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Abstract Weproveageneralizationof the Jones–Kawamuro conjecture that relates the

self-linking number and the braid index of closed braids, for planar open books with cer-

tain additional conditions andmodifications.We show that our result is optimal in some

sense by giving several examples that do not satisfy a naive generalization of the Jones–

Kawamuro conjecture.

1. Introduction

In a seminal paper, Jones [17] observed formulae that relate the HOMFLY poly-

nomial to the Alexander polynomial and the algebraic linking number (exponent

sum) for closed 3- and 4-braids (see [17, (8.4), (8.10)]). This led him to write,

“Formulae (8.4) and (8.10) lend some weight to the possibility that the exponent

sum in a minimal braid representation is a knot invariant.”

This question, whether the algebraic linking number yields a topological knot

invariant when a knot is represented as a closed braid of the minimal braid index,

was later called Jones’s conjecture. Kawamuro [18] proposed a generalization of

Jones’s conjecture, which we call the Jones–Kawamuro conjecture: if two closed

braids α̂ and β̂ represent the same oriented link L, then the inequality

(1.1)
∣∣w(α̂)−w(β̂)

∣∣ ≤ n(α̂) + n(β̂)− 2b(L)

holds. Here w and n denote the algebraic linking number and the braid index

of a closed braid, respectively, and b(L) is the minimal braid index of L, the

minimum number of strands needed to represent L as a closed braid. Recently,

the Jones–Kawamuro conjecture (1.1) was solved affirmatively by Dynnikov and

Prasolov [8] and LaFountain and Menasco [19], by different but related methods.
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By Bennequin’s [1] formula sl(α̂) =w(α̂)−n(α̂) of the self-linking number of

a closed braid, inequality (1.1) implies

(1.2)
∣∣sl(α̂)− sl(β̂)

∣∣ ≤ 2
(
max

{
n(α̂), n(β̂)

}
− b(L)

)
.

Thus, from the point of view of contact geometry, the Jones–Kawamuro conjec-

ture can be understood as an interaction between the self-linking number and the

braid indices. In particular, Jones’s conjecture states a surprising phenomenon

that the self-linking number, the most fundamental transverse knot invariant,

yields a topological knot invariant when it attains the minimal braid index.

In this article we prove a generalization of the Jones–Kawamuro conjecture

for planar open books, under some additional assumptions and conditions. Our

main theorem includes the original Jones–Kawamuro conjecture as its special

case and provides an optimal generalization of the Jones–Kawamuro conjecture

for general open books and closed braids, in some sense.

To state our main theorem, we first set up notation. Let (S,φ) be an open

book decomposition of a contact 3-manifold (M,ξ) = (M(S,φ), ξ(S,φ)) with respect

to the Giroux correspondence [9], and let B be the binding. An oriented link L

in M −B is a closed braid (with respect to (S,φ)) if L is positively transverse to

each page. The number of intersections between L and a page S is denoted by

n(L) and is called the braid index of L.

By cutting M along the page S0, L gives rise to an element α of Bn(L)(S),

the n(L)-strand braid group of the surface S. We say that L is a closure of α and

denote it by L= α̂. Throughout the article, we will fix a page S0 and always see

a closed braid as the closure of a braid. A closed braid is regarded as a transverse

link in the contact 3-manifold (M,ξ). For a null-homologous transverse link L

with Seifert surface Σ, we denote the self-linking number of L with respect to

[Σ] ∈H2(M,L) by sl(L, [Σ]). To make notation simpler, we will always assume

that we are fixing the homology class [Σ] and omit to write [Σ].

Apparently, the Jones–Kawamuro conjecture, even for the original Jones’s

conjecture, fails for general open books and closed braids. Here is the simplest

example that does not satisfy inequality (1.2).

EXAMPLE 1.1

Let (A,T−1
A ) be an annulus open book with negative twist monodromy. As we

have seen in [11, Example 2.20], there is a closed 1-braid α̂ which is a trans-

verse pushoff of the boundary of an overtwisted disk (which we call a tranverse

overtwisted disk), so sl(α̂) = 1. On the other hand, the meridian of a connected

component of the binding is a closed 1-braid β̂ with sl(β̂) =−1 (see Example 6.1

for further discussion).

Since this example comes from an overtwisted disk, one may first hope that an

open book supporting a tight contact structure satisfies inequality (1.2). However,

as the next example due to Baykur, Etnyre, Van Horn-Morris, and Kawamuro
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shows, this is not true, even for an open book decomposition of the standard

contact S3.

EXAMPLE 1.2

Let (A,TA) be an annulus open book with positive twist monodromy, and let

ρ ∈B1(A)∼= π1(A)∼= Z be a generator of the 1-strand braid group of an annulus

A that winds once in counterclockwise direction. The closed 1-braid ρ̂2 is an

unknot with sl(ρ̂2) =−3 (see Example 2.4 for how to see this).

In fact, as we will discuss in Section 6, almost all open books have closed braids

violating inequality (1.2). Thus, to get a reasonable generalization of the Jones–

Kawamuro conjecture, we need to add some assumptions and modify the state-

ment.

The first assumption and modification we adopt is a topological one concern-

ing closed braids. We concentrate our attention on the case in which a knot can

cross only one particular component of the binding. We fix a connected compo-

nent C of the binding B, which we call the distinguished binding component. We

say that two links L1 and L2 in M(S,φ) −B are C-topologically isotopic if they

are topologically isotopic in M − (B−C) = (M −B)∪C. We define the minimal

C-braid index of L by

bC(L) =min
{
n(β̂)

∣∣ β̂ is C-topologically isotopic to L
}
.

As we will see in Corollary 3.2, two closed braids are C-topologically isotopic

if and only if two closed braids are moved to the other by applying a sequence

of braid isotopies and (de)stabilizations along the distinguished binding compo-

nent C.

The second and the third assumptions we add concern the properties of an

open book. Specifically, we consider the following conditions.

[Planar] The page S is planar.

[FDTC] The fractional Dehn twist coefficient (FDTC) along the distinguished

binding C satisfies |c(φ,C)|> 1.

Here it is interesting to compare these two conditions with [15, Corollary 1.2],

which states that a planar open book (S,φ) with c(φ,C) > 1 for all C ⊂ ∂S

supports a tight contact structure.

Now our generalization of the Jones–Kawamuro conjecture is stated as fol-

lows.

THEOREM 1.3 (GENERALIZATION OF THE JONES–KAWAMURO CONJECTURE)

Let (S,φ) be an open book satisfying [Planar] and [FDTC], and let L⊂M(S,φ) −
B be a null-homologous oriented link. If two closed braids α̂ and β̂ are C-

topologically isotopic to L, then the inequality

(1.3)
∣∣sl(α̂)− sl(β̂)

∣∣ ≤ 2
(
max

{
n(α̂), n(β̂)

}
− bC(L)

)
holds.



196 Tetsuya Ito

REMARK 1.4

For the case of the open book (D2, Id), according to a convention c(IdD2 , ∂D2) =

∞ explained in [16] we may regard the open book (D2, Id) as satisfying [FDTC].

In this case, being C(= ∂D2)-topologically isotopic is equivalent to being topo-

logically isotopic, so Theorem 1.3 contains the Jones–Kawamuro conjecture (1.2)

as its special case.

Although the assumptions we add seem too restrictive at first glance, as we will

see in Section 6, Theorem 1.3 is optimal in the sense that we cannot drop any

assumptions from Theorem 1.3. We will present examples of closed braids α̂ and

β̂ in an open book (S,φ) violating inequality (1.3), satisfying:

(a) S is planar, α̂ and β̂ are C-topologically isotopic, but |c(φ,C)| = 1

(Example 6.1);

(b) S is planar, |c(φ,C)|> 1, and α̂ and β̂ are topologically isotopic but are

not C-topologically isotopic (Example 6.2);

(c) α̂ and β̂ are C-topologically isotopic, |c(φ,C)|> 1, but S is not planar

(Example 6.5).

Our proof is inspired by LaFountain and Menasco’s [19] proof of the Jones–

Kawamuro conjecture, based on the braid foliation machinery developed by Bir-

man and Menasco (see [2] for the basics of braid foliation). In their proof, the

foliation change and exchange moves were introduced in [3] and [4], and various

observations and techniques developed in proving the Markov theorem without

stabilization (MTWS; see [6], [7]) and usual Markov theorem (see [5]) play sub-

stantial roles. In our proof, we use the open book foliation machinery developed

in [11], [16], [12], [14], and [15], which is a generalization of the braid foliation.

In Section 2, we review the open book foliation machinery for pairwise dis-

joint annuli cobounded by two closed braids. We also summarize various opera-

tions on open book foliation which will be used later.

In Section 3, we prove that, after suitable stabilizations of particular signs,

topologically isotopic closed braids always cobound pairwise disjoint, embedded

annuli. It should be emphasized that results in Section 3 hold for all open books

and closed braids. As a corollary, we prove a slightly stronger version of the

Markov theorem for closed braids in general open books in Corollary 3.2, which

is interesting in its own right.

In Section 4 we prove Theorem 1.3. This is the point where we need to

use assumptions [Planar] and [FDTC], and where the notion of C-topologically

isotopic plays crucial roles.

In Section 5, we prove two lemmas concerning the property of cobounding

annuli with c-circles, which are used in the proof of Theorem 1.3. The existence

of such cobounding annuli is a new feature of general open book foliation which

did not appear in braid foliation settings.

In Section 6 we give various examples of closed braids in general open books

that do not satisfy the inequality in the Jones–Kawamuro conjecture to explain
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how our result is the best possible in a certain sense. In particular, in Proposi-

tion 6.3, we show that such a closed braid is quite ubiquitous. This justifies our

modification (1.3), a notion of C-topologically isotopic, and the minimal C-braid

index.

2. Open book foliation machinery

In this section we review the open book foliation machinery which will be used

in the proof of Theorem 1.3 (for details, see [11], [16], [12]).

2.1. Open book foliation for cobounding annuli
Let α̂ and β̂ be closed braids in M(S,φ). Let A be pairwise disjoint embedded

annuli such that ∂A = α̂ ∪ (−β̂). We call such A cobounding annuli between α̂

and β̂, and we write α̂∼A β̂.

In this section we review the open book foliation machinery for cobounding

annuli (see [6, Section 4] for the case braid foliation, the disk open book for

standard contact S3). Note that connected components −β̂ of ∂A are negatively

transverse to pages. This gives rise to some new features in open book foliation,

which we will briefly discuss.

Let us consider the the singular foliation Fob(A) on A which is induced by

intersections with pages

Fob(A) =
{
A∩ St

∣∣ t ∈ [0,1]
}
.

We say that A admits an open book foliation if Fob(A) satisfies the following

conditions.

(F i) The binding B pierces A transversely in finitely many points. Moreover,

for each p ∈ B ∩ A there exists a disk neighborhood Np ⊂ Int(A) of p on

which the foliation Fob(Np) is radial with the node p (see Figure 1(i)). We

call p an elliptic point.

(F ii) The leaves of Fob(A) are transverse to ∂A.

(F iii) All but finitely many pages St intersect A transversely. Each exceptional

page is tangent to A at a single point. In particular, Fob(A) has no saddle-

saddle connections.

(F iv) All the tangencies of A and fibers are of saddle type (see Figure 1(ii)).

We call them hyperbolic points.

By isotopy fixing ∂A, A can be put so that it admits an open book foliation

(see [11, Theorem 2.5]).

A leaf of Fob(A), a connected component of A ∩ St, is regular if it does not

contain a tangency point and is singular otherwise. We will often say that a

hyperbolic point h is around an elliptic point v if v is an endpoint of the singular

leaf that contains h.

The regular leaves are classified into the following four types:

a-arc: an arc where one of its endpoints lies on B and the other lies on ∂A;

b-arc: an arc whose endpoints both lie on B;
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Figure 1. Singular points and their signs for an open book foliation: if the positive normal direction (illus-

trated by the dotted arrow) of A is opposite, we have a singular point with a negative sign.

s-arc: an arc whose endpoints both lie on ∂A;

c-circle: a simple closed curve.

By orientation reasons, an a-arc connects a positive elliptic point and a point

of α̂, or a negative elliptic point and a point of β̂. Similarly, an s-arc connects

a point of α̂ and a point of β̂. A b-arc may connect different components of the

binding.

An elliptic point p is positive (resp., negative) if the binding B is positively

(resp., negatively) transverse to A at p. The hyperbolic point q is positive (resp.,

negative) if the positive normal direction 	nA of A at q agrees (resp., disagrees)

with the direction of the fibration. We denote the sign of a singular point v by

sgn(v) (see Figure 1).

According to the types of nearby regular leaves, hyperbolic points are classi-

fied into nine types: aa, ab, bb, ac, bc, cc, as, abs, and cs. In the case of annuli,

ss-singularity does not occur. Each hyperbolic point has a canonical neighbor-

hood as depicted in Figure 2, which we call a region. We denote by sgn(R) the

sign of the hyperbolic point contained in the region R.

If Fob(A) contains at least one hyperbolic point, then we can decompose A

as a union of regions whose interiors are disjoint (see [11, Proposition 3.11]). We

call such a decomposition a region decomposition. In the region decomposition,

some boundaries of a region R can be identified. In this case, we say that R

is degenerated (see Figure 3). Some degenerated regions cannot exist, because

around an elliptic point, all leaves must sit on distinct pages by (F i).

A topological property of a b-arc plays an important role. We say that a

b-arc b⊂ St is:

• essential if b is not boundary-parallel in St \ (St ∩ ∂A);

• strongly essential if b is not boundary-parallel in St;

• separating if b separates the page St into two components.

See Figure 4(ii).
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Figure 2. Nine types of regions.

Figure 3. Degenerated regions: (iii) illustrates a forbidden degenerated region. To see that this is impossible,

look at the leaf illustrated by the bold line.

Figure 4. (i) Regular leaves of open book foliation. (ii) Essential and strongly essential b-arcs.
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The conditions “boundary parallel in St” and “nonstrongly essential” are

equivalent. In this article we prefer to use the former. Also note that a non-

separating b-arc is always strongly essential. Finally, we say that an elliptic point

v is strongly essential if every b-arc that ends at v is strongly essential.

For an element φ of the mapping class group of a surface with boundary

S and a connected component C of ∂S, a rational number c(φ,C), called the

fractional Dehn twist coefficient (FDTC, for short), is defined [10]. This number

measures the extent to which φ twists the boundary C and plays an important

role in contact geometry. A key property of a strongly essential elliptic point is

that one can estimate the FDTC of the monodromy from such an elliptic point.

LEMMA 2.1 ([16, LEMMA 5.1])

Let v be an elliptic point of Fob(A) lying on a binding component C ⊂ ∂S. Assume

that v is strongly essential and there are no a-arcs or s-arcs around v. Let p (resp.,

n) be the number of positive (resp., negative) hyperbolic points that lie around v.

(1) If sgn(v) = +1, then −n≤ c(φ,C)≤ p.

(2) If sgn(v) =−1, then −p≤ c(φ,C)≤ n.

We recall the following observation.

PROPOSITION 2.2 ([11, PROPOSITION 2.6])

If cobounding annuli A admit an open book foliation, then by ambient isotopy

fixing ∂A we can put A so that Fob(A) has no c-circles. Moreover, if the original

cobounding annuli A do not intersect with a component C ′ of the binding B, then

Fob(A) can be chosen so that no elliptic point of Fob(A) lies on C ′.

We remark that, when we put A so that Fob(A) has no c-circles, in exchange,

Fob(A) may have a lot of boundary-parallel b-arcs. Finally, we recall the relation

between the open book foliation and the self-linking number.

PROPOSITION 2.3 ([11, PROPOSITION 3.2])

Let Σ be a Seifert surface of a closed braid α̂, admitting an open book foliation.

Then the self-linking number is given by

sl
(
α̂, [Σ]

)
=−(e+ − e−) + (h+ − h−),

where e± and h± are the numbers of positive/negative elliptic and hyperbolic

points of the open book foliation of Σ.

2.2. Movie presentation
A movie presentation is a method to visualize an open book foliation of a surface

F (see [11, Section 2.1.5] for details).

Let F be an oriented surface embedded in M(S,φ) admitting an open book

foliation Fob(F ). We identify M(S,φ) − S0 with S × [0,1]/ ∼∂ , where ∼∂ is an

equivalence relation given by (x, t) ∼∂ (x, s) for x ∈ ∂S and s, t ∈ [0,1]. Let P :
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Figure 5. Describing arc of a hyperbolic point (for the case sgn=+). We indicate the positive normal �nF

by dotted gray arrows. We illustrate the describing arc by a dotted line.

M(S,φ) − S0
∼= S × [0,1]/∼∂→ S be the projection given by P(x, t) = x. We use

P to fix the way of identification of the page St with abstract surface S. When

we draw the slice (St, St ∩ F ), we will actually draw P(St, St ∩ F ).

First we review a notion of describing an arc for a hyperbolic point. By

definition, a hyperbolic point h is a saddle tangency of a singular page St∗ and F .

Let N(h)⊂ F be a saddle-shaped neighborhood of h. We put F so that in the

interval [t∗ − ε, t∗ + ε], for a small ε > 0, F −N(h) is just a product. That is, the

complement F −N(h) is identified with (St∗ ∩ (F −N(h)))× [t∗ − ε, t∗ + ε].

The embedding of N(h) is understood as follows. For t ∈ [t∗ − ε, t∗), as t

increases two leaves l1(t) and l2(t) in St approach along a properly embedded

arc γ ⊂ St joining l1 and l2, and at t = t∗ these two leaves collide to form a

hyperbolic point. For t ∈ (t∗, t∗ + ε], the configuration of leaves is changed (see

Figure 5). Thus, the saddle h is determined, up to isotopy, by an arc γ ∈ St∗−ε,

which illustrates how two leaves l1(t) and l2(t) collide. We call γ the describing

arc of the hyperbolic point h.

The describing arc also determines the sign of h: sgn(h) is positive (resp.,

negative) if and only if the positive normals 	nF of F point out of (resp., into) its

describing arc.

Take 0 = s0 < s1 < · · ·< sk = 1 so that Ssi is a regular page and that in each

interval (si, si+1) there exists exactly one hyperbolic point hi. The sequence of

slices (Ssi , Ssi ∩ F ) with a describing arc of the hyperbolic point hi is called a

movie presentation of F . A movie presentation completely determines how the

surface F is embedded in M(S,φ) and its open book foliation. For convenience

and to make it easier to chase how the surface and the braid move, we often add

redundant slices (St, St ∩ F ) in the movie presentation.

EXAMPLE 2.4 (MOVIE FOR EXAMPLE 1.2)

Here we give a movie presentation of the disk D bounding the unknot ρ̂2 in the

open book (A,TA) in Example 1.2.

(i) At t= 0, we have one a-arc and two b-arcs. The positive normal 	nD of

D is indicated by the gray, dotted arrow. As t increases, the a-arc from v0 and
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the b-arc connecting v1 and w1 form a hyperbolic point h1, whose describing

arc is indicated by the dotted line. By the positive normal 	nD, the sign of h1 is

negative.

(ii) After passing the hyperbolic point h1, we get an a-arc from v1 and a

b-arc connecting v0 and w1. As t increases, we then have a negative hyperbolic

point h2, indicated by the dotted line.

(iii) After passing the hyperbolic point h2, we get an a-arc from v2 and a

b-arc connecting v1 and w2. As t increases, we then have a negative hyperbolic

point h3, indicated by the dotted line.

(iv) After passing the hyperbolic point h3, we get an a-arc from v1 and a

b-arc connecting v2 and w2. As t increases, we then have a positive hyperbolic

point h4, indicated by the dotted line.

(v) After passing the hyperbolic point h4 and at t = 1, we have one a-arc

and two b-arcs. During parts (i)–(v), the boundary of the a-arc winds twice in

the annulus A. Finally, the slice at t = 1 is mapped to the first slice (i) by the

monodromy TA to give an embedded disk in M(A,TA) = S3.

See Figure 6. From this movie presentation, we conclude that Fob(D) is

depicted as Figure 6, so by Proposition 2.3 we confirm that sl(ρ̂2) = −3, as

asserted in Example 1.2.

Figure 6. Movie presentation of the disk D bounding an unknot ρ̂2 in the open book (A,TA) (Example 1.2).
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2.3. Review of operations on open book foliation
The author and Kawamuro [12] developed operations that modify the open book

foliation. Such operations allow us to simplify the open book foliations and to

put surfaces and closed braids in better positions.

These operations are realized by certain ambient isotopies which will often

change the braid isotopy class and the position of the surface dramatically, but

when we just look at the open book foliation, they are local in the following

sense. For each operation there is a certain subset U of A such that the opera-

tion changes Fob(A) and the pattern of a region decomposition inside U , but it

preserves Fob(A) outside of U .

Before describing operations on open book foliation, first we clarify the mean-

ing of stabilizations of closed braids. Let C be a connected component of the

binding B, and let μC be the meridian of C. We say a closed braid α̂ is a positive

(resp., negative) stabilization of a closed braid β̂ along C if α̂ is obtained by

connecting μC and β̂ along a positively (resp., negatively) twisted band. Here

a positively (resp., negatively) twisted band is a rectangle whose open book

foliation has a unique hyperbolic point with positive (resp., negative) sign (see

Figure 7).

A positive stabilization preserves the transverse link types, whereas a neg-

ative stabilization does not. If α̂ is a negative stabilization of a closed braid β̂,

then sl(α̂) = sl(β̂)− 2.

Now we summarize operations on open book foliations in a somewhat casual

way. In Figure 8 we illustrate five operations on open book foliations. The reader

can understand these figures as a rule of changing the open book foliation, pre-

serving the topological link types (or the braid isotopy classes or the transverse

knot types) of ∂A. For detailed discussions and more precise statements, see [12].

(a) b-arc foliation change. The b-arc foliation change is an operation which

changes the pattern of a region decomposition, designed to reduce the number

of hyperbolic points around certain elliptic points. This operation preserves the

braid isotopy class of ∂A.

Here is a precise setting. Assume that two ab- or bb-tiles R1 and R2 of the

same sign are adjacent at exactly one separating b-arc b. Let v± be the positive

and negative elliptic points which are the endpoints of b. Then by ambient isotopy

Figure 7. Stabilization of a closed braid.
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Figure 8. Operations on open book foliations: (a) b-arc foliation change, (b) interior exchange move,

(c) boundary-shrinking exchange move, (d) destabilization (of sign ε), and (e) stabilization (of sign ε).

preserving the binding, one can change R1 ∪R2 as a union of two new regions

R′
1 ∪R′

2 so that the number of hyperbolic points around v± decreases by one.

(b) Interior exchange move. An interior exchange move, which was simply

called an exchange move in [12], is an operation that removes four singular points.

This operation may change the braid isotopy class of ∂A, but preserves the

transverse link types.

Assume that there exists an elliptic point v contained in exactly two ab-

or bb-tiles R1 and R2 of opposite signs and that at least one of the common

b-arc boundaries b of R1 and R2 is boundary parallel. Then by ambient isotopy

preserving the transverse link type of ∂A one can remove two hyperbolic points

in R1 ∪R2 and elliptic points which are the endpoints of b.

(c) Boundary-shrinking exchange move. A boundary-shrinking exchange

move is similar to the interior exchange move. Like an interior exchange move, this

operation may change the braid isotopy class of ∂A, but it preserves the trans-

verse link type. A critical difference is that for a boundary-shrinking exchange
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move we do not require the common b-arc to be boundary-parallel. (This is the

reason why we distinguish two exchange moves in the context of an open book

foliation.)

Assume that there exists an elliptic point v contained in exactly two ab-tiles

R1 and R2 of opposite signs. Then by ambient isotopy preserving the transverse

link type of ∂A, one can remove two regions R1 ∪R2.

(d) Destabilization along a degenerated aa- or as-tile. Let R be a degenerated

aa- or as-tile of sign ε, and let v be the positive elliptic point in R which lies on

a component C of the binding B. Then one can apply a destabilization of sign ε

along C to remove the region R. In particular, the transverse link type of ∂A is

preserved if ε=+.

(e) Stabilization along an ab- or abs-tile. Let R be an ab- or abs-tile R of

sign −ε, and let v be the negative elliptic point in R which lies on a component

C of the binding B. Then by applying a stabilization of sign ε along C, we can

remove the region R. In particular, the transverse link type of ∂A is preserved if

ε=−.

Since a boundary shrinking exchange move is not discussed in [12], we give

a concise explanation. The boundary shrinking exchange move is a composite of

the stabilization along an ab-tile, namely, (e), and the destabilization along a

degenerated aa-tile, namely, (d), as shown in Figure 9. The condition sgn(R1) 
=
sgn(R2) guarantees that we are able to choose the signs of stabilizations, and

destabilizations are positive, so the boundary shrinking exchange move preserves

the transverse link type.

In a 3-dimensional picture, the boundary shrinking exchange move can be

understood as a move sliding the braid along a part of the surface R1 ∪R2 which

forms a “pocket” (see Figure 10).

In the rest of the article, we will often simply use an exchange move to mean

both an interior exchange move and a boundary-shrinking exchange move if their

differences are not important. Also, we say an exchange move is along C if two

elliptic points which will be removed by the move lie on C. In this case, the

original closed braid and the resulting closed braid after the exchange move are

C-topologically isotopic.

Figure 9. The boundary-shrinking exchange move is realized by (i) positive stabilization and (ii) positive

destabilization.
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Figure 10. Isotopy realizing a boundary shrinking exchange move.

3. Topologically isotopic closed braids stably cobound annuli

In this section, we prove a generalization of [19, Proposition 1.1], which asserts

that every pair of topologically isotopic closed braids α̂ and β̂ in S3 cobound

embedded annuli, after positively stabilizing α̂ and negatively stabilizing β̂.

Note that LaFountain–Menasco’s construction (see [19, pp. 3593–3594]) of

cobounding annuli (which first appeared in [5], [6]) heavily depends on the fact

that the ambient space is S3, which can be viewed as S3#S3. Our argument,

though it is strongly inspired by the LaFountain–Menasco proof, avoids this issue

by using a step-by-step modification of a sequence of embedded annuli.

THEOREM 3.1

If two closed braids α̂ and β̂ in an open book (S,φ) are topologically isotopic, then

there exist closed braids α̂+ and β̂− which are positive stabilizations of α̂ and

negative stabilizations of β̂, respectively, such that α̂+ and β̂− cobound pairwise

disjoint embedded annuli A.

Moreover, if α̂ and β̂ are C-topologically isotopic for a distinguished binding

component C, then all stabilizations are stabilizations along C, and the cobound-

ing annuli A can be chosen so that they do not intersect with the rest of the

binding components, B −C.

Proof

First we take a sequence of closed braids and cobounding annuli

(3.1) α̂∼A α̂1 ∼A1 α̂2 ∼A2 · · · ∼Ak−1
α̂k ∼Ak

β̂

so that the property

(∗) α̂ intersects the ith cobounding annuli Ai with at most one point for

each i≥ 1

holds.

Such a sequence of cobounding annuli and closed braids is obtained as follows.

Since α̂ and β̂ are topologically isotopic, there exists a sequence of links which

may not be closed braids

(3.2) α̂= L0 → L1 → · · · → Lk−1 → Lk = β̂



Self-linking number and braid index 207

such that Li ∪ (−Li+1) cobound pairwise disjoint embedded annuli A′
i in M(S,φ).

By subdividing the sequence (3.2), we may assume that each A′
i intersects α̂= L0

with at most one point.

We inductively modify the sequence (3.2) to produce the desired sequence of

closed braids and cobounding annuli. First we put α̂0 = α̂ and A′′
0 =A′

0.

Assume that we have obtained a sequence of links, closed braids, and

cobounding annuli

α̂= α̂0 ∼A α̂1 ∼A1 · · · ∼Ai−1 α̂i−1 → Li → Li+1 → · · · → Lk

so that the property (∗) holds and that α̂i−1 ∪ (−Li) cobound annuli A′′
i that

intersect α̂ with at most one point.

We apply Alexander’s trick to Li to get a closed braid α̂i as follows. With

no loss of generality, we may assume that Li is transverse to pages except at

finitely many points. Assume that some portion γ of Li is negatively transverse

to pages. Then we take a disk Δ with the following properties.

(1) The boundary ∂Δ is a closed 1-braid that is decomposed as the union

of two arcs, ∂Δ= (−γ)∪ γ′ and Δ∩Li = γ.

(2) The disk Δ is positively transverse to the binding at one point. Moreover,

the intersection Δ∩B lies on the distinguished binding component C if necessary.

(3) The disk Δ is disjoint from α̂∪ α̂i−1 ∪Li+1.

(4) An interior of the regular neighborhood N(γ) of γ in the disk Δ is disjoint

from both A′′
i and A′

i+1.

Then we replace the link Li with a new link (Li − γ) ∪ γ′. This removes

the negatively transverse portion γ of Li. Moreover, by properties (3) and (4)

above, by attaching Δ to A′′
i or A′

i+1, we extend the cobounding annuli. Here,

if Δ intersects with the cobounding annuli A′ = A′′
i or A′

i+1, then we push A′

along Δ to make them disjoint from Δ, as we illustrate in Figure 11. (By (3), we

may assume that other types of intersections do not appear.) Since Δ is chosen

to be disjoint from α̂, this modification does not produce new intersections with

α̂. In particular, the resulting cobounding annuli preserve the property that they

intersect α̂ with at most one point.

Figure 11. Alexander’s trick.
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After applying this operation (which we call Alexander’s trick) finitely many

times, we modify Li so that it is a closed braid α̂i, and we obtain the cobounding

annuli Ai between α̂i−1 and α̂i and the cobounding annuli A′′
i+1 between α̂i and

Li+1 as desired. Note that if α̂ and β̂ are C-topologically isotopic, then one can

choose the cobounding annuli A′
i so that they are disjoint from B − C. Hence,

we can take all cobounding annuli Ai so that they are disjoint from B −C.

Now we use a sequence (3.1) to prove the theorem. We show that, by shrink-

ing the first cobounding annuli A1 appropriately, we obtain a new sequence of

closed braids and cobounding annuli with shorter length

(3.3) α̂+ ∼A∗ α̂2− ∼A∗
2
α̂3 ∼A3 · · · ∼Ak−1

α̂k ∼Ak
β̂,

where α̂+ and α̂2− are the positive and negative stabilizations of α̂ and α̂2,

respectively, and the new cobounding annuli A∗,A∗
2,A3, . . . satisfy the property

corresponding to (∗),

(∗) α̂+ intersects the cobounding annuli A∗, A∗
2,A3, . . . with at most one

point.

Once this is done, an induction on the length of the sequence (3.1) of cobounding

annuli proves the theorem.

In the rest of the proof, we give a construction of the shorter sequence (3.3).

By Proposition 2.2, we can put A1 so that it admits an open book foliation

without c-circles. We modify and shrink the annuli A1 in the following five steps.

See Figure 12 for an overview of our construction—this part of the argument

comes from [19], but we need additional care for other cobounding annuli.

(i) Removing negative elliptic points (stabilizations for α̂1). In the first two

steps, we do not care about the sign of hyperbolic points. We stabilize α̂1 along

Figure 12. Summary: how to get a new sequence of cobounding annuli and closed braids α̂+ and α̂2−.
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ab- or abs-tiles of A1 (see Section 2.3(d)) to remove all negative elliptic points

from Fob(A1). We denote the resulting closed braid by α̂1
′
. The cobounding

annuli A yield the cobounding annuli A′ between α̂ and α̂1
′
.

(ii) Removing degenerated aa-tiles (destabilizations for α̂1
′
). After step (i),

the region decomposition of Fob(A1) consists of only aa- and as-tiles and A1 is

a union of disks D1, . . . ,Dm and strips foliated by s-arcs. We may assume that

the intersection point A1 ∩ α̂ lies on D1. Let Gi be a tree contained in Di whose

vertices are elliptic points and a point w on α̂2 ∩Di which is the endpoint of a

singular leaf. The edges of Gi are singular leaves connecting vertices.

Except w, a vertex of valence 1 in the tree Gi is nothing but an elliptic point

contained in a degenerated aa- or as-tile R. If R does not intersect with α̂, then

by destabilizing α̂1
′
along R (see Section 2.3(e)), we remove R to simplify the

disk Di, without affecting α̂.

Since Di does not intersect with α̂ for i > 1, by destabilizations we eventually

remove Di. For the disk D1, we destabilize α̂1 until the unique intersection point

D1 ∩ α̂ obstructs. Let us write the resulting closed braid by α̂1
′′
. Again, the

cobounding annuli A′ give the cobounding annuli A′′ between α̂ and α̂1
′′
.

(iii) Reordering the sign of hyperbolic points (exchange moves for α̂1
′′
). From

now on, we carefully look at the sign of hyperbolic points. After step (ii), Fob(A1)

is a union of a strip foliated by s-arcs and the disk D1. The graph G1 is a

linear graph, and D1 is a linear string of as- and aa-tiles. We reorder the sign of

hyperbolic points in D1 as follows.

Let us consider the situation in which there is a positive elliptic point v such

that v is contained in two aa-tiles with opposite signs (see Figure 13). Let C be the

connected component of B on which v lies, and let N(v)∼=D2× [−1,1]⊂D2×C

Figure 13. Exchange move to swap the signs of two adjacent aa-tiles.



210 Tetsuya Ito

be the regular neighborhood of v in M . By suitable ambient isotopy, we put two

aa-tiles so that their hyperbolic points are contained in N(v). In a ball N(v), we

apply the classical exchange move to exchange the over and under strands. (This

notion make sense by considering the projection N(v)∼=D2 × [−1,1]→D2.) As

a consequence, the signs of the two hyperbolic points are swapped.

Thus, by applying exchange moves for α̂′′, we can arrange the signs of hyper-

bolic points in D1 so that the negative hyperbolic points are compiled at the end

w and the positive hyperbolic points are compiled at the other end. We denote the

resulting closed braid by α̂1
′′′
. The cobounding annuli A′′ produce the cobound-

ing annuli A′′′ between α̂ and α̂1
′′′
.

(iv) Removing negative hyperbolic points (negative stabilizations for α̂2).

After step (iii), the sign of the as-tile is negative unless the signs of all hyperbolic

points in D1 are positive. We negatively stabilize α̂2 along negative as-tiles, until

the sign of an as-tile becomes positive (see Section 2.3(d)). As a consequence,

we remove all negative hyperbolic points from Fob(A), and we get a new closed

braid α̂2−, a negative stabilization of α̂2.

The cobounding annuli A2 between α̂2 and α̂3 produce the cobounding annuli

A∗
2 between α̂2− and α̂3. In the construction of A∗

2, a new intersection with α̂ is

never created, so α̂ intersects the new cobounding annuli A∗
2 with at most one

point.

(v) Removing positive hyperbolic points (positive stabilizations for α̂). After

step (iv), all hyperbolic points in D1 are positive. In the last step, we posi-

tively destabilize α̂1 to shrink the rest of the cobounding annuli A1. Since the

degenerated aa-tile in D1 intersects α̂, the destabilization along the degenerated

aa-tile causes a change of the closed braid α̂. The change of α̂ induced by the

destabilization is understood as follows.

Let v be the positive elliptic point in the degenerated aa-tile R, and let C

be the connected point on which v lies. As in step (iv), let N(v)∼=D2× [−1,1]⊂
D2 × C be the regular neighborhood of v in M(S,φ). We may assume that R is

contained in N(v) and that the cobounding annuli A3, . . . do not intersect with

N(v) to guarantee that the change of α̂ does not create new intersection points.

As is noted in [19], for a link α̂ ∪ α̂1
′′′
, positive destabilization α̂1

′′′
induces

a move which is called the microflype, the simplest flype move in braid foliation

theory (see [6, Sections 2.3, 5.3] and Figure 14). A positive destabilization α̂1
′′′

leads to a positive stabilization of α̂. This isotopy of the link α̂∪ α̂1
′′′

is supported

in N(v).

Therefore, after applying microflypes which induce positive destabilizations

for α̂1
′′′
and positive stabilizations for α̂, we eventually remove all singular points,

so A1 is now foliated by s-arcs. Let us call the resulting closed braids α̂1
′′′′

and

α̂+
′
, respectively. The cobounding annuli A′′′ give the cobounding annuli A′′′′

between α̂+
′
and α̂1

′′′′
.

Let N(A1) be a regular neighborhood of A1 in M(S,φ). We put each cobound-

ing annuli A∗
2, A3, . . . so that the intersection with α̂+

′
does not lie in N(A1).
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Figure 14. Microflype: a positive destabilization of α̂1
′′′ induces a positive stabilization of α̂.

Since A1 is foliated by s-arcs, there is an ambient isotopy Φt :M(S,φ) →M(S,φ)

such that:

• Φt preserves each page of the open book,

• Φ0 = id and Φ1(α̂′′′′) = α̂2−,

• Φt = id outside N(A1).

Let α̂+ = Φ1(α̂+
′
) and A∗ = Φ1(A

′′′′). Then A∗ is a cobounding annulus

between α̂+ and α̂2−. Moreover, α̂+ can intersect each cobounding annulus

A∗
2, A3, . . . with at most one point. This completes the construction of the new

sequence (3.3). �

We note that Theorem 3.1 shows the Markov theorem for a general open book

in a slightly stronger form than that stated in [20].

COROLLARY 3.2 (MARKOV THEOREM FOR A GENERAL OPEN BOOK)

If two closed braids α̂ and β̂ are topologically isotopic, then they admit a common

stabilization: namely, there exists a sequence of closed braids

α̂= α̂0 → α̂1 → · · · → α̂k
∼= β̂l ← · · · ← β̂1 ← β̂0 = β̂

such that α̂i+1 (resp., β̂j+1) is obtained from α̂i (resp., β̂j) by a stabilization or

a braid isotopy.

Moreover, if α̂ and β̂ are C-topologically isotopic for some component of the

binding C, then all stabilizations are chosen to be a stabilization along C.

Proof

By Theorem 3.1, after stabilizations, α̂ and β̂ cobound annuli A. As we have seen

in step (i) of the proof of Theorem 3.1, by stabilizing α̂, we may eliminate all

negative elliptic points. Dually, by stabilizing β̂ we eliminate all positive elliptic

points; hence, eventually Fob(A) consists of s-arcs, so two boundaries of A are

braid isotopic. �

We point out how to read the difference in self-linking numbers from cobounding

annuli (cf. Proposition 2.3).
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PROPOSITION 3.3

Assume that two closed braids α̂ and β̂ cobound annuli A admitting an open book

foliation. Then

sl(α̂)− sl(β̂) =−(e+ − e−) + (h+ − h−).

Here e±, h± denote the number of positive/negative elliptic and hyperbolic points

in the open book foliation Fob(A).

Proof

By Corollary 3.2, stabilizations of α̂ and β̂ remove all singular points on A and

give rise to a common stabilization, say, γ̂. Let a± (resp., b±) be the number of

positive and negative stabilizations to get γ̂ from α̂ (resp., β̂). Since the positive

stabilization preserves the self-linking number whereas the negative stabilization

decreases the self-linking number by two, sl(γ̂) = sl(α̂)−2a− = sl(β̂)−2b−; hence,

sl(α̂)− sl(β̂) = 2(a− − b−).

On the other hand, one positive (resp., negative) stabilization of α̂ removes

one negative elliptic point and one negative (resp., positive) hyperbolic point.

Similarly, one positive (resp., negative) stabilization of β̂ removes one positive

elliptic point and one positive (resp., negative) hyperbolic point. This implies

e− = a+ + a−, e+ = b+ + b−, h+ = a− + b+, h− = a+ + b−,

which show that

a− − b− =−e+ + h+ = e− − h−. �

4. Proof of generalization of the Jones–Kawamuro conjecture

In this section we prove a generalization of the Jones–Kawamuro conjecture. We

prove the following theorem.

THEOREM 4.1

Let α̂ and β̂ be closed braids in an open book (S,φ) that cobound pairwise disjoint

embedded annuli A. Assume that the cobounding annuli A and the open book

(S,φ) satisfy the following three conditions.

[C-Top] All intersections between A and the binding B lie on the distinguished

binding component C.

[Planar] The page S is planar.

[FDTC] |c(φ,C)|> 1.

Then there exist closed braids α̂0 and β̂0 such that

(1) α̂0 is obtained from α̂ by braid isotopy, exchange moves, and destabiliza-

tions along C;

(2) β̂0 is obtained from β̂ by braid isotopy, exchange moves, and destabiliza-

tions along C;

(3) n(α̂0) = n(β̂0) and sl(α̂0) = sl(β̂0).
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The assumptions [C-Top] and [Planar] lead to the following properties of open

book foliations of cobounding annuli, which allow us to perform b-arc foliation

changes freely.

LEMMA 4.2

Under the assumptions of [C-Top] and [Planar],

(1) all b-arcs of A are separating;

(2) if v is an elliptic point such that all leaves that end at v are b-arcs,

then around v there must be both positive and negative hyperbolic points (see [12,

Lemma 7.6]).

Note that statement (1) is nothing but the simple fact that if two endpoints of a

properly embedded arc b in a planar surface lie on the same component, then b

is separating. Also, assertion (2) essentially follows from (1).

In the proof of Theorem 4.1, we need to treat cobounding annuli with c-circles

(see Remark 4.5), and we use the following two results, which will be proved in

Section 5. First, we observe that c-circles should be essential in the cobounding

annuli A.

LEMMA 4.3

Under the assumptions of Theorem 4.1, the cobounding annulus A does not con-

tain a c-circle which is null-homotopic in A.

Second, we observe that, for a planar open book, if cobounding annuli with c-

circles is the simplest, then Theorem 4.1 is true.

LEMMA 4.4

Let (S,φ) be a planar open book. Assume that closed braids α̂ and β̂ represent-

ing a knot cobound an annulus A consisting of two degenerated ac-annuli (see

Figure 15). Then n(α̂) = n(β̂) = 1 and sl(α̂) = sl(β̂).

Using these results, we now prove Theorem 4.1.

Figure 15. Special case: cobounding annulus consisting of two degenerated ac-annuli.
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Figure 16. If Fob(A) contains c-circles, we may find a subannulus A′ consisting of two degenerated ac-tiles.

Proof of Theorem 4.1

In the following proof, we prove the theorem for the case in which α̂ and β̂

are knots, namely, A is an annulus, since the general link case follows from the

componentwise argument. Let us put A so that it admits an open book foliation.

We prove the theorem by induction on the number of singular points in A. If

A contains no singular points, then α̂ and β̂ are braid isotopic, so the result is

trivial.

First assume that A contains c-circles. By Lemma 4.3, c-circles are homotopic

to the core of A. In particular, A has no cc-pants or cs-annuli, and an ac- or bc-

annulus always appears in pairs sharing their c-circle boundaries.

Then, in a neighborhood of a c-circle, there is a subannulus A′ ⊂ A which

consists of two degenerated ac-annuli (see Figure 16). Let ∂A′ = α̂′∪ (−β̂′). Since

a c-circle is homotopic to the core of A, the subannulus A′ splits the annulus A

into three cobounding annuli A=Aα∪A′∪Aβ , with ∂Aα = α̂∪(−α̂′) and ∂Aβ =

β̂′ ∪ (−β̂). By Lemma 4.4, n(α̂′) = n(β̂′) = 1 and sl(α̂′) = sl(β̂′). In particular, α̂′

and β̂′ never admit destabilizations.

Since Aα and Aβ are subannuli of A, the number of singular points of Fob(Aα)

and Fob(Aβ) is strictly smaller than that of Fob(A). Therefore, by induction, there

exists a closed braid α̂0 (resp., β̂0) which is obtained from α̂ (resp., β̂) by braid

isotopy, destabilizations, and exchange moves along C such that

n(α̂0) = n(α̂′) = 1 = n(β̂′) = n(β̂0), sl(α̂0) = sl(α̂′) = sl(β̂′) = sl(β̂0).

This completes the proof for the case in which A contains c-circles.

Therefore, we will always assume that Fob(A) has no c-circles. Then the

rest of the proof is similar to [19] (although we still need to be careful when we

apply operations on open book foliations, and we require new arguments for case

(iii) below). The region decomposition of A only consists of regions which are

homeomorphic to 2-cells. By collapsing the boundaries α̂ and β̂ to points vα and

vβ , respectively, we get a sphere S , and the region decomposition of A induces a

cellular decomposition of S : the 0-cells (vertices) are elliptic points and vα and

vβ , and the 1-cells are a-arcs, b-arcs, or s-arcs that are the boundaries of regions,

and the 2-cells are aa-, ab-, as-, abs-, or bb-tiles.

Let V , E, and R be the number of 0-, 1-, and 2-cells. We say that an elliptic

point v is of type (a, b) if, in the cellular decomposition, v is the boundary of a

1-cells which are a-arcs and b 1-cells which are b-arcs. Let V (a, b) be the number
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of elliptic points of Fob(A) which are of type (a, b). Then

(4.1) V = 2+

∞∑
v=1

v∑
a=0

V (a, v− a),

where the first 2 comes from 0-cells vα and vβ .

In the cellular decomposition, every 2-cell has four 1-cells as its boundary,

and every 1-cell is adjacent to exactly two 2-cells, so 2R = E holds. Thus, by

combining the equality V −E +R= χ(S) = 2 we get

(4.2) 4 = 2V −E.

Next let Ea, Eb, and Es be the number of 1-cells which are a-arcs, b-arcs,

and s-arcs, respectively. Each a-arc has exactly one elliptic point as its boundary,

and each b-arc has exactly two elliptic points as its boundary, so

(4.3) Ea =

∞∑
v=1

v∑
a=0

aV (a, v− a), 2Eb =

∞∑
v=1

v∑
a=0

(v− a)V (a, v− a).

Combining (4.1), (4.2), and (4.3) altogether, we get

0 = 2Es +

∞∑
v=1

v∑
a=0

(v+ a− 4)V (a, v− a).

By rewriting this equality, we get the Euler characteristic equality (cf. [6, Lemma

6.3.1], [19, p. 3599])

(4.4)

2V (1,0) + V (1,1) + 2V (0,2) + V (0,3)

= 2Es + V (2,1) + 2V (3,0) +

∞∑
v=4

v∑
a=0

(v+ a− 4)V (a, v− a).

Assume that the right-hand side of (4.4) is nonzero, so one of V (1,0), V (1,1),

V (0,2), or V (0,3) is nonzero.

Case (i): V (1,0) 
= 0. An elliptic point of type (1,0) is contained in a degen-

erated aa-tile. Such an elliptic point is removed by destabilization.

Case (ii): V (1,1) 
= 0. Let v be an elliptic point of type (1,1), and let ε and

δ be the signs of the hyperbolic points around v. If ε 
= δ, then we can remove v

by applying the boundary-shrinking exchange move. If ε= δ, then we can apply

b-arc foliation changes to reduce the number of hyperbolic points around v.

As a result, we get an elliptic point of type (1,0) which can be removed by

destabilization, as discussed in case (i).

Case (iii): V (0,2) 
= 0. Let v be an elliptic point of type (0,2), and let ε

and δ be the signs of the hyperbolic points around v. By Lemma 4.2(2), ε 
= δ.

Moreover, v cannot be strongly essential, because otherwise by Lemma 2.1 we

get −1≤ c(φ,C)≤ 1, which contradicts [FDTC]. Hence, we can remove such an

elliptic point by an interior exchange move.

Case (iv): V (0,3) 
= 0. Let v be an elliptic point of type (0,3). By Lemma 4.2,

around v there must be both positive and negative hyperbolic points. Around

v there are three hyperbolic points, so we can find two hyperbolic points of the
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same sign which are adjacent, so the b-arc foliation change can be applied. After

the b-arc foliation change, we get an elliptic point of type (0,2) which can be

removed as discussed in case (iii).

By cases (i)–(iv) above, if the right-hand side of (4.4) is nonzero, then we

can reduce the number of singular points of Fob(A). Hence, by induction, we find

the desired closed braids.

Therefore, we now assume that the right-hand side of (4.4) is zero. Thus,

V (1,0) = V (1,1) = V (0,2) = V (0,3) =Es = 0 and all elliptic points are either of

type V (1,2) or V (0,4).

Assume that, around some elliptic point v of type (0,4), the signs of hyper-

bolic points are not alternate. This means that there is a situation where the b-arc

foliation change can be applied, and by applying the b-arc foliation change, v is

changed to be of type (0,3), which can be removed by case (iv).

Next we look at an elliptic point v of type (1,2). Such v lies in one bb-tile

Rbb and two ab-tiles R1
ab, R

2
ab. Assume that sgn(R1

ab) 
= sgn(R2
ab) or sgn(R

1
ab) =

sgn(R2
ab) = sgn(Rbb). Then by b-arc foliation change we get an elliptic point of

type (1,1), which can be removed by case (ii).

Therefore, unless the open book foliation Fob(A) is in a particular form, a

tiling with alternate signs (see Figure 17(i)—around each elliptic point of type

(0,4) the signs of hyperbolic points are alternate, and around each elliptic point

of type (1,2), sgn(R1
ab) = sgn(R2

ab) 
= sgn(Rbb)), we can reduce the number of

singular points of Fob(A).

Thus, we eventually reduce the proof for the case in which the cobounding

annulus A is tiled with alternate signs. Let ε be the sign of the ab-tile con-

taining α̂. If ε = + (resp., −), then by negatively (resp., positively) stabilizing

α̂0 we eliminate all negative elliptic points, and by negatively (positively) sta-

bilizing β̂, we eliminate all positive elliptic points (see Figure 17(ii)) to get iso-

topic closed braids. The observation that A is tiled with alternate signs implies

Figure 17. (i) Cobounding annulus A with special open book foliation, a tiling with alternate signs. (ii)

The boundaries α̂ and β̂ become braid isotopic by performing the stabilization of sign −ε the same number

of times.
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that the number of necessary stabilizations is the same, so sl(α̂) = sl(β̂) and

n(β̂) = n(α̂). �

REMARK 4.5

By Proposition 2.2, we may always assume that the first cobounding annulus

A has no c-circles. However, when we apply the interior exchange move (case

(iii)), one may encounter cobounding annuli with c-circles. Such c-circles cannot

be eliminated without increasing the number of singular points. This is a reason

why we need to treat open book foliation with c-circles, and this is one of the

points where the LaFountain–Menasco proof does not directly apply, even if

operations on open book foliation are possible. (In the braid foliation case, this

problem does not occur, since one can always remove c-circles without increasing

the number of singular points.)

The Jones–Kawamuro conjecture is a direct consequence of Theorems 3.1 and 4.1.

Proof of Theorem 1.3

Assume to the contrary that there exist closed braids α̂ and β̂ which are C-

topologically isotopic to the same link L violating the inequality (1.3):
∣∣sl(α̂)− sl(β̂)

∣∣ > 2
(
max

{
n(α̂), n(β̂)

}
− bC(L)

)
.

With no loss of generality, we may assume that sl(α̂)≥ sl(β̂). By Theorem 3.1,

there exist closed braids α̂+ and β̂− that cobound annuli A, where α̂+ is a positive

stabilization of α̂ and β̂− is a negative stabilization of β̂ along the distinguished

binding component C. By taking further negative stabilizations of β̂ if necessary,

we may assume that n(β̂−)≥ n(α̂+).

Since a positive stabilization preserves the self-linking number, whereas one

negative stabilization decreases the self-linking number by two, we have

sl(α̂+)− sl(β̂−) = sl(α̂)− sl(β̂) + 2
(
n(β̂−)− n(β̂)

)
.

This shows that α̂+ and β̂− also violate the inequality (1.3), namely,

(4.5)

∣∣sl(α̂+)− sl(β̂−)
∣∣ = sl(α̂+)− sl(β̂−)> 2

(
max

{
n(α̂+), n(β̂−)

})
− bC(K)

= 2n(β̂−)− 2bC(L).

Since α̂ and β̂ are C-topologically isotopic, the cobounding annuli A between

α̂+ and β̂− can be chosen so that the assumption [C-Top] in Theorem 4.1 is

satisfied. Hence, by Theorem 4.1, there are closed braids α̂0 and β̂0 with n(α̂0) =

n(β̂0) and sl(α̂0) = sl(β̂0), obtained from α̂+ and β̂− by destabilizations and

exchange moves along C. Since exchange moves preserve the self-linking number

we have

−2
(
n(α̂+)− n(α̂0)

)
≤ sl(α̂+)− sl(α̂0)≤ 0,

−2
(
n(β̂+)− n(β̂0)

)
≤ sl(β̂−)− sl(β̂0)≤ 0;
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hence,

−2
(
n(α̂+)− n(α̂0)

)
≤ sl(α̂+)− sl(β̂−)≤ 2

(
n(β̂−)− n(β̂0)

)
.

This contradicts (4.5). �

5. Cobounding annuli with c-circles

In this section we prove results on cobounding annuli with c-circles used in the

previous section.

Proof of Lemma 4.3

The proof is essentially the same as an argument which already appeared in [12,

p. 3016, Case II], the proof of the split closed braid theorem for the case in which

a splitting sphere contains c-circles.

Assume that the cobounding annuli A contain a c-circle which is null-homo-

topic. Take an innermost bc-annulus R. Here by innermost we mean that the

c-circle boundary of R bounds a disk D ⊂A with R⊂D so that D−R contains

no c-circles. Then either R is a degenerate bc-annulus (see Figure 3) or the

region decomposition of D−R consists only of bb-tiles. We prove the lemma by

induction on the number of bb-tiles in D−R.

First assume that D−R contains no bb-tiles, namely, R is degenerated. Take

a binding component C so that one of the elliptic points in R lies on C. Then

by [12, Lemma 7.7], |c(φ,C)| ≤ 1, which is a contradiction.

Assume that D−R contains k > 0 elliptic points, and let v± be the elliptic

points which lie on R. Let us consider the 2-sphere S obtained by gluing two

b-arc boundaries of D −R. Then the region decomposition of D −R induces a

cellular decomposition of S .
For i > 0, let V (i) be the number of 0-cells of valence i in the cellular decom-

position of S . Then by an argument that is similar to that needed to obtain (4.4)

in the proof of Theorem 4.1, we have the Euler characteristic equality

2V (2) + V (3) = 8+
∑
i≥4

(i− 4)V (i).

This shows that S has a 0-cell v (elliptic point) of valence at most 3 which is not

v±.

By applying a b-arc foliation change if necessary (thanks to Lemma 4.2, this

is always possible) we may assume that v is of valence 2 (cf. case (iv) in the

proof of Theorem 4.1). Then as we have discussed, by an interior exchange move

we can remove the elliptic point v. Hence, we can reduce the number of elliptic

points in D−R, so by induction we conclude that a null-homotopic c-circle never

exists. �

Next we prove Lemma 4.4. As we will see in Lemma 6.4 and Example 6.5,

Lemma 4.4 does not hold for nonplanar open books.
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Proof of Lemma 4.4

Let A=Rα ∪Rβ , where Rα and Rβ are degenerated ac-annuli containing α̂ and

β̂, respectively, and let v and w be the positive and negative elliptic points in

Fob(A) (see Figure 15).

Since there are no b- and s-arcs in Fob(A), n(α̂) and n(β̂) are equal to the

number of positive and negative elliptic points, so n(α̂) = n(β̂) = 1. We look at

the movie presentation of A to determine the closed braids α̂ and β̂.

We denote the a-arcs in a page St whose endpoints are v and w by av = av(t)

and aw = aw(t), respectively. Take S0 so that the number of c-circles in S0 is

minimal among all St (t ∈ [0,1]). Then S0 ∩A consists of two a-arcs aw(0), av(0)

and c-circles c1, . . . , ck. We denote the c-circle in St that corresponds to ci by

ci(t) or simply by ci.

Take tα, tβ ∈ [0,1] so that Stα and Stβ are the singular pages that contain

the hyperbolic points hα in Rα and hβ in Rβ , respectively. We treat the case

0 < tα < tβ < 1. The case 0 < tβ < tα < 1 is similar. With no loss of generality,

we may assume that 0< tα < 1
2 < tβ < 1.

Let us look at what will happen as t moves from 0 to 1. Since the number

of c-circles in the page S0 is minimum among all pages St (t ∈ [0,1]), the first

ac-singular point hα splits the a-arc av into an a-arc and a new c-circle, say, ck+1.

Similarly, the second ac-singular point in hβ merges the a-arc aw and one of the

c-circles, say, ci. Finally, S1 ∩ A is identified with S0 ∩ A by the monodromy

φ : S1 → S0.

Recall that every simple closed curve in a planar surface is separating. Take

j ∈ {1, . . . , k} so that j 
= i. Since the monodromy φ preserves ∂S, cj(1) being

separating implies that φ(cj(1)) = cj(0) unless cj(1) is null-homotopic in S1.

However, φ(cj(1)) = cj(0) means that a family of curves cj(t) (t ∈ [0,1]) yields

an embedded torus, which is absurd. Thus, we conclude we have either

(1) k = 0, that is, S0 ∩A consists of two a-arcs av and aw;

(2) all the c-circles c ∈ St are null-homotopic in St.

In case (1), A ∩ S 1
2
consists of two a-arcs av, aw and the unique c-circle C.

The movie presentation of A is described as follows (see Figure 18).

(i) At t= 0, we have two a-arcs av and aw. Here we mark the future position

of the c-circle C by a gray, dotted line.

(ii) As t approaches tα, the arc av(t) deforms to enclose the position of the

c-circle C, and at t= tα, av forms a hyperbolic point hα. At t= tα + ε for small

ε > 0, we have an a-arc av and a new c-circle C.
(iii), (iv) As t approaches 1

2 , the point α̂ ∩ St moves along av(t) to go back

to the position at t= 0. As a consequence, the 1-braid α turns around C once.

(v) At t = 1
2 , we have two a-arcs av and aw and a c-circle C, which is a

separating simple closed curve in S 1
2
.

(vi) As t approaches tβ , the arc aw(t) deforms to approach the c-circle C,
and at t= tβ , aw and C form a hyperbolic point hβ . At t= tα+ ε for small ε > 0,

the c-circle C disappears.
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Figure 18. Movie presentation of Fob(A).

(vii), (viii) As t approaches 1, the point β̂ ∩St moves along aw(t) to go back

to the position at t= 0. As a consequence, the 1-braid β turns around C once.

Finally, two pages S1 and S0 are identified by the monodromy φ.

Thus, in particular, C being separating implies

(5.1) sgn(Rα) 
= sgn(Rβ).

By Proposition 3.3 we conclude sl(α̂) = sl(β̂).

In case (2), a similar argument shows that both α̂ and β̂ are closures of the

trivial 1-braid. �

As we will see in Example 6.5 in the next section, (5.1) does not necessarily hold

if a page S is not planar.

6. Closed braids violating the inequality

We close the article by giving several examples that do not satisfy inequali-

ties (1.2) or (1.3) to demonstrate the necessity of the assumptions in Theo-

rem 1.3.

First of all, the following example, coming from Example 1.1, shows that

the FDTC assumption [FDTC] is necessary and the inequality > 1 is the best

possible: one can not replace the condition > 1 with ≥ 1.
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Figure 19. Closed braids violating inequality (1.2) for a planar open book with FDTC= 1. (i) Closed braids

α̂ and β̂ in S3. (ii) A negative stabilization of α̂ along C2 is C1-topologically isotopic to β̂.

EXAMPLE 6.1 (EXAMPLE 1.1, REVISITED)

Let A be an annulus with boundary C1 and C2, and let TA be the right-handed

Dehn twist along the core of A. Let us recall Example 1.1. We have a closed

1-braid α̂, the boundary of a transverse overtwisted disk, and a closed 1-braid β̂,

the meridian of C1 in an annulus open book (A,T−1
A ). The binding ∂A=C1∪C2

forms a negative Hopf link in S3. Also note that c(φ,C1) = c(φ,C2) = −1. As

links in S3, α̂ and β̂ are depicted in Figure 19(i).

Let α̂′ (resp., β̂′) be the positive (resp., negative) stabilization of α̂ (resp.,

β̂) along C2. Then α̂′ and β̂′ are C1-topologically isotopic (see Figure 19(ii)). On

the other hand,∣∣sl(α̂′)− sl(β̂′)
∣∣ = ∣∣1− (−3)

∣∣ = 4> 2 = 2
(
max

{
n(α̂′), n(β̂′)

}
− bC(K)

)
;

hence, they violate inequality (1.3).

The next example shows that the notion of C-topologically isotopic is also nec-

essary.

EXAMPLE 6.2

Let us consider the open book (A,T 2
A), which is an open book decomposition of

the unique tight (indeed, Stein fillable) contact structure of RP 3 = L(2,1). The

FDTCs are c(T 2
A,C1) = c(T 2

A,C2) = 2, so the open book (A,T 2
A) satisfies the two

assumptions [Planar] and [FDTC] in Theorem 1.3 for both C1 and C2.

Let α̂ = ∂D be a closed braid which is a boundary of a disk D given by

the movie presentation in Figure 20. From the movie presentation we read that

sl(α̂) =−5 and n(α̂) = 2. On the other hand, let β̂ be a closed braid which is a

meridian of C1, so sl(β̂) =−1 and n(β̂) = 1.

Both α̂ and β̂ are unknots; hence, they are topologically isotopic. However,

4 =
∣∣sl(α̂)− sl(β̂)

∣∣ > 2
(
max

{
n(α̂), n(β̂)

}
− 1

)
= 2,

so they violate inequality (1.3).



222 Tetsuya Ito

Figure 20. A movie presentation of a disk D. The last slice (iv) at t= 1 is identified with the first slice (i)

at t= 0 by the monodromy T 2
A.

Note that if α̂ and β̂ are C1-topologically isotopic, then the links α̂∪C2 and

β̂ ∪C2 must be isotopic in M(A,T 2
A) =RP 3; hence, their linking number must be

the same. However,

3 = lk(α̂,C1) 
= lk(α̂,C1) = 1, −1 = lk(α̂,C2) 
= lk(β̂,C2) = 0.

Hence, α̂ and β̂ are neither C1-topologically isotopic nor C2-topologically iso-

topic.

Actually as the next proposition shows, similar examples are quite ubiquitous.

This shows that in Theorem 1.3 the minimal C-braid index bC(K) cannot be

replaced with the usual minimal braid index b(K), the minimum number of

strands needed to represent K as a closed braid in M(S,φ).

PROPOSITION 6.3

Let S be a (not necessarily planar) surface with more than one boundary compo-

nent. For an arbitrary open book (S,φ) with φ 
= id, there are two closed braids

α̂ and β̂ in M(S,φ) which represent the unknots (hence, they are topologically

isotopic), but they violate inequality (1.3).

Proof

Take two different boundary components C1 and C2 of S. By applying a con-

struction in [13, Theorem 2.4], if φ 
= id, then one gets an embedded disk D

admitting an open book foliation with the following properties (see Figure 21).

(1) Fob(D) has a unique negative elliptic point v which lies on C1 and n(> 1)

positive elliptic points w1, . . . ,wn (n≥ 2) which lie on C2.
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Figure 21. The disk D and its open book foliation. In the case ε=+, D is a transverse overtwisted disk.

(2) The region decomposition of Fob(D) consists of n ab-tiles of the same

sign ε. Namely, ε=+ (resp., ε=−) if φ is not right-veering (resp., right-veering)

at C1.

Let α̂= ∂D. Then n(α̂) = n− 1 and sl(α̂) =−(n− 1) + εn.

In the case ε=+, let β̂ be a closed (n− 1)-braid which is obtained from the

meridian of C1 by negatively stabilizing (n− 2) times along C2. Then sl(β̂) =

3− 2n and n(β̂) = n− 1; hence, they violate inequality (1.3),

2n− 2 =
∣∣sl(α̂)− sl(β̂)

∣∣ > 2
(
max

{
n(α̂), n(β̂)

}
− 1

)
= 2n− 4.

In the case ε=−, let β̂ be a closed 1-braid which is a meridian of C1. Then

sl(β̂) =−1 and n(β̂) = 1; hence, they violate inequality (1.3),

2n− 2 =
∣∣sl(α̂)− sl(β̂)

∣∣ > 2
(
max

{
n(α̂), n(β̂)

}
− 1

)
= 2n− 4.

As in Example 6.2, one can check that α̂ and β̂ are not C-isotopic for any

boundary component C of S by looking at the linking number with C1 and C2.

�

To illustrate the necessity of planarity, we give an example of a cobounding annu-

lus that fails to have property (5.1), which appeared in the proof of Lemma 4.4.

LEMMA 6.4

Let S be nonplanar surface. Then for an arbitrary monodromy φ, there exist

closed 1-braids α̂ and β̂ and a cobounding annulus A between them in M(S,φ)

such that

(1) the region decomposition of A consists of two degenerated ac-annuli Rα

and Rβ (see Figure 15);

(2) sgn(Rα) = sgn(Rβ).

Proof

We give such a cobounding annulus A by a movie presentation. Here we give the

example of sgn(Rα) = sgn(Rβ) = +. The example of sgn(Rα) = sgn(Rβ) = −
is obtained similarly (see Figure 22). Note that the movie is quite similar to

Figure 18, and the main difference is the slice (v), where the description arc of

the hyperbolic point shows Rβ =+. �
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Figure 22. Movie presentation of a cobounding annulus A consisting of two degenerated ac-annuli with the

same sign (cf. Figure 18).

A cobounding annulus A in Lemma 6.4 gives examples of closed braids violating

inequality (1.2) for nonplanar open books.

EXAMPLE 6.5

Let S be the once-holed surface of genus greater than 0, and take a monodromy

φ so that M(S,φ) is an integral homology sphere, with |c(φ,∂S)|> 1. Let α̂ and β̂

be closed 1-braids given by the movie presentation from Figure 22 in Lemma 6.4.

Then α̂ and β̂ are ∂S-topologically isotopic and null-homologous in M(S,φ), but

by Proposition 3.3

sl(α̂)− sl(β̂) = 2> 2
(
max

{
n(α̂), n(β̂)

}
− 1

)
= 0.
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