Classifying spaces of degenerating mixed
Hodge structures, IV: The fundamental
diagram
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Abstract We complete the construction of the fundamental diagram of various partial
compactifications of the moduli spaces of mixed Hodge structures with polarized graded
quotients. The diagram includes the space of nilpotent orbits, the space of SL(2)-orbits,
and the space of Borel-Serre orbits. We give amplifications of this fundamental diagram
and amplify the relations of these spaces. We describe how this work is useful in under-
standing asymptotic behaviors of Beilinson regulators and of local height pairings in
degeneration. We discuss mild degenerations in which regulators converge.
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0. Introduction
0.1. The fundamental diagram and its amplification

0.1.1

Let D be the period domain which classifies mixed Hodge structures with polar-
ized graded quotients with respect to the weight filtration (see [11], [22]), with
fixed Hodge numbers of graded quotients. In Parts I-IIT [15, I-IIT] of this series
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of articles, we constructed extended period domains in the diagram

n,
Dsy,(2),val = Dgs val

{ {
'\ Dsyva D%,val 4 Dgy,(2) Dgs

1 !
r'\Dy <+« D&

which we call the fundamental diagram, as the mixed Hodge versions of the
extended period domains in [17] for the pure case. We have constructed the
maps in the diagram except the map 7. In this Part IV of our series of articles,
we define the injective map 7. There is a big issue concerning this map 7, which
did not appear in the pure case, as we explain below soon. In this Part IV, we
amplify this fundamental diagram as in Sections 0.1.4 and 0.2.3 below, and we
remedy the issue as a result of the amplification.

0.1.2

The spaces in the fundamental diagram in Section 0.1.1 are topological spaces,
the right six spaces have D as dense open sets, and the left two spaces have the
quotient T'\ D of D by a discrete group I' as dense open subsets. These left two
spaces have sheaves of holomorphic functions extending that of I'\ D (though
these spaces need not be complex analytic spaces) and have log structures, and
the right four spaces have sheaves of real analytic functions extending that of D
(though these spaces need not be real analytic spaces) and have log structures.
The maps in the fundamental diagram except 71 respect these structures.

Among these eight spaces, the main spaces are the three spaces I'\ Dy, (the
space of nilpotent orbits), Dgr,(2) (the space of SL(2)-orbits), and Dgs (the space
of Borel-Serre orbits). We defined and studied Dgs in [15, I], Dgp,2y in [15, II],
and T'\ Dy, in [15, III]. The other five spaces appear to help the connection of
these three spaces.

The map v in the center of the fundamental diagram connects the four spaces
in the world of nilpotent orbits on the left with the world of SL(2)-orbits. We call
¥ the Cattani—Kaplan—Schmid (CKS) map, for it is obtained in the pure case
by using the work of Cattani, Kaplan, and Schmid [9] on the relation between
nilpotent orbits and SL(2)-orbits.

However, to connect the world of SL(2)-orbits and the world of Borel-Serre
orbits on the right, the map 7 has the following defect. Though the map 7 is a
natural map and is continuous in the pure case (see [17]), a big issue is that, in
the mixed case, the map 7 is not necessarily continuous (see Section 3.5).

0.1.3
To remedy this issue and to amplify the connections of the spaces in the funda-
mental diagram, we will introduce new spaces

Dg;,5) and D¢y, in the world of SL(2)-orbits (see Section 2) and



Classifying spaces of degenerating mixed Hodge structures, IV 291

DuE (vay) and DﬁE ; in the world of nilpotent orbits (see Section 4).

These spaces are topological spaces, and the first two have sheaves of real analytic
functions and log structures. They have the following special properties.

The space D§L(2) has better relations to Borel-Serre orbits than Dgp,(9) (see
Section 3.4), and this space remedies the above issue. The spirit of the definition
of Dg; (5 (see Section 2) is near that of Dps.

As is shown in Section 5, the space DgL(Q) has better relations to nilpotent
orbits of mild degeneration (see Section 0.2 for the meaning of mildness) than
Dgy,(2y, though among Dgr,(a), D§L(2)7 and D§L(2)’ Dgy,2y is the best for the
relation with general nilpotent orbits. In the pure case, we have

Dgr(2) = D§L(2) = DgL(2)'

The space DﬁE,[val] has a nice relation to Dgp,(2)val (see Section 4), which
DﬁE,val does not have. The space Dg[:] is a quotient of D§I7[val] and also a quotient
of Dﬁzyal and has a nice relation to Dsy,2) (see Section 4).

The symbols x and ¢ are used to express that the spaces are shiny like
stars and diamonds in the relations to Borel-Serre orbits and nilpotent orbits,
respectively. The symbol [:] is used because Dﬁzy[:] is regarded as a space of ratios.
The symbol [val], is similar to [:], is used because Dﬁz,[val] is the valuative space
associated to Dﬁa[:] for a certain log structure.

Actually, as is explained in [15, II], Dgp,(2) has two structures DéL(Q) and
Déi(z) of a topological space with sheaves of real analytic functions and log
structures. Everything in this introduction is true for Déi(z).

0.1.4

By using the above spaces, we have the following amplified fundamental diagram
and supplemental amplifications in Sections 0.1.5 and 0.2.3, which connect the
“three worlds” better.

* N
Dg1,2) val 2 Dgs val
+ 1
P
Duz,[val] —  Dsp(2),val Dgs
{ {
P\Dz,val — DuE,val — Dé[] ﬂ) DSL(Z)
! !
'\ Dx, — DX

This diagram is commutative, and the maps respect the structures of the spaces.
As indicated in this diagram, the valuative space DgL(2),val associated to D§L(2)
has an injective morphism n* : D§L(2),val — Dpg val (see Theorem 3.4.4), which
is an improved version of 7, and a proper surjective morphism D§L(2),val —
Dgt,(2),val (see Theorem 2.5.5). Here morphism means a morphism of topological
spaces endowed with sheaves of real analytic functions and with log structures.
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As also indicated in the diagram, the CKS map 1 : DﬁE val = Dsr(2) factors as
Dgl,val — Dﬁz)[:] — Dgr,(2), and we have a continuous map ¥ : Duz,[val] — Ds1(2),val
(see Theorem 4.5.2).

0.1.5
In the case in which X is the fan Z of all rational nilpotent cones of rank at
most 1, we have

DY

=, [val]

- D”E,H — DL =DL.

=,va =

Furthermore, in this case, we have a CKS map ¥ : DﬁE — D§L(2) vap» and hence,
the three worlds are connected directly by (see Theorem 6.2.2)

" *
DﬁE - DgL(Q),val % DBS,vaL

0.1.6

As is described above, the spaces Dgr,(2), D§L(2)7 and Dpgg are related via their
associated valuative spaces Dsr,(2) val, D§L(2),val’ and Dgsval. The associated
valuative space is a kind of a projective limit of blowups. In Section 2, we will
construct also spaces Dgﬂz)v Dg’L_(Q), and Dgf(g) which are related to D§; ) via
kinds of blowups and blowdowns and which work as bridges between Dgy,(z),
D%y, and Dpg before going to the valuative spaces (see Section 2).

0.1.7

A nilpotent orbit appears as the limit of a variation of mixed Hodge structure in
degeneration. SL(2)-orbits are simpler objects, and Borel-Serre orbits are further
simpler. The theory of SL(2)-orbits (see [21], [9] for the pure case and [19], [14]
for the mixed case) tells us that, roughly speaking, an SL(2)-orbit is associated
to a nilpotent orbit, and we can read real analytic behaviors of the degeneration
better by looking at the simpler object SL(2)-orbit. The map v gives the SL(2)-
orbit associated to a nilpotent orbit.

We hope that the above extended period domains and their relations are
useful in the study of degeneration of mixed Hodge structures. Actually, as illus-
trated in Section 0.3 below and in Section 7, our theory has an application to
the study (see [5]) of asymptotic behaviors of degenerations of Beilinson regu-
lators and local height pairings. In these subjects, the asymptotic behaviors are
understood by degeneration of mixed Hodge structures.

0.2. Mild degenerations

0.2.1
We will define the subsets

. 1 .
DR C Dy, Dy CDim), DB C Das

of elements with mild degenerations. Any element of DgL(2) is regarded as having
mild degeneration.
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0.2.2
Let D®ild he the subset of Dy, consisting of all points p satisfying the following
condition: for any element N of the monodromy cone associated to p, there is a
splitting of W which is compatible with N. (The splitting can depend on N and
need not have any relation with the Hodge filtration.)

Denote the subset Dgg) of Dgs [15, 1, Section 8.1] by D, Let Dgd'e,, C
Dgs val be the inverse image of DB, There is also a subset Dgf(lg)d of D& (o)

-~ . L . . wmild . %
consisting of A-orbits (see Section 2) whose inverse image DSL(2)7Val in DSL(Q),Val

coincides with the inverse image of Dglélff,al under n*. We also have the mild parts
of Dnz,[:] and Dﬁz,[val]; that is, let D%Tﬁld and DﬁET\:ﬁ] be the inverse images of
F\Dg‘ﬂd in Dﬁz,[;] and in DuE,[V&l]’ respectively. All these mild parts T'\ DZild,
Dg‘éld, ..., and so on are open sets of I'\ Dy, Dgg, ..., and so on, respectively.
0.2.3

For mild degenerations, we can replace the upper right part of the amplified fun-
damental diagram by the following commutative diagram (maps respect struc-
tures of the spaces) which contains the space D§L(2) and its associated valuative
(see Theorem 5.1.10).

ko3
space Dgp o) vl

DERS B Diya = Dityen = DS,
I 1 I I
Dgﬁfﬁld E SLe) Dg’Ln(gl)d D
1
Dgy,(2)

0.2.4
In the applications of our work as in Section 7, the following part of the funda-
mental diagrams in Sections 0.1 and 0.2 becomes important.

f,mild
Dg = Diue

N 4
Dﬁz,[;] —  Dsi2)

Via this diagram, we can understand degeneration of mixed Hodge structure in
the space Dgp,(2) and understand mild degeneration better in D<S>L(2)' The right
vertical arrow is usually not injective, and hence, D§L(2) can give information
about mild degeneration which is lost in Dgp,(2). This is explained in Section 0.3
below and explained more precisely in Section 7.

0.3. Relations with regulators and local height pairings
We illustrate the relations of this work to the work [5].
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0.3.1
Let S be a smooth curve over C, and let f: X — S be a proper surjective
morphism from a smooth algebraic variety X. Let 0 € S be a point, and assume
that X \ Xo — 5\ {0} is smooth and X is of semistable reduction at 0 € S.
For Z € K, (X \ Xo) (n > 1), the asymptotic behavior of the regulator of
the restriction Z(t) € K, (X;) of Z to Xy (t € S~ {0}, t = 0) is studied in [5]
by using our theory of degeneration of mixed Hodge structure. For each r > 0,
Z defines a variation of mixed Hodge structure Hz on S\ {0} with an exact
sequence 0 — H™(X/S)(r) = Hz - Z — 0, where m=2r —n—1, H™(X/S) is
the mth direct image R™ f.Z on S ~\ {0} with Hodge filtration, and (r) is the
Tate twist. The (rth) regulator of Z(t) is determined by the fiber H(t) of Hy
at t.

0.3.2
We describe how our theory is related to this subject. Our description in the
rest of Section 0.3 is rough and imprecise. More precise matters are described in
Section 7.2, and details are given in [5].

We have the period map

(S~ {0}) x Kn(X N Xo) =T\ D, (t,2) class(Hz(t)).
By [15, III], this extends to
Sx Kn(X~Xo)=»T\Ds, S x K,(X \ Xo)—T\ DL,

where S'°¢ is the space associated to S defined in [13]. If Z comes from K,,(X),
then Hyz has mild degeneration at 0 € S (see Proposition 7.2.3). The diagram in
Section 0.2.4 produces the following commutative diagram.

S8 x Ku(X) = T\DE™M - 1\Dg

\ N !
S x K, (X~ Xo) — D\DL — T\Dgyp

0.5.3

We can prove that, for Z € K,,(X), the regulator of Z(t) converges when t — 0
(see Theorem 7.2.4). In fact, this is a consequence of the fact that the period
map S~ {0} =T\ D, t+ class(Hz(t)) induced by Z extends to a continuous
map S8 — F\DgL(Q) as indicated by the upper row of the above diagram. We
recover the limit of the regulator of Z(t) for ¢ — 0 from the image of a point b of
S°g over 0 in F\DgL(Q). On the other hand, for Z € K,,(X \ Xy), which need
not come from K, (X), the regulator of Z(t) need not converge when ¢ — 0, and
the image of b in I'\ Dgr,(2) tells us how rapidly it diverges. When Z comes from
K, (X), the image of b in I'\ Dgy,(2) has less information than the image of b in
'\ Dg; () and cannot tell us the limit of the regulator of Z(t).
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0.3.4
We have a similar story for the asymptotic behavior of the local height pairing
(at the Archimedean place). This is introduced in Section 7.4.

0.4. Organization of this article

The organization of this article is as follows. Section 1 consists of preparation.
In Section 2, we consider the new space Dgy ) of SL(2)-orbits. In Section 3,
we consider the spaces Dgsp,(2),va1 and D§L(2),val of valuative SL(2)-orbits and
the space Dgg val of valuative Borel-Serre orbits. In Section 4, we consider the
[val] and Du&[:] in the world of nilpotent orbits and improve CKS
maps by using these spaces. In Section 5, we consider the new space DgL(2) of

. pf
new spaces Dg,

SL(2)-orbits and construct mild CKS maps. In Section 6, we give complementary
results on properties of extended period domains, on relations of nilpotent orbits,
SL(2)-orbits, and Borel-Serre orbits, and on extended period maps. In Section 7,
we illustrate the relations to the work [5] and give examples.

In Appendix, we give corrections to [17] and supplements to [15, III]. Sec-
tions A.1 and A.3 in this appendix are directly related to Section 5.5 of this
article.

1. Preliminaries

1.1. The setting
We recall the basic setting and the notation used throughout this series of articles.

1.1.1

We fix A= (Ho, W, (-, )w)w, (B?)p q), where Hy is a finitely generated free Z-
module, W is a finite increasing rational filtration on Hy g = R ® Hy, (-, ), for
each w € Z is a rational nondegenerate R-bilinear form gr!¥ x gr’¥ — R which is
symmetric if w is even and is antisymmetric if w is odd, and hP'¢ is a nonnegative
integer given for each (p,q) € Z?, satisfying the following conditions (1)—(3):

(1) Zp’q hP9 =rankz(Hy),

(2) Zp+q:w hP4 = dimg (gr,y) ) for any w € Z,
(3) hP9=h%P for any (p,q).

1.1.2
Let D be the classifying space of gradedly polarized mixed Hodge structures
in [22] associated to the data fixed in Section 1.1.1. As a set, D consists of all

increasing filtrations F' on Hpc = C ® Hy such that (Ho, W, ((, Yw)w, F) is a
gradedly polarized mixed Hodge structure with dimg F? (grmq) / F”“(grz[j_q) =
hP-4 for all p, q.

The space D is an open subset of a simpler complex analytic manifold D
[15, I, Section 1.5, which is defined by replacing the condition of positivity for
{-,) in the definition of D with the weaker condition that FP(gr!V) is the exact
annihilator of F*=P+L(gr!) for (.,.),,.
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1.1.8
For A=7Z,Q,R,C, let G4 be the group of the A-automorphisms of (Hg 4, W)
whose gr’¥’s are compatible with (-,-),, for all w. Here Hy 4 = A® Hy. Then G¢
(resp., Gr) acts on D (resp., D). For A= Q,R,C, let g4 be the associated Lie
algebra of G 4.

Let Gau={y€Ga|g"(9) =1}, gau={N €ga | g (N)=0}. Then
G 4/Ga .y is isomorphic to Ga(grV):=[], Galgrl) and ga/ga,. is isomorphic
to ga(gr™) =11, 8a(grl)), where Ga(gr!)) (resp., ga(griy)) is “the G4 (resp.,

ga) for gry)”

1.1.4
For each w € Z, let D(gr!V) be the D for the graded quotient ((HoNW,,)/(HoN
Waw—1)s (s Yws (BP7) pyg—w). Let D(gr™') =[], ez D(gry ). Then the canonical
morphism

D — D(gr"), Fs F(gr"):= (F(grz;v))wez

is surjective.

1.1.5
Let W’ be a finite increasing filtration on Hor. A splitting of W' is an isomor-
phism

’ 1~
s: gtV ::@grw = Hor
w

of R-vector spaces such that, for any w € Z and v € gruVY/, s(v) e W) and v =
(s(v) mod W, _4).

Let spl(W’) be the set of all splittings of W’. Consider the case W/ = W.
Then spl(W) is regarded as a G q-torsor.

Let Dgp1 := {s(F) | s €spl(W),F € D(gr"")} C D be the subset of R-split
elements. Here s(F)? := s(@,, F(pw)) for F = (F(,))w € D(gr"). Then, Dy is a
real analytic closed submanifold of D, and we have a real analytic isomorphism
spl(W) x D(grt"') = Dgpi, (s, F) + s(F). Let Dygpr := D \ Dgp.

1.2. Canonical splitting of the weight filtration and the invariant § of nonsplitting

1.2.1

We review the fact that the weight filtration of an R-mixed Hodge structure has
a canonical splitting over R (which does not split the Hodge filtration except
the case of an R-split mixed Hodge structure) and the fact that there is an
important map & which tells us how the R-mixed Hodge structure is far from
R-split. We review that we have an isomorphism of real analytic manifolds [15,
I1, Proposition 1.2.5]

DS {(F,s5,0) € D(gr") x spl(W) x L |5 € L(F)},

T (x(ng), splyy (z), 0w (x))
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by using the canonical splitting sply, (z) of W associated to  and the invariant
dw (x) of nonsplitting associated to x. £ and L(F') are explained in Section 1.2.2,
dw (x) is explained in Section 1.2.3, and sply,(z) is explained in Section 1.2.5
below.

1.2.2

Let £ =W_sEndgr(gr’”) be the set of all R-linear maps 6 : gr'V — gr' such
that 0(gr!V) C B, <,_o8rw, for all w € Z [15, 11, Section 1.2.1]. This is a finite-
dimensional weighted R-vector space.

For F € D(gr'"V), let L(F) be the weighted subspace of £ consisting of all ele-
ments whose (p, ¢)-Hodge components for F are 0 unless p < 0 and ¢ < 0. That is,
L(F) is the set of all § € £ such that §(Hz") C@D, ., <4 Hg’q/ for all p,q € Z.
Here H}? denotes the (p,q)-Hodge component of F(gr)),,) (see [15, II, Sec-
tion 1.2.1]).

1.2.3
We explain dy (z) € L(z(gr™)). For o € D, there is a unique pair of s’ € spl(W)
and § € L(x(gr")) such that (see [9, Proposition 2.20])

z =5 (exp(i6)z(gr")).
We write dy (x) (or 6(x)) for this 4.

1.2.4

Roughly speaking, dy (x) is the invariant of the mixed Hodge structure x which
measures how z is far from Dgp,) in D. We have dw (z) = 0 if and only if 2 € Dy
(Section 1.1.5).

This dw (x) plays important roles in our series of articles. It is related to
the regulator in number theory and in arithmetic geometry as is discussed in [5]
and in Section 7 of this article. Hence, we call oy (z) the regulator of the mixed
Hodge structure z.

1.2.5

We explain sply, () € spl(W). Let = € D, and let s’ € spl(W) and ¢ be as in
Section 1.2.3. Then the canonical splitting s = sply, (z) of W associated to z is
defined by

s = s"exp((),
where ¢ = ((z(gr'V), d) is a certain element of Endg (gr'") determined by z(gr'")
and § = dy (z) roughly as in the following way.
Let 6,4 (p,q € Z) be the (p, q)-Hodge component of § with respect to z(gr'").
Then the (p, q)-Hodge component ¢, , of ¢ = ((z(gr""), ) with respect to z(gr'V)
is given as a certain universal Lie polynomial of 8,y o (p,¢' € Z, p' < —1,¢' < -1)

(see [9, Lemma 6.60] and [14, Section 1, Appendix] for more explanations).
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For x € D, xgp1 := s(z(gr")) € Dgp1 with s = sply, () is called the associated
R-split mized Hodge structure. We have x € Dy, if and only if & = zgp.

1.2.6

We have the following action of the group [], .z Autr(grly) on D, which we
call the lifted action. For a = (ay)w € [[,ez Autr(grl) ), a sends z € D to ' €
D, which is characterized by z'(gr?) = a,z(gr?’), sply (z') = sply, (z), and
dw(z') = Ad(a)dw (x). In other words, a sends the Hodge filtration F' € D to
the Hodge filtration spa(sy'(F)), where sp :=sply, (F) and s (F) denotes the
filiration on grg =[], ngVUV)C induced by F via sz': Hoc 5 grdl . This lifted
action will be used in Section 2.

1.3. Spaces with real analytic structures and with fs log structures with sign
This is essentially a review of [15, II, Section 3.1].

1.8.1
Endow R™ (n > 0) with the sheaf Or~ of real analytic functions. Let By be the
category of locally ringed spaces S over R satisfying the following condition (i)
locally on S.

(i) There are n > 0 and a morphism ¢ : .S — R" of locally ringed spaces over
R such that ¢ is injective, the topology of S coincides with the topology induced
from that of R™, and the map ¢~ 1(Orn) — Og is surjective.

For an object S of B, we often call the structural sheaf Og the sheaf of real
analytic functions on S (though S need not be a real analytic space).

Let Cr be the category of locally ringed spaces S over R satisfying the
following condition (ii).

(ii) For any open set U of S and for any n > 0, the canonical map Mor(U,
R™) — Og(U)™ is bijective.

1.3.2
We have

Bi:{ C Cr.

For the proof, see [15, IT, Lemma 3.1.2].

1.8.8
For a topological field K and for a locally ringed space S over K, the following
three conditions (i)—(iii) are equivalent.

(i) For any s € S, the map K — Og ,/ms (ms denotes the maximal ideal
of Og ) is an isomorphism. Furthermore, for any open set U of S and for any
f€0s(U), themap U — K, s+— f(s) is continuous. Here f(s) denotes the image
of fin Ogs/ms=K.

(ii) Let O% be the sheaf on S of all K-valued continuous functions. Then
there is a homomorphism Og — OY% of sheaves of rings over K.
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(iii) Let S” be the topological space S endowed with the sheaf of all K-valued
continuous functions. Then there is a morphism of locally ringed spaces S’ — S
over K whose underlying map S’ — S is the identity map.

If these equivalent conditions are satisfied, then there is only one homomor-
phism Og — O% of sheaves of rings over K, and there is only one morphism
S’ — S of locally ringed spaces over K lying over the identity map of S. These
can be proved easily.

1.8.4
Note that objects of Cr satisfy the equivalent conditions in Section 1.3.3 with
K =R.

1.3.5

Let S be a locally ringed space over R satisfying the equivalent conditions in
Section 1.3.3 with K = R. By a log structure with sign on S, we mean a log
structure M on S endowed with a submonoid sheaf Mo of M satisfying the
following (i) and (ii).

(i) Mo D (’)§7>0. Here O§,>o denotes the subgroup sheaf of OF consisting
of all local sections whose values are greater than 0.

(ii) The map Mso x {£1} — M, (f,e) — ef is an isomorphism of sheaves.
Here we regard {+1} C 05 C M.

Note that the map Og_, x {£1} = Og, (f,e) = ef is an isomorphism.
Indeed, if f € OF has value greater than 0 (resp., less than 0) at s € S, then f
(resp., —f) belongs to (’)§1>0 on some open neighborhood of s. Hence, this map
is surjective. The injectivity is clear.

1.3.6

In [15, II, Section 3.1], we defined the notion of log structure with sign in a more
restrictive situation where S is an object of Cr requiring that M be integral
(i.e., the canonical map M — MS®P is injective), and the presentation of the
definition there was more complicated. So here we are improving the generality
and the presentation of the definition. (But in this article, we do not need this
generalization.) If M is integral, then the present definition is equivalent to the
definition in [15, II, Definition 3.1.5], which uses a subgroup sheaf M2}. The
relation with the present definition is that MEY in [15, II, Definition 3.1.5] is
obtained from M in the present definition as ME{) = (M~)®P, and M~ here
is obtained from MY there as M=o = M N MEY. To prove the equivalence, the
nontrivial point is to show that

(1) Ms>oNOg =053 .

for a log structure with sign in the present sense. We prove (1). If f € M5oNOZ
has a value less than 0 at s € S, then — f belongs to O§7>0 C M-~ on some open
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neighborhood of s, and this contradicts condition (ii) in Section 1.3.5. Hence,
fe€0550

Note that (1) implies condition (3) in [15, II, Definition 3.1.5] on M; that
is, the values of f € Msq are at least 0. (The values of f mean the values of the
image of f in Og.) Indeed, for s € S, if the image of f in M, belongs to O;ys,
then it belongs to 0§’>0’S by the above (1), and hence, f has value greater than
0 at s. If the image of f in M, does not belong to Og’s, then f has value 0 at s.

1.8.7
Let Bg (log) be the category of objects of By (see Section 1.3.1) endowed with a
finitely generated and saturated (fs) log structure with sign. Let Cr(sat) be the
category of objects of Cr endowed with a saturated log structure with sign.
Here a log structure M on a locally ringed space S is said to be saturated if all
stalks of M are saturated in the following sense. We say a commutative monoid
S is saturated if it is integral (i.e., the canonical map & — S8P is injective) and
if, for any a € S8P such that o™ € S C S8P for some integer n > 1, we have a € S.
We have

Bg (log) C Cr(sat).

1.3.8. Examples

(1) The object R, of Br(log). The sheaf O of real analytic functions is the
inverse image of the sheaf of real analytic functions on R™. The log structure M
with sign is as follows. M (resp., M~g) is the multiplicative submonoid sheaf of
O generated by O* (resp., OZ) and the coordinate functions t1,...,t,.

(2) A real analytic manifold with corners [6, Appendix] is regarded as an
object of Bg(log). The log structure with sign is given as follows. Let S be
a real analytic manifold with corners, and let O be the sheaf of real analytic
functions. If S is an open set of RZ, (endowed with the sheaf of real analytic
functions), then the log structure with sign (M, M) is defined as the inverse
image of that of RZ. In this situation, the canonical map M — O is injective,
and hence, M and M-s are regarded as subsheaves of O. In general, S is locally
isomorphic to an open set of R%,, and the log structure with sign on .S induced
from such an isomorphism is independent of the choice of the isomorphism (M
and M~ are independent of the choice as subsheaves of ). By this, we have
that a real analytic manifold with corners equals an object of By (log) which is
locally isomorphic to an open subobject of RZ, (n > 0).

(3) The real toric variety Hom(S,Rg‘glt)_for an fs monoid S. (Here REG
is the set R>( regarded as a multiplicative monoid.) This is also an object of
Bg (log). (The above (1) is the case S =N" of this (3).)

The sheaf O of real analytic functions is defined as follows. Take a surjec-
tive homomorphism N™ — § of monoids for some n > 0. It gives an embed-
ding Hom(S, R24!) ¢ R™. We say that an R-valued function on an open set of
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Hom(S, R2UY) is real analytic if it is locally a restriction of a real analytic func-
tion on an open set of R™. This defines @, and it is independent of the choice of
the surjective homomorphism N™ — S.

The log structure M is the one associated to the canonical embedding S — O.
M is the submonoid sheaf of M generated by OZ, and the image of S.

(4) The compactified vector space. Let V' be a finite-dimensional graded R-
vector space V = ®wEZ,UJ<—1 V. of weight at most —1. Then we have a real
analytic manifold with corners V (see [15, I, Section 7]). It is covered by two
open sets V and V ~ {0}. Here V has the usual sheaf of real analytic functions
and the trivial log structure, and V ~ {0} is described as follows. For a € Rxq
and veV, let aov=>3 a"v, €V, where v,, denotes the component of v of
weight w. By choosing a real analytic closed submanifold V(") of V ~ {0} such
that R x V) — V < {0}, (a,v) — aowv is an isomorphism of real analytic
manifolds, we have an isomorphism of real analytic manifolds with corners

R x VD =7 < {0}

extending the above isomorphism. We will denote this extended isomorphism as
(a,v) > aow.

For example, in the cases V =L and V = L(F') (see Section 1.2.2), we have
the compactified vector spaces £ and L(F), respectively. We can identify £(F)
with the closure of £(F) in L.

PROPOSITION 1.3.9
Let S be an fs monoid, and consider the real toric variety T := Hom(S, RUYL).
Then if S is an object of Cr(sat), we have a natural bijection between the set

of all morphisms S — T in Cr(sat) and the set of all homomorphisms S —
P(S7 MS,>0)‘

Proof
Since S C I'(T', M7, >0), a morphism S — T induces S — I'(S, Mg >0). It is easy
to see that this correspondence is bijective. (I
1.5.10

If M is an fs log structure with sign, then locally we have a chart S — M whose
image is contained in M~g. (Here S is an fs monoid.) In fact, if S — M is a chart,
the composition § — M = M~ x {£1} — M~ C M is also a chart. We will call
such a chart § — M~ a positive chart.

PROPOSITION 1.3.11

(1) The category By (log) has fiber products.
(2) A fiber product in Bg(log) is a fiber product in Cr(sat).

We have already proved (1) in [15, II, Proposition 3.1.7]. We give here a proof
which proves both (1) and (2).
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Proof

For a diagram S; — Sy < S2 in By (log), locally on Sp,S1,S2, we can find fs
monoids Sy, S1,S2 with homomorphisms S; < Sy — S, and a morphism ¢; : S; —
T; := Hom(S;, R2U) of Bg (log) for each j =0, 1,2, satisfying the following con-
ditions (i) and (i).

(i) The diagram

51—>So<—52

3 1 \J
T — Ty < T

is commutative.

(ii) For each j =0,1,2, the underlying map S; — Tj of ¢; is injective, the
topology and the log structure of S; with sign are induced from those of T}, and
the homomorphism L;l(OT]) — Og, is surjective.

This is proved by using positive charts (see Section 1.3.10) on Sy, S7, S2 which
are compatible.

To prove Proposition 1.3.11, it is sufficient to prove that, in this situation,
we have the fiber product S3 of S; — Sy + Sz in Cr(sat) which belongs to
Bg (log). Let S3 be the pushout of the diagram S; - Sp — Sz in the category
of fs monoids. This S5 is obtained from the pushout &5 of S; + Sy — Sz in
the category of commutative monoids as follows. Sz is the submonoid of (S%)&P
consisting of all elements a such that, for some integer n > 1, a™ belongs to the
submonoid of (S8})&P generated by the images of S; and S2. Let T3 be the real
toric variety Hom(Sz, R2UY), let S} be the fiber product of S; — Sp +— Sa in the
category of topological spaces, and let T3 be the fiber product of Ty — Ty + Ta
which is identified with Hom (S5, RZH!) as a topological space. As a topological
space, we define S3 as the fiber product of St — T4 < T5. Let v3: S5 — T3 be
the canonical injection. We define the structure sheaf Og, on S5 as follows. For
j=0,1,2, let I; be the kernel of Lj_l(OTj) — Og, . Let I3 be the ideal of 131 (Or,)
generated by the images of I; and I,. Define Og, = 13 (Or,)/I3. Define the log
structure with sign on S3 as the inverse image of that of T5. Then S5 is clearly
an object of By (log).

We prove that S5 is the fiber product of S; — Sy < S3 in Cr (sat). By Propo-
sition 1.3.9, for an object X of Cr(sat) and j=0,1,2,3, a morphism X — S
corresponds in a one-to-one manner to a homomorphism S; — I'(X, Mx >0)
such that the associated morphism X — 7} has the following two properties
(1) and (2).

(1) The image of the set X in Tj is contained in S;.

(2) The image of I; in Ox is 0.

Since I'(X,Mx >0) is a saturated monoid, a homomorphism &; — I'(X,
Mx >0) and a homomorphism S3 — I'(X, Mx »¢) correspond in a one-to-one
manner. These prove that Ss is the fiber product of S — Sy < Sz in Cr(sat). O
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1.8.12

The proof of Proposition 1.3.11 shows that the underlying topological space of a
fiber product in Bg(log) need not be the fiber product of the underlying topo-
logical spaces. We consider this point.

We call a homomorphism Sy — Sy of saturated commutative monoids (see
Section 1.3.7) universally saturated if, for any saturated commutative monoid Sa
and any homomorphism Sy — Ss, the pushout of §; + Sy — Sz in the category
of commutative monoids is saturated.

For a morphism S; — Sy of Bg(log), we say f is universally saturated if,
for any s; € S; with image so in Sy, the homomorphism Mg, 5, = Mg, s, is
universally saturated. (The last condition is equivalent to the condition that the
homomorphism (Ms, /O3, )s, — (Ms, /O3, )s, is universally saturated.)

The following can be proved easily. Let f : S; — Sp be a morphism in B (log).
Let the triple of homomorphisms S; — Ms, (j =0,1) and h: Sy — Si be a chart
of f. If h is universally saturated, then f is universally saturated. Conversely, if
f is universally saturated, then locally on Sy and Sp, there are positive charts
(see Section 1.3.10) and a homomorphism h of charts as above such that h is
universally saturated.

LEMMA 1.3.13

Let S1 — So be a universally saturated morphism in By (log), let Sa — Sp be a
morphism in Bg(log), and let Ss be the fiber product of S1 — So < Sz in the
category By (log). Then the underlying topological space of Ss is the fiber product
of the underlying topological spaces of S; (7 =0,1,2).

This follows from the proof of Proposition 1.3.11.

PROPOSITION 1.3.14

(1) For r > 1, the homomorphism N — N", m — (m,m,...,m) is univer-
sally saturated.

(2) For any saturated commutative monoid S, the homomorphisms {1} — S
and S — {1} are universally saturated.

(3) Let S; (j=0,1,2) be saturated commutative monoids, let Sp — S1 be a
universally saturated homomorphism, let Sy — So be a homomorphism, and let
S3 be the pushout of S < So — So in the category of commutative monoids.
Then the homomorphism Ss — S3 is universally saturated.

(4) Let S; = Sj (j=1,...,n) be universally saturated homomorphisms of
saturated commutative monoids. Then the homomorphism H;L:1 S; — H?Zl S;
is universally saturated.

(5) A homomorphism & — S’ of saturated commutative monoids is univer-
sally saturated if and only if the induced homomorphism S/S* — S8'/(S')* is
universally saturated.
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(6) For a saturated commutative monoid S and for a € S, the canonical
homomorphism S — S[1/a] is universally saturated. Here S[1/a] denotes the sub-
monoid {xa~" |z € S,n>0} of S&P.

Proof

The proofs of (1), (2), (5), and (6) are easy, and (3) is evident. We can prove (4)
by induction on n as follows. We may assume n > 2. Then the homomorphism
between products in (4) is the composition (H;:ll Sj) xS, — (H;L;ll S)) X Sp—
(H;le S}) x S;, in which the first homomorphism is universally saturated by
induction on n and by (3) and the second homomorphism is universally saturated

by (3). O

COROLLARY 1.3.15

For a diagram Sy — Sp < Sa in Bg(log), the underlying topological space of
the fiber product is the fiber product of the underlying topological spaces in the
following cases (i) and (ii).

(i) The case where at least one of S1 — So and So — Sy is strict. Here for a
morphism f: X =Y of locally ringed spaces with log structures, we say f is strict
if the log structure of X coincides with the inverse image of the log structure of
Y wia f.

(ii) The case where the log structure of Sy is trivial.

The following will be used many times in this article.

1.5.16
Let X be an object of By (log), and let Y be a subset of X. Assume that the
following condition (C) is satisfied.

(C) The homomorphism from Ox to the sheaf of R-valued continuous func-
tions on X is injective.

Then we have a structure on Y as an object of Bg (log), which also satisfies
(C), as follows. The topology of Y is the one as a subspace of X. Oy is the sheaf
of R-valued functions on Y which are locally restrictions of functions in Ox. The
log structure with sign is the pullback of that of X.

For an object S of Bg(log) which satisfies (C), the map Mor(S,Y) —
Mor(S, X) is injective and the image coincides with {f € Mor(S,X) | f(S) CY}.

1.4. Review of toric geometry
We recall toric varieties over a field and the real toric varieties associated to fans
by comparing them.
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1.4.1
Let L be a finitely generated free Abelian group, and let N := Hom(L,Z). We
will denote the group law of L multiplicatively and that of N additively.

For a rational finitely generated sharp cone o in Ng, define an fs monoid

S(o) by
S(o):={leL|l(o) >0}.

For a rational fan 3 in Ng, we have a toric variety toricg(X) over a field k asso-
ciated to X, which is an fs log scheme over k, and a real toric variety |toric|(3),
which is an object of By (log). We review these.

1.4.2
The toric variety toricg(X) over k is described as

torick(X) = U Spec(k[S(c)]) (an open covering),
ocEX
where k[S(0)] denotes the semigroup algebra of S(o) over k and Spec(k[S(0)]) is
endowed with the standard log structure. It represents the contravariant functor
from the category (fs/k) of fs log schemes over k to the category of sets, which
sends S to the set of all homomorphisms h: L — Mg satisfying the following
condition.

(C) Let s € S. Then there exists o0 € ¥ such that, for any homomorphism
a:(Mg/OF)s — N, the homomorphism a o h: L — Q belongs to o. Here 5 is a
geometric point over s.

Note that this condition is equivalent to the following condition.
(C') Etale locally on S, there is o € ¥ such that h(S(c)) C Mg.

The set torici(X)(k) of all k-rational points of toricy(X) is identified with
the set of pairs (o,h) consisting of o € ¥ and a homomorphism h : S(o)* —
k*. The point corresponding to this pair is the element of Spec(k[S(o)])(k) =
Hom(S(0), k) which sends a € S(0)* to h(a) and sends a € S(o) \ S(o)* to 0.

1.4.3
The real toric variety [toric|(X) is described as

[toric|(X) = U Hom(S(0), RZ4')  (an open covering),
oeEX
where Hom(S (o), Rg‘g“) is regarded as an object of By (log) as in Section 1.3.8(3).
It represents the contravariant functor from Cg (sat) to the category of sets, which
sends S to the set of all homomorphisms h: L — M gf) o satisfying the following

>
condition.

(C) Let s € S. Then there exists o € ¥ such that, for any homomorphism
a:(Ms/OF)s — N, the homomorphism a o h: L — Q belongs to o.



306 Kato, Nakayama, and Usui

Note that this condition is equivalent to the following condition.
(C') Locally on S, there is o € ¥ such that h(S(0)) C Mg >o.

The set [toric|(X) is identified with the set of pairs (o, h) consisting of o €
and a homomorphism h:S(0)* — Rsg. The point corresponding to this pair
is the element of Hom(S(o), RE4) which sends a € S(o)* to h(a) and sends
a € S(o) ~ S(0)* to 0. By this understanding, we can regard |toric|(X) as a
closed subset of toricg (X)(R).

1.4.4
The set [toric|(X) is also identified with the set of all pairs (o, Z) consisting of
o €Y and a subset Z of Hom(L, RZ§') which is a Hom(L/S(0)*, RT§!)-orbit.
In fact, (0, Z) corresponds to (o, h) in Section 1.4.3, where h is the restriction of
any element of Z to S(o)*.

1.4.5

If ¥ is finite and ¥/ is a rational finite subdivision of ¥, we have a proper surjective
morphism toricg(X') — toricg(X). In the case k = R, this induces a morphism
[toric|(X’) — |toric|(X) which is proper and surjective.

1.4.6

A morphism S’ — S in the category (fs/k) (resp., Bg(log)) is called a log modi-
fication if, locally on S, there are a homomorphism & — Mg (resp., S = Mg >0)
with S a sharp fs monoid and a rational finite subdivision ¥’ of the fan 3 of
all faces of the cone Hom(S, R2) C Hom(S8P, R*44) such that S’ is isomorphic
over S t0 S Xoric, (%) toric, (X’) (resp., S X|toric|(x) |toric[(X’)). The underlying
map of topological spaces of a log modification is proper and surjective.

1.4.7

We introduce a functor [3] associated to a fan %, and consider its relation to log
modification. Let L and N be as in Section 1.4.1. For a rational fan ¥ in Ng, let
[X] be the contravariant functor from (fs/k) (resp., Bg (log)) to the category of
sets which sends S to the set of all homomorphisms h: L — ME’/Og satisfying
the condition (C) in Section 1.4.2 (resp., Section 1.4.3). In the present situation,
(C) is equivalent to (C") with Mg (resp., Mg o) replaced by Mg/OF.

Let S be an object of (fs/k) (resp., Bg (log)), and assume that we are given
h € [Z](S). This induces a continuous map S — X which sends s € S to the unique
cone o € ¥ such that S(o) C L coincides with the inverse image of (Mg/OF)s
under L — (MEP/0O%)s.

Assume X is finite, and let ¥’ be a rational finite subdivision of . Then we
have a morphism of functors [¥'] — [X]. The contravariant functor Mor(-,.S) x5
[X'] from (fs/k) (resp., Bg(log)) to the category of sets is represented by a log
modification S’ — S. In fact, locally on S, h: L — Mg /OF lifts to a morphism



Classifying spaces of degenerating mixed Hodge structures, IV 307

S — toricg (X) (see Section 1.4.2) (resp., S — |toric|(X) (see Section 1.4.3)), and
this functor is represented by S X ¢oric, (5) torick (X’) (resp., S X jtoric|(x) [toric|(X1)).

1.4.8

This section will be used in Sections 2.4-2.6. Let &7 be an fs monoid, let T :=
Hom(S;, R2y'), and let Z be a T-torsor. The purpose of this section is to intro-
duce an object Z of By (log) and to give a set-theoretical description (1) below
of a log modification of Z.

Let T':= Hom(S;, RE) 5 T, and let Z := Z xTT. We regard Z as an object
of B (log) as follows. Take r € Z. Then we have the bijection T — Z, t + tr,
and this induces a bijection T — Z. Via the last bijection from the real toric
variety T, we obtain a structure of Z as an object of By (log). This structure is
independent of the choice of r.

We prepare notation. For s € Z, we define a subgroup T(s) of T and a
T(s)-orbit Z(s) inside Z as follows. In the case Z =T and hence Z =T, s is
a homomorphism &; — R‘;‘(‘)‘lt. In this case, let T'(s) be the subgroup of T =
Hom(S;, R2y) consisting of all elements which kill s~} (Rsg) C 1, and let
Z(s) C T be the set of all elements of S; — RZ§! whose restriction to s™1(Rx)
coincides with the homomorphism induced by s. Then Z(s) is a T'(s)-orbit. In
general, take r € Z, consider the induced isomorphism Z 22T, let ¢ be the image
of sin T, let T(s) :=T(t), and let Z(s) be the T(s)-orbit in Z corresponding to
the T'(t)-orbit Z(t) in T via the isomorphism Z = T. Then T'(s) and Z(s) are
independent of the choice of r.

Consider L and N in Section 1.4.1, let o be a rational finitely generated sharp
cone in Ng, and let ¥ be the fan of all faces of 0. Assume that we are given a
homomorphism S(o) — S;. Then we have a morphism of functors Mor(:, Z) —
[X], where [¥] is as in Section 1.4.7. This morphism is obtained as follows. The
homomorphism S(o) — Sy induces Mor(-,T) — [X]. Take r € Z. Then r gives an
isomorphism Z = T and, hence, the composite morphism Mor (-, Z) = Mor(-, T') —
[~]. This composite morphism is independent of the choice of r.

Assume further that the homomorphism S(o) — S; is universally saturated
(Section 1.3.12). Let 3’ be a rational finite subdivision of ¥, and let E be the
log modification of Z which represents the fiber product Mor(-, Z) x5 [¥'] (Sec-
tion 1.4.7). We give a description of E as a set.

For s € Z and for ¢’ € ¥/ such that the image 7 of s in ¥ coincides with
the image of o’ in X, let T(s,0’) be the subgroup of T(s) consisting of all
elements whose image in Hom(L/S(7)*,RZ8!) is contained in its subgroup
Hom(L/S(co’)*, R24Y). Then we have the following.

(1) There is a canonical bijection between E and the set of all triples (s,0o”,
Z'), where s € Z, o’ is an element of ¥’ whose image in ¥ coincides with the
image of s in 3, and Z’ is a T'(s,0’)-orbit in Z(s).

In fact, if Z=T, then E=T x ltoric|(x) [toric|(¥'), and hence, the bijection is
given by Section 1.4.4. In general, for r € Z, if ¢t denotes the image of s under the
isomorphism Z = T, we have T'(s,0’) = T(t,¢’), the isomorphism Z 2T sends a
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T(t,0’)-orbit in T to a T(s,o’)-orbit in Z, and the induced composite bijection
from the set of triples (s,0’,Z’) to E is independent of the choice of r.

2. The new space Dg; , of SL(2)-orbits

In [15, II], we defined and studied the space Dgy,(2y of SL(2)-orbits. Here we intro-
duce a variant Dg; ). It is an object of the category Bg (log) (see Section 1.3.7).

Recall that Dgg is an object of By (log), Dg,(2) has two structures DéL(Z) and
Déi(Q) as objects of Bg (log), and the identity map of Dgy (o) gives a morphism
DéL(Z) — Déi(z) of Bg (log). We will relate the three spaces D§L(2)v Déi@)v and
Dgg in the following way. These three spaces are not connected directly, but as
we will see in this section, they are connected as in the diagram

*,+ *y— *,BS
Dgiioy = Déney = Dspe — Dsie
d
I
DSL(2) Dgs

in By (log) in which the horizontal arrows are log modifications (Section 1.4.6)
and the left vertical arrow is proper surjective.
As will be seen in Section 3, this diagram will induce morphisms

* 17 *
Dg1,(2) va1 = DsL(2) vals Dg1,(2),va1 = DBS,val

of associated valuative spaces, which appeared in Section 0, since log modi-

~

fications induce isomorphisms of the associated valuative spaces Dgif( =
D§L(2)
D%

2),val
val _> D

SL(2) — Dy 0
In Section 2.1, we review SL(2)-orbits in the pure situation. In Section 2.2, we

val & DE In the pure case, the arrows in Dgp,(2) <

SL(2) SL(2) val®
— DSL(2) are isomorphisms.

continue reviews of [15, IT]. In Section 2.3, we define the spaces DSL(2) and DSL(2)

After preparations in Section 2.4, we connect DSL(Q) and DSL(Q) in Section 2.5

by introducing the space DSL( and we connect DX and Dpgg in Section 2.6

2)7 SL(2)
by introducing the space DSL(2). In Section 2.7, we show that our spaces of
SL(2)-orbits belong to a full subcategory Bg (log)™* of By (log) consisting of nice

objects.

2.1. Review of SL(2)-orbits in the pure case
Let the setting be as in Section 1.1, and assume that we are in the pure situation
of weight w.

2.1.1

In this pure case, an SL(2)-orbit in n variables means a pair (p, ), where p is a
homomorphism SL(2,C)" — G(C) of algebraic groups defined over R and ¢ is
a holomorphic map P'(C)" — D, satisfying

o(g2) = p(g)p(z) for g€ SL(2,C)" and z € P}(C)",

e™)c D (h is the upper half-plane {z +iy | z,y € R,y > 0})7
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ps (HE(s1(2,C)")) Cfill . (gc) (2 €PH(C)"peZ).

Here p, denotes the homomorphism sl(2,C)™ — g¢ of Lie algebras induced by
p, and fil and fil}, ) are filtrations given by z and ¢(z2), respectively (see [15, II,
Section 2.1.2]).

2.1.2
Let (p, ) be an SL(2)-orbit in n variables. Define the associated homomorphisms
7,7°: G g = Autr(Hor) of algebraic groups as

T(t) =p(g1,---,9n), where t=(t;)1<j<n and

g;i = 1/HZ=jtk 0
I 0 [Tijte )’

() = (ﬁtj)w T (8).
j=1

The image of the homomorphism 7* is contained in GR.

For 1 < j <n, we define the increasing filtration W) on Hy r as follows.
We have Hy g = @1§j§n,k€Z Hor(j,k), where Ho r(J, k) is the part of Hy g on
which the action 7 of G?, g is given by (t¢)1<¢<n > t5. Define W) by Wi =
D < Hor (4, k). We call W) (1 <j<n) the associated weight filtrations.

2.1.3
Let (p,¢) be an SL(2)-orbit in n variables.
For 1 < j <n, the following conditions (i)—(iii) are equivalent.

(i) The jth component SL(2,C) — G(C) of p is trivial.

(ii) ¢ factors through the projection P!(C)" — P(C)"~! which removes
the jth component.

(iii) Either j > 2 and WO = W01 or j=1 and WO =W (ie., WS =
Hog and W\, =0).

2.1.4
We consider the following equivalence relation on SL(2)-orbits. We say an SL(2)-
orbit in n variables (p,¢) is nondegenerate if there is no j (1 < j <n) which
satisfies the equivalent conditions in Section 2.1.3. For a nondegenerate SL(2)-
orbit (p,) in n variables and for a nondegenerate SL(2)-orbit (p/,¢’) in n’
variables, (p,p) and (p,¢’) are equivalent if and only if n =n' and there is
t € R such that

Plg)=m"Wplg)* O, ¢ () =T"t)¢(2)

for any g € SL2(C)" and z € P}(C)". Here 7* is the homomorphism associated
to (p,¢) in Section 2.1.2. We have the same equivalence relation when we replace
7*(t) in the above by 7(t) in Section 2.1.2 associated to (p, ).
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Any SL(2)-orbit uniquely factors through a nondegenerate SL(2)-orbit, called
the associated nondegenerate SL(2)-orbit, which is described as below. Two SL(2)-
orbits are equivalent if and only if their associated nondegenerate SL(2)-orbits
are equivalent in the above sense.

For an SL(2)-orbit (p, ) in n variables, the associated nondegenerate SL(2)-
orbit (p’,¢") is as follows. Let J = {a(1),...,a(r)} (a(l) <--- <a(r)) be the set
of j (1 <j<n) such that the jth component of p is nontrivial. Then (p’,¢’) is
the SL(2)-orbit in r variables defined by

p(glv cee 7gn) = p/(ga(1)7 oo 7ga(r))7 @(217 s ,Zn) = (p/(za(l)v ) Za(r))'
This number r is called the rank of the (equivalence class of the) SL(2)-orbit
(p,%)-

2.1.5
The set Dgr,(2) is defined as the set of all equivalence classes of SL(2)-orbits
(p, ) such that all members of the set of weight filtrations associated to (p, )
(see Section 2.1.2) are rational (i.e., defined already on Hy q).

D is embedded in Dgy, (o) as the set of classes of SL(2)-orbits of rank 0.

2.1.6
Let p € Dgr,(2). We define objects

7_;, Tp; Z(p)v W(p)

associated to p. Let n be the rank of p. Let (p,¢) be a nondegenerate SL(2)-
orbit which represents p. The homomorphism 7* (resp., 7) (see Section 2.1.2)
associated to (p, ¢) depends only on the class p (it does not depend on the choice
of (p,¢)). We denote it as 7, (resp., 7).

The subset

{e((iyj)1<j<n) Y5 € Roo(1 <j <n)} =7"(RLg)p(i) = 7(RLy)e(i) € D

(i:=(i,...,7) € h™) depends only on the class p. We denote it as Z(p) and call it
the torus orbit associated to p.

The family {W©) |1 <j <n} of weight filtrations associated to (p, ) (see
Section 2.1.2) depends only on the class p. Let W(p) = {WU) | 1< j <n}, and
call it the set of weight filtrations associated to p. It consists of n elements (see
[15, II, Proposition 2.1.13]).

2.1.7

Dgi,(2) has a structure as an object of Bg (log). For this, see [15, II, Section 3.2].
A basic property of the topology of Dgy,(2) is that if p € Dgp,(9) is the class of an
SL(2)-orbit (p,¢), then p is the limit of p(iyi,...,iy,) € D, where y; € Rs¢ and
Yi/Yj+1 — o0 (1 <j<n, y, denotes 1).
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2.2. Reviews of Dgy (2 (gr'") and Dgp, o) (gr™")™

We now consider the mixed Hodge situation. We review the spaces DSL(Q)(ng)
and Dgp,(2)(gr""')™ considered in [15, II] and prepare notation which we will use
later. Actually there was an error concerning the definition of Dgr, (2 (gr™)™ in
[15, II]. We correct it in Remark 2.2.3.

2.2.1
Let

Dsp2)(gr") := H Dgr,2) (gt ),
weZ
where Dg,2)(grly ) denotes the space Dgp2) (see Section 2.1) for the graded
quotient gr!.

2.2.2

The set Dgroy(gr'™”)™ is defined as follows (cf. [15, II, Section 3.5.1]). By an
SL(2)-orbit on gr'' of rank n, we mean a family (pu,Pw)wez of SL(2)-orbits
(pw,Pw) on grl’ in n variables in the sense of Section 2.1.1 satisfying the following
condition (1).

(1) For each 1 <j <m, there is a w € Z such that the jth component of p,,
is nontrivial.

The equivalence relation is defined as follows. For an SL(2)-orbit (pw,©w)w
on gr'V of rank n, the homomorphisms 7,7* : GLr— Autr (gr!?) associated to
the SL(2)-orbit (pw, pw) in n variables of weight w for w € Z (see Section 2.1.2)
define homomorphisms

7,77 G R H Autg (gr?¥)
weZ
of algebraic groups, respectively.

An SL(2)-orbit (pu,@uw)w on gr'¥ of rank n and an SL(2)-orbit (pl,, ¢, )w on
gt of rank n’ are equivalent if and only if n’ =n and (o), (9))w =
P OPu(@)0m (O (2 = 7 (1) (Pu(2))w for some ¢ € R, (We have
the same equivalence relation when we replace 7* here by 7.)

The set Dgr,(2)(gr™")™ is defined as the set of all equivalence classes of SL(2)-
orbits (pu,Pw)w on gr'"' such that the weight filtrations on gr!V associated to

(pw, pw) are rational (i.e., defined over Q) for any w € Z.

REMARK 2.2.3

In the definition of DSL(Q)(ng)N in [15, II, Section 3.5.1], we forgot to put the
condition of the rationality of the associated weight filtrations. This error does
not affect the rest of [15, II].

2.2.4
We have the embedding

D(gt") S Dgp ) (gr™)™
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by identifying D(gr'V) with the set of SL(2)-orbits on gr'¥' of rank 0. We have a
map
")

Dsp2)(gr™)™ = Doy (er’),  p (p(ery)) .,

which sends the class p of (pu,Pw)w to (the class p(gr?) of (pu, Pw))w-

2.2.5

For p € DSL(Q)(ng)N, we define a finite set W(p) of increasing filtrations on
gtV =TT, etV as follows. Let (pu, ¢uw)w be an SL(2)-orbit on gr'¥ in n variables
which represents p, let W7 (w € Z,1 < j <n) be the jth weight filtration
on gr!V associated to the SL(2)-orbit (pu,@Pw)w on gr’’ in n variables, and let
W@ =@, Wi, Let W(p) :={WU |1<j<n}. Then W(p) is independent
of the choice of the representative (py,@w)w of p.

By an admissible set of weight filtrations on gr'V [15, II, Section 3.2.2], we
mean a set of increasing filtrations on gr'V which coincides with the set W(p)
of weight filtrations associated to some point p of DSL(Q)(ng)N. An admissible
set ® of weight filtrations on gr'¥ has a natural structure of a totally ordered
set (given by the wvariance of W'(gr"V) for W' € ®; see [15, I, Section 2.1.11,
Proposition 2.1.13]). For any p € Dgy,(2)(gr'")™ of rank n such that ® =W(p), if
(W(j))lgjgn denotes the family of weight filtrations associated to p, then W) <
W) for this order if and only if j < k. By using this ordering, we will identify
® with the totally ordered set {1,...,n}. By this, we will identify G, Z®, and
so on with G7},, Z™, and so on.

Let W be the set of all admissible sets of weight filtrations on gr'’. Let
W(gr!V) be the set of all admissible sets of weight filtrations on gr!V; that is,
W(grll) ={W(p) | p € DsL2)(griy )} (see Section 2.1.6). We have a map

W [[wer), &= (2w),,

where ®(w) := {W'(gr!V) | W' € &, W'(gr!V) # W (gr!¥)}. This map sends W(p)
for p € Dsp(2)(gr™)™ to W (p(gry))uw-

2.2.6
For ® € W and Q = (Q(w))w € [, W(grl)) such that ®(w) C Q(w) for any
w e Z, let

Gy — [ ¢&™

weEZ

be the homomorphism which sends (tw/)w ee to (t, ;)wez.jeq(w), Where &,
is the product of ty for all elements W’ of ® such that W'(gr!V)=j. If p€
Dg,2) (gr")~ and p’ = (p(gr!V)) ., € DSL(Q)(ng), then for ® = W(p) and Q(w) =
W(p(gry)) (w € Z), 7} coincides with the composition Gy, — [T, Ge™
GR(ng), where the first arrow is as above and the second arrow is 7';/.
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2.2.7
Let p € Dgy,(2) (gr™)™ (resp., p € Dgy,2) (g rw)). We define objects
Sva(Sp)+aA A pa p?Tp)%;)%p7Z(p)

associated to p. Let

Sp = GK(M (resp.7 H Gm(”“’))

Then the character group X(S,) of S, is identified with [[, Z W) (resp.,

w

1, Z"P)). We define the submonoid X (S,)* of X(S,) as the part correspond-
ing to NW@®) (resp., 1, NV,

Let A, be the connected component in S,(R) which contains the unit ele-
ment. We identify

A, =Hom(X(S,),Rug!") = Rz)(p) (resp., H Rl\g(p“’)).

Let
A, =Hom(X(S,)*, Rm““) R:O(p) (resp.7 HR;%(’)“’)) DA,

Bp:RZO XAPDBPZR>O XAp.
We regard A, and B, as real toric varieties (see Section 1.3.83(3)). We define

homomorphisms

Tp, T; 2 Sy — HAutR(ng)V)
w

of algebraic groups over R and a subset Z(p) of D(gr'’).
Assume first p € Dgr,(2) (gr™)~. For an SL(2)-orbit (py, @w)w on gr'’ of rank

n which represents p, the associated homomorphisms 7,7* : S, = Gg(ﬁ) =G} —
[T, Autr(gr,)) depend only on p. We denote 7 as 7, and 7* as 7. The set

Z(p) == {(Lw(ivs,. .. iyn)),, | y; € Rso(1 <j<n)}
= {7t ( )IteA} {5 () (), |t Ap}

c D(gr" HD (where i=(i,...,7) €h™)
wEZ
depends only on p.

Next for p € Dgp2)(gr'"'), define 7, and 7} as (7, )w and (7}, )w, respectively,
and let Z(p) =[1,, Z(pw) (see Section 2.1.6). Both for p € Dgy(2)(gr*"')™ and for
p € Dsy,(2) (gr"), we call Z(p) the torus orbit of p. It is an A,-torsor.

We define extended homomorphisms

Tps Tyt G X Sp — HAutR(ngjV),

for tg € G, and t € S, by

Tp(to, 1) = (16 )wTp(t) = 7p () (15 ),
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75 (to,t) = (86w, () = 75 (1) ({5 )w-

Here (t¥), acts on gr!V as the multiplication by t¥.

2.2.8

Let ® € W. By a splitting of ® [15, II, Section 3.2.3], we mean a homomorphism
a=(a)w: GE =], Autr(grl)) of algebraic groups over R such that, for any
W’ e ® and k € Z, W] coincides with the sum of the parts of gr'V' of a-weight
m for all m € Z® such that m(W’) <k.

For a splitting a of @, let a* : G2 — Gr(gr"") be the homomorphism whose
Gr(gr)-component of, is t = (t;)jeo — (IT;eatj)™™ - aw(t). Note that the
actions of a(t) and a*(t) (t € R®;) on D(gr'V) are the same.

A splitting of & exists: if p € Dgp,(2) (gr")~ and ® = W(p), then 7, is a
splitting of ®. In this case, for o =7,, o* in the above coincides with 7 in
Section 2.2.7.

Let Q = (Q(w))w € [, W(grl)). By a splitting of Q, we mean a family a =
(w)w, Where a,, is a splitting of Q(w). Let a* = ().
2.2.9
Let ® € W. By a distance to ®-boundary [15, 1I, Section 3.2.4], we mean a
real analytic map 8: D(gr'"V') — R2 such that B(a(t)x) =tB(z) (t € R,z €
D(gr'")) for any splitting o of ®. (The last condition is equivalent to B(a*(t)z) =
tB(z) (t€ R,z € D(gr'").) A distance to ®-boundary exists [15, II, Proposi-
tion 3.2.5].

Let Q@ = (Q(w))w € [, W(grl)). By a distance to Q-boundary, we mean a

family (Bw)wez, where 3, is a distance to @Q(w)-boundary for the pure situation
w

gry.
2.2.10

In [15, 1], we endowed Dgy,(2)(gr*") and Dgy,2)(gr*’')™ with structures as objects
of Bg (log). These spaces satisty condition (C) in Section 1.3.16, that is, the sheaf
of real analytic functions is a subsheaf of the sheaf of all R-valued continuous
functions. Dgp,(2)(gr") is just the product of Dsy 2)(grly ) (see Section 2.1.7) in
Bj (log). The canonical map Dsgy,2)(gr'")™ — Dsp2)(gr”") (see Section 2.2.4)
is a morphism in By (log), and it is a log modification (see Section 1.4.6) as is
explained in [15, II, Theorem 3.5.9, Section 3.5.10]. We review some properties
of these spaces.

2.2.11

Let p € DSL(Q)(ng)N (resp., p € DSL(2)(ng)), and let r € Z(p) (see
Section 2.2.7). Then p is the limit of 7, (¢)r = 7, (¢)r, where t € A}, tends to 0 € A,,.
Here 0 € A, denotes (0,...,0) € R‘;O, where ® =W(p) (resp., [[,, Rg(()w), where
Q(w) = W(p(gr!’))) (see Section 2.2.5) in the identifications A, = Rgo (resp.,
[T, RE™) 2 4, =Ry (resp., [T, RE™).
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2.2.12
For ® € W, let

Dsp2)(gr™) ™ (®) = {p € Dsp(2) (")~ | W(p) C @}
For Q = (Q(w))wez € Hu}EZ Wi(gry ), let
DSL(Q)( {p € Dgr,(2)(g ™) | W(pw) C Q(w) for all w e Z}.

Then DSL(2 (gr" ) ( ) (resp., Dsr2)(gr')(Q)) is open in Dsr,2)(gr™)™ (resp.,
Dsr,(2)(gr")). When @ (resp., Q) moves, these open sets cover Dgy,2)(gr'’)™
(resp., Dspez)(gr')). If @ €W, Q = (Q(w))w € [, W(ery), and &(w) C Q(w)
(see Section 2.2.5) for any w € Z, then the map DSL(Q)(ng)N — DSL(Q)(ng)
induces a map Dsr2)(gr™)™(®) = Dsr2) (gr™)(Q)-

2.2.13
Let @ € W (resp., Q = (Q(w))w € [[, W(grl)), and let 3 be a distance to -
boundary (resp., @-boundary). Then the map § extends uniquely to a morphism

B Dsr2)(gr”)™ (@) = RE, (r%p Ds12)(8 )= HRQ(w )

of B (log). The log structure with sign of Dgy,2)(gr')~(®) (resp., Dgr,2)(gr")
(Q)) coincides with the inverse image of the canonical log structure with sign of
Rgo (resp., [1,, Rg(()w)) (see Section 1.3.8(1)).

For a distance § to ®-boundary (resp., Q-boundary), each component j;
(j € ®) (resp., Buw,; (w €Z,j<cQ(w))) of B is a section of the log structure Mg,
where S = Dgy,2)(gr")~(®) (resp., Dsr,2)(gr™)(Q)). We have a chart N® — Mg
(resp., [T, N9") — Mg) defined as m — [, 8}" @) (resp., m L. Bm(w’])) The
induced homomorphism from N? (resp., [],, NQ(w)) to Mg/O¢ is independent
of the choice of 8. If ® = W(p) (resp., Q(w) = W(p,)) for p€ S, then this induces
an isomorphism from N? (resp., [],, N9®)) to (Mg/O%),.

If ®(w) C Q(w) (cf. Section 2.2.5) for any w € Z, we have a commutative
diagram

[1, N -  Mg/O% (S := Dgp2)(gr™))
4 4
N® — Mg /OF (S :=Dsp(gr")™)

where the left vertical arrow is the homomorphism induced from the homomor-
phism G2 — [T, Ge™ (see Section 2.2.6) on the character groups.

2.2.14

Let ® € W (resp., Q € [[, W(gr!V)), let a be a splitting of ® (resp., @), and let
B be a distance to ®-boundary (resp., Q-boundary). Then the map D(gr"V) —
D(gt"), 2+ a(B(z)) "t = o*(B(x)) "'z extends uniquely to a morphism (see
[15, II, Proposition 3.2.6])

ba,s : Do) (8™ )™ (resp.. Dsno (™)) — Dige™).
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2.3. The space D§L(2)
We define the space D§L(2)7 comparing it with the space Déi(z)’ which we defined
in [15, II]. We also define a related space Dg’L_(Q).

2.8.1

Let D§L(2) (resp., Dgf(z)’ Dsgp,2)) be the set of all pairs (p,Z), where
pE DSL(Q)(ng)N (resp., Dgr,2) (gr™), DSL(Q)(ng)N) and Z is a subset of D
satisfying the following two conditions (i) and (ii). Denote 7 (resp., 7,5, 7,) by
ap, and denote 7, (resp., 7, 7p) by @,.

(i) Z is either

(i.A) an ay(Ap)-orbit in D or

(i.B) an &,(Bp)-orbit in Dygp (see Section 1.1.5)
for the lifted action (see Section 1.2.6).

(ii) The image of Z in D(gr'V') coincides with the torus orbit Z(p) (see
Section 2.2.7) of p.

We call an element (p,Z) an A-orbit if it satisfies (i.A) and a B-orbit if it
satisfies (1.B). This is similar to the case of Dgg, which also consists of Ap-orbits
and Bp-orbits for Q-parabolic subgroups P of Gr(gr'V) (see [15, I, Section 5.1,
Definition 5.3]).

2.3.2
We embed D in D ) (resp., Dg’L_(Q), Dg1,(2)) by F — (F(gr"),{F}). We have
canonical maps

Dipa) = Dsr (™)™, Dgjy) = Dsuiy(er™),

Degr,(2) = Dsp2)(gr™)™

defined by (p, Z) — p. We have a canonical map
Dgp 2y = Dii o) . 2)= .2, v = (pler})), Z'=15(4p)Z.

2.3.83

The style of the definition of the set Dgy,(2) in Section 2.3.1 is slightly different
from the one in [15, II, Section 2.5]. We explain the relation between the two
styles. Let (p, Z) € Dgy,(2) in the present style, and let (py, 9w )w be an SL(2)-orbit
on gr'¥ which represents p. If (p, Z) is an A-orbit (see Section 2.3.1), then it is
the class of ((puw, Pw)w,T) € Dgy o) ,, in [15, 11, Section 2.3.1] with r € Z. If (p, Z)
is a B-orbit (see Section 2.3.1), then it is the class of (0, ¥%)w:T) € Dy, 9y ny1
n [15, II, Section 2.3.1], where r € Z and p), (resp., ¢l,) is the composition
SL(2,R)"*! — SL(2,R)" — Gr(gr)) (resp., P1(C)"*! — PY(C)" — D(gr!¥))
of the projection to the last n factors and p,, (resp., @)
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2.4
Let Dgf(l;l)d (resp., Dgij(ér)r”ld) be the subset of Dg; ) (resp., Dgj ,)) consisting
of all A-orbits. (We do not define the mild part of Dgr,2). The part of A-orbits

in Dgr,(2) does not fit our formulation of the mild part.)

2.3.5
Consider the following three situations (a)—(c).

(2) D = Dgp(a), €= Dspz) (™)™
(b) D = D 5y, € = Dy o) (&™),

(¢) © = Dg2), €= Dsr2(gr")™.

We endow © with a structure of an object of By (log) as follows in Sections 2.3.6-
2.3.11. In situation (c), this coincides with the structure Déi(z) treated in [15,
I1].

2.3.6

In situations (a) and (c) (resp., situation (b)) in Section 2.3.5, for ® € W (resp.,
Q€ [, W(erl)), let D(®) (resp., D(Q)) be the inverse image of (@) (resp.,
¢(Q)) (see Section 2.2.12) in D.

2.3.7
In situations (a)—(c) in Section 2.3.5, for z = (p,Z) € D, sply, (r) for r € Z is
independent of the choice of r. We denote this sply, (r) (r € Z) by sply, ().

2.3.8
In situations (a) and (c) (resp., situation (b)) in Section 2.3.5, let ® € W (resp.,
Q = (Q(w))y € [T, W(grl)), let o be a splitting of ® (resp., Q) (see Sec-
tion 2.2.8), and let 8 be a distance to ®-boundary (resp., Q-boundary) (see
Section 2.2.9).

In situations (a) and (b) (resp., situation (c)), for x € D, let §,p(z) €
L (see Section 1.2.2) be Ad(a*(8(p))) " tow (z) (resp., Ad(a(B(p))) tow (z)),
where p denotes the image of z in D(gr'V) (for a*, see Section 2.2.8). Let
D' =D(®) (resp., D(Q)). Then, for z = (p,Z) € D" and r € Z, 4 (7, (t)r) (resp.,
d0.,8(Tp(t)r)) converges in £ (see Section 1.3.8(4)) when ¢ € A, tends to 0 in A4,
and the limit depends only on x and is independent of the choice of r. We denote
this limit by 64,5(2). We have 84 5(z) € L(ba,5(p)), where by g(p) is as in Sec-
tion 2.2.14.

These 0q,5(x) and by g(p) (z = (p, Z)) are described as follows. In situations
(a) and (c) (resp., situation (b)), let o/ and (a*)" be the restrictions of a and
a* (see Section 2.2.8) to the subgroup G (resp., IL. G ")y of G2 (resp.,
1L, G2, respectively. Since both o/ and 7 split W(p) (resp., W(pw))w),
there is u € [, Autr(gr!) ) such that, for all W’ € W(p) (resp., for all w € Z and

w

all W e W(pyw)), u preserves W’ and induces the identity maps on g’ and
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such that
(1) = ud/ (H)u™t, () = u(a®) (H)u™?

for any t € Gr® (resp., [1,, G%V(p“’)). Take r € Z, and let T be the image of r
in Z(p) (see Section 2.2.7). Then we have

ba,6(p) = ba,s(u'T),

ba,p(x) = Ad(ua™ (B(u_lf“)))_lc;w(r) (resp., Ad(ua(ﬁ(u_lr)))_léw(r)).

These are shown in [15, I, Section 3.3.9] in situation (c). The proofs for situations
(a) and (b) are similar.

PROPOSITION 2.3.9
Consider the three situations in Section 2.3.5. In situations (a) and (c), let ® €
W, D' =D(®), and € = &(®). In situation (b), let Q € [[, W(egrl), D' =D(Q),
and € = &(Q). In situations (a) and (c) (resp., situation (b)), firx a splitting o
of ® (resp., Q) and a distance  to ®-boundary (resp., Q-boundary). Then we
have a bijection

v:® = {(p,s,0) €€ xspl(W)x L|5€L(bap(p))}

(where L(+) is as in Section 1.5.5(4)) defined as x + (p, s,8), where p is the image
of x in €, s=sply,(x) (see Section 2.3.7), and § =, g(x) (see Section 2.3.8).

Proof
The inverse map of v is defined as (p, s,d) — (p, Z), where Z is as follows. Con-
sider situations (a) and (c) (resp., situation (b)). Take u € Gr(gr') for p as in
Section 2.3.8.

In the case § € L C L, Z is the subset of D whose image in D(gr"V') x spl(W) x
L under the map in Section 1.2.1 is

{(r,s,Ad(uc*(B(u""'r)))d) |r € Z(p)}
(resp.7 {(r,s,Ad(ua(ﬁ(u_lr)))é) |re Z(p)})

In the case § =004’ € L\ L with &' € L {0} (see Section 1.3.8(4)), Z is Rsg0 2/,
where Z’ is the above set Z for (p,s,d’). O

PROPOSITION 2.3.10
Let the three situations be as in Section 2.5.5.

(1) In situations (a) and (c) (resp., situation (b)), endow D(®) (resp., D(Q))
(see Section 2.3.6) with a structure of an object of By (log) by using the bijection
v in Proposition 2.3.9. (The target of v is regarded as an object of Bg(log) by
regarding it as'Y in X = &' xspl(W) x L in Section 1.5.16.) Then this structure
is independent of the choice of (o, 3).

(2) There is a unique structure on © as an object of Bg (log) such that, for
any ® €W (resp., Q € [[, W(gth)), D' :=D(®) (resp., D' :=D(Q)) is an open
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subset and the restriction of this structure to ®' coincides with the structure given

in (1).

Proof
For situation (c), this follows from [15, II, Proposition 3.2.9, Theorem 3.2.10].
The proofs for situations (a) and (b) are similar. O
2.3.11

The structures of Dy ), Dgi_(2)’ and Déi@) as objects of By (log) are given
by situations (a), (b), and (c¢) in Proposition 2.3.10, respectively. In situations
(a)—(c) in Section 2.3.5, the canonical map ® — € is evidently a morphism of
B (log).

2.8.12

Via the bijection v of Proposition 2.3.9, A-orbits in @’ correspond to elements
(p,s,9) of the target of v such that § € £. Hence, the subset of ® consisting of all
A-orbits is open in ©. Elements (p, Z) of ®’ such that Z C Dg,) (see Section 1.1.5)
correspond to elements (p, s,9) of the target of v such that § =0.

2.3.13
Consider situations (a)—(c) in Section 2.3.5. In situation (c), we consider the
structure Déi(z) of Dgy,(2)-

In Theorem 2.3.14 below, we extend the result [15, II, Theorem 3.4.4] on
the local structure of Déi@) to all situations in Section 2.3.5. This section is a
preparation for it.

Let p € €. We consider the local structure of ® around the inverse image of
pin ®.

Consider situations (a) and (c) (resp., situation (b)). Let ® := W(p) (resp.,
Q= (Q(w))w with Q(w) :=W(pw)). Fix r € Z(p).

Let K, be the maximal compact subgroup of Ggr(gr'’') associated to r [15,
II, Section 3.4.1], and let K. C K, be the isotropy subgroup of Ggr(gr'V) at r. We
use the notation in Section 2.2.7. Let R be an R-subspace of gr (gr'’) satisfying
the following conditions (C1) and (C2).

(C1) gr(gr")="Lie(*(4,)) ® R & Lie(K,).

(C2) R=3_,.ex(s,) RN ((8R)m + (gR)-m). Here (-)n, denotes the part of
weight m for the adjoint action of S, via 7. (The definition of the part (-)m
does not change if we replace 7, by Tp.)

Let S be an R-subspace of Lie(K,) such that Lie(K,)=Lie(K.) & S.

For a subset J of @ (resp., for J = (J(w))wez, J(w) C Q(w)), let Sy be the
subset of S consisting of all elements k such that exp(k)r € (K, NGr_s(gr™")) r,
where Gr_s(gr'") is the subgroup of Ggr (gr'") consisting of all g € Gr(gr'') such
that gW’' =W’ for any W’ € J (resp., for any w € Z and any W' € J(w)).
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We define an object Y of Bg (log) as follows. Let
X =4, xgr(gr") x gr(gt") x gr(gr’) x 5.

Note that 4, is RZ; (resp., [[,, Rg(()w)) (Section 2.2.7).

Let Y be the subset of X consisting of all elements (t, f,g,h, k) satisfying
the following conditions (i)—(iv). In (ii) and (iv) below, let J={j € ® |t; =0}
(resp., J = (J(w))wez with J(w) ={j € Q(w) |ty ; =0}).

For y € X(S,), write x = x+ (x—) ! with x4, x— € X(S,)™, which are defined
as follows. In the identification X (S,) = [],, Z®™), if we denote by m(w, j) € Z
the (w, j)-component of x for w € Z and j € Q(w), then the (w, j)-component of
X+ is max(m(w,7),0) and the (w,j)-component of x_ is max(—m(w,j),0).

(i) For any x € X(Sp), t(x+)gx = t(x-)fx and t(x+)hy = t(x-)gy. Here
Ixs9x>hy denote the x-component for the adjoint action of S, via 7, and
t(x+),t(x—) € R>g are defined by the understanding A, = Hom(X (S,)*, R2UI).

(i) Let x € X(Sp). If t(x4) =0, then g, = f, = 0. If t(x_) =0, then g, =
hy = 0. In other words, if m(j) € Z for j € ® (resp., m(w,j) € Z for w € Z
and j € Q(w)) denotes the j-component (resp., (w,j)-component) of x in the
identification X (S,) = Z® (resp., [, Z%")), then f, =0 unless m(j) <0 for
any j € J (resp., unless m(w,j) <0 for any w € Z and j € J(w)), gm =0 unless
m(j) =0 for any j € J (resp., unless m(w,j) =0 for any w € Z and j € J(w)),
and h,, =0 unless m(j) > 0 for any j € J (resp., unless m(w, j) >0 for any w € Z
and j € J(w)).

(iii) gy € R and fy + hy—1 € R for any x € X(S,).

(iV) keSy.

Regard X as an object of By (log) in the natural way, and regard ¥ C X as
an object of By (log) by Section 1.3.16. Let

Yo={(t f.g,h.k) €Y [te A} CY.

THEOREM 2.3.14
Consider the three situations in Section 2.3.5. Let the nmotation be as in Sec-
tion 2.5.15.

(1) For a sufficiently small open neighborhood U of (0,0,0,0,0) in Y, there

exists a unique open immersion U — € in Bg(log) which sends (t, f,g,h, k) €
UQYO to

exp(f)T;(t) exp(k)r = exp(f)7,(t) exp(k)r
of D(gr"V') C €. This morphism sends (0,...,0) €Y to p.
(2) Let L=L(r), L= L(r). Then for a sufficiently small open neighborhood
U of (0,0,0,0,0) in Y, there exists a unique open immersion U x spl(W) x L —
D in Bg(log) having the following property. In situations (a) and (b) (resp.,
situation (c)), it sends (t,f,g,h,k,s,0) €Y x spl(W) x L, where (¢, f,g,h,k) €
UNYy, s€spl(W), and § € L, to the element of D whose image in D(gr') x
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spl(W) x L under the isomorphism from Section 1.2.1 is
(exp(f)T;(t) exp(k)r,s,Ad(exp(f)T;(t) exp(k:))é)
(resp., (exp(f)7p(t) exp(k)r, s, Ad(exp(f)7,(t) exp(k))d)).
(3) For a sufficiently small open neighborhood U of (0,0,0,0,0) in Y, the
diagram
UxsplW)xL — D

{ I
U - ¢

is Cartesian in By (log) and in the category of topological spaces.

(4) In situations (a) and (c) (resp., situation (b)), the image of the map
in (1) is contained in €(®) (resp., €(Q)) and the image of the map in (2) is
contained in D(®) (resp., D(Q)), where ® =W(p) (resp., Q@ = W (pw))w)-

(5) The underlying maps of the morphisms in (1) and (2) are described in
Section 2.5.15 below.

Proof
In situation (c), this is given in [15, II, Theorem 3.4.4, Section 3.4.12]. The proofs
for situations (a) and (b) are similar. O
2.8.15

The maps in Theorem 2.3.14(1) and 2.3.14(2) are induced from the maps
Y =€, Y xspl(W) x L — 9,

respectively, defined as follows.

The first map sends (¢, f, g, h, k) €Y to the following element p’ € €. Assume
we are in situation (a) or (c) (resp., situation (b)). Let J ={j € ® |t; =0}
(resp., J = (J(w))wez, where J(w) = {j € Q(w) |ty ; =0}). Define p; € € as
follows. Let n =§(®) (resp., n(w) = §(Q(w)) for w € Z). Let (p, ) be the SL(2)-
orbit on gr'V' which represents p (resp., (pw,¢w) for w € Z be the SL(2)-orbit
on gr'¥ in n(w) variables which represents p,,) such that r = ¢(i,...,i) (resp.,
Ty = Qu(ty...,15)). Write J = {j1,...,Jm}, j1 <+ <Jm (resp., J(w) = {jw,1,---,
Jwm@) > J1 <o+ < m(w))- Then py is the class of the following SL(2)-orbit
(p',¢") on gr™' of rank m (resp., the family (!, ¢! )w of SL(2)-orbits in m(w)
variables):

p,(gl7" . 7gm) :p(gllv s agiz)agp/(zla s ,Zm) = 90(217 '72;(71;))
(resp., p;;(gh . ,gm(w)) = pw(gi, . 7g;(w))a@;}(zla' . '7Zm(w))

:<pw(zi,...,z;1(w))).

Here gg» = g and zé = 2p, where k is the smallest among integers a such that
1<a<m (resp.,, 1 <a<m(w)) and j < j, if such an a exists, and g§ =1 and
zg =1 if such an a does not exist.
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Let A’ be the set of all elements ¢’ of A, such that t; =t¢; for any j€ &\ J
(vesp., ty, ; = tw,; for any w € Z and any j € Q(w) \ J(w)). Then
p' = exp(f)7p(t") exp(k)p,
with ¢ € A’. This p’ is independent of the choice of t' € A'.
Next the second map Y x spl(W) x L — ® sends (¢, f, g, h, k,s,6) to (p,Z) €
D, where p’ is as above and Z C D is as follows. Consider situations (a) and (b)

(resp., situation (c)). If § € L C L, Z is the subset of D whose image under the
embedding D — D(gr') x spl(W) x L in Section 1.2.1 is the set of elements

(exp(f)T;(t') exp(k)r,s, Ad (exp(f)T;(t’) exp(k))0)
(resp., (exp(f)7p(t") exp(k)r, s, Ad(exp(f)7,(t") exp(k))d)),

where t' ranges over all elements of A’. If § € L~ L and § =00 6® for §)
L~ {0} (see Section 1.3.8(4)), Z is the subset of D whose image under the
embedding D — D(gr'") x spl(W) x £ in Section 1.2.1 is the set of elements

(exp(f)my (1) exp(k)r, s, Ad (exp(f)7; (¢') exp(k)) (c 0 61))
(resp., (exp(f)7, (') exp(k)r, 5, Ad (exp(f)7,(t') exp(k)) (c0 61))),

where ' ranges over all elements of A’ and ¢ ranges over all elements of R~g.
The part for Dgy, 2y of the following proposition is [15, IT, Theorem 3.5.15].

PROPOSITION 2.3.16

Consider the situations in Section 2.3.5. Fiz any F € D(gr"'), and let L = L(F)
(see Section 1.5.8(4)). Then ® is an L-bundle over & x spl(W) as an object of
Bg (log). Consequently, the map © — & x spl(W) is proper.

Proof
This follows from Theorem 2.3.14. O

Note that £(F) for all F € D(gr'') are isomorphic to each other as objects of
Br (log).

PROPOSITION 2.3.17

The map Dgy o) — Dg’}:@) (see Section 2.5.2) is a morphism of Bg(log). The
following diagram is Cartesian in Bg(log) and also Cartesian in the category of
topological spaces:

Dg1 2 - Dgij@)

1 1
Dgp2)(gr'")~ =  Dspez)(er™).

Proof
We deduce this from Theorem 2.3.14. Let p € DSL(Q)(ng)N, and let p’ be the
image of p in Dgy,2)(gr'’). Take R and S for situation (b) in Section 2.3.5 as
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in Section 2.3.13 by using p’ as p in Section 2.3.13, and write this R as R’.
Let C be an R-subspace of gr(gr"’') such that Lie(7, (Ap)) is the direct sum of
Lie(7;(Ap)) and C. Let R =C® R'. Then R and S satisfy the conditions on R and
S in Section 2.3.13 for situation (a) in Section 2.3.5 and for p. The homomorphism
Sp — Sy (see Section 2.2.6) induces a homomorphism X (S,)™ — X (S,)* and,
hence, a morphism A, = Hom(X (S,)",R2!) — A, = Hom(X (S, )+, Ruu).
Let Y be the Y in Section 2.3.13 defined by (p, R, S) for situation (a) in Sec-
tion 2.3.5, and let Y’ be the Y in Section 2.3.13 defined by (p’, R', S) for situation
(b) in Section 2.3.5.

For (¢, f,g,h,k) €Y, since g€ R=C @ R/, we can write g =c+¢' withce C
and ¢’ € R’ in a unique way, and we have (¢, f’,¢’,h/,k) €Y', where ¢’ is the
image of t in A/, f' = f —c, and b/ = h — c. We have a morphism Y — Y’ which
sends (t, f,g,h, k) €Y to (t't",f',¢', W, k) €Y', where t” is the unique element
of Ay such that 7., (") = exp(c). For a sufficiently small open neighborhood U of
(0,0,0,0,0) in Y and for a sufficiently small open neighborhood U’ of (0, 0,0,0,0)
in Y’ such that the image of U in Y’ is contained in U’, we have commutative
diagrams

v —» ¢ UxsplW)xL — D
\ 1 3 1

v - ¢ xsplW)x L — 2

where ¢ = DSL(Z)(gr )™, & = Dgr, 2)(gr ), ®=Dg, L(2)> and ©' = DSL
reduces Proposition 2.3.17 to Theorem 2.3.14.

)" This
O

2.4. Basic facts on SL(2)-orbits and Borel-Serre orbits
This section is a preparation for the rest of Section 2. In Sections 2.4.1-2.4.3, we
review the space Dpg defined and studied in [15, I], and then in Sections 2.4.5-

2.4.10 we give some basic facts about the spaces D§L(2)’ Dg’L_@), Déi(z)’ and

2.4.1
We review the definition of the set Dpg shortly (see [15, I] for details).
Parabolic subgroups play central roles in the theory of Borel-Serre spaces.
Following [6], for a linear algebraic group Z over a field, we call an algebraic
subgroup P of Z a parabolic subgroup if it is geometrically connected and Z/P
is a projective variety.
In our setting, there are bijections

{Q-parabolic subgroup of G}
> {Q—parabolic subgroup of G(ng)}
> {family (Py)wez of Q-parabolic subgroups P, of G(gr?¥’ )}
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The bijection from the last set to the second set is given by (Py )y — [[,, Pw, and
the bijection from the second set to the first set is given by taking the inverse
image under Gr — Ggr(gr").

Let P be a Q-parabolic subgroup of Gr(gr'V). Let P, be the unipotent
radical of P, let Sp be the largest Q-split torus in the center of P/P,, and let
Ap (resp., Bp) be the connected component including 1 of the topological group
SP(R) (resp., (Gm X SP)(R))

For each p € D(gr'"V), we have a canonical homomorphism Sp — P of alge-
braic groups over R such that the composition Sp — P — P/P, is the identify
map, which we call the Borel-Serre lifting at p and denote by t — t,,. This ¢, is
characterized by the following two properties.

(i) The image of ¢, in P/P, coincides with ¢.
(ii) Ok, (tp) =t, "', where Ok, : Gr(gr"') — Gr(gr'") denotes the Cartan
involution associated to the maximal compact subgroup K, (cf. [15, I, 2.1]) of

Gr(gr'V) associated to p.

We have the following action of Bp on D, which we call the Borel-Serre
action and denote as (b,F)—bo F (b€ Bp, F € D). For b= (c,a) € Bp with
c€Ryo and a € Ap, we define bo I := (c")yapgw)F, where apgw) is the
Borel-Serre lifting of a at F(gr'), (¢*),, is the element of [, Autr(grly ) which
acts on gr!¥ as the multiplication by ¢, and (") wapgwy acts on D by the
lifted action from Section 1.2.6. The action of Ap on D and the action of Bp on
Diysp1 are fixed-point-free.

Dgg is defined as the set of pairs (P, Z), where P is a Q-parabolic subgroup
of Gr(gr'') and Z is either

(i) an Ap-orbit in D or
(ii) a Bp-orbit in Dygpi

for the Borel-Serre action.
In case (i), we call (P, Z) an Ap-orbit. In case (ii), we call (P,Z) a Bp-orbit.
We denote by Dg‘gd the subset of Dgg consisting of Ap-orbits. This subset

was written as Dgé) in [15, I].

2.4.2
We review the structure of Dgg as an object of By (log). (Actually it is a real
analytic manifold with corners.)

For a Q-parabolic subgroup P of Gr(gr'V), let

Dgs(P)Z {(Q,Z) EDBS | QDP}.

Then Dpg(P) forms an open covering of Dpg when P varies. Dpg is also covered
by the open sets Danéld (Section 2.4.1) and Dpg nspl, where Dpg pnspl denotes
the subset of Dgg consisting of all elements (P,Z) such that Z C Dygp. The
structures of DB (P) := Dpg(P) N DB and Dpg nsp1(P) := Dps(P) N Dps nspl
as objects of B (log) are described as follows.
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Let X(Sp) be the character group of Sp, and let A(P) C X(Sp) be the set
of simple roots (see [6]). This set A(P) is characterized by the following two
properties (i) and (ii).

(i) Let n be the rank of Sp. Then A(P) is of order n and generates Q ®
X (Sp) over Q.

(i) Let X(Sp)™ be the submonoid of X (Sp) generated by A(P). Lift Sp to
a subtorus of P. Then X (Sp)* coincides with the submonoid of X (Sp) generated
by x~!, where x ranges over all elements of X (Sp) which appear in the adjoint
action of Sp on Lie(P).

Define a real toric variety (see Section 1.3.8(3)) Ap and Bp as
Ap :=Hom (X (Sp)*,RZ) = RE” 5 Ap = Hom (X (Sp), RE§Y) = RS,
Bp = RZO X AP D Bp :R>0 X Ap.

For a Q-parabolic subgroup @ of Gr(gr"’') with Q D P, there is a canonical
injection A(Q) — A(P), and @ — A(Q) C A(P) is a bijection from the set of all
Q-parabolic subgroups of Gr(gr'V') such that @ D P to the set of all subsets of
A(P). This is explained as follows.

For such @, we have Q,, C P,, the composition Sg — Q/Q. — Q/P, is injec-
tive, and the image of this composite map is contained in Sp C P/P, C Q/P,.
Hence, Ag is regarded as a subgroup of Ap. There is a unique injection A(Q) —
A(P) such that the composition Ré(()Q) S AgCAp= Réép) coincides with the
map f g, where g(j) = f(j) for j € A(Q) and g(j) =1 for j € A(P) N A(Q).

We have bijections

Dgéld(P) =D XAP AP» DBS,nspl(P) = Dnspl XBP BP,

which send the element (Q,Z) of DEI(P) (resp., Dps nspi(P)) to the class of
(2,h) (vesp., (z,h)), where z € Z and h € Ap = Réép) (resp., h = (0,h) € Bp =
R x R2S") is defined by

h(j)=0 for je A(Q)CA(P), h(j)=1 forjeA(P)~AQ).

The right-hand sides of these bijections are regarded as objects of By (log) [15,
I, Section 8] as is explained below, and the left-hand sides have the structures as
objects of Bg (log) for which these bijections are isomorphisms of Bg (log).
There is a closed real analytic submanifold D™M4) (resp., D™B)) of D (resp.,
Disp1) such that we have an isomorphism Ap x DA 5 p (resp., Bp x DB 5
Dysp1), (@, F) — ao F of real analytic manifolds. This induces a bijection Ap x
DA — DxAr Ap (vesp., Bp x DMB) — Dy xBP Bp), and by this, D x47 Ap
(resp., Dpspi XB7 Bp) has a structure of an object of Bi (log). This structure is
independent of the choice of D4 (resp., Di}f))-
2.4.3
The definition of the set Dpg can be rewritten in a style which is similar to
the definitions of the spaces of SL(2)-orbits in Section 2.3. Let Dpg(gr'’) =
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[T.ez Des(gry) ), where Dgs(gr}y ) is the space Dgg for the graded quotient gr}y .
For p = (Py, Zy)wez € Dps(gr'’), we denote [, cz Zw C D(gr") as Z(p). We
call Z(p) the torus orbit of p, and we call [, .y Puw C Gr(gr'"") the Q-parabolic
subgroup of Gr(gr"”) associated to p. Then, Dgg is understood as the set of
pairs (p, Z), where p € Dps(gr'’') and Z is a subset of D satisfying the following
conditions (i) and (ii).

(i) Z is either:
(i.A) an Ap-orbit in D for the Borel-Serre action, or
(i.B) a Bp-orbit in D,y for the Borel-Serre action.
Here P is the Q-parabolic subgroup of Gr associated to p.
(ii) The image of Z in D(gr'V') coincides with the torus orbit Z(p) of p.

2.4.4
In the rest of Section 2.4, we consider situations (a)—(c) in Section 2.3.5 and also
situation

(d) 33 :DBs, @: DBs(ng).

2.4.5
For x € ®, we define objects

Sy, X(S:)T,T(x),T(x), Z(x), Z(z)

associated to x.

In situations (a)—(c), write x = (p, Z) (p € €, Z C D). In situation (d), write
x=(P,Z).

In situations (a)—(c), let S, =S, if = is an A-orbit, and let Sy = G, x ) if
x is a B-orbit (see Sections 2.2.7, 2.3.1). In situation (d), let S, = Sp if x is an
Ap-orbit, and let S, = G, x Sp if x is a Bp-orbit (see Section 2.4.1).

We define a submonoid X (S,)* of the character group X (S,) of S, as fol-
lows. In situations (a)-(c), let X (S;)* := X(S,)" if z is an A-orbit (see Sec-
tion 2.2.7), and let X(S;)*" :=N x X(S,)* CZ x X(S,) = X(S,) if = is a
B-orbit. In situation (d), let X (S;)" := X(Sp)™ if x is an Ap-orbit, and let
X(S:)T:=NxX(Sp)T CZx X(Sp)=X(S;) if x is a Bp-orbit, where X (Sp)™
is as in Section 2.4.2.

Let T'(z) be the connected component of S, (R) containing the unit element.
Let

T(x) := Hom(X (S,;)", RE}") D T'(2) = Hom (X (S,) ", R2G").

We regard T'(x) as a real toric variety.

Define Z(z) := Z. We call Z(x) the torus orbit associated to x.

T(x) acts on Z(z), and Z(z) is a T(z)-torsor. Let Z(z) := Z(x) xT®) T(z).
Then Z(z) has the unique structure of an object of Bg(log) such that, for any
r € Z(z), the bijection T(x) — Z(z) induced from the bijection T'(x) — Z(z),
t — tr becomes an isomorphism in By (log). We call Z(x) the extended torus



Classifying spaces of degenerating mixed Hodge structures, IV 327

orbit associated to x. In Section 2.4.8 below, we will embed Z(z) in ® satisfying
r € Z(x).

2.4.6
This section is a preparation for Proposition 2.4.7. Consider the three situations
in Section 2.3.5.

In situations (a) and (b) (resp., situation (c)), we have a global section 53
(resp., Bo) of Mp /O3 defined as follows. In situations (a) and (c) (resp., situation
(b)), let ® €W (resp., Q = (Q(w))w € [T, W(grl)), let D' =D(®) (resp., D' =
D(Q)), let a be a splitting of @ (resp., @), and let 8 be a distance to ®-boundary
(resp., Q-boundary). Fix a real analytic closed submanifold £ of £~ {0} such
that R x £ — £~ {0}, (a,0) — a0 is an isomorphism of real analytic
manifolds, and let R>q x £ =5 £~.{0} be the induced isomorphism in By (log).

Let D}, be the open subset of ' defined by d # 0 via the bijection v
in Proposition 2.3.9 associated to («, ). Then in situations (a) and (b) (resp.,
situation (c)), we have the composite morphism ©]_ ) — £~ {0} = R X £O -
R, where the first arrow is v. We denote this composite morphism Dysp1(®) —
R by 85 (resp., Bo). Then as is easily seen, this 35 (vesp., fo) belongs to Mg/
the class of 8% (resp., Bo) in My

nspl

spl’

/O3, 1 is independent of the choices of «, 3,
and £, this class extends uniquely to a section of Mg /O3, which is trivial on
the part of A-orbits of D, and this local section of Mp/OF on D' =D (P) (resp.,
D' =9(Q)) extends, when ® (resp., }) moves, to a global section 8§ (resp., So)
of Mp/OF on D uniquely.

PROPOSITION 2.4.7
Consider the four situations in Section 2./.4. For r € ®, we have a canonical
isomorphism

(Mo /Og)e = X(Sz)".

Proof

We first consider situations (a)—(c). Write x = (p, Z). As in Section 2.2.13, we have
a canonical isomorphism (Me/Og ), = X (S,)T. In the case when x is an A-orbit,
we have (M¢/Og), = (Mo /O3),. If x is a B-orbit, we have N x (Me/Og ), 5
(Mo /OF)s, where 1 € N is sent to £ in situations (a) and (b) and to Sy in
situation (c).

We next consider situation (d). Write x = (P, Z). Assume first that = is
an Ap-orbit. Consider the composite morphism S := DBI4(P) = Ap x DA —
Ap = Rﬁép), where the first isomorphism is as in Section 2.4.2. For j € A(P), let
B;i:S —>_R20 be the j-component of this composite morphism. Then §; is a sec-
tion of Mg, and the class of 3; in Mg/ is independent of the choice of DMLA) i
Section 2.4.2. We have a canonical isomorphism X (5,)* = NA®P) 5 (Ms/O% )
which sends m € N2(P) to the class of HjeA(P) B;-n(j). Assume next that x is a
Bp-orbit. Consider the composite morphism S := Dps nspi(P) = Bp x D1B) —
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Bp = Rxq X Réép), where the first isomorphism is as in Section 2.4.2. Let
ﬁ(])gs : 8 = Rxo be the first component of this composite morphism, and for
j € A(P), let B : S — Rx¢ be the j-component of this composite morphism.
Then 855 and B; (j € A(P)) are sections of Mg, and their classes in Mg/O}
are independent of the choice of D(B) in Section 2.4.2. We have an isomor-
phism X (S;)* 2 N x NAWP) — (Mg/0%), which sends (mo, (m(5))jea(r)) €
N x N2P) to the class of (55)™ - [T;cap) ﬁ;n(j). O

2.4.8
Let situations (a)—(d) be as in Section 2.4.4. Let € ®. The inclusion map
Z(x) = D extends uniquely to a morphism

Z(x) =D

of B (log). This morphism is described as follows.

Assume first that we are in one of the situations (a)—(c). Write z = (p, Z),
and fix r € Z(p). Consider the morphism Y x spl(W) x L — ® in Section 2.3.15
defined for (p,r, R, S) by fixing R and S (see Section 2.3.13). Then the morphism
Z(x) —® is the composite morphism Z(z) — Y x spl(W) x L — D, where the
first morphism is as follows. Let F' be an element of Z(z) whose image under the
embedding D — D(gr'') x spl(W) x L is (r,s,d). Let t € A,. Then the first mor-
phism sends (F,t) € Z(x) = Z(z) x7@) T(x) to (t,0,0,0,0,s,5) € Y x spl(W) x L,
and if x is a B-orbit, then for (c,t) € B, (c € R>p), the first morphism sends
(F,(c,t)) € Z(z) to (¢,0,0,0,0,s,c08) €Y x spl(W) x L.

Next assume that we are in situation (d). Write z = (P, Z). If  is an Ap-
orbit, then this morphism Z(x) — ® is the composition Z(z) = Z x47 Ap C
D xAP Ap = DBI(P) If x is a Bp-orbit, then this morphism is the composition
Z(ac) =7 xBr BP C Dnspl x Brp BP = DBS,nspl(P)~

This morphism Z(x) — D is injective and strict (Corollary 1.3.15) and sends
0 € Z(x) to . Here 0 denotes the class of (r,0), where r € Z(z) and 0 € T(x)
is the homomorphism (Ms/OF). — R which sends any nontrivial element
of (Mp/O3)s to 0. (Then 0 € Z(z) is independent of the choice of r.) We will
identify Z(z) with its image in D, which coincides with the closure of Z(z) in .

2.4.9
Consider situations (a)—(d) as in Section 2.4.4. In Lemma 2.4.10 below, we give
descriptions of log modifications of © as sets by using the extended torus orbit
Z(x) C D associated to x €D (Section 2.4.8), which we will use in Sections 2.5
and 2.6. Let U be an open set of ®. Let L and N be as in Section 1.4.1, let X
be a finite rational fan in Ng, and let X/ be a rational finite subdivision of X.
Let Mor(-,U) — [X] be a morphism of functors (see Section 1.4.7) such
that, for any = € U, if o denotes the image of x in 3 (see Section 1.4.7), then
the homomorphism S(o) — (My/Of;), is universally saturated. For € U and
o' € ¥/ whose images in ¥ coincide, we define a subgroup T'(z,0') of T(x) =
Hom((MZ/0})..,
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R2UY) as follows. Let o be the image in X. Then the homomorphism L —
(MEP/O)« factors through L/S(o)*. T(x,0") is the inverse image of Hom(L/
S(o’)*, R28Y) C Hom(L/S(o)*, R241) in T(z). Let U’ — U be the log modifi-
cation which represents the functor Mor(:,U) x[x; [X'] (Section 1.4.7).

LEMMA 2.4.10
Let the notation and the assumptions be as in Section 2./.9. There exists a canon-
ical bijection between U’ and the set of all triples (x,0',Z"), where x €U, o’ is

an element of ¥/ whose image in ¥ coincides with the image of x in X, and Z'
is a T'(x,0")-orbit in Z(x).

Proof

Let x € U, and let U” be the fiber product of Z(z) — U < U’. Then the fiber
on z of U’ — U coincides with the fiber on x of U” — Z(z). Since U” represents
the functor Mor(-,U) x g [¥], this lemma follows from Section 1.4.8. O

2.5. Relations with Dgp,(2) and D§L(2)

We connect the spaces D§L(2) and Dé£(2) by introducing a new space Dgfb) of
SL(2)-orbits.

2.5.1
We define a log modification (see Section 1.4.6)

*,+ *
Dgila) = Dsp2)-

On © := D§L(2)v there is a unique section fBioy of Mp/OF such that, for any
® € W, the restriction of Bio; to D(®) coincides with the image of the product
[ljce B in Mo /Og, where 8= (8;)jecq is a distance to ®-boundary. Let Sj
be the section of Mg /OF defined in Section 2.4.6. Consider the homomorphism
N2 Ms/O%, (a,b) = B (55"

Take L =72 in Section 1.4.1, and let ¥ be the fan of all faces of the cone
R2%, C N3 = R?, so we have a morphism Mor(-,D) — [%]. Let ¥’ be the rational
finite subdivision of ¥ consisting of the cones

or:={(y) eRL o>y}, o2e={(r.y) €RZp|w <y}

and their faces. Let Dg"LJEQ) be the log modification of ® which represents the

fiber product Mor(-,D) x5 [X'] (see Section 1.4.7).

D§’L+(2) is covered by the open sets Dé’LJE?)(Uj) for j =1,2 corresponding to
the cone o, which represents Mor(-, ®) x5 [face(o;)], where face(o;) denotes the
fan of all faces of o;. On the open set U = D;LJEQ)(Ul) (resp., U = D;’JEZ)(O'Q)),

the pullback of Byt /85 (resp., B8/ Biot) in M /O belongs to My /O .
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2.5.2
*,mild .

Since the restriction of 5j to DSL(Q) is trivial, the canonical morphism DSL(2) —

Dy, (o) is an isomorphism over D;ﬁ?;l)d and hence, DS;(];)d is embedded in Dg; ( )

as an open set. Via this, D C Dgﬁ?;l)d is embedded in DSL(Q) as an open set.

2.5.8
We describe Dg’J(Q) as a set. We have

Y ={712,71,72, 70}, Y ={01,092,00,T1,T2,T0},
where
m2: =R, 1= Rxg x {0}, 72 :={0} x R>o, 70:={(0,0)},
oo:={(z,z) |z €Rxo}.

So, X is the set of all faces of 71 2, and face(o;) = {0}, 7;,00,70} for j =1,2. The
image of © = (p,Z) € D§L(2) in ¥ is 79 if and only if x € D, 7y if and only if
x € D;;{;ﬁ N\ D, 7 if and only if = is a B-orbit and p € D(gr'V'), and 7 o if and
only if z is a B-orbit and p ¢ D(gr'").

We apply Lemma 2.4.10 to describe the log modification DSL of Dg. ) asa
set. For this, we show that the homomorphism N? — (Mg /O3), (’D DgL( )
given by (Biot, 8) in Section 2.5.1, is universally saturated for any = € ©. If the
image of x in ¥ is 79 or 7y (resp., T2 or 71 2), then this homomorphism has the
shape N2 — N", (a,b) > (b,...,b) (resp., N2 = N x N", (a,b) + (a,b,...,b)) for
some integer r > 0 and, hence, is universally saturated by Proposition 1.3.14.

By Lemma 2.4.10, we have the following list of points of D§L+(2)'

(1) (z,7;,Z(2)) (x € Dgy (5 and the image of x in X is 7;). (Here j =0,1,2.)

(2) (w,05,Z(x)) (x € Dgp 5y and the image of x in ¥ is 71 ). (Here j =1,2.)

(3) (z,00,2") (x=(p,Z) € Dgy 5y, the image of z in ¥ is 71, and Z’ is a
Tp(A,)-orbit in Z(x)).

Actually, in (3), what Lemma 2.4.10 directly tells is that a 7;(T'(z,00))-
orbit Z' in the 7;(B,)-orbit Z(z) appears instead of a 7,(Ay)-orbit in Z(x). But

T; (T(x,00)) = Tp(A:D) inside %;(Bp)'

2.5.4
We have a map D§L+(2) — Dgr,(2) defined as follows.

(1) (z,75,2) (x = (p, Z) with image 7; in ¥ for j =0,2) and (z,02,2) (z =
(p, Z) with image 71 » in ¥) are sent to (p, Z) € Dgr,(2).

(2) (z,71,Z) (x = (p,Z) with image 71 in X) and (x,01,2) (x = (p, Z) with
image 71 2 in ) are sent to (p, Zsp1) € Dsp(2). Here Zg, = {Fyp1 | F' € Z}, where
Fyp1 is as in Section 1.2.5.

(3) (z,00,2") (x = (p,Z) with image 7 in ¥ and Z’ is a 7,(Ap)-orbit
inside Z) is sent to (p, Z") € Dgp,(2)-
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THEOREM 2.5.5
(1) The identity map of D extends uniquely to a morphism Dg’LJEz) — Déi(z)

in Bg(log). Its underlying map of sets is the map in Section 2.5.4. This map is
proper and surjective.

(2) Let U be the open set Déi(m’nsp] UD of Déi(z)' Then the inverse image
of U in Dgf@ coincides with the open set Dglﬂgz) (02), and the induced morphism

Dgfb) (02) = U of Bg(log) is an isomorphism.

Proof
We prove (1). It is sufficient to prove that the map in Section 2.5.4 is a morphism

Dgﬂb) — Déi(Q) of By (log). For an admissible set of weight filtrations ® on gr'V,
let Dg’LE) () C Déf(z) be the inverse image of D¢} ) (®) C Dgy (). It is sufficient
to prove that the induced map Dg’LJEQ)(‘I)) — D§£(2)(<I>) is a morphism in By (log).

Let Dg}j@)’nspl - Dg’L"EQ) be the inverse image of the open set D§L(

D§; z)- Then DE’LJEQ)((H) is the union of the two open sets Dgﬁ?;l)d (which is

embedded in DQLJEQ)) and D;f{?),nspl N Dg’L"EQ) (01), and Dgﬂz)(og) is contained
. *7-1,-
mn DSL(Z),nspl'

Take a splitting a of ® and a distance 8 to ®-boundary. First, the induced

*,mild

map Dgj'io) (®) — Déi(z)(q)) is a morphism in By (log), because this map is

2),nspl of

embedded in a commutative diagram

Dgf(l;)d(q’) S Dgpo)(gr™) ™ (@) x spl(W) x L

+ 1
DélL@)(q’) S Dsp,2)(gr")~(®) x spl(W) x L

where the horizontal arrows are the maps v in Proposition 2.3.9 associated to
(o, ) and the right vertical arrow is the morphism (p,s,d) — (p,s,
> w<—ao([ljea Bi(p)) ™" dw), and because the structure of Déim)(@) as an object
of Bi (log) is induced from that of Dgy,2)(gr'’)™ x spl(W) x L in the sense of
Section 1.3.16.

Next we consider the induced map D;EEQ),nspl((D) = Dgp 5)(®). Take a closed
real analytic subset £() of £~ {0} such that Rso x £ — £{0}, (a,6) — aod
is an isomorphism, and consider the induced isomorphism R>q X JUS =N {0}.
Let 35 : Dgp 9y nsp1(®) = R0 be the composition Dy o) 1(P) = L~ {0} =
Ry x £ — R, where the first arrow is induced by the map v in Proposition
2.3.9 associated to (o, 3). For j =1,2,let U; := Dgﬂz))nspl(@)ﬂDg’L'EQ)(Uj). When
we regard 3; (j € ®) and fj as sections of My, then in Mgﬁ_’, (ITjea Bi)/B5
belongs to My, and 55/ [];cq B; belongs to My,. Furthermore, 55/ [[;cq 85 on
Us, is the pullback of the section 3 of the 1og7structure of Dsr,(2),nspl(®) which is
defined as the composition Dgr,(2) nspl(®) — L\ {0} = Ri>g x £ - R, where
the first arrow is induced by v of Proposition 2.3.9 associated to («, ).
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The induced maps U; — Déi(z)(@) for j = 1,2 are morphisms, because they
are embedded in the commutative diagrams

U1 S D) (gr') ™ (@) x spl(W) x (Rxg x L) x Rz

¥ !
D{f(2)(®) S Dy 2)(gr")™(®) x spl(W) x L,
Uz S Dgry (™)™ (@) x spl(W) x LD x Rxg
+ |

Dé]L(z),nsm(‘I’) S Dgp oy (™)™ (@) x spl(W) x L) x Ry,

Here in both diagrams, the lower horizontal arrows are induced by v in
Proposition 2.3.9 associated to («, 3) and the isomorphism £~ {0} = L) x Rxy.
In the first diagram, the part Uy — R x £M) in the upper row is the composition
Ur = Dgy,2) mspl — L~ {0} = Rs x LM the map from U; to the last Rxg in
the upper row is (Hjep B;)/B5, and the right vertical arrow is (p,s,t,0,t") —
(P,8, D < _o(tt')7™dy). In the second diagram, the part Us — LW in the upper
row is the composition Uz —= D¢y o) 1,1 — L0} = Rsox LD — £D) ] the map
Us — R>¢ in the upper row is ﬂg/Hjecp Bj, and the right vertical arrow is the
identity map.

The surjectivity of DE’LJEQ) — Déi@) is easily seen. The map is proper, because
Dg’LJEQ) and DéIL(Q) are proper over Dgr 2)(gr™)™ x spl(W). This completes the
proof of (1).

We prove (2). It is easy to check that the inverse image of U in Dg’LJEQ) is
Dg’LJEQ) (02) and that the map Dg’rjEQ)(ag) — U is bijective. Hence, for the proof of

(2), it is sufficient to prove that the converse map Déi(%nspl — D;LJE (02) is a

2)
morphism in By (log). This is a morphism as is seen from the last commutative
diagram above. (In the upper row of this diagram, the structure of the space of
U, as an object of Bg(log) is induced from that of Dgy)(gr™)™ x spl(W) x

LM x R in the sense of Section 1.3.16.) O

2.5.6
In Proposition 2.5.7, we consider when the identity map of D extends to an
isomorphism Dg; ) = Déi@) in By (log).

Let A: Dgy,2) — D§L(2) be the map which coincides on Dsgy,(2) nspt U D with
the composition of morphisms D&f o U D = Dgfb)(ag) — D§p () in By (log)
and which coincides on Dgy, ) sp1 := {(P, Z) € Dsr(2) | Z C Dsp1} with the com-
position of two isomorphisms Dgr, ) sp1 = DSL(Q)(ng)N x spl(W) = D§L(2)
{(p, 2) € Dty0 | Z € Dot} in B (log).

,spl =

PROPOSITION 2.5.7
The following conditions (i)—(vii) are equivalent.

(i) Either D = Dgp1 or Dgy2)(gr") = D(gr'V).
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(ii) The identity map of D extends to an isomorphism Déi(z) > D§L(2) mn

By (log).
iii) The identity map of D extends to a homeomorphism Déi(z) = DgL(z)'

—

v) The map X: DéL(Q) = Dg1 ) (see Section 2.5.6) is continuous.

(
(
(v) The identity map of D extends to a continuous map D§L(2) — Déi(z)'
(vi) The map Dgfg;l)d — Dgy,(2) is injective.

(

vii) The map Dsy,2)nspt — DgL(2) 18 injective.

Proof
(i) = (ii). If L(F) =0 (see Section 1.2.2) for any F € D(gr"V'), then the isomor-
phism in Section 1.2.1 extends to isomorphisms from Déi@) and D§L(2) onto
Dar,(2)(gr™)~ x spl(W) in B (log). If Dgy,(2)(gr"") = D(gr"), then the isomor-
phism in Section 1.2.1 extends to isomorphisms from Dij (yy and DY} () onto
{(F,s,6) € D(gr"") x spl(W) x L |§ € L(F)} in Bg(log).

(if) = (iii). This is clear.

(iii) = (iv), (v), and (vi). This is clear.

(v) = (vii). If (v) is satisfied, then the composition Déi(Z),nspl = Dy 0y =
Déi@) will be the inclusion map.

We prove (iv) = (i), (vi) = (i), and (vii) = (i).

In the rest of this proof, assume D # Dy, and Dy (o) (gr") # D(gr"V'). That
is, assume (i) does not hold. Then there is z = (p, Z) € Dgf(‘;l)d with p of rank 1
such that Z C Dygspr. Let zgp1 := (p, Zsp1) € Dgfg;l)d. We have z # zqp1.

We prove (iv) = (i). Take r € Z. Then when t € R tends to 0, 7, (f)r
converges to = and 7, (t)rsp converges to g in D§L(2)'

CLAIM
Lety = (p, Zsp1) € Dsr(ay. Then whent € Rsq converges to 0, 7 (t)r and 7 (t)rsp
converge to y in DéL(Z)'

We prove the claim. Let s :=sply, (p) = splyy (r). By [15, II, Proposition 3.2.12],
it is sufficient to prove that, when t € Rq tends to 0, (s7,(t)s™ ")~ ! (s (t)s™)r
and (s7,(t)s™1) " (s7x(t)s !)ryp1 converge to rep. The former is equal to
s(t7),s™'r and hence converges to rsp. Here (t=%),, denotes the linear auto-
morphism of gr'V' = IL, gr’¥ that acts on gr’¥ as the multiplication by t~%. The
latter is equal to rep. This proves the claim.

By the claim, if the continuous map DéL@) — D§L(2) exists, it should send
y to  and also to xsp # x, which is a contradiction.

We prove (vi) = (i). The elements = and zgp) of Dgf?;lfl have the same image

(p, Zsp1) € Déi(z)- Hence, the map Dg’Ln(l;l)d — Dg,(2) is not injective.

We prove (vil) = (i). Take r € Z. Take a € Ryo ~\ {1}, and let ' =aor.
Then the elements of Dgr,(2)nspi Of the forms (p, 7,(Rso)r) and (p,7,(Rso)r’)
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for the lifted action (see Section 1.2.6) are different, but they have the same image
(p,Rs00Z) in D§L(2)~ Hence, the map Dgr,(2) nspl — D§L(2) is not injective. [

2.6. Relations with Dgg and D§L(2)

We connect the spaces DSL(2

SL(2)-orbits.

) and Dpgg by introducing a new space Dg’LB(% of

2.6.1
For Q = (Q(w))w € Hwez W(grr}/), let

Gr(gr")g = HGR(ng}V)Q(w), where

Gr(gry) o) = {9 € Grlgry) ) | gW' =W’ for all W' € Q(w)}.

Let Gr(gr")g.. be the unipotent radical of Gr(gr'")g.

2.6.2

Letpe DSL(Q)(ng). We define a set P(p) of Q-parabolic subgroups of Ggr (gr'’).
Let X(Sp) be the character group of the torus .S, (see Section 2.2.7) associated
to p. For x € X(Sp), let

gr(gr")y = {vegr(gr") | Ad(7)(t))v=x(t)v for all t € S, }.

Let P(p) be the set of all Q-parabolic subgroups P of Gr(gr'') satisfying the
following conditions (i) and (ii).

(i) P> Gr(gr")g and P, D Gr(gr")g.u, where Q = (W(pw))w-
(ii) There is a subset I of X(S,) such that Lie(P) = EXeIgR(ng)X.

2.6.8

We define Dg’LB(g) as a set. Dgf’(g) is the set of all triples (p, P, Z), where p €
Dg’L_(z) (grv), P € P(p), and Z C D, satisfying the following conditions (i) and (ii).
Let A, p C A, be the inverse image of Ap C P/P, under the composite map
Ay, — Gr(gt")o/Gr(gr")g.u — P/Py. Let B, p=Rso x A, p C Bp.

i) Z is either an (A, p)-orbit in D or a 7%(B, p)-orbit in Dygp.
PP, p\Ps p

(ii) The image of Z in D(gr") is contained in the torus orbit Z(p).

For w € Z, we denote by Dsy,2)(grlV)BS the set DEBS for gr'. Let

SL(2)
Dar,(2)(gr")B5 := T],, DsL(2)(griy )B5. We have an evident map Dg’LB(g) —
Dy oy (gr™)P5.
PROPOSITION 2.6.4
(1) We have a canonical map

,BS = *
DgL(Q) —>D5L(2)’ (p,P,Z) — (p, Tp (Ap)Z)-
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(2) We have a canonical map

*,BS
DSL(Z)%DBSa (p7P7Z)'_>(P,APOZ)

Here o denotes the Borel-Serre action with respect to P.

Proof
It is clear that (1) holds.

We prove (2). It is sufficient to prove that, for r € Z and t € A, p, we
have 7 (t)r = (7 (t) mod P,)or. This follows from Ok, (7;(t)) = 7 (t) ™" (see [16,
Lemma 3.8]), where 0, denotes the Cartan involution Ggr(gr'’) — Gr(gr')
associated to the maximal compact subgroup K, of GR(ng). ([l

We give Dg’f(g) a structure of an object of By (log).
The following Lemma 2.6.5 and Sections 2.6.6-2.6.12 are preparations.

LEMMA 2.6.5
Let L and N be as in Section 1.4.1. Let R be a finite subset of L such that
R~! =R and such that the Q-vector space Q ® L is generated by R.

(1) Let o be a rational finitely generated sharp cone in Ngr, and let S(o) =
{leL|h(l) >0 for all h € o} be the corresponding fs submonoid of L such that
S(0)8P = L. Then o satisfies the following condition (i) if and only if S(o) sat-
isfies the following conditions (ii.1) and (#.2).

(i) There exists a subset R’ of R such that R=R'U(R')™! and such that

o={heNg|h(l)>0 forall L€ R'}.

(ii.1) RCS(e)US(o)7 L.

(ii.2) For any l € S(0), there is an integer n > 1 such that "™ belongs to the
submonoid of L generated by S(o) N R.

(2) The set of all o satisfying condition (i) in (1) is a rational fan whose
support is the whole Ng.

(3) Assume that we are given a subset RT of R which generates Q ® L
over Q. Let v:={h € Nr | h(R") C R>o}. Then the o’s as above such that
o Cv form a rational finite subdivision of v.

Proof
The proof of (1) is straightforward.

We prove (2). Let I be the set of all cones o satisfying condition (i) in (1).
We first prove that I is a fan.

We prove that if o; € I (j =1,2), then o1 N0y is a face of 01. Let R; C R,
and assume R = R} U (R})™" and o; = {h € Ng | h(l) > 0 for all | € R};}. Let
R' =R{URY},. Then 01 Nog ={h € Ng|h(l) >0 forall I € R'}. Since R’ \ R} C
(R))™Y, o1 Noy is a face of 0.
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We prove that if o € I, then any face 7 of o belongs to I. Since 7 is a face of o,
we have S(7) =S(o)[b!] = {ab " | a € S(c),n > 0} for some b€ S(v). By con-
dition (ii.2) in (1) for S(o), there exist n> 1, a1,...,a, € S(0)NR, and m(j) > 1
(1 <j<r)such that b" =[[;_, a;-n(j). We have S(7) = S(0)[1/[];—, a;]. For the
set R C R such that R=R' U(R')"! and 0 ={h € Ng |h(l) >0 for all € R},
we have 7={h € Ng |h(l) >0 for alll € R'U{a;',...,a,; '}}. Hence, 7 € I.

These prove that I is a fan. We show that Uaela = Nr. Let h € Nr. Let
R' ={l€ R|h(l)>0}. Then R=R' U (R')~!. For o:={h' | () >0 for all | €
R’} € I, we have h € 0. This completes the proof of (2).

We prove (3). By (2), we have v = J,;(c Nv). It is sufficient to prove that
oNvel forany o € I. For R C R such that R=R'U(R')~! and 0 = {h € Ng |
h(l) >0 for all I € R'}, we have cNv={h € Nr |h(l) >0 forallle RRURT} €
I. (|

2.0.6
Let Q = (Q(w))w € [T, W(grly). Let L be the character group of [T,z GeM),
and let N = Hom(L,Z). We have the situation of Section 1.4.1. As in Sec-
tion 1.4.1, we denote the group law of L multiplicatively, though L is identified
with [T, Z@).

Let P(Q) be the set of all Q-parabolic subgroups P of Ggr(gr') satisfying
the following conditions (i) and (ii).

(i) PDGR(gI‘W)Q.
(ii) Take a splitting o = (au)w of Q. For x € L, let gr(gr'’), be the part
of gr(gr"") on which the adjoint action of ], GE™ via a* is given by x. Then

there is a subset I of L such that Lie(P)=3_ ; or(gr")y.

Under condition (i), condition (ii) is independent of the choice of a. This
is because if o/ is another splitting of @, then o/(t) = ga(t)g~! for some g €
GR(ng)Q CP.

2.6.7
Let the notation be as in Section 2.6.6. Taking a splitting « of ), define a subset

R(Q) ={x€eL|gr(gr")y#0},

where gR(ng)X is defined with respect to «. This set is independent of the
choice of «, because all splittings of Q are conjugate by elements of Ggr(gr'’)q.

Let LT =], N@®W c ] Z2®) = L. We will apply Lemma 2.6.5 by taking
R(Q) and R(Q) N L* as R and R™, respectively. We show that RT generates
the Q-vector space Q ® L, as is assumed in Lemma 2.6.5(3). Let w € Z, and
take p € Dgp,(2)(grly ) such that Q(w) =W(p,). Let n be the rank of p, take a
representative of p, let Ni,..., N, € gr(gr?’) be the monodromy logarithms of
the representative, and identify Q(w) with {1,...,n} (see Section 2.2.5). Then
Ad(7;(t))N; = tj_2Nj. Hence, R(Q(w))T generates the Q-vector space QP"),
Hence, R(Q)* generates the Q-vector space Q® L =[], Q¥™).
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Let P’'(Q) be the set of all rational finitely generated sharp cones o in Ng
satisfying the following conditions (i) and (ii).

(i) There is a subset R’ of R(Q) such that R(Q) = R'U(R')~! and such that
o={h€Nr|h(x)>0 forall x € R'}.

(i) o c I, RS in Ng =], RO™).

That is, P’(Q) is the set of o considered in Lemma 2.6.5(3). Hence, P’(Q) is
a rational fan in Ng and is a rational finite subdivision of the cone [],, Rgéw) C
Nr.

2.6.8

Let the notation be as in Sections 2.6.6 and 2.6.7. We have P(Q) =], P(Q(w)),
where the element (P,),, of the left-hand side corresponds to the element [[,, Py,
of the right-hand side. We have R(Q) = [[, R(Q(w)) in X ([, G%")) =
1L, X(GE™). We have P'(Q) = [, P (Q(w)), where the element (o), of the
left-hand side corresponds to the element [] o, of the right-hand side.

PROPOSITION 2.6.9
Let the notation be as in Sections 2.0.6 and 2.6.7. For P € P(Q), let

op={h€Ngr|h(x) >0 for all x € R(Q) such that gr(gr"),-1 C Lie(P)}.
Then op € P'(Q), and we have a bijection
P(Q)—P'(Q), Prrop.

Proof
By Section 2.6.8 and by the fact op =[], op,, we can (and do) assume that we
are in the pure situation of weight w. We denote Q(w) by Q.

Take p € Dgr,(2) such that W(p) = @, and take 7, as a splitting « of Q. Let
n =4(Q) be the rank of p. Let Ni,..., N, be the monodromy logarithms of p.
We identify @ with {1,...,n}.

We prove that op € P'(Q) for P € P(Q). Let R’ = {x € L | Lie(P) N
Lie(Gr)y-1 # 0}. Since o*(],, G2™)) ¢ P and since P is parabolic, we have
R(Q) = R'U(R')~!. By property (ii) of P in Section 2.6.6, we have Lie(Gr),-1 C
Lie(P) for x € R'. Hence, op = {h € Nr | h(x) >0 for all x € R'}. It remains
to prove that op C R, in Ng = R?. Since N; € Lie(P) and Ad(7; (1)) (N;) =
t;QNj (1<j<n), for any x € L*, x? is contained in the submonoid of L gener-
ated by R’. This proves that h(x) >0 for any h € op and x € LT. This implies
op C Rgo. Thus, we have a map P(Q) — P'(Q).

Next we define a map P'(Q) — P(Q). Let o € P'(Q), and let S(o) C L be
the corresponding fs submonoid of L. For x € L, let V[x] C Hor be the sum
of the x’-components (Hor), of Hor for all X' € L such that x(x')~* € S(0).
For x, X' € L, we have V[x] D V[x] if and only if x(x')~! € S(c¢). Let P be the
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algebraic subgroup of Ggr counsisting of all elements which preserve Vx| for all
X € L. We prove P € P(Q).

Since L =8(0) US(o)™! (see Lemma 2.6.5), we have either V[x] D V[x]
or V[x] C V[x]. As in [16, Section 2.7], this totally ordered property of the
set {V[x] | x € L} shows that P is a parabolic subgroup of Gr. We show that
P is defined over Q. For x € L, let U[x] = Z;((HO,R)XH where X’ ranges over
all elements of L such that x(x’)~! € L*. Then Uly] = Mwreo Winwr), Where
m(W') € Z is the W'-component of x € L = Z?. Since the W'’s are rational, U|[x]
is rational. Since V[x] is the sum of U[x'] for all x’ such that y(x’)~! € S(o), V[x]
is also rational. Hence, P is rational. Properties (i) and (ii) of P in Section 2.6.6
are checked easily.

As is easily seen, the maps P(Q) — P’'(Q) and P'(Q) — P(Q) are the inverses
of each other. O

2.6.10

Let the notation be as in Proposition 2.6.9. Via the bijection in Proposition
2.6.9, we identify the fan P’(Q) with the set P(Q) of Q-parabolic subgroups of
Gr(gr").

Let ¥ be the fan of all faces of the cone v :=[[, Rgéw) C Ngr. By the
canonical homomorphism S(v) = Lt = [[,N@W — Mg /Og,, where
¢ = Dgp,2)(gr'"V)(Q) (see Proposition 2.4.7), we have a morphism Mor(-,
Ds1,(2)(gr")(Q)) — [£]. Consider the diagrams

Mor (-, Dg1,2) (gr'" )(Q)) = [S] + [P(Q)], Dgr2)(gr') = =+ P(Q).

LEMMA 2.6.11

Let p € Dgy,2) (gr™)(Q). Then P(p) C P(Q). For P € P(Q), P € P(p) if and
only if the image v of P in X coincides with the image of p in X.

Proof

It is clear that P(p) C P(Q). To prove the rest, we may assume Q(w) =W (py)
(w € Z). It is sufficient to prove that, in this case, for P € P(Q), P, D Gr(gr")g.u
if and only if the image of P under the map P(Q) — X coincides with the face
v of v. Let 0 € P'(Q) be the cone in Ng corresponding to P, and let S :=S(0)
be the corresponding fs monoid in L. Then the image of ¢ in X is v if and only
if §* N LT ={1}. By the proof of Proposition 2.6.9, we have

Lie(P,) = Z gR(ng)X—l, Lie(GR(ng)Q’u) = Z gR(ng)X—l.
XESSX XELT~{1}

Hence, P, D Gr(gr"")g.u if LT~ {1} C S\8%, that is, if Lt NS> ={1}. Let w €

Z, and let Ny,...,N, € Lie(Gr(gr)) )o(w)u) (n=4(Q(w))) be the monodromy

logarithms of p,,. If P, D Gr(gr"')q.u, then N; € Lie(P,). Since Ad(7}(t))N; =

t;zNj (1 <j <n), this proves LT ~ {1} C S\ S*. O
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2.6.12
Let the notation be as in Section 2.6.10. We show that the object of By (log) which
represents the fiber product of Mor(, Dgf@) (@) = [X] + [P(Q)] is identified, as

a set, with the inverse image of Dgﬁ%(@) of ® := Dg’L_(z)(Q) CcD:= Dgi_(Q) in

Dg’LPEg) (see Proposition 2.6.4). By Lemmas 2.4.10 and 2.6.11, a point of this
fiber product is identified with a triple (z, P, Z), where x € ®', P € P(p), Z C D,
satisfying the following condition (i). Let & = S(o) be the fs submonoid of L cor-
responding to the cone o € P’(Q) which corresponds to P. Write z = (p, Z') € @',
and define a subgroup T'(z, P) of T'(z) = Hom((MZg’/O.X)., RZ§!) as follows. If
is an A-orbit, let T'(z, P) = Hom(L/S*, R241") C Hom(L, RZ§") = A4, =T (). If
z is a B-orbit, let T'(z, P) = R~ x Hom(L/S*,RZ4") C R~ x Hom(L, R2§) =
B, =T(x).

(i) Z is a T(x, P)-orbit in Z'.

We prove this by showing the following claim.

CLAIM
T(xz,P)=App if x is an A-orbit and T(xz,P) = By, p if x is a B-orbit (see
Section 2.0.53).

Let S, p =Hom(L/S*,G,,) C Hom(L, G,,) = .S,. Then S, p coincides with the
part of .S, consisting of all elements whose adjoint action on Lie(P/P,) is trivial.
That is, Sp p is the inverse image in S, of the center of P/P,. Since S, p is
Q-split, the image of S, p in P/P, is contained in Sp. This proves that A4, p
coincides with the connected component of S, p(R) containing the unit element.
This proves the above claim.

Since Z' = 7;(A,)Z, a triple (z, P, Z) as above corresponds to a point (p, P, Z)
of Dg’LB(g)(Q) (see Section 2.6.3) in a one-to-one manner.

2.6.13
For Q € [, W(erl), we define the structure of Dg’LB(g) (Q) as an object of By (log)
by identifying it as a log modification of Dg’L_(Q)(Q) by Section 2.6.12. When Q

moves, these structures on DgtB(g)(Q) glue globally to a structure of Dg’LB(g) as an
object of Bg (log).

For a Q-parabolic subgroup P of Gr(gr"’), let

*,BS o *,BS
Dgp)(P) = {(p, P, 2) e D5y | P' D P}

Then Dgf(g)(P) is an open set of DELB(%, and when P moves, we have a covering

of D§=LB(§) by these open sets.
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PROPOSITION 2.6.14
The diagram
*,BS *,—
Dgi s - Dgj o)
A 1

Dgp2)(gr'™)P®  —  Dgpo)(er™)

is Cartesian in By (log) and also in the category of topological spaces.

Proof

This is because Dg’LB(g)(Q) represents the fiber product of Mor(-, Dgj ;) )(Q) —
— an sL(2)(gr represents the er product o or(-,

Y P(Q d Dsr2) WHYBS(Q he fib d f M

Dsr2)(gr')) = [Z] + [P(Q)]- O

PROPOSITION 2.6.15
Let F € D(gtV), L=L(F). Then Dg’LB(g) is an L-bundle over Dgy,2)(gr™)PS x
spl(W).

Proof
This follows from Proposition 2.6.14 and the corresponding result for Dg’L_@). (|

2.6.16

For p € DSL(Q)(ng) and P € P(p), let S, p C S, be the torus defined in Sec-
tion 2.6.12, let X (S, p) be the character group of S, p, and let X (S, p)" =
§/8*, where §:=S(op) (see Lemma 2.6.5) with op the cone corresponding to

P (see Proposition 2.6.9). Define a real toric variety A, p by
Ay p ==Hom(X (S, p)", RE") D Ay p = Hom (X (S, p), RZG").
We have a canonical morphism
App— Ay
induced from the homomorphism X (S,)* — X (S, p)* which is induced by the
inclusion map S, p — 5.

LEMMA 2.6.17

(1) The homomorphism X (Sp) — X (Sp.p) induced by Sy p — Sp (see Sec-
tion 2.0.12) sends X (Sp)* to X(Sp,p)*.

(2) The map A, p — Ap extends uniquely to a morphism A, p — Ap in
B (log).

Proof

We prove (1). As a monoid, X (Sp)™ is generated by A(P) (see Section 2.4.2). For
X € A(P), x~! appears in Lie(P). Hence, the image of x~! in X (S, p) appears
in Lie(P). Hence, the image of x in X (S, p) belongs to X (S, p)*.
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Then (2) follows from (1). In fact, the homomorphism X (Sp)* — X (S, p)*
in (1) induces the morphism Hom(X (Sp)*™, RE§") — Hom(X (S, p)", RZG).
O

2.6.18

In Theorem 2.6.19, we will consider the local structure of DE’LBES), comparing
it with the local structure of Dgg. Here we give preparations. We consider the
following two situations (bd) and (d).

(bd) D = D75, and € = Dgp(z) (gr')"S.

(d) ® = Dpg and &= Dpg(gr'").
Fix pe € and r € Z(p) (see Section 2.2.7). In situation (bd) (resp., (d)), fix
P € P(p) (resp., fix a Q-parabolic subgroup P of Ggr(gr'') such that p € &(P)).

Let R be an R-subspace of ggr(gr'V) satisfying the following conditions (C1) and
(C2).

(C1) gr(gr") = Lie(r*(4,p)) ® R ® Lie(K:) (resp., gr(gt") =
Lie((Ap),) ® R® Lie(K;), where (Ap), denotes the Borel-Serre lifting from Sec-
tion 2.4.1 of Ap at r).

(C2) RC Lie(P).

These conditions on R are similar to those in Section 2.3.13. Like in Sec-
tion 2.3.13, let S be an R-subspace of Lie(K,) such that Lie(K,) =Lie(K])® S.
We define an object Y of By (log) as follows. Let

Y =Ap x Rx S in situation (d).
In situation (bd), we define Y as follows. Let
X=A,pxRxS.

Let Y be the subset of X consisting of all elements (¢, f, k) satisfying the following
conditions (i) and (ii).

(i) If x € X(Sp) and t(x4+) =0, then f, =0. In other words, if m(w,j)
denotes the (w,j)-component of y € X(S,) =[], Z%"), then f, =0 unless
m(w,j) <0 for any w € Z and j € J(w). Here x4, fy, and J(w) are as in Sec-
tion 2.3.13.

(ii) k€ .S;. Here Sy is as in Section 2.3.13.

Regard X as an object of Bg (log) in the natural way, and regard Y C X as
an object of By (log) by Section 1.3.16. In both situations (bd) and (d), let

Yo={(t,f, k)€Y |[t€A,p}CY.
THEOREM 2.6.19

Let the notation be as in Section 2.6.18. Consider situation (bd) where ® = D;’f(g)
and € = Dgy (o) (gr")B3 (resp., (d) where © = Dgg and € = Dgg(gr') ).
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(1) For a sufficiently small open neighborhood U of (0,0,0) in'Y, there exists
a unique open immersion U — € in B (log) which sends (t, f,k) € UNY, to the
element

exp(f)T;(t) exp(k)r (resp., toexp(f) exp(k)r)
of D(gr"V) C €.

(2) Let L= L(r) and L = L(r). Then for a sufficiently small open neigh-
borhood U of (0,0,0) in Y, there exists a unique open immersion U x spl(W) x
L —® in Bg(log) having the following property. It sends (t,f,k,s,6) € Y x
spl(W) x L, where (t, f,k) e UNYy, s€spl(W), and § € L, to the element of

D (resp., to the element t oz, where x is the element of D) whose image in
D(gr") x spl(W) x L under the isomorphism from Section 1.2.1 is

(exp(f)T; (t)exp(k)r, s, Ad (exp(f)T; (t) exp(k:)) (5)
(resp., (exp(f) exp(k)r, s, Ad(exp(f) exp(k))é)) .
(3) For a sufficiently small open neighborhood U of (0,0,0) inY, the diagram

UxsplW)xL — D
3 3
U - €

is Cartesian in By (log) and in the category of topological spaces.

(4) The image of the map in (1) is contained in E(Q) N E(P) with Q =
W(pw))w (resp., in €(P)), and the image of the map in (2) is contained in
D(Q)ND(P) (resp., in D(P)).

(5) The underlying maps of the morphisms in (1) and (2) are described as
in Section 2.6.20 below.

2.6.20
The maps in Theorem 2.6.19(1) and 2.6.19(2) are induced from the maps

Y =€, Y xspl(W) x L — D,

respectively, defined as follows.

We first consider situation (bd) in Section 2.6.18. Let A’ be the subset
of A, p =Hom(X(S, p), RE") consisting of all elements whose restriction to
t71(R<0)NX (S, p)" coincides with the restriction of ¢ : X (S, p) ™ — Rxq, where

t ranges over A, p. Let J = (J(w)), for t be as in Section 2.6.18, and let
pJ € Dgp(2) (gr"™) be as in Section 2.3.15 for J. Then the first map ¥ — & sends

(t. f.k) to
p =exp(f)7,(t") exp(k)ps, wheret' € A,
The second map Y x spl(W) x L —® sends (t, f, k, s,8) to the following ele-

ment (p', P',Z) of © = Dg’LB(g) (see Section 2.6.3), where P’ and Z are as follows.
Let 14_11,71: — Ap = Réép) be the morphism in Lemma 2.6.17. Let I = {j € A(P) |

t; =0}, where t; denotes the j-component of the image of ¢ in Rgép). Then P’
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is the Q-parabolic subgroup of Gr(gr'’') such that P’ > P that corresponds to
the subset I of A(P) (see Section 2.4.2).

If 6 € L, then Z is the subset of D whose image under the embedding D —
D(gr") x spl(W) x L is the set

{(exp(f)7 (') exp(k)r, s, Ad(exp(f)7; (t') exp(k))d) |t' € A'}.

If§=006M e L L (01 € L~ {0}) (see Section 1.3.8(4)), then Z is the subset
of D whose image under the embedding D — D(gr'V') x spl(W) x L is the set

{(exp(f)m (t') exp(k)r, s, Ad (exp(f)7; (t") exp(k)) (co SO |t ed ce R.o}.

Next consider situation (d) in Section 2.6.18. In this situation, the first map
sends (t, f, k) to toexp(f)exp(k)r. The second map sends (¢, f,k,s,0) with § € L
to the element t oz and sends (¢, f,k,s,006) with § € L \ {0} to the element
(0,t) o z, where z is the element of D whose image in D(gr'V') x spl(W) x L
(see Section 1.2.1) is (exp(f)exp(k)r,s, Ad(exp(f)exp(k))d). Here we denote by
(t,x) + t o x the morphisms Ap x D(gr'V') — Dgs(gr"V'), Ap x D — Dgg, and
Bp X Dyspi — Dps, which extend the morphisms Ap x D(gr"') — Dps(gr'V),
Ap x D — Dgg, and Bp x D — Dgg, defined by (¢,x) — t o x, respectively.

2.6.21
We prove Theorem 2.6.19. The theorem is clear in situation (d) in Section 2.6.18.

We consider situation (bd) in Section 2.6.18. We reduce the theorem in this
situation to Theorem 2.3.14.

It is easily seen that the validity of the theorem does not depend on the
choices of R and S. We take any S satisfying the condition in Section 2.3.13 and,
hence, the condition in Section 2.6.18. We choose R in the following way.

Let Q = (Q(w))w, where Q(w) = W(gr!V). Take a splitting a of Q, and
let R(Q) be as in Section 2.6.7. Let op € P'(Q) be the cone corresponding to
P € P(Q) (see Proposition 2.6.9), and let S :=S(op) be the corresponding fs
submonoid of X(S,). Note that R(Q) C SUS™! (see Lemma 2.6.5).

Choose a subset I; of R(Q) NSNSt such that R(Q) NSNS~ is the
disjoint union of {1}, Iy, and I; !. Let I := R(Q)NS~ '\ R(Q)NSNS~ . Hence,
R(Q) is the disjoint union of {1}, Iy, I7 ', I, and I;'. Choose an R-subspace
C of gr(gr'') such that the subspace gr(gr'): = {v € gr(gr") | Ad(7} (t))v =
v for all t € Ay} of gr(gr') coincides with the direct sum of Lie(7}(4,)), C, and
or(gr'")1 NLie(K,). Let

R'=Co ( @ gR(ng)X).
x€Il1UIy

Then R’ C Lie(P), and R’ satisfies conditions (C1) and (C2) on R of Sec-
tion 2.3.13. (Here we used the fact that the Cartan involution 6k, associated to
the maximal compact subgroup K, of Gr(gr'’) sends gr(gr'), to gr(gr"),—
for any x € X(S,), and Lie(K,) coincides with {v € gr(gr") | 0K, (v) =v}.)

Take an R-subspace C” of gr (gr'"') such that Lie(7}(A4,)) = Lie(7; (Ap p)) &
C’. We take R:=C"® R’ as R of Section 2.6.18.
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Define X and Y of Section 2.6.18 by using these R and S. Denote by X’ and
Y, respectively, the X and Y of Section 2.3.13 defined by taking R’ and S as R
and S of Section 2.3.13.

As in Section 2.6.10, let ¥ be the fan of all faces of the cone Hom(X (S,)*,
Rad) =TT, Rgéw). Let ¥’ be the fan of all faces of the cone op.

Then Dg"LB(g)(Q) n Dg’LB(g)(P) represents the fiber product of Mor(:,
Dgy,2)(@)) = [E] = [2]. On the other hand, the fiber product of Mor(-, X’) —
[¥] < [¥] is represented by X" := Hom(S,RZu%) x gr(gr'") x
ar(gr") x gr(gr™) x S, and the fiber product of Mor(-,Y") — [E] « [¥] is
represented by the inverse image Y of Y’ in X” under the canonical map
X" — X', where Y is endowed with the structure of an object of By (log)
by using the embedding Y — X" (see Section 1.3.16). We identify X with
Hom(S,R2U) x R’ x S via the isomorphism Hom(S,RU) = 4, p x C".

To reduce Theorem 2.6.19 to Theorem 2.3.14, it is sufficient to prove the
following (*).

(*) If (¢, f,g,h,k) €Y", then (t,f,k) €Y in X = Hom(S,RZ§M) x R’ x S.
We have an isomorphism -

Y'"SY, (tf,9,hk) (4, f,k)

in By (log).

Before the proof of (*), we note the following (1) and (2).

(1) Let (t, f,g,h, k) € X" (t € Hom(S,R2W), £ g, h € gr(gr™V), k € S). Then
(t, f.g,h, k) belongs to Y if and only if the conditions (i)—(iv) in Section 2.3.13,
among which (iii) and (iv) are modified as follows, are satisfied. We replace
R in (iii) in Section 2.3.13 by R’. In (iv) in Section 2.3.13, we define J =
(J(w))wez, where J(w) ={j € Q(w) | ty,; = 0}. Here ¢, ; € R>¢ denotes the
(w, j)-component of the image of ¢ in A,. Then k € ;.

(2) Let (¢, f, k) € X (t € Hom(S,RZ§"), f € R, k € S). Then (¢, f, k) belongs
to Y if and only if the following conditions (2.i) and (2.ii) are satisfied.

(2.1) Let x € X(Sp). If t(x+) =0, then f, =0.
(2.ii)) The same as the form of (iv) in the above (1).

Now we prove the assertion (*). Let (¢, f,g,h,k) € Y. We first prove that
(t, f, k) € Y. To show this, it is sufficient to prove f € R'. Let x € R(Q). If t(x_) #
0, since t(x+)gy = t(x-)fx and g, € R', we have f, =t(x_) "t(x+)9x € R
Assume t(x—) =0.If x € S, then ¢(x4) =t(x-)t(x) =0. Hence, f, =0.If x ¢S,
then y € S71, and hence, f, € gr(gr"), C R.

We next prove that Y” — Y is an isomorphism. For this, we define a mor-
phism Y — X" of the converse direction by (¢, f,k) — (¢, f,g,h, k) with g =
D yes-t tix 1) fy and h = D yes-t t(x )% fy. We show that the image of this
morphism is contained in Y. Let x € R(Q). We prove t(x4)gy, =t(x—)fy and
x4+ )y = t(x=)gy- I x € S71, we have t(x1) gy = t(x+)t(x ") fy =t(x-)fy and
tx+)hy =t )t )2 fy =t(x=)gy. If x ¢ S, we have f, =0 by the defini-
tion of R, and hence, g, = h, =0 by the definitions of g and h. If ¢t(x4) =0,
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then f, =0 and hence g, =0. We prove that if ¢(x_) =0, then g, =h, =0. In
the case t(x+) =0, then f, =0 and hence g, = h, =0. In the case x € S, we
have (x4 ) = t(x-)t(x) = 0. In the case t(x+) #0 and x ¢ S, we have y € S*
and t(x—) = t(x4)t(x ") and hence t(x~') = 0. Hence, g, = t(x ')*f, =0 and
hy = 0 similarly. We prove gy, h,+ fy,-1 € R'. If x € S 1 then g, =t(x) ' fy €R
and hy, =t(x"!)? € R’ and hence h, + 1 eR.If x¢ S~ then gy, =h, =0
and hence h, + f,-1 = fy,-1 € R'.

Thus, we have a morphism Y — Y. It is clear that the composition ¥ —
Y” —Y is the identity morphism. We prove that the composition Y —Y — YY"
is also the identify morphism. Let (¢, f,g,h,k) € Y, and let (¢, f,¢',h', k) be
the image of (¢, f,k) €Y under Y — Y”. We prove g, = g, and h = h, for
any x € R(Q). Assume first y € S71. If t(x4) #0, then g, = t(x4+) H(x_) [y =
t(x ") fx = gy, and we have similarly h, = h/. If t(x4) =0, then t(x_) =
t(x+)t(x~') =0, and hence f,, = gy, = hy, =0, and we have gy, =0 and h} =0 by
fx =0. Next assume y ¢ S~'. Then by the definition of R’, we have a, =0 for
any a € R'. Since fy, gy, hy + fy-1 € R', we have fy =gy, =hy, =0, and we have
g, = h\, =0Dby f, =0. Theorem 2.6.19 is proved.

THEOREM 2.6.22
(1) The identity map of D extends uniquely to a morphism Dg’LB(g) — Dpg
in By (log). It sends (p, P,Z) € D55 to (P,Ap o Z) € Dgs.

SL(2)
(2) The diagram
*,BS
DSL(2) — Dsgsg
\ i

Dgr2)(gr")®®  —  Dgg(gr™)

is Cartesian in By (log) and also in the category of topological spaces.

(3) The inverse image of D3I in Dgfzg) coincides with Dgﬁ%mﬂd.
Proof
Let (p,P,Z) € DELB(Sy and take r € Z. We compare situations (bd) and (d) in
Theorem 2.6.19 by taking p, r for both situations (bd) and (d), and by taking
R and S for these situations as follows. Take R and S for situation (d). Take
this S as S for situation (bd). Let C' be an R-subspace of Lie((Ap),) such that
Lie((Ap)r) =Lie(t* (A4, p))®C, and take C @ R as the R for situation (bd). Then
Theorem 2.6.22(1) and 2.6.22(2) follow from Theorem 2.6.19, Lemma 2.6.17, and
the fact that

(7*(t) mod P,) o exp(f) exp(k)r = exp(f)7) (t) exp(k)r.
Theorem 2.6.22(3) is clear. O
2.7. The category B (log)™

The aim of this section is to define a full subcategory Bg(log)™ of Bg(log),
consisting of nice objects, and prove that the spaces of SL(2)-orbits in Section 2
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belong to Bg(log)™ (see Theorem 2.7.14). We also discuss full subcategories
Biz (log)*! and B (log)!H1l of By (log) such that

Bg (log) D Bg(log)t D Bh(log)[ﬂ ») Bh(log)“"'”.

2.7.1

We first define a full subcategory By (log)l*]l of Bg (log). We define standard
objects of B’R(log)[m]. Take n > 0, a real analytic manifold A, and a real analytic
closed submanifold A; of A for each subset J of {1,...,n} satisfying Ay = A,
Ay C Ay if J D J'. Define

Y:{(t,x)ERTZLO XA‘J?EAJ(t)},

where J(t) ={j|1<j<n,t; =0}. We regard Y as an object of Bg(log) by
taking R%, x A as X in Section 1.3.16, where the log structure of X with sign
is induced from that of RZ, (see Section 1.3.8(1)).

Let B (log)[! be the full subcategory of B (log) consisting of all objects
which are locally isomorphic to open subobjects of Y as above. Real analytic
manifolds with corners belong to By (log)![*1].

2.7.2

We next define a full subcategory Bg(log)lt! of B (log). We define standard
objects of By (log)[*]. Take an fs monoid S, a real analytic manifold A, and a
real analytic closed submanifold A; of A for each face I of S satisfying As = A4,
A C A]/ if I C I'. Define

Y ={(tx)¢€ Hom(S,Rgglt) xAlzeAw},

where I(t) is the face {a € S | t(a) # 0} of S. We regard Y as an object of By (log)
by taking Hom(S, RZ§!) x A as X in Section 1.3.16, where the log structure of
X with sign is induced from that of Hom(S, R2U) (see Section 1.3.8(3)).

Let By (log)*) be the full subcategory of By (log) consisting of all objects
which are locally isomorphic to open subobjects of Y as above. Since a standard
object of B (log)l*]l is the case S = N of a standard object of B (log)*!, we
have By (log)*) 5 By (log)[I*+1l.

The following Lemmas 2.7.3 and 2.7.4 are proved easily.

LEMMA 2.7.3

Let S be an object of B (log)It). Then S belongs to B (log)t!l if and only if,
forany s€ S, (Ms/OF)s is isomorphic to N” for some r >0 (which may depend
on s).

LEMMA 2.7.4
Let S’ — S be a log modification in By (log). If S belongs to By (log)*, then S’
also belongs to By (log)t].
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2.7.5

We define a full subcategory Bg(log)™ of Bg(log). Let Bg(log)* be the full
subcategory of By (log) consisting of all objects S such that, locally on S, there
is a log modification S’ — S such that S’ belongs to By (log)*!l. We have clearly
By (log)I) € By (log) ™.

LEMMA 2.7.6
Let S be an object of Bg (log)™, and assume that (ME°/OF)s is of rank at most
1 as an Abelian group for any s € S. Then S belongs to Bﬁ(log)[m],

Proof
This is because any log modification S’ — S is an isomorphism. (]

PROPOSITION 2.7.7
We have that By (log) ™) C Bg (log)*.

Proof

Let S be an object of By (log) [+]. Locally on S, by the resolution of singularities
in toric geometry (see [18, p. 23]), there exists a log modification S’ — S such
that, for any s € S’, (Mg /OF,)s = N” for some r. By Lemmas 2.7.3 and 2.7.4,
S’ belongs to By (log)l*1. O

PROPOSITION 2.7.8
Let 8" — S be a log modification in By (log). Then, S belongs to By (log)™ if and
only if S" belongs to By (log)™.

Proof
First assume that S belongs to By (log)™. We prove that S’ belongs to By (log) ™.
We may assume that S belongs to B’R(log)[["’”. Locally on S, there is a log
modification S” — S which is a composition S” — S’ — S, where the first arrow
is a log modification and the second arrow is the given morphism, such that,
for any s € 5", (Mg»/O%,)s 2 N" for some r. By Lemmas 2.7.3 and 2.7.4, S”
belongs to By (log)*]l. Hence, S’ belongs to Bg (log)™.

Next assume that S’ belongs to Bg(log)™. We prove that S belongs to
Bg (log)™. By the assumption, there are an open covering (Uy), of S" and a
log modification V), — U, for each A such that V) belongs to B'R(log)[[‘*‘”. Since
S’ — S is proper, locally on S, we can take a finite covering (U ). Hence, locally
on S, there is a log modification S” — S having the following properties (i)—(iii).
(i) S — S is a composition S” — 5" — S, where the first arrow is a log mod-
ification and the second arrow is the given morphism. (ii) For each A, we have
a morphism Uy xg S — V) over U, which is a log modification. (iii) For any
se 8", (Mgr/OG,)s 2N for some r > 0. By Lemmas 2.7.3 and 2.7.4, Uy x g/ S”
belongs to By (log)*)]. Since (Uy x s/ S”)y is an open covering of S”, S” belongs
to B'(log)[)). Hence, S belongs to B (log)*. O
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PROPOSITION 2.7.9
The category By (log)* (resp., By (log)*), By (log)(*))) is stable in By (log) under
taking finite products.

Proof

This is clear for By (log)!*! and Bj (log)![*]l. The part for Bi (log)* follows from
the part for Bg (log)*1. O
LEMMA 2.7.10

Let Y C Hom(S,RZ§™) x A be a standard object of By (log)*! in Section 2.7.2,
let S be an object of Big (log)!H11] and let S — Hom(S,REW®) be a morphism in
Bz (log). Then the fiber product of S — Hom(S, RuUIt) Y in Bg (log) belongs
to B (log)!H1l. -

Proof

Working locally on S, we may assume that S is an open set of the standard
object RZ, x A’ in Section 2.7.1 (A’ here plays the role of A in Section 2.7.1),
and that we have a commutative diagram of functors

Mor(-, S) — Mor(-, Hom(S, RZg™))
3 \
Mor(-,R%,) — [¥] — %]

where ¥ is the fan of all faces of the cone Hom(S,R&(!) and X' is the fan of
all faces of the cone RY; C R". Then the fiber product in the problem coincides
with the space

{(t,a,d") eREy x Ax A'|a€ Ay, € Ay}

where J(t) ={j |1 <j<n,t; =0} and I(t) is the face of S which corresponds
to the image of £ under R%; — X' — ¥. O

LEMMA 2.7.11

Let Y C Hom(S,RZ§M) x A be a standard object of By (log)*! in Section 2.7.2,
let S be an object of B (log)t, and let S — Hom(S, R™Y) be a strict morphism
in Bg (log). Then the fiber product of S — Hom(S, Rg‘gﬁ) «Y in Bg (log) belongs
to Bg (log)™.

Proof

Since S — Hom(S, RUY!Y) is strict, working locally on Hom (S, RZ§!*) and on S,
we have a rational finite subdivision ¥’ of the cone Hom(S, Ridodj such that the
fiber product S’ of S — Hom(S, R2U!) < [toric|(X’) belongs to B (log)H1l and
such that S(o”) for all o’ € ¥’ are isomorphic to N” x Z™ for some r,m. Replacing
S by S’ and replacing S by S(¢’) (¢/ € ¥'), we are reduced to Lemma 2.7.10. O
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PROPOSITION 2.7.12

Let n >0, and let V be a finite-dimensional R-vector space endowed with an
action of GJ,. Let Y be the subset of R%, x V x V' consisting of all elements
(t,u,v) satisfying the following conditions (i) and (ii) for any x € X(G™). In

the following, we write x = x+(x—)~! as in Section 2.5.13.

(1) 0 vy = tx-)uy-
(ii) If t(x+) =0, then u, =v, =0.

Endow Y with the structure of an object of By (log) by the embedding Y —
RZ, x V xV as in Section 1.5.16. Let S be an object of By (log)*, assume

that we are gien a strict morphism S — RZ, and let E be the fiber product of
S — R, Y in Bg(log). Then E belongs to By (log)™.

Proof

In Section 1.4.1, we take L = X (G!,). Let LT C L be the submonoid correspond-
ing to N™ in the identification L = Z™. Take a finite subset R of L such that
{xe€L|Vy,#0}CR, R=R™!, and RT := RN LT generates L™ as a monoid.
Let ¥ be the fan of all faces of the cone R%, C R™ = Ng, and let ¥’ be the
rational finite subdivision of ¥ defined in Lemma 2.6.5(3) with respect to R and
L+,

Let Y, S’, E’ be the fiber products of Y — RZ, « |toric|(¥X'), S — RZ, +
ltoric|(X'), E — RZ, < |toric|(¥'), respectively. (We identify RZ, with
|toric|(X).) For o’ € ¥/, let Y'(¢'), S'(0”), E'(¢') be the open sets of Y’, S/,
E’, respectively, corresponding to ¢’. These are the fiber products of Y — RZ, <
Hom(S(o'),R2UY) S — RZ, « Hom(S(0’),R2Y), and E — R, «
Hom(S(o”), RZU), respectively. In particular, Y'(¢’) C Hom(S(o”), RZg) x
VxV. - B

We prove that Y’/(¢’) is isomorphic to a standard object of the category
B (log)*! (see Section 2.7.2). Since R C S(¢’') US(0’)~! (see Lemma 2.6.5), we
can take subsets Ry and Ry such that R is the disjoint union of R; and Ry and
such that R; C S(0’) and Ry C S(0’)~!. Consider the map

Y/(0') = Hom (S(o), RZ8Y) x V,  (t,u,0) > (u PR uX>.

XEAL XEA2

This induces an isomorphism
(1) Y'(0") 5 {(t,x) € Hom(S(c'), RZ) x V |z € Vi(yy }
in Bg (log), where I(t) denotes the face {x € S(c”) | t(x) # 0} of S(¢’), and for a
face I of S(¢’), we define
Vi={zeV]|z,=0if xe L and x4 ¢ I}.

The inverse map of (1) is given by (¢,2) — (t,u,v), where u=3_ p t(x)2y +
dDover,Tx and V=37 cp T+ g t(x ')zy. We omit more details of the
proof of this isomorphism (1), for the argument is straightforward and similar to
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the proof of Y/ 2 Y in the proof of Theorem 2.6.19 (see Section 2.6.21). Note that
the right-hand side of (1) is a standard object of By (log)!*] (see Section 2.7.2).

By Lemma 2.7.11, the fiber product E’(¢”) of S’(0”) — Hom(S(o”), RZ8) «—
Y’(0’) belongs to By (log)™. Hence, E' belongs to By (log)*. By Proposition
2.7.8, this proves that E belongs to Bg (log)™. O

PROPOSITION 2.7.13

We have that DQLB(S) belongs to By (log)*].

This follows form Theorem 2.6.19 for situation (bd) in Section 2.6.18 and from
Proposition 2.7.12.

THEOREM 2.7.14

* ) 7~ *,BS ~
The spaces DéL(Q)’ Déi(Q), D12 DgL‘EQ), DgL(Q), DG, Dy (™)™, and
Da1,(2)(gr"') belong to B (log) ™.

REMARK 2.7.15

We think that Theorem 2.7.14 is a version for the spaces of SL(2)-orbits, treated
in Section 2, of the following results (1) and (2) on the spaces of Borel-Serre
orbits and of nilpotent orbits.

(1) The space Dpg of Borel-Serre orbits is a real analytic manifold with
corners (see [15, T]).

(2) For a weak rational fan ¥ in gr and for a neat subgroup I' of Gz which
is strongly compatible with X, the space I'\ Dy is a log manifold (see [15, III,
Theorem 2.5.2]).

These results (1) and (2) tell us that Dpg and I'\ Dy are beautiful spaces.
Theorem 2.7.14 also says that the spaces of SL(2)-orbits are beautiful spaces.

2.7.16
We prove Theorem 2.7.14. Theorem 2.7.14 for Dg’LB(S) follows from Proposition

2.7.13 and Proposition 2.7.7. Theorem 2.7.14 for Dg; oy, DE’IIQ), and D%, fol-

SL(2)
lows from that for Dg’LB(g) by Proposition 2.7.8. In the pure situation, this implies

that Dg,(2) (gr¥’) belongs to By (log)* for any w; hence, Ds,(2) (gr"") belongs to
By (log)™, and hence, Dgy,2)(gr'™")™ belongs to B (log)* by Proposition 2.7.8.
Theorem 2.7.14 for Déi(z) follows from that for DSL(Q)(ng)N by Propositions
2.3.16 and 2.7.9.

Finally we prove that DéL(Q) belongs to By (log)*. We apply Proposition
2.7.12. Let x = (p, Z) € Dgy,(2), fix r € Z, and let T =r(gr") € D(gr'"V'). Let n
be rank(p) if z is an A-orbit, and let n =rank(p) + 1 if = is a B-orbit. Let
V =Lie(Gr,u), where Gr,,, denotes the unipotent radical of Gr. We define the
action of G, on V as follows. In the case in which z is an A-orbit (resp., a B-
orbit), lift the homomorphism 7, (resp., 7,) : G% — Gr(gr"’) (see Section 2.2.7)
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to 7, : G}, = Gr by using the splitting sply, (r) of W. We consider the adjoint
action of G}, on Lie(Gr,,) via 7,. Define Y C RZ, x V' x V as in Proposition
2.7.12. Then by [15, II, Theorem 3.4.6], in the case where z is an A-orbit (resp., a
B-orbit), there are an open neighborhood S of y := (p, dw (r)) in Dgp,2)(gr")™ x
L(r) (resp., y := (p,000w (r)) in Dgr,2)(gr"")™ x (L(¥) ~{0})), a strict morphism
S — RZ, which sends y to 0=(0,...,0), an open neighborhood U of (y,0,0,0)
in the fiber product of § — RZ, + Y (here (0,0,0) € RZ, x V x V), and an
open immersion U — DéL(Q) which sends (y,0,0,0) to x. B_y Proposition 2.7.12,
U is an object of B (log)™. This shows that DéL(2) is an object of By (log)*.
Theorem 2.7.14 is proved.

LEMMA 2.7.17
Let n> 0. Then the part of Dgy(2) (gr™)™ consisting of points of rank at most n
is open in Dg,2)(gr™)~.

Proof

This part is the union of open sets Dgr,(2) (gr")~(®), where ® ranges over all

admissible sets of weight filtrations on gr'¥ associated to points of rank at most n.
([l

2.7.18
We denote the above part of Dgy,(2) (gr™)~ by (DSL(Q)(ng)N)Sn. In the pure
situation, this part is written as Dgr,(2),<n-

PROPOSITION 2.7.19

(1) Let U be the inverse image of (Dspz)(gr")™)<1 in Dg12) (resp.,
Déi(z))- Then U is an object of By (log)!+1l.

(2) Let U be the inverse image of [], Dsr2)(grly )<1 in DgL_(z)' Then U s
an object of B (log)*1.

Proof

We prove (1). By Theorem 2.7.14, Section 2.2.13 (which describes the stalks of

Mg/OF for S = Dgy,2)(gr"")™), and Lemma 2.7.6, (Dgy,2)(gr"")~)<1 belongs to

Biz (log)F1l. Hence, U belongs to B (log)!*]l by Propositions 2.3.16 and 2.7.9.
We prove (2). Similarly, Dgr,2)(grly )<1 belongs to By (log)l+!), and hence,

I1., Dsr(2) (gr¥V) <1 belongs to Bh(log)“*“ by Proposition 2.7.9. Hence, U belongs

to By (log)*]l by Propositions 2.3.16 and 2.7.9. |

3. Valuative Borel-Serre orbits and valuative SL(2)-orbits

In this section, we study the spaces Dgs val, Dsr(2),val, and DgL(2) va and their
relations.
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3.1. The associated valuative spaces
In Section 3.1,

(1) for an object S of By (log), we define a locally ringed space Sya over R
with a “valuative log structure with sign,” and

(2) more generally, for a field K endowed with a nontrivial absolute value
|-]: K — R and for a locally ringed space S over K endowed with an fs log
structure satisfying the conditions in Section 1.3.3, we construct a topological
space Syal-

In (2), Sya is merely a topological space and does not have more structures
as in (1). Note that (1) becomes important in the rest of Section 3, and (2) will
become important in Section 4. Furthermore, (1) is shortly explained in [15, II,
Section 3.7]. We call Sy, the valuative space associated to S.

3.1.1

Let L be an abelian group whose group law is written multiplicatively. A sub-
monoid V of L is said to be valuative if V UV =1 = L. An integral monoid V is
said to be wvaluative if it is a valuative submonoid of V&P. For an fs monoid S,
let V(S) be the set of all valuative submonoids V' of S8 such that V' O S and
Vv nsS=§8*.

3.1.2

Let K be a field endowed with a nontrivial absolute value |-|: K — R. Let S be
a locally ringed space over K satisfying the equivalent conditions in Section 1.3.3
and endowed with an fs log structure. Let Sya be the set of all triples (s, V,h),
where s € S, V € V((Ms/O%)s) (see Section 3.1.1), and by denoting by V the
inverse image of V' in Mg", h is a homomorphism (V)* — R8I extending
f=1f(s)| on Og . Here R denotes the set R regarded as a multiplicative
group.

3.1.8

There is a variant, which we denote by Syai(k), of Sval. Let Syaix) be the set
of all triples (s,V,h), where s and V are as above but h is a homomorphism
(V)* — K* extending f — f(s) on O3 ,- In [17, Section 3.6], in the case K = C,
this space Sya1,(c) was denoted by Sya1. But in this article, we consider only Syai
in the sense of Section 3.1.2 except in the proof of Theorem 6.3.1, and we hope no
confusion occurs in this article. If we want to avoid confusion in a forthcoming
work, we will denote Sya1 in Section 3.1.2 by Syai(.))- We will call Sya (k) the
valuative space of K-points associated to S and call Sy ().) the valuative space

of absolute values associated to S.

3.1.4
In the case in which K =R and Mg is a log structure with sign (as in the case
S € Bi(log)) (Section 1.3.5), Sya is identified with the set of all triples (s, V,h),
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where s € S, V is an element of V((Ms/O%)s), and by denoting by Vs the
inverse image of V' in Mg” ; _, h is a homomorphism (V)Z, — R extending
ff(s) on O§’>078.

3.1.5
Let S be as in Section 3.1.2. The topology of Sya is defined as follows. Let
(s0, Vo, ho) € Syal. Assume that we are given a chart & — Mg near the point
s0 € S. We introduce a fundamental system of neighborhoods of the point (sg, Vo,
hO) S Sval~

Let U be a neighborhood of sy in S, let I be a finite subset of S8P such
that, for any f € I, the image fs, of f in (ME’/O%)s, is contained in Vj, and
let € > 0. Let B(U,I,¢) be the set of all points (s,V,h) of Sy satisfying the
following conditions (i)—(iii).

(i) seU.

(ii) For any f € I, the image fs of f in (ME"/O%)s belongs to V.

(iii) For any f €1, |h(f) — ho(f)| < e. Here we define h(f) (resp., ho(f)) to
be 0 unless fs € VX (resp., fs, € V).

Define a topology of Sya so that the sets B(U,I,e), where U, I, and ¢
vary, form a fundamental system of neighborhoods of the point (sg, Vp, ho). This
topology is independent of the choice of a chart S and, hence, is well defined
globally.

We now consider the relation of Sy, and the projective limit of toric varieties
for the subdivisions of fans. This will be used to prove properties of Sy, and to
endow Syar in the case in which S € By (log) with a structure of a locally ringed
space over R and a log structure with sign.

3.1.6

Let the notation be as in Section 1.4.1. Let V' be a valuative submonoid of L.
For a submonoid S of L, we say that V' dominates Sif SCV and S* =SSNV *.
For a rational finitely generated sharp cone o in Ny, we say that V' dominates
o if V dominates S(o):={l€ L|l(c) > 0}.

For a rational fan ¥ in Ngr, V dominates some cone in ¥ if and only if
S(o) CV for some o € X. If V dominates a cone in X, then such a cone is unique
and is the smallest cone o € ¥ such that S(o) C V.

If ¥’ is a rational finite subdivision of ¥, then V' dominates some cone in X
if and only if V' dominates some cone in ¥'. In this case, if V' dominates ¢’ € ¥/,
then V' dominates the smallest cone o € ¥ such that ¢’ C 0.

LEMMA 3.1.7

Let ¥ be a finite rational fan in Nr. Then we have a bijection from the set
of all valuative submonoids V' of L, which dominate some cone in X, onto the
projective limit 1'&12’, where ¥/ ranges over all finite rational subdivisions of X.
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This bijection sends V' to (os/)sr, where oy denotes the cone in X' dominated
by V. The inverse map is given by (os/)s = Uy, S(osr).

Proof
This is straightforward. O

LEMMA 3.1.8

Let 33 be a finite rational fan in Nr. Then we have the following bijection from
lim, [toric|(X'), where ¥/ ranges over all finite rational subdivisions of &, to the
set of all pairs (V, h) of a valuative submonoid V of L dominating some cone in ¥
and a homomorphism h: V* — Rso. If (zx/)s is an element of mg, [toric|(¥)
and (osy,hy) (where osy €X', hyy : S(onr) = R0) is the pair corresponding to
xsy (Section 1.4.1), then the pair (V,h) corresponding to (zs/)ss is as follows:
V =Us S(os), and h is the homomorphism V> — R whose restriction to
S(ox)* is hy for any ¥'.

Proof
This can be shown by using Lemma 3.1.7. g

PROPOSITION 3.1.9

Let S be as in Section 3.1.2, and assume that we are given a chart S — Mg with
S an fs monoid, let L =S8®P, let N =Hom(L,Z), and let X be the fan in Nr
of all faces of the cone Hom(S,RidOd). Here R*4 denotes R>g regarded as an
additive monoid. Then we have a Cartesian diagram of topological spaces

Sval  — lim, [toric|()

i
S — |[toric|(¥) = Hom(S,RZy™")

where ¥’ ranges over all finite rational subdivisions of X2, and the lower row sends
s €S to the homomorphism f— |f(s)| (f €S).

Proof

For s € S, let S(s) = S(0), where o is the element of ¥ such that the image
of s in |toric|(X) corresponds to a pair (o,h) for some h:S(o)* — RZG® (see
Section 1.4.1). Then S(s)* coincides with the inverse image of Og , under the
canonical map S8 — Mg’ and S(s) is generated by S and S(s)*. We have
S(0)/8(a)* = (Ms/O3)s.

By Lemma 3.1.8, the fiber product S X |toric|(x) @2/ [toric|(X) is identified
with the set of all triples (s,V,h), where s € .S, V is a valuative submonoid
of §8P such that VO S and V* NS =S8(s)*, and h is a homomorphism V* —
R whose restriction to S(s)* coincides with the composition S(s)* — Og,—
R where the last map is f ~ |f(s)|. By the isomorphism S(o)/S(0)* 5
(Ms/0O%)s, avaluative submonoid V of S8 such that V O S and VNS = S(s)*
corresponds bijectively to a valuative submonoid V' of (Mg"/O%)s containing
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(Ms/O%)s and (V')* N (Ms/O%)s = {1}. Furthermore, if V' denotes the inverse
image of V' in Mg", (V)% is the pushout of V> « S(s)* — Og - Hence, h
corresponds to a homomorphism £’ : (V/)* — R2U® whose restriction to 03
coincides with f +— |f(s)|. Hence, we have a bijection (s,V,h) — (s, V', h') from
the fiber product to Sy,. In the converse map (s,V’,h') — (s,V,h), V is the
inverse image of V’ under the canonical map S8 — (MgE°/OJ)s and h is the
homomorphism V* — R‘;‘}jlt induced by h’. By using these explicit constructions
of the bijection between Sy, and the fiber product, it is easy to see that this

bijection is a homeomorphism. O

COROLLARY 3.1.10
For S as in Section 3.1.2, the map Sya — S is proper.

LEMMA 3.1.11

Let S and S" be as in Section 5.1.2, and assume that we are given a strict
morphism S’ — S of locally ringed spaces over K with log structures (for the
word “strict,” see Corollary 1.5.15). Then the canonical map S., — S’ X Syal
18 a homeomorphism.

Proof

For any s’ € S" with image s in S, the canonical map (Mg/OZ)s — (Mg /OZ,)s
is an isomorphism from the assumption. From this, we see that the map S/, —
S’ X g Syal is bijective. Since this map is continuous and since both S/, and S’ xg
Syal are proper over S’ (see Corollary 3.1.10), this map is a homeomorphism. O

LEMMA 3.1.12

Let S be as in Section 5.1.2, and let |S| be the topological space S with the
sheaf of all R-valued continuous functions. Endow |S| with the log structure Mg,
associated to the composition Ms — Og — O|g|, where the second arrow is f
|f], which we regard as a prelog structure. Here |f| denotes the function s+—

|f(s)]. Then Mg, is an fs log structure, and we have a canonical homeomorphism
|S|valgSval .

Proof

If S -+ Mg is a chart with S an fs monoid, then the composition S - Mg —

Mg is also a chart. Hence, Mg is an fs log structure. The canonical map

(Ms/OZ%)s — (M‘S‘/Olgl)s is an isomorphism for any s € S, and hence, we have

a canonical bijection |S|yal — Syar- It is easy to see that this is a homeomorphism.
|

3.1.13

Assume now that S is an object of By (log) (see Section 1.3.7). We endow Sya
with a sheaf Og_,, of rings and a log structure Mg, with sign as follows. Locally
on S, take a positive chart & — Mg o (see Section 1.3.10), let ¥ be the fan
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of faces of the cone Hom(S,R&M), and for a rational finite subdivision ¥’ of %,
regard S(X') := 5 Xtoric|(x) |toric|(X') as an object of By (log) by taking the fiber
product in By (log). Here we use the fact that the underlying topological space of
this fiber product is the same as the fiber product of the underlying topological
spaces by Corollary 1.3.15(i) and by the fact that S — |toric|(X) is strict.

We define Os,,, (resp., Ms,,,) as the inductive limit of Og(s/) (resp., Mg(sr))
by using Proposition 3.1.9. This sheaf of rings and the log structure with sign
are independent of the choice of the chart and, hence, are defined globally. In
fact, if we have two charts S — Mg ¢ and 8" — Mg >, then there is a third
chart §” — Mg ~o with homomorphisms & -+ 8" and &’ — & of charts. It is
easy to see that the sheaf of rings and the log structure with sign given by the
chart S (resp., §’) are isomorphic to the ones given by the chart §”, and that
the composite isomorphisms between the ones given by the chart S and the ones
given by the chart 8§’ are independent of the choice of the third chart S”.

We call Og,,, the sheaf of real analytic functions.
3.1.14
A log modification S — S in By (log) induces an isomorphism

(S/)val i Sval

of locally ringed spaces over R with log structures with sign.

Proof
This is clear. O

3.1.15

For S € By (log) and for = (s,V,h) € Syal, V is identified with the inverse image
of (Msval/(’)gval)w under the canonical map (Mgp/(’)g)s — (Mg /Og )z, and
h: V2, — R2A coincides with the composition Vy = Os,,,>0.0 = Rt where
the first arrow is induced from V5o C Mg ~0,s = Ms,., >0,= and the second arrow

is f f(x).

3.1.16

Let S be a locally ringed space. Then a log structure M on S is said to be valuative
if it is integral and satisfies the following condition: for any local section f of M8P,
locally we have either f € M or f~! € M, that is, every stalk of M is valuative.
By Section 3.1.15, for S € Bg (val), the log structure of Sy, is valuative.

3.1.17
Let Sy, T, T, Z, Z, T(s) CT, and Z(s) C Z (for s € Z) be as in Section 1.4.8.
We give a description (1) below of the valuative space Z.a1 associated to Z as a
set. This will be used in Section 3.3.3.

For a valuative submonoid V of S¥, let T(V') := Hom(S;¥ /V*,R~o) C T =
Hom(S;, R2y!). Then we have the following.
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(1) Zya is identified with the set of all triples (s,V, Z’), where s€ Z, V is a
valuative submonoid of S§¥ such that V' O 8; and such that V* NS, = Ker(S; —
(Mz/0%)s), and Z" is a T(V)-orbit in Z(s). (Note that Z(s) is a T'(s)-torsor
and T'(V) C T(s).)

This is proved as follows. Let L = St*, and let ¥ be the fan of all faces
of the cone Hom(S1, R24!) € Ngr = Hom(L,R). Then by Proposition 3.1.9, Zy.
is the projective limit of the log modifications of Z corresponding to rational
finite subdivisions X’ of ¥. By Lemma 3.1.7, the projective limit of the sets ¥’ is
identified with the set of valuative cones V' as above. Hence, the above description
(1) of Z, follows from the descriptions of log modifications of Z in Section 1.4.8
as sets by taking the projective limit.

3.2. The category Cgr (val)™

We define categories Cr(val) and Cr(val)t C Cr(val). In Section 3.3, we will see
that the valuative spaces associated to the spaces of SL(2)-orbits and the space
of Borel-Serre orbits belong to Cr(val)*.

3.2.1

Let Cr(val) be the category of objects of Cr (see Section 1.3.1) endowed with a
valuative log structure (see Section 3.1.16) with sign. We have Cgr(sat) D Cr(val)
(see Section 1.3.7).

PROPOSITION 3.2.2
Let S be an object of Bg(log)™. Then Sya belongs to Cr(val).

For the proof, we use the following lemma.

LEMMA 3.2.3

Let (Sx)x be a directed projective system in Cr, let S be the projective limit of
the topological spaces Sy, and endow S with the inductive limit of the inverse
images of Og, . Assume that there is an open set S" of S satisfying the following
conditions (i) and (ii).

(i) S belongs to Cr.
(ii) For any open set U of S, the map Og(U) — Os(UNS") is injective.

Then S €Cr.

Proof

Let F be the sheaf on S of morphisms to R™ of locally ringed spaces over R,
where R" is endowed with the sheaf of all real analytic functions. We have a
morphism a : F — O% by f+— (f*(¢;))1<j<n, where the t;’s are the standard
coordinate functions of R". We also have a morphism b: O¢ — F, which comes
from the fact that, since S belongs to Cr, O% is regarded as the inductive limit
of the inverse images of sheaves on S of morphisms to R™. As is easily seen, the
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composition ab: OF — O% is the identity morphism. We prove that ba: F — F
is the identity morphism. Let f € F(U) with U an open set of S. It is easy to see
that f and ba(f) induce the same underlying continuous maps U — R"™, which
we denote by g. It remains to prove that the homomorphisms g=!(Ogr») — Oy
given by f and ba(f) coincide. Since Og(V) = Og(V N S’) is injective for any
open set V of U, it is sufficient to prove that the restrictions of f and ba(f) to
UNS’ coincide. But S’ belongs to Cr, and hence, ba gives the identity morphism
of ]:|S’ . O

3.2.4

We prove Proposition 3.2.2. By Section 3.1.14, it is sufficient to prove this for
objects of B’R(log)[[ﬂ]. Asin Section 2.7.1, let Y C R%, x A be a standard object
of B’R(log)[H”. It is sufficient to prove that Y,, belongs to Cr. Let L = Z",
let ¥ be the set of all faces of the cone RZ, C Hom(L,R*!4) = R", and for
a rational finite subdivision ¥’ of ¥, let V() = {(t,z) € [toric|(X') x A |z €
Ay}, where J(t) = {j |1 <j <n,t; =0} with ¢; the jth component of the
image of ¢ in |toric|(X) = R%,. We apply Lemma 3.2.3 by taking the projective
system (Y (X)) in Cr as (Sy)x and by taking the open set RZ, x A of Yy
as S’. Then the projective limit S in Lemma 3.2.3 is Y,,. The injectivity of
Os(U) = Os(UNS’) for any open set U of Y, is seen easily. Hence, Y, belongs
to Cr by Lemma 3.2.3.

3.2.5

We define a full subcategory Cr(val)t of Cr(val). This is the category of all
objects which are locally isomorphic to open subobjects of Sy, with objects .S of
Bjz (log)*. We can replace B (log)™ by By (log)I[*]l in this definition to get the
same category Cr(val)®. Hence, Cr(val)™ is the category of objects which are
locally an open subobject of

Yval = {(t7$> € (REO)Val x A | HAS AJ(t)}

Heren, A, (Ay)y, and Y are as in Section 2.7.1, and J(t) ={j |1 <j <n,t; =0},
where ¢; denotes the jth component of the image of ¢ in RY.

PROPOSITION 3.2.6

For any object S of Bg(log) and for any object X of Cr(val), the canonical
map Mor(X, Sya1) = Mor(X,S) is bijective. Consequently, if S is an object of
Bg (log)™, then Sya represents the functor X — Mor(X,S) from Cr(val) to
(Sets).

Proof

It is sufficient to prove that, in the situation of Proposition 3.1.9, the canonical
map Mor(X, S X toric|(x) [toric|(¥)) — Mor(X,S) is bijective. Here S X |¢oric|(x)
[toric|(X’) denotes the fiber product in By (log). By Proposition 1.3.11, it is the
fiber product in Cr(sat). Hence, it is sufficient to prove that the map Mor(X,
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[toric|(X')) — Mor(X, [toric|(X)) is bijective. This last fact is reduced to Propo-
sition 1.3.9. O

PROPOSITION 3.2.7

(1) The category Cr(val)™ has finite products. We will denote the product in
Cr(val)T as X Xyu Y.

(2) A finite product in Cr(val)¥ is a finite product in Cr(val).

(3) The functor By (log)t — Cr(val)™, S+ Sya preserves finite products.

(4) For objects S1,...,Sn of Cr(val)™, the product of Si,...,S, in the cat-
egory Cr(sat) ewists. As a topological space, it is the product of the topological
spaces S;. We will denote this product in Cr(sat) by S1 Xsat -+ Xsat Sn-

Proof
If Y and Y’ are objects of By (log)™*, then by Proposition 2.7.9, (Y X )y, is an
object of Cr(val)*, and for any object X of Cr(val)*, we have

Mor (X, (Y x Y')ya1) = Mor(X,Y x Y') =Mor(X,Y) x Mor(X,Y")
= Mor (X, Yya1) X Mor(X, (Y')va1),

where the first and the third equalities follow from Proposition 3.2.6, and the
second equality follows from Proposition 1.3.11(2). This proves (1), (2), and (3).

We prove (4). Locally on each Sj, we have S; = (5})val for an object S} of
Bg (log)*. Locally in each S}, take a chart S; — Mg/, let ¥; be the fan of all faces
of the cone Hom(Sj,RaédOd), and consider S = @H?ﬂ S% X toric|(s;) [toric| (X)),
where Y’ ranges over all rational finite subdivisions of ¥;. Endow S with the
inductive limit of the inverse images of O and the log structures with sign of
H?Zl S% Xtoric|(s;) [toric|(X]). Then S belongs to Cr(sat) by Lemma 3.2.3 and is
the product of S; in Cr(sat). This locally constructed S glues to a global S. O

The following lemma will be used in Section 3.4.

LEMMA 3.2.8

Let n >0, and let Sj — Sj (1 <j <n) be morphisms in Cr(val)* having the
Kummer property of log structure in the sense (K) below. Let S (resp., S') be
the product S1 Xsat -+ Xsat Sn (T€Sp., S1 Xsat -+ Xsat S5, ) in the category Cr(sat),
and let Syal = S1 Xval -+ - Xval Sn (Tesp., Si.1 =51 Xval -+ Xva1 S}, ) be the product
in the category Cr(val)™ (see Proposition 5.2.7).

(K) We say that a morphism X —'Y of locally ringed spaces with log structure
has the Kummer property of log structure if, for any x € X and the image y of
z in'Y, the homomorphism (My /Os ), — (Mx /O%)s is injective, and for any
a€ (Mx/O%)s, there is m > 1 such that a™ belongs to the image of (My /Oy ),.
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Then the diagram

Sval - 5 éal
4 4
s - 9

is Cartesian in the category of topological spaces.

Proof

The set Sy is identified with the set of all triples (s, V, h), where s € S, V is a val-
uative submonoid of (M§"/OF ), such that V O (Mg/OF)s and VN(Mg/OF)s =
{1}, and h is a homomorphism (\7) X —3 R, where V denotes the inverse image
of Vin Mg ~¢,s such that the restriction of h to (’)§ -0, coincides with f f(s).

Furthermore, (Ms/Og)s =[]} 1(Mgp/(’)>< )s;» where s; denotes the image of
s in §;. Similar statements hold for S’ From these, we see that the diagram
is Cartesian in the category of sets. Since Sy, and the fiber product E of
S — 8"« S/, in the category of topological spaces are proper over S, we see
that the canonical map Sy, — F is a homeomorphism. O

DII

3.3. DBS,valr DéL(Q) SL(2),val’

3.8.1
We define

D§L(2) ,val

,val’

I I *
Dgs val, DSL(Q),val’ DSL(Q),valv DSL(2),val

as the valuative spaces associated to the objects

Dgs,  Dirayy  Dépe, SL(2)
of Bi(log) (see Section 3.1.13), respectively. By Theorem 2.7.14, Proposition
3.2.2, and Section 3.2.5, they belong to Cr(val)™. We call Dpg a1 the space of
valuative Borel-Serre orbits, and we call the other spaces DéL(Q),val and so on
spaces of valuative SL(2)-orbits.
DéL(2),va1 and Déi(%val are identified as sets because DéL(Q) and Déi@) are

identified as sets and the morphism DéL(Q) — D§£(2) is strict (see Lemma 3.1.11).
They are denoted by Dgy,(2) va1 when we regard them just as sets.

3.3.2
Since a log modification induces an isomorphism of associated valuative spaces
(see Section 3.1.14), we have

A+ BS
D;L(Q),val = D31 2) val > DSL(Z) val & D;L(2),val'

Hence, the morphisms

D — ‘DSL(Q) DgL( ) — DBS

SL(2)

(see Sections 2.5, 2.6) induce morphisms

* *
Dgy,2) vl = DSL(z),vala Dg1,(2),va1 = DBs val-
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3.3.83

These valuative spaces are described as sets as follows. Let situations (a)—(d)
and the notation be as in Sections 2.4.4 and 2.4.5. By Section 3.1.17, we have
the following. As a set, Dy, is identified with the set of all triples (z,V,Z2),
where z € ©, V is a valuative submonoid of (MZ/OF), = X(S;) such that
X(Sz)T CV and X(S;)TNV>*={1}, and Z is a T(V)-orbit in the T'(z)-torsor
Z(z). Here

T(V):=Hom (X (S,)/V*,R2") € T(z) = Hom (X (S,), RZ§").

39.3.4

Let the notation be as in Section 3.3.3. For a point z = (z,V, Z) € Dy, the stalk
(Mo, /Og ). is described as follows. In situations (a)-(c), (Mo,, /Og_ ). =
V/V* . Insituation (d), (M., /05 ). =V'/(V')*, where V/ = VN (X (S,)")eP.

val

val

3.8.5

In [16, Definition 2.6] and [17, Definition 5.1.6], which treated the pure case, we
defined the set Dgg val in a different style. Following the style in [16, 2.6] and
[17, 5.1.6], we can define Dpg a1 also as the set of all triples (T, V, Z), where T is
an R-split torus in Gr(gr"’), V is a valuative submonoid of the character group
X(T) of T, and Z C D, satisfying the following conditions (i)—(iv).

(i) Let T%¢ be the connected component of T'(R) containing the unit ele-
ment. Then Z is either a Ts-orbit for the lifted action in Section 1.2.6 or an
R~ x T-orbit in Dygp for the lifted action. Here t € R acts on gtV by the
multiplication by #* on gr!V.

(ii) Let r € Z, let v :=r(gr"") € D(gr"V'), let K; be the maximal compact
subgroup of Gr(gr'V') associated to ¥, and let O, : Gr(gr'"') — Gr(gr"V) be the
Cartan involution associated to Kz. Then O, (t) =t~! for any t € T

(iii) V> ={1}.

(iv) Consider the direct sum decomposition gr'¥' = D exr) (gr"), by the
action of T. Then for any y € X(T), the subspace @X,ev_lx(grw)x/ is Q-
rational.

The relation with the presentation in Section 3.3.3 of Dpg va1 is as follows.
(P,V,Z) € Dgs val in the presentation in Section 3.3.3 corresponds to (T,V’,Z)
in the above presentation, where T'C Sp is the annihilator of V* in Sp and
V'=V/V>* C X(T). The group T(V) in Section 3.3.3 coincides with 7T%¢ in the
above (i).

Conversely, for a triple (T, V, Z) here, the corresponding triple in the presen-
tation of Dgg val in Section 3.3.3 is (P, V', Z), where P is the Q-parabolic sub-
group of Gr(gr'') defined as the connected component (as an algebraic group)
of the algebraic subgroup of Gr(gr"") consisting of all elements which preserve
the subspaces @X,Ev,lx(grw)x/ of gr'™', and V' is the inverse image of V under
the homomorphism X (Sp) — X(T') induced by the canonical homomorphism
T— Sp.
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3.3.6
We describe the map DgL(Z),val — D§£(2)7val. This map is described as z = (p,V,
Z)w— (p,V',Z"), using Section 3.3.3 as follows.

(0) On D, this map is the identity map.

(1) For an A-orbit which does not belong to D, V' =V and Z' = Zg,.

(2) Assume that (p,V,Z) is a B-orbit, let n be the rank of p, and identify
X(S2) =7 x X(S,) with Z x Z". Let e = (1,~1,...,~1) € Z x Z".

(2.1) Assume —e ¢ V (hence e € V). Then V' = {a = (ag,a1,...,a,) € Z"*! |
a—ape€V} and Z' = Z.

(2.2) Assume e,—e€ V. Then V' ={a€Z"|(0,a) €V}, and Z' = Z.

(2.3) Assume e ¢V (hence —e € V). Then V' ={a € Z" | (0,a) € V}, and
7' = Za.

3.4. The morphism n*: Dg; ) .1 — DBs val

9.4.1
The map 7" : Dgy,9) a1 = DBsval is described as follows. This description is
similar to the pure case in [16, Theorem 3.11] and [17, Theorem 5.2.11].

The map n* sends (p,V,Z) € D§L(2),val in the presentation of D§L(2),va1 in
Section 3.3.3 to (T, V', Z) € Dgg va in the presentation of Dgg va1 in Section 3.3.5,
where T and V' are as follows. Let 7" C S, be the annihilator of V* C X (S,).
Then T is the image of 77 — Gr(gr"") under 7,. V' is the inverse image of
V/V>* C X(T") under the homomorphism X (7T') — X (7") induced by the canon-
ical homomorphism T" — T.

3.4.2
We also have the following description of n* by regarding D§L(2) val 38 Dg’LB(g) val*
Let the notation be as in Section 2.6. By Section 3.1.17, an element of D;’LB(% val

is written as (p,P,V,Z), where p € DSL(Q)(ng), P e P(p), V is a valuative
submonoid of X (S, p) such that X (S, p)* C V and X (S, p)TNV* ={1}, and Z
is either a 7% (Hom(X (Sp,p)/V*,Rs0))-orbit in D or a 7* (R x Hom(X (S, p)/
V> Rsg))-orbit in Dygp for the lifted action such that the image of Z in D(gr™")
is contained in Z(p). The map n* sends (p,P,V,Z) € Dgfg)’ml to (P,V',Z) €
Dgs va1 in the presentation of Dpg a1 as a set in Section 3.3.3, where V' C X (Sp)
is the inverse image of V' under the homomorphism X (Sp) — X (S, p) induced

by the canonical homomorphism S, p — Sp.

LEMMA 3.4.3
The morphism n* : D%L(z) val — DBs,val has the Kummer property of log structure
in the sense of Lemma 3.2.8 (K).
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Proof

Let x = (p,P,V,Z) € Dgiﬁg)’wﬂ = D{y (9 val (see Section 3.4.2), and let y be the
image of x in Dps val- By Section 3.3.4, in the case of an A-orbit (resp., a B-
orbit), V is a valuative submonoid of X (S, p) (resp., Z x X (S, p)), and the stalk
of M/O of Dg; o) . at @ is identified with V/V*. On the other hand, the stalk
of M/O* of Dpsva at y is identified with V'/(V’)*, where in the case of an
A-orbit (resp., a B-orbit), V' is the inverse image of V in (X(Sp)*)&P (resp.,
Z x (X(Sp)*)eP) for the canonical map (X (Sp)™)s C X(Sp) — X (S,,p). Note
that (X (Sp)T)8P is of finite index in X (Sp). Furthermore, since the kernel of
Sp.p — Sp is finite, the cokernel of X (Sp) — X (S, p) is finite. Hence, the map
V'/(V')* = V/V* is injective, and for any element a of V/V*, there is m > 1
such that a™ belongs to the image of V'/(V')*. O

THEOREM 3.4.4
The map n* : DgL(z) val = DBs.val in Cr(val)t has the following properties.

(1) The map n*: DgL(Q),val — Dps val is injective.

(2) Let Q €[, Wl(erl), and define the open set Dg12) a1 (@) of D319y var
as the inverse image of the open set Dgr,(2) (gr")(Q) of DSL(Z)(ng). Then the
topology of DgL(2)7val(Q) coincides with the restriction of the topology of Dps val
through n*.

(3) The diagram

*

* 77
SL(2),val - Dgs,val

} }
1., Dsieoy(grl Jvar > Tl Des(grl) val

is Cartesian in the category of topological spaces.

D

Proof

We prove (3) first. For each & = (z.)w € [],, Ds1.(2)(grly )val, for the image y =
(Yuw)w of z in TT,, Dps(grl) )va1, and for each w € Z, there is an open neighborhood
Uy of x,, and an open neighborhood V,, of y,, having the following properties
(i) and (ii).

(i) The image of U,, in Dps(gr!)yal is contained in V,,.
(ii) Let U be the inverse image of [], U, in D3 () var» and let 7V b? the
inverse image of [, Vi, in Dpgya. Take any F € D(gr"), and let L = L(F).

Then we have a commutative diagram

U = Hval,w Uy Xval Spl(W) X val L

v !
Vo= Hval,w Vw Xval Spl(W) X val _Z,

where Hml,w is the product in Cgr(val)™, the upper row is an isomorphism over
[1ia1.0 Uw, and the lower row is an isomorphism over [] Vi

val,w
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By Lemmas 3.2.8 and 3.4.3, the following diagram is Cartesian in the cate-
gory of topological spaces:

Hval,w Uw Xval SPI(W) Xval I/ — Hval,w Vw Xval Spl(W) Xval E
1 B 1 )
[1, Uw x spl(W) x L — [1, Vi xspl(W) x L

Theorem 3.4.4(3) follows from these two Cartesian diagrams.

Next we prove (1). The injectivity was proved in [16, Theorem 3.11] in the
pure case. Hence, the map [], Dsr(2)(grty Jvar = [1,, Des(grl) )var is injective.
By (3), this proves the injectivity of DgL(Q),val — Dps val-

We prove (2). Assume first that we are in the pure situation of weight w. Let
T1 be the topology of Dgy,2y defined in [15, II], and let 71 va1 be the topology of
Dsy,(2),va1 defined in this article. Let 73 a1 be the topology of Dgr(2),va1 Which is
the weakest topology satisfying the following two conditions (i) and (ii).

(i) For any open set U of Dgg va1, the pullback of U in Dgy,(2) val is open.
(ll) For any Q € Hw W(gl‘y), DSL(2),val(Q) is open.

Let 72 be the topology of Dgy,2) as a quotient space of Dgr,(2),va1 Which is
endowed with the topology T2 vai- Recall that in [16] and [17], which treated the
pure case, the topologies of Dgr,(2) and Dg,(2) va1 Were defined as 75 and 7Tz val,
respectively (not as in the present series of articles). The study of Tz in [17,
Section 10] and the study of 77 in [15, II, Section 3.4] show that 7; = 73. Since
the map 7* from Dgp,(2) va1 With 71 val to DBs val is continuous as we have seen
in Section 2.6, we have that 7Tj val > T2val. Since the map Dsp,(2),val — Dsr(2)
is proper for 71 yai (see Corollary 3.1.10) and also for 73 va1 (see [17, Theorem
3.14]), we have T1 yal = T2 val-

Thus, we have proved (2) in the pure case. By (3), we have a Cartesian
diagram of topological spaces

*
D31 9) val - Dgs val

1 1
(I, Dsv2) (g Jval) x spl(W) = ([T, Des(gry) )var) X spl(W)

The vertical arrows are proper by Proposition 2.3.16 and [15, I, Corollary 8.5].
Hence, (2) is reduced to the pure case. O

3.4.5
As in Theorem 3.4.4(2), the topology of Dg; ) .1(Q) coincides with the induced
topology from Dpgg va1. We show an example in which the topology of D§L(2),val is
not the induced one from Dgg va1. This example is pure of weight 3. So D§L(2),
is written as Dgy,(2) val below.

Let Hoz = Hj 7z ® Sym2(H(')7Z), where Hj , is a free Z-module of rank 2
with basis ey, es. Hence, Hy z is of rank 6. The intersection form (-,-) on Hp z
is b® Sym?(b), where b is the antisymmetric bilinear form on Hj 5 characterized

val
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by (e1,e2) = —1. We have the following SL(2)-orbit (p, ) in two variables:

p(g1,92) = g1 ® Sym®(g2), @(21,22) = F(21) ® Sym®F(z2)

(91,92 € SL(2), 21,22 € C), where F(z) is the decreasing filtration on H{ o
defined by

F(2)?=0C F(2)' =C- (ze1 + €2) C F(2)° = H .

The associated homomorphism 7* : G2, — GR is as follows. 7*(t1,t2) acts on
es ® e% by tltg, on es ® ejeq by tite, on es ® e% by tltgl, on e ®e% by tfltg, on
e1 ®eres by tfltgl, and on e; ® €2 by tfltg?’. The associated weight filtrations
W and W@ are as follows:

Wit =0cw; = e @ Sym® Hyr = Wi cwit = Hy g,
W2 =0c W =Rey @ =W c wi?
= W1(2) +Re; @ejes + Rey@e? = WBSQ)
- W4(2) = Wg(Q) +Re; ®e3 +Rey®ejen = W5(2) C Wﬁ(z) =Hor.
Let
d={wm w2y,

We show that Dgr,(2)vai(®) is not open for the topology induced from the
topology of Dgs val. Let V' be the valuative submonoid of X (an) which is, under
the identification X (G2,) = Z2, identified with the set of all (a,b) € Z? satis-
fying either (a > 0) or (a =0 and b > 0). Consider the point x := (p,V,Z) €
Dgi,(2),va1, Where p is the class of this SL(2)-orbit and Z is the torus orbit
{F(iy1) ® Sym® F(iy2) | y1,y2 € Rso} of p. The map Dgp,(2),val — Dps,val Sends
x to y:= (T,V,Z) in the presentation in Section 3.3.5 of Dpsg val, where T is
the image of 7 =7} : G2, = Gr and we regard V as a submonoid of X(T) via
the canonical isomorphism G2, 2T given by 7, In the presentation of Dgg val
in Section 3.3.3, this point y coincides with (P, V', Z), where P and V' are as
follows. P is the Q-parabolic subgroup of Ggr consisting of all elements which
preserve the following subspaces W), (w € Z):

W{ =Re; ®e?, Wi =W, +Rej ® eqea, Wi =W, + Re; ®e3,
W,=Wj+Rey®e2,  Wi=W,+Res@ejen.

We have Sp = G2, . The inclusion map T — P induces a canonical homomorphism
T — Sp. V! C X(Sp) is the inverse image of V under the canonical homomor-
phism X (Sp) — X(T) = X(G2).

Let f be the element of Lie(P,) which sends ez ® e? to e; ® €3 and kills
e1 ® Sym? H(’)’R, ea ® e1ez, and ey ® €3. For ¢ € R, we have the SL(2)-orbit in
two variables (p(), () defined by

p'(g1,92) = exp(cf)p(g1, g2) exp(—cf), ¢ (21,22) = exp(cf)p(z1, 22).
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The associated weight filtrations of (p(¢),(¢)) are exp(cf)W 1) and exp(cf)W ).
Since f respects W) but not W {exp(cf)WM exp(cf)WP} = (W),
exp(cf)W P} is not contained in ® if ¢ #0. If ¢c € Q, then the filtration
exp(cf)W®) is rational, and hence, (p(®),©(©)) determines an element p(©) of
Dgy,(2)- Let 2 = (p0), Vv, () ¢ Dgt,(2),va1, where V' is the same as above and
Z(9) is the torus orbit of p(c).

Now, when ¢ € Q ~ {0} converges to 0 in R, the image y(® of z(¢) in
Dgs va1 converges to y. This is because P acts on Dpg vai(P) continuously in
the natural way, y € Dps va1(P), and y(©) = exp(cf)y for this action of P. Since
ylo) ¢ Dgr,(2)val(®), Dsr(2),val(®) is not open for the topology induced by the
topology of Dgs val-

The set {z(©) | c € Q} is discrete in Dgt,(2),val, though the image {y 9] cecqQ}
in Dpsval has the topology of the subspace Q of R via the correspondence
y(©) < ¢. Thus, the topology of Dg1,(2),va1 is not the induced topology from
D3s val-

3.5. Themap 1 : Dgy,(2) val = DBs val

3.5.1
We define a canonical map

n: DSL(2),val — DBS,val

following the method in the pure case (see [17]). But we will see that this map
need not be continuous. 7 is the unique map such that, for any x € Dgy,2) and any
x € Dgp,(2),val lying over z, the restriction of 7 to the subset Z(z)var of Dgr,(2),val
(note ¥ € Z(x)ya1) is the unique morphism in Cr(val)* whose restriction to Z (&)
is the inclusion morphism Z (&) SDc Dgs val-

The map 7 coincides with the composition of the two maps Dgr,(2),val —

DgL(z) val Thay Dgs va1, where the first arrow is the following map Ay,i. The restric-
tion of Aval to Dgr,(2) nspl,val 18 the morphism on the associated valuative spaces
induced from the morphism A : Déi(2)7n5p1 — DgL(Z) in Section 2.5.6. The restric-
tion of Aval to Dsy,(2) spl,val 18 the morphism on the associated valuative spaces

induced from the isomorphism 7 : DéIL@) spl 5 D§L(2) spl I Section 2.5.6.

The composition Dgr,(2),val Aval DgL( | = DsL(2),val is the identity map.

2),va
By Theorem 3.4.4(1), the map 7 : Dgr,(2) val — DBs,val is injective.

PROPOSITION 3.5.2

(1) The restriction of n to the open set Dé£(2)
morphism in Cr(val).

(2) For any ® € W, the topology of D§£(2)
topology induced from the topology of Dgs val.

UD of Déi(Z),val is a

,nspl,val

nsplval (2) U D coincides with the
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Proof

This restriction of 7 to Dé£(2),nsp1,va1 U D is the composition D§£(2),nsp1,val uUD —
D;L(Z),Val
the isomorphism Déi(Q) UD = D;JQ)(JQ) in Theorem 2.5.5(2). This proves (1).
By this, (2) follows from Theorem 3.4.4(2). O

*
Mya . . L
e Dgs va1, where the first arrow is the open immersion induced from

PROPOSITION 3.5.3
The equivalent conditions (i)—(vii) of Proposition 2.5.7 are equivalent to each of
the following conditions.

(viii) The identity map of D extends to an isomorphism Dé£(2),val =
Dg1,(2) val Cr(val).

Vi
ix) The map Aval : DéL(Q),Val = Dy ) va (Section 5.5.1) is continuous.

(

(x) The map n: Déi(Z),val — DBg,val 15 continuous.
(xi) The map n: DéL(2),val — Dpg val is continuous.
(

s *,mild L .
xii) The map DSL(z),val — Dgr(2),val 18 injective.

Proof
(ii) = (viii). Take the associated valuative spaces.

The implications (viii) = (ix) and (viii) = (xii) are clear.

The implications (viii) = (x) and (x) = (xi) are easily seen.

(xi) = (ix). Use the fact that the topology of Dg; ) .1(®) is the restriction
of the topology of Dgg val (see Theorem 3.4.4(2)).

(ix) = (iv). This is because DéL(?),val — DéL(2) is proper surjective (see
Corollary 3.1.10).

(xii) = (i). The proof of (vi) = (i) of Proposition 2.5.7 actually proves this.
In that proof, assuming (i) does not hold, we used = = (p,Z) € Dg’;(l;l)d with p
of rank 1 such that x # zp1. Since p is of rank 1, these x and xg, are regarded

: *,mild . . .
canonically as elements of DSL(2)7va1 whose images in Dgp,(2),va coincide. (Il

4. New spaces D% .. and D?

A8 5 [val] of nilpotent orbits

In this Section 4, we define and consider the new spaces Dﬁz,[:] and Dg[vau of
nilpotent orbits (nilpotent i-orbits, to be precise, in our terminology).

In Sections 4.1-4.3, for a topological space S endowed with an fs log structure
on the sheaf of all R-valued continuous functions, we define topological spaces
Sy (the space of ratios, Section 4.2) and S}y (see Section 4.3), and we define
proper surjective continuous maps Sp; — S, Sval — S|, and Spyay — S}, where
Syal 18 as in Section 3.1. As will be explained in Section 4.4, in the case S = Dﬁ27

we obtain the new spaces of nilpotent i-orbits DﬁE [ @ Sy and DﬁE (val] 88 Shval]

and S, coincides with Dﬁz’val, which we have already defined in [15, III]. We
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construct CKS maps DE n= DSL(Q) and D? — DéL(Q) va] iD Section 4.5. We

3, [val]
have already constructed the CKS map DE,val — DéL(Q) in [15, II1].

4.1. The space of ratios in toric geometry

411
The space of ratios which we consider appears in the following way. Consider
S = Spec(k[T1,T»]) with k a field. Regarding S as the toric variety associated
to the cone R%, C R?, consider the toric varieties over k associated to rational
finite subdivisions of the cone R2 (see Section 1.4.1), and let X be the projective
limit of these toric varieties regarded as topological spaces with Zariski topology.
It is the projective limit obtained by blowing up the origin s = (0,0) € S first
and then continuing to blow up the intersections of irreducible components of
the inverse image of Spec(k[T1,Ts]/(T1T2)) C S on the blowup.

Let Xy C X be the inverse image of s, and endow X, with the topology as a
subspace of X. Then we have the following continuous surjective map from X
to the interval [0,00] D R~ despite the fact that the Zariski topology and the
topology of real numbers are very different in nature. If x € Xy, then the image
of z in [0, 00] is defined as

sup{a/b| (a,b) € N>~ {(0,0)},T}/T5 € Ox . }
=inf{a/b| (a,b) € N>\ {(0,0)},T5/T} € Ox . }.

Here N =Z>, and Ox is the inductive limit of the inverse images on X of the
structural sheaves of the blowups. The image of z in [0, 00] is, roughly speaking,
something like the ratio log(71)/log(T%) at .

In the definition below, this [0,00] is the space R(N?) of ratios of the fs
monoid N? = (Mg/O%)s which is generated by the classes of Ty and T». The
above relation with the projective limit of blowups is generalized in Proposition
4.1.11.

4.1.2

In this Section 4.1, the notation S is used for an fs monoid. We denote the
semigroup law of S multiplicatively unless we assume and state that S =N"™. So
the neutral element of S is denoted by 1.

4.1.3
For a sharp fs monoid S, let R(S) be the set of all maps r: (S x8) ~{(1,1)} —
[0, 00] satisfying the following conditions (i)—(iii).

(@) r(g, f)=r(f.9)7"
(i) r(f,9)r(g,h) =r(f,h) if {r(f,9),r(g,h)} #{0,00}.
(111) T(fQ? )—T‘(f,h)-i-?"(g, )

We endow R(S) with the topology of simple convergence. It is a closed subset of
the product of copies of the compact set [0,00] and hence is compact.
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REMARK 4.1.4
From condition (i), we have r(f, f) = 1. (Conversely, r(f, f) = 1 and (ii) imply (i).)
From this and from r(1, f) +r(f, f) =r(f, f), which comes from (iii), we get

r(1,f)=0, r(f,1)=o0c for any fe S~ {1}.

/1.5

For example, we have R(IN?) 22 [0, o], where r € R(N?) corresponds to (g1, q2) €
[0,00] with g; the standard jth basis of N2. A description of R(N"™) for general
n is given in Corollary 4.2.22.

4.1.6

We have a canonical bijection between R(S) and the set R'(S) of all equiva-
lence classes of ((SU))o<j<n,(N;)1<j<n), where n >0, SU) is a face of S such
that

S=8WosWo...08M =11},

and N; is a homomorphism SU~1) — R*d4 guch that N;(SU)) =0 and such that
N;(S G- 8U )) C R+ ¢. The equivalence relation is given by multiplying each
N; by an element of R+ (which may depend on j).

We define a map R(S) — R/(S) as follows. Let r € R(S). We give the corre-
sponding element of R'(S).

For fe S~ {1}, let S(r,f) ={g9€S|r(g,f)# oo}. Then the conditions
(i)—(iii) on r in Section 4.1.3 show that S(r, f) is a face of S. For f,g € S, we
have S(r, f) C S(r,g) if and only if r(f,g) # oo, and we have S(r, f) D S(r,g) if
and only if r(f,g) # 0. Hence, the faces of S of the form S(r, f) (f € S~ {1})
together with the face {1} form a totally ordered set for the inclusion relation.
Let S=8© >8W ... 2 8M = {1} be all the members of this set. Take ¢; €
SU=-1 80 (1 <j<n). We have a homomorphism N, :SU=D 5 R defined by
N;(f) =r(f,q;)- This N; kills S¥) and N;(SU~1 \SW) C Rxg. If we replace g;
by another element g;, then N; is multiplied by r(g;,q}) € R>o. Thus, we have
the map R(S) — R/(S), r+ class((SW));, (N;);)-

Next we define the inverse map R'(S) — R(S). Let class((SY))o<j<n,
(Nj)i<j<n) € R'(S). Let (f,g) € (S x S) ~{(1,1)}. We define r(f,g) as follows.
Let j be the largest integer greater than or equal to 0 such that f belongs to
S and let k be that of g.

(1) If j =k <mn, then r(f,g) = Njt1(f)/Nj+1(9).
(2) If j >k, then r(f,g) = cc.
(3) If j <k, then r(f,g)=0.

This gives the map R'(S) — R(S).
It can be seen easily that the maps R(S) — R'(S) and R'(S) — R(S) are
inverses of each other.
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4.1.7

As in Section 3.1.1, for a sharp fs monoid S, let V(S) be the set of all valuative
submonoids V' of §8P such that V' > S and VNS = {1}. We endow V(S) with
the following topology. For a finite set I of S8, let U(I) ={V e V(S)|I C V}.
Then these U(I) form a basis of open sets of V(S).

4.1.8
We define a map

V(S) = R(S), Vry.
For V e V(S), ry € R(S) is the map S x § . {(1,1)} — [0, 00] defined by
rv(f,9) =sup{a/b| (a,0) e N>\ {(0,0)}, f*/g" € V'}
=inf{a/b| (a,b) e N*~ {(0,0)},9*/f* €V},
where (f,g) € (S x S)~ {(1,1)} (see Section 4.1.3).

PROPOSITION 4.1.9
The map V(S) = R(S) is continuous and surjective.

Proof

We first prove the continuity of V(S) — R(S). Let f,g € S\ {1}, and assume
rv(f,g) > a/b, where a,b€ N and b>0. We have f°/g* € V. If V' € V(S) and
f°/g* € V', we have ry/(f,g) > a/b. This proves the continuity of V(S) — R(S)
(see Sections 4.1.7, 4.1.3).

We next prove the surjectivity of V(S) — R(S). Let class((SY))o<j<n,
(Nj)1<j<n) € R'(S) (see Section 4.1.6). Then the corresponding element of R(S)
is the image in R(S) of the following element V € V(S). For 1 < j <n, define
the Q-vector subspace QU) of the Q-vector space Sq = Q ® S& by QU) :=
Ker(N; : 8871) — R). Then QY > 88). Take an isomorphism of Q-vector spaces
Aj :Q(j)/Sg) 5 QW) where d(j) := dim(Q(j)/Sg)). Define V by the following.
Let a € §8°. When there is j such that 1 < j <n, a € 88_1), and a ¢ QU),
then a € V if and only if Nj(a) > 0. When there is j such that a € QY) and
aé¢ 88), then a € V if and only if the first nonzero entry of \;(a) € Q%) is
greater than 0. O

4.1.10

Let k be a field, let S be the toric variety Spec(k[S]), and let X be the projective
limit as a topological space of the toric varieties over k (with Zariski topology)
which correspond to finite rational subdivisions of the cone Hom(S, R34 (see
Section 1.4.1). Let Ox be the inductive limit of the inverse images on X of
the structural sheaves of these toric varieties. Let Xg C X be the inverse image
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of s € S = Spec(k[S]), where s is the k-rational point of S at which all non-
trivial elements of S have value 0. Endow X, with the topology as a subspace
of X.

We have a continuous map Xo — V(S) which sends z € X to {f € S8 | f €
Ox..} € V(S). The induced map Xo(k) — V(S) is surjective. In fact, for each
V € V(S), the inverse image of V in X, under the map X — V(S) is identified
with Spec(k[V*]). It has a k-rational point which sends all elements of V* to 1.
Composing with the map in Section 4.1.8 as

and using Proposition 4.1.9, we have the following result.

PROPOSITION 4.1.11
(1) The map Xo — R(S) is continuous.
(2) The induced map Xo(k) — R(S) is surjective.

COROLLARY 4.1.12
If we regard R(S) as a quotient space of V(S) or Xo, then the topology of R(S)
coincides with the quotient topology.

This is because V(S) and X, are quasicompact and R(S) is Hausdorff. Thus,
Zariski topology and the topology of real numbers are well connected here.

4.2. The space S of ratios

4.2.1

For a locally ringed space S endowed with an fs log structure, we define the set
Sp;) as the set of all pairs (s,7), where s € S and r € R((Ms/Og)s). We have the
canonical surjection Spj — S, (s,7) — s.

4.2.2

Let K be a field endowed with a nontrivial absolute value |- | : K — R>q. Let S be
a locally ringed space over K satisfying the equivalent conditions in Section 1.3.3,
and assume that we are given an fs log structure on S. We define a natural
topology of Sp; for which the projection S;;) — S is a proper continuous map
and which induces on each fiber of this projection the topology of R((Mg/O%)s)
defined in Section 4.1.3.

4.2.3

Let K and S be as in Section 4.2.2. To define the topology on S|}, the method
is, so to speak, to combine the topology of S and the topologies of R(S) (see
Section 4.1) for S = (Ms/O%)s (s € S) by using a chart of the log structure.



372 Kato, Nakayama, and Usui

Assume first that we are given a chart S — Mg of the log structure, where
S is an fs monoid. Fix ¢ € Rsg. We have a map

}SXS

S — 0,00 , (s,r) e,

where r.: S x § — [0, 00] is defined by the following (1) and (2). Let f,g € S.
(1) If the images of f and g in Mg s belong to Og ,, then

rc(fag) = sup(c, —log(’f(s)|))/sup(c, —log(|g(8)’))
(2) Otherwise,

Tc(fa g) = T(.fsags)a
where fs (resp., gs) denotes the image of f (resp., g) in (Mg/O%)s.

LEMMA 4.2.4
(1) The map

S[i] —5x [O’OO]SXS7 (5,7) = (s,7¢)
18 injective.
(2) The topology on Sy induced by the embedding in (1) is independent of
the choices of the chart and of the constant ¢ > 0.

Proof
We can see that (1) follows from the fact that the map S — (Mg/O3), is sur-
jective for any s € S.

We prove (2). If we have two charts S — Mg and S’ — Mg, we have locally on
S a third chart §” — Mg with homomorphisms of charts S —S” and &' — §”.
It is clear that if this third chart and two homomorphisms of charts are given
and if the constant ¢ > 0 is fixed, then the topology given by the chart " — Mg
and c is finer than the topology given by & —+ Mg or &’ — Mg and c. Hence,
it is sufficient to prove that if we have a homomorphism &’ — S from a chart
S’ — Mg to a chart S — Mg, then the topology given by the former chart and
the constant ¢/ > 0 is finer than the topology given by the latter and ¢ > 0. It
suffices to prove that, for f,g € S, the map (s,r) — r.(f, g) is continuous for the
topology given by &’ — Mg and ¢'.

CLAIM 1

Let f,g€ S, let s€ S, and assume that the images of f and g in (Mg/OZ)s
coincide. Let ¢,d’ > 0. Then for some neighborhood U of s in S, we have a con-
tinuous map Re o (f,g): U — Rsq whose value at s' € U is sup(c, —log(| f(s)]))/
sup(c’, —log(|g(s")])) if the images of f and g in Mg s belong to Og ., and is 1
otherwise.

This Claim 1 is proved easily.
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We continue the proof of (2). Let f,g € S. Then locally on S, we have f' ¢’ €
S’ and sections u,v of OF such that f= f'u and g = g'v in Mg. We have

Tc(f?g) = rc’(f/a gl)Rc,c' (f> f/)(S)Rc’,c(g/mg)(S)'
This proves the desired continuity of r.(f,g). a

4.2.5
By the independence Lemma 4.2.4(2), we have a canonical topology of Sp; (glob-

ally).

4.2.6
Assume that S is sharp and that, for any f € S\ {1} and any s € S, we have
|7(s)| < 1. (Note that we have such a chart locally on S.) Let Y = (S x S) \
{(1,1)}. Then we have a slightly different embedding
Spy— S x[0,00]Y,  (s,7) > (s,74),
where 7, : Y — [0,00] is defined as follows. Let (f,g) €Y.
(1) If the images of f and g in Mg ¢ belong to OF ,, then

r.(f,9) =log(|f(s)])/1og(|g(s)])-
(2) Otherwise,

T*(f, g) = T(.fs7§s)>
where f, (resp., §s) denotes the image of f (resp., g) in (Ms/OF)s.

LEMMA 4.2.7

Let the assumptions be as in Section /.2.0.

(1) The map S — S x [0,00]" is injective.

(2) The topology of Sp; induced by this embedding coincides with the topology
defined in Section /.2.5.

(3) The image of the embedding (1) consists of all pairs (s,r) € S x [0,00]¥
such that v satisfies conditions (i)-(iii) in Section 4.1.3 and such that the follow-
ing conditions (i) and (v) are satisfied. Let (f,g) €Y.

(iv) If the images of f and g in Mg belong to O;ﬁs, then r(f,g) =

log(|f(s)])/log(lg(s)])-
(v) Otherwise, r(f,g) depends only on the images of f and g in (Mgs/O%)s.

(4) The image of the embedding in (1) is a closed set of S x [0,00]¥ .

Proof
Statements (1) and (3) follow from the fact that the map S — (Mg/OF)s is
surjective for any s € S. Additionally, (4) follows from (3).

We prove (2). If f €S~ {1}, by the property |f(s)| <1 for any s € S, we
see that there is a continuous function R.(f):S — R~ whose value at s € S is
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—sup(c, —log(|f(s)[))/log(|f(s)]) if the image of f in Mg s belongs to Og . and
is 1 otherwise. For f,g € S \ {1}, we have

'rc(.ﬂ g) = T*(fag)Rc(f)(s>Rc(g)(S)_l'

Furthermore, for f € S, r.(1, f) is the value of the continuous function ¢/ sup(c,
—log(|f(s)])) at s, and r.(f,1) is the value of the continuous function sup(ec,
—log(|f(s)]))/c at s, and for f €S~ {1}, we have r.(1, f) =0 and 7.(1, f) = 0.
|

PROPOSITION 4.2.8

The canonical map Sp; — S is proper.

Proof

Since [0,00]" is compact, this follows from Lemma 4.2.7(4). O
4.2.9

For each s € S, the topology of R((Ms/OF)s) defined in Section 4.1 coincides
with the topology of the fiber R((Ms/Og)s) over s of S;j — S as a subspace of
Sp-

LEMMA 4.2.10

Let S and S’ be as in Section /.2.2, and assume that we are given a strict
morphism S’ — S of locally ringed spaces over K with log structures. (For the
word “strict,” see Corollary 1.5.15.) Then the canonical map Sf:] — 8" xg 8 is
a homeomorphism.

Proof
This is proved in the same way as Lemma 3.1.11. O

4.2.11

We consider Sp; more locally. Assume we are given a chart § — Mg. Let ® be
a set of faces of S which is totally ordered for the inclusion relation and which
contains S. Let S[;j(®) be the subset of S| consisting of all (s,r) such that the
inverse images in S of the faces of (Mg/O% ), associated to r (see Section 4.1.6)
belong to ®. Then Sp;(®) for all ¢ forms an open covering of Si;.

4.2.12

Let the notation be as in Section 4.2.11. Assume further that, for any f € S~ {1},
we have |f(s)| <1 for any s € S. (Such a chart always exists locally on S.) In
Proposition 4.2.14, we give a description of the topological space Sp;(®).
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Write ® = {SW) [0<j<n},§=8© D8M ... 28 Foreach 1< j<n,
fixg; €S (=1 8U). Consider the topological subspace

n
PCRZyx [[Hom(sV), R
j=0
(here the Hom space is endowed with the topology of simple convergence) con-
sisting of elements (t,h) (t = (tj)lgjgna tj S R207 h= (hj)OSjgna hj :S(j) — R)
satisfying the following conditions (i)—(iii) for 0 < j < n.

(i) hj(gj+1) =1. |
(ii) h;(f) =tjr1hjp1(f) for any fe SUHD.
(iii) R;(SY) ~ SUHD) C Ry,

LEMMA 4.2.13

We have a unique continuous map P — Hom(S,RE4Y) which sends (t,h) to the
following a € Hom(S, REUY). Let j be the smallest integer such that 0 <j<n
and such that ty #0 if j <k <n. Then

a(f):exp<fhj(f) H t;1)€R>o if fe8U,

k=j+1

a(f)=0 if feS~8Y.

Proof

The problem is the continuity of the map. This is shown as follows. Let f € S. It
is sufficient to prove that the map P — R>¢, (¢,h) — a(f) (f € S) (with notation
as above) is continuous. Let j be the largest integer such that 0 < j <n and such
that f € SU). Then this map is the composition of the continuous map P — R>o
which sends ((t;);,(h;);) € P to [Tj_; 1tk - hi(f)~" (note hj(f) >0) and the
continuous map R>¢ — R>¢ which sends ¢t € R~ to exp(—¢t~!) and 0 to 0. O

PROPOSITION 4.2.14
Let the notation be as above. We have a Cartesian diagram of topological spaces

S[:] ((I)) — P
1 \
S —  Hom(S,RZ4™)

where the lower horizontal arrow sends s € S to the map f— |f(s)| (f €S),
the right vertical arrow is as a v a(f) (f €S) in Lemma 4.2.13, the left ver-
tical arrow is the canonical one, and the upper horizontal arrow sends (s,r) €
S(®) (s€S, re R(Ms/Og)s)) to (s, ((t;);,(hs);)), where t; =log(|gj+1(s)[)/
log(|g;(s)|) (resp., t; =7(qj+1,4q5)) if 1 < j <n and if qjqj+1 is invertible (resp.,
not invertible) at s, t, = —1/log(|gn(s)|), hi(f) =r(f,qj+1) for 0 <j<n, and
ho(f) = —1og(|f(s)]). (Note that if (s,r) € S1(®) and f € S™, then the image
of f in Mg belongs to Og , and hence |f(s)| € Rxo.)
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Proof

The converse map is given by (s, (t,h)) — (s,r), where r is as follows. Let (a,b) €
(Ms/OZ%)s x (Mg/OF)s ~{(1,1)}, and take f,g € S such that the image of f
(resp., g) in (Mg/O%)s is a (resp., b). Take the largest j such that 0<j<n—1
and f,g € SY). Then r(f,g) = h;(f)/h;j(g) € [0,00]. (Note that at least one of
f,g is outside SUFV | and hence, at least one of h;(f) and h;(g) is nonzero.) It
is easy to see that this is the converse map and continuous. (|

REMARK 4.2.15

In (t,h) € P (t=(t;j)1<j<n € RYy), t; for 1 <j <n—1 is determined by h as
ti =hj_1(gj+1). tn is determined by the image a of (¢,h) in Hom(S, RUH) as
t, = —1/log(a(g,)). These explain the fact that, in the above proof of Proposition
4.2.14, the converse map (s, (t,h))— (s,r) is described without using ¢.

4.2.16
Let Hom(S,RZ4")_; be the open set of Hom(S, RZUY) consisting of all ele-
ments h such that h(f) <1 for any f €S~ {1}. Then the images of S and
P in Hom(S,R2), under the maps in Proposition 4.2.14, are contained in
Hom(S, Rg‘glt)<; Hence, by Proposition 4.2.14, we have the following.

COROLLARY 4.2.17
In the case S = Hom(S,Rgglt)d with the sheaf of all R-valued continuous func-
tions and with the natural log structure, Si;)(®) is identified with P.

4.2.18
We give a comment on this space P. For 1 < j <n, we fixed an element g;
- ; . , . . j—1 j .

of SU=D \ SU) (see Proposition 4.2.14). Let m(j) = dlmQ(Sg )/88)) —1if
1<j<n,andlet m(n+1)= dimQ(S((Q")). For 1 <j <n+1, fix elements g;
(0 <k <m(j)) of (SU=D)EP satisfying the following conditions (i)—(iii).

(1) go=¢ f1<j<n ' 4 4

(ii) For 1< j<m, (g;r mod 58))0§kgm(j) is a Q-basis of 88_1)/58).

(iii) (gn+1,k)1<k<m(n+1) is @ Q-basis of Sgl).

PROPOSITION 4.2.19
We have an injective open map

n+1
PSRL,x [[R™O
j=1

which sends (t,h) € P (t € R%,, he [[}_, Hom(SU), R*)) to (t,a), where a =

(aj)1<j<n+1, a5 = (ajk)1<k<m(s) with

Qj k= hjfl(qj,k) cR
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for 1 <j<n+1. Here we define hj_1(q;r) by using the unique extension of
hj—1:8U=Y 5 R to a homomorphism (SU—1)eP — Radd,

The proof is easy.

4.2.20
Consider the case S =|A|", where |A|={t€ R |0<¢ <1} with the sheaf of
all R-valued continuous functions and with the fs log structure associated to
N" = Og, m+— H?:l q}"(j), where ¢g; (1 <j <n) are the coordinate functions.
Let S be the multiplicative monoid generated by ¢; (1 < j < n) which is identified
with N™. Then |A|" is identified with Hom(S, RZ8"%) .1 in Section 4.2.16.

Let ® ={SU) |0<j<n}, where SU) is generated by qi (j <k <n). Then
S is covered by the open sets Spj(g(®)), where g ranges over elements of the

~

permutation group &,, acting on S, and g induces a homeomorphism Sp;(®) =
Sp(g(®)). We describe Sp;(®).

PROPOSITION 4.2.21
Let the notation be as in Section /.2.20. Then we have a commutative diagram
Sp(®) = RZ,

\ \

s = |A
in which the upper horizontal isomorphism sends (s,r) € Sp;)(®) to (t1,...,t,),
where t; =r(¢j+1,9;) (1<j<n—1) and t, =—1/log(qn(s)), and the right ver-
tical arrow is (t;)i1<j<n — (¢j)1<j<n, where ¢; = exp(— HZ:;‘ th).

Proof
This follows from Corollary 4.2.17. (I

COROLLARY 4.2.22

Let the notation be as in Section 4.2.20. Regarding R(S) as the fiber of Sij —
S =|A|" over the point (0,...,0) € S, define R(S)(®) = R(S) NS (®). Then we
have a homeomorphism

R(S)(®) =RLy'
which sends r € R(S)(®) to (t1,...,tn—1), where t; =7(qj4+1,¢;)-

Proof
This follows from Proposition 4.2.21. O

LEMMA 4.2.23
Let S, |S|, and Mg be as in Lemma 5.1.12. Then we have a canonical homeo-
morphism Sp) = |S|.
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Proof
As in the proof of Lemma 3.1.12, we have a canonical isomorphism (Mg/OF)
(M|S|/(’)|XS|)S for each s € S. This gives a canonical bijection between Sp; and

o~
s —

|S|[;- By Proposition 4.2.14, they have the same topology. O

4.3. S[:], S[val], and Sva.l
Let K and S be as in Section 4.2.2. We construct a topological space Sy, and
proper surjective continuous maps

Sval — S[:]a S[val] — S[] .

Here Syq is as in Section 3.1.

4.3.1
Let Sya1 — Sp) be the map (s,V,h) — (s,ry), where V + ry is the map V(S) —
R(S) for § = (Ms/O%)s (see Sections 3.1.2, 4.1.8).

PROPOSITION 4.3.2
The map Sya1 — S} s continuous, proper, and surjective.

Proof

The surjectivity follows from the surjectivity in Proposition 4.1.9. Once we prove
the continuity, properness follows from the properness of Sy, — S and of Sj;) — S.
We prove the continuity. Working locally on S, we may and do assume that we
have a chart S — Mg with S a sharp fs monoid such that, for any f € S~ {1}
and s € S, we have |f(s)| < 1.

Fix (so, Vo, ho) € Sval, and let (so,70) € S} be its image. We show that, when
(5,V,h) € Syal converges to (so, Vo, ho), its image (s,7) € Sp,) converges to (sg,70).
Let f,g € S~ {1}. It is sufficient to prove that r.(f,g) € [0,00] (see Section 4.2.6)
converges to (ro).«(f,g) € [0,00]. If at least one of f and g is invertible at sg
(i.e., if at least one of the images of f and g in Mg, belongs to Og, ), then
the function (s,7) + 7.(f,g) € [0,00] on S comes from the continuous function
s> log(|f(s)])/log(|lg(s)]) € [0,00] on some neighborhood of s¢ in S. Hence, we
may assume that both f and g are not invertible at sg. Assume that (ro).(f,g) >
a/b, a,b € N, b> 0. It is sufficient to prove that r.(f,g) > a/b when (s,V,h) is
sufficiently near (sg,Vp,ho). Let ¢ = f?/g* € S&P. Since the image @5, of ¢ in
(Mgs/OF)s, belongs to Vy, there is a neighborhood U of (s, Vo, ho) in Syar such
that if (s,V,h) € U, then @5 € V. If (s,V,h) € U and if at least one of f and g
are not invertible at s, then r.(f,g) =r(fs,gs) > a/b because @, € V. Consider
points (s, V, h) € U such that both f and g are invertible at s. On U, the function
(s,V,h) — h(yp) is continuous. (Here h(yp) is defined to be 0 if s ¢ V*.) We have

re(fo9) =b""ru (2, 9) =b""r (g%, 9) = (a/b) + b~ " log(h(y))/log(|g(s)])-

When (s,V,h) € U converges to (sg, Vo, ho), h(p) converges to ho(¢) € R and g(s)
converges to 0. If ho(p) = 0, then when (s, V, h) converges to (sg, Vo, ho), we have
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h(p) <1 and |g(s)| <1 and, hence, log(h(y))/log(|g(s)|) > 0. If ho(p) > 0, then
when (s,V,h) converges to (so, Vo, ho), log(h(v))/log(|g(s)|) converges to 0. O

4.3.3

We next discuss Spyay)- To define it, we use the following new log structure on S,
which is endowed with the sheaf Og,; of all R-valued continuous functions. (We
use the word “new log structure,” to distinguish this log structure from the “old”
log structure on S|}, which is defined as the inverse image of the log structure of
S on the inverse image of Og on Sp;.)

Assume that we are given a chart S — Mg with S a sharp fs monoid such
that |f(s)| < 1 for any f € S~ {1} and for any s € S. Let S¥) (0 <j <n) be
faces of S such that S=8© D> SMW 2 ... 2 8™ and let ® ={SW |0<j <n}.
Take ¢; € SU=1 (S for 1 <j <n. Then we define the new log structure on
S (@) as the fs log structure associated to

n—1
N' =05, e (T] r(a0.0)™97) - (<1/10g(laa]) """,
j=1
Then it is easy to see that this log structure glues to an fs log structure on Sp;
which is independent of any choices. In the identification Sy = |5 (see Lemma
4.2.23), the new log structure of Sy and that of S|, coincide.

REMARK 4.3.4

It may seem strange to take the square root (-)™()/2 in the definition of this log

structure But this becomes important in Section 5 to ensure that the CKS map
H — Dgy,(2) respects (and D%rﬁld — D§; (o) which appears later (see Theorem
1.10) also respects) the log structures.

4.8.5
Let Say be the valuative space (S[))val (Section 3.1) associated to S, endowed
with this new log structure.

By Section 3.1, the map S[ya; — S[;) is proper and surjective.

LEMMA 4.3.6

Let S (resp., S’) be a topological space endowed with the sheaf of all R-valued
continuous functions and with an fs log structure, and let S’ — S be a strict mor-
phism (see Corollary 1.3.15) of locally ringed spaces over R with log structures.
Then the canonical map Sval — 8" X5 Spvar] is a homeomorphism.

Proof
This is proved in the same way as Lemma 3.1.11. O
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PROPOSITION 4.3.7
Assume K =R. There is a unique homeomorphism

(|A‘n)[val] =( gO)Val

in which (gj)i<j<n € (JA] ~ {0})" C (|A]")jay corresponds to (—1/
log(gj))1<j<n € R% C (RYq)var-

Proof
This is deduced from Proposition 4.2.21. (|

4.3.8. Eramples

We compare S|, Sval, and Spy in the case K =R and § = R2ZO with the
standard log structure. The maps from these spaces to S are homeomorphisms
outside (0,0) € S. We describe the fibers over (0,0) explicitly.

(1) The fiber of S;; — S over (0,0) € S is canonically homeomorphic to the
interval [0, 00]. It consists of points 7(a) with a € [0,00]. (q1,¢2) € R, converges
to r(a) if and only if ¢; — 0 and log(g2)/log(¢q1) — a.

(2) A difference between the surjection Sya — Sp; and the surjection Spyay —
Sy is that the fiber of the former surjection over 7(a) has cardinality greater
than 1 if and only if a € Q¢ and the fiber of the latter surjection over r(a) has
cardinality greater than 1 if and only if a =0 or a = cc.

(3) The fiber of Sya — S over (0,0) € S consists of points p(a) (a € [0,00] ~
Q-0) and p(a,c) (a € Qso, ¢ €[0,)). (q1,¢2) € R%, converges to p(a) if and
only if ¢; — 0 and log(g2)/log(q1) — a. (q1,¢2) € R% converges to p(a,c) if and
only if ¢; — 0, log(q2)/log(q1) — a, and ¢{ /g2 — c. Under the map Sya1 — S,
p(a) goes to r(a) € S, and p(a,c) goes to r(a) € Sy

(4) The fiber of Sfyay over (0,0) € S consists of points s(a) (a € [0,00] \ Qo)
and s(a,c) (a € Qso, ¢ €[0,00]). (q1,q2) € R%, converges to s(a) if and only if
q; — 0 and, for ¢; :== —1/log(q;) (so t; = 0), log(t2)/log(t1) = a. (q1,q2) € R2,
converges to s(a,c) if and only if ¢g; — 0 and, for ¢; := —1/log(g;) (so t; — 0),
log(t2)/log(t1) — a, and t{ /t5 converges to c. Under the map Spva — Sy, s(1,¢)
goes to r(c) € S}, s(a) with a <1 and s(a,c) with a <1 go to r(0) in S}, and
s(a) with @ > 1 and s(a,c) with a > 1 go to 7(c0) in Sy;.

(5) We give some examples of convergences.

(5.1) Fix c € R~¢. If ¢ € Ry and ¢ — 0, then (cgq,q) € R% converges to 7(1)
in Spy, to p(1,¢) in Syar, and to s(1,1) in Spay. Thus, the limit in Sj; and the
limit in S[yay are independent of ¢, but the limit in Sy, depends on c.

(5.2) Fix a € R such that 0 <a < 1. If t € Ryo and t — 0, (exp(—1/t),
exp(—1/t*)) € RZ, converges to r(0) in Sy, to p(0) in Syal, and to s(a) (resp.,
s(a,1)) in Sphay if a € Q (resp., a € Q). Thus, the limit in Sp; and the limit in
Sval are independent of a, but the limit in S|y, depends on a.
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4.4. The spaces DﬁE ] and DﬁE

441
Let ¥ be a weak fan in gq (see [15, III, Section 2.2.3]), and let I' be a neat
subgroup of Gz which is strongly compatible with 3. Then we have a space
I'\ Dy, which is endowed with a sheaf of holomorphic functions and an fs log
structure. By taking K = C in Section 4.2, we have a topological space (I'\ Dx);
with a proper surjective map (I'\ Dx);; — I'\ Dyx.

J[val]

4.4.2
Let ¥ be a weak fan in gq, and let DﬁE be the topological space defined in [15,
ITI, Section 2.2.5]. We define topological spaces DuE (] and DﬁE (val] and proper

. Here D?

surjective maps Dﬁzv[:] — Dﬂz, ngal — DSH, and Dﬂzy[ ] D 3, val

val 3,0
is the topological space defined in [15, III, Section 3.2].

4.4.3
Let 0 € 3, and consider the open set D?T of Dﬂz. There is a neat subgroup I' of
Gz which is strongly compatible with the fan face(o) of all faces of 0. We define
the topological space Dg’[:] as the fiber product of D} — T'\ D, < (I'\ Dg)(J.
This is independent of the choice of T'.

Furthermore, the inverse image of the new log structure of (I'\ D,); on

Dg ] (given on the sheaf of all R-valued continuous functions), which we call the

new log structure of Df,_ [ is independent of the choice of I'. These Dg [:]’S glue

to a topological space DuE [ over Duz, and the new log structures of Dg_ (] glue

to an fs log structure on the sheaf of all R-valued functions on DﬁE [ which we

call the new log structure.

# i
We define DZ,[Val] =0

structure. We have canonical proper surjective maps DﬁZ [ DﬁE and Dﬁ2 [val] ~
Dt
%,

as the valuative space associated to Ds, (; with the new log

[l

444

Before we define the canonical map D! L= DﬁE [ we remark that, though we

3,va :

have a canonical new log structure on Dﬁz,[;]v we do not have a canonical log struc-
ture on DuE. For o € ¥ and for a neat subgroup I' of Gz which is strongly com-
patible with face(c), the pullback of the log structure of I'\ D, on D! depends
on the choice of I'. Here we endow D! with the sheaf of all C-valued continuous
functions.

For example, consider the classical case Hy z = Z? of pure weight 1 of Hodge
type (1,0) + (0,1), in which D is the upper half-plane. For the standard choice
of o and I'=(} %), I'\ D, is isomorphic to the unit disk, and the log structure
is generated by the coordinate function ¢. D% is identified with {z + iy |z €
R,0 <y < 0o}, and the canonical projection D% —T'\ D, is identified with z —
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exp(2miz). We have ng[:] = D% and the new log structure on it is generated by
1/y*/? or, equivalently, by 1/(log|q|)*/?.

Take n > 2, and replace I' by I'" := ({§ "Z). Then the log structure of I\ D,
is generated by ¢/™. Hence, the inverse image on D% of the log structure of
'\ D, and that of I\ D, do not coincide. This problem does not happen for the
new log structure, because 1/(log|q'/™)'/? =n'/?/(log|q|)'/? and 1/(log|q|)'/?

generate the same log structure.

4.4.5
Endow Dg with the sheaf of all C-valued continuous functions. For o € X, take
a neat subgroup I' of Gz which is strongly compatible with o, and consider the
inverse image on D of the log structure of I'\ D,. We show that D

o,val in [157
IIT] is identified with the valuative space Sy, in Section 3.1 associated to S := DP,
with this log structure (with K = C).

In Section 1.4.1, let N ={z € or | exp(z) €T in Gr}, let L =Hom(N,Z),
and regard o as a cone in Ng := R ® N. Let ¥ be the fan of all faces of o, and

denote [toric|(X) by [toric|,. Then we have a commutative diagram

fo:Val — Eg,val S |toric|o,valXD

1 1 1
D!« Ef S |toric|, x D

ag

where the squares are Cartesian, E¥ is a or-torsor over D! for a certain natural

action of og on E¥, E* ;

v oval for a certain natural action

| is a or-torsor over D

of or on Eg',vah and the pullback of the log structure of | D4 | (see Lemma 3.1.12)
on Ef coincides with the pullback of the canonical log structure of |toric|,. In the
upper row, the space in the middle and the space on the right are the valuative
spaces associated to their lower spaces, respectively. Hence, the valuative space

associated to D% coincides with the quotient Dg va Of E? by ogr, that is,

o,val
#
o,val*

Here the problem of the dependence of the log structure of S = D! on T
(Section 4.4.4) does not matter for the following reason. For another choice T
of T such that IV C T, the identity map of S is a morphism from S with the
log structure given by IV to S with the log structure given by I', and this mor-
phism has the Kummer property from Lemma 3.2.8 of log structure. Hence, the
associated valuative space is independent of the choice of T.

4.4.6

By Sections 4.4.5, 3.1, and 4.2, we have a proper surjective map Di val Di [

and this glues to a proper surjective map Dﬁ2 val — DﬁZ i

4.4.7. Examples
We describe the differences of the topologies of DnZ (]’ Dﬁz,val’ and DﬁZ

,[val] "
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Let Ni,Nz € gq, and assume that NyN; = NoN; and that N; and N,
are nilpotent and linearly independent over Q. Let F € D, and assume that
(N1, No, F) generates a nilpotent orbit in the sense of [15, ITI, Section 2.2.2]. Let
¥ be the fan of all faces of the cone R>oN1 + R>oN2. When 1,32 € R tend to
00, exp(iy1 N1 + iy2N2)F' converges in Dﬁz.

(1) Fix a constant a € R. When y — 00, exp(iyN1 + i(y + a)N2) F' converges
in D, s D% > and D . The limit in D§
the limit in Dﬁz,[;] is independent of a, but the limit in ngal depends on a.

(2) Fix a constant a € R such that 0 < a < 1. Then when y — oo, exp(iyN1 +
1y*Ny)F' converges in ngal, DﬁE

is independent of a, and hence,

and Dg[:]. The limit in ngal is indepen-

[vall?
dent of a, and hence, the limit in DﬁE (] is independent of a, but the limit in
Dgl,[val] depends on a.

4.5. CKS maps to Dgy,2) and Dgy,(2) val

4.5.1
Recall that, in [15, III, Theorem 3.3.2], we proved that the identity map of D
extends uniquely to a continuous map

Dt

I
s val — Dsn(2)-
Section 3.3 of [15, III] is devoted to its proof. The corresponding result in the
pure case is [17, Theorem 5.4.4], and its full proof is given in [17, Chapter 6].

In this section, we prove the following related Theorems 4.5.2 and 4.5.7.

THEOREM 4.5.2

(1) The identity map of D extends uniquely to continuous maps

Dﬁz,[z] - DéL(Z)v D - DéL(Z).val'

i
3, [val] s
These maps respect the log structures on the sheaves of all R-valued continuous
functions. Here we use the new log structures on Dﬁzv[:] in Section 4.4.3 (cf.
Section /.3.3) and the log structure on DéL(Q) discussed in Theorem 2.7.14.

(2) The CKS map DﬁE,val — DéL(Z) defined in [15, III, Theorem 8.8.2] coin-

cides with the composition D%’Val — DﬁE Sl DéL(Z)'

4.5.3
Let Dypjp be the set of (N1,...,N,, F'), where n >0, N; € gr, and F' € D, which
satisfies the following two conditions.

(i) (Ny,...,Np, F) generates a nilpotent orbit in the sense of [15, III, Sec-
tion 2.2.2].

(ii) For any w € Z and for any 1 < j <n, let W) be the relative monodromy
filtration of y1 N1 +---+y;N; (y1,...,y; € Rso) relative to W. (W) exists and
does not depend on the choices of y; € R by condition (i).) Then the filtrations
W@ (gr™) on gr'' (1 <j <n) are Q-rational.
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4.5.4

We review the map Dy, — Dsp,2) which sends (N1,...,Nn, F) € Dyjp to the
class of the associated SL(2)-orbit [15, II, 2.4]. It is the map which sends (Ny,...,
Ny, F) to the limit of exp(Z?Zl 1y; N;)F', where y; € Ry, yj/yj+1 =00 (1<
j<n, yn+1 denotes 1) in DéL(z)- This map is also characterized as follows. Recall
that an element (p, Z) of Dgp,(2 is determined by the following (i) and (ii):

(i) Whether (p, Z) is an A-orbit or a B-orbit.
(ii) (®,r), where ® is the set of weight filtrations on gr'V associated to p
(see [15, II, Proposition 2.5.2(ii)]) and r is any element of Z.

Let (p,Z) € Dg,(2) be the image of (Ny,..., Ny, F). Then (p, Z) is a B-orbit
if and only if there is j such that N; #0, N =0 for 1 <k < j, and gr'V(N;) =0.
® is the set of W) (gr') for all j such that gr'V'(Ny) # 0 for some k < j. r in
the above (ii) is given as follows.

Since (N, ..., N, F') generates a nilpotent orbit, (W), F') is a mixed Hodge
structure. Let (W(”)7ﬁ‘(n)) be the R-split mixed Hodge structure associated to
it. Then (Nl,...,Nn,l,exp(iNn)F’(n)) generates a nilpotent orbit, and hence,
(W=D, exp(iN,,) F{,,)) is a mixed Hodge structure. Let (W "~V F,,_;)) be the
R-split mixed Hodge structure associated to it. Then (Ny,...,Np_o,
exp(iNn_l)F(n_l) generates a nilpotent orbit, and hence, (W2,
exp(iNn_l)F(n,l)) is a mixed Hodge structure. In this way, we have the R-
split mixed Hodge structure (WU ),F(j)) for 1 <j <n by a downward induction
on j (see [15, II, Section 2.4.6]). We obtain r € D as r = exp(iNk)F’(k) if k is the
minimal j such that N; # 0, where in the case N; =0 for all j, we define r = F'.

4.5.5

Let ' be a neat subgroup of Gz. Assume (I',X) is strongly compatible. By
Section 4.1.6, Dnzy[:] is identified with the set of (0,7, (SY))o< <n, (Nj)1<j<n)s
where (0, Z) € D%, and if s denotes the image of (¢, Z) in S:=T"\ D, then S
are faces of (Mg/O% )s such that (Mg/0%)s =S® 28W 2... 5 8™ = {1} and
N; is a homomorphism SU~Y — R4 guch that N;(S¥)) =0 and N;(SU—Y \
SU)) C Rxyg. (Here N; is considered modulo RZS!.)

For s =class(0,Z) € S =T\ Dy, (Mg/O%), is canonically isomorphic to
Hom(I'(0),N). Hence, o is identified with Hom((Mg/0%)s, R2Y!), and the face
SU) of (Mg/O%)s in the above corresponds to a face o of ¢ consisting of all
homomorphisms (Mg/O%)s — R4 which kills SU).

Hence, DﬁE,H is identified with the set of (¢, Z, (0;)o<j<n, (INj)1<j<n), where
(0,2) € Dﬁz, the o;’s are faces of o such that 0=09C 01 C--- C o, =0, and N;
is an element of o r/0;j—1,r Which belongs to the image of an element of the
interior of o;.
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4.5.6

Let (0,Z,(0;)o<j<n: (Nj)1<j<n) € DE ] (see Section 4.5.5), and let N; be an
element of the interior of o; whose image in o r/0;j—1,r coincides with N;. Let
F e Z. Then (Nl, ...,Nn,F) generates a nilpotent orbit, as is easily seen. We
will prove the following.

THEOREM 4.5.7
The map Dz = DéL@) (see Theorem 4.5.2) sends (0,Z,(0j);,(N;);) to the
image of (Nl,...,N , ') € Dujtp in Dgy) (see Section 4.5./). Here F € Z and

N; is any element of the interior of o; whose image in o;r/0;—1 R coincides

LEMMA 4.5.8

Let 0 C gr be a nilpotent cone, let F € D, and assume that (0,F) generates a
nilpotent orbit. Let N € o, and let F' = exp(iN)F. Let M (o, W) be the relative
monodromy filtration of o with respect to W.

(1) 6(M(o,W),F") = 6(M(c,W),F) + N, where the last N denotes the

homomorphism grM(@W) — orM(@W) which is the sum of the maps gry M(eW) _,

griw(g W) (k€ Z) induced by N.
(2) ((M(o, W), F") = ((M(0, W), F).

(3) Sle(a,W) (F") = Sle (o W)( )-

Proof
Statement (1) follows from the definition of 4.
By (1), (2) follows from the facts that §(M (o, W), F) and N commute, that
N is of Hodge type (—1,—1) for F(gr™(@W)) and that (_; _; =0 in general.
Then (3) follows from (1) and (2). O

4.5.9

Let (0,Z,(0j)o<j<n, (Nj)1<j<n) € D 5[] F e Z, and N; be as in Section 4.5.6.
We show that the image of (Nl7 .. N ,F) € Dyijp in Dgr,(2) is independent of
the choices of ]\7]- and the choice of F € Z.

We prove that the associated element of Dgr 2y does not depend on the choice
of FeZ. If F' € Z, then F' =exp(iN)F for some N € or. Hence, by Lemma
4.5.8(3) applied to (o, F), which generates a nilpotent orbit, F(n) is independent
of the choice.

We prove that the associated element of Dgp,2) does not depend on the
choice of a lifting Nj of N;. If N]’ is another lifting of N;, then NJ’ = Nj + R;
for some R; € 0;_1 r. By Lemma 4.5.8(3) applied to (aj,l,exp(i]\ij)F(j)), which
generates a nilpotent orbit, F'(j_l) is independent of the choice by downward
induction on j.



386 Kato, Nakayama, and Usui

4.5.10

By Section 4.5.9, we have a map Dﬁz’[:] — Dsp,2)y which sends (o, Z, (05)o<;j<n,
(Nj)i<j<n) € D% [ to the image of (N, ..., Ny, F') € Dyjp in Dgr,2). Comparing
the definition of this map and the definition of the map v : Duz,val — Dgr,(2) (see
Section 4.5.1) given in [15, III, Theorem 3.3.1], we see that the composition
DtiE val = DﬁE 0 Dgy,(2y coincides with . Theorem 4.5.2(2) is proved.

4.5.11
We complete the proofs of Theorems 4.5.2(1) and 4.5.7. This map Dﬁzy[] —
i

3,va

Dgy,(2) in Section 4.5.10 is continuous, because D
and D?

3, va

I . .
| DSL(2) is continuous

L Dﬁz,[z] is proper and surjective.

4.5.12
Endow DﬁE [ with the new log structure from Section 4.3.3 on the sheaf of all

R-valued continuous functions. Consider the log structure on DéL(Z) in Theo-

#
=0

log structures. We check this on Ei i On the toric component of Eﬁ ]’ the

rem 2.7.14. We show that the continuous map D — DéL(Q) respects these

log structure is generated by t; := (y;41/y;)/? (1<j <n, yn41 denotes 1). Let
B be a distance to the boundary for ®, where ® is the set of M(o;, W), and
let 7: Gy g — [, Autr(gr!’) be the homomorphism whose w-component is
the 7 (Section 2.1.2) of the SL(2)-orbit in n variables associated to gr’¥ (Ny),...,
gt (N,), F(gr’¥)).  Then ﬁ(exp(zyzl iy; N;)F) = tu, where wu :=
B(r(t)~1 exp(X:?:1 iy; N;)F') is invertible in the ring of real analytic functions.
Hence, Dﬁzy[:] — DéL(Q) respects the log structures.

4.5.13
By Section 4.5.12, the map Dnz,[:] — DéL(Q) induces the continuous map D%,[Vall —
DéL(2) a1 Of associated valuative spaces. This proves the second part of Theorem

15.2(1).

4.5.14

Consequently, we have an amplified fundamental diagram in Section 0.1.4.
In the pure case,

DﬂE,[val] E Dsp2yval > Dpsval
} }
I D§w —  Dss
1
[\ Dsva Dﬁz’Val — Dﬁz,[:] LA Dsp(2)
+ }
'\ Dy ~ D,

which is commutative and in which the maps respect the structures of the spaces.
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5. Mild nilpotent orbits and the space Dg; ,, of SL(2)-orbits

In this section, we consider the spaces of mild nilpotent orbits and the space
D§L(2), which is closely related to mild nilpotent orbits. In Section 5.1, we give
the main definitions and results of Section 5. In the rest of Section 5, we give the
proofs of the results in Section 5.1. These results in Section 5.1 were obtained in
our joint efforts with Spencer Bloch.

5.1. Mild nilpotent orbits and the space DgL(Q)
Let £L=W_sEndg(gr'") be as in Section 1.2.2.

5.1.1
Let Dr‘filﬂ,d be the subset of Dy, (see Section 4.5.3) consisting of all elements
(N1, ..., Ny, F) satistying the following condition.

For any y; >0 (1 < j <n), there is a splitting (which may depend on (y;);)
of W which is compatible with 7, y; N;.

We have the following “SL(2)-orbit theorem for mild degeneration.”

THEOREM 5.1.2
Let (Ny,...,N,, F) € Dmild

nilp
(1) If yj/yj4+1 = o0 (1 <j < n, yp41 denotes 1), then 5W(exp(2?:1 1y,
N;)F) converges in L. Moreover, there are a, € L for m € N™ and € € Rs¢
satisfying the following (i) and (ii).

(1) X enn ([Tj=s x;n(j))am absolutely converges for x; € R, |X;| <e (1<
ji<n).

(ii) For y; € Rxo (1<j <n) such that t; := (y;+1/y;)"/* <e (1<j<n,
Yn+1 denotes 1), we have exp(Z?:l iy;N;)F € D and

6W(exp(2iyij)F) = Z (HtT(j)>am.
j=1 meN? j=1

(2) Let 7" : G}, g — G(gr") be the homomorphism whose Gwr(gr?) com-
ponent is the T* (see Section 2.1.2) of the SL(2)-orbit in n variables on gr!¥
associated to (gr'’V (Ny),...,ert¥ (N,), F(gr!V)). Then there are a,, € L for m €
N™ and € € Rxg satisfying the above condition (i) and the modification of the
above condition (i) by replacing 5W(exp(2?:1 iy;N;)F) with Ad(T*(t)) " ow
(exp(X2_y iy N;)F), where t = (t1,... ), t; = (yj11/y;)"/>.

(3) If yj/yj+1 — 00 (1< j<n, yny1 denotes 1), then exp(375_, iy; N;)F

. D*,mild
CONVETGES 1N SL(2) *

In fact, (3) follows from (2) by the definition of the structure of Dy, as an
object of By (log) given in Section 2.3.11.
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5.1.3
By Theorem 5.1.2, we have maps
i ild
Diiy' = £, Difiy' = Dy

by taking the limit of the convergence in Theorem 5.1.2.

5.1.4
We define the mild part Dglﬂd of the set of nilpotent orbits Dy, as the part of
points (o, Z) which satisfy the following condition.

(C) For each N in the cone o, there is a splitting of W (which can depend
on N) which is compatible with N.

For the other spaces of nilpotent orbits Dﬁz, DﬁE [ DﬁE [ and so on, we

val]’

define their mild parts Dﬁ’”rllld Duzn[lild Dﬁ’?ﬁ] and so on as the inverse images
of Dild,

5.1.5
In the above definition from Section 5.1.4 of the mildness, the following stronger
condition (C’) need not be satisfied.

(C’) There is a splitting of W which is compatible with any element N of
the cone o.

5.1.6

For example, in the case of Example II in [15, I and II] (the case of 0 —
HY(E)(1) = x — Z — 0, where E varies over elliptic curves), we had a nilpo-
tent orbit of rank 2, and that is a mild degeneration in the sense of Section 5.1.4
(i.e., it satisfies (C)), but it does not satisfy (C’).

THEOREM 5.1.7
1) There is a unique continuous map Dﬁ’Inlld — L which extends the map
[
D=L, x—ow(x).
2) There is a unique continuous map D™ — DX ynich extends the
NH SL(2)
identity map of D.
3) The map in (1) (resp., (2)) sends (o,Z,(0});,(N;); Dﬁ’mlld see Sec-
73

tion 4.5.5) to the image of (Ny,...,N,,F) € Dy in L (resp. Dgﬁl(];)d) under

the map in Section 5.1.3. Here N is as in Theorem /.5.7, and F' is any element

of Z.

Theorem 5.1.7(1) shows the convergence of Beilinson regulators in a family with
mild degeneration (see Section 7.2).
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5.1.8

We define a space DgL(Q)' Let D§L(2) be the subset of Dgf(l;l)d x L consisting

of all elements (p, Z,d) ((p,2Z) € Dg’;(l;l)d with p € Dgp,(2)(gr™)™~ and Z C D (sce
Section 2.3.2), § € L) satisfying the following conditions (i) and (ii).

(i) Let n be the rank of p, and let 0:= (0,...,0) € Z". Then ¢ is of Ad(7;)-
weight at most O.

(ii) For any F' € Z, dw(F) coincides with the component of ¢ of Ad(ry)-
weight O.

We define the structure of DgL(Q) as an object of By (log) by regarding D%L@)
(resp., DE™9 % £) as Y (resp., X) in Section 1.3.16. We have the evident mor-

SL(2)
phism
,mild
D<S>L(2) _>D§L(2) ’ (p,Z,5)'—>(p, Z)
of By (log).
5.1.9
Via the map

D — Dt X L, F = (F, 6w (F)),

we regard D as a subset of D§L(2)-

THEOREM 5.1.10

(1) Let Dt — Dgf(];)d x L be the map which sends (Ny,..., N, F) € DI
to the limit of (Fy,ow(Fy)), where y = (y;)i<j<n € R%, Fy = exp(3_j_, iy,
N)F, and y;/yj+1 = o0 (1 <j<n, yp+1 denotes 1). Then, the image of this
map is contained in D§L(2).

(2) There is a unique continuous map Dgfﬁld — D§L(2) which extends the
identity map of D. .

(3) There is a unique continuous map D%T\;ﬁl — DgL(2),val which extends the
identity map of D.

PROPOSITION 5.1.11
(1) The map Dgy o) — D2y (gr™)™ x spl(W) x L induced by Dg’ﬁr(l;l)d —
Dat,(2)(gr™')™ x spl(W) is injective, and the image of this map consists of all

elements (p, s,0) satisfying the following conditions (i) and (ii).

(i) ¢ is of Ad(7;)-weight at most 0.

(ii) Let (puwsPuw)w be an SL(2)-orbit on gr"' which represents p. Then the
component of § of Ad(7))-weight 0 is of Hodge type (< —1,< —1) with respect
t0 (Quw(ty. oo yt))w-

(2) If (p,Z,0) € DgL@) and if (p,s,0) is its image in DSL(Q)(ng)N X
spl(W) x L, then Z is recovered from (p,s,d) as follows. Under the embedding
D — D(gr") x spl(W) x L in Section 1.2.1, the image of Z C D coincides with
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(Z(p),s,00) C D(grt™') x spl(W) x L. Here 6o denotes the component of § of
Ad(r,)-weight 0.

5.1.12

By the weak topology of D<S>L(2)’ we mean the topology of D§L(2) as a subspace
of DSL(Q)(ng)N x spl(W) x L. We denote the topological space D<S>L(2) endowed
with the weak topology by Dg&;‘;k This weak topology is weaker than but need

not coincide with the topology defined in Section 5.1.8 (see Section 7.1.7).

REMARK 5.1.13

(1) Unlike other spaces of SL(2)-orbits (Dgy, ) DéL(Z)’ Déi(z), and so on),
D is not necessarily dense in DgL(Q) (even for the weak topology).

(2) The authors believe that Dy ,) belongs to Bg (log)™ and that this can
be proved by using the methods in Section 2.7, but they have not yet proved it.

5.1.1
The above results show that we have commutative diagrams
#,mild *,mild #,mild *,mild
D7 = Déue — Dgpp D ey = Déuoyva = Dsie)va
N + N i
# II i I
Ds 1 - Dgy 2y D 1vay - D312y var

The rest of Section 5 is devoted to the proofs of the above results.

5.2. Preparations on pure SL(2)-orbits
We further review pure SL(2)-orbits in one variable.

5.2.1
Assume that we are in the pure case of weight w, and assume that we are given
an SL(2)-orbit (p, ) in one variable. Let

N,N+69R

be as follows. Let p, :sl(2,R) — gr be the Lie algebra homomorphism induced
by p. Then N (resp., N*) is the image of (§§) (resp., (§)) in sl(2,R).

5.2.2
We have a direct sum decomposition

Hor = ED Hor,(k,r)
k>0

defined as follows. Let Z = Ker(N : Ho,r — Hor). Then Z =, >, Z(—x), where
Z () is the part of Z of 7*-weight —k. Let

Hor, (k) = (NT) Z(_py.

In particular, Z(_x) = Ho R, (k,0)-
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5.2.8
We have the following.

(1) Elements of Hy gk, have 7*-weight 2r — k.

(2) For each k>0, Hor, (k) := D, Hor,(k,r is stable under the action of
SL(2,R) by p. As a representation of SL(2,R), we have a unique isomorphism

Hor,(k,e) = Symk(A) ® Z(—k,

where A = R? = Re; @ Reg, on which SL(2,R) acts via the natural action on A
and the trivial action on Z_j), which sends v € Z(_j) on the left-hand side to
eb @veSymh(A)® Z (k) on the right-hand side.

(3) For e > 0, the kernel of N¢: Hy g — Ho r coincides with the direct sum
of HyRr,(k,r for k,7 >0 such that r <e.

(4) The filtration ¢(0) is the direct sum of its restrictions ¢(0),y to
Hy c,(k,ry for all (k,r). Hygr,k,y with Hodge filtration ¢(0). on Hoc (k)
is an R-Hodge structure of weight w + 2r — k.

(5) For any z € P1(C), the filtration ¢(z) on Hy ¢ is the direct sum of its
restrictions ¢(2)(x,e) to Ho,c,(x,e) for k> 0.

The filtration ¢(2)(x,e) is described as follows. In the isomorphism in (2), it
is given by ©(0)x,0) on Z(_p),c and the filtration on Ac whose FYis Ac, whose
F?is 0, and whose F'! is C - (ze1 +e3) (resp., Cey) if z € C (resp., if 2 = 00).

5.3. More preparations on SL(2)-orbits

5.3.1
Assume that we are given an SL(2)-orbit (py,¢.) on gr’ in one variable for
each w € Z. Let

E=WoEndr(gr") =@ Bw,  Ew=EDHomr(er) grl’,,).
w<0 a€Z

We apply our preparations in Section 5.2 to the SL(2)-orbit in one variable of
pure weight w induced on each E,, by (pa,va) and (potw, Patw) (@ € Z). By
Section 5.2.2, we have a direct sum decomposition

Ew = @ E'w,(k,r)'
k,r>0

LEMMA 5.3.2
We have that Ey, () Ew (o) C @ku’r,, Byt (k7 vy, where (K",r") ranges
over all elements of N XN such that v’ <r+r" and k" —2r" = (k+ k") —2(r+7r').

Proof
This follows from (1) and (3) of Section 5.2.3. O
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5.3.3
Let R{{t}} be the ring of power series in ¢ over R which absolutely converge
when [t] is small. We define subrings 20y, 2, B, B of R{{t}} ®r E as follows:

Q[O = E.7(.70) cA= Zt2TR{{t2}} PR Eo,(o,r)?

r>0
Bo =D " Fu ko) CB= t'R{{I}} Or Fu he):
k>0 k>0

For w <0, define the two-sided ideals of these rings as

WyRlo = WwEo,(o,O) CWyRl= thrR{{tz}} R WwE-,(o,T)v

r>0

WuBo=> t*WyEq (10) C WuB = > t*R{{t*}} ®r W Eq (1.0
k>0 k>0

LEMMA 5.3.4
We have, for w <0,

Ad(T* (t))Ww% =Wy, Ad(T*(t))Ww%O = Wy
These are direct consequences from the definitions in Section 5.3.3.

We will apply the following Lemma 5.3.6 in Section 5.4.4 (resp., in the proof
of Theorem 6.2.4) by taking A =C Qgr B (resp., A= WyEndc(Hg)).

5.8.5
Let A be a Q-algebra. For a nilpotent ideal I of A, we have bijections

exp: I —>1+1, log:14+1—1,

exp(x)zzﬁ, log(l—m):—zz
n=0 n=1

(these are finite sums, for « € I are nilpotent) which are the inverses of each
other. Let 1) (r > 1) be two-sided ideals of A such that IV > 1) 571G 5.
I 6 ¢ 10+9) for any r,s > 1, and 1) =0 for > 1. Let I =11 Then I is a
nilpotent two-sided ideal.

LEMMA 5.3.6
Let the notation be as in Section 5.3.5. Let M; (1 <j<m) be Q-submodules of
I such that

1 =H(m; N 1)

Jj=1

for any r > 1. If x € I, then there is a unique family (x;)1<j<m of elements x;
of Mj such that

exp(x) = exp(a1) - exp(am).
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Proof
This follows by an easy induction on 7 such that I(") =0. (]

5.4. Proof of Theorem 5.1.2

5.4.1
We first prove Theorem 5.1.2 in the case n = 1. We use the following part of the
SL(2)-orbit theorem in one variable of Schmid [21].

Assume that we are in the pure case. Then for y > 0, we have

exp(iyN)F = exp (g(y))T(yil/Z)r with r = exp(iN)F

for some convergent power series g(y) = Y. oy "am, in y~! with a, €
Endg(Hor) such that ag =0 and such that Ad(N)"*1a,, =0 for any m.

PROPOSITION 5.4.2

Let (N,F) e D;’}ﬂ)d (see Section 5.1.1) with one N. Let (WM, F) be the R-split
mized Hodge structure associated to the mized Hodge structure (WM, F), and
let r:= exp(iN)F. Then (W,r) is an R-split mized Hodge structure, and the

splitting sply, (r) of W is compatible with N.

Proof
This follows from [7, Lemma 2.20]. |
5.4.8
Let (N,F) € Drrﬁﬂgd with one N. Let r = exp(iN)F as in Proposition 5.4.2, and

let s = sply, (r) : gr'V’ = Hor, s = splyya) (F) = splyya (F) : ng(l) = Hor.
By Proposition 5.4.2, N is of weight 0 for s. Let 7* : G,,, — Aut(gr'V') be the
homomorphism associated to the SL(2)-orbit on gr'¥" in one variable associated
to (gtW(N), F(gr™)). (In the case gr'V(N) =0, 7* is defined to be the trivial
homomorphism.) Let y € R, and let ¢t = y~1/2,

For the proof of the case n = 1 of Theorem 5.1.2(1) and 5.1.2(2), it is sufficient
to prove that Sy (exp(iyN)F) and Ad(7*(t)) " '0w (exp(iyN)F) converge in L
when y — co. We prove it.

Note that the actions of 7(t) and 7*(¢) on D(gr'V') are the same.

5.4.4
Let the notation be as in Section 5.4.3. For y > 0, let g,,(y) for each w € Z be as
in the above result of Schmid from Section 5.4.1 for (gr'V(N), F(gr')), and let
9(y) =D, 9u(y) € E=WoEndgr(gr'"). By the above result of Schmid, we have

(1) exp(iygr™ (N)F(gr") = exp(g(y))m*(t)r(gr"), g(y),exp(g(y)) € A,
where gr'V' (V) is the map gr'V — gr' induced by N and 2l is as in Section 5.3.3.
Let h(y) = Ad(7*(t)) " 'g(y). Then

(2) h(y)eB
by Lemma 5.3.4.
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Let 6 =6y (F), and let ¢ be the corresponding ¢ (Section 1.2.5), so
that

(3) F = 5 exp(—¢M) exp(id™) (s0)) 1.

Write 51 exp(—¢™M)exp(i6M)(sM))~1 = exp(a)exp(B), where «,8 €
WoEnde(Ho,c) N WEQEndC(HO,c), « is of s-weight at most —1, and f is of
s-weight 0. By (3), we have

(4) F(gr") = exp(er (B)F(er"),
where gr'V(3) is the map gr'¥ — gr'' induced by 3. We have

(5) exp(iyN)exp(B)F =  sexp(iygr™ (N))exp(gr™ (8)F(gr') =
sexp(iygr” (N))F(gr") = sexp(g(y)) 7 (t)r(gr™)
where the first equality follows from N = sgr'V(N)s~! (see Proposition 5.4.2),
B=sBgr™(B)s~t, and F= sﬁ(grw), the second equality follows from (4), and
the last equality follows from (1).

Since s(MM (sM)=1 and sM¢M(sM)~1 commute with N, a and 3 com-

mute with N. Hence, we have
s tas e W_ 2.
We have
exp(iyN)F = exp(iyN) exp(a) exp(B) F' = exp(a) exp(iyN ) exp(8) F
= exp(a)sexp(g(y)) T (t)r(egr')
= sexp(g(y)) eXp( ()7 (t)r(e"™),

where a(y) := Ad(exp(g(y))) ' (s 'as). Here the third equality follows from (5).
Since s~ tas € W_12y and exp( (y)) €A, we have a(y) € W_12. Hence,

Ad(7* (1)) aly) e W4 B.
To apply Lemma 5.3.6, we use the direct sum decomposition
CQRr W,lEndR(gr )= M & M} & M,

where M{ = W_1Endg(gr'"V), M} is the —1-eigenspace of the complex conjuga-
tion acting on the (< —1, < —1)-Hodge component of C®r W_;Endg (gr'V) with
respect to r(gr'), and M} = FO(C®g W_1Endg (gr'")) for the Hodge filtration
r(gr'). In Lemma 5.3.6, consider the case

A=3, 1D=w_4, 1=1W",

M; =Pt R{{t}} or M . (1=1,2,3).
k>0

Then the assumption of Lemma 5.3.6 is satisfied. By Lemma 5.3.6, we have
exp(Ad(7*(t))  a(y)) = exp(aly)) exp(ib(y)) exp(c(y)),
where a(y) € My, ib(y) € Ms, and ¢(y) € Ms. Then

exp(iyN)F = sexp(g(y)) 7*(t) exp(a(y)) exp(ib(y))r(gr').
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Hence,
Sw (exp(iyN)F) =
)F) =

Ad(T*(t)) ow (exp(iyN)F

Ad(exp (g(y)) )Ad(T* (t))b(y) e,

Ad(cxp(h(y)))b(y) cB.
Hence, dyw (exp(iyN)F) and Ad(7*(t)) " dw (exp(iyN)F) converge when y — co.

5.4.5
We prove Theorem 5.1.2 in general. Let (N1,...,N,,F) € Dyip. Let 7 (resp.,
m™):GJ, g = [, Autr(gr,)) be the homomorphism whose w-component is the
(resp 7*) (see Section 2.1.2) of the SL(2)-orbit in n variables on gr!? associated
o (gry (N1),...,gry (Nn), F(gry))). Note that the action of GI, g on D(gr')
via 7 and that via 7* are the same.
By the SL(2)-orbit theorem in n variables (see [14, Theorem 0.5]),

Ad(r(®) " ow (exp (P imNi)F) (= (oo tadoty = (31/93) 2 yms1 = 1)
j=1

is a convergent series in t1,...,t,. Hence, (SW(exp(Z?:l iy;N;)F) and
Ad(T*(t))’léw(exp(g:;.l:1 iy; N;)F') have the shapes of Laurent series

sefool$5)) = (10) " 3 (11 4)en

J=1 N» 1<j<n
Ad(T*(t))—léw(exp(zn:iyij>F) = (ﬁtj)*s, 3 ( I1 tmm)
J=1 j=1 meN™ 1<j<n

for some 7,5 € N and a,,, by, € £, where the sums ) .. are convergent series.
Now assume (Nyp,...,N,, F) € D;‘i‘ﬁ)d. We prove that we can take r=s=0
(i.e., these series are actually Taylor series). It is sufficient to prove that, when
we fix j and fix a sufficiently small ¢, > 0 for k # j, then these series become
Taylor series in one variable in ¢;.
But in this situation, the first Laurent series becomes dyy (exp(iy’ N')F') with

(N',F'") € Dyp, where

y' =157 —tQZyka—Z< H tZ2>Nk,

k=1 k<t<nJl+#j

F’:exp( Z iyka)F:exp(i Z (Ht22)Nk>F
k=j+1 k=j+1 =k
We consider the second Laurent series. Let T]* Gy R — GR(ng) be the
restriction of 7* to the jth G,, r. It is sufficient to prove that, when the ¢;’s
for k # j are fixed, 0(t) := Ad(7}(¢;))~ 16W(exp(Z;’:1 iy; N;)F') is a Taylor series
in t;. Let T;” G R — GR(gr ) be the 7* of the SL(2)-orbit in one variable
associated to (N', F'), where N’ and F’ are as above. By the case n =1 applied
o (N',F"), §'(t) :== Ad(7;”(t;)) " ow (exp (32—, iy; Nj) F) is a Taylor series in
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t;. Let W) be the relative monodromy filtration M(Ny + - -- + N;,W). By [14,
Proposition 4.2], there is a convergent Taylor series u =, ([T, T
intjq1,...,t, with u,, € Wﬁjl)gR such that ug =0 and such that

*,/

T; (t;) = exp(u)7; (t;) exp(—u).
We have
() = Ad(exp(v) exp(—u)) _15'(t), where v = Ad (7} (t;)) .

Since u,, € ijl)gR, v is a Taylor series in ¢;. Hence, 6(t) is a Taylor series in t;.

5.4.6
In the mild SL(2)-orbit theorem (see Theorem 5.1.2(1), 5.1.2(2)), the power series
depend real analytically on (N,..., N,, F) in the following sense. Let A be a real
analytic manifold, and let A = gr, a—= N;j o (1<j<n)and A — D, a+— F, be
real analytic functions. Assume that the N; ,’s are nilpotent and commute with
each other, and assume that (N1 4, ..., Nn o, Fa) generates a nilpotent orbit for
any «. Assume further that, for each 1 < j < n, the relative monodromy filtration
M(Ny+---+ N;,W) is independent of «. Then the ¢ in Theorem 5.1.2(1) and
5.1.2(2) can be taken to be constant locally on A, and the coefficients of the
power series in Theorem 5.1.2(1) and 5.1.2(2) are real analytic functions on A.
This follows from the corresponding result [14, Proposition 10.8] (see [9,
Remark 4.65(ii)] for the pure case) for the original SL(2)-orbit theorem and from
the above proof in Section 5.4.5 to reduce the mild SL(2)-orbit theorem to the
original one.

5.5. Proof of Theorem 5.1.7
We prove Theorem 5.1.7. We first prove the following result.

PROPOSITION 5.5.1
Let (0,Z,(05)o<j<n: (Nj)i<j<n) € D%rﬁld (see Section /.5.5). Then for N; as in

Section 4.5.6 and for F € Z, the image of (Nl, ooy Ny, F) € Drrﬁﬂ)d n Dg,}:r(lél)d <L

(see Theorem 5.1.2) is independent of the choices of Nj and F.
Proof

For another choice (N{,...,Z\?wa’) of (Ni,...,Ny, F), we have N = Ny, J\NZJ’ =
Nj + Rj_q for 2<j <n, and F' =exp(iR,)F for some R; € o; r. We have

exp(jz1 iyjNJ{)F/ = exp (; 1y, (Nj + (yj+1/yj)Rj))F,

where y,, 1 denotes 1. The limit of this for y;/y;4+1 — oo coincides with the limit
of that for R; =0 by Section 5.4.6. O



Classifying spaces of degenerating mixed Hodge structures, IV 397

5.5.2
#,mild

By Proposition 5.5.1, we have a map Dy — Dgﬁ?;l)d x L. Let Dﬁzrf]’:fl —

DgLH(Hld x L be the composition with Dg“;gld — Dﬁ’rﬁld (see Section 4.4.6). Since
the last map is proper surjective (see Section 4.4.6), Theorem 5.1.7 is reduced to

the following.

PROPOSITION 5.5.3

The map D%rs:ld — DgL"(’;l)d x L is continuous.

Just as [15, III, Theorem 3.3.2] was reduced to the case y3 , =y of [15, III,
Proposition 3.3.4] (see Section A.3.4), Proposition 5.5.3 is reduced to (Ag) of the
following Proposition 5.5.4. The proof of Proposition 5.5.4 given below is similar
to the proof of [15, III, Proposition 3.3.4].

PROPOSITION 5.5.4

Let the situation and the assumptions be as in [15, III, Section 8.3.3] with

Yx.t =Y there. Assume that there is € € Rso such that, for any (ys)ses € RS

satisfying the following condition (C), there is a splitting of W (which may depend
n (ys)s) which is compatible with ¢ ysNs.

(C) If1<j<n, s€S;, and ys #0, then yy;* <e for any t € S»;41 and
lyiys ' — aragt| < e for any t € S;.

Note that (Ni,...,N,,F) € Dfﬂ}llod by this assumption. Let 7,7 : G g —

Autr(Hor) be the homomorphisms given by the SL(2)-orbit in n variables asso-
ciated to (N1,...,Np, F). Let

0 = lim oy (exp (En: iyij) F), & = limAd(T*(t)) —15W (exp (i: iyij> F),
j=1 Jj=1

where y;/yj41 — 00 (1 <j<n, ypop1 =1) and where t = (t1,...,t,), t; =
(Yjr1/y;) /2. For 1<j<mn+1, let ex>j = exp(zseszj iyxnsNs) € Ge. Then
we have the following (A;) for 0 <j <n.

(Aj) for1<j<mn:Lete>1.If X is sufficiently large, then there are Ff\]) eD
satisfying the following (1)-(4).

(1) 95, d(Er F) 0.

2 5)sES<;rEN> 1F( 7) generates a nilpotent orbit.

<j >j+ 4

(3) 5W(exp(zseszy>\’sNS)F§\J)) converges to 0.

(4) Ad(T*(£) " 0w (exp(X o g in s No)FY)  with t = (t1,...,t,), t; =
(Ynejir/Yne; )/ converges to 8.

(Ao): Let e > 1. Then if X\ is sufficiently large, we have the following (3)
and (4).

(3) dw (exp(d_ csiyn,sNs)F)) converges to 6.

»Cj
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(4) Ad(T*(t))*léw(exp(ZsesiyA’SNS)FA) with t as in (A;)(4).

5.5.5

We prove Proposition 5.5.4 by downward induction on j. For 1 < j <n, let 7; be
the restriction of 7 to the jth factor of G, r, and let 7>, = HZ:]- Tk ((Unenes/
Yr.cr)/?) € Gr. Then (A,,) follows from [15, ITI, Section 3.3.3, (5)] for j =n with
YX. = Y, and from Section 5.4.6.

Assume that 0 < j <n. We prove (A;) assuming (A,11). Take sufficiently
large integers e, e’,e” > 0. Take F;\jﬂ) as in (A;41) with e replaced by e+¢€’ +¢”.
In the case 1 < j <n (resp., j =0), let F;\]) be Fy in [15, III, Section 3.3.3, (5)]
with e there replaced by e+ e’ +¢€” (resp., let F)(\O) =F)).

We have

et+e'+e’ j j+1

(5) yste e a(FY FITY) 0.

By [15, III, Lemma 3.3.6] rhensi YT
T§j1+16x,zj+1Fx(]) : _
(6) y5 Az ex s PN 5l en s FY ) =0,

By the mild SL(2)-orbit theorem in Theorem 5.1.2 for

converges. Hence, by (5),

converges, and we have

_ : - j+1
(N)sese, moimerzinFY))  and  (No)ses, 7o qea s FY D),

and by Section 5.4.6, we have the following.
(7) The four sequences

ax —6W(T>J+lexp<22y)\s )F )

ses

by := 0w (7'2_]'1+1eXp< WY, s )F(J—H))

seS
a\:=Ad(7*(t)) 5W (7—>J+1 exp (Z iYn.s )F(J))
seS
I)\ = Ad(T*(t)) 6W (T>]+1 eXp(ZZy)\ s s) J+1))
sesS
converge in £, and we have
y§\70j+1 (aA - bA) - 0’ yi,cj'+1 (al)\ - bl)\) — O

By the induction assumption on j, exp(}_ g iyA,SNS)F)(\jH) converges to &
and Ad(r*(¢))~! exp(zsesiy,\,st)F)(\jH) converges to ¢'. Hence, by (7),
exp(zsesiyA,st)F)(\j) converges to § and Ad(m*(¢)) !exp(},cq iyA,SNS)Ff\j)
converges to ¢'.
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5.6. Proofs of other results in Section 5.1

LEMMA 5.6.1
Let x = (Ny,...,N,,F) € Dg;{;d, and let p € DSL(Q)(ng)N be the image of x. Let
0=(0,...,0) e Z".

(1) Let 6 be the image of x in L. Then § is of Ad())-weight at most 0.

(2) Let &' € L be the limit of Ad(7) () ow (exp(37_, iy; N;)F) (t = (t1,
cootn)ty = (yj+1/yj)1/2, Yn+1 denotes 1, t; —0). Then &' coincides with the
component of § of Ad(7))-weight 0.

Proof

Let d(y) = owl(exp(Xj_ iy;N;)F), and let &'(y) = Ad(ry(t) 'ow
(exp(3_7_, iy;N;)F), where t; is as above. Then d(y) and ¢'(y) are convergent
series in ty,...,t,. For a € Z", let d, (resp., 8., 6(y)a, 6'(y)a) be the component
of § (resp., &', d(y), '(y)) of Ad(7))-weight a. Then 6(y), = (H?Zl t?(j))é’(y)a.
Hence, d(y), is divisible by [}, t}nax(a(j)’o). Hence, the constant term d, of 6(y),
is 0 unless a < 0. On the other hand, by the reduction to the case of one N, we

have

ol ,
e Y (T8 )Rt ot} - (MW £):
keN™ j=1 j=1

Hence, the constant term of ¢’(y) belongs to (;_, Wo(j)ﬁ. That is, ¢’ is of Ad(7)-
weight at most 0. For a € Z" such that a < 0, the constant term ¢/, of §'(y), =
H?Zl t;a(j)é(y)a is 0 unless a = 0. This argument also shows that do =d5. O
5.6.2

We prove Theorem 5.1.10(1). By Lemma 5.6.1, it is sufficient to prove that the
element ¢’ € £ in Lemma 5.6.1(2) belongs to L(r), where r = (0 (7,...,%))w-
Since r(y) ;=77 (t)~! exp(zyzl iy; N;)F(gr"") converges to r, £(r(y)) converges

P
to L(r). Since &' (y) € L(r(y)), its limit ¢’ belongs to L(r).

5.6.3

We prove Theorem 5.1.10(2). Let s € spl(W) be the image of x (see Lemma 5.6.1)

in spl(W). Consider the element (p,Z) of Dgf(lél)d (see Section 2.3.2), where Z

is the subset of D whose image in D(gr'") x spl(W) x L is (Z(p),s,d0). This

element exists uniquely by Section 5.6.2. We show that F} := GXP(Z?ﬂ iy; N;)F
. *,mild

converges to (p, Z) in DSL(z) )

Let @ be the set {WM (gr™),..., W™ (gr")} of weight filtrations on gr'’
associated to p. Fix a distance 3 : D(gr'V) — RY, to ®-boundary. Let
Dgf(lg)d (®) = Dgr,2)(gr*")™ x spl(W) x L be the map v, g in Proposition 2.3.9,
where a = 7,. Then v, 5(p, Z) = (p, s, Ad(7,(B(r))) "*do). Hence, it is sufficient to
prove that v, 5(F,) € D(gr"') x spl(W) x L converges to (p, s, Ad(7;(3(r))) *bo).
It is sufficient to prove that Ad(7}(8(F,(gr'"))))"*é6(y) converges to
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Ad(7}(B(r)))"'do. But this is deduced from the fact that 3(F,(gr"))t™" con-
verges to 3(r).

5.6.4

We prove Theorem 5.1.10(3). By Theorem 5.1.10(2), it is sufficient to prove the
compatibility of the map Dﬁ’nﬁld — Dg;, SL(2) with log structures. This is reduced
to the pure case treated in Section 4.5.12, because the log structure of DSL( 2) is

the inverse image of that of Dgy,2)(gr™")™

5.6.5
Theorem 5.1.11 follows from Lemma 5.6.1 and Theorem 5.1.10(1). These com-
plete the proofs of the results in Section 5.1.

6. Complements

In Section 6.1, we give properties of the extended period domains. In Section 6.2,
we show that for nilpotent orbits in one variable, we have stronger results (see
Theorems 6.2.2, 6.2.4) which connect the world of nilpotent orbits with the world
of SL(2)-orbits and Borel-Serre orbits. In Section 6.3, we consider extended
period maps.

6.1. Global properties of the extended period domains

THEOREM 6.1.1
i+ = ,BS I
Let X be one of D& ), Dgila): Diiays Diiayr Déneyr Peswals Dspa) vars
D§£(2)7val, DgL(2),val’ D%L(Z),val’ Dﬁz’[:], or Dﬂz,[val]' Let T be a subgroup of Gz.
(1) The action of T' on X is proper, and the quotient space T'\ X is Haus-

dorff.

(2) Assume that T is neat. Let v €T, let p€ X, and assume yp =p. Then
v=1.

(3) Assume that T is neat. Then the pmjection X — F\X is a local homeo-
morphism. Further, for X = D§L(2)7 DSL(z), DsL(z) or DSL(Z)’ there is a struc-
ture on the quotient such that the projection is a local isomorphism in Bg (log).

Note that the corresponding results for Dgg , DéL(2 and DSL(2 and for Dﬁ

and ngal have already been proved in [15, I, Theorem 9.1], [15, II, Theorem
3.5.17], and [15, III, Theorem 4.3.6], respectively.

Proof

Statement (3) for X follows from (1) and (2) for X. Hence, it is sufficient to
prove (1) and (2). Since we have continuous maps D§L(2) val — DBs,val = DBs
and Dy va — Dx ) — I'\ Dz which are compatible with the actions of I', the
results for D§L(2) val» DBs val, Dx [val), and Dy [} follow from the results for Dps
and I'\ Dx. Since D§L(2),va1 — DgL(Q) is proper and surjective, the properness
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of the action of I' on Dg; ) follows from that for Dg; ., Statement (2) for

D§L(2) follows from the L-bundle property (i.e., Theorem 2.3.14 for situation

,val®

(a) in Section 2.3.5) and the result for the pure case. Since there are continuous
maps D§L(2) val D§L(2) — D§L(2) which are compatible with the actions of I,
the results for D%L(z) and DgL(z),val follow from the result for DgL(z)' O

COROLLARY 6.1.2
The space X in the above theorem is Hausdorff.

This is obtained from the above theorem by taking I' = {1}.

COROLLARY 6.1.3

Let X = DSL(2) Déi(Q), Dg; 5 L(2)7 OF DSL(2) Let T be a neat subgroup of Gz. Then
there is a unique structure on T'\ X as an object of B (log)™ (see Section 2.7.2)
such that the projection X —T'\ X is a morphism in By (log)t which is locally
an isomorphism.

Proof
This follows from Theorem 6.1.1(3) and the corresponding results for DéL(Q) and
Déi(z) in [15, II, Theorem 3.5.17]. O

6.2. Results on nilpotent orbits in one variable

We prove Theorems 6.2.2 and 6.2.4 on nilpotent orbits in one variable. In Sec-
tions 6.2.5-6.2.14, we give a counterexample for the extension of Theorem 6.2.2
to nilpotent orbits in many variables.

6.2.1

Let (Duz,[:])’ C Dﬂz,[:} be the union of the two open sets Dgrﬁld (see Section 5.1.4)

and the inverse image of Dgy,2)nspt DY Dg: 0= D SL(z) 10 Theorem 4.5.2(1).
Then (D}, ;)" is the union of Du’rﬁld and the set of the points p of DL 5,1 Such
that if Ny,..., N, (ordered) is the monodromy logarithms associated to p, then
(W, N7) does not split. The morphisms Du’mlld — Dgy (o) (see Theorem 5.1.10,

NE
Section 0.2.3) and Dgr,(2),nspl — DSL(2) (see Section 2.5.6) induce a morphism

(D%19)' = Doy
Let (DﬁE [Val]) be the inverse image of (ng [:])’ in Dﬁ2 vai- Then we obtain

the induced morphism (Dg [val])’ — DEL(z) va1 and a commutative diagram

W
(Duz,[val])' = Dipe)val
il
¥
(Duz,[;])/ = Dgp

Let Z be as in Section 0.1.5. Since (DﬁE)’ = DuE, we have the following.
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THEOREM 6.2.2
The identity map of D extends uniquely to a continuous map

DﬁE — Dgp0)

,val

and, hence, extends uniquely to a continuous map DﬁE — DBg val.-

REMARK 6.2.3
e image of DZ in Dgy (9 is contained in Dgy 9y <1 for both structures
1) The i f DL in Dgy ) is contained in Dgr,g), <y for both struct
I, IT of Dg,(2y. (We denote by <1 the part where the log structure is of rank at
most 1.)

(2) However, the image of DﬁE in DgL@) is not necessarily contained in
D§L(2) <1- (This is seen in Section 7.3.9 below.) Hence, the morphism in Theo-
rem 6.2.2 cannot be obtained as the composition DﬁE — D§L(2),§1 &~ D§L(2),§1,val'

e first arrow here need not exist.) For p € DZ, it can happen that the image

The first h d not exist.) F DL, it can h that the i
of pin D§L(2),val
does not have (see Sections 7.1.11, 7.3.8 below).

(3) The image of DL™® — Dgf(lél)d (see Section 2.1.4) is contained in

*,mild
DSL(Z),Sl'

has some information about p which the image of p in D§L(2)

THEOREM 6.2.4

Let p = (R>oN,exp(iRN)F) € DﬁE with N # 0. Let W' =W be the rela-
tive monodromy filtration of N with respect to W. Let (W’,F) be the R-split
mized Hodge structure associated to the mized Hodge structure (W', F), that is,
splyy (F)(F(gr"")) (see Section 1.2). Then the following conditions are equiva-
lent.

(i) p belongs to D™,
(ii) exp(iyN)F converges in Dgy ) when y — oo.
(iil) dw (exp(iyN)F) converges in L when y — co.
(iv) The image of p in Dg1 ) (see Theorem (.2.2) belongs to Dgg?;l)d.
(v) The image of p in Dgs (see Theorem 6.2.2) belongs to DRI,
(vi) The image of p in Dsy(2) belongs to Dsy2)sp1 (see Section 2.5.0).
(vii) dw (exp(iN)E) =0.
(viii) The splitting sply, (exp(iN)F) of W is compatible with N .
Proof
We have proved (i) = (ii). (ii) = (iii) is clear. We know (ii) = (iv) < (v), (v)
(vi) & (vii). (viii) = (i) is clear. It is sufficient to prove the implications (iii)
(vii) and (vii) = (viii).

Let s = sply (exp(iN)F), N = gtV'(N) € @,, Hom(gr!¥,gr), and Ny
sNs~'. We prove (vii) = (viii). Assume (vii). Then exp(iN)F = s(exp(i
F(gt™)) = exp(iNy)F. For the mixed Hodge structure (W’ exp(iN)F)

4

|
=1
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(W', exp(iNo)F), we have N = 8y (exp(iN)F) = oy (exp(iNo)F) = Ny and
(viii) holds.
For the proof of (iii) = (vii), we first prove the following claim.

CLAIM
Sw (exp(iN)F) is of W' -weight at most —1.

Proof of Claim

Let A =WyEndc(Hoc). For 7> 1, let I be the two-sided ideal W_;A N
W', A of A and let T =1, Let M; =1 NEndg(Hr). Let M, be the part
of iM; C I cousisting of all elements which belong to the (< —1,< —1)-Hodge
component of A with respect to exp(iNg)F. Let M3 be the part of I con-
sisting of all elements which belong to FA with respect to exp(iN )f?‘ Then
we have 1) = (I N M) @ (I™ N My) @ (I N Ms) for any r > 1. We have
exp(iN)F = exp(x) exp(iNo) F for some x € I. Hence, by Lemma 5.3.6, there are
x; € Mj (j =1,2,3) such that exp(iN)E = exp(z1) exp(z2) exp(z3) exp(iNo) F =
exp(z1) exp(x2) F = s exp(id) exp(iN) EF(gr'™V'), where s’ = exp(x1)s € spl(W) and
i6 = s xys. We have oy (exp(iN)EF) =6 € W', Endg (grl). O

Now we prove (iii) = (vii). Assume that dy (exp(iN)F) # 0. By the claim,

there is w < —1 such that the component of dy (exp(iN)F) of T-weight w is
nonzero. Since Ad(7(/y))ow (exp(iyN)F') converges to Sw (exp(iN)F) when y —
00, dw (exp(iyN)F) is Ad(7(,/y)~")B(y), where B(y) converges to an element
whose part of weight w is nonzero. Hence, the part of the 7-weight w of

Sw(exp(iyN)F) is y~*/2C(y), where C(y) converges to a nonzero element, and

hence diverges. U
6.2.5 . |
We have constructed CKS maps D%nﬁld — D;Lr’(l;l)d (see Theorem 5.1.10) and

DnE = Dg 9 (see Theorem 6.2.2). In the rest of Section 6.2, we show an example

of o of rank 2 such that there is no continuous map Dg’val — D§L(2) which extends
the identity map of D.

6.2.6
Take an integer m > 1. (The case m > 3 will be a crucial example.) Let Hy be of
rank 2m + 1 with base e; (1<j<m),e; (1<j<m),ande.

The weight filtration is as follows. W_,,_1 =0. W_,, is generated by e; and
ej (1<j<m). W_q1=W_,,. W, is the total space.

We have Ny, Ny defined as follows. Nie =0, Nye; = e;. Nle; =0. Nae=¢el,,
Noej =e;_1 and Nge;- = 6;—71 for 2<j <m, and Nae; = Noe| =0. Let o be the
cone generated by Ny and Ns. Note that (W, Ny) splits, but (W, N3) does not
split.
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6.2.7
For j =1,2, let W) be the relative monodromy filtration of N; with respect to
w.

We give a splitting of W), which is compatible with N, as follows. e is of
weight 0. e; is of weight —m + 1, and e} is of weight —m —1 (1 <j <m).

We give a splitting of W® | which is compatible with Ns, as follows. e is of
weight 0. e; is of weight —2(m —j), and €’; is of weight —2(m—j+1) (1<j <m).

6.2.8
Define aq,as : Gp,r — Autr(Ho r) by using the above splittings of W@ and
W@ respectively. Then a; and s commute. Define oj,a3 : G, r —
Autr(Hor) by af(t)e =e and o (t)z =t"a;(t)x for z € W_p,.

Let

t(y) = on ((y2/y1)"?) o2 ((/12)'?), () = oF ((y2/11) ") a3 ((1/y2)"/?).

6.2.9
We have

Ad(t(y))il(ylj\ﬁ +yaN2) = N1+ Noy,

where Ny, coincides with N on e; and e (1 <j<m), but Ny e = (y2/
y1)mHt/2¢! and the last element converges to 0 when y; /y2 — oo. We have
—1
Ad(t*(y)) (1N +y2No) = N1+ Ny,
where Nj , coincides with Ny on e; and e/ (1 <j <m), but N3 e =uye;,, where
m/2 —1/2 (m+1)/2
wy = (ya/y) 2y =y O,

6.2.10
Note that u, need not converge when y; — 0o and y; /y2 — 0.

0.2.11

Let F be as follows. F' =0. F° is generated by e and e,,. F~7, for 1<j <
m — 1, is generated by F~7*%, e, ;, and e, ;. F~™ is the total space. Then
(N1, Na, F) generates a nilpotent orbit. Hence, exp(iy; N1 + iya N2 ) F, as ya — 00
and y; /y2 — 00, converges in D!

o,val*

LEMMA 6.2.12
Let the notation be as above. If m > 3, then exp(iy1 N1 + ty2No)F', as ya — 00
and y1 /y2 — 00, need not converge in D§L(2)'

This follows from the following result.

LEMMA 6.2.13
Let the notation and the assumption be as above. Let F, :=t*(y) " exp(iy1 N1 +
iyaN2)F. Then, ow (Fy) does not converge in L when yz — 0o and y1 /ys — oc.
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6.2.1/

We prove Lemma 6.2.13. Since F, = exp(Ad(t*(y)) ' (iy1 N1 + iyN2))F, F, is
described as follows. F,} = 0, F) is generated by e+ ;" i* - k!"1 Uy €, it
and exp(iN1 + iNz)em, ;7 (1 <j<m —1) is generated by Fy’ﬁl, exp(iNy +
iNz)em—j, and exp(iNy +iNz)e;, .y, and F,"™ is the total space.

The Hodge type of gtV of F, is that the (j,—m — j)-Hodge component is
1-dimensional if 7 = 0,—m, is 2-dimensional if —1 > j > 1 —m, and is 0 oth-
erwise. dw (F),) sends e to the sum of the (j,—m — j) components of v, :=
Zl<k<m7k:0dd(—l)(k’1)/2 kTt eey pyq for =1>5>1—m.

CLAIM
vy does not belong to the ((0,—m) + (—m,0))-Hodge component of gr',. .

By the claim, v, is u, times a nonzero element which is independent of y1, 5.
Hence, when y1 /ya,y2 — o0, v, need not converge in L.

We prove the claim. Assume that v, belongs to the ((0,—m) + (—m,0))-
Hodge component of gr'¥, . Then we should have

S e
1<k<m,k:odd
=aexp(iN1 + iNa)en, + bexp(—iN1 — iNa)en,

for some a,b € C. If V' denotes the C-vector space generated by e; (1< j<m)
and €} (1 <j <m —3), we should have

em — (1/6)en, o = a(iein — €1~ (i/2)e;n_2)
+b(—iey, —el,_1 + (i/2)e},_) mod V.
(To get this, use (Ny + No)* = EN; Ny~ + N¥, and hence, exp(iN; + iNy) =
L4500 (% (k—1)1=1 - Ny Nyt i - k1=1 . NJ).) By comparing the coefficients
of e/, _;, we have a + b= 0. Hence,
e, — (1/6)el, o =a-2i- (e, —(1/2)e],_5) mod V.

This is impossible.

REMARK 6.2.15
We do not know whether the identity map of D always extends to a continuous

— D%

#
map Dy, SL(2),val OF not.

J[val]
6.3. Extended period maps
The following is a modified version of [15, III, Theorem 7.5.1(i)].

THEOREM 6.3.1

Let S be a connected, log smooth, fs log analytic space, and let U be the open
subspace of S consisting of all points of S at which the log structure of S is triv-
ial. Let H be a variation of mized Hodge structure on U with polarized graded
quotients for the weight filtration and with unipotent local monodromy along
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S\ U. Assume that H extends to a log mized Hodge structure (see [15, III, Sec-
tion 1.3]) on S (i.e., H is admissible along S\ U as a variation of mized Hodge
structure). Fiz a basepoint w € U, and let A = (Ho, W, ({:;")w)w, (A"9)p.q) be
(Hzu, W, ({*, ) w,u)w(the Hodge numbers of H)). LetT' be a subgroup of Gz which
contains the global monodromy group Image(w1(U,u) — Gz), and assume that T
is neat. Let ¢ : U =T\ D be the associated period map. Let SEf]’g =S58 x4 St
let stagl] =58 x ¢ Spval); and regard U as open sets of these spaces.

Then we have the following.
(1) The map ¢ :U =T\ D extends uniquely to continuous maps

SE=T\Déry  Spoy

(2) Assume that the complement S\U of U is a smooth divisor on S. Then
the map ¢ :U — '\ D extends uniquely to a continuous map

S8 =T\ DéL(Q),val

=TI\ DéL(Z),

val*

and hence extends uniquely to a continuous map Slog I'\ Dgs val-

Proof

Statement (1) is a modified version of [15, III, Theorem 7.5.1(i)], which treated
the extended period map S1% — D{; (5, where 518 is the topological space
defined in [17, Section 3.6.26]. This map factors through the quotient space S%f]’g

of Sgﬁ as is seen by the arguments in Section 4.5.9. Since S‘]f;% — Sy, is a proper
surjective continuous map, the map Sp) —I"\ DéL(Z) is continuous. The last map
is compatible with log structures as is seen by the arguments in Section 5.6.4
and, hence, induces a continuous map S’E\?fl] — F\DéL(2),val‘

By using Theorem 6.2.2, (2) is proved similarly to (1). |
In the rest of this section, we consider mild log mixed Hodge structures.

PROPOSITION 6.3.2

Let o be a rational nilpotent cone (it is an R>o-cone generated by rational ele-
ments) in gr. Assume that there is F € D such that (o, F) generates a nilpotent
orbit. If (W, N) splits for any rational element N of o, then (W,N) splits for
any element N of the cone o.

Proof
We may assume that N is in the interior o~ of . This is because if we denote
by o’ the face of o such that N belongs to the interior of ¢’, then (¢/,exp(iN')F)
generates a nilpotent orbit for some N’ € o~ and hence we can replace o by o’.
Assume N € 05¢. Let F be the R-split mixed Hodge structure associated to
the mixed Hodge structure (M(W,o),F). Then exp(iN')F € D for any N’ €
0so. Hence, as the composition of the continuous map D — L, = +— oy (z)
and the continuous map -9 — D, N’ +— exp(iN’)ﬁ‘, the map osg — L, N’ —
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dw (exp(iN')F) is continuous. By the part (i) = (vii) of Theorem 6.2.4, the last
map sends all rational elements of o~y to 0. Hence, it also sends N to 0. By the
part (vil) = (i) of Theorem 6.2.4, this shows that (W, N) splits. O

6.5.3

Let B(log) be the category of locally ringed spaces over C endowed with fs log
structures satisfying a certain condition, defined in [17] (see [15, III, Section 1.1]
for a review). Let S be an object of B(log), and let H be a log mixed Hodge struc-
ture on S with polarized graded quotients for the weight filtration. By Proposition
6.3.2, for s € S and for t € S'°8 lying over s, the following two conditions (i) and
(ii) below are equivalent. Let

7 (s1°8) = Hom((Ms/(’)g)s,N) C 1 (s8) = HOIH((Ms/Og)S, Z),
71 ('8, Rx0) := Hom ((Ms/0%)s, RE) C R @ mi(s'%)
=Hom((Ms/0%),s, R*%).
Consider the action p of 7 (s!°8) on Hz_, and consider the homomorphism
log(p) : R® m1(5'°8) — Endr (Hr.1), a®~+alog(p(7))-
Let W be the weight filtration on Hg .
(i) For any v € m1(s'°8, R>0), (W,log(p)(v)) splits.
(ii) For any v € 7 (s'°8), (W,log(p(7))) splits.

We say that H is mild (we also say H is of mild degeneration) if the equivalent
conditions (i) and (ii) are satisfied for any s and ¢.

LEMMA 6.3.4

Let S and H be as above, and assume H is mild. Let S — S be a morphism in
B(log). Then the pullback of H to S’ is mild.

This is clear.

PROPOSITION 6.3.5

Let S be a log smooth fs log analytic space over C, and let H be a log mized
Hodge structure on S with polarized graded quotients for the weight filtration W.
Then the following two conditions (i) and (ii) are equivalent.

(i) H is mild.

(ii) For any smooth analytic curve C' over C and any analytic map f: C — S
such that the subset f=1(S \U) of C is finite, the pullback f*H on C is mild.
Here we endow C with the log structure associated to the finite subset f~1(S\U).

If S is an algebraic variety over C, then these conditions are equivalent to
the modified version of the condition (i) in which we take only smooth algebraic
curves C' in it.
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Proof

By Lemma 6.3.4, we have (i) = (ii). We prove (ii) = (i). Assume (ii). Let
s€ S\ U, and let t be a point of S'°¢ lying over s. Let v € 7 (5'°8). We prove
that (W,log(p)(7)) splits.

Let o be the face of ﬂf(slog), regarded as a monoid, such that v belongs to the
interior of o. Then there are s’ € S and t’ € S'°8 lying over s’ and isomorphisms
7t ((s')°8) 2 o and Hr . = Hr such that the action of 7, (s°8) on Hgr, and
the action of 7] ((s")!°8) on Hgr y are compatible via these isomorphisms. By this
we are reduced to the case where v belongs to the interior of 7} (s!°%).

Assume 7 belongs to the interior of 7 (s!°8). Then there are a smooth ana-
lytic curve over C, a morphism f:C — S, and s’ € C satisfying the follow-
ing conditions (1)—(3). (1) f(s') =s. (2) f71(S \U) is finite. (3) The image
of m ((s')'°8) — 7 (s'°8) contains 7. By the condition (ii), this proves that
(W, log(p)(7)) splits.

In the case where S is an algebraic variety, the same arguments show that
the modified version of (ii) implies (i). O

THEOREM 6.3.6
Let the assumptions be as in Theorem 0.3.1. Assume furthermore that H is mild.
(1) The period map ¢ : S — T\ D extends uniquely to continuous maps

lo *,mild
S[]g*}F\DgL(2)7 S[ *}F\DSL 2) 5

1 mild 1
5[3-51] = P\ DL (2) val> S[val] —T\ DgL(2 val’ 5[351]

=T \ Dgél,(\i/al'

(2) For any point s € S, there exist an open neighborhood V of s, a log
modification V' of V' (see [17, Definition 3.6.12]), a commutative subgroup T of
I, and a fan ¥ in gq which is strongly compatible with I such that the period
map pluny lifts to a morphism U NV — T\ D which extends uniquely to a

morphism V' — "\ DR of log manifolds.

U > UnV C %

71 + +
I'\D « I'\D c I'\DgM

Furthermore, we have the following.

(2.1) Assume S\ U is a smooth divisor. Then we can take V=V' =S and

IV =T. That is, we have a commutative diagram

U c S
“ L
r'\D c TI\Dzild

(2.2) Assume that T is commutative. Then we can take T' =T.
(2.3) Assume that T' is commutative and that the following condition (i) is
satisfied.
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(i) There is a finite family (Sj)i<j<n of connected locally closed analytic
subspaces of S such that S = U?Zl S; as a set and such that, for each j, the

inverse image of the sheaf Mg/O% on S; is locally constant.
Then we can take T' =T and V =2S.

Statements (1) and (2) are modified versions of [15, III, Theorem 7.5.1(1) and
7.5.1(2)], respectively, and (2) is proved in the same way as [15, III, Theorem
7.5.1(2)]. We can deduce (1) from (2) by using D%mﬂd — D§j,(3) (see Theorem
5.1.10) by the arguments in the above proof of Theorem 6.3.1(1).

7. Relations with asymptotic behaviors of regulators and local height pairings

In this section, we show examples to describe the relations of this work to the
work [5] on the asymptotic behaviors of regulators and local height pairings.

7.1. Example I

This is Example IIT in[15, T and II]. It appeared in [15, ITI] as the case b=2 of
Section 7.1.3. As in Section 7.2 below, this example is related to the regulator of
K of a degenerating elliptic curve.

In this Example III and also in Example IV in Section 7.3 below, we compare
Dgg, DéL@), Déi(z), D‘éL(Q), D§L(2)7 and their associated valuative spaces, by
regarding them as topological spaces; that is, we forget the real analytic struc-
tures.

7.1.1

Let Hy = Z? with basis e, e2, e3. The weight filtration is given by
W_4=0CW_3=Re;+Res=W_; CWy= HO,R-

The intersection form on gr'%; is the antisymmetric form characterized by (e,

61> =1.

7.1.2
We have that D(gr"V) =2 b, the upper half-plane, and DSL(Q)(ng) = Dgps(gr") =
bBs-

7.1.3
We have a homeomorphism

Dgr,2) val = DBS vals
and this induces a homeomorphism
D¢y 9) = Dps
of quotient spaces. Let W’ be the increasing filtration on gr'¥ given by

W.o=0CW ,=Rey =W ,cW =gV, cW,=g",
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and let ® = {W'}. Let P be the parabolic subgroup of Ggr consisting of elements
which preserve W’. Then, Dgg(P) = Dg1,(2) (@), and it is the inverse image of the
open set {x+iy |x € R,y € (0,00]} of hpgs under the projection Dpg = D§L(2) —
Dgs(gr™') = Dsp2)(gr"V') = bgs.
We have (see [15, II, Section 3.6.2])
DéL(2) = Déi(zy

So we denote Dg; ) and D,y simply by Dgr (o).

7.1.4
Let

V :=Re; + Res.
We have
spl(W) 2V, L2V,

where v € V' corresponds in the first isomorphism to the splitting of W given by
es + v, that is, s € spl(W) such that s(e3(gry’)) = e3 +v, and v € V corresponds
in the second isomorphism to 6 € £ such that §(e3(gr}))) =v. We have L(F) = L
for any F € D(gr').

7.1.5
We have homeomorphisms

Dehx Lxspl(IW)ZRsoxV xRXV,

where the first isomorphism is F ~ (F(gr"V),dw (F),sply, (F)), and the second
isomorphism sends (x+1y, 9, s) to (¢,9,z,s), where z,y € R,y > 0,and t := 1/, /¥,
and we identify both £ and spl(W) with V' via the isomorphisms in Section 7.1.4.
We call the composition D =2 R~ x V x R x V the standard isomorphism for D.
Let V =L be as in Section 1.3.8(4).

We have a commutative diagram of homeomorphisms

DF (@) =2 (RsoxVxRxV)

SL(2)
T T
D¢ 2)(®) = (Rsox VxRxV)
+ L@
DgL(2)(q>) = Ryox VRV
T 1
Dg1,2) val(®) = (R0 X V)var xR XV
+ )
DSL(Q),val((I)) = (RZO X V)Val xR xV
{ {

DSL(2)((I)) = R> x V xR x V,
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where
R0 x VXRxV) :={(t,6,2,5) ER>ox VxR xV|d€Rey if t=0}

and where (R>g X V)Val is the valuative space of R>¢ X V associated to the
canonical log structure (see a description below and also [17, Section 0.5.21]).
The homeomorphism for Dg&‘;‘k(@) is compatible with the standard isomor-
phism for D, but other homeomorphisms are not compatible with the standard
isomorphism.

The homeomorphism for DgL@)((I)) (resp., DgL(Q)((I)), Dgr(2)(®)) sends a
point of D corresponding to (t,cie; + caea,z,u) € Rso X V x R x V under the
standard isomorphism to (¢,cie; +t~tegea, x,u) (vesp., (¢ tcier +t Leaen, z,u),
(t,t*cieq + t2coes,xz,u)). The homeomorphism for D§L(2),val(q)) (resp.,
Dsr,(2),val(®)) is compatible with the homeomorphism for DgL@)((I)) (resp.,
Dsp,(2)(®))-

Concerning the vertical arrows on the right-hand side, they are described as
follows. The arrows without labels are the canonical projections (see Section 3.1).
The map (1) sends (¢, c1e1 +caea, x,u) to (¢, c1eq +teaes, x,u). The map (2) sends
(t,c1e1 + coea,x,u) to (t,tcier + coea, x,u). The map (3) is explained below.

The valuative space (R>q x V)ya1 is described as follows. Over U = (Rx¢ X
VYU Rz x V) CRs x V, it is U. The inverse image of {0} x (V \ V) in
(R0 x V)yal consists of points

@ pON) AeVAV),
(b) p(c,A) (c€ER>0 N Qs0, AEV NV,
() plet,A) (c€Qzo, AEV NV,
(d) ple—,A) (c€Qs0, AEV NV,
(e) ple,pt) (c € Qso, peV N {0}).

Write A =00 u with g€V ~ {0} (see Section 1.3.8(4)). Then the above point is
the limit of ¢ 11, where ¢ > 0, t — 0, and in the cases of (b) and (e) (resp., case
(a), case (c), case (d)), ¢ =¢ (resp., ¢ =00, ¢ >cand ¢ = ¢, ¢ <cand ¢/ = ¢).

The map (3) sends (t,d,z,u) ((t,0) € (Rso x V)U (R0 x V) to (¢35, 2, u);
(p(0,\),z,u) to (p(0,\),x,u); (p(c,a),x,u) (a €V) to (p(c—3,a),z,u) if ¢ > 3,
o (0,a,z,u) if ¢ =3, and to (0,0,z,u) if 0 <c < 3; (p(c+,N),z,u) to (p((c —
3)+,A),z,u) if ¢ >3 and to (0,0,z,u) if 0 <c< 3; and (p(c—, ), z,u) to (p((c—
3)—,A),z,u) if ¢>3 and to (0,0,z,u) if 0 << 3.

7.1.6
We describe for Example I11
(1) that there is no continuous map Dgy,(2),val(®) = Dps(P) = D&, 2)(®)
which extends the identity map of D, and
(2) how 1 : Dsr(2) val(®) = DBs val(P) = Dy 5) .1 (®) is not continuous.
Fixing ¢1,¢2 € R, for t > 0, let p(t) be the point of D corresponding to
(t,c1e1 + c2e2,0,0) via the homeomorphism for DgL(2),val<(b) in Section 7.1.5.
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Then, via the homeomorphism for Dgr,2),va1(®), p(t) corresponds to (t,t3creq +
tBCQGQ, 0, 0)

Hence, when ¢t — 0, p(t) converges in Dgr,(2),va1(®) to the point p correspond-
ing to (0,0,0,0), but it converges in Dg; ) (®) to the point that corresponds to
(0,c1e1 + cae2,0,0), which depends on (c,c2). This explains (1). For (2), the
image of p under 7 is the point p’ of DgL(Q)(q)) corresponding to (0,0,0,0). If
(c1,¢2) #(0,0), then p(t) does not converge to p’ in Dy, (®).

7.1.7
As is mentioned in Section 5.1.12, the topology of Dg&;‘;k does not coincide with
the one of D§L(2)' Fixing c € R, for t > 0, let p(t) be the point of D corresponding

to (t,tces,0,0) via the homeomorphism for D;&;Z;k((l)) in Section 7.1.5. Then,
o,weak

when ¢t — 0, p(t) converges in Dgi2) (®) to the point corresponding to (0,0,0,0).
On the other hand, p(t) corresponds to (¢,ces,0,0) under the homeomorphism
for Dg; 5)(®) and hence converges in Dg; ,)(®), but the limit depends on the
choice of c.

7.1.8

The open set Dgf(’;lf (®) of Dgy,5)(®) is the part consisting of elements corre-
sponding to (¢,d,z,u) such that § € V C V. The map Dg’ﬂ?;l)d(q)) — Dgr,(2)(®)
corresponds to (¢,8,x,u) — (t,t30, z,u). It does not extend to a continuous map
Dg1,2) = Dsr(2)- In fact, fixing v € V'~ {0}, let p(t) for t > 0 be the point of D
corresponding to (t,t~3v,0,0) via the homeomorphism for DgL@) (®). Then when
t — 0, p(t) converges to the point of DgL(Q)(<1>) corresponding to (0,00v,0,0) (see
Section 1.3.8(4)). But p(t) converges to the point of Dgy,)(®) corresponding to
(0,v,0,0), which depends on the choice of v.

7.1.9

Let a € Qs0, and define N, € ggq by Ny(es) = aez, Ny(ez) =e1, and Ny(er) =0.
For b € R, let Fy, € D be the decreasing filtration defined as follows: Fb1 =0,
Fb0 is generated by es 4+ ibey, bel is generated by F,? and eq, and Fl;2 is
the total space. Then (N, F}) generates a nilpotent orbit. Let o, = R>0N,.
Then (0q,exp(ioe,r)Fy) € D is the limit of exp(iyN,)F; for y — oco. This
(04, exp(ice r)Fy) belongs to DE™I (see Section 5.1.4) if and only if a = 0.

We consider the image of exp(iyN,)Fp € D in Rsg x V x R x V under the
isomorphism in Section 7.1.5. Let t =1/,/y. In the standard isomorphism for D,
the image is (¢,at %es +beq, 0, —(b/2)t%e3).
using the relation of § and (; see Section 1.2.!
the image is (¢, at ~3ea +bey, 0, —(b/2)t2e2). In the homeomorphism for D¢y 2),the
image is (tat~3ey + bte1,0,—(b/2)t%ez). In the homeomorphism for Dgr,s), the
image is (t,aeq + bt'e1, 0, —(b/2)t%e3). By taking the limit for ¢ — 0, we have the
following.

(The last component is computed by
5.) In the homeomorphism for D<S>L(2)7
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LEMMA 7.1.10

(1) Ifa#0, then the image of (04,exp(ioar)Fy) € DY, in Dg1,2)(®) (resp.,
Dgr,2)(®), DgL(Z),val(©)7 Dst,(2)val(®)) has the coordinate (0,00e2,0,0) (resp.,
(0,ae2,0,0), (p(3,ae2),0,0), (0,ae2,0,0)).

(2) If a =0, then the image of (0q,exp(ioor)Fy) € DE™IY in Dgr,2)(®)
(resp., DgL@)((I)), Dgr,2)(®), D§L(2)((I))7 Dgr(2)(®)) has the coordinate (0,bey,
0,0) (resp., (0,0,0,0), (0,0,0,0), (0,0,0,0) if b#0 and (0,0,0,0) if b=0,
(0,0,0,0)).

7.1.11

By Lemma 7.1.10, we have the following. Consider the image p of (0q,exp(ioe r)
Fy) € Dga in one of Dgy,2), Dsr(2),vals D§L(2)7 or DgL(Z),val' In the case a =0,
consider also the image in DgL(z)'

(1) p remembers a in the cases of Dgy,2), Dsr(2)val, and DgL(Q),val’ but p
does not remember «a in the other cases. In the case a # 0, p does not remember
b in any of these cases.

(2) Assume a =0. Then p remembers b in the case of D§L(2), but p does not
remember b in all other cases.

pimid L, pe
1 {
DL  — Dgs

(2)

7.2. Degeneration and regulator maps

7.2.1
Let X be a proper smooth variety over C. Let n > 1 and r > 0. Then we have
the (rth) regulator map (see [1])

regy : Kn(X) = @ H™(X)(r)cpa)

where m = 2r —n — 1 and (p, q) ranges over all elements of Z? such that p+ ¢ =
m—2r,p<0, ¢<0, H"(X)(r)c,p,q is the (p,¢)-Hodge component of H" (X, C)
with respect to the Hodge structure H™(X)(r), and (-)~ denotes the minus part
for the complex conjugation which fixes the image of H™(X,Z(r)) = H™(X,Z)®
(2mi)" 2.

This regulator map is understood as § (see Section 1.2) of a mixed Hodge
structure as follows. An element Z € K,,(X) determines a mixed Hodge structure
Hz with an exact sequence 0 = H™(X)(r) = Hz — Z — 0. We have

regX(Z) = 6W(HZ)7
where W is the weight filtration of H.
7.2.2

Let X — S, 0€ S, and n,r,m be as in Section 0.3, and let Z € K, (X ~\ Xj). For
t €S~ {0}, let Z(t) € K, (X¢) be the pullback of Z.
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Then the regulator regy, (Z(t)) is understood as dw (Hz(t)), where Hz
denotes the variation of mixed Hodge structure on S\ {0} defined by Z which has
an exact sequence 0 - H™(X/S)(r) —» Hz — Z — 0 with H™(X/S) as in Sec-
tion 0.3 and whose fiber Hz(t) at ¢ is the mixed Hodge structure in Section 7.2.1
associated to Z(t). This Hy is admissible along X, and extends uniquely to a
log mixed Hodge structure on S, which we denote by the same letter Hz. Hence,
the behavior of ¢ regx, (Z(t)) in the degeneration is explained by the theory of
degeneration of mixed Hodge structure as in this article. For the details of what
follows, see [5].

PROPOSITION 7.2.3

Assume Z comes from K, (X). Then the log mized Hodge structure Hy on S is
mald.

Proof

The Clemens—Schmid sequence H™ (X, Q) — H™(X/S)q.+ X H™(X/S)q: —
Hog—m(X0,Q) (t €S~ {0} is near to 0) induces an injection H™(X/S)q./
NH™(X/S)q.t = H2d—m(X0,Q). Here N is the monodromy logarithm of Hz q
at 0 € S. We have a commutative diagram

Kn(X ~ Xo) 4 K (Xo)
{ {
H™(X/S)qi/NH™(X/S)q: = Haa—m(X0,Q)

Here the left vertical arrow sends Z € K, (X \ Xg) to Ne, where e is the lifting of
1€ Q to Hz q, under the exact sequence 0 - H™(X/S)q: — Hz,q: — Q — 0.
K] _, denotes the K-group of coherent sheaves. The right vertical arrow is the
topological Chern class map. By the localization theory of K-theory, we have an
exact sequence K, (X) — K, (X \ Xo) 4 K], _(Xo).

Assume Z € K, (X \ Xp) comes from K,(X). Then 9(Z) =0, and hence,
the above diagram shows that the image of Z in H™(X/S)q,./NH™(X/S)q,: is
0. This proves that (W, N) splits. O

By Proposition 7.2.3 and Theorem 5.1.7, we have the following result.

THEOREM 7.2.4
If Z € Kn(X \ Xo) comes from K, (X), then the requlator regx, Z(t) (t € S~ {0})
converges in L when t — 0.

REMARK 7.2.5

In [5], this result will be generalized to the situation in which S need not be of
dimension at most 1. This generalization will be reduced to Theorem 7.2.4 by
using Proposition 6.3.5.
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7.2.6
Let X — S and 0 € S be as in Section 0.3. Take Hy=Z & H™(X/S)(r)z+- The
extended period maps in Section 6.3 give a commutative diagram

S8 x Ko (X) = T\Dg o

{ {
Sloe x K, (X N Xg) — I\ Dsp

Here T is the group of all elements v of Autz(Hy) satisfying the following con-
ditions. (i) v preserves H™(X/S)(r)z:. (ii) ye =e mod H™(X/S)(r)z+, where
e denotes (1,0) € Hy. (iii) The action of v on H™(X/S)z . is contained in the
monodromy group of H™(X/S)z.

7.2.7

We give an explicit example. Assume that X — S is a family of elliptic curves
which degenerates at 0 € S, and assume n =7 = 2. Then the period domain and
the extended period domains which appear here are those of Example III (see
Section 7.1). Let the notation be as in Section 7.1.

We discuss an explicit example of Z € Ko(X \ X). Let a; and S be a finite
number of torsion sections of X \ Xo over S\ {0}, let m;,n, € Z such that
>-;mj =2k =0, and consider the divisors a =3, m;(a;), 8= 3, nu(Bk)
on X \ Xy of degree 0. Then we have an element Z, g € Ko(X \ Xo) (see [4],
[20]). It is essentially the Steinberg symbol {f., fg}, where f, (resp., fg) is an
element of Q ® C(X)* whose divisor is « (resp., ). When ¢ tends to 0 in S,
there are a,b € W_3Hy r such that we have

regx, (Za,s(t)) =ay+b+O0(y™),

where y is defined by ¢(t) = e>™(@+%) (z y € R) with ¢(t) the g-invariant of the
elliptic curve X;.
We have

a= Z m;niBs ({r(aj) — r(ﬁk)})eg mod Req,
3.k

where Bj is the Bernoulli polynomial of degree 3; r(u) for a torsion section pu
is the element of Q/Z such that, as a section of the Tate curve G,,/q%, u is
expressed as sq"*) mod ¢% with s a root of 1; and {-}: Q/Z — [0,1) C Q is the
lifting.

Assume now that r(a;) = r(8;) = 0 for any j, k, that is, these torsion sections
aj and B, are roots of 1 in the Tate curve G,./q%. Then Zq,5 comes from Ko (X),
a =0, and the degeneration is mild. In this case,

b= ijnkD(aj/ﬁk)el,
.k
where we regard «; and B as roots of 1 and D is the real analytic modified
dilogarithm function of Bloch-Wigner (see [4]).
These things will be explained in [5] by using results in [20], [4], and [10] and
using the results of this article.
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7.3. Example IV

This is Example IV in [15, IT]. As is explained in [15, II, Section 4.4] and also in
Section 7.4 below, this example is related to the local height pairing of points of
a degenerating elliptic curve.

7.8.1
Let Hy = Z* with basis e, es, e3,e4. The weight filtration is given by
3
W_s=0CW_g9=Re; CW_; = @Rej CcWy= H()’R.
j=1

The intersection form on gr'; is the antisymmetric form characterized by (e,
€2> =1.

7.8.2
We have D(gr'") 22, the upper half-plane, and Dgy,(2)(gr"") = Dps(gr') = hs.

7.53.3
We have a homeomorphism
Di1,2) val = Dgs,val;
and this induces a homeomorphism
Dgy,2) = Dps
of quotient spaces. Let W’ be the increasing filtration on gr'¥ given by
W ,=0CW =g, +R(ea mod W_o) =W, c W) =g,

and let ® = {W'}. Let P be the parabolic subgroup of Gr consisting of elements
which preserve W'. Then, Dps(P) = Dy, (®), and it is the inverse image of the
open set {x+iy |z € R,y € (0,00]} of hps under the projection Dpg = D§L(2) —
Dgs(gr") = Dgp2)(gr") = bas.

We have (see [15, I, Section 4.4])

DéL(?) = D§£(2)‘
We will denote both of them by Dgp,(2). We have a canonical homeomorphism

= *,mild
D§L(2) = DSL(2) .
7.8.4
We have

spl(W) = RS, L=R,

where in the first isomorphism (s34, 52,4, 51,4,51,3,51,2) € R’ corresponds to the
splitting of W, which is given by ey + Z?Zl s;jae; and ey + s1 pe1 (k=2,3), and
the second isomorphism is given by 6 —r (§ € L, r € R), deq = re;. We have
L(F)=L for any F € D(gr"").



Classifying spaces of degenerating mixed Hodge structures, IV 417

7.8.5
We have homeomorphisms
D2hx L xspl(W)=Rsox R xRS,

where the left isomorphism is F ~ (F(gr"V),dw (F),sply, (F)), and the second
isomorphism sends (x 4+ iy,d,s) to (1/\/y,0,x,s), where 2,y € R, y > 0. We call
the composite homeomorphism D = R~ x R x R the standard isomorphism

for D.
We have a commutative diagrams of homeomorphisms
Dg1,2)(®) = R>¢ x [—00,00] x RS
f 1
Doy var(®) = (R0 % [-00,00])val X RO
+ (1)
DSL(2)aV31((I)) = (RZO X [*OO,OO])VM x RS
A 1
Dsp2)(®) = R x [—00,00] x RS,

where the upper two homeomorphisms are compatible with the standard iso-
morphism for D, but via the lower two homeomorphisms, a point of D cor-
responding to (t,0,u) € Rsg x R x R under the standard isomorphism for
D is sent to (t,t28,u). For the vertical arrows on the right-hand side, all the
arrows except (1) are the canonical projections, and the arrow (1) is as follows.
The map (1) sends (¢,8,u) ((t,0) € (R>¢ x R) U (Rxg x [—00,00])) to (¢,25,u);
(p(c,£00),u) (c € Rxo \ Qs0) to (p(c — 2,+00),u) if ¢ >2 and to (0,0,u) if
¢ < 2; (plet, £o00),u) (c € Qx0) to (p((c —2)+,+o0),u) if ¢ >2 and to (0,0,u)
if ¢ <2; (p(e—,£00),u) (c € Qso) to (p((c—2)—,%00),u) if ¢ > 2 and to (0,0, u)
if ¢ <2; and (p(c,d),u) (c € Qso, § € R\ {0}) to (p(c—2,0),u) if ¢>2, to
(0,9,u) if c=2, and to (0,0,u) if ¢ < 2.

Here the notation p(c,d) and so on are understood as in Section 7.1.5 by
replacing V O V by [~00,00] D R.

7.5.6

Let a € Q>o, and define N, € gq by No(ea) =aer, Ny(e3) =e2, and Ny(e1) =
N,(e2) =0. Let o, be the cone generated by N,. For b€ R, let F}, € D be
the decreasing filtration defined as follows: F} =0, F is generated by ez and
eq + ibey, and bel is the total space.

In DY, , we have the limit (04,exp(ioe,r)Fp) € DY of exp(iyN,)F, for y —
0o. This (04, exp(ic, r)Fy) belongs to D™ if and only if a = 0.

For y € R+, via the first homeomorphism in the diagram in Section 7.3.5,
exp(iyNq)Fy, € D is sent to (1/,/y,ay + b,0), and hence, the limit (o,
exp(ioe,r)Fp) € DY is sent to (0,00,0) in the case a # 0 and to (0,b,0) in
the case a = 0. Here 0 denotes (0,...,0) € R5. On the other hand, for y € R,
via the last homeomorphism in the diagram in Section 7.3.5, exp(iyNy)Fy € D is
sent to (1/y/y,a+y~'b,0), and hence, the limit (o4, exp(icer)F}) € Dga is sent

o (0,a,0). By taking the limit for y — oo, we have the following result.
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LEMMA 7.3.7

The limit of exp(iyN,)F, for y — oo exists both in D§L(2),val(q)) and in
Dsr(2)val(®). In the case Dy o) .1(®), the (R>o X [—00,00])var-component of
the limit is p(2,a) if a #0 and is (0,b) if a=0. In the case Dgy 2 val(®), the
(R>0 X [—00,00])yal-component of the limit is p(0,a).

7.3.8
By Lemma 7.3.7, we have the following. Let p be the image of (o4, exp(ioe r)Fp) €
Dga in one of Dgy,(2), Dsr,(2),val; DgL(z)a or D§L(2) val- We have the following.

(1) p remembers a in the cases of Dgy,(2), Dsr,(2),val, and DgL(z) whereas

,val?
p does not remember a in the case of D§L(2)' In the case a # 0, p does not
remember b in any of these cases.

(2) Assume a =0. Then p remembers b in the cases of Dgy, ) and Dg; )

but p does not remember b in the cases of Dgr,2) and Dsr,(2) val-

,val?

7.3.9

The following is mentioned in Remark 6.2.3. Though o, is of rank 1, the image p
of Df in D¢y, 1s not contained in Dg; o) o4 (i.e., the part of D¢,y at which
the log structure M satisfies rank(M®&P/O*), <1) if a # 0. Indeed, in the case
a # 0, the image of class (N,, F,) € DY in Dg;,(2) has the coordinate (0,00,0),
which shows that (M/0*), = NZ2.

7.4. Degeneration and height pairings
We explain that our spaces are related to the asymptotic behavior of the
Archimedean height pairing for algebraic cycles in degeneration (cf. [18], [12],

[8])-

7.4.1
Let X be a proper smooth algebraic variety over C of dimension d, and let Y and
Z be algebraic cycles on X of codimension r and s, respectively. We assume that
r+s=d+1, that their supports are disjoint |Y'|N|Z| =0, and that both Y and
Z are homologically equivalent to 0. Then we have a height pairing (Y, Z)x € R
(the local version of the height pairing for a number field at an Archimedean
place; see [2], [3]).

This height pairing is understood as § (see Section 1.2) of a mixed Hodge
structure. We have

(Y, Z)x = dw(Hy,z),

where Hy, 7z is the mixed Hodge structure whose weight filtration W has the
following properties: WoHy,z = Hy.z, W_3=0, grt/ =Z, gt = Z(1), gr'| =
H?"=Y(X)(r), constructed in [2] and [3]. The exact sequence 0 — H?*"~(X)(r) —
Wo/W_o — Z — 0 is given by the class of Y, and the exact sequence 0 — Z(1) —
W_1— H?**71(X)(r) — 0 is given by the class of Z.
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7.4.2

Let X — .S and 0 € S be as in Section 0.3. Let Y and Z be algebraic cycles on
X of codimension r and s, respectively, such that r +s=d + 1, where d is the
relative dimension of X — S, such that |Y|N|Z| =0, and such that both Y ()
and Z(t) are homologically equivalent to 0 for any t € S~ {0}.

7.4.3
Since the height pairing (Y (¢), Z(¢)) is understood as ¢ of a mixed Hodge struc-
ture (see Section 7.4.1), its behavior in the degeneration is explained by the
theory of degeneration of mixed Hodge structure as in this article.

When ¢t — 0 with x fixed, there are a,b € R such that we have

<Y(t)7Z(t)>Xt =ay + b+0(y71)7

where taking a local coordinate ¢ on S at 0 such that ¢(0) =0, we define y by
q=e>™ @) (1 y € R,y > 0). Here, a = 0 if and only if the degeneration of Hy
at 0 € S is mild. It is known that a is the local geometric intersection number of
Y and Z over 0 € S.

7.4.4
We give an explicit example. Assume that X — S is a family of degenerating ellip-
tic curves, and assume that r=s=1. Let Y =} . m;(ay;) and Z =3, nx(B),
where «; and f; are closures in X of torsion sections of X \ Xo — .S ~ {0},
mj,ni € Z, Zj mj =y, i = 0. We assume that the divisors o; and f, of X do
not intersect for any pair (7, k).
This is an example discussed at the end of [15, II, Section 4.4]. The extended
period domains which appear here are those of Example IV (see Section 7.3).
We have

a= Z myneBe ({r(a;) —r(Br)}),
j.k
where Bs is the Bernoulli polynomial of degree 2. (The notation is as in Sec-
tion 7.2.7.) This was explained in [15, II, Proposition 4.4.8].
If r(a;) =r(Bx) =0 for any j,k, then a =0 and the degeneration is mild. In
this case,

b= myml(a;/B),
jik
where we regard «; and S, as roots of 1 and [(¢) =log(|1 — ¢|). These things are

surprisingly similar to Section 7.2.7. These things will be further explained in [5]
by using the results of this article.

Appendix: Corrections to [17], supplements to [15, lll]

Corrections of errors in the book [17] have been put on the home page of Prince-
ton University Press. In this appendix, we update some important parts of them
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in Sections A.1 and A.2. In Section A.3, we give supplements to [15, III]. Sec-
tions A.1 and A.3 are important for Section 5.5 in the text.

A.1 Changesin[17, Section 6.4]

A.1.1
The following errors (1) and (2) are in [17, Sections 6.4 and 7.1], respectively.
(1) Proposition 3.1.6 is used in 6.4.12 (the second line from the end), but
Proposition 3.1.6 is not strong enough for the arguments in 6.4.12.
(2) We cannot have the second convergence in 7.1.2(3).

A.1.2
We make the following changes to the book [17]. Change 1 solves the above
problem (1). Changes 2 and 3 solve the above problem (2).

Change 1. We replace [17, Section 7.1.2] by Sections A.1.3-A.1.9 below.

Change 2. We move [17, Section 7.1], revised as in the above change 1, to
the place just before [17, Section 6.4]. That is, we exchange the order of [17,
Sections 6.4 and 7.1].

Change 3. We make the change to [17, Section 6.4.12] explained in Sec-
tion A.1.10.

A.1.3

We will prove Theorem A(i), that E, is open in E,, for the strong topology. Since
Ec, val = Eg is proper surjective and Eq ya1 C Eg val 1S the inverse image of E, C
E(,7 it is sufficient to  prove that E, va1 is open in Ea val- Assume zy = (g, F}) €
EU val converges in EU val 10 © =(q,F") € E; ya1. We prove that z) € E, a1 for
any sufficiently large A.

A1)
We fix notation. Let |- |:
induced by C = R, 2+ |z|.
Let (A,V,Z) € D!, be the image of (|g|, F') € B under E%  — D |
(5.3.7), and take an excellent basis (N;)secs for (4,V,Z) such that Ny € o(q) for
any s (6.3.9). Let S; (1 <j<mn) be as in 6.3.3. Take an R-subspace B of or
such that og = Ar ® B.
We have a unique injective open continuous map

(Rgo)val X B — | toric |g val

which sends ((e72™)4c5,b) (ys € R,b€ B) to e((3,cqiysNs) + ib) (cf. 3.3.5).
Let U be the image of this map. Define the maps ¢, : U = R>o (s € S) and
b:U — B by (an abuse of notation b)

(t,b) = ((ts)ses,b) : U = (REg)va x B~ R, x B.
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We have |q| € U and t(|q|) := (ts(|q]))ses = 0. Since |gx| — |g|, we may assume
lgn] € U. Let

Fy = exp(ib(qn)) FY, F =exp(ib(q))F'.
Then ((Ns)ses, F') generates a nilpotent orbit.

A1.5

We may assume that, for some m (1 <m <n+1), t;(gx) =0 for any A and
s € S<m—1 and ts(gx) #0 for any A and s € S>,, (see 6.3.11). (S<o and S>,41
are defined as the empty set.)

Take ¢; € S; for each j. For s € S>,, define yy s € R by t4(gn) = e 2™V,
For each j € Z such that m <j <n, let N; =>" asNs, where as; € R is the
limit of yx s/Yx,c; -

Then (Ni,..., N, F) generates a nilpotent orbit. Let p: G}, g — Gr be
the homomorphism of the SL(2)-orbit (5.2.2) associated to (Ny,..., Ny, F'). For
m<j<n, let

ex>j = exp( Z iyA’SNS) € G,

5€5>;

n
Txj = Dj (\/ ?/A,cHl/y/\,cj) € Gr, TA>j = H Tk € GR,

k=j

SES;

where yj ¢,,, denotes 1. Here p; is the restriction of p to the jth factor of G, g.
Let F(j) (1<j<mn) be as in 6.1.3 associated to (Ny,..., Ny, F).
By 3.1.6 applied to S = E, C X = E,., we have the following result.

LEMMA A.1.6
Let the situation and the notation be as above. Let m < j <n, and let e > 0.
Then for any sufficiently large X, there exist F € D satisfying the following (i)
and ().

(i) 9%,sd(Fx, FX) =0 (Vs €5;).

(i) (Ns, FY) satisfies Griffiths transversality for any s € S<;.

Furthermore, in the case j =n, there is Fy as above satisfying the following
condition (1i)*, which is stronger than the above condition (ii).

(ii))* ((Ns)ses, Fy) generates a nilpotent orbit.

PROPOSITION A.1.7
Let the situation and the assumption be as above. Then the following assertions
(4;) (m—=1<j<n), (B;) (m<j<n), and (C;) (m<j<n) are true.

(Aj) (resp., (Bj), (C;)) for m <j <n: Let e >1. Then for any sufficiently
large X\, there are Ff\j) € D satisfying the following (1)-(3).

(1) w5 ,d(Fr, FY) = 0.

(2) ((NS)Sesgj,eA7Zj+1F>(\j)) generates a nilpotent orbit.
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(3) 7525 aenzit1 Py = exp(iNj 1) Fygny (resp., (3) 755 en 2501 FY) =

F(j); resp., (3) T/\_’lzjeA,ZjFij) %exp(iNj)F(j)).
Here (Ay,) is formulated by understanding Np+1 =0 and F(n—‘,—l) =F.
(Ay—1): For any sufficiently large \, we have the following (2) and (3).
(2) ((Ng)sese,,_1:ex.>mFn) generates a nilpotent orbit.
(3) T):lZme)\»ZmF/\ — exp(iNm)F(m),

A.1.8

We prove Proposition A.1.7 by using the downward induction of the form (A;)
= (Bj) = (Cj) = (A;_1). Here m < j <n.) (B;) = (C;) is clear. (4,) = (B))
is easy. (A,,) follows from Lemma A.1.6.

We prove (Cj11) = (4;). By Lemma A.1.6, if m <j <n (resp., j =m —
1), then there are F)(\j) € D satisfying (1) and (resp., Ff\j) := F) satisfies) the
condition

(2") (N5, F)(\j)) satisfies Griffiths transversality for any s € S<;.

By (Cj+1), there are Fijﬂ) € D satisfying the following.

(1) y§ ;i d(Fx, FYTY) = 0.

(2") ((Ns)sesng,e,\72j+2F)(\j+l)) generates a nilpotent orbit.

(3") T b jpaerzi BT = exp(iNj) Fy -

By (1”) and (3"), we have

(4) 73 L5 aen 21 Fx = exp(iNjaa) Fy ).

By (4) and by (1), we have

(5) T{,lzjﬂex,zjﬂFAU) — exp(iNj41) Fijt1)-

For the left-hand side of (5), by (2'), (NsaT;,lszeA,szFij)) satisfies Grif-
fiths transversality for any s € S<;. On the other hand, concerning the right-hand
side of (5), ((Ns)sesg,exp(iNj+1)F(j+1)) generates a nilpotent orbit. Hence, (5)
and 7.1.1 show that ((Ns)sesgjaT)T,lsz@/\,ZjHFA(j)) generates a nilpotent orbit.
This proves that ((Ns)ses Sj,e)\,Zj_A,_lF)(\j )) generates a nilpotent orbit for any
sufficiently large A. Hence, for any sufficiently large A, (W(j),e,\zj_HF)(\j)) is a
mixed Hodge structure, where W) denotes the relative monodromy filtration
of Ny +---+ N; with respect to W. By this and by (5), we have (A4;).

A.1.9

By (A;,—1)(2) of Proposition A.1.7, x5 belongs to E, va if A is sufficiently large.
This proves that E, ., is open in E, . and, hence, proves that E, is open in
E,.

A.1.10
In [17, Section 6.4.12], in the second line from the end, we replace the part “by
Proposition 3.1.6” with “by the case m =0 and x) € E?

o va Of Proposition A.1.7”
of the present article.
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REMARK A.1.11

By these changes, we have the following simplification in [17]. We can assume
Y.t =Yt in [17, Proposition 6.4.1]. It is claimed in the original [17, Section 6.4]
that the proofs of [17, Theorems 5.4.3(ii), 5.4.4] are reduced to [17, Proposition
6.4.1], but actually they are reduced to the case Yt =Unt of [17, Proposition
6.4.1].

A.2 Changeto[17, Section 7.2]

A.2.1

Professor J.-P. Serre kindly pointed out that our book should not use [6, Sec-
tion 10], for there are errors in it (cf. the version of [6, Remark 10.10] contained
in “Armand Borel Oeuvres—Collected Papers, Vol. III, Springer, 1983”). We
used a result [6, Proposition 10.4] in the proof of Lemma 7.2.12 of our book. To
correct our argument, we change the following. We put the following assumption
in Theorem 7.2.2(i): “Assume that o is a nilpotent cone associated to a nilpo-
tent orbit.” We replace Lemma 7.2.12 and its proof in our book by the following
proposition and its proof, which does not use [6, Section 10].

PROPOSITION A.2.2

Let o be a nilpotent cone associated to a nilpotent orbit, and let W (o) be the
associated weight filtration. Then, by assigning the Borel-Serre splitting, we have
a continuous map Eg.val — spl(W(0o)).

Proof

The composite map ngal — Dg,val LA Dagt,(2) is continuous by the definition of
the first map and by 6.4.1 for the CKS map . Let Ny,..., N, be a set of genera-
tors of the cone o. Let s be a bijection {1,...,n} — {1,...,n}. Then the image of
the map Eiﬂval — Dgi,(2) is contained in the union U of Dgr,)({W (Nyy+---+
Ngjy) | j=1,...,n}), where s runs over all bijections {1,...,n} — {1,...,n}.
Since Ny(1)+- -+ Nyn) = N1 +--- 4+ Ny, the filtration W(Ny +---+ N,,) = W (o)
appears for any s. By [15, II, Proposition 3.2.12], the Borel-Serre splitting gives
a continuous map U — spl(W(c)). Thus, we get our assertion. (Il

A.2.3

We replace the third paragraph in 7.2.13 by the following: “Since the action of
or on spl(W (o)) is proper and Ef;val is Hausdorff, the action of og on Eznr,val is
proper by applying Lemma 7.2.6(ii) to the continuous map Eg)val — spl(W (o))
in Proposition 7.2.12. Hence, Re(hy) converges in og by Lemma 7.2.7.”

A2
Add the following sentence at the top of the fourth paragraph in 7.2.13: “Let
||: Eoval — E*  be the continuous map (¢, F)—(]¢|, F) in 7.1.3.

o,val
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A.3 Supplements to[15, lll]
We add explanations to [15, III, Section 3.3].

A.8.1
We put the following explanation from Section A.3.2 just after the statement of
[15, III, Theorem 3.3.1].

A.8.2
This [15, III, Theorem 3.3.1] is the mixed Hodge version of [17, Theorem 5.4.3]
for the pure case and is proved in the same way.

A.8.3
We replace the two lines “As in [KU09] 6.4, a key step ... We only prove this
proposition.” just before [15, III, Section 3.3.3] by the following Section A.3.4.

A.3.4

This [15, III, Theorem 3.3.2] is proved in the following way. We can prove the
evident mixed Hodge version of Proposition A.1.6 by using the same arguments
in the proof of Proposition A.1.6.

Just as [17, Theorem 5.4.4] was reduced to the case y} , =y ¢ of [17, Lemma
6.4.1] by using the case m =0 and z) € Ef;Val of Proposition A.1.6 (see Sec-
tion A.1.10, Remark A.1.11), [15, III, Theorem 3.3.2] is reduced to the case
Y.t = Yae of [15, 111, Proposition 3.3.4] by using the case m =0 of this mixed
Hodge version of Proposition A.1.6.

A.8.5

We replace the part “proposition implies” in the second line of the remark after
[15, ITI, Proposition 3.3.4] with “proposition and [KU09], 6.4.1 for the pure case
imply.”
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