this and from r(1, f) + r(f, f) = r(f, f), which comes from (iii), we get

r(1, f) = 0, r(f,1) =∞ for any f ∈ S � {1}.

4.1.5

For example, we have R(N2)∼= [0,∞], where r ∈R(N2) corresponds to r(q1, q2) ∈
[0,∞] with qj the standard jth basis of N2. A description of R(Nn) for general

n is given in Corollary 4.2.22.

4.1.6

We have a canonical bijection between R(S) and the set R′(S) of all equiva-

lence classes of ((S(j))0≤j≤n, (Nj)1≤j≤n), where n ≥ 0, S(j) is a face of S such

that

S = S(0) � S(1) � · · ·� S(n) = {1},

and Nj is a homomorphism S(j−1)→Radd such that Nj(S(j)) = 0 and such that

Nj(S(j−1) � S(j))⊂R>0. The equivalence relation is given by multiplying each

Nj by an element of R>0 (which may depend on j).

We define a map R(S)→R′(S) as follows. Let r ∈R(S). We give the corre-

sponding element of R′(S).
For f ∈ S � {1}, let S(r, f) = {g ∈ S | r(g, f) �=∞}. Then the conditions

(i)–(iii) on r in Section 4.1.3 show that S(r, f) is a face of S . For f, g ∈ S , we
have S(r, f)⊂ S(r, g) if and only if r(f, g) �=∞, and we have S(r, f)⊃ S(r, g) if
and only if r(f, g) �= 0. Hence, the faces of S of the form S(r, f) (f ∈ S � {1})
together with the face {1} form a totally ordered set for the inclusion relation.

Let S = S(0) � S(1) � · · ·� S(n) = {1} be all the members of this set. Take qj ∈
S(j−1) �S(j) (1≤ j ≤ n). We have a homomorphism Nj : S(j−1)→R defined by

Nj(f) = r(f, qj). This Nj kills S(j) and Nj(S(j−1)�S(j))⊂R>0. If we replace qj
by another element q′j , then Nj is multiplied by r(qj , q

′
j) ∈R>0. Thus, we have

the map R(S)→R′(S), r 
→ class((S(j))j , (Nj)j).

Next we define the inverse map R′(S) → R(S). Let class((S(j))0≤j≤n,

(Nj)1≤j≤n) ∈R′(S). Let (f, g) ∈ (S × S)� {(1,1)}. We define r(f, g) as follows.

Let j be the largest integer greater than or equal to 0 such that f belongs to

S(j), and let k be that of g.

(1) If j = k < n, then r(f, g) =Nj+1(f)/Nj+1(g).

(2) If j > k, then r(f, g) =∞.

(3) If j < k, then r(f, g) = 0.

This gives the map R′(S)→R(S).
It can be seen easily that the maps R(S)→ R′(S) and R′(S)→ R(S) are

inverses of each other.
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4.1.7

As in Section 3.1.1, for a sharp fs monoid S , let V (S) be the set of all valuative

submonoids V of Sgp such that V ⊃ S and V × ∩ S = {1}. We endow V (S) with
the following topology. For a finite set I of Sgp, let U(I) = {V ∈ V (S) | I ⊂ V }.
Then these U(I) form a basis of open sets of V (S).

4.1.8

We define a map

V (S)→R(S), V 
→ rV .

For V ∈ V (S), rV ∈R(S) is the map S × S � {(1,1)}→ [0,∞] defined by

rV (f, g) = sup
{
a/b | (a, b) ∈N2 �

{
(0,0)

}
, f b/ga ∈ V

}
= inf

{
a/b | (a, b) ∈N2 �

{
(0,0)

}
, ga/f b ∈ V

}
,

where (f, g) ∈ (S × S)� {(1,1)} (see Section 4.1.3).

PROPOSITION 4.1.9

The map V (S)→R(S) is continuous and surjective.

Proof

We first prove the continuity of V (S)→ R(S). Let f, g ∈ S � {1}, and assume

rV (f, g)> a/b, where a, b ∈N and b > 0. We have f b/ga ∈ V . If V ′ ∈ V (S) and

f b/ga ∈ V ′, we have rV ′(f, g)≥ a/b. This proves the continuity of V (S)→R(S)
(see Sections 4.1.7, 4.1.3).

We next prove the surjectivity of V (S) → R(S). Let class((S(j))0≤j≤n,

(Nj)1≤j≤n) ∈R′(S) (see Section 4.1.6). Then the corresponding element of R(S)
is the image in R(S) of the following element V ∈ V (S). For 1 ≤ j ≤ n, define

the Q-vector subspace Q(j) of the Q-vector space SQ = Q ⊗ Sgp by Q(j) :=

Ker(Nj : S(j−1)
Q →R). Then Q(j) ⊃ S(j)

Q . Take an isomorphism ofQ-vector spaces

λj :Q
(j)/S(j)

Q

∼=→Qd(j), where d(j) := dim(Q(j)/S(j)
Q ). Define V by the following.

Let a ∈ Sgp. When there is j such that 1 ≤ j ≤ n, a ∈ S(j−1)
Q , and a /∈ Q(j),

then a ∈ V if and only if Nj(a) > 0. When there is j such that a ∈ Q(j) and

a /∈ S(j)
Q , then a ∈ V if and only if the first nonzero entry of λj(a) ∈ Qd(j) is

greater than 0. �

4.1.10

Let k be a field, let S be the toric variety Spec(k[S]), and let X be the projective

limit as a topological space of the toric varieties over k (with Zariski topology)

which correspond to finite rational subdivisions of the cone Hom(S,Radd
≥0 ) (see

Section 1.4.1). Let OX be the inductive limit of the inverse images on X of

the structural sheaves of these toric varieties. Let X0 ⊂X be the inverse image
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of s ∈ S = Spec(k[S]), where s is the k-rational point of S at which all non-

trivial elements of S have value 0. Endow X0 with the topology as a subspace

of X .

We have a continuous map X0→ V (S) which sends x ∈X0 to {f ∈ Sgp | f ∈
OX,x} ∈ V (S). The induced map X0(k)→ V (S) is surjective. In fact, for each

V ∈ V (S), the inverse image of V in X0 under the map X0→ V (S) is identified
with Spec(k[V ×]). It has a k-rational point which sends all elements of V × to 1.

Composing with the map in Section 4.1.8 as

X0(k)⊂X0→ V (S)→R(S)

and using Proposition 4.1.9, we have the following result.

PROPOSITION 4.1.11

(1) The map X0→R(S) is continuous.

(2) The induced map X0(k)→R(S) is surjective.

COROLLARY 4.1.12

If we regard R(S) as a quotient space of V (S) or X0, then the topology of R(S)
coincides with the quotient topology.

This is because V (S) and X0 are quasicompact and R(S) is Hausdorff. Thus,

Zariski topology and the topology of real numbers are well connected here.

4.2. The space S[:] of ratios

4.2.1

For a locally ringed space S endowed with an fs log structure, we define the set

S[:] as the set of all pairs (s, r), where s ∈ S and r ∈R((MS/O×
S )s). We have the

canonical surjection S[:]→ S, (s, r) 
→ s.

4.2.2

Let K be a field endowed with a nontrivial absolute value | · | :K→R≥0. Let S be

a locally ringed space over K satisfying the equivalent conditions in Section 1.3.3,

and assume that we are given an fs log structure on S. We define a natural

topology of S[:] for which the projection S[:] → S is a proper continuous map

and which induces on each fiber of this projection the topology of R((MS/O×
S )s)

defined in Section 4.1.3.

4.2.3

Let K and S be as in Section 4.2.2. To define the topology on S[:], the method

is, so to speak, to combine the topology of S and the topologies of R(S) (see

Section 4.1) for S = (MS/O×
S )s (s ∈ S) by using a chart of the log structure.
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Assume first that we are given a chart S →MS of the log structure, where

S is an fs monoid. Fix c ∈R>0. We have a map

S[:]→ [0,∞]S×S , (s, r) 
→ rc,

where rc : S × S → [0,∞] is defined by the following (1) and (2). Let f, g ∈ S .

(1) If the images of f and g in MS,s belong to O×
S,s, then

rc(f, g) = sup
(
c,− log

(∣∣f(s)∣∣))/ sup(c,− log
(∣∣g(s)∣∣)).

(2) Otherwise,

rc(f, g) = r(f̄s, ḡs),

where f̄s (resp., ḡs) denotes the image of f (resp., g) in (MS/O×
S )s.

LEMMA 4.2.4

(1) The map

S[:]→ S × [0,∞]S×S , (s, r) 
→ (s, rc)

is injective.

(2) The topology on S[:] induced by the embedding in (1) is independent of

the choices of the chart and of the constant c > 0.

Proof

We can see that (1) follows from the fact that the map S → (MS/O×
S )s is sur-

jective for any s ∈ S.

We prove (2). If we have two charts S →MS and S ′→MS , we have locally on

S a third chart S ′′→MS with homomorphisms of charts S → S ′′ and S ′→S ′′.

It is clear that if this third chart and two homomorphisms of charts are given

and if the constant c > 0 is fixed, then the topology given by the chart S ′′→MS

and c is finer than the topology given by S →MS or S ′ →MS and c. Hence,

it is sufficient to prove that if we have a homomorphism S ′ → S from a chart

S ′→MS to a chart S →MS , then the topology given by the former chart and

the constant c′ > 0 is finer than the topology given by the latter and c > 0. It

suffices to prove that, for f, g ∈ S , the map (s, r) 
→ rc(f, g) is continuous for the

topology given by S ′→MS and c′.

CLAIM 1

Let f, g ∈ S, let s ∈ S, and assume that the images of f and g in (MS/O×
S )s

coincide. Let c, c′ > 0. Then for some neighborhood U of s in S, we have a con-

tinuous map Rc,c′(f, g) : U →R>0 whose value at s′ ∈ U is sup(c,− log(|f(s′)|))/
sup(c′,− log(|g(s′)|)) if the images of f and g in MS,s′ belong to O×

S,s′ , and is 1

otherwise.

This Claim 1 is proved easily.
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We continue the proof of (2). Let f, g ∈ S . Then locally on S, we have f ′, g′ ∈
S ′ and sections u, v of O×

S such that f = f ′u and g = g′v in MS . We have

rc(f, g) = rc′(f
′, g′)Rc,c′(f, f

′)(s)Rc′,c(g
′, g)(s).

This proves the desired continuity of rc(f, g). �

4.2.5

By the independence Lemma 4.2.4(2), we have a canonical topology of S[:] (glob-

ally).

4.2.6

Assume that S is sharp and that, for any f ∈ S � {1} and any s ∈ S, we have

|f(s)| < 1. (Note that we have such a chart locally on S.) Let Y = (S × S) �
{(1,1)}. Then we have a slightly different embedding

S[:]→ S × [0,∞]Y , (s, r) 
→ (s, r∗),

where r∗ : Y → [0,∞] is defined as follows. Let (f, g) ∈ Y .

(1) If the images of f and g in MS,s belong to O×
S,s, then

r∗(f, g) = log
(∣∣f(s)∣∣)/ log(∣∣g(s)∣∣).

(2) Otherwise,

r∗(f, g) = r(f̄s, ḡs),

where f̄s (resp., ḡs) denotes the image of f (resp., g) in (MS/O×
S )s.

LEMMA 4.2.7

Let the assumptions be as in Section 4.2.6.

(1) The map S[:]→ S × [0,∞]Y is injective.

(2) The topology of S[:] induced by this embedding coincides with the topology

defined in Section 4.2.5.

(3) The image of the embedding (1) consists of all pairs (s, r) ∈ S × [0,∞]Y

such that r satisfies conditions (i)–(iii) in Section 4.1.3 and such that the follow-

ing conditions (iv) and (v) are satisfied. Let (f, g) ∈ Y .

(iv) If the images of f and g in MS,s belong to O×
S,s, then r(f, g) =

log(|f(s)|)/ log(|g(s)|).
(v) Otherwise, r(f, g) depends only on the images of f and g in (MS/O×

S )s.

(4) The image of the embedding in (1) is a closed set of S × [0,∞]Y .

Proof

Statements (1) and (3) follow from the fact that the map S → (MS/O×
S )s is

surjective for any s ∈ S. Additionally, (4) follows from (3).

We prove (2). If f ∈ S � {1}, by the property |f(s)| < 1 for any s ∈ S, we

see that there is a continuous function Rc(f) : S→R>0 whose value at s ∈ S is
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− sup(c,− log(|f(s)|))/ log(|f(s)|) if the image of f in MS,s belongs to O×
S,s and

is 1 otherwise. For f, g ∈ S � {1}, we have

rc(f, g) = r∗(f, g)Rc(f)(s)Rc(g)(s)
−1.

Furthermore, for f ∈ S , rc(1, f) is the value of the continuous function c/ sup(c,

− log(|f(s)|)) at s, and rc(f,1) is the value of the continuous function sup(c,

− log(|f(s)|))/c at s, and for f ∈ S � {1}, we have r∗(1, f) = 0 and r∗(1, f) =∞.

�

PROPOSITION 4.2.8

The canonical map S[:]→ S is proper.

Proof

Since [0,∞]Y is compact, this follows from Lemma 4.2.7(4). �

4.2.9

For each s ∈ S, the topology of R((MS/O×
S )s) defined in Section 4.1 coincides

with the topology of the fiber R((MS/O×
S )s) over s of S[:]→ S as a subspace of

S[:].

LEMMA 4.2.10

Let S and S′ be as in Section 4.2.2, and assume that we are given a strict

morphism S′ → S of locally ringed spaces over K with log structures. (For the

word “strict,” see Corollary 1.3.15.) Then the canonical map S′
[:]→ S′ ×S S[:] is

a homeomorphism.

Proof

This is proved in the same way as Lemma 3.1.11. �

4.2.11

We consider S[:] more locally. Assume we are given a chart S →MS . Let Φ be

a set of faces of S which is totally ordered for the inclusion relation and which

contains S . Let S[:](Φ) be the subset of S[:] consisting of all (s, r) such that the

inverse images in S of the faces of (MS/O×
S )s associated to r (see Section 4.1.6)

belong to Φ. Then S[:](Φ) for all Φ forms an open covering of S[:].

4.2.12

Let the notation be as in Section 4.2.11. Assume further that, for any f ∈ S�{1},
we have |f(s)| < 1 for any s ∈ S. (Such a chart always exists locally on S.) In

Proposition 4.2.14, we give a description of the topological space S[:](Φ).
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Write Φ = {S(j) | 0≤ j ≤ n}, S = S(0) � S(1) � · · ·� S(n). For each 1≤ j ≤ n,

fix qj ∈ S(j−1) � S(j). Consider the topological subspace

P ⊂Rn
≥0 ×

n∏
j=0

Hom(S(j),Radd)

(here the Hom space is endowed with the topology of simple convergence) con-

sisting of elements (t, h) (t= (tj)1≤j≤n, tj ∈R≥0, h= (hj)0≤j≤n, hj : S(j)→R)

satisfying the following conditions (i)–(iii) for 0≤ j < n.

(i) hj(qj+1) = 1.

(ii) hj(f) = tj+1hj+1(f) for any f ∈ S(j+1).

(iii) hj(S(j) � S(j+1))⊂R>0.

LEMMA 4.2.13

We have a unique continuous map P →Hom(S,Rmult
≥0 ) which sends (t, h) to the

following a ∈ Hom(S,Rmult
≥0 ). Let j be the smallest integer such that 0 ≤ j ≤ n

and such that tk �= 0 if j < k ≤ n. Then

a(f) = exp
(
−hj(f)

n∏
k=j+1

t−1
k

)
∈R>0 if f ∈ S(j),

a(f) = 0 if f ∈ S � S(j).

Proof

The problem is the continuity of the map. This is shown as follows. Let f ∈ S . It
is sufficient to prove that the map P →R≥0, (t, h) 
→ a(f) (f ∈ S) (with notation

as above) is continuous. Let j be the largest integer such that 0≤ j ≤ n and such

that f ∈ S(j). Then this map is the composition of the continuous map P →R≥0

which sends ((tj)j , (hj)j) ∈ P to
∏n

k=j+1 tk · hj(f)
−1 (note hj(f) > 0) and the

continuous map R≥0→R≥0 which sends t ∈R>0 to exp(−t−1) and 0 to 0. �

PROPOSITION 4.2.14

Let the notation be as above. We have a Cartesian diagram of topological spaces

S[:](Φ) → P

↓ ↓
S → Hom(S,Rmult

≥0 )

where the lower horizontal arrow sends s ∈ S to the map f 
→ |f(s)| (f ∈ S),
the right vertical arrow is as a 
→ a(f) (f ∈ S) in Lemma 4.2.13, the left ver-

tical arrow is the canonical one, and the upper horizontal arrow sends (s, r) ∈
S[:](Φ) (s ∈ S, r ∈R((MS/O×

S )s)) to (s, ((tj)j , (hj)j)), where tj = log(|qj+1(s)|)/
log(|qj(s)|) (resp., tj = r(qj+1, qj)) if 1≤ j < n and if qjqj+1 is invertible (resp.,

not invertible) at s, tn = −1/ log(|qn(s)|), hj(f) = r(f, qj+1) for 0 ≤ j < n, and

hn(f) =− log(|f(s)|). (Note that if (s, r) ∈ S[:](Φ) and f ∈ S(n), then the image

of f in MS,s belongs to O×
S,s and hence |f(s)| ∈R>0.)
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Proof

The converse map is given by (s, (t, h)) 
→ (s, r), where r is as follows. Let (a, b) ∈
(MS/O×

S )s × (MS/O×
S )s � {(1,1)}, and take f, g ∈ S such that the image of f

(resp., g) in (MS/O×
S )s is a (resp., b). Take the largest j such that 0≤ j ≤ n− 1

and f, g ∈ S(j). Then r(f, g) = hj(f)/hj(g) ∈ [0,∞]. (Note that at least one of

f, g is outside S(j+1), and hence, at least one of hj(f) and hj(g) is nonzero.) It

is easy to see that this is the converse map and continuous. �

REMARK 4.2.15

In (t, h) ∈ P (t = (tj)1≤j≤n ∈Rn
≥0), tj for 1 ≤ j ≤ n− 1 is determined by h as

tj = hj−1(qj+1). tn is determined by the image a of (t, h) in Hom(S,Rmult
≥0 ) as

tn =−1/ log(a(qn)). These explain the fact that, in the above proof of Proposition

4.2.14, the converse map (s, (t, h)) 
→ (s, r) is described without using t.

4.2.16

Let Hom(S,Rmult
≥0 )<1 be the open set of Hom(S,Rmult

≥0 ) consisting of all ele-

ments h such that h(f) < 1 for any f ∈ S � {1}. Then the images of S and

P in Hom(S,Rmult
≥0 ), under the maps in Proposition 4.2.14, are contained in

Hom(S,Rmult
≥0 )<1. Hence, by Proposition 4.2.14, we have the following.

COROLLARY 4.2.17

In the case S =Hom(S,Rmult
≥0 )<1 with the sheaf of all R-valued continuous func-

tions and with the natural log structure, S[:](Φ) is identified with P .

4.2.18

We give a comment on this space P . For 1 ≤ j ≤ n, we fixed an element qj

of S(j−1) � S(j) (see Proposition 4.2.14). Let m(j) = dimQ(S(j−1)
Q /S(j)

Q ) − 1 if

1 ≤ j ≤ n, and let m(n+ 1) = dimQ(S(n)
Q ). For 1 ≤ j ≤ n+ 1, fix elements qj,k

(0≤ k ≤m(j)) of (S(j−1))gp satisfying the following conditions (i)–(iii).

(i) qj,0 = qj if 1≤ j ≤ n.

(ii) For 1≤ j ≤ n, (qj,k mod S(j)
Q )0≤k≤m(j) is a Q-basis of S(j−1)

Q /S(j)
Q .

(iii) (qn+1,k)1≤k≤m(n+1) is a Q-basis of S(n)
Q .

PROPOSITION 4.2.19

We have an injective open map

P
⊂→Rn

≥0 ×
n+1∏
j=1

Rm(j)

which sends (t, h) ∈ P (t ∈Rn
≥0, h ∈

∏n
j=0Hom(S(j),Radd)) to (t, a), where a=

(aj)1≤j≤n+1, aj = (aj,k)1≤k≤m(j) with

aj,k = hj−1(qj,k) ∈R
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for 1 ≤ j ≤ n + 1. Here we define hj−1(qj,k) by using the unique extension of

hj−1 : S(j−1)→R to a homomorphism (S(j−1))gp→Radd.

The proof is easy.

4.2.20

Consider the case S = |Δ|n, where |Δ| = {t ∈ R | 0 ≤ t < 1} with the sheaf of

all R-valued continuous functions and with the fs log structure associated to

Nn →OS , m 
→
∏n

j=1 q
m(j)
j , where qj (1 ≤ j ≤ n) are the coordinate functions.

Let S be the multiplicative monoid generated by qj (1≤ j ≤ n) which is identified

with Nn. Then |Δ|n is identified with Hom(S,Rmult
≥0 )<1 in Section 4.2.16.

Let Φ = {S(j) | 0≤ j ≤ n}, where S(j) is generated by qk (j < k ≤ n). Then

S[:] is covered by the open sets S[:](g(Φ)), where g ranges over elements of the

permutation group Sn acting on S , and g induces a homeomorphism S[:](Φ)∼=
S[:](g(Φ)). We describe S[:](Φ).

PROPOSITION 4.2.21

Let the notation be as in Section 4.2.20. Then we have a commutative diagram

S[:](Φ) ∼= Rn
≥0

↓ ↓
S = |Δ|n

in which the upper horizontal isomorphism sends (s, r) ∈ S[:](Φ) to (t1, . . . , tn),

where tj = r(qj+1, qj) (1≤ j ≤ n− 1) and tn =−1/ log(qn(s)), and the right ver-

tical arrow is (tj)1≤j≤n 
→ (qj)1≤j≤n, where qj = exp(−
∏n

k=j t
−1
k ).

Proof

This follows from Corollary 4.2.17. �

COROLLARY 4.2.22

Let the notation be as in Section 4.2.20. Regarding R(S) as the fiber of S[:] →
S = |Δ|n over the point (0, . . . ,0) ∈ S, define R(S)(Φ) =R(S)∩S[:](Φ). Then we

have a homeomorphism

R(S)(Φ)∼=Rn−1
≥0

which sends r ∈R(S)(Φ) to (t1, . . . , tn−1), where tj = r(qj+1, qj).

Proof

This follows from Proposition 4.2.21. �

LEMMA 4.2.23

Let S, |S|, and M|S| be as in Lemma 3.1.12. Then we have a canonical homeo-

morphism S[:]
∼= |S|[:].
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Proof

As in the proof of Lemma 3.1.12, we have a canonical isomorphism (MS/O×
S )s

∼=
(M|S|/O×

|S|)s for each s ∈ S. This gives a canonical bijection between S[:] and

|S|[:]. By Proposition 4.2.14, they have the same topology. �

4.3. S[:], S[val], and Sval

Let K and S be as in Section 4.2.2. We construct a topological space S[val] and

proper surjective continuous maps

Sval→ S[:], S[val]→ S[:].

Here Sval is as in Section 3.1.

4.3.1

Let Sval→ S[:] be the map (s,V,h) 
→ (s, rV ), where V 
→ rV is the map V (S)→
R(S) for S = (MS/O×

S )s (see Sections 3.1.2, 4.1.8).

PROPOSITION 4.3.2

The map Sval→ S[:] is continuous, proper, and surjective.

Proof

The surjectivity follows from the surjectivity in Proposition 4.1.9. Once we prove

the continuity, properness follows from the properness of Sval→ S and of S[:]→ S.

We prove the continuity. Working locally on S, we may and do assume that we

have a chart S →MS with S a sharp fs monoid such that, for any f ∈ S � {1}
and s ∈ S, we have |f(s)|< 1.

Fix (s0, V0, h0) ∈ Sval, and let (s0, r0) ∈ S[:] be its image. We show that, when

(s,V,h) ∈ Sval converges to (s0, V0, h0), its image (s, r) ∈ S[:] converges to (s0, r0).

Let f, g ∈ S�{1}. It is sufficient to prove that r∗(f, g) ∈ [0,∞] (see Section 4.2.6)

converges to (r0)∗(f, g) ∈ [0,∞]. If at least one of f and g is invertible at s0
(i.e., if at least one of the images of f and g in MS,s0 belongs to O×

S,s0
), then

the function (s, r) 
→ r∗(f, g) ∈ [0,∞] on S[:] comes from the continuous function

s 
→ log(|f(s)|)/ log(|g(s)|) ∈ [0,∞] on some neighborhood of s0 in S. Hence, we

may assume that both f and g are not invertible at s0. Assume that (r0)∗(f, g)>

a/b, a, b ∈N, b > 0. It is sufficient to prove that r∗(f, g)> a/b when (s,V,h) is

sufficiently near (s0, V0, h0). Let ϕ = f b/ga ∈ Sgp. Since the image ϕ̄s0 of ϕ in

(MS/O×
S )s0 belongs to V0, there is a neighborhood U of (s0, V0, h0) in Sval such

that if (s,V,h) ∈ U , then ϕ̄s ∈ V . If (s,V,h) ∈ U and if at least one of f and g

are not invertible at s, then r∗(f, g) = r(f̄s, ḡs)≥ a/b because ϕ̄s ∈ V . Consider

points (s,V,h) ∈ U such that both f and g are invertible at s. On U , the function

(s,V,h) 
→ h(ϕ) is continuous. (Here h(ϕ) is defined to be 0 if ϕ̄s /∈ V ×.) We have

r∗(f, g) = b−1r∗(f
b, g) = b−1r∗(g

aϕ,g) = (a/b) + b−1 log
(
h(ϕ)

)
/ log

(∣∣g(s)∣∣).
When (s,V,h) ∈ U converges to (s0, V0, h0), h(ϕ) converges to h0(ϕ) ∈R and g(s)

converges to 0. If h0(ϕ) = 0, then when (s,V,h) converges to (s0, V0, h0), we have
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h(ϕ)< 1 and |g(s)|< 1 and, hence, log(h(ϕ))/ log(|g(s)|)> 0. If h0(ϕ)> 0, then

when (s,V,h) converges to (s0, V0, h0), log(h(ϕ))/ log(|g(s)|) converges to 0. �

4.3.3

We next discuss S[val]. To define it, we use the following new log structure on S[:],

which is endowed with the sheaf OS[:]
of all R-valued continuous functions. (We

use the word “new log structure,” to distinguish this log structure from the “old”

log structure on S[:], which is defined as the inverse image of the log structure of

S on the inverse image of OS on S[:].)

Assume that we are given a chart S →MS with S a sharp fs monoid such

that |f(s)| < 1 for any f ∈ S � {1} and for any s ∈ S. Let S(j) (0 ≤ j ≤ n) be

faces of S such that S = S(0) � S(1) � · · ·� S(n), and let Φ = {S(j) | 0≤ j ≤ n}.
Take qj ∈ S(j−1) � S(j) for 1 ≤ j ≤ n. Then we define the new log structure on

S[:](Φ) as the fs log structure associated to

Nn→OS[:]
, m 
→

(n−1∏
j=1

r(qj+1, qj)
m(j)/2

)
·
(
−1/ log

(
|qn|

))m(n)/2
.

Then it is easy to see that this log structure glues to an fs log structure on S[:]

which is independent of any choices. In the identification S[:] = |S|[:] (see Lemma

4.2.23), the new log structure of S[:] and that of |S|[:] coincide.

REMARK 4.3.4

It may seem strange to take the square root (·)m(j)/2 in the definition of this log

structure. But this becomes important in Section 5 to ensure that the CKS map

D�
Σ,[:]→DSL(2) respects (and D�,mild

Σ,[:] →D�
SL(2) which appears later (see Theorem

5.1.10) also respects) the log structures.

4.3.5

Let S[val] be the valuative space (S[:])val (Section 3.1) associated to S[:] endowed

with this new log structure.

By Section 3.1, the map S[val]→ S[:] is proper and surjective.

LEMMA 4.3.6

Let S (resp., S′) be a topological space endowed with the sheaf of all R-valued

continuous functions and with an fs log structure, and let S′→ S be a strict mor-

phism (see Corollary 1.3.15) of locally ringed spaces over R with log structures.

Then the canonical map S′
[val]→ S′ ×S S[val] is a homeomorphism.

Proof

This is proved in the same way as Lemma 3.1.11. �
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PROPOSITION 4.3.7

Assume K =R. There is a unique homeomorphism(
|Δ|n

)
[val]

∼= (Rn
≥0)val

in which (qj)1≤j≤n ∈ (|Δ| � {0})n ⊂ (|Δ|n)[val] corresponds to (−1/
log(qj))1≤j≤n ∈Rn

>0 ⊂ (Rn
≥0)val.

Proof

This is deduced from Proposition 4.2.21. �

4.3.8. Examples

We compare S[:], Sval, and S[val] in the case K = R and S = R2
≥0 with the

standard log structure. The maps from these spaces to S are homeomorphisms

outside (0,0) ∈ S. We describe the fibers over (0,0) explicitly.

(1) The fiber of S[:]→ S over (0,0) ∈ S is canonically homeomorphic to the

interval [0,∞]. It consists of points r(a) with a ∈ [0,∞]. (q1, q2) ∈R2
>0 converges

to r(a) if and only if qj → 0 and log(q2)/ log(q1)→ a.

(2) A difference between the surjection Sval→ S[:] and the surjection S[val]→
S[:] is that the fiber of the former surjection over r(a) has cardinality greater

than 1 if and only if a ∈Q>0 and the fiber of the latter surjection over r(a) has

cardinality greater than 1 if and only if a= 0 or a=∞.

(3) The fiber of Sval→ S over (0,0) ∈ S consists of points p(a) (a ∈ [0,∞]�

Q>0) and p(a, c) (a ∈Q>0, c ∈ [0,∞]). (q1, q2) ∈R2
>0 converges to p(a) if and

only if qj → 0 and log(q2)/ log(q1)→ a. (q1, q2) ∈R2
>0 converges to p(a, c) if and

only if qj → 0, log(q2)/ log(q1)→ a, and qa1/q2 → c. Under the map Sval → S[:],

p(a) goes to r(a) ∈ S[:], and p(a, c) goes to r(a) ∈ S[:].

(4) The fiber of S[val] over (0,0) ∈ S consists of points s(a) (a ∈ [0,∞]�Q>0)

and s(a, c) (a ∈Q>0, c ∈ [0,∞]). (q1, q2) ∈R2
>0 converges to s(a) if and only if

qj → 0 and, for tj :=−1/ log(qj) (so tj → 0), log(t2)/ log(t1)→ a. (q1, q2) ∈R2
>0

converges to s(a, c) if and only if qj → 0 and, for tj := −1/ log(qj) (so tj → 0),

log(t2)/ log(t1)→ a, and ta1/t2 converges to c. Under the map S[val]→ S[:], s(1, c)

goes to r(c) ∈ S[:], s(a) with a < 1 and s(a, c) with a < 1 go to r(0) in S[:], and

s(a) with a > 1 and s(a, c) with a > 1 go to r(∞) in S[:].

(5) We give some examples of convergences.

(5.1) Fix c ∈R>0. If q ∈R>0 and q→ 0, then (cq, q) ∈R2
>0 converges to r(1)

in S[:], to p(1, c) in Sval, and to s(1,1) in S[val]. Thus, the limit in S[:] and the

limit in S[val] are independent of c, but the limit in Sval depends on c.

(5.2) Fix a ∈ R such that 0 < a < 1. If t ∈ R>0 and t→ 0, (exp(−1/t),
exp(−1/ta)) ∈R2

>0 converges to r(0) in S[:], to p(0) in Sval, and to s(a) (resp.,

s(a,1)) in S[val] if a /∈Q (resp., a ∈Q). Thus, the limit in S[:] and the limit in

Sval are independent of a, but the limit in S[val] depends on a.
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4.4. The spaces D�
Σ,[:] and D�

Σ,[val]

4.4.1

Let Σ be a weak fan in gQ (see [15, III, Section 2.2.3]), and let Γ be a neat

subgroup of GZ which is strongly compatible with Σ. Then we have a space

Γ\DΣ which is endowed with a sheaf of holomorphic functions and an fs log

structure. By taking K =C in Section 4.2, we have a topological space (Γ\DΣ)[:]
with a proper surjective map (Γ\DΣ)[:]→ Γ\DΣ.

4.4.2

Let Σ be a weak fan in gQ, and let D�
Σ be the topological space defined in [15,

III, Section 2.2.5]. We define topological spaces D�
Σ,[:] and D�

Σ,[val] and proper

surjective maps D�
Σ,[:]→D�

Σ, D
�
Σ,val→D�

Σ,[:], and D�
Σ,[val]→D�

Σ,[:]. Here D�
Σ,val

is the topological space defined in [15, III, Section 3.2].

4.4.3

Let σ ∈ Σ, and consider the open set D�
σ of D�

Σ. There is a neat subgroup Γ of

GZ which is strongly compatible with the fan face(σ) of all faces of σ. We define

the topological space D�
σ,[:] as the fiber product of D�

σ → Γ\Dσ ← (Γ\Dσ)[:].

This is independent of the choice of Γ.

Furthermore, the inverse image of the new log structure of (Γ\Dσ)[:] on

D�
σ,[:] (given on the sheaf of all R-valued continuous functions), which we call the

new log structure of D�
σ,[:], is independent of the choice of Γ. These D�

σ,[:]’s glue

to a topological space D�
Σ,[:] over D�

Σ, and the new log structures of D�
σ,[:] glue

to an fs log structure on the sheaf of all R-valued functions on D�
Σ,[:], which we

call the new log structure.

We define D�
Σ,[val] as the valuative space associated to D�

Σ,[:] with the new log

structure. We have canonical proper surjective maps D�
Σ,[:]→D�

Σ and D�
Σ,[val]→

D�
Σ,[:].

4.4.4

Before we define the canonical map D�
Σ,val→D�

Σ,[:], we remark that, though we

have a canonical new log structure on D�
Σ,[:], we do not have a canonical log struc-

ture on D�
Σ. For σ ∈Σ and for a neat subgroup Γ of GZ which is strongly com-

patible with face(σ), the pullback of the log structure of Γ\Dσ on D�
σ depends

on the choice of Γ. Here we endow D�
σ with the sheaf of all C-valued continuous

functions.

For example, consider the classical case H0,Z =Z2 of pure weight 1 of Hodge

type (1,0) + (0,1), in which D is the upper half-plane. For the standard choice

of σ and Γ =
(
1 Z
0 1

)
, Γ\Dσ is isomorphic to the unit disk, and the log structure

is generated by the coordinate function q. D�
σ is identified with {x + iy | x ∈

R,0< y ≤∞}, and the canonical projection D�
σ → Γ\Dσ is identified with z 
→
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exp(2πiz). We have D�
σ,[:] =D�

σ , and the new log structure on it is generated by

1/y1/2 or, equivalently, by 1/(log |q|)1/2.
Take n≥ 2, and replace Γ by Γ′ :=

(
1 nZ
0 1

)
. Then the log structure of Γ′ \Dσ

is generated by q1/n. Hence, the inverse image on D�
σ of the log structure of

Γ\Dσ and that of Γ′ \Dσ do not coincide. This problem does not happen for the

new log structure, because 1/(log |q1/n|)1/2 = n1/2/(log |q|)1/2 and 1/(log |q|)1/2
generate the same log structure.

4.4.5

Endow D�
Σ with the sheaf of all C-valued continuous functions. For σ ∈Σ, take

a neat subgroup Γ of GZ which is strongly compatible with σ, and consider the

inverse image on D�
σ of the log structure of Γ\Dσ . We show that D�

σ,val in [15,

III] is identified with the valuative space Sval in Section 3.1 associated to S :=D�
σ

with this log structure (with K =C).

In Section 1.4.1, let N = {x ∈ σR | exp(x) ∈ Γ in GR}, let L = Hom(N,Z),

and regard σ as a cone in NR :=R⊗N . Let Σ be the fan of all faces of σ, and

denote |toric|(Σ) by |toric|σ . Then we have a commutative diagram

D�
σ,val ← E�

σ,val
⊂→ |toric|σ,val × Ď

↓ ↓ ↓
D�

σ ← E�
σ

⊂→ |toric|σ × Ď

where the squares are Cartesian, E�
σ is a σR-torsor over D�

σ for a certain natural

action of σR on E�
σ , E

�
σ,val is a σR-torsor over D�

σ,val for a certain natural action

of σR on E�
σ,val, and the pullback of the log structure of |D�

σ| (see Lemma 3.1.12)

on E�
σ coincides with the pullback of the canonical log structure of |toric|σ . In the

upper row, the space in the middle and the space on the right are the valuative

spaces associated to their lower spaces, respectively. Hence, the valuative space

associated to D�
σ coincides with the quotient D�

σ,val of E�
σ,val by σR, that is,

D�
σ,val.

Here the problem of the dependence of the log structure of S = D�
σ on Γ

(Section 4.4.4) does not matter for the following reason. For another choice Γ′

of Γ such that Γ′ ⊂ Γ, the identity map of S is a morphism from S with the

log structure given by Γ′ to S with the log structure given by Γ, and this mor-

phism has the Kummer property from Lemma 3.2.8 of log structure. Hence, the

associated valuative space is independent of the choice of Γ.

4.4.6

By Sections 4.4.5, 3.1, and 4.2, we have a proper surjective map D�
σ,val→D�

σ,[:],

and this glues to a proper surjective map D�
Σ,val→D�

Σ,[:].

4.4.7. Examples

We describe the differences of the topologies of D�
Σ,[:], D

�
Σ,val, and D�

Σ,[val].
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Let N1,N2 ∈ gQ, and assume that N1N2 = N2N1 and that N1 and N2

are nilpotent and linearly independent over Q. Let F ∈ Ď, and assume that

(N1,N2, F ) generates a nilpotent orbit in the sense of [15, III, Section 2.2.2]. Let

Σ be the fan of all faces of the cone R≥0N1 +R≥0N2. When y1, y2 ∈R tend to

∞, exp(iy1N1 + iy2N2)F converges in D�
Σ.

(1) Fix a constant a ∈R. When y→∞, exp(iyN1 + i(y+ a)N2)F converges

in D�
Σ,val, D

�
Σ,[val], and D�

Σ,[:]. The limit in D�
Σ,[val] is independent of a, and hence,

the limit in D�
Σ,[:] is independent of a, but the limit in D�

Σ,val depends on a.

(2) Fix a constant a ∈R such that 0< a< 1. Then when y→∞, exp(iyN1+

iyaN2)F converges in D�
Σ,val, D

�
Σ,[val], and D�

Σ,[:]. The limit in D�
Σ,val is indepen-

dent of a, and hence, the limit in D�
Σ,[:] is independent of a, but the limit in

D�
Σ,[val] depends on a.

4.5. CKS maps to DSL(2) and DSL(2),val

4.5.1

Recall that, in [15, III, Theorem 3.3.2], we proved that the identity map of D

extends uniquely to a continuous map

D�
Σ,val→DI

SL(2).

Section 3.3 of [15, III] is devoted to its proof. The corresponding result in the

pure case is [17, Theorem 5.4.4], and its full proof is given in [17, Chapter 6].

In this section, we prove the following related Theorems 4.5.2 and 4.5.7.

THEOREM 4.5.2

(1) The identity map of D extends uniquely to continuous maps

D�
Σ,[:]→DI

SL(2), D�
Σ,[val]→DI

SL(2),val.

These maps respect the log structures on the sheaves of all R-valued continuous

functions. Here we use the new log structures on D�
Σ,[:] in Section 4.4.3 (cf.

Section 4.3.3) and the log structure on DI
SL(2) discussed in Theorem 2.7.14.

(2) The CKS map D�
Σ,val→DI

SL(2) defined in [15, III, Theorem 3.3.2] coin-

cides with the composition D�
Σ,val→D�

Σ,[:]→DI
SL(2).

4.5.3

Let Dnilp be the set of (N1, . . . ,Nn, F ), where n≥ 0, Nj ∈ gR, and F ∈ Ď, which

satisfies the following two conditions.

(i) (N1, . . . ,Nn, F ) generates a nilpotent orbit in the sense of [15, III, Sec-

tion 2.2.2].

(ii) For any w ∈Z and for any 1≤ j ≤ n, let W (j) be the relative monodromy

filtration of y1N1 + · · ·+ yjNj (y1, . . . , yj ∈R>0) relative to W . (W (j) exists and

does not depend on the choices of yj ∈R>0 by condition (i).) Then the filtrations

W (j)(grW ) on grW (1≤ j ≤ n) are Q-rational.
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4.5.4

We review the map Dnilp →DSL(2) which sends (N1, . . . ,Nn, F ) ∈ Dnilp to the

class of the associated SL(2)-orbit [15, II, 2.4]. It is the map which sends (N1, . . . ,

Nn, F ) to the limit of exp(
∑n

j=1 iyjNj)F , where yj ∈R>0, yj/yj+1 →∞ (1 ≤
j ≤ n, yn+1 denotes 1) in DI

SL(2). This map is also characterized as follows. Recall

that an element (p,Z) of DSL(2) is determined by the following (i) and (ii):

(i) Whether (p,Z) is an A-orbit or a B-orbit.

(ii) (Φ,r), where Φ is the set of weight filtrations on grW associated to p

(see [15, II, Proposition 2.5.2(ii)]) and r is any element of Z.

Let (p,Z) ∈DSL(2) be the image of (N1, . . . ,Nn, F ). Then (p,Z) is a B-orbit

if and only if there is j such that Nj �= 0, Nk = 0 for 1≤ k < j, and grW (Nj) = 0.

Φ is the set of W (j)(grW ) for all j such that grW (Nk) �= 0 for some k ≤ j. r in

the above (ii) is given as follows.

Since (N1, . . . ,Nn, F ) generates a nilpotent orbit, (W (n), F ) is a mixed Hodge

structure. Let (W (n), F̂(n)) be the R-split mixed Hodge structure associated to

it. Then (N1, . . . ,Nn−1, exp(iNn)F̂(n)) generates a nilpotent orbit, and hence,

(W (n−1), exp(iNn)F̂(n)) is a mixed Hodge structure. Let (W (n−1), F̂(n−1)) be the

R-split mixed Hodge structure associated to it. Then (N1, . . . ,Nn−2,

exp(iNn−1)F̂(n−1) generates a nilpotent orbit, and hence, (W (n−2),

exp(iNn−1)F̂(n−1)) is a mixed Hodge structure. In this way, we have the R-

split mixed Hodge structure (W (j), F̂(j)) for 1≤ j ≤ n by a downward induction

on j (see [15, II, Section 2.4.6]). We obtain r ∈D as r= exp(iNk)F̂(k) if k is the

minimal j such that Nj �= 0, where in the case Nj = 0 for all j, we define r= F .

4.5.5

Let Γ be a neat subgroup of GZ . Assume (Γ,Σ) is strongly compatible. By

Section 4.1.6, D�
Σ,[:] is identified with the set of (σ,Z, (S(j))0≤j≤n, (Nj)1≤j≤n),

where (σ,Z) ∈D�
Σ, and if s denotes the image of (σ,Z) in S := Γ\DΣ, then S(j)

are faces of (MS/O×
S )s such that (MS/O×

S )s = S(0) � S(1) � · · ·� S(n) = {1} and
Nj is a homomorphism S(j−1)→Radd such that Nj(S(j)) = 0 and Nj(S(j−1) �

S(j))⊂R>0. (Here Nj is considered modulo Rmult
>0 .)

For s = class(σ,Z) ∈ S = Γ\DΣ, (MS/O×
S )s is canonically isomorphic to

Hom(Γ(σ),N). Hence, σ is identified with Hom((MS/O×
S )s,R

add
≥0 ), and the face

S(j) of (MS/O×
S )s in the above corresponds to a face σj of σ consisting of all

homomorphisms (MS/O×
S )s→Radd

≥0 which kills S(j).

Hence, D�
Σ,[:] is identified with the set of (σ,Z, (σj)0≤j≤n, (Nj)1≤j≤n), where

(σ,Z) ∈D�
Σ, the σj ’s are faces of σ such that 0 = σ0 � σ1 � · · ·� σn = σ, and Nj

is an element of σj,R/σj−1,R which belongs to the image of an element of the

interior of σj .
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4.5.6

Let (σ,Z, (σj)0≤j≤n, (Nj)1≤j≤n) ∈ D�
Σ,[:] (see Section 4.5.5), and let Ñj be an

element of the interior of σj whose image in σj,R/σj−1,R coincides with Nj . Let

F ∈ Z. Then (Ñ1, . . . , Ñn, F ) generates a nilpotent orbit, as is easily seen. We

will prove the following.

THEOREM 4.5.7

The map D�
Σ,[:] → DI

SL(2) (see Theorem 4.5.2) sends (σ,Z, (σj)j , (Nj)j) to the

image of (Ñ1, . . . , Ñn, F ) ∈Dnilp in DSL(2) (see Section 4.5.4). Here F ∈ Z and

Ñj is any element of the interior of σj whose image in σj,R/σj−1,R coincides

with Nj .

LEMMA 4.5.8

Let σ ⊂ gR be a nilpotent cone, let F ∈ Ď, and assume that (σ,F ) generates a

nilpotent orbit. Let N ∈ σR, and let F ′ = exp(iN)F . Let M(σ,W ) be the relative

monodromy filtration of σ with respect to W .

(1) δ(M(σ,W ), F ′) = δ(M(σ,W ), F ) + N , where the last N denotes the

homomorphism grM(σ,W )→ grM(σ,W ) which is the sum of the maps gr
M(σ,W )
k →

gr
M(σ,W )
k−2 (k ∈Z) induced by N .

(2) ζ(M(σ,W ), F ′) = ζ(M(σ,W ), F ).

(3) splM(σ,W )(F
′) = splM(σ,W )(F ).

Proof

Statement (1) follows from the definition of δ.

By (1), (2) follows from the facts that δ(M(σ,W ), F ) and N commute, that

N is of Hodge type (−1,−1) for F (grM(σ,W )), and that ζ−1,−1 = 0 in general.

Then (3) follows from (1) and (2). �

4.5.9

Let (σ,Z, (σj)0≤j≤n, (Nj)1≤j≤n) ∈D�
Σ,[:], F ∈ Z, and Ñj be as in Section 4.5.6.

We show that the image of (Ñ1, . . . , Ñn, F ) ∈Dnilp in DSL(2) is independent of

the choices of Ñj and the choice of F ∈ Z.

We prove that the associated element of DSL(2) does not depend on the choice

of F ∈ Z. If F ′ ∈ Z, then F ′ = exp(iN)F for some N ∈ σR. Hence, by Lemma

4.5.8(3) applied to (σ,F ), which generates a nilpotent orbit, F̂(n) is independent

of the choice.

We prove that the associated element of DSL(2) does not depend on the

choice of a lifting Ñj of Nj . If Ñ
′
j is another lifting of Nj , then Ñ ′

j = Ñj +Rj

for some Rj ∈ σj−1,R. By Lemma 4.5.8(3) applied to (σj−1, exp(iÑj)F̂(j)), which

generates a nilpotent orbit, F̂(j−1) is independent of the choice by downward

induction on j.
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4.5.10

By Section 4.5.9, we have a map D�
Σ,[:] →DSL(2) which sends (σ,Z, (σj)0≤j≤n,

(Nj)1≤j≤n) ∈D�
Σ,[:] to the image of (Ñ1, . . . , Ñn, F ) ∈Dnilp in DSL(2). Comparing

the definition of this map and the definition of the map ψ :D�
Σ,val→DSL(2) (see

Section 4.5.1) given in [15, III, Theorem 3.3.1], we see that the composition

D�
Σ,val→D�

Σ,[:]→DSL(2) coincides with ψ. Theorem 4.5.2(2) is proved.

4.5.11

We complete the proofs of Theorems 4.5.2(1) and 4.5.7. This map D�
Σ,[:] →

DSL(2) in Section 4.5.10 is continuous, because D�
Σ,val → DI

SL(2) is continuous

and D�
Σ,val→D�

Σ,[:] is proper and surjective.

4.5.12

Endow D�
Σ,[:] with the new log structure from Section 4.3.3 on the sheaf of all

R-valued continuous functions. Consider the log structure on DI
SL(2) in Theo-

rem 2.7.14. We show that the continuous map D�
Σ,[:] → DI

SL(2) respects these

log structures. We check this on E�
σ,[:]. On the toric component of E�

σ,[:], the

log structure is generated by tj := (yj+1/yj)
1/2 (1≤ j ≤ n, yn+1 denotes 1). Let

β be a distance to the boundary for Φ, where Φ is the set of M(σj ,W ), and

let τ : Gn
m,R →

∏
wAutR(grWw ) be the homomorphism whose w-component is

the τ (Section 2.1.2) of the SL(2)-orbit in n variables associated to grWw (N1), . . . ,

grWw (Nn), F (grWw )). Then β(exp(
∑n

j=1 iyjNj)F ) = tu, where u :=

β(τ(t)−1 exp(
∑n

j=1 iyjNj)F ) is invertible in the ring of real analytic functions.

Hence, D�
Σ,[:]→DI

SL(2) respects the log structures.

4.5.13

By Section 4.5.12, the mapD�
Σ,[:]→DI

SL(2) induces the continuous mapD�
Σ,[val]→

DI
SL(2),val of associated valuative spaces. This proves the second part of Theorem

4.5.2(1).

4.5.14

Consequently, we have an amplified fundamental diagram in Section 0.1.4.

In the pure case,

D�
Σ,[val]

ψ→ DSL(2),val
η→ DBS,val

↓ ↓
↓ DBS

SL(2) → DBS

↓
Γ\DΣ,val ← D�

Σ,val → D�
Σ,[:]

ψ→ DSL(2)

↓ ↓
Γ\DΣ ← D�

Σ

which is commutative and in which the maps respect the structures of the spaces.
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5. Mild nilpotent orbits and the space D�
SL(2) of SL(2)-orbits

In this section, we consider the spaces of mild nilpotent orbits and the space

D�
SL(2), which is closely related to mild nilpotent orbits. In Section 5.1, we give

the main definitions and results of Section 5. In the rest of Section 5, we give the

proofs of the results in Section 5.1. These results in Section 5.1 were obtained in

our joint efforts with Spencer Bloch.

5.1. Mild nilpotent orbits and the space D�
SL(2)

Let L=W−2EndR(grW ) be as in Section 1.2.2.

5.1.1

Let Dmild
nilp be the subset of Dnilp (see Section 4.5.3) consisting of all elements

(N1, . . . ,Nn, F ) satisfying the following condition.

For any yj ≥ 0 (1≤ j ≤ n), there is a splitting (which may depend on (yj)j)

of W which is compatible with
∑n

j=1 yjNj .

We have the following “SL(2)-orbit theorem for mild degeneration.”

THEOREM 5.1.2

Let (N1, . . . ,Nn, F ) ∈Dmild
nilp .

(1) If yj/yj+1 →∞ (1 ≤ j ≤ n, yn+1 denotes 1), then δW (exp(
∑n

j=1 iyj
Nj)F ) converges in L. Moreover, there are am ∈ L for m ∈Nn and ε ∈ R>0

satisfying the following (i) and (ii).

(i)
∑

m∈Nn(
∏n

j=1 x
m(j)
j )am absolutely converges for xj ∈R, |Xj | < ε (1 ≤

j ≤ n).

(ii) For yj ∈ R>0 (1 ≤ j ≤ n) such that tj := (yj+1/yj)
1/2 < ε (1 ≤ j ≤ n,

yn+1 denotes 1), we have exp(
∑n

j=1 iyjNj)F ∈D and

δW

(
exp

( n∑
j=1

iyjNj

)
F
)
=

∑
m∈Nn

( n∏
j=1

t
m(j)
j

)
am.

(2) Let τ� : Gn
m,R → G(grW ) be the homomorphism whose GR(grWw ) com-

ponent is the τ� (see Section 2.1.2) of the SL(2)-orbit in n variables on grWw
associated to (grWw (N1), . . . ,gr

W
w (Nn), F (grWw )). Then there are am ∈ L for m ∈

Nn and ε ∈R>0 satisfying the above condition (i) and the modification of the

above condition (ii) by replacing δW (exp(
∑n

j=1 iyjNj)F ) with Ad(τ�(t))−1δW

(exp(
∑n

j=1 iyjNj)F ), where t= (t1, . . . , tn), tj = (yj+1/yj)
1/2.

(3) If yj/yj+1 →∞ (1 ≤ j ≤ n, yn+1 denotes 1), then exp(
∑n

j=1 iyjNj)F

converges in D�,mild
SL(2) .

In fact, (3) follows from (2) by the definition of the structure of D�
SL(2) as an

object of B′
R(log) given in Section 2.3.11.
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5.1.3

By Theorem 5.1.2, we have maps

Dmild
nilp →L, Dmild

nilp →D�,mild
SL(2)

by taking the limit of the convergence in Theorem 5.1.2.

5.1.4

We define the mild part Dmild
Σ of the set of nilpotent orbits DΣ as the part of

points (σ,Z) which satisfy the following condition.

(C) For each N in the cone σ, there is a splitting of W (which can depend

on N ) which is compatible with N .

For the other spaces of nilpotent orbits D�
Σ, D

�
Σ,[:], D

�
Σ,[val], and so on, we

define their mild parts D�,mild
Σ , D�,mild

Σ,[:] , D�,mild
Σ,[val], and so on as the inverse images

of Dmild
Σ .

5.1.5

In the above definition from Section 5.1.4 of the mildness, the following stronger

condition (C′) need not be satisfied.

(C′) There is a splitting of W which is compatible with any element N of

the cone σ.

5.1.6

For example, in the case of Example II in [15, I and II] (the case of 0 →
H1(E)(1)→ ∗→ Z→ 0, where E varies over elliptic curves), we had a nilpo-

tent orbit of rank 2, and that is a mild degeneration in the sense of Section 5.1.4

(i.e., it satisfies (C)), but it does not satisfy (C′).

THEOREM 5.1.7

(1) There is a unique continuous map D�,mild
Σ,[:] →L which extends the map

D→L, x 
→ δW (x).

(2) There is a unique continuous map D�,mild
Σ,[:] →D�,mild

SL(2) which extends the

identity map of D.

(3) The map in (1) (resp., (2)) sends (σ,Z, (σj)j , (Nj)j) ∈D�,mild
Σ,[:] (see Sec-

tion 4.5.5) to the image of (Ñ1, . . . , Ñn, F ) ∈Dmild
nilp in L (resp., D�,mild

SL(2) ) under

the map in Section 5.1.3. Here Ñj is as in Theorem 4.5.7, and F is any element

of Z.

Theorem 5.1.7(1) shows the convergence of Beilinson regulators in a family with

mild degeneration (see Section 7.2).
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5.1.8

We define a space D�
SL(2). Let D�

SL(2) be the subset of D�,mild
SL(2) × L consisting

of all elements (p,Z, δ) ((p,Z) ∈D�,mild
SL(2) with p ∈DSL(2)(gr

W )∼ and Z ⊂D (see

Section 2.3.2), δ ∈ L) satisfying the following conditions (i) and (ii).

(i) Let n be the rank of p, and let 0 := (0, . . . ,0) ∈Zn. Then δ is of Ad(τ�p )-

weight at most 0.

(ii) For any F ∈ Z, δW (F ) coincides with the component of δ of Ad(τ�p )-

weight 0.

We define the structure of D�
SL(2) as an object of B′

R(log) by regarding D�
SL(2)

(resp., D�,mild
SL(2) ×L) as Y (resp., X) in Section 1.3.16. We have the evident mor-

phism

D�
SL(2)→D�,mild

SL(2) , (p,Z, δ) 
→ (p,Z)

of B′
R(log).

5.1.9

Via the map

D→D�,mild
SL(2) ×L, F 
→

(
F, δW (F )

)
,

we regard D as a subset of D�
SL(2).

THEOREM 5.1.10

(1) Let Dmild
nilp →D�,mild

SL(2) ×L be the map which sends (N1, . . . ,Nn, F ) ∈Dmild
nilp

to the limit of (Fy, δW (Fy)), where y = (yj)1≤j≤n ∈ Rn
>0, Fy := exp(

∑n
j=1 iyj

Nj)F , and yj/yj+1 →∞ (1 ≤ j ≤ n, yn+1 denotes 1). Then, the image of this

map is contained in D�
SL(2).

(2) There is a unique continuous map D�,mild
Σ,[:] → D�

SL(2) which extends the

identity map of D.

(3) There is a unique continuous map D�,mild
Σ,[val]→D�

SL(2),val which extends the

identity map of D.

PROPOSITION 5.1.11

(1) The map D�
SL(2) → DSL(2)(gr

W )∼ × spl(W ) × L induced by D�,mild
SL(2) →

DSL(2)(gr
W )∼ × spl(W ) is injective, and the image of this map consists of all

elements (p, s, δ) satisfying the following conditions (i) and (ii).

(i) δ is of Ad(τ�p )-weight at most 0.

(ii) Let (ρw, ϕw)w be an SL(2)-orbit on grW which represents p. Then the

component of δ of Ad(τ�p )-weight 0 is of Hodge type (≤ −1,≤ −1) with respect

to (ϕw(i, . . . , i))w.

(2) If (p,Z, δ) ∈ D�
SL(2) and if (p, s, δ) is its image in DSL(2)(gr

W )∼ ×
spl(W )× L, then Z is recovered from (p, s, δ) as follows. Under the embedding

D→D(grW )× spl(W )×L in Section 1.2.1, the image of Z ⊂D coincides with
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(Z(p), s, δ0) ⊂ D(grW ) × spl(W ) × L. Here δ0 denotes the component of δ of

Ad(τ�p )-weight 0.

5.1.12

By the weak topology of D�
SL(2), we mean the topology of D�

SL(2) as a subspace

of DSL(2)(gr
W )∼× spl(W )×L. We denote the topological space D�

SL(2) endowed

with the weak topology by D�,weak
SL(2) . This weak topology is weaker than but need

not coincide with the topology defined in Section 5.1.8 (see Section 7.1.7).

REMARK 5.1.13

(1) Unlike other spaces of SL(2)-orbits (D�
SL(2), D

I
SL(2), D

II
SL(2), and so on),

D is not necessarily dense in D�
SL(2) (even for the weak topology).

(2) The authors believe that D�
SL(2) belongs to B′

R(log)+ and that this can

be proved by using the methods in Section 2.7, but they have not yet proved it.

5.1.14

The above results show that we have commutative diagrams

D�,mild
Σ,[:] → D�

SL(2) → D�,mild
SL(2)

∩ ↓
D�

Σ,[:] → DII
SL(2)

D�,mild
Σ,[val] → D�

SL(2),val → D�,mild
SL(2),val

∩ ↓
D�

Σ,[val] → DII
SL(2),val

The rest of Section 5 is devoted to the proofs of the above results.

5.2. Preparations on pure SL(2)-orbits
We further review pure SL(2)-orbits in one variable.

5.2.1

Assume that we are in the pure case of weight w, and assume that we are given

an SL(2)-orbit (ρ,ϕ) in one variable. Let

N,N+ ∈ gR

be as follows. Let ρ∗ : sl(2,R)→ gR be the Lie algebra homomorphism induced

by ρ. Then N (resp., N+) is the image of
(
0 1
0 0

)
(resp.,

(
0 0
1 0

)
) in sl(2,R).

5.2.2

We have a direct sum decomposition

H0,R =
⊕
k,r≥0

H0,R,(k,r)

defined as follows. Let Z =Ker(N :H0,R→H0,R). Then Z =
⊕

k≥0Z(−k), where

Z(−k) is the part of Z of τ�-weight −k. Let

H0,R,(k,r) := (N+)rZ(−k).

In particular, Z(−k) =H0,R,(k,0).
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5.2.3

We have the following.

(1) Elements of H0,R,(k,r) have τ�-weight 2r− k.

(2) For each k ≥ 0, H0,R,(k,•) :=
⊕

rH0,R,(k,r) is stable under the action of

SL(2,R) by ρ. As a representation of SL(2,R), we have a unique isomorphism

H0,R,(k,•) ∼= Symk(A)⊗Z(−k),

where A=R2 =Re1⊕Re2, on which SL(2,R) acts via the natural action on A

and the trivial action on Z(−k), which sends v ∈ Z(−k) on the left-hand side to

ek1 ⊗ v ∈ Symk(A)⊗Z(−k) on the right-hand side.

(3) For e≥ 0, the kernel of Ne :H0,R→H0,R coincides with the direct sum

of H0,R,(k,r) for k, r ≥ 0 such that r < e.

(4) The filtration ϕ(0) is the direct sum of its restrictions ϕ(0)(k,r) to

H0,C,(k,r) for all (k, r). H0,R,(k,r) with Hodge filtration ϕ(0)(k,r) on H0,C,(k,r)

is an R-Hodge structure of weight w+ 2r− k.

(5) For any z ∈P1(C), the filtration ϕ(z) on H0,C is the direct sum of its

restrictions ϕ(z)(k,•) to H0,C,(k,•) for k ≥ 0.

The filtration ϕ(z)(k,•) is described as follows. In the isomorphism in (2), it

is given by ϕ(0)(k,0) on Z(−k),C and the filtration on AC whose F 0 is AC, whose

F 2 is 0, and whose F 1 is C · (ze1 + e2) (resp., Ce1) if z ∈C (resp., if z =∞).

5.3. More preparations on SL(2)-orbits

5.3.1

Assume that we are given an SL(2)-orbit (ρw, ϕw) on grWw in one variable for

each w ∈Z. Let

E =W0EndR(grW ) =
⊕
w≤0

Ew, Ew =
⊕
a∈Z

HomR(grWa ,grWa+w).

We apply our preparations in Section 5.2 to the SL(2)-orbit in one variable of

pure weight w induced on each Ew by (ρa, ϕa) and (ρa+w, ϕa+w) (a ∈ Z). By

Section 5.2.2, we have a direct sum decomposition

Ew =
⊕
k,r≥0

Ew,(k,r).

LEMMA 5.3.2

We have that Ew,(k,r)Ew′,(k′,r′) ⊂
⊕

k′′,r′′ Ew+w′,(k′′,r′′), where (k′′, r′′) ranges

over all elements of N×N such that r′′ ≤ r+r′ and k′′−2r′′ = (k+k′)−2(r+r′).

Proof

This follows from (1) and (3) of Section 5.2.3. �
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5.3.3

Let R{{t}} be the ring of power series in t over R which absolutely converge

when |t| is small. We define subrings A0, A, B0, B of R{{t}} ⊗R E as follows:

A0 =E•,(•,0) ⊂A=
∑
r≥0

t2rR
{
{t2}

}
⊗R E•,(•,r),

B0 =
∑
k≥0

tkE•,(k,0) ⊂B=
∑
k≥0

tkR
{
{t2}

}
⊗R E•,(k,•).

For w ≤ 0, define the two-sided ideals of these rings as

WwA0 =WwE•,(•,0) ⊂WwA=
∑
r≥0

t2rR
{
{t2}

}
⊗R WwE•,(•,r),

WwB0 =
∑
k≥0

tkWwE•,(k,0) ⊂WwB=
∑
k≥0

tkR
{
{t2}

}
⊗R WwE•,(k,•).

LEMMA 5.3.4

We have, for w ≤ 0,

Ad
(
τ�(t)

)
WwB=WwA, Ad

(
τ�(t)

)
WwB0 =WwA0.

These are direct consequences from the definitions in Section 5.3.3.

We will apply the following Lemma 5.3.6 in Section 5.4.4 (resp., in the proof

of Theorem 6.2.4) by taking A=C⊗R B (resp., A=W0EndC(HC)).

5.3.5

Let A be a Q-algebra. For a nilpotent ideal I of A, we have bijections

exp : I→ 1 + I, log : 1 + I→ I,

exp(x) =

∞∑
n=0

xn

n!
, log(1− x) =−

∞∑
n=1

xn

n

(these are finite sums, for x ∈ I are nilpotent) which are the inverses of each

other. Let I(r) (r ≥ 1) be two-sided ideals of A such that I(1) ⊃ I(2) ⊃ I(3) ⊃ · · · ,
I(r)I(s) ⊂ I(r+s) for any r, s≥ 1, and I(r) = 0 for r� 1. Let I = I(1). Then I is a

nilpotent two-sided ideal.

LEMMA 5.3.6

Let the notation be as in Section 5.3.5. Let Mj (1≤ j ≤m) be Q-submodules of

I such that

I(r) =
m⊕
j=1

(Mj ∩ I(r))

for any r ≥ 1. If x ∈ I, then there is a unique family (xj)1≤j≤m of elements xj

of Mj such that

exp(x) = exp(x1) · · · exp(xm).
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Proof

This follows by an easy induction on r such that I(r) = 0. �

5.4. Proof of Theorem 5.1.2

5.4.1

We first prove Theorem 5.1.2 in the case n= 1. We use the following part of the

SL(2)-orbit theorem in one variable of Schmid [21].

Assume that we are in the pure case. Then for y� 0, we have

exp(iyN)F = exp
(
g(y)

)
τ(y−1/2)r with r= exp(iN)F̂

for some convergent power series g(y) =
∑∞

m=0 y
−mam in y−1 with am ∈

EndR(H0,R) such that a0 = 0 and such that Ad(N)m+1am = 0 for any m.

PROPOSITION 5.4.2

Let (N,F ) ∈Dmild
nilp (see Section 5.1.1) with one N . Let (W (1), F̂ ) be the R-split

mixed Hodge structure associated to the mixed Hodge structure (W (1), F ), and

let r := exp(iN)F̂ . Then (W,r) is an R-split mixed Hodge structure, and the

splitting splW (r) of W is compatible with N .

Proof

This follows from [7, Lemma 2.20]. �

5.4.3

Let (N,F ) ∈Dmild
nilp with one N . Let r= exp(iN)F̂ as in Proposition 5.4.2, and

let s = splW (r) : grW
∼=→ H0,R, s(1) = splW (1)(F ) = splW (1)(F̂ ) : grW

(1) ∼=→ H0,R.

By Proposition 5.4.2, N is of weight 0 for s. Let τ� : Gm → Aut(grW ) be the

homomorphism associated to the SL(2)-orbit on grW in one variable associated

to (grW (N), F (grW )). (In the case grW (N) = 0, τ� is defined to be the trivial

homomorphism.) Let y ∈R>0, and let t= y−1/2.

For the proof of the case n= 1 of Theorem 5.1.2(1) and 5.1.2(2), it is sufficient

to prove that δW (exp(iyN)F ) and Ad(τ�(t))−1δW (exp(iyN)F ) converge in L
when y→∞. We prove it.

Note that the actions of τ(t) and τ�(t) on D(grW ) are the same.

5.4.4

Let the notation be as in Section 5.4.3. For y� 0, let gw(y) for each w ∈Z be as

in the above result of Schmid from Section 5.4.1 for (grW (N), F (grW )), and let

g(y) =
⊕

w gw(y) ∈E =W0EndR(grW ). By the above result of Schmid, we have

(1) exp(iy grW (N)F (grW ) = exp(g(y))τ�(t)r(grW ), g(y), exp(g(y)) ∈A,

where grW (N) is the map grW → grW induced by N and A is as in Section 5.3.3.

Let h(y) = Ad(τ�(t))−1g(y). Then

(2) h(y) ∈B

by Lemma 5.3.4.
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Let δ(1) = δW (1)(F ), and let ζ(1) be the corresponding ζ (Section 1.2.5), so

that

(3) F = s(1) exp(−ζ(1)) exp(iδ(1))(s(1))−1F̂ .

Write s(1) exp(−ζ(1)) exp(iδ(1))(s(1))−1 = exp(α) exp(β), where α,β ∈
W0EndC(H0,C) ∩W

(1)
−2EndC(H0,C), α is of s-weight at most −1, and β is of

s-weight 0. By (3), we have

(4) F (grW ) = exp(grW (β)F̂ (grW ),

where grW (β) is the map grW → grW induced by β. We have

(5) exp(iyN) exp(β)F̂ = s exp(iy grW (N)) exp(grW (β)F̂ (grW ) =

s exp(iy grW (N))F (grW ) = s exp(g(y))τ�(t)r(grW )

where the first equality follows from N = sgrW (N)s−1 (see Proposition 5.4.2),

β = sβ grW (β)s−1, and F̂ = sF̂ (grW ), the second equality follows from (4), and

the last equality follows from (1).

Since s(1)δ(1)(s(1))−1 and s(1)ζ(1)(s(1))−1 commute with N , α and β com-

mute with N . Hence, we have

s−1αs ∈W−1A0.

We have

exp(iyN)F = exp(iyN) exp(α) exp(β)F̂ = exp(α) exp(iyN) exp(β)F̂

= exp(α)s exp
(
g(y)

)
τ�(t)r(grW )

= s exp
(
g(y)

)
exp

(
α(y)

)
τ�(t)r(grW ),

where α(y) := Ad(exp(g(y)))−1(s−1αs). Here the third equality follows from (5).

Since s−1αs ∈W−1A0 and exp(g(y)) ∈A, we have α(y) ∈W−1A. Hence,

Ad
(
τ�(t)

)−1
α(y) ∈W−1B.

To apply Lemma 5.3.6, we use the direct sum decomposition

C⊗R W−1EndR(grW ) =M ′
1 ⊕M ′

2 ⊕M ′
3,

where M ′
1 =W−1EndR(grW ), M ′

2 is the −1-eigenspace of the complex conjuga-

tion acting on the (≤−1,≤−1)-Hodge component of C⊗RW−1EndR(grW ) with

respect to r(grW ), and M ′
3 = F 0(C⊗RW−1EndR(grW )) for the Hodge filtration

r(grW ). In Lemma 5.3.6, consider the case

A=B, I(r) =W−rA, I = I(1),

Mj =
⊕
k≥0

tkR
{
{t}

}
⊗R M ′

j,(k,•) (j = 1,2,3).

Then the assumption of Lemma 5.3.6 is satisfied. By Lemma 5.3.6, we have

exp
(
Ad

(
τ�(t)

)−1
α(y)

)
= exp

(
a(y)

)
exp

(
ib(y)

)
exp

(
c(y)

)
,

where a(y) ∈M1, ib(y) ∈M2, and c(y) ∈M3. Then

exp(iyN)F = s exp
(
g(y)

)
τ�(t) exp

(
a(y)

)
exp

(
ib(y)

)
r(grW ).
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Hence,

δW
(
exp(iyN)F

)
=Ad

(
exp

(
g(y)

))
Ad

(
τ�(t)

)
b(y) ∈A,

Ad
(
τ�(t)

)−1
δW

(
exp(iyN)F

)
=Ad

(
exp

(
h(y)

))
b(y) ∈B.

Hence, δW (exp(iyN)F ) and Ad(τ�(t))−1δW (exp(iyN)F ) converge when y→∞.

5.4.5

We prove Theorem 5.1.2 in general. Let (N1, . . . ,Nn, F ) ∈ Dnilp. Let τ (resp.,

τ�) :Gn
m,R→

∏
wAutR(grWw ) be the homomorphism whose w-component is the

τ (resp., τ�) (see Section 2.1.2) of the SL(2)-orbit in n variables on grWw associated

to (grWw (N1), . . . ,gr
W
w (Nn), F (grWw )). Note that the action of Gn

m,R on D(grW )

via τ and that via τ� are the same.

By the SL(2)-orbit theorem in n variables (see [14, Theorem 0.5]),

Ad
(
τ(t)

)−1
δW

(
exp

( n∑
j=1

iyjNj

)
F
) (

t= (t1, . . . , tn), tj = (yj+1/yj)
1/2, yn+1 = 1

)
is a convergent series in t1, . . . , tn. Hence, δW (exp(

∑n
j=1 iyjNj)F ) and

Ad(τ�(t))−1δW (exp(
∑n

j=1 iyjNj)F ) have the shapes of Laurent series

δW

(
exp

( n∑
j=1

iyjNj

)
F
)
=
( n∏
j=1

tj

)−r

·
∑

m∈Nn

( ∏
1≤j≤n

t
m(j)
j

)
am,

Ad
(
τ�(t)

)−1
δW

(
exp

( n∑
j=1

iyjNj

)
F
)
=
( n∏
j=1

tj

)−s

·
∑

m∈Nn

( ∏
1≤j≤n

t
m(j)
j

)
bm

for some r, s ∈N and am, bm ∈ L, where the sums
∑

m∈Nn are convergent series.

Now assume (N1, . . . ,Nn, F ) ∈Dmild
nilp . We prove that we can take r = s = 0

(i.e., these series are actually Taylor series). It is sufficient to prove that, when

we fix j and fix a sufficiently small tk > 0 for k �= j, then these series become

Taylor series in one variable in tj .

But in this situation, the first Laurent series becomes δW (exp(iy′N ′)F ′) with

(N ′, F ′) ∈Dnilp, where

y′ = t−2
j , N ′ = t2j

j∑
k=1

ykNk =

j∑
k=1

( ∏
k≤�≤n,��=j

t−2
�

)
Nk,

F ′ = exp
( n∑
k=j+1

iykNk

)
F = exp

(
i

n∑
k=j+1

( n∏
�=k

t−2
�

)
Nk

)
F.

We consider the second Laurent series. Let τ�j : Gm,R → GR(grW ) be the

restriction of τ� to the jth Gm,R. It is sufficient to prove that, when the tk’s

for k �= j are fixed, δ(t) := Ad(τ�j (tj))
−1δW (exp(

∑n
j=1 iyjNj)F ) is a Taylor series

in tj . Let τ�,′j :Gm,R → GR(grW ) be the τ� of the SL(2)-orbit in one variable

associated to (N ′, F ′), where N ′ and F ′ are as above. By the case n= 1 applied

to (N ′, F ′), δ′(t) := Ad(τ�,′j (tj))
−1δW (exp(

∑n
j=1 iyjNj)F ) is a Taylor series in
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tj . Let W
(j) be the relative monodromy filtration M(N1 + · · ·+Nj ,W ). By [14,

Proposition 4.2], there is a convergent Taylor series u =
∑

m(
∏n

k=j+1 t
m(k)
k )um

in tj+1, . . . , tn with um ∈W
(j)
−1 gR such that u0 = 0 and such that

τ�,′j (tj) = exp(u)τ�j (tj) exp(−u).

We have

δ(t) = Ad
(
exp(v) exp(−u)

)−1
δ′(t), where v =Ad

(
τ�j (tj)

)−1
u.

Since um ∈W
(j)
−1 gR, v is a Taylor series in tj . Hence, δ(t) is a Taylor series in tj .

5.4.6

In the mild SL(2)-orbit theorem (see Theorem 5.1.2(1), 5.1.2(2)), the power series

depend real analytically on (N1, . . . ,Nn, F ) in the following sense. Let A be a real

analytic manifold, and let A→ gR, α 
→Nj,α (1≤ j ≤ n) and A→ Ď, α 
→ Fα be

real analytic functions. Assume that the Nj,α’s are nilpotent and commute with

each other, and assume that (N1,α, . . . ,Nn,α, Fα) generates a nilpotent orbit for

any α. Assume further that, for each 1≤ j ≤ n, the relative monodromy filtration

M(N1 + · · ·+Nj ,W ) is independent of α. Then the ε in Theorem 5.1.2(1) and

5.1.2(2) can be taken to be constant locally on A, and the coefficients of the

power series in Theorem 5.1.2(1) and 5.1.2(2) are real analytic functions on A.

This follows from the corresponding result [14, Proposition 10.8] (see [9,

Remark 4.65(ii)] for the pure case) for the original SL(2)-orbit theorem and from

the above proof in Section 5.4.5 to reduce the mild SL(2)-orbit theorem to the

original one.

5.5. Proof of Theorem 5.1.7
We prove Theorem 5.1.7. We first prove the following result.

PROPOSITION 5.5.1

Let (σ,Z, (σj)0≤j≤n, (Nj)1≤j≤n) ∈D�,mild
Σ,[:] (see Section 4.5.5). Then for Ñj as in

Section 4.5.6 and for F ∈ Z, the image of (Ñ1, . . . , Ñn, F ) ∈Dmild
nilp in D�,mild

SL(2) ×L
(see Theorem 5.1.2) is independent of the choices of Ñj and F .

Proof

For another choice (Ñ ′
1, . . . , Ñ

′
n, F

′) of (Ñ1, . . . , Ñn, F ), we have Ñ ′
1 = Ñ1, Ñ

′
j =

Ñj +Rj−1 for 2≤ j ≤ n, and F ′ = exp(iRn)F for some Rj ∈ σj,R. We have

exp
( n∑
j=1

iyjÑ
′
j

)
F ′ = exp

( n∑
j=1

iyj
(
Ñj + (yj+1/yj)Rj

))
F,

where yn+1 denotes 1. The limit of this for yj/yj+1→∞ coincides with the limit

of that for Rj = 0 by Section 5.4.6. �
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5.5.2

By Proposition 5.5.1, we have a map D�,mild
Σ,[:] → D�,mild

SL(2) × L. Let D�,mild
Σ,val →

D�,mild
SL(2) ×L be the composition with D�,mild

Σ,val →D�,mild
Σ,[:] (see Section 4.4.6). Since

the last map is proper surjective (see Section 4.4.6), Theorem 5.1.7 is reduced to

the following.

PROPOSITION 5.5.3

The map D�,mild
Σ,val →D�,mild

SL(2) ×L is continuous.

Just as [15, III, Theorem 3.3.2] was reduced to the case y∗λ,t = yλ,t of [15, III,

Proposition 3.3.4] (see Section A.3.4), Proposition 5.5.3 is reduced to (A0) of the

following Proposition 5.5.4. The proof of Proposition 5.5.4 given below is similar

to the proof of [15, III, Proposition 3.3.4].

PROPOSITION 5.5.4

Let the situation and the assumptions be as in [15, III, Section 3.3.3] with

y∗λ,t = yλ,t there. Assume that there is ε ∈R>0 such that, for any (ys)s∈S ∈RS

satisfying the following condition (C), there is a splitting of W (which may depend

on (ys)s) which is compatible with
∑

s∈S ysNs.

(C) If 1≤ j ≤ n, s ∈ Sj , and ys �= 0, then yty
−1
s < ε for any t ∈ S≥j+1 and

|yty−1
s − ata

−1
s |< ε for any t ∈ Sj .

Note that (N1, . . . ,Nn, F ) ∈ Dmild
nilp by this assumption. Let τ, τ� : Gn

m,R →
AutR(H0,R) be the homomorphisms given by the SL(2)-orbit in n variables asso-

ciated to (N1, . . . ,Nn, F ). Let

δ = lim δW

(
exp

( n∑
j=1

iyjNj

)
F
)
, δ′ = limAd

(
τ�(t)

)−1
δW

(
exp

( n∑
j=1

iyjNj

)
F
)
,

where yj/yj+1 → ∞ (1 ≤ j ≤ n, yn+1 = 1) and where t = (t1, . . . , tn), tj =

(yj+1/yj)
1/2. For 1 ≤ j ≤ n + 1, let eλ,≥j := exp(

∑
s∈S≥j

iyλ,sNs) ∈ GC. Then

we have the following (Aj) for 0≤ j ≤ n.

(Aj) for 1≤ j ≤ n: Let e≥ 1. If λ is sufficiently large, then there are F
(j)
λ ∈ Ď

satisfying the following (1)–(4).

(1) yeλ,cjd(Fλ, F
(j)
λ )→ 0.

(2) ((Ns)s∈S≤j
, eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit.

(3) δW (exp(
∑

s∈S iyλ,sNs)F
(j)
λ ) converges to δ.

(4) Ad(τ�(t))−1δW (exp(
∑

s∈S iyλ,sNs)F
(j)
λ ) with t = (t1, . . . , tn), tj =

(yλ,cj+1/yλ,cj )
1/2 converges to δ′.

(A0): Let e ≥ 1. Then if λ is sufficiently large, we have the following (3)

and (4).

(3) δW (exp(
∑

s∈S iyλ,sNs)Fλ) converges to δ.
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(4) Ad(τ�(t))−1δW (exp(
∑

s∈S iyλ,sNs)Fλ) with t as in (Aj)(4).

5.5.5

We prove Proposition 5.5.4 by downward induction on j. For 1≤ j ≤ n, let τj be

the restriction of τ to the jth factor of Gm,R, and let τ≥j =
∏n

k=j τk((yλ,ck+1
/

yλ,ck)
1/2) ∈GR. Then (An) follows from [15, III, Section 3.3.3, (5)] for j = n with

y∗λ,t = yλ,t and from Section 5.4.6.

Assume that 0 ≤ j < n. We prove (Aj) assuming (Aj+1). Take sufficiently

large integers e, e′, e′′ ≥ 0. Take F
(j+1)
λ as in (Aj+1) with e replaced by e+e′+e′′.

In the case 1≤ j < n (resp., j = 0), let F
(j)
λ be F ∗

λ in [15, III, Section 3.3.3, (5)]

with e there replaced by e+ e′ + e′′ (resp., let F
(0)
λ = Fλ).

We have

(5) ye+e′+e′′

λ,cj+1
d(F

(j)
λ , F

(j+1)
λ )→ 0.

By [15, III, Lemma 3.3.6], τ−1
≥j+1eλ,≥j+1F

(j+1)
λ converges. Hence, by (5),

τ−1
≥j+1eλ,≥j+1F

(j)
λ converges, and we have

(6) ye+e′

λ,cj+1
d(τ−1

≥j+1eλ,≥j+1F
(j)
λ , τ−1

≥j+1eλ,≥j+1F
(j+1)
λ )→ 0.

By the mild SL(2)-orbit theorem in Theorem 5.1.2 for

((Ns)s∈S≤j
, τ−1

≥j+1eλ,≥j+1F
(j)
λ ) and ((Ns)s∈S≤j

, τ−1
≥j+1eλ,≥j+1F

(j+1)
λ ),

and by Section 5.4.6, we have the following.

(7) The four sequences

aλ := δW

(
τ−1
≥j+1 exp

(∑
s∈S

iyλ,sNs

)
F

(j)
λ

)
,

bλ := δW

(
τ−1
≥j+1 exp

(∑
s∈S

iyλ,sNs

)
F

(j+1)
λ

)
,

a′λ := Ad
(
τ�(t)

)−1
δW

(
τ−1
≥j+1 exp

(∑
s∈S

iyλ,sNs

)
F

(j)
λ

)
,

b′λ := Ad
(
τ�(t)

)−1
δW

(
τ−1
≥j+1 exp

(∑
s∈S

iyλ,sNs

)
F

(j+1)
λ

)

converge in L, and we have

yeλ,cj+1
(aλ − bλ)→ 0, yeλ,cj+1

(a′λ − b′λ)→ 0.

By the induction assumption on j, exp(
∑

s∈S iyλ,sNs)F
(j+1)
λ converges to δ

and Ad(τ�(t))−1 exp(
∑

s∈S iyλ,sNs)F
(j+1)
λ converges to δ′. Hence, by (7),

exp(
∑

s∈S iyλ,sNs)F
(j)
λ converges to δ and Ad(τ�(t))−1 exp(

∑
s∈S iyλ,sNs)F

(j)
λ

converges to δ′.
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5.6. Proofs of other results in Section 5.1

LEMMA 5.6.1

Let x= (N1, . . . ,Nn, F ) ∈Dmild
nilp , and let p ∈DSL(2)(gr

W )∼ be the image of x. Let

0= (0, . . . ,0) ∈Zn.

(1) Let δ be the image of x in L. Then δ is of Ad(τ�p )-weight at most 0.

(2) Let δ′ ∈ L be the limit of Ad(τ�p (t))
−1δW (exp(

∑n
j=1 iyjNj)F ) (t = (t1,

. . . , tn), tj = (yj+1/yj)
1/2, yn+1 denotes 1, tj → 0). Then δ′ coincides with the

component of δ of Ad(τ�p )-weight 0.

Proof

Let δ(y) = δW (exp(
∑n

j=1 iyjNj)F ), and let δ′(y) = Ad(τ�p (t))
−1δW

(exp(
∑n

j=1 iyjNj)F ), where tj is as above. Then δ(y) and δ′(y) are convergent

series in t1, . . . , tn. For a ∈Zn, let δa (resp., δ′a, δ(y)a, δ
′(y)a) be the component

of δ (resp., δ′, δ(y), δ′(y)) of Ad(τ�p )-weight a. Then δ(y)a = (
∏n

j=1 t
a(j)
j )δ′(y)a.

Hence, δ(y)a is divisible by
∏n

j=1 t
max(a(j),0)
j . Hence, the constant term δa of δ(y)a

is 0 unless a≤ 0. On the other hand, by the reduction to the case of one N , we

have

δ′(y) ∈
∑

k∈Nn

( n∏
j=1

t
k(j)
j

)
R
{
{t1, . . . , tn}

}
·
( n⋂
j=1

W
(j)
k(j)L

)
.

Hence, the constant term of δ′(y) belongs to
⋂n

j=1W
(j)
0 L. That is, δ′ is of Ad(τ�p )-

weight at most 0. For a ∈ Zn such that a≤ 0, the constant term δ′a of δ′(y)a =∏n
j=1 t

−a(j)
j δ(y)a is 0 unless a= 0. This argument also shows that δ0 = δ′0. �

5.6.2

We prove Theorem 5.1.10(1). By Lemma 5.6.1, it is sufficient to prove that the

element δ′ ∈ L in Lemma 5.6.1(2) belongs to L(r), where r = (ϕw(i, . . . , i))w.

Since r(y) := τ�p (t)
−1 exp(

∑n
j=1 iyjNj)F (grW ) converges to r, L(r(y)) converges

to L(r). Since δ′(y) ∈ L(r(y)), its limit δ′ belongs to L(r).

5.6.3

We prove Theorem 5.1.10(2). Let s ∈ spl(W ) be the image of x (see Lemma 5.6.1)

in spl(W ). Consider the element (p,Z) of D�,mild
SL(2) (see Section 2.3.2), where Z

is the subset of D whose image in D(grW ) × spl(W ) × L is (Z(p), s, δ0). This

element exists uniquely by Section 5.6.2. We show that Fy := exp(
∑n

j=1 iyjNj)F

converges to (p,Z) in D�,mild
SL(2) .

Let Φ be the set {W (1)(grW ), . . . ,W (n)(grW )} of weight filtrations on grW

associated to p. Fix a distance β : D(grW ) → Rn
≥0 to Φ-boundary. Let

D�,mild
SL(2) (Φ)→DSL(2)(gr

W )∼ × spl(W )×L be the map να,β in Proposition 2.3.9,

where α= τp. Then να,β(p,Z) = (p, s,Ad(τp(β(r)))
−1δ0). Hence, it is sufficient to

prove that να,β(Fy) ∈D(grW )×spl(W )×L converges to (p, s,Ad(τ�p (β(r)))
−1δ0).

It is sufficient to prove that Ad(τ�p (β(Fy(gr
W ))))−1δ(y) converges to
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Ad(τ�p (β(r)))
−1δ0. But this is deduced from the fact that β(Fy(gr

W ))t−1 con-

verges to β(r).

5.6.4

We prove Theorem 5.1.10(3). By Theorem 5.1.10(2), it is sufficient to prove the

compatibility of the map D�,mild
Σ,[:] →D�

SL(2) with log structures. This is reduced

to the pure case treated in Section 4.5.12, because the log structure of D�
SL(2) is

the inverse image of that of DSL(2)(gr
W )∼.

5.6.5

Theorem 5.1.11 follows from Lemma 5.6.1 and Theorem 5.1.10(1). These com-

plete the proofs of the results in Section 5.1.

6. Complements

In Section 6.1, we give properties of the extended period domains. In Section 6.2,

we show that for nilpotent orbits in one variable, we have stronger results (see

Theorems 6.2.2, 6.2.4) which connect the world of nilpotent orbits with the world

of SL(2)-orbits and Borel–Serre orbits. In Section 6.3, we consider extended

period maps.

6.1. Global properties of the extended period domains

THEOREM 6.1.1

Let X be one of D�
SL(2), D�,+

SL(2), D�,−
SL(2), D�,BS

SL(2), D�
SL(2), DBS,val, DI

SL(2),val,

DII
SL(2),val, D

�
SL(2),val, D

�
SL(2),val, D

�
Σ,[:], or D�

Σ,[val]. Let Γ be a subgroup of GZ.

(1) The action of Γ on X is proper, and the quotient space Γ\X is Haus-

dorff.

(2) Assume that Γ is neat. Let γ ∈ Γ, let p ∈X, and assume γp= p. Then

γ = 1.

(3) Assume that Γ is neat. Then the projection X→ Γ\X is a local homeo-

morphism. Further, for X =D�
SL(2), D

�,+
SL(2), D

�,−
SL(2), or D�,BS

SL(2), there is a struc-

ture on the quotient such that the projection is a local isomorphism in B′
R(log).

Note that the corresponding results for DBS , DI
SL(2) and DII

SL(2), and for D�
Σ

and D�
Σ,val have already been proved in [15, I, Theorem 9.1], [15, II, Theorem

3.5.17], and [15, III, Theorem 4.3.6], respectively.

Proof

Statement (3) for X follows from (1) and (2) for X . Hence, it is sufficient to

prove (1) and (2). Since we have continuous maps D�
SL(2),val →DBS,val →DBS

and DΣ,[val] →DΣ,[:] → Γ\DΣ which are compatible with the actions of Γ, the

results for D�
SL(2),val, DBS,val, DΣ,[val], and DΣ,[:] follow from the results for DBS

and Γ\DΣ. Since D�
SL(2),val → D�

SL(2) is proper and surjective, the properness
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of the action of Γ on D�
SL(2) follows from that for D�

SL(2),val. Statement (2) for

D�
SL(2) follows from the L̄-bundle property (i.e., Theorem 2.3.14 for situation

(a) in Section 2.3.5) and the result for the pure case. Since there are continuous

maps D�
SL(2),val→D�

SL(2)→D�
SL(2) which are compatible with the actions of Γ,

the results for D�
SL(2) and D�

SL(2),val follow from the result for D�
SL(2). �

COROLLARY 6.1.2

The space X in the above theorem is Hausdorff.

This is obtained from the above theorem by taking Γ = {1}.

COROLLARY 6.1.3

Let X =DI
SL(2), D

II
SL(2), D

�
SL(2), or D

�
SL(2). Let Γ be a neat subgroup of GZ. Then

there is a unique structure on Γ\X as an object of B′
R(log)+ (see Section 2.7.2)

such that the projection X → Γ\X is a morphism in B′
R(log)+ which is locally

an isomorphism.

Proof

This follows from Theorem 6.1.1(3) and the corresponding results for DI
SL(2) and

DII
SL(2) in [15, II, Theorem 3.5.17]. �

6.2. Results on nilpotent orbits in one variable
We prove Theorems 6.2.2 and 6.2.4 on nilpotent orbits in one variable. In Sec-

tions 6.2.5–6.2.14, we give a counterexample for the extension of Theorem 6.2.2

to nilpotent orbits in many variables.

6.2.1

Let (D�
Σ,[:])

′ ⊂D�
Σ,[:] be the union of the two open sets D�,mild

Σ,[:] (see Section 5.1.4)

and the inverse image of DSL(2),nspl by D�
Σ,[:] → DI

SL(2) in Theorem 4.5.2(1).

Then (D�
Σ,[:])

′ is the union of D�,mild
Σ,[:] and the set of the points p of D�

Σ,[:] such

that if N1, . . . ,Nn (ordered) is the monodromy logarithms associated to p, then

(W,N1) does not split. The morphisms D�,mild
Σ,[:] → D�

SL(2) (see Theorem 5.1.10,

Section 0.2.3) and DSL(2),nspl → D�
SL(2) (see Section 2.5.6) induce a morphism

(D�
Σ,[:])

′→D�
SL(2).

Let (D�
Σ,[val])

′ be the inverse image of (D�
Σ,[:])

′ in D�
Σ,[val]. Then we obtain

the induced morphism (D�
Σ,[val])

′→D�
SL(2),val and a commutative diagram

(D�
Σ,[val])

′ ψ→ D�
SL(2),val

↓ ↓
(D�

Σ,[:])
′ ψ→ D�

SL(2)

Let Ξ be as in Section 0.1.5. Since (D�
Ξ)

′ =D�
Ξ, we have the following.
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THEOREM 6.2.2

The identity map of D extends uniquely to a continuous map

D�
Ξ→D�

SL(2),val

and, hence, extends uniquely to a continuous map D�
Ξ→DBS,val.

REMARK 6.2.3

(1) The image of D�
Ξ in DSL(2) is contained in DSL(2),≤1 for both structures

I , II of DSL(2). (We denote by ≤ 1 the part where the log structure is of rank at

most 1.)

(2) However, the image of D�
Ξ in D�

SL(2) is not necessarily contained in

D�
SL(2),≤1. (This is seen in Section 7.3.9 below.) Hence, the morphism in Theo-

rem 6.2.2 cannot be obtained as the composition D�
Ξ→D�

SL(2),≤1
∼=D�

SL(2),≤1,val.

(The first arrow here need not exist.) For p ∈D�
Ξ, it can happen that the image

of p in D�
SL(2),val has some information about p which the image of p in D�

SL(2)

does not have (see Sections 7.1.11, 7.3.8 below).

(3) The image of D�,mild
Ξ → D�,mild

SL(2) (see Section 2.1.4) is contained in

D�,mild
SL(2),≤1.

THEOREM 6.2.4

Let p = (R≥0N, exp(iRN)F ) ∈ D�
Ξ with N �= 0. Let W ′ = W (1) be the rela-

tive monodromy filtration of N with respect to W . Let (W ′, F̂ ) be the R-split

mixed Hodge structure associated to the mixed Hodge structure (W ′, F ), that is,

splW ′(F )(F (grW
′
)) (see Section 1.2). Then the following conditions are equiva-

lent.

(i) p belongs to D�,mild
Ξ .

(ii) exp(iyN)F converges in D�
SL(2) when y→∞.

(iii) δW (exp(iyN)F ) converges in L when y→∞.

(iv) The image of p in D�
SL(2) (see Theorem 6.2.2) belongs to D�,mild

SL(2) .

(v) The image of p in DBS (see Theorem 6.2.2) belongs to Dmild
BS .

(vi) The image of p in DSL(2) belongs to DSL(2),spl (see Section 2.5.6).

(vii) δW (exp(iN)F̂ ) = 0.

(viii) The splitting splW (exp(iN)F̂ ) of W is compatible with N .

Proof

We have proved (i)⇒ (ii). (ii)⇒ (iii) is clear. We know (ii)⇒ (iv)⇔ (v), (v)⇒
(vi) ⇔ (vii). (viii) ⇒ (i) is clear. It is sufficient to prove the implications (iii) ⇒
(vii) and (vii) ⇒ (viii).

Let s = splW (exp(iN)F̂ ), N̄ = grW (N) ∈
⊕

wHom(grWw ,grWw ), and N0 =

sN̄s−1. We prove (vii) ⇒ (viii). Assume (vii). Then exp(iN)F̂ = s(exp(iN̄)

F̂ (grW )) = exp(iN0)F̂ . For the mixed Hodge structure (W ′, exp(iN)F̂ ) =
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(W ′, exp(iN0)F̂ ), we have N = δW ′(exp(iN)F̂ ) = δW ′(exp(iN0)F̂ ) = N0 and

(viii) holds.

For the proof of (iii) ⇒ (vii), we first prove the following claim.

CLAIM

δW (exp(iN)F̂ ) is of W ′-weight at most −1.

Proof of Claim

Let A = W0EndC(H0,C). For r ≥ 1, let I(r) be the two-sided ideal W−1A ∩
W ′

−rA of A, and let I = I(1). Let M1 = I ∩ EndR(HR). Let M2 be the part

of iM1 ⊂ I consisting of all elements which belong to the (≤ −1,≤ −1)-Hodge

component of A with respect to exp(iN0)F̂ . Let M3 be the part of I con-

sisting of all elements which belong to F 0A with respect to exp(iN)F̂ . Then

we have I(r) = (I(r) ∩M1) ⊕ (I(r) ∩M2) ⊕ (I(r) ∩M3) for any r ≥ 1. We have

exp(iN)F̂ = exp(x) exp(iN0)F for some x ∈ I . Hence, by Lemma 5.3.6, there are

xj ∈Mj (j = 1,2,3) such that exp(iN)F̂ = exp(x1) exp(x2) exp(x3) exp(iN0)F̂ =

exp(x1) exp(x2)F̂ = s′ exp(iδ) exp(iN̄)F̂ (grW ), where s′ = exp(x1)s ∈ spl(W ) and

iδ = s−1x2s. We have δW (exp(iN)F̂ ) = δ ∈W ′
−1EndR(grWR ). �

Now we prove (iii) ⇒ (vii). Assume that δW (exp(iN)F̂ ) �= 0. By the claim,

there is w ≤ −1 such that the component of δW (exp(iN)F̂ ) of τ -weight w is

nonzero. Since Ad(τ(
√
y))δW (exp(iyN)F ) converges to δW (exp(iN)F̂ ) when y→

∞, δW (exp(iyN)F ) is Ad(τ(
√
y)−1)B(y), where B(y) converges to an element

whose part of weight w is nonzero. Hence, the part of the τ -weight w of

δW (exp(iyN)F ) is y−w/2C(y), where C(y) converges to a nonzero element, and

hence diverges. �

6.2.5

We have constructed CKS maps D�,mild
Σ,[:] → D�,mild

SL(2) (see Theorem 5.1.10) and

D�
Ξ→D�

SL(2) (see Theorem 6.2.2). In the rest of Section 6.2, we show an example

of σ of rank 2 such that there is no continuous mapD�
σ,val→D�

SL(2) which extends

the identity map of D.

6.2.6

Take an integer m≥ 1. (The case m≥ 3 will be a crucial example.) Let H0 be of

rank 2m+ 1 with base e′j (1≤ j ≤m), ej (1≤ j ≤m), and e.

The weight filtration is as follows. W−m−1 = 0. W−m is generated by e′j and

ej (1≤ j ≤m). W−1 =W−m. W0 is the total space.

We have N1,N2 defined as follows. N1e= 0, N1ej = e′j . N1e
′
j = 0. N2e= e′m,

N2ej = ej−1 and N2e
′
j = e′j−1 for 2≤ j ≤m, and N2e1 =N2e

′
1 = 0. Let σ be the

cone generated by N1 and N2. Note that (W,N1) splits, but (W,N2) does not

split.
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6.2.7

For j = 1,2, let W (j) be the relative monodromy filtration of Nj with respect to

W .

We give a splitting of W (1), which is compatible with N1, as follows. e is of

weight 0. ej is of weight −m+ 1, and e′j is of weight −m− 1 (1≤ j ≤m).

We give a splitting of W (2), which is compatible with N2, as follows. e is of

weight 0. ej is of weight −2(m−j), and e′j is of weight −2(m−j+1) (1≤ j ≤m).

6.2.8

Define α1, α2 :Gm,R → AutR(H0,R) by using the above splittings of W (1) and

W (2), respectively. Then α1 and α2 commute. Define α�
1, α

�
2 : Gm,R →

AutR(H0,R) by α�
j (t)e= e and α�

j (t)x= tmαj(t)x for x ∈W−m.

Let

t(y) = α1

(
(y2/y1)

1/2
)
α2

(
(1/y2)

1/2
)
, t�(y) = α�

1

(
(y2/y1)

1/2
)
α�
2

(
(1/y2)

1/2
)
.

6.2.9

We have

Ad
(
t(y)

)−1
(y1N1 + y2N2) =N1 +N2,y,

where N2,y coincides with N2 on ej and e′j (1 ≤ j ≤ m), but N2,ye = (y2/

y1)
(m+1)/2e′m and the last element converges to 0 when y1/y2→∞. We have

Ad
(
t�(y)

)−1
(y1N1 + y2N2) =N1 +N ′

2,y,

where N ′
2,y coincides with N2 on ej and e′j (1≤ j ≤m), but N ′

2,ye= uye
′
m, where

uy = (y2/y1)
1/2y

m/2
2 = y

−1/2
1 y

(m+1)/2
2 .

6.2.10

Note that uy need not converge when y2→∞ and y1/y2→∞.

6.2.11

Let F be as follows. F 1 = 0. F 0 is generated by e and em. F−j , for 1 ≤ j ≤
m− 1, is generated by F−j+1, em−j , and e′m−j+1. F

−m is the total space. Then

(N1,N2, F ) generates a nilpotent orbit. Hence, exp(iy1N1+ iy2N2)F , as y2→∞
and y1/y2→∞, converges in D�

σ,val.

LEMMA 6.2.12

Let the notation be as above. If m ≥ 3, then exp(iy1N1 + iy2N2)F , as y2 →∞
and y1/y2→∞, need not converge in D�

SL(2).

This follows from the following result.

LEMMA 6.2.13

Let the notation and the assumption be as above. Let Fy := t�(y)−1 exp(iy1N1 +

iy2N2)F . Then, δW (Fy) does not converge in L̄ when y2→∞ and y1/y2→∞.



Classifying spaces of degenerating mixed Hodge structures, IV 405

6.2.14

We prove Lemma 6.2.13. Since Fy = exp(Ad(t�(y))−1(iy1N1 + iyN2))F , Fy is

described as follows. F 1
y = 0, F 0

y is generated by e+
∑m

k=1 i
k · k!−1 · uy · e′m−j+1

and exp(iN1 + iN2)em, F−j
y (1≤ j ≤m− 1) is generated by F−j+1

y , exp(iN1 +

iN2)em−j , and exp(iN1 + iN2)e
′
m−j+1, and F−m

y is the total space.

The Hodge type of grW−m of Fy is that the (j,−m− j)-Hodge component is

1-dimensional if j = 0,−m, is 2-dimensional if −1 ≥ j ≥ 1 −m, and is 0 oth-

erwise. δW (Fy) sends e to the sum of the (j,−m − j) components of vy :=∑
1≤k≤m,k:odd(−1)(k−1)/2 · k!−1 · t · em−k+1 for −1≥ j ≥ 1−m.

CLAIM

vy does not belong to the ((0,−m) + (−m,0))-Hodge component of grW−m.

By the claim, vy is uy times a nonzero element which is independent of y1, y2.

Hence, when y1/y2, y2→∞, vy need not converge in L̄.
We prove the claim. Assume that vy belongs to the ((0,−m) + (−m,0))-

Hodge component of grW−m. Then we should have∑
1≤k≤m,k:odd

(−1)(k−1)/2 · k!−1 · e′m−k+1

= a exp(iN1 + iN2)em + b exp(−iN1 − iN2)em

for some a, b ∈C. If V denotes the C-vector space generated by ej (1≤ j ≤m)

and e′j (1≤ j ≤m− 3), we should have

e′m − (1/6)e′m−2 ≡ a
(
ie′m − e′m−1 − (i/2)e′m−2

)
+ b

(
−ie′m − e′m−1 + (i/2)e′m−2

)
mod V.

(To get this, use (N1 + N2)
k = kN1N

k−1
2 + Nk

2 , and hence, exp(iN1 + iN2) =

1+
∑∞

k=1(i
k · (k−1)!−1 ·N1N

k−1
2 + ik ·k!−1 ·Nk

2 ).) By comparing the coefficients

of e′m−1, we have a+ b= 0. Hence,

e′m − (1/6)e′m−2 ≡ a · 2i ·
(
e′m − (1/2)e′m−2

)
mod V.

This is impossible.

REMARK 6.2.15

We do not know whether the identity map of D always extends to a continuous

map D�
Σ,[val]→D�

SL(2),val or not.

6.3. Extended period maps
The following is a modified version of [15, III, Theorem 7.5.1(i)].

THEOREM 6.3.1

Let S be a connected, log smooth, fs log analytic space, and let U be the open

subspace of S consisting of all points of S at which the log structure of S is triv-

ial. Let H be a variation of mixed Hodge structure on U with polarized graded

quotients for the weight filtration and with unipotent local monodromy along
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S�U . Assume that H extends to a log mixed Hodge structure (see [15, III, Sec-

tion 1.3]) on S (i.e., H is admissible along S�U as a variation of mixed Hodge

structure). Fix a basepoint u ∈ U , and let Λ = (H0,W, (〈·, ·〉w)w, (hp,q)p,q) be

(HZ,u,W, (〈·, ·〉w,u)w(the Hodge numbers of H)). Let Γ be a subgroup of GZ which

contains the global monodromy group Image(π1(U,u)→GZ), and assume that Γ

is neat. Let ϕ : U → Γ\D be the associated period map. Let Slog
[:] = Slog ×S S[:],

let Slog
[val] = Slog ×S S[val], and regard U as open sets of these spaces.

Then we have the following.

(1) The map ϕ : U → Γ\D extends uniquely to continuous maps

Slog
[:] → Γ\DI

SL(2), Slog
[val]→ Γ\DI

SL(2),val.

(2) Assume that the complement S�U of U is a smooth divisor on S. Then

the map ϕ : U → Γ\D extends uniquely to a continuous map

Slog→ Γ\D�
SL(2),val

and hence extends uniquely to a continuous map Slog→ Γ\DBS,val.

Proof

Statement (1) is a modified version of [15, III, Theorem 7.5.1(i)], which treated

the extended period map Slog
val → DI

SL(2), where Slog
val is the topological space

defined in [17, Section 3.6.26]. This map factors through the quotient space Slog
[:]

of Slog
val as is seen by the arguments in Section 4.5.9. Since Slog

val → S[:] is a proper

surjective continuous map, the map S[:]→ Γ\DI
SL(2) is continuous. The last map

is compatible with log structures as is seen by the arguments in Section 5.6.4

and, hence, induces a continuous map Slog
[val]→ Γ\DI

SL(2),val.

By using Theorem 6.2.2, (2) is proved similarly to (1). �

In the rest of this section, we consider mild log mixed Hodge structures.

PROPOSITION 6.3.2

Let σ be a rational nilpotent cone (it is an R≥0-cone generated by rational ele-

ments) in gR. Assume that there is F ∈ Ď such that (σ,F ) generates a nilpotent

orbit. If (W,N) splits for any rational element N of σ, then (W,N) splits for

any element N of the cone σ.

Proof

We may assume that N is in the interior σ>0 of σ. This is because if we denote

by σ′ the face of σ such that N belongs to the interior of σ′, then (σ′, exp(iN ′)F )

generates a nilpotent orbit for some N ′ ∈ σ>0 and hence we can replace σ by σ′.

Assume N ∈ σ>0. Let F̂ be the R-split mixed Hodge structure associated to

the mixed Hodge structure (M(W,σ), F ). Then exp(iN ′)F̂ ∈ D for any N ′ ∈
σ>0. Hence, as the composition of the continuous map D → L, x 
→ δW (x)

and the continuous map σ>0 →D, N ′ 
→ exp(iN ′)F̂ , the map σ>0 →L, N ′ 
→
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δW (exp(iN ′)F̂ ) is continuous. By the part (i) ⇒ (vii) of Theorem 6.2.4, the last

map sends all rational elements of σ>0 to 0. Hence, it also sends N to 0. By the

part (vii) ⇒ (i) of Theorem 6.2.4, this shows that (W,N) splits. �

6.3.3

Let B(log) be the category of locally ringed spaces over C endowed with fs log

structures satisfying a certain condition, defined in [17] (see [15, III, Section 1.1]

for a review). Let S be an object of B(log), and let H be a log mixed Hodge struc-

ture on S with polarized graded quotients for the weight filtration. By Proposition

6.3.2, for s ∈ S and for t ∈ Slog lying over s, the following two conditions (i) and

(ii) below are equivalent. Let

π+
1 (s

log) := Hom
(
(MS/O×

S )s,N
)
⊂ π1(s

log) = Hom
(
(MS/O×

S )s,Z
)
,

π1(s
log,R≥0) := Hom

(
(MS/O×

S )s,R
add
≥0

)
⊂R⊗ π1(s

log)

= Hom
(
(MS/O×

S )s,R
add

)
.

Consider the action ρ of π1(s
log) on HZ,t, and consider the homomorphism

log(ρ) :R⊗ π1(s
log)→ EndR(HR,t), a⊗ γ 
→ a log

(
ρ(γ)

)
.

Let W be the weight filtration on HR,t.

(i) For any γ ∈ π1(s
log,R≥0), (W, log(ρ)(γ)) splits.

(ii) For any γ ∈ π+
1 (s

log), (W, log(ρ(γ))) splits.

We say thatH ismild (we also sayH is of mild degeneration) if the equivalent

conditions (i) and (ii) are satisfied for any s and t.

LEMMA 6.3.4

Let S and H be as above, and assume H is mild. Let S′→ S be a morphism in

B(log). Then the pullback of H to S′ is mild.

This is clear.

PROPOSITION 6.3.5

Let S be a log smooth fs log analytic space over C, and let H be a log mixed

Hodge structure on S with polarized graded quotients for the weight filtration W .

Then the following two conditions (i) and (ii) are equivalent.

(i) H is mild.

(ii) For any smooth analytic curve C over C and any analytic map f :C→ S

such that the subset f−1(S � U) of C is finite, the pullback f∗H on C is mild.

Here we endow C with the log structure associated to the finite subset f−1(S�U).

If S is an algebraic variety over C, then these conditions are equivalent to

the modified version of the condition (ii) in which we take only smooth algebraic

curves C in it.
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Proof

By Lemma 6.3.4, we have (i) ⇒ (ii). We prove (ii) ⇒ (i). Assume (ii). Let

s ∈ S � U , and let t be a point of Slog lying over s. Let γ ∈ π+
1 (s

log). We prove

that (W, log(ρ)(γ)) splits.

Let σ be the face of π+
1 (s

log), regarded as a monoid, such that γ belongs to the

interior of σ. Then there are s′ ∈ S and t′ ∈ Slog lying over s′ and isomorphisms

π+((s′)log)∼= σ and HR,t′
∼=HR,t such that the action of π+

1 (s
log) on HR,t and

the action of π+
1 ((s

′)log) on HR,t′ are compatible via these isomorphisms. By this

we are reduced to the case where γ belongs to the interior of π+
1 (s

log).

Assume γ belongs to the interior of π+
1 (s

log). Then there are a smooth ana-

lytic curve over C, a morphism f : C → S, and s′ ∈ C satisfying the follow-

ing conditions (1)–(3). (1) f(s′) = s. (2) f−1(S � U) is finite. (3) The image

of π+
1 ((s

′)log) → π+
1 (s

log) contains γ. By the condition (ii), this proves that

(W, log(ρ)(γ)) splits.

In the case where S is an algebraic variety, the same arguments show that

the modified version of (ii) implies (i). �

THEOREM 6.3.6

Let the assumptions be as in Theorem 6.3.1. Assume furthermore that H is mild.

(1) The period map ϕ : S→ Γ\D extends uniquely to continuous maps

Slog
[:] → Γ\D�

SL(2), Slog
[:] → Γ\D�,mild

SL(2) ,

Slog
[val]→ Γ\D�

SL(2),val, Slog
[val]→ Γ\D�,mild

SL(2),val, Slog
[val]→ Γ\Dmild

BS,val.

(2) For any point s ∈ S, there exist an open neighborhood V of s, a log

modification V ′ of V (see [17, Definition 3.6.12]), a commutative subgroup Γ′ of

Γ, and a fan Σ in gQ which is strongly compatible with Γ′ such that the period

map ϕ|U∩V lifts to a morphism U ∩ V → Γ′ \D which extends uniquely to a

morphism V ′→ Γ′ \Dmild
Σ of log manifolds.

U ⊃ U ∩ V ⊂ V ′

ϕ ↓ ↓ ↓
Γ\D ← Γ′ \D ⊂ Γ′ \Dmild

Σ

Furthermore, we have the following.

(2.1) Assume S �U is a smooth divisor. Then we can take V = V ′ = S and

Γ′ =Γ. That is, we have a commutative diagram

U ⊂ S
ϕ ↓ ↓
Γ\D ⊂ Γ\Dmild

Σ .

(2.2) Assume that Γ is commutative. Then we can take Γ′ =Γ.

(2.3) Assume that Γ is commutative and that the following condition (i) is

satisfied.
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(i) There is a finite family (Sj)1≤j≤n of connected locally closed analytic

subspaces of S such that S =
⋃n

j=1 Sj as a set and such that, for each j, the

inverse image of the sheaf MS/O×
S on Sj is locally constant.

Then we can take Γ′ =Γ and V = S.

Statements (1) and (2) are modified versions of [15, III, Theorem 7.5.1(1) and

7.5.1(2)], respectively, and (2) is proved in the same way as [15, III, Theorem

7.5.1(2)]. We can deduce (1) from (2) by using D�,mild
Σ →D�

SL(2) (see Theorem

5.1.10) by the arguments in the above proof of Theorem 6.3.1(1).

7. Relations with asymptotic behaviors of regulators and local height pairings

In this section, we show examples to describe the relations of this work to the

work [5] on the asymptotic behaviors of regulators and local height pairings.

7.1. Example III
This is Example III in[15, I and II]. It appeared in [15, III] as the case b= 2 of

Section 7.1.3. As in Section 7.2 below, this example is related to the regulator of

K2 of a degenerating elliptic curve.

In this Example III and also in Example IV in Section 7.3 below, we compare

DBS, D
I
SL(2), D

II
SL(2), D

�
SL(2), D

�
SL(2), and their associated valuative spaces, by

regarding them as topological spaces; that is, we forget the real analytic struc-

tures.

7.1.1

Let H0 =Z3 with basis e1, e2, e3. The weight filtration is given by

W−4 = 0⊂W−3 =Re1 +Re2 =W−1 ⊂W0 =H0,R.

The intersection form on grW−3 is the antisymmetric form characterized by 〈e2,
e1〉= 1.

7.1.2

We have that D(grW )∼= h, the upper half-plane, and DSL(2)(gr
W ) =DBS(gr

W ) =

hBS.

7.1.3

We have a homeomorphism

D�
SL(2),val

∼=→DBS,val,

and this induces a homeomorphism

D�
SL(2)

∼=DBS

of quotient spaces. Let W ′ be the increasing filtration on grW given by

W ′
−5 = 0⊂W ′

−4 =Re1 =W ′
−3 ⊂W ′

−2 = grW−3 ⊂W ′
0 = grW ,
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and let Φ = {W ′}. Let P be the parabolic subgroup of GR consisting of elements

which preserve W ′. Then, DBS(P ) =D�
SL(2)(Φ), and it is the inverse image of the

open set {x+ iy | x ∈R, y ∈ (0,∞]} of hBS under the projection DBS =D�
SL(2)→

DBS(gr
W ) =DSL(2)(gr

W ) = hBS.

We have (see [15, II, Section 3.6.2])

DI
SL(2) =DII

SL(2).

So we denote DI
SL(2) and DII

SL(2) simply by DSL(2).

7.1.4

Let

V :=Re1 +Re2.

We have

spl(W )∼= V, L∼= V,

where v ∈ V corresponds in the first isomorphism to the splitting of W given by

e3 + v, that is, s ∈ spl(W ) such that s(e3(gr
W
0 )) = e3 + v, and v ∈ V corresponds

in the second isomorphism to δ ∈ L such that δ(e3(gr
W
0 )) = v. We have L(F ) = L

for any F ∈D(grW ).

7.1.5

We have homeomorphisms

D ∼= h×L× spl(W )∼=R>0 × V ×R× V,

where the first isomorphism is F 
→ (F (grW ), δW (F ), splW (F )), and the second

isomorphism sends (x+iy, δ, s) to (t, δ, x, s), where x, y ∈R, y > 0, and t := 1/
√
y,

and we identify both L and spl(W ) with V via the isomorphisms in Section 7.1.4.

We call the composition D ∼=R>0×V ×R×V the standard isomorphism for D.

Let V̄ = L̄ be as in Section 1.3.8(4).

We have a commutative diagram of homeomorphisms

D�,weak
SL(2) (Φ) ∼= (R≥0 × V ×R× V )′

↑ ↑(1)
D�

SL(2)(Φ)
∼= (R≥0 × V ×R× V )′

↓ ↓(2)
D�

SL(2)(Φ)
∼= R≥0 × V̄ ×R× V

↑ ↑
D�

SL(2),val(Φ)
∼= (R≥0 × V̄ )val ×R× V

↓ ↓(3)
DSL(2),val(Φ) ∼= (R≥0 × V̄ )val ×R× V

↓ ↓
DSL(2)(Φ) ∼= R≥0 × V̄ ×R× V,
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where

(R≥0 × V ×R× V )′ :=
{
(t, δ, x, s) ∈R≥0 × V ×R× V | δ ∈Re1 if t= 0

}
and where (R≥0 × V̄ )val is the valuative space of R≥0 × V̄ associated to the

canonical log structure (see a description below and also [17, Section 0.5.21]).

The homeomorphism for D�,weak
SL(2) (Φ) is compatible with the standard isomor-

phism for D, but other homeomorphisms are not compatible with the standard

isomorphism.

The homeomorphism for D�
SL(2)(Φ) (resp., D�

SL(2)(Φ), DSL(2)(Φ)) sends a

point of D corresponding to (t, c1e1 + c2e2, x, u) ∈R>0 × V ×R× V under the

standard isomorphism to (t, c1e1 + t−1c2e2, x, u) (resp., (t, tc1e1 + t−1c2e2, x, u),

(t, t4c1e1 + t2c2e2, x, u)). The homeomorphism for D�
SL(2),val(Φ) (resp.,

DSL(2),val(Φ)) is compatible with the homeomorphism for D�
SL(2)(Φ) (resp.,

DSL(2)(Φ)).

Concerning the vertical arrows on the right-hand side, they are described as

follows. The arrows without labels are the canonical projections (see Section 3.1).

The map (1) sends (t, c1e1+c2e2, x, u) to (t, c1e1+ tc2e2, x, u). The map (2) sends

(t, c1e1 + c2e2, x, u) to (t, tc1e1 + c2e2, x, u). The map (3) is explained below.

The valuative space (R≥0 × V̄ )val is described as follows. Over U = (R>0 ×
V̄ ) ∪ (R≥0 × V ) ⊂ R≥0 × V̄ , it is U . The inverse image of {0} × (V̄ � V ) in

(R≥0 × V̄ )val consists of points

(a) p(0, λ) (λ ∈ V̄ � V ),

(b) p(c,λ) (c ∈R>0 �Q>0, λ ∈ V̄ � V ),

(c) p(c+, λ) (c ∈Q≥0, λ ∈ V̄ � V ),

(d) p(c−, λ) (c ∈Q>0, λ ∈ V̄ � V ),

(e) p(c,μ) (c ∈Q>0, μ ∈ V � {0}).

Write λ= 0 ◦ μ with μ ∈ V � {0} (see Section 1.3.8(4)). Then the above point is

the limit of tc
′
μ, where t > 0, t→ 0, and in the cases of (b) and (e) (resp., case

(a), case (c), case (d)), c′ = c (resp., c′→∞, c′ > c and c′→ c, c′ < c and c′→ c).

The map (3) sends (t, δ, x, u) ((t, δ) ∈ (R>0× V̄ )∪ (R≥0×V )) to (t, t3δ, x,u);

(p(0, λ), x, u) to (p(0, λ), x, u); (p(c,α), x, u) (α ∈ V̄ ) to (p(c− 3, α), x, u) if c > 3,

to (0, α,x,u) if c = 3, and to (0,0, x, u) if 0 < c < 3; (p(c+, λ), x, u) to (p((c −
3)+, λ), x, u) if c≥ 3 and to (0,0, x, u) if 0≤ c < 3; and (p(c−, λ), x, u) to (p((c−
3)−, λ), x, u) if c > 3 and to (0,0, x, u) if 0< c≤ 3.

7.1.6

We describe for Example III

(1) that there is no continuous map DSL(2),val(Φ)→ DBS(P ) = D�
SL(2)(Φ)

which extends the identity map of D, and

(2) how η :DSL(2),val(Φ)→DBS,val(P ) =D�
SL(2),val(Φ) is not continuous.

Fixing c1, c2 ∈ R, for t > 0, let p(t) be the point of D corresponding to

(t, c1e1 + c2e2,0,0) via the homeomorphism for D�
SL(2),val(Φ) in Section 7.1.5.
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Then, via the homeomorphism for DSL(2),val(Φ), p(t) corresponds to (t, t3c1e1 +

t3c2e2,0,0).

Hence, when t→ 0, p(t) converges in DSL(2),val(Φ) to the point p correspond-

ing to (0,0,0,0), but it converges in D�
SL(2)(Φ) to the point that corresponds to

(0, c1e1 + c2e2,0,0), which depends on (c1, c2). This explains (1). For (2), the

image of p under η is the point p′ of D�
SL(2)(Φ) corresponding to (0,0,0,0). If

(c1, c2) �= (0,0), then p(t) does not converge to p′ in D�
SL(2)(Φ).

7.1.7

As is mentioned in Section 5.1.12, the topology of D�,weak
SL(2) does not coincide with

the one of D�
SL(2). Fixing c ∈R, for t > 0, let p(t) be the point of D corresponding

to (t, tce2,0,0) via the homeomorphism for D�,weak
SL(2) (Φ) in Section 7.1.5. Then,

when t→ 0, p(t) converges in D�,weak
SL(2) (Φ) to the point corresponding to (0,0,0,0).

On the other hand, p(t) corresponds to (t, ce2,0,0) under the homeomorphism

for D�
SL(2)(Φ) and hence converges in D�

SL(2)(Φ), but the limit depends on the

choice of c.

7.1.8

The open set D�,mild
SL(2) (Φ) of D�

SL(2)(Φ) is the part consisting of elements corre-

sponding to (t, δ, x, u) such that δ ∈ V ⊂ V̄ . The map D�,mild
SL(2) (Φ)→ DSL(2)(Φ)

corresponds to (t, δ, x, u) 
→ (t, t3δ, x,u). It does not extend to a continuous map

D�
SL(2)→DSL(2). In fact, fixing v ∈ V � {0}, let p(t) for t > 0 be the point of D

corresponding to (t, t−3v,0,0) via the homeomorphism for D�
SL(2)(Φ). Then when

t→ 0, p(t) converges to the point of D�
SL(2)(Φ) corresponding to (0,0◦v,0,0) (see

Section 1.3.8(4)). But p(t) converges to the point of DSL(2)(Φ) corresponding to

(0, v,0,0), which depends on the choice of v.

7.1.9

Let a ∈Q>0, and define Na ∈ gQ by Na(e3) = ae2, Na(e2) = e1, and Na(e1) = 0.

For b ∈ R, let Fb ∈ Ď be the decreasing filtration defined as follows: F 1
b = 0,

F 0
b is generated by e3 + ibe1, F−1

b is generated by F 0
b and e2, and F−2

b is

the total space. Then (Na, Fb) generates a nilpotent orbit. Let σa = R≥0Na.

Then (σa, exp(iσa,R)Fb) ∈ D�
σa

is the limit of exp(iyNa)Fb for y → ∞. This

(σa, exp(iσa,R)Fb) belongs to D�,mild
σa

(see Section 5.1.4) if and only if a= 0.

We consider the image of exp(iyNa)Fb ∈D in R>0 × V ×R× V under the

isomorphism in Section 7.1.5. Let t= 1/
√
y. In the standard isomorphism for D,

the image is (t, at−2e2+ be1,0,−(b/2)t2e2). (The last component is computed by

using the relation of δ and ζ ; see Section 1.2.5.) In the homeomorphism forD�
SL(2),

the image is (t, at−3e2+be1,0,−(b/2)t2e2). In the homeomorphism for D�
SL(2),the

image is (tat−3e2 + bte1,0,−(b/2)t2e2). In the homeomorphism for DSL(2), the

image is (t, ae2 + bt4e1,0,−(b/2)t2e2). By taking the limit for t→ 0, we have the

following.
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LEMMA 7.1.10

(1) If a �= 0, then the image of (σa, exp(iσa,R)Fb) ∈D�
σa

in D�
SL(2)(Φ) (resp.,

DSL(2)(Φ), D
�
SL(2),val(Φ), DSL(2),val(Φ)) has the coordinate (0,∞e2,0,0) (resp.,

(0, ae2,0,0), (p(3, ae2),0,0), (0, ae2,0,0)).

(2) If a = 0, then the image of (σ0, exp(iσ0,R)Fb) ∈ D�,mild
σ0

in D�
SL(2)(Φ)

(resp., D�
SL(2)(Φ), DSL(2)(Φ), D

�
SL(2)(Φ), DSL(2)(Φ)) has the coordinate (0, be1,

0,0) (resp., (0,0,0,0), (0,0,0,0), (0,0,0,0) if b �= 0 and (0,0,0,0) if b = 0,

(0,0,0,0)).

7.1.11

By Lemma 7.1.10, we have the following. Consider the image p of (σa, exp(iσa,R)

Fb) ∈D�
σa

in one of DSL(2), DSL(2),val, D
�
SL(2), or D�

SL(2),val. In the case a = 0,

consider also the image in D�
SL(2).

(1) p remembers a in the cases of DSL(2), DSL(2),val, and D�
SL(2),val, but p

does not remember a in the other cases. In the case a �= 0, p does not remember

b in any of these cases.

(2) Assume a= 0. Then p remembers b in the case of D�
SL(2), but p does not

remember b in all other cases.

D�,mild
Ξ → D�

SL(2)

↓ ↓
D�

Ξ → DSL(2)

7.2. Degeneration and regulator maps

7.2.1

Let X be a proper smooth variety over C. Let n≥ 1 and r ≥ 0. Then we have

the (rth) regulator map (see [1])

regX :Kn(X)→
⊕
p,q

(
Hm(X)(r)C,p,q

)−
,

where m= 2r− n− 1 and (p, q) ranges over all elements of Z2 such that p+ q =

m−2r, p < 0, q < 0, Hm(X)(r)C,p,q is the (p, q)-Hodge component of Hm(X,C)

with respect to the Hodge structure Hm(X)(r), and (·)− denotes the minus part

for the complex conjugation which fixes the image of Hm(X,Z(r)) =Hm(X,Z)⊗
(2πi)rZ.

This regulator map is understood as δ (see Section 1.2) of a mixed Hodge

structure as follows. An element Z ∈Kn(X) determines a mixed Hodge structure

HZ with an exact sequence 0→Hm(X)(r)→HZ →Z→ 0. We have

regX(Z) = δW (HZ),

where W is the weight filtration of HZ .

7.2.2

Let X→ S, 0 ∈ S, and n, r,m be as in Section 0.3, and let Z ∈Kn(X �X0). For

t ∈ S � {0}, let Z(t) ∈Kn(Xt) be the pullback of Z.
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Then the regulator regXt
(Z(t)) is understood as δW (HZ(t)), where HZ

denotes the variation of mixed Hodge structure on S�{0} defined by Z which has

an exact sequence 0→Hm(X/S)(r)→HZ → Z→ 0 with Hm(X/S) as in Sec-

tion 0.3 and whose fiber HZ(t) at t is the mixed Hodge structure in Section 7.2.1

associated to Z(t). This HZ is admissible along X0 and extends uniquely to a

log mixed Hodge structure on S, which we denote by the same letter HZ . Hence,

the behavior of t 
→ regXt
(Z(t)) in the degeneration is explained by the theory of

degeneration of mixed Hodge structure as in this article. For the details of what

follows, see [5].

PROPOSITION 7.2.3

Assume Z comes from Kn(X). Then the log mixed Hodge structure HZ on S is

mild.

Proof

The Clemens–Schmid sequence Hm(X0,Q)→ Hm(X/S)Q,t
N→ Hm(X/S)Q,t →

H2d−m(X0,Q) (t ∈ S � {0} is near to 0) induces an injection Hm(X/S)Q,t/

NHm(X/S)Q,t→H2d−m(X0,Q). Here N is the monodromy logarithm of HZ,Q

at 0 ∈ S. We have a commutative diagram

Kn(X �X0)
∂→ K ′

n−1(X0)

↓ ↓
Hm(X/S)Q,t/NHm(X/S)Q,t

⊂→ H2d−m(X0,Q)

Here the left vertical arrow sends Z ∈Kn(X�X0) to Ne, where e is the lifting of

1 ∈Q to HZ,Q,t under the exact sequence 0→Hm(X/S)Q,t→HZ,Q,t→Q→ 0.

K ′
n−1 denotes the K-group of coherent sheaves. The right vertical arrow is the

topological Chern class map. By the localization theory of K-theory, we have an

exact sequence Kn(X)→Kn(X �X0)
∂→K ′

n−1(X0).

Assume Z ∈Kn(X �X0) comes from Kn(X). Then ∂(Z) = 0, and hence,

the above diagram shows that the image of Z in Hm(X/S)Q,t/NHm(X/S)Q,t is

0. This proves that (W,N) splits. �

By Proposition 7.2.3 and Theorem 5.1.7, we have the following result.

THEOREM 7.2.4

If Z ∈Kn(X�X0) comes from Kn(X), then the regulator regXt
Z(t) (t ∈ S�{0})

converges in L when t→ 0.

REMARK 7.2.5

In [5], this result will be generalized to the situation in which S need not be of

dimension at most 1. This generalization will be reduced to Theorem 7.2.4 by

using Proposition 6.3.5.
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7.2.6

Let X→ S and 0 ∈ S be as in Section 0.3. Take H0 = Z⊕Hm(X/S)(r)Z,t. The

extended period maps in Section 6.3 give a commutative diagram

Slog ×Kn(X) → Γ\D�
SL(2)

↓ ↓
Slog ×Kn(X �X0) → Γ\DSL(2)

Here Γ is the group of all elements γ of AutZ(H0) satisfying the following con-

ditions. (i) γ preserves Hm(X/S)(r)Z,t. (ii) γe ≡ e mod Hm(X/S)(r)Z,t, where

e denotes (1,0) ∈H0. (iii) The action of γ on Hm(X/S)Z,t is contained in the

monodromy group of Hm(X/S)Z.

7.2.7

We give an explicit example. Assume that X → S is a family of elliptic curves

which degenerates at 0 ∈ S, and assume n= r = 2. Then the period domain and

the extended period domains which appear here are those of Example III (see

Section 7.1). Let the notation be as in Section 7.1.

We discuss an explicit example of Z ∈K2(X�X0). Let αj and βk be a finite

number of torsion sections of X � X0 over S � {0}, let mj , nk ∈ Z such that∑
j mj =

∑
k nk = 0, and consider the divisors α =

∑
j mj(αj), β =

∑
k nk(βk)

on X �X0 of degree 0. Then we have an element Zα,β ∈K2(X �X0) (see [4],

[20]). It is essentially the Steinberg symbol {fα, fβ}, where fα (resp., fβ) is an

element of Q⊗C(X)× whose divisor is α (resp., β). When t tends to 0 in S,

there are a, b ∈W−3H0,R such that we have

regXt

(
Zα,β(t)

)
= ay+ b+O(y−1),

where y is defined by q(t) = e2πi(x+iy) (x, y ∈R) with q(t) the q-invariant of the

elliptic curve Xt.

We have

a≡
∑
j,k

mjnkB3

({
r(αj)− r(βk)

})
e2 mod Re1,

where B3 is the Bernoulli polynomial of degree 3; r(μ) for a torsion section μ

is the element of Q/Z such that, as a section of the Tate curve Gm/qZ, μ is

expressed as sqr(μ) mod qZ with s a root of 1; and {·} :Q/Z→ [0,1)⊂Q is the

lifting.

Assume now that r(αj) = r(βk) = 0 for any j, k, that is, these torsion sections

αj and βk are roots of 1 in the Tate curve Gm/qZ. Then Zα,β comes from K2(X),

a= 0, and the degeneration is mild. In this case,

b=
∑
j,k

mjnkD(αj/βk)e1,

where we regard αj and βk as roots of 1 and D is the real analytic modified

dilogarithm function of Bloch–Wigner (see [4]).

These things will be explained in [5] by using results in [20], [4], and [10] and

using the results of this article.
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7.3. Example IV
This is Example IV in [15, II]. As is explained in [15, II, Section 4.4] and also in

Section 7.4 below, this example is related to the local height pairing of points of

a degenerating elliptic curve.

7.3.1

Let H0 =Z4 with basis e1, e2, e3, e4. The weight filtration is given by

W−3 = 0⊂W−2 =Re1 ⊂W−1 =

3⊕
j=1

Rej ⊂W0 =H0,R.

The intersection form on grW−1 is the antisymmetric form characterized by 〈e3,
e2〉= 1.

7.3.2

We have D(grW )∼= h, the upper half-plane, and DSL(2)(gr
W ) =DBS(gr

W ) = hBS.

7.3.3

We have a homeomorphism

D�
SL(2),val

∼=→DBS,val,

and this induces a homeomorphism

D�
SL(2)

∼=DBS

of quotient spaces. Let W ′ be the increasing filtration on grW given by

W ′
−3 = 0⊂W ′

−2 = grW−2+R(e2 mod W−2) =W ′
−1 ⊂W ′

0 = grW ,

and let Φ = {W ′}. Let P be the parabolic subgroup of GR consisting of elements

which preserve W ′. Then, DBS(P ) =D�
SL(2)(Φ), and it is the inverse image of the

open set {x+ iy | x ∈R, y ∈ (0,∞]} of hBS under the projection DBS =D�
SL(2)→

DBS(gr
W ) =DSL(2)(gr

W ) = hBS.

We have (see [15, II, Section 4.4])

DI
SL(2) =DII

SL(2).

We will denote both of them by DSL(2). We have a canonical homeomorphism

D�
SL(2)

∼=→D�,mild
SL(2) .

7.3.4

We have

spl(W )∼=R5, L∼=R,

where in the first isomorphism (s3,4, s2,4, s1,4, s1,3, s1,2) ∈R5 corresponds to the

splitting of W , which is given by e4 +
∑3

j=1 sj,4ej and ek + s1,ke1 (k = 2,3), and

the second isomorphism is given by δ 
→ r (δ ∈ L, r ∈R), δe4 = re1. We have

L(F ) = L for any F ∈D(grW ).
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7.3.5

We have homeomorphisms

D ∼= h×L× spl(W )∼=R>0 ×R×R6,

where the left isomorphism is F 
→ (F (grW ), δW (F ), splW (F )), and the second

isomorphism sends (x+ iy, δ, s) to (1/
√
y, δ, x, s), where x, y ∈R, y > 0. We call

the composite homeomorphism D ∼= R>0 ×R ×R6 the standard isomorphism

for D.

We have a commutative diagrams of homeomorphisms

D�
SL(2)(Φ)

∼= R≥0 × [−∞,∞]×R6

↑ ↑
D�

SL(2),val(Φ)
∼= (R≥0 × [−∞,∞])val ×R6

↓ ↓ (1)
DSL(2),val(Φ) ∼= (R≥0 × [−∞,∞])val ×R6

↓ ↓
DSL(2)(Φ) ∼= R≥0 × [−∞,∞]×R6,

where the upper two homeomorphisms are compatible with the standard iso-

morphism for D, but via the lower two homeomorphisms, a point of D cor-

responding to (t, δ, u) ∈ R>0 × R × R6 under the standard isomorphism for

D is sent to (t, t2δ, u). For the vertical arrows on the right-hand side, all the

arrows except (1) are the canonical projections, and the arrow (1) is as follows.

The map (1) sends (t, δ, u) ((t, δ) ∈ (R≥0 ×R)∪ (R>0 × [−∞,∞])) to (t, t2δ, u);

(p(c,±∞), u) (c ∈ R>0 � Q>0) to (p(c − 2,±∞), u) if c > 2 and to (0,0, u) if

c < 2; (p(c+,±∞), u) (c ∈Q≥0) to (p((c− 2)+,±∞), u) if c≥ 2 and to (0,0, u)

if c < 2; (p(c−,±∞), u) (c ∈Q>0) to (p((c− 2)−,±∞), u) if c > 2 and to (0,0, u)

if c ≤ 2; and (p(c, δ), u) (c ∈ Q>0, δ ∈ R � {0}) to (p(c − 2, δ), u) if c > 2, to

(0, δ, u) if c= 2, and to (0,0, u) if c < 2.

Here the notation p(c, δ) and so on are understood as in Section 7.1.5 by

replacing V̄ ⊃ V by [−∞,∞]⊃R.

7.3.6

Let a ∈Q≥0, and define Na ∈ gQ by Na(e4) = ae1, Na(e3) = e2, and Na(e1) =

Na(e2) = 0. Let σa be the cone generated by Na. For b ∈ R, let Fb ∈ Ď be

the decreasing filtration defined as follows: F 1
b = 0, F 0

b is generated by e3 and

e4 + ibe1, and F−1
b is the total space.

In D�
σa
, we have the limit (σa, exp(iσa,R)Fb) ∈D�

σa
of exp(iyNa)Fb for y→

∞. This (σa, exp(iσa,R)Fb) belongs to D�,mild
σa

if and only if a= 0.

For y ∈R>0, via the first homeomorphism in the diagram in Section 7.3.5,

exp(iyNa)Fb ∈ D is sent to (1/
√
y, ay + b,0), and hence, the limit (σa,

exp(iσa,R)Fb) ∈ D�
σa

is sent to (0,∞,0) in the case a �= 0 and to (0, b,0) in

the case a= 0. Here 0 denotes (0, . . . ,0) ∈R6. On the other hand, for y ∈R>0,

via the last homeomorphism in the diagram in Section 7.3.5, exp(iyNa)Fb ∈D is

sent to (1/
√
y, a+ y−1b,0), and hence, the limit (σa, exp(iσa,R)Fb) ∈D�

σa
is sent

to (0, a,0). By taking the limit for y→∞, we have the following result.
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LEMMA 7.3.7

The limit of exp(iyNa)Fb for y → ∞ exists both in D�
SL(2),val(Φ) and in

DSL(2),val(Φ). In the case D�
SL(2),val(Φ), the (R≥0 × [−∞,∞])val-component of

the limit is p(2, a) if a �= 0 and is (0, b) if a = 0. In the case DSL(2),val(Φ), the

(R≥0 × [−∞,∞])val-component of the limit is p(0, a).

7.3.8

By Lemma 7.3.7, we have the following. Let p be the image of (σa, exp(iσa,R)Fb) ∈
D�

σa
in one of DSL(2), DSL(2),val, D

�
SL(2), or D

�
SL(2),val. We have the following.

(1) p remembers a in the cases of DSL(2), DSL(2),val, and D�
SL(2),val, whereas

p does not remember a in the case of D�
SL(2). In the case a �= 0, p does not

remember b in any of these cases.

(2) Assume a= 0. Then p remembers b in the cases of D�
SL(2) and D�

SL(2),val,

but p does not remember b in the cases of DSL(2) and DSL(2),val.

7.3.9

The following is mentioned in Remark 6.2.3. Though σa is of rank 1, the image p

of D�
σa

in D�
SL(2) is not contained in D�

SL(2),≤1 (i.e., the part of D�
SL(2) at which

the log structure M satisfies rank(Mgp/O×)p ≤ 1) if a �= 0. Indeed, in the case

a �= 0, the image of class (Na, Fb) ∈D�
σa

in D�
SL(2) has the coordinate (0,∞,0),

which shows that (M/O×)p ∼=N2.

7.4. Degeneration and height pairings
We explain that our spaces are related to the asymptotic behavior of the

Archimedean height pairing for algebraic cycles in degeneration (cf. [18], [12],

[8]).

7.4.1

Let X be a proper smooth algebraic variety over C of dimension d, and let Y and

Z be algebraic cycles on X of codimension r and s, respectively. We assume that

r+ s= d+1, that their supports are disjoint |Y | ∩ |Z|= ∅, and that both Y and

Z are homologically equivalent to 0. Then we have a height pairing 〈Y,Z〉X ∈R

(the local version of the height pairing for a number field at an Archimedean

place; see [2], [3]).

This height pairing is understood as δ (see Section 1.2) of a mixed Hodge

structure. We have

〈Y,Z〉X = δW (HY,Z),

where HY,Z is the mixed Hodge structure whose weight filtration W has the

following properties: W0HY,Z =HY,Z , W−3 = 0, grW0 = Z, grW−2 = Z(1), grW−1 =

H2r−1(X)(r), constructed in [2] and [3]. The exact sequence 0→H2r−1(X)(r)→
W0/W−2→Z→ 0 is given by the class of Y , and the exact sequence 0→Z(1)→
W−1→H2r−1(X)(r)→ 0 is given by the class of Z.
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7.4.2

Let X → S and 0 ∈ S be as in Section 0.3. Let Y and Z be algebraic cycles on

X of codimension r and s, respectively, such that r + s= d+ 1, where d is the

relative dimension of X → S, such that |Y | ∩ |Z| = ∅, and such that both Y (t)

and Z(t) are homologically equivalent to 0 for any t ∈ S � {0}.

7.4.3

Since the height pairing 〈Y (t),Z(t)〉 is understood as δ of a mixed Hodge struc-

ture (see Section 7.4.1), its behavior in the degeneration is explained by the

theory of degeneration of mixed Hodge structure as in this article.

When t→ 0 with x fixed, there are a, b ∈R such that we have〈
Y (t),Z(t)

〉
Xt

= ay+ b+O(y−1),

where taking a local coordinate q on S at 0 such that q(0) = 0, we define y by

q = e2πi(x+iy) (x, y ∈R, y > 0). Here, a= 0 if and only if the degeneration of HY,Z

at 0 ∈ S is mild. It is known that a is the local geometric intersection number of

Y and Z over 0 ∈ S.

7.4.4

We give an explicit example. Assume thatX→ S is a family of degenerating ellip-

tic curves, and assume that r = s= 1. Let Y =
∑

j mj(αj) and Z =
∑

k nk(βk),

where αj and βk are closures in X of torsion sections of X � X0 → S � {0},
mj , nk ∈Z,

∑
j mj =

∑
k nk = 0. We assume that the divisors αj and βk of X do

not intersect for any pair (j, k).

This is an example discussed at the end of [15, II, Section 4.4]. The extended

period domains which appear here are those of Example IV (see Section 7.3).

We have

a=
∑
j,k

mjnkB2

({
r(αj)− r(βk)

})
,

where B2 is the Bernoulli polynomial of degree 2. (The notation is as in Sec-

tion 7.2.7.) This was explained in [15, II, Proposition 4.4.8].

If r(αj) = r(βk) = 0 for any j, k, then a= 0 and the degeneration is mild. In

this case,

b=
∑
j,k

mjnkl(αj/βk),

where we regard αj and βk as roots of 1 and l(t) = log(|1− t|). These things are

surprisingly similar to Section 7.2.7. These things will be further explained in [5]

by using the results of this article.

Appendix: Corrections to [17], supplements to [15, III]

Corrections of errors in the book [17] have been put on the home page of Prince-

ton University Press. In this appendix, we update some important parts of them
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in Sections A.1 and A.2. In Section A.3, we give supplements to [15, III]. Sec-

tions A.1 and A.3 are important for Section 5.5 in the text.

A.1 Changes in [17, Section 6.4]

A.1.1

The following errors (1) and (2) are in [17, Sections 6.4 and 7.1], respectively.

(1) Proposition 3.1.6 is used in 6.4.12 (the second line from the end), but

Proposition 3.1.6 is not strong enough for the arguments in 6.4.12.

(2) We cannot have the second convergence in 7.1.2(3).

A.1.2

We make the following changes to the book [17]. Change 1 solves the above

problem (1). Changes 2 and 3 solve the above problem (2).

Change 1. We replace [17, Section 7.1.2] by Sections A.1.3–A.1.9 below.

Change 2. We move [17, Section 7.1], revised as in the above change 1, to

the place just before [17, Section 6.4]. That is, we exchange the order of [17,

Sections 6.4 and 7.1].

Change 3. We make the change to [17, Section 6.4.12] explained in Sec-

tion A.1.10.

A.1.3

We will prove Theorem A(i), that Eσ is open in Ẽσ for the strong topology. Since

Ẽσ,val→ Ẽσ is proper surjective and Eσ,val ⊂ Ẽσ,val is the inverse image of Eσ ⊂
Ẽσ , it is sufficient to prove that Eσ,val is open in Ẽσ,val. Assume xλ = (qλ, F

′
λ) ∈

Ẽσ,val converges in Ẽσ,val to x = (q,F ′) ∈ Eσ,val. We prove that xλ ∈ Eσ,val for

any sufficiently large λ.

A.1.4

We fix notation. Let | · | : toricσ,val → | toric |σ,val be the canonical projection

induced by C→R, z 
→ |z|.
Let (A,V,Z) ∈D�

σ,val be the image of (|q|, F ′) ∈E�
σ,val under E

�
σ,val→D�

σ,val

(5.3.7), and take an excellent basis (Ns)s∈S for (A,V,Z) such that Ns ∈ σ(q) for

any s (6.3.9). Let Sj (1 ≤ j ≤ n) be as in 6.3.3. Take an R-subspace B of σR

such that σR =AR ⊕B.

We have a unique injective open continuous map

(RS
≥0)val ×B→ | toric |σ,val

which sends ((e−2πys)s∈S , b) (ys ∈R, b ∈B) to e((
∑

s∈S iysNs) + ib) (cf. 3.3.5).

Let U be the image of this map. Define the maps ts : U → R≥0 (s ∈ S) and

b : U →B by (an abuse of notation b)

(t, b) =
(
(ts)s∈S , b

)
: U  (RS

≥0)val ×B→RS
≥0 ×B.
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We have |q| ∈ U and t(|q|) := (ts(|q|))s∈S = 0. Since |qλ| → |q|, we may assume

|qλ| ∈ U . Let

Fλ = exp
(
ib(qλ)

)
F ′
λ, F = exp

(
ib(q)

)
F ′.

Then ((Ns)s∈S , F ) generates a nilpotent orbit.

A.1.5

We may assume that, for some m (1 ≤ m ≤ n + 1), ts(qλ) = 0 for any λ and

s ∈ S≤m−1 and ts(qλ) �= 0 for any λ and s ∈ S≥m (see 6.3.11). (S≤0 and S≥n+1

are defined as the empty set.)

Take cj ∈ Sj for each j. For s ∈ S≥m, define yλ,s ∈R by ts(qλ) = e−2πyλ,s .

For each j ∈ Z such that m≤ j ≤ n, let Nj =
∑

s∈Sj
asNs, where as ∈R is the

limit of yλ,s/yλ,cj .

Then (N1, . . . ,Nn, F ) generates a nilpotent orbit. Let ρ̃ : Gn
m,R → GR be

the homomorphism of the SL(2)-orbit (5.2.2) associated to (N1, . . . ,Nn, F ). For

m≤ j ≤ n, let

eλ,≥j = exp
( ∑
s∈S≥j

iyλ,sNs

)
∈GC,

τλ,j = ρ̃j
(√

yλ,cj+1/yλ,cj
)
∈GR, τλ,≥j =

n∏
k=j

τλ,k ∈GR,

where yλ,cn+1 denotes 1. Here ρ̃j is the restriction of ρ̃ to the jth factor of Gn
m,R.

Let F̂(j) (1≤ j ≤ n) be as in 6.1.3 associated to (N1, . . . ,Nn, F ).

By 3.1.6 applied to S =Eσ ⊂X = Ěσ , we have the following result.

LEMMA A.1.6

Let the situation and the notation be as above. Let m ≤ j ≤ n, and let e ≥ 0.

Then for any sufficiently large λ, there exist F ∗
λ ∈ Ď satisfying the following (i)

and (ii).

(i) yeλ,sd(Fλ, F
∗
λ )→ 0 (∀s ∈ Sj).

(ii) (Ns, F
∗
λ ) satisfies Griffiths transversality for any s ∈ S≤j .

Furthermore, in the case j = n, there is F ∗
λ as above satisfying the following

condition (ii)∗, which is stronger than the above condition (ii).

(ii)∗ ((Ns)s∈S , F
∗
λ ) generates a nilpotent orbit.

PROPOSITION A.1.7

Let the situation and the assumption be as above. Then the following assertions

(Aj) (m− 1≤ j ≤ n), (Bj) (m≤ j ≤ n), and (Cj) (m≤ j ≤ n) are true.

(Aj) (resp., (Bj), (Cj)) for m≤ j ≤ n: Let e≥ 1. Then for any sufficiently

large λ, there are F
(j)
λ ∈ Ď satisfying the following (1)–(3).

(1) yeλ,jd(Fλ, F
(j)
λ )→ 0.

(2) ((Ns)s∈S≤j
, eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit.
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(3) τ−1
λ,≥j+1eλ,≥j+1F

(j)
λ → exp(iNj+1)F̂(j+1) (resp., (3) τ−1

λ,≥jeλ,≥j+1F
(j)
λ →

F̂(j); resp., (3) τ−1
λ,≥jeλ,≥jF

(j)
λ → exp(iNj)F̂(j)).

Here (An) is formulated by understanding Nn+1 = 0 and F̂(n+1) = F .

(Am−1): For any sufficiently large λ, we have the following (2) and (3).

(2) ((Ns)s∈S≤m−1
, eλ,≥mFλ) generates a nilpotent orbit.

(3) τ−1
λ,≥meλ,≥mFλ→ exp(iNm)F̂(m).

A.1.8

We prove Proposition A.1.7 by using the downward induction of the form (Aj)

⇒ (Bj) ⇒ (Cj) ⇒ (Aj−1). (Here m≤ j ≤ n.) (Bj) ⇒ (Cj) is clear. (Aj) ⇒ (Bj)

is easy. (An) follows from Lemma A.1.6.

We prove (Cj+1) ⇒ (Aj). By Lemma A.1.6, if m ≤ j ≤ n (resp., j = m −
1), then there are F

(j)
λ ∈ Ď satisfying (1) and (resp., F

(j)
λ := Fλ satisfies) the

condition

(2′) (Ns, F
(j)
λ ) satisfies Griffiths transversality for any s ∈ S≤j .

By (Cj+1), there are F
(j+1)
λ ∈ Ď satisfying the following.

(1′′) yeλ,j+1d(Fλ, F
(j+1)
λ )→ 0.

(2′′) ((Ns)s∈S≤j+1
, eλ,≥j+2F

(j+1)
λ ) generates a nilpotent orbit.

(3′′) τ−1
λ,≥j+1eλ,≥j+1F

(j+1)
λ → exp(iNj+1)F̂(j+1).

By (1′′) and (3′′), we have

(4) τ−1
λ,≥j+1eλ,≥j+1Fλ→ exp(iNj+1)F̂(j+1).

By (4) and by (1), we have

(5) τ−1
λ,≥j+1eλ,≥j+1F

(j)
λ → exp(iNj+1)F̂(j+1).

For the left-hand side of (5), by (2′), (Ns, τ
−1
λ,≥j+1eλ,≥j+1F

(j)
λ ) satisfies Grif-

fiths transversality for any s ∈ S≤j . On the other hand, concerning the right-hand

side of (5), ((Ns)s∈S≤j
, exp(iNj+1)F̂(j+1)) generates a nilpotent orbit. Hence, (5)

and 7.1.1 show that ((Ns)s∈S≤j
, τ−1

λ,≥j+1eλ,≥j+1F
(j)
λ ) generates a nilpotent orbit.

This proves that ((Ns)s∈S≤j
, eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit for any

sufficiently large λ. Hence, for any sufficiently large λ, (W (j), eλ,≥j+1F
(j)
λ ) is a

mixed Hodge structure, where W (j) denotes the relative monodromy filtration

of N1 + · · ·+Nj with respect to W . By this and by (5), we have (Aj).

A.1.9

By (Am−1)(2) of Proposition A.1.7, xλ belongs to Eσ,val if λ is sufficiently large.

This proves that Eσ,val is open in Ẽσ,val and, hence, proves that Eσ is open in

Ẽσ .

A.1.10

In [17, Section 6.4.12], in the second line from the end, we replace the part “by

Proposition 3.1.6” with “by the case m= 0 and xλ ∈E�
σ,val of Proposition A.1.7”

of the present article.
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REMARK A.1.11

By these changes, we have the following simplification in [17]. We can assume

y∗λ,t = yλ,t in [17, Proposition 6.4.1]. It is claimed in the original [17, Section 6.4]

that the proofs of [17, Theorems 5.4.3(ii), 5.4.4] are reduced to [17, Proposition

6.4.1], but actually they are reduced to the case y∗λ,t = yλ,t of [17, Proposition

6.4.1].

A.2 Change to [17, Section 7.2]

A.2.1

Professor J.-P. Serre kindly pointed out that our book should not use [6, Sec-

tion 10], for there are errors in it (cf. the version of [6, Remark 10.10] contained

in “Armand Borel Oeuvres—Collected Papers, Vol. III, Springer, 1983”). We

used a result [6, Proposition 10.4] in the proof of Lemma 7.2.12 of our book. To

correct our argument, we change the following. We put the following assumption

in Theorem 7.2.2(i): “Assume that σ is a nilpotent cone associated to a nilpo-

tent orbit.” We replace Lemma 7.2.12 and its proof in our book by the following

proposition and its proof, which does not use [6, Section 10].

PROPOSITION A.2.2

Let σ be a nilpotent cone associated to a nilpotent orbit, and let W (σ) be the

associated weight filtration. Then, by assigning the Borel–Serre splitting, we have

a continuous map E�
σ,val→ spl(W (σ)).

Proof

The composite map E�
σ,val→D�

σ,val

ψ→DSL(2) is continuous by the definition of

the first map and by 6.4.1 for the CKS map ψ. Let N1, . . . ,Nn be a set of genera-

tors of the cone σ. Let s be a bijection {1, . . . , n}→ {1, . . . , n}. Then the image of

the map E�
σ,val→DSL(2) is contained in the union U of DSL(2)({W (Ns(1) + · · ·+

Ns(j)) | j = 1, . . . , n}), where s runs over all bijections {1, . . . , n} → {1, . . . , n}.
Since Ns(1)+ · · ·+Ns(n) =N1+ · · ·+Nn, the filtration W (N1+ · · ·+Nn) =W (σ)

appears for any s. By [15, II, Proposition 3.2.12], the Borel–Serre splitting gives

a continuous map U → spl(W (σ)). Thus, we get our assertion. �

A.2.3

We replace the third paragraph in 7.2.13 by the following: “Since the action of

σR on spl(W (σ)) is proper and E�
σ,val is Hausdorff, the action of σR on E�

σ,val is

proper by applying Lemma 7.2.6(ii) to the continuous map E�
σ,val→ spl(W (σ))

in Proposition 7.2.12. Hence, Re(hλ) converges in σR by Lemma 7.2.7.”

A.2.4

Add the following sentence at the top of the fourth paragraph in 7.2.13: “Let

| | :Eσ,val→E�
σ,val be the continuous map (q,F )→ (|q|, F ) in 7.1.3.”
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A.3 Supplements to [15, III]
We add explanations to [15, III, Section 3.3].

A.3.1

We put the following explanation from Section A.3.2 just after the statement of

[15, III, Theorem 3.3.1].

A.3.2

This [15, III, Theorem 3.3.1] is the mixed Hodge version of [17, Theorem 5.4.3]

for the pure case and is proved in the same way.

A.3.3

We replace the two lines “As in [KU09] 6.4, a key step . . .We only prove this

proposition.” just before [15, III, Section 3.3.3] by the following Section A.3.4.

A.3.4

This [15, III, Theorem 3.3.2] is proved in the following way. We can prove the

evident mixed Hodge version of Proposition A.1.6 by using the same arguments

in the proof of Proposition A.1.6.

Just as [17, Theorem 5.4.4] was reduced to the case y∗λ,t = yλ,t of [17, Lemma

6.4.1] by using the case m = 0 and xλ ∈ E�
σ,val of Proposition A.1.6 (see Sec-

tion A.1.10, Remark A.1.11), [15, III, Theorem 3.3.2] is reduced to the case

y∗λ,t = yλ,t of [15, III, Proposition 3.3.4] by using the case m = 0 of this mixed

Hodge version of Proposition A.1.6.

A.3.5

We replace the part “proposition implies” in the second line of the remark after

[15, III, Proposition 3.3.4] with “proposition and [KU09], 6.4.1 for the pure case

imply.”
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