The étale cohomology of the general linear group over a finite field and the Dickson algebra

Michishige Tezuka and Nobuaki Yagita

To Professor Masaharu Kaneda on the occasion of his 60th birthday

Abstract

Let $p \neq \ell$ be primes. We study the étale cohomology $H_{\text {et }}^{*}\left(\mathrm{BGL}_{n}\left(\mathbb{F}_{p^{s}}\right) ; \mathbb{Z} / \ell\right)$ by using the stratification methods from Molina-Rojas and Vistoli. To compute this cohomology, we use the Dickson algebra and the Drinfeld space.

1. Introduction

Let p and ℓ be primes with $p \neq \ell$. Let X be a smooth algebraic variety over $k=\overline{\mathbb{F}}_{p}$, and let $H_{\text {et }}^{*}(X ; \mathbb{Z} / \ell)$ be the étale cohomology of X over k. By Totaro [16], [17] and Voevodsky [20], [19], it is known that the cohomology of the classifying space $B G$ of any algebraic group G can be approximated by smooth (quasiprojective) algebraic varieties X_{i}. Moreover, if G is finite, then $B G \times B \mathbb{G}_{m}$ can be approximated by smooth projective varieties. Hence, we can consider (see [16], [17])

$$
H_{\mathrm{et}}^{*}(B G ; \mathbb{Z} / \ell)=\lim _{i} H_{\mathrm{et}}^{*}\left(X_{i} ; \mathbb{Z} / \ell\right) .
$$

Let $G_{n}=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ be the general linear group over a finite field \mathbb{F}_{q} with $q=p^{s}$. Our main computation is the following.

THEOREM 1.1

Let $\ell \neq 2$. Let r be the smallest number such that $q^{r}-1=0 \bmod \ell$. Then we have an isomorphism of graded rings

$$
\begin{equation*}
H_{e t t}^{*}\left(B G_{n}: \mathbb{Z} / \ell\right) \cong \mathbb{Z} / \ell\left[c_{r}, \ldots, c_{r[n / r]}\right] \otimes \Lambda\left(e_{r}, \ldots, e_{r[n / r]}\right), \tag{1.1}
\end{equation*}
$$

where $\operatorname{deg}\left(c_{r j}\right)=2 r j, \operatorname{deg}\left(e_{r j}\right)=2 r j-1$, and $\Lambda\left(e_{r}, \ldots, e_{r[n / r]}\right)$ is the exterior algebra generated by $e_{r}, \ldots, e_{r[n / r]}$.

[^0]When $\ell=2$, we get a similar isomorphism of $\mathbb{Z} / \ell\left[c_{r}, \ldots, c_{r[n / r]}\right]$-modules (see the remark after Lemma 4.1 below).

By the comparison theorem (for the base change of $k=\overline{\mathbb{F}}_{p}$ and \mathbb{C}), this is just a corollary of the famous result of the topological $\bmod \ell$ cohomology $H^{*}\left(B G_{n} ; \mathbb{Z} / \ell\right)$ by Quillen [14]. However, Quillen used topological arguments, for example, the Eilenberg-Moore spectral sequences and the homotopy fiber of the map $\psi^{q}-1$ defined by the Adams operation. On the other hand, our proof of Theorem 1.1 is algebraic. Kroll [6] also gave a short algebraic proof of Quillen's result by using ordinary cohomology. But our proof uses the étale cohomology essentially over a field k with $\operatorname{char}(k)>0$.

The arguments for the proof also work for the motivic cohomology. Let $H^{*, *^{\prime}}(-; \mathbb{Z} / \ell)$ be the motivic cohomology over the field $\overline{\mathbb{F}}_{p}$, and let $0 \neq \tau \in$ $H^{0,1}\left(\operatorname{Spec}\left(\overline{\mathbb{F}}_{p}\right) ; \mathbb{Z} / \ell\right)$.

THEOREM 1.2
Let $\ell \neq 2$. Then we have an isomorphism of graded rings

$$
H^{*, *^{\prime}}\left(B G_{n} ; \mathbb{Z} / \ell\right) \cong \mathbb{Z} / \ell[\tau] \otimes(1.1)
$$

with degree $\operatorname{deg}\left(c_{r j}\right)=(2 r j, r j)$ and $\operatorname{deg}\left(e_{r j}\right)=(2 r j-1, r j)$.
By induction on n and the equivariant cohomology theory (stratified methods) from Molina-Rojas and Vistoli [9] and Vistoli [18], we get the above theorems. To compute the equivariant cohomology, we consider the G_{n}-variety

$$
Q=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(\operatorname{det}\left(x_{i}^{q^{j-1}}\right)^{q-1}=1\right)\right)
$$

and prove that $Q / G_{n} \cong \mathbb{A}^{n-1}$ by using the Dickson algebra. This implies the isomorphism of the equivariant (étale) cohomology rings

$$
H_{G_{n}}^{*}\left(Q \times_{\mu_{q^{n}-1}} \mathbb{G}_{m} ; \mathbb{Z} / \ell\right) \cong \Lambda(f), \quad \operatorname{deg}(f)=1 .
$$

The computation of the above isomorphism is the crucial point to compute $H_{G_{n}}^{*}(p t . ; \mathbb{Z} / \ell) \cong H_{\text {et }}^{*}\left(B G_{n} ; \mathbb{Z} / \ell\right)$.

The above space Q is a very particular case (first studied by Drinfeld) of the variety $\tilde{X}(\dot{w})$ defined by Deligne and Lusztig [3]. Moreover, Lusztig [7, Theorem 0.4(b)] and He and Lusztig [4, Section 4.3] proved recently that $G^{F} \backslash \tilde{X}(\dot{w})$ is quasi-isomorphic to the standard affine space for general G with minimal length elements w. We give here a different proof for the specific case.

The plan of this article is the following. In Section 2, we recall the Dickson algebra and show the isomorphism $Q / G_{n} \cong \mathbb{A}^{n-1}$ in Theorem 2.4. In Section 3, we note properties of the Chern class c_{i}. In Section 4, using induction and the stratification methods, we compute $H_{\mathrm{et}}^{*}\left(B G_{n} ; \mathbb{Z} / \ell\right)$. We use Theorem 2.4 in the first step of the induction and use Proposition 3.2 in Section 3 to show the $(k+1)$ st step from the k th step for the induction. Section 5 is about the special linear group SL_{n}, and Section 6 is a very short explanation for the motivic cohomology. In the last section we add a brief note that the quasi-isomorphism
$G_{n} \backslash \tilde{X}(\dot{w}) \rightarrow \mathbb{A}^{n-1}$ can be represented by the Dickson elements $c_{n, i}$ given in Section 2.

2. Dickson invariants

Throughout this article, we assume that p, ℓ are primes with $p \neq \ell$ and $q=p^{s}$ for some s. In this section, we define an algebraic space Q, on which $G_{n}=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ acts with $Q / G_{n} \cong \mathbb{A}^{n-1}$. Here we use the fact that $Q / G_{n} \cong \operatorname{Spec}\left(A^{G_{n}}\right)$ for some ring A. For the study of the invariant ring $A^{G_{n}}$, we recall the Dickson algebra (see [1], [5], [10]).

The Dickson algebra is the invariant ring of a polynomial of n variables under the usual G_{n}-action; namely,

$$
\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{G_{n}}=\mathbb{F}_{q}\left[c_{n, 0}, c_{n, 1}, \ldots, c_{n, n-1}\right]
$$

where each $c_{n, i}$ is defined by

$$
\sum c_{n, i} X^{q^{i}}=\prod_{x \in \mathbb{F}_{q}\left\{x_{1}, \ldots, x_{n}\right\}}(X+x)=\prod_{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}}\left(X+\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right)
$$

where $\mathbb{F}_{q}\left\{x_{1}, \ldots, x_{n}\right\}$ is the n-dimensional \mathbb{F}_{q}-vector space generated by x_{1}, \ldots, x_{n}. Let us write by $\left|c_{n, i}\right|$ the degree of $c_{n, i}$ so that $\left|c_{n, i}\right|=q^{n}-q^{i}$, letting the degree $\left|x_{i}\right|=1$. Let us write $e_{n}=c_{n, 0}^{1 /(q-1)}$; namely,

$$
e_{n}=\left(\prod_{0 \neq x \in \mathbb{F}_{q}\left\{x_{1}, \ldots, x_{n}\right\}} x\right)^{1 /(q-1)}=\left|\begin{array}{cccc}
x_{1} & x_{1}^{q} & \cdots & x_{1}^{q^{n-1}} \\
x_{2} & x_{2}^{q} & \cdots & x_{2}^{q^{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & x_{n}^{q} & \cdots & x_{n}^{q^{n-1}}
\end{array}\right| .
$$

Then each $c_{n, i}$ is written as

$$
c_{n, i}=\left|\begin{array}{ccccc}
x_{1} & \cdots & \hat{x}_{1}^{q^{i}} & \cdots & x_{1}^{q^{n}} \\
x_{2} & \cdots & \hat{x}_{2}^{q^{i}} & \cdots & x_{2}^{q^{n}} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{n} & \cdots & \hat{x}_{n}^{q^{i}} & \cdots & x_{n}^{q^{n}}
\end{array}\right| / e_{n}
$$

Note that the Dickson algebra for $S G_{n}=\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$ is given as

$$
\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{S G_{n}}=\mathbb{F}_{q}\left[e_{n}, c_{n, 1}, \ldots, c_{n, n-1}\right] .
$$

Let us write $k=\overline{\mathbb{F}}_{p}$. We consider the algebraic variety

$$
F=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(e_{n}\right)\right) .
$$

We want to study the G_{n}-space structure of $X(n)=\mathbb{A}^{n}-\{0\}$ and $X(1)=\mathbb{A}^{n}-F$. (Note that $F=\{0\}$ when $n=1$.) For this, we consider the following variety:

$$
Q=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(c_{n, 0}-1\right)\right)=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(e_{n}^{q-1}-1\right)\right) .
$$

EXAMPLE

When $n=2$, we see that

$$
\begin{aligned}
Q & =\left\{(x, y) \in \mathbb{A}^{2} \mid\left(x y^{q}-x^{q} y\right)^{q-1}=1\right\} \\
F & =\left\{(x, y) \in \mathbb{A}^{2} \mid x y^{q}-x^{q} y=0\right\} \\
& =\left\{(x, y) \in \mathbb{A}^{2} \mid x \prod_{i \in \mathbb{F}_{q}}(y-i x)=0\right\} \cong \bigcup_{i \in \mathbb{F}_{q} \cup\{\infty\}} F_{i},
\end{aligned}
$$

where the F_{i} 's are the rational hyperplanes defined by $F_{i}=\left\{(x, i x) \in \mathbb{A}^{2} \mid x \in k\right\}$ and $F_{\infty}=\{(0, y) \mid y \in k\}$.

The corresponding projective variety \bar{Q} is written by

$$
\bar{Q}=\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{n}\right] /\left(c_{n, 0}=x_{0}^{q^{n}-1}\right)\right)
$$

LEMMA 2.1

We have an isomorphism of G_{n}-varieties

$$
Q \times_{\mu_{q}-1} \mathbb{G}_{m} \cong X(1)=\mathbb{A}^{n}-F
$$

Proof
We consider the map $p: Q \times \mathbb{G}_{m} \rightarrow X(1)$ by $(x, t) \mapsto t x$. In fact, we have

$$
\begin{aligned}
e_{n}(p(x, t))^{q-1} & =e_{n}\left(t x_{1}, \ldots, t x_{n}\right)^{q-1}=\left(t^{1+q+\cdots+q^{n-1}}\right)^{q-1} e_{n}\left(x_{1}, \ldots, x_{n}\right)^{q-1} \\
& =t^{q^{n}-1} e_{n}\left(x_{1}, \ldots, x_{n}\right)^{q-1}
\end{aligned}
$$

Since $e_{n}(x)^{q-1}=1$ for $x \in Q$, we see that $e_{n}(p(x, t)) \neq 0$ and $p(x, t) \in X(1)$. Let $y \in X(1)$. Then for $x=y / t$ and $t=e_{n}(y)^{(q-1) /\left(q^{n}-1\right)}$, we get that $x \in Q$ and $p(x, t)=y$. Elements in the fiber $p^{-1}(y)$ are represented as $\left(a x, a^{-1} t\right)$ in $Q \times \mathbb{G}_{m}$ for $a \in \mu_{q^{n}-1}$ since $a x \in Q$. Thus, we have the lemma.

LEMMA 2.2
We have $Q\left(\mathbb{F}_{q^{i}}\right)=\emptyset$ for $1 \leq i \leq n-1$.

Proof
Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an $\mathbb{F}_{q^{i}}$-rational point. Then $x_{j}^{q^{i}}=x_{j}$ for all $1 \leq j \leq n$. Hence, $e_{n}(x)=0$.

LEMMA 2.3
Stabilizer groups of the G_{n}-action on Q are all $\{1\}$.

Proof
Assume that there is $1 \neq g \in G_{n}$ such that $g x=x$ for $x \in Q \subset \mathbb{A}^{n}$. Then we can identify that x is an eigenvector for the (linear) action g with the eigenvalue 1. If $x=\left(x_{1}, \ldots, x_{n}\right)$ is an eigenvector of g for the eigenvalue 1 , then so are $F(x)=\left(x_{1}^{q}, \ldots, x_{n}^{q}\right), F^{2}(x)=\left(x_{1}^{q^{2}}, \ldots, x^{q^{2}}\right), \ldots, F^{n-1}(x)=\left(x_{1}^{q^{n-1}}, \ldots, x_{n}^{q^{n-1}}\right)$.

The property $e_{n}(x) \neq 0$ now ensures that $\left\{x, F(x), \ldots, F^{n-1}(x)\right\}$ is a base of \mathbb{A}^{n}, which proves that $g=1$. This is a contradiction.

Since G_{n} is a finite group, the quotient Q / G_{n} becomes an algebraic variety. The geometric invariant theory quotient $Q / / G_{n}$ (see explanations in [11, Section 5.1] for $\operatorname{char}(k)=0,[12],[13$, Theorem 1, p. 111]) is defined by

$$
Q / / G_{n}=\operatorname{Spec}\left(A^{G_{n}}\right), \quad A=k\left[x_{1}, \ldots, x_{n}\right] /\left(c_{n, 0}-1\right) .
$$

THEOREM 2.4
We have a ring isomorphism $A^{G_{n}} \cong k\left[c_{n, 1}, \ldots, c_{n, n-1}\right]$ inducing an isomorphism $Q / G_{n} \cong \mathbb{A}^{n-1}$ of varieties. That is,

$$
\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(c_{n, 0}-1\right)\right)^{G_{n}} \cong k\left[x_{1}, \ldots, x_{n}\right]^{G_{n}} /\left(c_{n, 0}-1\right) .
$$

Proof
We already know that $k\left[x_{1}, \ldots, x_{n}\right]^{G_{n}} \cong k\left[c_{n, 0}, \ldots, c_{n, n-1}\right]$. Hence, it is immediate that

$$
B=k\left[c_{n, 1}, \ldots, c_{n, n-1}\right] \subset A^{G_{n}}=\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(c_{n, 0}-1\right)\right)^{G_{n}} \subset A .
$$

The projective coordinate ring \bar{A} of the Zariski closure \bar{Q} of Q in \mathbb{P}^{n} is given as

$$
\bar{A}=k\left[x_{0}, \ldots, x_{n}\right] /\left(c_{n, 0}=x_{0}^{q^{n}-1}\right)
$$

The coordinate ring \bar{B} of the closure of $\operatorname{Spec}(B) \cong \operatorname{Spec}\left(k\left[c_{n, 1}, \ldots, c_{n, n-1}\right]\right)$ is given as $\bar{B}=k\left[x_{0}, c_{n, 1}, \ldots, c_{n, n-1}\right]$. Here note that \bar{A} and \bar{B} become graded k algebras (projective coordinate rings have natural graded ring structures), while A does not; in fact, $c_{n, 0}=1 \in A$.

For a graded (commutative) k-algebra $R=\bigoplus_{i=0}^{\infty} R^{i}$, recall that the HilbertPoincaré series is the formal power series defined by (see, e.g., [11, Section 1.2(a)], [1])

$$
P S(R)=\sum_{i=0}^{\infty} \operatorname{dim}_{k}\left(R^{i}\right) t^{i} \in \mathbb{Z} \llbracket t \rrbracket .
$$

Since \bar{A} is generated by $n+1$ generators of degree 1 and one relation of degree $q^{n}-1$, we have

$$
P S(\bar{A})=\frac{\left(1-t^{q^{n}-1}\right)}{(1-t)^{n+1}}=\frac{\left(1+t+\cdots+t^{q^{n}-2}\right)}{(1-t)^{n}} .
$$

The graded ring \bar{B} is generated by x_{0} of degree 1 and $c_{n, i}$ for $i \geq 1$. So we get

$$
\begin{aligned}
P S(\bar{B}) & =\frac{1}{(1-t)\left(1-t^{\left|c_{n, 1}\right|}\right) \cdots\left(1-t^{\left|c_{n, n-1}\right|}\right)} \\
& =\frac{1}{\left(1+t+\cdots+t^{\left|c_{n, 1}\right|-1}\right) \cdots\left(1+t+\cdots+t^{\left|c_{n, n-1}\right|-1}\right)(1-t)^{n}} .
\end{aligned}
$$

Hence, $P S(\bar{A}) / P S(\bar{B})$ is written as

$$
\left(1+t+\cdots+t^{\left|c_{n, 1}\right|-1}\right) \cdots\left(1+t+\cdots+t^{\left|c_{n, n-1}\right|-1}\right)\left(1+t+\cdots+t^{q^{n}-2}\right) .
$$

Thus, we obtain $\left(\operatorname{let} \operatorname{dim}_{k}(f(t))=\sum_{i} a_{i}\right.$ for $\left.f(t)=\sum_{i} a_{i} t^{i}\right)$

$$
\begin{aligned}
\operatorname{dim}_{k}(P S(\bar{A}) / P S(\bar{B})) & =\left|c_{n, 1}\right| \times \cdots \times\left|c_{n, n-1}\right| \times\left(q^{n}-1\right) \\
& =\left(q^{n}-q^{1}\right) \cdots\left(q^{n}-q^{n-1}\right)\left(q^{n}-1\right)=\left|G_{n}\right| .
\end{aligned}
$$

On the other hand, $c_{n, 1}, \ldots, c_{n, n-1}$ is a regular sequence in \bar{A}. (It is well known that $c_{n, 0}, \ldots, c_{n, n-1}$ is a regular sequence in $k\left[x_{1}, \ldots, x_{n}\right]$. This fact is proved by induction on n by using $c_{n, i}=c_{n-1, i-1}^{q} \bmod x_{n}$ and $c_{n, 0}=$ $\prod_{0 \neq x \in \mathbb{A}^{n}} x$.) Hence, \bar{A} is \bar{B}-free; that is, there are y_{1}, \ldots, y_{m} in $k\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
\bar{A} \cong \bar{B}\left\{y_{1}, \ldots, y_{m}\right\} .
$$

Then $P S(\bar{A})=P S(\bar{B}) \cdot\left(\sum_{i=1}^{m} t^{\operatorname{deg}\left(y_{i}\right)}\right)$. Hence, $m=\left|G_{n}\right|$ from the results using the Hilbert-Poincaré series above. We can represent each element in A, B by an element in \bar{A}, \bar{B} letting $x_{0}=1$. Hence, we have

$$
\operatorname{rank}_{B}(A) \leq \operatorname{rank}_{\bar{B}}(\bar{A})=\left|G_{n}\right| .
$$

Let $\pi: Q \rightarrow Q / G_{n}$ be the projection. Recall Lemma 2.3, and we see that $\pi^{-1}(y)$ is locally flat for each $y \in Q / G_{n}$. Since the map π is étale, for all $x \in Q$, the local ring O_{x} is $O_{\pi(x)}$-free, and $\operatorname{rank}_{O_{\pi(x)}}\left(O_{x}\right)=\left|G_{n}\right|$ (see [8]), namely, $\operatorname{rank}_{A^{G_{n}}}(A)=\left|G_{n}\right|$. Thus, for the inclusions $B \subset A^{G_{n}} \subset A$, we have $\operatorname{rank}_{B}(A)=$ $\operatorname{rank}_{A^{G_{n}}}(A)$. Hence,

$$
A^{G_{n}}=B \cong k\left[c_{n, 1}, \ldots, c_{n, n-1}\right] .
$$

Similarly, we can prove the following for $S G_{n}=\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$.

COROLLARY 2.5
Let $S A=k\left[x_{1}, \ldots, x_{n}\right] /\left(e_{n}-1\right)$, and let $S Q=\operatorname{Spec}(S A)$. Then all stabilizer groups of the $S G_{n}$-action on $S Q$ are $\{1\}$, and we have an isomorphism

$$
(S A)^{S G_{n}} \cong k\left[c_{n, 1}, \ldots, c_{n, n-1}\right], \quad \text { that is, } S Q / S G_{n} \cong \mathbb{A}^{n-1}
$$

REMARK

Let G be an algebraic group, and let w be a Coxeter element. The space Q is related to a very particular case of the variety $\tilde{X}(\dot{w})$ (associated to G and w) defined by Deligne and Lusztig [3]. Recently, He and Lusztig [4, Section 4.3] and Lusztig [7, Theorem 0.4(b)] showed that $G^{F} \backslash \tilde{X}(\dot{w})$ is quasi-isomorphic to the standard affine space for G of general type with a minimal length element w.

The referee pointed out the following facts.

REMARK

The above $\tilde{X}(\dot{w})$ is defined in [3] as

$$
\tilde{X}(\dot{w}) \cong\left\{g \in G \mid g^{-1} F(g) \in U \dot{w} U\right\} /(U)
$$

where U is the maximal unipotent group. Let $Y(\dot{w})=\left\{g \in G \mid g^{-1} F(g) \in U \dot{w} U\right\}$. Then the Lang map induces an isomorphism $G^{F} \backslash Y(\dot{w})$ to the affine space $U \dot{w} U$ by $g \mapsto g^{-1} F g$. Hence, $H_{\text {ett }}^{*}\left(G^{F} \backslash Y(\dot{w}) ; \mathbb{Z} / \ell\right) \cong \mathbb{Z} / \ell$. Moreover, the projection $G \rightarrow G / U$ induces a G^{F}-equivariant (surjective) morphism $Y(\dot{w}) \rightarrow \tilde{X}(\dot{w})$ whose fiber is isomorphic to the affine space U. Hence, we have the spectral sequence

$$
E_{2}^{*, *} \cong H_{\text {êt }}^{*}\left(G^{F} \backslash \tilde{X}(\dot{w}) ; H_{\text {êt }}^{*}(U ; \mathbb{Z} / \ell)\right) \Longrightarrow H_{\text {ett }}^{*}\left(G^{F} \backslash Y(\dot{w}) ; \mathbb{Z} / \ell\right)
$$

which collapses. This shows that

$$
H_{\text {êt }}^{*}\left(G^{F} \backslash \tilde{X}(\dot{w}) ; \mathbb{Z} / \ell\right) \cong H_{\text {ét }}^{*}\left(G^{F} \backslash Y(\dot{w}) ; \mathbb{Z} / \ell\right) \cong \mathbb{Z} / \ell
$$

for any G and w. For the proof of the main theorem in Section 4 (Lemma 4.1), only this fact is enough (instead of Theorem 2.4).

3. Chern classes and maximal torus

In this section, we prove that the polynomial ring $\mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[n / r] r}\right]$ generated by Chern classes $c_{r i}$ is contained in $H_{\text {et }}^{*}\left(B G_{n} ; \mathbb{Z} / \ell\right)$.

For a smooth algebraic variety X over $k=\overline{\mathbb{F}}_{p}$, we consider the $\bmod \ell$ étale cohomology for $\ell \neq p$. Let G be a linear algebraic group (e.g., finite group). Let $W \cong \mathbb{A}^{M}$ for some (large) M and $\rho: G \rightarrow \mathrm{GL}(W)$ a faithful representation. For $N<M$, let $V_{N}=W-S$ be an open set of W such that G acts freely on V_{N} with $\operatorname{codim}_{W} S>N$. Then it is known (see [19], [16], [17]) that the cohomology $H_{\text {ét }}^{*}\left(V_{N} / G ; \mathbb{Z} / \ell\right)$ does not depend on W and V_{N} for $*<N$. Moreover, given N, we can always take such W and V_{N} (see [16, Section 1] for details). In this article, we simply write

$$
H^{*}(B G)=\lim _{N} H_{\mathrm{et}}^{*}\left(V_{N} / G ; \mathbb{Z} / \ell\right)
$$

REMARK

An action of an algebraic group G on an algebraic variety X is called free if the induced map $\mu: G \times X \rightarrow X \times X$ is a closed embedding (see [2], [10, Chapter 0, Section 3]). If each stabilizer group $G_{x} \cong\{1\}$ for $x \in X$ and μ is proper, then the action is free.

Let T be a maximal torus of the algebraic group GL_{n}. Then the restriction map

$$
H^{*}\left(\mathrm{BGL}_{n}\right) \rightarrow H^{*}(B T) \cong \mathbb{Z} / \ell\left[t_{1}, \ldots, t_{n}\right], \quad \operatorname{deg}\left(t_{i}\right)=2
$$

is injective and induces an isomorphism $H^{*}\left(\mathrm{BGL}_{n}\right) \cong \mathbb{Z} / \ell\left[t_{1}, \ldots, t_{n}\right]^{S_{n}}$ mapping the Chern class c_{i} to the elementary symmetric function of degree i in the $t_{j}{ }^{\text {'s }}$. Hence, we have an isomorphism (see [16], [17])

$$
H^{*}\left(\mathrm{BGL}_{n}\right) \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{n}\right]
$$

The Frobenius map F acts on this cohomology by $c_{i} \mapsto q^{i} c_{i}$. Recall that the Lang map induces a principal G_{n}-bundle $G_{n} \rightarrow \mathrm{GL}_{n} \xrightarrow{L} \mathrm{GL}_{n}$, where $L(g)=$ $g^{-1} F(g)$. Hence, it induces the map of classifying spaces

$$
B G_{n} \rightarrow \mathrm{BGL}_{n} \xrightarrow{B L} \mathrm{BGL}_{n} .
$$

Let r be the smallest number such that $q^{r}-1=0 \bmod \ell$. Then we have maps of graded rings

$$
\mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[n / r] r}\right] \rightarrow H^{*}\left(\mathrm{BGL}_{n}\right) /\left(\left(q^{i}-1\right) c_{i}\right) \rightarrow H^{*}\left(B G_{n}\right) .
$$

For each element $w \in S_{n}$, let us write $T(w)$ for the diagonal torus $T \subset \mathrm{GL}_{n}$ endowed with the Frobenius map $\operatorname{ad}(w) F$. For example, when $n=r$ and $w=$ $(1,2, \ldots, r) \in S_{r}$, we see that, for a matrix $A=\left(a_{i, j}\right) \in \mathrm{GL}_{r}$, the adjoint action is given as

$$
\operatorname{ad}(w) F(A)=w F w^{-1}\left(a_{i, j}\right)=\left(b_{i, j}\right) \quad \text { with } b_{i, j}=a_{i-1, j-1}^{q}, i, j \in \mathbb{Z} / n .
$$

Hence, we have

$$
\begin{aligned}
T(w)^{F} & =\{t \in T \mid \operatorname{ad}(w) F(t)=t\} \\
& \cong\left\{\operatorname{diag}\left(x, x^{q}, \ldots, x^{q^{r-1}}\right) \in T \mid x \in \mathbb{F}_{q^{r}}^{*}\right\} \cong \mathbb{F}_{q^{r}}^{*}
\end{aligned}
$$

Write $H^{*}(B T) \cong \mathbb{Z} / \ell\left[t_{1}, \ldots, t_{r}\right]$. Let $i: T(w)^{F} \subset T$. Then we can take the ring generator $t \in H^{2}\left(B T(w)^{F}\right)$ such that $i^{*} t_{i}=q^{i-1} t$.

LEMMA 3.1
The following composition map is injective:

$$
\mathbb{Z} / \ell\left[c_{r}\right] \rightarrow H^{*}\left(\mathrm{BGL}_{r}\right) /\left(\left(q^{i}-1\right) c_{i}\right) \rightarrow H^{*}\left(B G_{r}\right) .
$$

Proof
Let $w=(1, \ldots, r)$. We consider the induced map

$$
i^{*}: H^{*}\left(\mathrm{BGL}_{r}\right)^{F} \rightarrow H^{*}\left(B G_{r}\right) \rightarrow H^{*}\left(B T(w)^{F}\right) \cong H^{*}\left(\mathbb{F}_{q^{r}}^{*}\right) .
$$

Let s_{i} be the i th elementary symmetric function over t_{1}, \ldots, t_{r}; that is,

$$
\left(X-t_{1}\right)\left(X-t_{2}\right) \cdots\left(X-t_{r}\right)=X^{r}-s_{1} X^{r-1}+\cdots+(-1)^{r} s_{r} .
$$

Since $i^{*}\left(t_{i}\right)=q^{i-1} t$, we see that

$$
(X-t)(X-q t) \cdots\left(X-q^{r-1} t\right)=X^{n}-i^{*}\left(s_{1}\right) X^{r-1}+\cdots+(-1)^{r} i_{*}\left(s_{r}\right)
$$

On the other hand, the polynomial $X^{r}-t^{r}$ has roots $X=t, q t, \ldots, q^{r-1} t$. Hence, we see that the above formula is $X^{r}-t^{r}$. Thus, we see that

$$
i^{*}\left(s_{1}\right)=\cdots=i^{*}\left(s_{r-1}\right)=0, \quad t^{r}=(-1)^{r} i^{*}\left(s_{r}\right) .
$$

Since the Chern class c_{i} is represented by the symmetric function s_{i} in $H^{*}(B T)$, it implies the assertion above.

PROPOSITION 3.2

The following composition map is injective:

$$
\mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[n / r] r}\right] \cong H^{*}\left(\mathrm{BGL}_{n}\right)^{F} \rightarrow H^{*}\left(B G_{n}\right)
$$

Proof
Let $k=[n / r]$, and let us take

$$
w=(1, \ldots, r)(r+1, \ldots, 2 r) \cdots((k-1) r+1, \ldots, k r) \in S_{n}
$$

Then we see that $T(w)^{F}$ is isomorphic to

$$
\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{1}^{q^{r-1}}, \ldots, x_{k}, \ldots, x_{k}^{q^{r-1}}\right) \in T \mid\left(x_{1}, \ldots, x_{k}\right) \in\left(\mathbb{F}_{q^{r}}^{*}\right)^{k}\right\} \cong\left(\mathbb{F}_{q^{r}}^{*}\right)^{k}
$$

We consider the map

$$
i^{*}: H^{*}\left(\mathrm{BGL}_{n}\right)^{F} \rightarrow H^{*}\left(B G_{n}\right) \rightarrow H^{*}\left(B T(w)^{F}\right) \cong H^{*}\left(B\left(\left(\mathbb{F}_{q^{r}}^{*}\right)^{k}\right)\right)
$$

We choose $t_{i} \in H^{2}(B T)(1 \leq i \leq n)$ and $t_{j}^{\prime} \in H^{2}\left(B T(w)^{F}\right)(1 \leq j \leq k)$ such that

$$
\begin{array}{rlr}
i^{*}\left(t_{1}\right)=t_{1}^{\prime}, & i^{*}\left(t_{2}\right)=q t_{1}^{\prime}, & \ldots, \\
i^{*}\left(t_{r+1}\right)=t_{2}^{\prime}, & i^{*}\left(t_{r+2}\right)=q t_{2}^{\prime}, & \ldots
\end{array}
$$

Then by arguments similar to those in the proof of Lemma 3.1, we have

$$
X^{n}-i^{*}\left(c_{1}\right) X^{n-1}+\cdots+(-1)_{*}^{n}\left(c_{n}\right)=\left(X^{r}-\left(t_{1}^{\prime}\right)^{r}\right) \cdots\left(X^{r}-\left(t_{k}^{\prime}\right)^{r}\right) .
$$

Then we get the result as Lemma 3.1.

4. Equivariant cohomology

In this section, using induction and the stratification methods, we compute the cohomology $H^{*}\left(B G_{n}\right)$. Recall that r is the smallest number with $q^{r}-1=0$ $\bmod \ell$. We first prove the main result when $r=1$ and next show the general case.

Let X be a smooth G-variety. Recall that $V_{N}=\mathbb{A}^{M}-S$ is a G-free space with $\operatorname{codim}_{\mathbb{A}^{M}} S>N$ as defined in Section 3. Then we can define the equivariant cohomology (see [18], [9])

$$
H_{G}^{*}(X)=\lim _{N} H_{\mathrm{et}}^{*}\left(V_{N} \times_{G} X ; \mathbb{Z} / \ell\right) .
$$

In particular, $H_{G}^{*}(p t.) \cong H^{*}(B G)=H_{\text {ett }}^{*}(B G ; \mathbb{Z} / \ell)$. If all stabilizer groups of a G-action on X are $\{1\}$, then we can see that $H_{G}^{*}(X) \cong H^{*}(X / G)$.

We recall the following localized exact sequence, which we shall use intensively throughout the proofs. Let $i: Y \subset X$ be a regular closed inclusion of G varieties of $\operatorname{codim}_{X}(Y)=c$, and let $j: U=X-Y \subset X$. Then there is a long exact sequence

$$
\rightarrow H_{G}^{*-2 c}(Y) \xrightarrow{i_{*}} H_{G}^{*}(X) \xrightarrow{j^{*}} H_{G}^{*}(U) \xrightarrow{\delta} H_{G}^{*-2 c+1}(Y) \rightarrow \cdots .
$$

Now we apply the above exact sequence for concrete cases. We consider the case $G=G_{n}=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. Recall that

$$
F=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(e_{n}^{q-1}\right)\right)=\bigcup_{0 \neq \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathbb{F}_{q}\right)^{n}}\left(F_{\lambda}\right),
$$

where $F_{\lambda}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}=0\right\} \subset \mathbb{A}^{n}$.
Let $F(1)=F$, and let $F(2)$ be the ($\operatorname{codim}=1$) set of singular points in $F(1)$, namely, $F(2)=\bigcup F_{\lambda, \mu}$ with

$$
F_{\lambda, \mu}= \begin{cases}F_{\lambda} \cap F_{\mu} & \text { if } F_{\lambda} \neq F_{\mu} \\ \emptyset & \text { if } F_{\lambda}=F_{\mu}\end{cases}
$$

Similarly, we define (the union of codimension $i k$-linear spaces)

$$
F(i)=\bigcup_{\left(\alpha^{1}, \ldots, \alpha^{i}\right)}\left(F_{\alpha^{1}} \cap \cdots \cap F_{\alpha^{i}}\right),
$$

where α^{j} ranges over $\alpha^{j} \in\left(\mathbb{F}_{q}\right)^{n}, 1 \leq j \leq i$, and $\operatorname{dim}_{k}\left(F_{\alpha^{1}} \cap \cdots \cap F_{\alpha^{i}}\right)=n-i$. Let us write $X(i)=\mathbb{A}^{n}-F(i)$. Thus, we have two sequences of the G_{n}-algebraic sets

$$
\begin{gathered}
F(1) \supset F(2) \supset \cdots \supset F(n)=\{0\} \supset F(n+1)=\emptyset, \\
X(1)=\mathbb{A}^{n}-F(1) \subset \cdots \subset X(n)=\mathbb{A}^{n}-\{0\} \subset X(n+1)=\mathbb{A}^{n} .
\end{gathered}
$$

Let us write $F(i)-F(i+1)$ by $E(i)$. Note that the embeddings

$$
Y=E(i) \subset X=X(i+1) \supset U=X(i)
$$

are smooth and satisfy the condition above for Y, X, U. Therefore, we have the long exact sequences for all $1 \leq i \leq n$

$$
\rightarrow H_{G_{n}}^{*-2 i}(E(i)) \xrightarrow{i_{*}} H_{G_{n}}^{*}(X(i+1)) \xrightarrow{j^{*}} H_{G_{n}}^{*}(X(i)) \xrightarrow{\delta} \cdots .
$$

From now on, we assume $\ell \neq 2$. (However, similar facts also hold for $\ell=2$ (see the remark below).)

LEMMA 4.1
We have an isomorphism of graded rings

$$
H_{G_{n}}^{*}(X(1)) \cong \Lambda(f) \quad \text { with } \operatorname{deg}(f)=1 .
$$

Proof

At first, we recall $H^{*}\left(\mathbb{G}_{m}\right) \cong \Lambda(f)$ with $\operatorname{deg}(f)=1$, which is proved by the exact sequence (using $i_{*}=0$)

$$
\rightarrow H^{*-2}(\{0\}) \xrightarrow{i_{*}} H^{*}\left(\mathbb{A}^{1}\right) \rightarrow H^{*}\left(\mathbb{G}_{m}\right) \rightarrow \cdots .
$$

Consider the map taking $t \in \mathbb{G}_{m}$ to $t^{q^{n}-1} \in \mathbb{G}_{m}$. It is a surjective map which induces an isomorphism $\mathbb{G}_{m} / \mu_{q^{n}-1} \cong \mathbb{G}_{m}$. Therefore, with $\mu_{q^{n}-1}$ acting freely, we have

$$
H_{\mu_{q^{n}-1}}\left(\mathbb{G}_{m}\right) \cong H^{*}\left(\mathbb{G}_{m} / \mu_{q^{n}-1}\right) \cong H^{*}\left(\mathbb{G}_{m}\right) \cong \Lambda(f) .
$$

From Lemma 2.1, we have $X(1) \cong Q \times_{\mu_{q^{n}-1}} \mathbb{G}_{m}$. Then we get the equivariant cohomology from Lemma 2.3 and Theorem 2.4:

$$
\begin{aligned}
H_{G_{n}}^{*}(X(1)) & \cong H^{*}\left(X(1) / G_{n}\right) \cong H^{*}\left(\left(Q / G_{n}\right) \times_{\mu_{q^{n}-1}} \mathbb{G}_{m}\right) \\
& \cong H^{*}\left(\mathbb{A}^{n-1} \times_{\mu_{q^{n}-1}} \mathbb{G}_{m}\right) \cong H_{\mu_{q^{n}-1}}^{*}\left(\mathbb{A}^{n-1} \times \mathbb{G}_{m}\right) \\
& \cong H_{\mu_{q^{n}-1}}^{*}\left(\mathbb{G}_{m}\right) \cong \Lambda(f), \quad \operatorname{deg}(f)=1
\end{aligned}
$$

REMARK

When $\ell=2$, the above lemma also holds. All arguments in this article hold for $\ell=2$ if we change isomorphisms $A \cong B$ of graded rings with $B=C \otimes \Lambda(a, \ldots, b)$ to C-module isomorphisms.

LEMMA 4.2
For $i<n$, we have an isomorphism of graded rings

$$
H_{G_{n}}^{*}(E(i))=H_{G_{n}}^{*}(F(i)-F(i+1)) \cong H^{*}\left(B G_{i}\right) \otimes \Lambda(f) .
$$

Proof
Each irreducible component of $F(i)$ is a codimension i linear subspace of \mathbb{A}^{n}, which is also identified with an element of the Grassmannian. Let us write $X(1)^{\prime}=\mathbb{A}^{n-i}-F(1)^{\prime}$, where $F(1)^{\prime}$ is a variety defined as $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n-i}\right] /\right.$ $\left(e_{n-i}^{q-1}\right)$). Then we can write

$$
\begin{aligned}
E(i) & =F(i)-F(i+1) \cong \coprod_{\bar{g} \in G_{n} /\left(P_{n-i, i}\right)} g\left(X(1)^{\prime}\right) \\
& \cong G_{n} \times_{P_{n-i, i}} X(1)^{\prime}
\end{aligned}
$$

for $g \in G_{n}$ and its representative element \bar{g}. Here $P_{n-i, i}$ is the parabolic subgroup

$$
P_{n-i, i}=\left(G_{n-i} \times G_{i}\right) \ltimes U_{n-i, i}\left(\mathbb{F}_{q}\right) \cong\left\{\left.\left(\begin{array}{cc}
G_{n-i} & * \\
0 & G_{i}
\end{array}\right) \right\rvert\, * \in U_{n-i, i}\left(\mathbb{F}_{q}\right)\right\} .
$$

Since the stabilizer subgroup of G_{n} on $X(1)^{\prime}$ is the parabolic subgroup $P_{n-i, i}$, we get (see [18]), by using an induction/restriction isomorphism and the fact that $U_{n-i, i}\left(\mathbb{F}_{q}\right)$ is a p-group,

$$
H_{G_{n}}^{*}(E(i)) \cong H_{P_{n-i, i}}^{*}\left(X(1)^{\prime}\right) \cong H_{G_{n-i} \times G_{i}}^{*}\left(X(1)^{\prime}\right)
$$

Hence, we can compute (for $*<N$)

$$
\begin{aligned}
H_{G_{n}}^{*}(E(i)) & \cong H^{*}\left(V_{N}^{\prime} \times V_{N}^{\prime \prime} \times G_{G_{n-i} \times G_{i}} X(1)^{\prime}\right) \\
& \cong H^{*}\left(V_{N}^{\prime} \times{ }_{G_{n-i}} X(1)^{\prime} \times V_{N}^{\prime \prime} / G_{i}\right) \cong H_{G_{n-i}}^{*}\left(X(1)^{\prime}\right) \otimes H_{G_{i}}^{*}
\end{aligned}
$$

Here $X(1)^{\prime}$ is the $(n-i)$-dimensional version of $X(1)$, and we identify $V_{N} \cong$ $V_{N}^{\prime} \times V_{N}^{\prime \prime}$, where G_{n-i} acts freely on V_{N}^{\prime} and so on. From the previous lemma, we get $H_{G_{n-i}}^{*}\left(X(1)^{\prime}\right) \cong \Lambda(f)$.

LEMMA 4.3
If $r=1$, then we have an isomorphism of graded rings

$$
H^{*}\left(B G_{n}\right) \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{n}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{n}\right)
$$

Proof
We prove by induction on n. Assume that

$$
H^{*}\left(B G_{i}\right) \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{i}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{i}\right) \quad \text { for } i<n
$$

We consider the long exact sequence

$$
\rightarrow H_{G_{n}}^{*-2 i}(E(i)) \xrightarrow{i_{n}} H_{G_{n}}^{*}(X(i+1)) \xrightarrow{j^{*}} H_{G_{n}}^{*}(X(i)) \xrightarrow{\delta} \cdots .
$$

Here we use induction on i, and assume that

$$
H_{G_{n}}^{*}(X(i)) \cong H_{G_{i-1}}^{*} \otimes \Lambda\left(e_{i}\right) \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{i-1}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{i}\right)
$$

(Letting $e_{1}=f$, we have the case $i=1$ from Lemma 4.1.) Also, from Lemma 4.2, we have $H_{G_{n}}^{*}(E(i)) \cong H_{G_{i}}^{*} \otimes \Lambda(f)$.

In the above long exact sequence, we have $\delta\left(c_{j}\right)=\delta\left(e_{j}\right)=0$ for $j<i$, since $H_{G_{n}}^{<0}(E(i))=0$, and $\delta\left(e_{i}\right) \in H_{G_{n}}^{0}(E(i)) \cong \mathbb{Z} / \ell$. Hence, if $\delta\left(e_{i}\right)=0$, then $\delta=0$ (i.e., $\delta(x)=0$ for all $\left.x \in H_{G_{n}}^{*}(X(i))\right)$, since $H_{G_{n}}^{*}(X(i))$ is generated by c_{1}, \ldots, c_{i-1}, e_{1}, \ldots, e_{i} as a ring.

Let $p: V \rightarrow X$ be a j-dimensional bundle, and let $i^{\prime}: X \rightarrow V$ be a section of p. Then it is well known that the Chern class c_{j} is defined as $\left(i^{\prime}\right)^{*} i_{*}^{\prime}(1)$. Hence, we show that

$$
\left(i^{\prime}\right)^{*} i_{*}^{\prime}(1)=c_{i} \in H_{G_{i}}^{*} \quad \text { with } H_{G_{i}}\left(\mathbb{A}^{i}\right) \stackrel{\left(i^{\prime}\right)^{*}}{\cong} H_{G_{i}}^{*}(\{0\}) \cong H_{G_{i}}^{*}
$$

for the G_{i}-embedding $i^{\prime}:\{0\} \subset \mathbb{A}^{i}$. From Proposition 3.2, we see this $c_{i} \neq 0$. Consider the restriction map $H_{G_{n}}^{*}(X(i+1)) \rightarrow H_{G_{i}}^{*}\left(\mathbb{A}^{i}\right)$ which is induced from a G_{i}-map

$$
\mathbb{A}^{i} \subset \mathbb{A}^{i} \times X(1)^{\prime}=\mathbb{A}^{i} \times\left(\mathbb{A}^{n-i}-F(1)^{\prime}\right) \subset X(i+1)
$$

(Note that $\{0\} \times X(1)^{\prime} \subset E(i)$.) By using the restriction, we show that

$$
i_{*}(1)=c_{i} \neq 0 \quad \text { in } H_{G_{n}}^{*}(X(i+1)) .
$$

Thus, we see that $\delta\left(e_{i}\right)=0$, and we get $\delta=0$ from the above argument.
Therefore, we have the short exact sequence

$$
0 \rightarrow H_{G_{i}}^{*-2 i} \otimes \Lambda(f) \xrightarrow{i_{x}} H_{G_{n}}^{*}(X(i+1)) \xrightarrow{j^{*}} H_{G_{i-1}}^{*} \otimes \Lambda\left(e_{i}\right) \rightarrow 0 .
$$

Here $H_{G_{i-1}}^{*} \otimes \Lambda\left(e_{i}\right)$ is a free graded ring; namely, it is a tensor product of a polynomial algebra generated by even-degree elements and an exterior algebra generated by odd-degree elements (which has no relation as a graded ring). Hence, it is contained in $H_{G_{n}}(X(i+1))$, and j^{*} is split. Therefore, $H_{G_{n}}(X(i+1))$ is an $H_{G_{i-1}} \otimes \Lambda\left(e_{i}\right)$-module.

Then we have an $H_{G_{i-1}}^{*} \otimes \Lambda\left(e_{i}\right)$-module isomorphism

$$
\begin{aligned}
H_{G_{n}}^{*}(X(i+1)) & \cong H_{G_{i-1}} \otimes \Lambda\left(e_{i}\right) \otimes\left(\mathbb{Z} / \ell\left[c_{i}\right]\left\{i_{*}(1)=c_{i}, i_{*}(f)\right\} \oplus \mathbb{Z} / \ell\{1\}\right) \\
& \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{i}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{i}\right) \otimes\left\{1, i_{*}(f)\right\}
\end{aligned}
$$

Let us write $i_{*}(f)=e_{i+1}$. (Note here $\operatorname{deg}(f)=1 \operatorname{but} \operatorname{deg}\left(i_{*}(f)\right)=2 i+1$.) Then $H_{G_{n}}^{*}(X(i+1))$ is the desired form

$$
H_{G_{n}}^{*}(X(i+1)) \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{i}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{i}\right) \otimes \Lambda\left(e_{i+1}\right)
$$

for $i<n$. This is an isomorphism of graded rings because the right-hand side ring is a free graded ring.

When $i=n$, by the definition, $X(n+1)=\mathbb{A}^{n}, X(n)=\mathbb{A}^{n}-\{0\}$, and $E(n)=\{0\}$. The short exact sequence is given by

$$
0 \rightarrow H_{G_{n}}^{*-2 n}(\{0\}) \xrightarrow{\times c_{n}} H_{G_{n}}^{*}\left(\mathbb{A}^{n}\right) \rightarrow H_{G_{n}}^{*}(X(n)) \rightarrow 0
$$

which implies the desired isomorphism

$$
H_{G_{n}}^{*} \cong H_{G_{n}}^{*}(X(n))\left[c_{n}\right] \cong \mathbb{Z} / \ell\left[c_{1}, \ldots, c_{n}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{n}\right) .
$$

THEOREM 4.4
We have an isomorphism of graded rings

$$
H^{*}\left(B G_{n}\right) \cong \mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[n / r] r}\right] \otimes \Lambda\left(e_{r}, \ldots, e_{[n / r] r}\right)
$$

Proof
We prove the theorem also by induction on n. Assume that

$$
H^{*}\left(B G_{i}\right) \cong \mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[i / r] r}\right] \otimes \Lambda\left(e_{r}, \ldots, e_{[i / r] r}\right) \quad \text { for } i<n
$$

We also consider the long exact sequence

$$
\rightarrow H_{G_{n}}^{*-2 i}(E(i)) \xrightarrow{i_{*}} H_{G_{n}}^{*}(X(i+1)) \xrightarrow{j^{*}} H_{G_{n}}^{*}(X(i)) \xrightarrow{\delta} \cdots .
$$

Here we use induction on i, and we assume that $H_{G_{n}}^{*}(X(i)) \cong H_{G_{i-1}}^{*} \otimes \Lambda\left(e_{i}\right)$.
From Lemma 4.2, we already have $H_{G_{n}}^{*}(E(i)) \cong H_{G_{i}}^{*} \otimes \Lambda(f)$. For dimensional reasons, we see that $\delta\left(e_{i}\right) \in H_{G_{n}}^{0}(E(i)) \cong \mathbb{Z} / \ell$.

Now we consider the case $2 \leq r$ and $m r<i<(m+1) r \leq n$. Note that the ℓ-Sylow subgroups of G_{i} and G_{i-1} are the same, and $H_{G_{i}}^{*} \cong H_{G_{i-1}}^{*}$. In this case we can assume that

$$
H_{G_{i}}^{*} \cong H_{G_{i-1}}^{*} \cong \ldots \cong H_{G_{m r}}^{*} \cong \mathbb{Z} / \ell\left[c_{r}, \ldots, c_{m r}\right] \otimes \Lambda\left(e_{r}, \ldots, e_{m r}\right) .
$$

Hence, the above exact sequence is written as

$$
\rightarrow H_{G_{m r}}^{*} \otimes \Lambda(f) \xrightarrow{i_{*}} H_{G_{n}}^{*}(X(i+1)) \xrightarrow{j^{*}} H_{G_{m r}}^{*} \otimes \Lambda\left(e_{i}\right) \rightarrow \cdots .
$$

From Proposition 3.2, we have $c_{i}=0$ in $H_{G_{n}}^{*}$. This implies that $i_{*}(1)=c_{i}=0$ in $H_{G_{n}}^{*}(X(i+1))$, and hence, $\delta\left(e_{i}\right) \neq 0 \in \mathbb{Z} / \ell$.

Thus, we have the isomorphism (letting $i_{*}(f)=e_{i+1}$)

$$
H_{G_{n}}^{*}(X(i+1)) \cong H_{G_{m r}}^{*}\left\{1, i_{*}(f)\right\} \cong H_{G_{m r}}^{*}\left\{1, e_{i+1}\right\} \cong H_{G_{i}}^{*} \otimes \Lambda\left(e_{i+1}\right)
$$

When $i=(m+1) r$, the arguments work similarly to those in the case $r=1$.

REMARK

Localized exact sequences (defined just before Lemma 4.1) induce the spectral sequence

$$
E_{1}^{*^{\prime}, *} \cong \bigoplus_{i=1}^{n-1} H_{G_{n}}^{*}(E(i)) \Longrightarrow H_{G_{n}}^{*}(X(n)) \cong H_{G_{n}}^{*}\left(\mathbb{G}_{m}\right)
$$

with the differential $d_{r}=\delta\left(j^{*}\right)^{-r+1} i_{*}$. Here, from Lemma 4.2, we have $H_{G_{n}}^{*}(E(i)) \cong H_{G_{i}}^{*} \otimes \Lambda\left(f_{i}\right)$ with $\operatorname{deg}\left(f_{i}\right)=1$. When $r=1$, the proof of Lemma 4.3 shows that $\delta=0$, namely, $d_{r}=0$, and so the above spectral sequence collapses. In fact,

$$
H_{G_{n}}^{*}(E(i)) \stackrel{i_{*}}{\cong} H_{G_{i}}^{*}\left\{c_{i}, e_{i+1}\right\} \subset H_{G_{n}}^{*}(X(n)) \cong H_{G_{n}}^{*} /\left(c_{n}\right) .
$$

REMARK
We can give another proof of Lemma 4.3 as follows. Let us write simply $S \Lambda=$ $\mathbb{Z} / \ell\left[c_{1}, \ldots, c_{n}\right] \otimes \Lambda\left(e_{1}, \ldots, e_{n}\right)$. Then we have $S \Lambda \subset H^{*}\left(B G_{n}\right)$. This fact is proved by Proposition 3.2 and the restriction to the diagonal subgroup D_{n} of G_{n} so that $H^{*}\left(B D_{n}\right) \cong H^{*}\left(B(\mathbb{Z} / \ell)^{n}\right)$. Hence, for each $m \geq 0$, we get $\operatorname{rank}_{\mathbb{Z} / \ell}\left(H^{m}\left(B G_{n}\right)\right) \geq$ $\operatorname{rank}_{\mathbb{Z} / \ell}\left(S \Lambda^{m}\right)$. We consider the following sum of rank:

$$
s(m)=\sum_{1 \leq i \leq n-1,2 i \leq m} \operatorname{rank}_{\mathbb{Z} / \ell}\left(H_{G_{n}}^{*}\left(E(i) \otimes \mathbb{Z} / \ell\left[c_{n}\right]\right)^{m-2 i}\right) .
$$

Then from Lemma 4.2 and the previous remark, $s(m)=\operatorname{rank}_{\mathbb{Z} / \ell}\left(S \Lambda^{m}\right)$. So the spectral sequence collapses; otherwise, $\operatorname{rank}_{\mathbb{Z} / \ell}\left(H^{m}\left(B G_{n}\right)\right)<s(m)=$ $\operatorname{rank}_{\mathbb{Z} / \ell}\left(S \Lambda^{m}\right)$ for some m.

REMARK

When $2 \leq r$ and $m r<i<(m+1) r \leq n$, the proof of Theorem 4.4 shows that $d_{1}\left(f_{i}\right) \neq 0 \in H^{0}(E(i+1)) \cong \mathbb{Z} / \ell$. Hence, in $H^{*}(E(i))$, we see that $H_{G_{i}}^{*} \subset \operatorname{Im}\left(d_{1}\right)$ and $d_{1}: H_{G_{i}}\left\{f_{i}\right\} \cong H_{G_{i+1}}^{*}$. For $i=m r$, we note that $\delta=0$. Thus, we get

$$
E_{2}^{i, *} \cong \begin{cases}H_{G_{m r}}^{*} & \text { if } i=m r \\ H_{G_{(m-1) r}}^{*}\left\{f_{i}\right\} & \text { if } i=m r-1 \text { or } i=n \\ 0 & \text { otherwise }\end{cases}
$$

Hence, we have $H_{G_{m r}}^{*} \stackrel{i_{*}}{\cong} H_{G_{m r}}^{*}\left\{c_{m r}\right\} \subset H_{G_{n}}^{*}(X(n))$, and $H_{G_{(m-1) r}}^{*}\left\{f_{m r-1}\right\} \stackrel{i_{*}}{\cong}$ $H_{G_{(m-1) r}}^{*}\left\{e_{m r}\right\} \subset H_{G_{n}}^{*}(X(n))$. Therefore, this spectral sequence collapses from the E_{2}-term.

5. Special linear group SL_{n}

We consider the case $G=\mathrm{SL}_{n}$. Denote $\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$ by $S G_{n}$.

PROPOSITION 5.1

For the case $r \geq 2$, the following composition map is injective:

$$
\mathbb{Z} / \ell\left[c_{r}, \ldots, c_{[n / r] r}\right] \rightarrow H^{*}\left(\mathrm{BGL}_{n}\right)^{F} \rightarrow H^{*}\left(\mathrm{BSG}_{n}\right) .
$$

When $r=1$, the map $\mathbb{Z} / \ell\left[c_{2}, \ldots, c_{n}\right] \rightarrow H^{*}\left(\mathrm{BSG}_{n}\right)$ is injective.

Proof

When $r \geq 2, G_{n}$ and $S G_{n}$ have the same Sylow ℓ-subgroup. Hence, $H^{*}\left(B G_{n}\right) \rightarrow$ $H^{*}\left(\mathrm{BSG}_{n}\right)$ is injective, and so we have the proposition. For $r=1$, the proposition follows from an argument similar to that for the case $r=1$ in Section 3 by using $H^{*}(\mathrm{BST}) \cong \mathbb{Z} / \ell\left[t_{1}, \ldots, t_{n}\right] /\left(\sum t_{i}\right)$.

By using Corollary 2.5 and arguments similar to those in Section 4, we get the following result.

THEOREM 5.2

Let $\ell \neq 2$. For the case $r \geq 2$, we have an isomorphism $H^{*}\left(\mathrm{BSG}_{n}\right) \cong H^{*}\left(B G_{n}\right)$ of graded rings. When $r=1$, we have a graded ring isomorphism

$$
H^{*}\left(\mathrm{BSG}_{n}\right) \cong \mathbb{Z} / \ell\left[c_{2}, \ldots, c_{n}\right] \otimes \Lambda\left(e_{2}, \ldots, e_{n}\right)
$$

6. Motivic cohomology

In this section, we consider the motivic version of previous sections. Let $H^{*, *^{\prime}}(X ; \mathbb{Z} / \ell)$ be the $\bmod \ell$ motivic cohomology over $k=\overline{\mathbb{F}}_{p}$. Let X be a G variety defined over k. Let us write

$$
H_{G}^{*, *^{\prime}}(X)=\lim _{N} H^{*, *^{\prime}}\left(V_{N} \times_{G} X ; \mathbb{Z} / \ell\right)
$$

for the (equivariant) $\bmod \ell$ motivic cohomology over $k=\overline{\mathbb{F}}_{p}$. Then we have the long exact sequence

$$
\rightarrow H_{G_{n}}^{*-2 i, *^{\prime}-i}(E(i)) \xrightarrow{i_{*}} H_{G_{n}}^{*, *^{\prime}}(X(i+1)) \xrightarrow{j^{*}} H_{G_{n}}^{*, *^{\prime}}(X(i)) \xrightarrow{\delta} \cdots .
$$

In general, the Künneth formula does not hold in the $\bmod \ell$ motivic cohomology. However, it holds for $H^{*, *^{\prime}}\left(B \mu_{q^{n}-1}\right)$ by Voevodsky [20], [19]. We can easily see that, for a G_{n}-variety Y,

$$
H_{G_{n}}^{*, *^{\prime}}(Y \times X(1)) \cong H^{*, *^{\prime}}(Y) \otimes \Lambda(f)
$$

Then we can prove that Lemma 4.2 holds for the motivic cohomology. The arguments in the previous sections also work for the motivic cohomology with degree

$$
\operatorname{deg}\left(c_{i}\right)=(2 i, i), \quad \operatorname{deg}\left(e_{i}\right)=(2 i-1, i) .
$$

Thus, we get Theorem 1.2 from the Introduction.

7. Drinfeld space

For $G=\mathrm{GL}_{n}$ and $w=(1, \ldots, n) \in S_{n}$, it is known from [3, Theorem 2.1] that

$$
\tilde{X}(\dot{w}) \cong Q^{\prime}=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(c_{n, 0}=(-1)^{n-1}\right)\right)
$$

(Here $Q^{\prime} \cong Q$ as varieties over $k=\overline{\mathbb{F}}_{p}$ by $(x) \mapsto(\zeta x)$ for the $\left(q^{n}-1\right)$ th root ζ of -1 (when n is even; see the proof of Lemma 2.1).) We have a quasi-isomorphism (see [3, Corollary 1.12], [7, Theorem 0.4(b)])

$$
\begin{equation*}
Q^{\prime} / G_{n} \cong G_{n} \backslash \tilde{X}(\dot{w}) \cong U /(U \cap \operatorname{ad}(\dot{w}) U) \cong \mathbb{A}^{n-1} \tag{7.1}
\end{equation*}
$$

(Quasi-isomorphisms are isomorphisms for maps generated by morphisms of varieties and (the inverse of) Frobenius maps; for a definition, see [7, Section 2.1].) In this section, we will show that the above quasi-isomorphism can be explicitly written by the Dickson elements $c_{n, i}$ given in Section 2.

Take an adequate basis of the n-dimensional vector space such that

$$
w=\left(\begin{array}{cccc}
0 & 0 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right), \quad U=\left\{\left.\left(\begin{array}{cccc}
1 & * & \cdots & * \\
0 & 1 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right) \right\rvert\, * \in k\right\} .
$$

Let $x_{i, j}(a)=1+a e_{i, j}$, where $e_{i, j}$ is the elementary matrix with 1 in the (i, j) th entry and 0 otherwise. Then U is generated by $x_{i, j}(a)$,

$$
U=\left\langle x_{i, j}(a) \mid 1 \leq i<j \leq n, a \in k\right\rangle,
$$

with the relation

$$
x_{i, j}(a) x_{i, j}(b)=x_{i, j}(a+b), \quad\left[x_{i, j}(a), x_{k, l}(b)\right]=\delta_{j, k} x_{i, l}(a b) \quad(\text { for } i<l) .
$$

Note that $\operatorname{ad}(w) x_{i, j}(a)=x_{i+1, j+1}(a)$ for $i, j \in \mathbb{Z} / n$.
Let us denote by U_{w} the intersection $U \cap \operatorname{ad}(w) U$. Hence, $U_{w} \cong$ $\left\langle x_{i, j} \mid x_{1, j}=0\right\rangle$. We consider the U_{w}-action on U, which is given by (see [3, (1.11.4)])

$$
\rho(u) v=\operatorname{ad}\left(\dot{w}^{-1}\right)(u) v F\left(u^{-1}\right) \in U \quad \text { for } u \in U_{w}, v \in U .
$$

LEMMA 7.1

The composition of natural maps of algebraic groups

$$
\left\langle x_{i n}(k) \mid i<n\right\rangle \subset U \rightarrow U / \rho\left(U_{w}\right)
$$

induces the isomorphism $\mathbb{A}^{n-1} \cong U / \rho\left(U_{w}\right)$ in (7.1), where $\left\langle x_{i n}(k) \mid i<n\right\rangle$ is written as

$$
\left\{\left.\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & d_{1} \\
\vdots & \vdots & \ddots & \vdots & * \\
0 & 0 & \cdots & 1 & d_{n-1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \in U \right\rvert\, d_{1}, \ldots, d_{n-1} \in k\right\} \cong \mathbb{A}^{n-1}
$$

Proof

We consider the ρ-action in the case $u=x_{i, j}(a)$ for $1<i$ and $v=x_{k, l}(b)$,

$$
\begin{aligned}
\rho(u) v & =\operatorname{ad}\left(\dot{w}^{-1}\right)\left(x_{i j}(a)\right) x_{k, l}(b) F\left(x_{i, j}(a)^{-1}\right) \\
& =x_{i-1, j-1}(a) x_{k, l}(b) x_{i, j}\left(-a^{q}\right)
\end{aligned}
$$

For generators $x_{i, j}$ and $x_{i^{\prime}, j^{\prime}}$, we define an order $x_{i, j}<x_{i^{\prime}, j^{\prime}}$ if $j<j^{\prime}$ or $j=j^{\prime}$, $i<i^{\prime}$. Then any $v \in U$ is uniquely written as the product $\prod x_{i, j}\left(b_{i, j}\right)$ with respect to the order; namely,

$$
\prod x_{i, j}\left(b_{i, j}\right)=x_{i_{0}, j_{0}}\left(b_{i_{0}, j_{0}}\right) \cdots x_{i_{s}, j_{s}}\left(b_{i_{s}, j_{s}}\right), \quad x_{i_{0}, i_{0}}<\cdots<x_{i_{s}, j_{s}} .
$$

Here, let $x_{i_{0}, j_{0}}\left(b_{i_{0}, j_{0}}\right) \neq 1$ and $j_{0}<n$. Take $u=x_{\bar{i}, \bar{j}}(a)$ with $\bar{i}=i_{0}+1, \bar{j}=j_{0}+1$, and $a=-b_{i_{0}, j_{0}}$. (Note that $x_{\bar{i}, \bar{j}}(a) \in U_{w}$ since $\bar{i}>1$.) Then the equation

$$
\begin{aligned}
\rho(u) v & =\operatorname{ad}\left(\dot{w}^{-1}\right)\left(x_{\bar{i} \bar{j}}(a)\right)\left(\prod x_{i, j}\left(b_{i j}\right)\right) F\left(x_{\bar{i}, \bar{j}}(a)^{-1}\right) \\
& =x_{i_{0}, j_{0}}\left(-b_{i_{0}, j_{0}}\right)\left(\prod x_{i, j}\left(b_{i, j}\right)\right) x_{\bar{i}, \bar{j}}\left(-a^{q}\right) \\
& =\left(\prod_{\left(i_{0}, j_{0}\right)<(i, j)} x_{i, j}\left(b_{i, j}\right)\right) x_{i_{0}+1, j_{0}+1}\left(-a^{q}\right)
\end{aligned}
$$

implies that a nonzero minimal generator of $\rho(u) v$ is larger than $x_{i_{0}, j_{0}}$.
By repeating this process, for each $v \in U$, there is $u \in U_{w}$ such that

$$
\rho(u) v \in\left\langle x_{i, n}(k) \mid i<n\right\rangle \cong \mathbb{A}^{n-1}
$$

Since we know that $U / \rho\left(U_{w}\right) \cong \mathbb{A}^{n-1}$ from (7.1), we get the lemma.

Recall that we can identify

$$
\begin{aligned}
Q^{\prime} & =\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{A}^{n} \mid e(x)^{q-1}=(-1)^{n-1}\right\} \\
& \cong\left\{x=\left.\left(\begin{array}{cccc}
x_{1} & x_{1}^{q} & \cdots & x_{1}^{q^{n-1}} \\
x_{2} & x_{2}^{q} & \cdots & x_{2}^{q^{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & x_{n}^{q} & \cdots & x_{n}^{q^{n-1}}
\end{array}\right) \in \mathrm{GL}_{n}(k)| | x\right|^{q-1}=\operatorname{det}(x)^{q-1}=(-1)^{n-1}\right\} .
\end{aligned}
$$

THEOREM 7.2

We get the quasi-isomorphism $f: Q^{\prime} / G_{n} \rightarrow U /\left(\rho\left(U_{w}\right)\right)$ by $x \mapsto \dot{w}^{-1} x^{-1} F x$. This map $f(x)$ is written as

$$
f(x)=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & (-1)^{n-2} c_{n, 1} \\
\vdots & \vdots & \ddots & \vdots & * \\
0 & 0 & \cdots & 1 & c_{n, n-1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

where $c_{n, i}=c_{n, i}\left(x_{1}, \ldots, x_{n}\right)$ is the Dickson element defined in Section 2.

Proof

We prove only that $f(x)$ is expressed by $c_{n, i}$ above. Let us write

$$
e_{n}\left(\begin{array}{cccc}
i_{1} & i_{2} & \cdots & i_{n} \\
j_{1} & j_{2} & \cdots & j_{n}
\end{array}\right)=\left|\begin{array}{cccc}
x_{j_{1}}^{q^{i_{1}}} & x_{j_{1}}^{q^{i_{2}}} & \cdots & x_{j_{1}}^{q^{i_{n}}} \\
x_{j_{2}}^{q_{1}} & x_{j_{2}}^{q^{i_{2}}} & \cdots & x_{j_{2}}^{i_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{j_{n}}^{q^{i_{1}}} & x_{j_{n}}^{q^{i_{2}}} & \cdots & x_{j_{n}}^{q_{n}}
\end{array}\right|
$$

so that

$$
e_{n}\left(\begin{array}{cccc}
0 & 1 & \cdots & n-1 \\
1 & 2 & \cdots & n
\end{array}\right)=e(x)=|x| .
$$

Then the (j, i)-cofactor of the matrix x is expressed as

$$
D_{j, i}=(-1)^{i+j} e_{n-1}\left(\begin{array}{cccccc}
0 & 1 & \cdots & i \hat{-1} & \cdots & n-1 \\
1 & 2 & \cdots & \hat{j} & \cdots & n
\end{array}\right) .
$$

By Cramér's theorem, we know that

$$
x^{-1}=|x|^{-1}\left(D_{j, i}\right)^{t}=|x|^{-1}\left(D_{i, j}\right) .
$$

Let us write $\left(B_{i, j}\right)=|x| x^{-1} F(x)$. Then we can compute

$$
\begin{aligned}
B_{s, t} & =(D F(x))_{s, t}=\sum D_{s, k} x(k, t)^{q} \\
& =\sum D_{s, k} x_{k}^{q^{t}} \quad(\text { where } x(k, t) \text { is the }(k, t) \text { th entry of } x) \\
& =\left|\begin{array}{ccccc}
x_{1} & \cdots & x_{1}^{q^{t}} & \cdots & x_{1}^{q^{n-1}} \\
x_{2} & \cdots & x_{2}^{q^{t}} & \cdots & x_{2}^{q^{n-1}} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{n} & \cdots & x_{n}^{q^{t}} & \cdots & x_{n}^{q^{n-1}}
\end{array}\right| .
\end{aligned}
$$

This element is nonzero only if $t=s-1$ or $t=n$. If $t=s-1$, then the above element is $|x|$. If $t=n$, then the above element is, indeed, $(-1)^{n-s}|x| c_{n, s-1}$ by the definition of the Dickson elements as stated in Section 2. Thus, we have

$$
x^{-1} F(x)=|x|^{-1}\left(B_{s t}\right)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & (-1)^{n-1} c_{n, 0} \\
1 & 0 & \cdots & 0 & (-1)^{n-2} c_{n, 1} \\
\vdots & \vdots & \ddots & \vdots & * \\
0 & 0 & \cdots & 1 & c_{n, n-1}
\end{array}\right) .
$$

Here $(-1)^{n-1} c_{n, 0}=1$, and acting \dot{w}^{-1}, we have the desired result.

Acknowledgments. The authors thank Masaki Kameko, Masaharu Kaneda, and Shuichi Tsukuda for their useful suggestions. The authors also thank the referees for many suggestions, comments, and corrections on this article. This article is the corrected version of [15], which was written in 2011.

References

[1] D. J. Benson, Polynomial Invariants of Finite Groups, London Math. Soc. Lecture Note Ser. 190, Cambridge Univ. Press, Cambridge, 1993. MR 1249931. DOI 10.1017/CBO9780511565809.
[2] A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. MR 1102012. DOI 10.1007/978-1-4612-0941-6.
[3] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) $\mathbf{1 0 3}$ (1976), 103-161. MR 0393266. DOI 10.2307/1971021.
[4] X. He and G. Lusztig, A generalization of Steinberg's cross section, J. Amer. Math. Soc. 25 (2012), 739-757. MR 2904572. DOI 10.1090/S0894-0347-2012-00728-0.
[5] M. Kameko and M. Mimura, "Mùi invariants and Milnor operations" in Proceedings of the School and Conference in Algebraic Topology, Geom. Topol. Monogr. 11, Geom. Topol. Publ., Coventry, RI, 2007, 107-140. MR 2402803.
[6] O. Kroll, The cohomology of the finite general linear group, J. Pure Appl. Algebra 54 (1988), 95-115. MR 0960991. DOI 10.1016/0022-4049(88)90024-2.
[7] G. Lusztig, On certain varieties attached to a Weyl group element, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), 377-414. MR 2907958.
[8] J. S. Milne, Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, 1980. MR 0559531.
[9] L. A. Molina-Rojas and A. Vistoli, On the Chow rings of classifying spaces for classical groups, Rend. Semin. Mat. Univ. Padova 116 (2006), 271-298. MR 2287351.
[10] H. Mùi, Modular invariant theory and the cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 319-369. MR 0422451.
[11] S. Mukai, An Introduction to Invariants and Moduli, Cambridge Stud. Adv. Math. 81, Cambridge Univ. Press, Cambridge, 2003. MR 2004218.
[12] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (2) 34, Springer, Berlin, 1965. MR 0214602.
[13] , Abelian Varieties, Tata Inst. Fund. Res. Stud. Math. 5, Oxford Univ. Press, London, 1970. MR 0282985.
[14] D. Quillen, On the cohomology and K-theory of general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586. MR 0315016. DOI 10.2307/1970825.
[15] M. Tezuka and N. Yagita, The étale cohomology of the general linear group over a finite field and the Deligne and Lusztig variety, preprint, arXiv:1104.1487v1 [math.AT].
[16] B. Totaro, "The Chow ring of a classifying space" in Algebraic K-Theory (Seattle, WA, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, 1999, 249-281. MR 1743244. DOI 10.1090/pspum/067/1743244.
[17] , Group Cohomology and Algebraic Cycles, Cambridge Tracts in Math. 204, Cambridge Univ. Press, Cambridge, 2014. MR 3185743. DOI 10.1017/CBO9781139059480.
[18] A. Vistoli, On the cohomology and the Chow ring of the classifying space of PGL_{p}, J. Reine Angew. Math. 610 (2007), 181-227. MR 2359886.
DOI 10.1515/CRELLE.2007.071.
[19] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1-57. MR 2031198. DOI 10.1007/s10240-003-0009-z.
[20] , The Milnor conjecture, preprint, http://www.math.uiuc.edu/K-theory/0170, accessed 5 October 2017.

Tezuka: Department of Mathematics, Faculty of Science, Ryukyu University, Okinawa, Japan; tez@sci.u-ryukyu.ac.jp

Yagita: Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan; nobuaki.yagita.math@vc.ibaraki.ac.jp

[^0]: Kyoto Journal of Mathematics, Vol. 58, No. 1 (2018), 173-192
 First published online October 19, 2017.
 DOI $10.1215 / 21562261-2017-0020$, © 2018 by Kyoto University
 Received June 19, 2014. Revised June 27, 2016. Accepted July 27, 2016.
 2010 Mathematics Subject Classification: Primary 57S25, 55R40, 14F20; Secondary 55R35, 14F42.

