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Abstract Let p �= � be primes. We study the étale cohomology H∗
ét(BGLn(Fps);Z/�)

byusing the stratificationmethods fromMolina-Rojas andVistoli.To compute this coho-

mology, we use the Dickson algebra and the Drinfeld space.

1. Introduction

Let p and � be primes with p �= �. Let X be a smooth algebraic variety over

k = F̄p, and let H∗
ét(X;Z/�) be the étale cohomology of X over k. By Totaro

[16], [17] and Voevodsky [20], [19], it is known that the cohomology of the clas-

sifying space BG of any algebraic group G can be approximated by smooth

(quasiprojective) algebraic varieties Xi. Moreover, if G is finite, then BG×BGm

can be approximated by smooth projective varieties. Hence, we can consider (see

[16], [17])

H∗
ét(BG;Z/�) = lim

i
H∗

ét(Xi;Z/�).

Let Gn = GLn(Fq) be the general linear group over a finite field Fq with

q = ps. Our main computation is the following.

THEOREM 1.1

Let � �= 2. Let r be the smallest number such that qr − 1 = 0 mod �. Then we

have an isomorphism of graded rings

(1.1) H∗
ét(BGn : Z/�)∼= Z/�[cr, . . . , cr[n/r]]⊗Λ(er, . . . , er[n/r]),

where deg(crj) = 2rj, deg(erj) = 2rj − 1, and Λ(er, . . . , er[n/r]) is the exterior

algebra generated by er, . . . , er[n/r].
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When �= 2, we get a similar isomorphism of Z/�[cr, . . . , cr[n/r]]-modules (see the

remark after Lemma 4.1 below).

By the comparison theorem (for the base change of k = F̄p and C), this

is just a corollary of the famous result of the topological mod � cohomology

H∗(BGn;Z/�) by Quillen [14]. However, Quillen used topological arguments, for

example, the Eilenberg–Moore spectral sequences and the homotopy fiber of the

map ψq − 1 defined by the Adams operation. On the other hand, our proof of

Theorem 1.1 is algebraic. Kroll [6] also gave a short algebraic proof of Quillen’s

result by using ordinary cohomology. But our proof uses the étale cohomology

essentially over a field k with char(k)> 0.

The arguments for the proof also work for the motivic cohomology. Let

H∗,∗′
(−;Z/�) be the motivic cohomology over the field F̄p, and let 0 �= τ ∈

H0,1(Spec(F̄p);Z/�).

THEOREM 1.2

Let � �= 2. Then we have an isomorphism of graded rings

H∗,∗′
(BGn;Z/�)∼= Z/�[τ ]⊗ (1.1)

with degree deg(crj) = (2rj, rj) and deg(erj) = (2rj − 1, rj).

By induction on n and the equivariant cohomology theory (stratified methods)

from Molina-Rojas and Vistoli [9] and Vistoli [18], we get the above theorems.

To compute the equivariant cohomology, we consider the Gn-variety

Q= Spec
(
k[x1, . . . , xn]/

(
det(xqj−1

i )q−1 = 1
))

and prove that Q/Gn
∼= A

n−1 by using the Dickson algebra. This implies the

isomorphism of the equivariant (étale) cohomology rings

H∗
Gn

(Q×μqn−1
Gm;Z/�)∼=Λ(f), deg(f) = 1.

The computation of the above isomorphism is the crucial point to compute

H∗
Gn

(pt.;Z/�)∼=H∗
ét(BGn;Z/�).

The above space Q is a very particular case (first studied by Drinfeld) of

the variety X̃(ẇ) defined by Deligne and Lusztig [3]. Moreover, Lusztig [7, Theo-

rem 0.4(b)] and He and Lusztig [4, Section 4.3] proved recently that GF \ X̃(ẇ) is

quasi-isomorphic to the standard affine space for general G with minimal length

elements w. We give here a different proof for the specific case.

The plan of this article is the following. In Section 2, we recall the Dickson

algebra and show the isomorphism Q/Gn
∼= A

n−1 in Theorem 2.4. In Section 3,

we note properties of the Chern class ci. In Section 4, using induction and the

stratification methods, we compute H∗
ét(BGn;Z/�). We use Theorem 2.4 in the

first step of the induction and use Proposition 3.2 in Section 3 to show the

(k+ 1)st step from the kth step for the induction. Section 5 is about the special

linear group SLn, and Section 6 is a very short explanation for the motivic

cohomology. In the last section we add a brief note that the quasi-isomorphism
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Gn \ X̃(ẇ) → A
n−1 can be represented by the Dickson elements cn,i given in

Section 2.

2. Dickson invariants

Throughout this article, we assume that p, � are primes with p �= � and q = ps for

some s. In this section, we define an algebraic space Q, on which Gn =GLn(Fq)

acts with Q/Gn
∼=A

n−1. Here we use the fact that Q/Gn
∼= Spec(AGn) for some

ring A. For the study of the invariant ring AGn , we recall the Dickson algebra

(see [1], [5], [10]).

The Dickson algebra is the invariant ring of a polynomial of n variables under

the usual Gn-action; namely,

Fq[x1, . . . , xn]
Gn = Fq[cn,0, cn,1, . . . , cn,n−1],

where each cn,i is defined by∑
cn,iX

qi =
∏

x∈Fq{x1,...,xn}
(X + x) =

∏
(λ1,...,λn)∈(Fq)n

(X + λ1x1 + · · ·+ λnxn),

where Fq{x1, . . . , xn} is the n-dimensional Fq-vector space generated by x1, . . . ,

xn. Let us write by |cn,i| the degree of cn,i so that |cn,i| = qn − qi, letting the

degree |xi|= 1. Let us write en = c
1/(q−1)
n,0 ; namely,

en =
( ∏
0 �=x∈Fq{x1,...,xn}

x
)1/(q−1)

=

∣∣∣∣∣∣∣∣∣∣

x1 xq
1 · · · xqn−1

1

x2 xq
2 · · · xqn−1

2
...

...
. . .

...

xn xq
n · · · xqn−1

n

∣∣∣∣∣∣∣∣∣∣
.

Then each cn,i is written as

cn,i =

∣∣∣∣∣∣∣∣∣∣

x1 · · · x̂qi

1 · · · xqn

1

x2 · · · x̂qi

2 · · · xqn

2
...

. . .
...

. . .
...

xn · · · x̂qi

n · · · xqn

n

∣∣∣∣∣∣∣∣∣∣
/

en.

Note that the Dickson algebra for SGn = SLn(Fq) is given as

Fq[x1, . . . , xn]
SGn = Fq[en, cn,1, . . . , cn,n−1].

Let us write k = F̄p. We consider the algebraic variety

F = Spec
(
k[x1, . . . , xn]/(en)

)
.

We want to study the Gn-space structure ofX(n) =An−{0} and X(1) =An−F .

(Note that F = {0} when n= 1.) For this, we consider the following variety:

Q= Spec
(
k[x1, . . . , xn]/(cn,0 − 1)

)
= Spec

(
k[x1, . . . , xn]/(e

q−1
n − 1)

)
.
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EXAMPLE

When n= 2, we see that

Q=
{
(x, y) ∈A

2
∣∣ (xyq − xqy)q−1 = 1

}
,

F =
{
(x, y) ∈A

2
∣∣ xyq − xqy = 0

}
=
{
(x, y) ∈A

2
∣∣∣ x∏

i∈Fq

(y− ix) = 0
}
∼=

⋃
i∈Fq∪{∞}

Fi,

where the Fi’s are the rational hyperplanes defined by Fi = {(x, ix) ∈A
2 | x ∈ k}

and F∞ = {(0, y) | y ∈ k}.

The corresponding projective variety Q̄ is written by

Q̄=Proj
(
k[x0, . . . , xn]/(cn,0 = xqn−1

0 )
)
.

LEMMA 2.1

We have an isomorphism of Gn-varieties

Q×μqn−1
Gm

∼=X(1) =A
n − F.

Proof

We consider the map p :Q×Gm →X(1) by (x, t) �→ tx. In fact, we have

en
(
p(x, t)

)q−1
= en(tx1, . . . , txn)

q−1 = (t1+q+···+qn−1

)q−1en(x1, . . . , xn)
q−1

= tq
n−1en(x1, . . . , xn)

q−1.

Since en(x)
q−1 = 1 for x ∈Q, we see that en(p(x, t)) �= 0 and p(x, t) ∈X(1). Let

y ∈ X(1). Then for x = y/t and t = en(y)
(q−1)/(qn−1), we get that x ∈ Q and

p(x, t) = y. Elements in the fiber p−1(y) are represented as (ax,a−1t) in Q×Gm

for a ∈ μqn−1 since ax ∈Q. Thus, we have the lemma. �

LEMMA 2.2

We have Q(Fqi) = ∅ for 1≤ i≤ n− 1.

Proof

Let x = (x1, . . . , xn) be an Fqi -rational point. Then xqi

j = xj for all 1 ≤ j ≤ n.

Hence, en(x) = 0. �

LEMMA 2.3

Stabilizer groups of the Gn-action on Q are all {1}.

Proof

Assume that there is 1 �= g ∈ Gn such that gx = x for x ∈ Q ⊂ A
n. Then we

can identify that x is an eigenvector for the (linear) action g with the eigen-

value 1. If x = (x1, . . . , xn) is an eigenvector of g for the eigenvalue 1, then so

are F (x) = (xq
1, . . . , x

q
n), F

2(x) = (xq2

1 , . . . , xq2), . . . , Fn−1(x) = (xqn−1

1 , . . . , xqn−1

n ).
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The property en(x) �= 0 now ensures that {x,F (x), . . . , Fn−1(x)} is a base of An,

which proves that g = 1. This is a contradiction. �

Since Gn is a finite group, the quotient Q/Gn becomes an algebraic variety. The

geometric invariant theory quotient Q//Gn (see explanations in [11, Section 5.1]

for char(k) = 0, [12], [13, Theorem 1, p. 111]) is defined by

Q//Gn = Spec(AGn), A= k[x1, . . . , xn]/(cn,0 − 1).

THEOREM 2.4

We have a ring isomorphism AGn ∼= k[cn,1, . . . , cn,n−1] inducing an isomorphism

Q/Gn
∼=An−1 of varieties. That is,(

k[x1, . . . , xn]/(cn,0 − 1)
)Gn ∼= k[x1, . . . , xn]

Gn/(cn,0 − 1).

Proof

We already know that k[x1, . . . , xn]
Gn ∼= k[cn,0, . . . , cn,n−1]. Hence, it is immediate

that

B = k[cn,1, . . . , cn,n−1]⊂AGn =
(
k[x1, . . . , xn]/(cn,0 − 1)

)Gn ⊂A.

The projective coordinate ring Ā of the Zariski closure Q̄ of Q in P
n is given

as

Ā= k[x0, . . . , xn]/(cn,0 = xqn−1
0 ).

The coordinate ring B̄ of the closure of Spec(B) ∼= Spec(k[cn,1, . . . , cn,n−1]) is

given as B̄ = k[x0, cn,1, . . . , cn,n−1]. Here note that Ā and B̄ become graded k-

algebras (projective coordinate rings have natural graded ring structures), while

A does not; in fact, cn,0 = 1 ∈A.

For a graded (commutative) k-algebra R=
⊕∞

i=0R
i, recall that the Hilbert–

Poincaré series is the formal power series defined by (see, e.g., [11, Section 1.2(a)],

[1])

PS (R) =

∞∑
i=0

dimk(R
i)ti ∈ Z[[t]].

Since Ā is generated by n+ 1 generators of degree 1 and one relation of degree

qn − 1, we have

PS (Ā) =
(1− tq

n−1)

(1− t)n+1
=

(1+ t+ · · ·+ tq
n−2)

(1− t)n
.

The graded ring B̄ is generated by x0 of degree 1 and cn,i for i≥ 1. So we get

PS (B̄) =
1

(1− t)(1− t|cn,1|) · · · (1− t|cn,n−1|)

=
1

(1 + t+ · · ·+ t|cn,1|−1) · · · (1 + t+ · · ·+ t|cn,n−1|−1)(1− t)n
.
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Hence, PS (Ā)/PS (B̄) is written as

(1 + t+ · · ·+ t|cn,1|−1) · · · (1 + t+ · · ·+ t|cn,n−1|−1)(1 + t+ · · ·+ tq
n−2).

Thus, we obtain (let dimk(f(t)) =
∑

i ai for f(t) =
∑

i ait
i)

dimk

(
PS (Ā)/PS (B̄)

)
= |cn,1| × · · · × |cn,n−1| × (qn − 1)

= (qn − q1) · · · (qn − qn−1)(qn − 1) = |Gn|.

On the other hand, cn,1, . . . , cn,n−1 is a regular sequence in Ā. (It is well

known that cn,0, . . . , cn,n−1 is a regular sequence in k[x1, . . . , xn]. This fact is

proved by induction on n by using cn,i = cqn−1,i−1 mod xn and cn,0 =∏
0 �=x∈An x.) Hence, Ā is B̄-free; that is, there are y1, . . . , ym in k[x0, . . . , xn]

such that

Ā∼= B̄{y1, . . . , ym}.

Then PS (Ā) = PS (B̄) · (
∑m

i=1 t
deg(yi)). Hence, m = |Gn| from the results using

the Hilbert–Poincaré series above. We can represent each element in A,B by an

element in Ā, B̄ letting x0 = 1. Hence, we have

rankB(A)≤ rankB̄(Ā) = |Gn|.

Let π : Q → Q/Gn be the projection. Recall Lemma 2.3, and we see that

π−1(y) is locally flat for each y ∈Q/Gn. Since the map π is étale, for all x ∈Q, the

local ring Ox is Oπ(x)-free, and rankOπ(x)
(Ox) = |Gn| (see [8]), namely,

rankAGn (A) = |Gn|. Thus, for the inclusions B ⊂AGn ⊂A, we have rankB(A) =

rankAGn (A). Hence,

AGn =B ∼= k[cn,1, . . . , cn,n−1]. �

Similarly, we can prove the following for SGn = SLn(Fq).

COROLLARY 2.5

Let SA= k[x1, . . . , xn]/(en−1), and let SQ= Spec(SA). Then all stabilizer groups

of the SGn-action on SQ are {1}, and we have an isomorphism

(SA)SGn ∼= k[cn,1, . . . , cn,n−1], that is, SQ/SGn
∼=A

n−1.

REMARK

Let G be an algebraic group, and let w be a Coxeter element. The space Q is

related to a very particular case of the variety X̃(ẇ) (associated to G and w)

defined by Deligne and Lusztig [3]. Recently, He and Lusztig [4, Section 4.3] and

Lusztig [7, Theorem 0.4(b)] showed that GF \ X̃(ẇ) is quasi-isomorphic to the

standard affine space for G of general type with a minimal length element w.

The referee pointed out the following facts.
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REMARK

The above X̃(ẇ) is defined in [3] as

X̃(ẇ)∼=
{
g ∈G

∣∣ g−1F (g) ∈ UẇU
}
/(U),

where U is the maximal unipotent group. Let Y (ẇ) = {g ∈G | g−1F (g) ∈ UẇU}.
Then the Lang map induces an isomorphism GF \Y (ẇ) to the affine space UẇU

by g �→ g−1Fg. Hence, H∗
ét(G

F \ Y (ẇ);Z/�) ∼= Z/�. Moreover, the projection

G→G/U induces a GF -equivariant (surjective) morphism Y (ẇ)→ X̃(ẇ) whose

fiber is isomorphic to the affine space U . Hence, we have the spectral sequence

E∗,∗
2

∼=H∗
ét

(
GF \ X̃(ẇ);H∗

ét(U ;Z/�)
)
=⇒H∗

ét

(
GF \ Y (ẇ);Z/�

)
,

which collapses. This shows that

H∗
ét

(
GF \ X̃(ẇ);Z/�

)∼=H∗
ét

(
GF \ Y (ẇ);Z/�

)∼= Z/�

for any G and w. For the proof of the main theorem in Section 4 (Lemma 4.1),

only this fact is enough (instead of Theorem 2.4).

3. Chern classes and maximal torus

In this section, we prove that the polynomial ring Z/�[cr, . . . , c[n/r]r] generated

by Chern classes cri is contained in H∗
ét(BGn;Z/�).

For a smooth algebraic variety X over k = F̄p, we consider the mod � étale

cohomology for � �= p. Let G be a linear algebraic group (e.g., finite group). Let

W ∼= A
M for some (large) M and ρ :G→GL(W ) a faithful representation. For

N < M , let VN = W − S be an open set of W such that G acts freely on VN

with codimW S >N . Then it is known (see [19], [16], [17]) that the cohomology

H∗
ét(VN/G;Z/�) does not depend on W and VN for ∗<N . Moreover, given N ,

we can always take such W and VN (see [16, Section 1] for details). In this article,

we simply write

H∗(BG) = lim
N

H∗
ét(VN/G;Z/�).

REMARK

An action of an algebraic group G on an algebraic variety X is called free if the

induced map μ :G×X →X ×X is a closed embedding (see [2], [10, Chapter 0,

Section 3]). If each stabilizer group Gx
∼= {1} for x ∈X and μ is proper, then the

action is free.

Let T be a maximal torus of the algebraic group GLn. Then the restriction map

H∗(BGLn)→H∗(BT )∼= Z/�[t1, . . . , tn], deg(ti) = 2,

is injective and induces an isomorphism H∗(BGLn)∼= Z/�[t1, . . . , tn]
Sn mapping

the Chern class ci to the elementary symmetric function of degree i in the tj ’s.

Hence, we have an isomorphism (see [16], [17])

H∗(BGLn)∼= Z/�[c1, . . . , cn].
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The Frobenius map F acts on this cohomology by ci �→ qici. Recall that

the Lang map induces a principal Gn-bundle Gn →GLn
L→GLn, where L(g) =

g−1F (g). Hence, it induces the map of classifying spaces

BGn →BGLn
BL→ BGLn.

Let r be the smallest number such that qr − 1 = 0 mod �. Then we have

maps of graded rings

Z/�[cr, . . . , c[n/r]r]→H∗(BGLn)/
(
(qi − 1)ci

)
→H∗(BGn).

For each element w ∈ Sn, let us write T (w) for the diagonal torus T ⊂GLn

endowed with the Frobenius map ad(w)F . For example, when n = r and w =

(1,2, . . . , r) ∈ Sr, we see that, for a matrix A= (ai,j) ∈GLr, the adjoint action is

given as

ad(w)F (A) =wFw−1(ai,j) = (bi,j) with bi,j = aqi−1,j−1, i, j ∈ Z/n.

Hence, we have

T (w)F =
{
t ∈ T

∣∣ ad(w)F (t) = t
}

∼=
{
diag(x,xq, . . . , xqr−1

) ∈ T
∣∣ x ∈ F

∗
qr
}∼= F

∗
qr .

Write H∗(BT ) ∼= Z/�[t1, . . . , tr]. Let i : T (w)F ⊂ T . Then we can take the

ring generator t ∈H2(BT (w)F ) such that i∗ti = qi−1t.

LEMMA 3.1

The following composition map is injective:

Z/�[cr]→H∗(BGLr)/
(
(qi − 1)ci

)
→H∗(BGr).

Proof

Let w = (1, . . . , r). We consider the induced map

i∗ :H∗(BGLr)
F →H∗(BGr)→H∗(BT (w)F

)∼=H∗(F∗
qr ).

Let si be the ith elementary symmetric function over t1, . . . , tr; that is,

(X − t1)(X − t2) · · · (X − tr) =Xr − s1X
r−1 + · · ·+ (−1)rsr.

Since i∗(ti) = qi−1t, we see that

(X − t)(X − qt) · · · (X − qr−1t) =Xn − i∗(s1)X
r−1 + · · ·+ (−1)ri∗(sr).

On the other hand, the polynomial Xr − tr has roots X = t, qt, . . . , qr−1t.

Hence, we see that the above formula is Xr − tr. Thus, we see that

i∗(s1) = · · ·= i∗(sr−1) = 0, tr = (−1)ri∗(sr).

Since the Chern class ci is represented by the symmetric function si in H∗(BT ),

it implies the assertion above. �
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PROPOSITION 3.2

The following composition map is injective:

Z/�[cr, . . . , c[n/r]r]∼=H∗(BGLn)
F →H∗(BGn).

Proof

Let k = [n/r], and let us take

w = (1, . . . , r)(r+ 1, . . . ,2r) · · ·
(
(k− 1)r+ 1, . . . , kr

)
∈ Sn.

Then we see that T (w)F is isomorphic to{
diag(x1, . . . , x

qr−1

1 , . . . , xk, . . . , x
qr−1

k ) ∈ T
∣∣ (x1, . . . , xk) ∈ (F∗

qr )
k
}∼= (F∗

qr )
k.

We consider the map

i∗ :H∗(BGLn)
F →H∗(BGn)→H∗(BT (w)F

)∼=H∗(B((F∗
qr )

k
))
.

We choose ti ∈H2(BT ) (1≤ i≤ n) and t′j ∈H2(BT (w)F ) (1≤ j ≤ k) such that

i∗(t1) = t′1, i∗(t2) = qt′1, . . . ,

i∗(tr+1) = t′2, i∗(tr+2) = qt′2, . . . .

Then by arguments similar to those in the proof of Lemma 3.1, we have

Xn − i∗(c1)X
n−1 + · · ·+ (−1)n∗ (cn) =

(
Xr − (t′1)

r
)
· · ·
(
Xr − (t′k)

r
)
.

Then we get the result as Lemma 3.1. �

4. Equivariant cohomology

In this section, using induction and the stratification methods, we compute the

cohomology H∗(BGn). Recall that r is the smallest number with qr − 1 = 0

mod �. We first prove the main result when r = 1 and next show the general

case.

Let X be a smooth G-variety. Recall that VN = A
M − S is a G-free space

with codimAM S >N as defined in Section 3. Then we can define the equivariant

cohomology (see [18], [9])

H∗
G(X) = lim

N
H∗

ét(VN ×G X;Z/�).

In particular, H∗
G(pt.)

∼= H∗(BG) = H∗
ét(BG;Z/�). If all stabilizer groups of a

G-action on X are {1}, then we can see that H∗
G(X)∼=H∗(X/G).

We recall the following localized exact sequence, which we shall use inten-

sively throughout the proofs. Let i : Y ⊂X be a regular closed inclusion of G-

varieties of codimX(Y ) = c, and let j : U = X − Y ⊂ X . Then there is a long

exact sequence

→H∗−2c
G (Y )

i∗→H∗
G(X)

j∗→H∗
G(U)

δ→H∗−2c+1
G (Y )→ · · · .
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Now we apply the above exact sequence for concrete cases. We consider the

case G=Gn =GLn(Fq). Recall that

F = Spec
(
k[x1, . . . , xn]/(e

q−1
n )

)
=

⋃
0 �=λ=(λ1,...,λn)∈(Fq)n

(Fλ),

where Fλ = {(x1, . . . , xn) | λ1x1 + · · ·+ λnxn = 0} ⊂A
n.

Let F (1) = F , and let F (2) be the (codim= 1) set of singular points in F (1),

namely, F (2) =
⋃
Fλ,μ with

Fλ,μ =

{
Fλ ∩ Fμ if Fλ �= Fμ,

∅ if Fλ = Fμ.

Similarly, we define (the union of codimension i k-linear spaces)

F (i) =
⋃

(α1,...,αi)

(Fα1 ∩ · · · ∩ Fαi),

where αj ranges over αj ∈ (Fq)
n, 1 ≤ j ≤ i, and dimk(Fα1 ∩ · · · ∩ Fαi) = n− i.

Let us write X(i) =A
n −F (i). Thus, we have two sequences of the Gn-algebraic

sets

F (1)⊃ F (2)⊃ · · · ⊃ F (n) = {0} ⊃ F (n+ 1) = ∅,

X(1) =A
n − F (1)⊂ · · · ⊂X(n) =A

n − {0} ⊂X(n+ 1) =A
n.

Let us write F (i)− F (i+ 1) by E(i). Note that the embeddings

Y =E(i)⊂X =X(i+ 1)⊃ U =X(i)

are smooth and satisfy the condition above for Y,X,U . Therefore, we have the

long exact sequences for all 1≤ i≤ n

→H∗−2i
Gn

(
E(i)

) i∗→H∗
Gn

(
X(i+ 1)

) j∗→H∗
Gn

(
X(i)

) δ→ · · · .

From now on, we assume � �= 2. (However, similar facts also hold for � = 2

(see the remark below).)

LEMMA 4.1

We have an isomorphism of graded rings

H∗
Gn

(
X(1)

)∼=Λ(f) with deg(f) = 1.

Proof

At first, we recall H∗(Gm)∼=Λ(f) with deg(f) = 1, which is proved by the exact

sequence (using i∗ = 0)

→H∗−2
(
{0}
) i∗→H∗(A1)→H∗(Gm)→ · · · .

Consider the map taking t ∈ Gm to tq
n−1 ∈ Gm. It is a surjective map which

induces an isomorphism Gm/μqn−1
∼= Gm. Therefore, with μqn−1 acting freely,

we have

Hμqn−1
(Gm)∼=H∗(Gm/μqn−1)∼=H∗(Gm)∼=Λ(f).
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From Lemma 2.1, we have X(1)∼=Q×μqn−1
Gm. Then we get the equivariant

cohomology from Lemma 2.3 and Theorem 2.4:

H∗
Gn

(
X(1)

)∼=H∗(X(1)/Gn

)∼=H∗((Q/Gn)×μqn−1
Gm

)
∼=H∗(An−1 ×μqn−1

Gm)∼=H∗
μqn−1

(An−1 ×Gm)

∼=H∗
μqn−1

(Gm)∼=Λ(f), deg(f) = 1. �

REMARK

When �= 2, the above lemma also holds. All arguments in this article hold for

�= 2 if we change isomorphisms A∼=B of graded rings with B =C ⊗Λ(a, . . . , b)

to C-module isomorphisms.

LEMMA 4.2

For i < n, we have an isomorphism of graded rings

H∗
Gn

(
E(i)

)
=H∗

Gn

(
F (i)− F (i+ 1)

)∼=H∗(BGi)⊗Λ(f).

Proof

Each irreducible component of F (i) is a codimension i linear subspace of An,

which is also identified with an element of the Grassmannian. Let us write

X(1)′ = A
n−i − F (1)′, where F (1)′ is a variety defined as Spec(k[x1, . . . , xn−i]/

(eq−1
n−i)). Then we can write

E(i) = F (i)− F (i+ 1)∼=
∐

ḡ∈Gn/(Pn−i,i)

g
(
X(1)′

)
∼=Gn ×Pn−i,i X(1)′

for g ∈Gn and its representative element ḡ. Here Pn−i,i is the parabolic subgroup

Pn−i,i = (Gn−i ×Gi)�Un−i,i(Fq)∼=
{(

Gn−i ∗
0 Gi

) ∣∣∣∣ ∗ ∈ Un−i,i(Fq)

}
.

Since the stabilizer subgroup of Gn on X(1)′ is the parabolic subgroup Pn−i,i, we

get (see [18]), by using an induction/restriction isomorphism and the fact that

Un−i,i(Fq) is a p-group,

H∗
Gn

(
E(i)

)∼=H∗
Pn−i,i

(
X(1)′

)∼=H∗
Gn−i×Gi

(
X(1)′

)
.

Hence, we can compute (for ∗<N )

H∗
Gn

(
E(i)

)∼=H∗(V ′
N × V ′′

N ×Gn−i×Gi X(1)′
)

∼=H∗(V ′
N ×Gn−i X(1)′ × V ′′

N/Gi

)∼=H∗
Gn−i

(
X(1)′

)
⊗H∗

Gi
.

Here X(1)′ is the (n − i)-dimensional version of X(1), and we identify VN
∼=

V ′
N × V ′′

N , where Gn−i acts freely on V ′
N and so on. From the previous lemma,

we get H∗
Gn−i

(X(1)′)∼=Λ(f). �
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LEMMA 4.3

If r = 1, then we have an isomorphism of graded rings

H∗(BGn)∼= Z/�[c1, . . . , cn]⊗Λ(e1, . . . , en).

Proof

We prove by induction on n. Assume that

H∗(BGi)∼= Z/�[c1, . . . , ci]⊗Λ(e1, . . . , ei) for i < n.

We consider the long exact sequence

→H∗−2i
Gn

(
E(i)

) i∗→H∗
Gn

(
X(i+ 1)

) j∗→H∗
Gn

(
X(i)

) δ→ · · · .

Here we use induction on i, and assume that

H∗
Gn

(
X(i)

)∼=H∗
Gi−1

⊗Λ(ei)∼= Z/�[c1, . . . , ci−1]⊗Λ(e1, . . . , ei).

(Letting e1 = f , we have the case i= 1 from Lemma 4.1.) Also, from Lemma 4.2,

we have H∗
Gn

(E(i))∼=H∗
Gi

⊗Λ(f).

In the above long exact sequence, we have δ(cj) = δ(ej) = 0 for j < i, since

H<0
Gn

(E(i)) = 0, and δ(ei) ∈H0
Gn

(E(i))∼= Z/�. Hence, if δ(ei) = 0, then δ = 0 (i.e.,

δ(x) = 0 for all x ∈ H∗
Gn

(X(i))), since H∗
Gn

(X(i)) is generated by c1, . . . , ci−1,

e1, . . . , ei as a ring.

Let p : V → X be a j-dimensional bundle, and let i′ : X → V be a section

of p. Then it is well known that the Chern class cj is defined as (i′)∗i′∗(1). Hence,

we show that

(i′)∗i′∗(1) = ci ∈H∗
Gi

with HGi(A
i)

(i′)∗∼= H∗
Gi

(
{0}
)∼=H∗

Gi

for the Gi-embedding i′ : {0} ⊂ A
i. From Proposition 3.2, we see this ci �= 0.

Consider the restriction map H∗
Gn

(X(i+1))→H∗
Gi
(Ai) which is induced from a

Gi-map

A
i ⊂A

i ×X(1)′ =A
i ×
(
A

n−i − F (1)′
)
⊂X(i+ 1).

(Note that {0} ×X(1)′ ⊂E(i).) By using the restriction, we show that

i∗(1) = ci �= 0 in H∗
Gn

(
X(i+ 1)

)
.

Thus, we see that δ(ei) = 0, and we get δ = 0 from the above argument.

Therefore, we have the short exact sequence

0→H∗−2i
Gi

⊗Λ(f)
i∗→H∗

Gn

(
X(i+ 1)

) j∗→H∗
Gi−1

⊗Λ(ei)→ 0.

Here H∗
Gi−1

⊗ Λ(ei) is a free graded ring; namely, it is a tensor product of a

polynomial algebra generated by even-degree elements and an exterior algebra

generated by odd-degree elements (which has no relation as a graded ring). Hence,

it is contained in HGn(X(i+1)), and j∗ is split. Therefore, HGn(X(i+1)) is an

HGi−1 ⊗Λ(ei)-module.
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Then we have an H∗
Gi−1

⊗Λ(ei)-module isomorphism

H∗
Gn

(
X(i+ 1)

)∼=HGi−1 ⊗Λ(ei)⊗
(
Z/�[ci]

{
i∗(1) = ci, i∗(f)

}
⊕Z/�{1}

)
∼= Z/�[c1, . . . , ci]⊗Λ(e1, . . . , ei)⊗

{
1, i∗(f)

}
.

Let us write i∗(f) = ei+1. (Note here deg(f) = 1 but deg(i∗(f)) = 2i+ 1.) Then

H∗
Gn

(X(i+ 1)) is the desired form

H∗
Gn

(
X(i+ 1)

)∼= Z/�[c1, . . . , ci]⊗Λ(e1, . . . , ei)⊗Λ(ei+1)

for i < n. This is an isomorphism of graded rings because the right-hand side

ring is a free graded ring.

When i = n, by the definition, X(n + 1) = A
n, X(n) = A

n − {0}, and

E(n) = {0}. The short exact sequence is given by

0→H∗−2n
Gn

(
{0}
) ×cn→ H∗

Gn
(An)→H∗

Gn

(
X(n)

)
→ 0,

which implies the desired isomorphism

H∗
Gn

∼=H∗
Gn

(
X(n)

)
[cn]∼= Z/�[c1, . . . , cn]⊗Λ(e1, . . . , en). �

THEOREM 4.4

We have an isomorphism of graded rings

H∗(BGn)∼= Z/�[cr, . . . , c[n/r]r]⊗Λ(er, . . . , e[n/r]r).

Proof

We prove the theorem also by induction on n. Assume that

H∗(BGi)∼= Z/�[cr, . . . , c[i/r]r]⊗Λ(er, . . . , e[i/r]r) for i < n.

We also consider the long exact sequence

→H∗−2i
Gn

(
E(i)

) i∗→H∗
Gn

(
X(i+ 1)

) j∗→H∗
Gn

(
X(i)

) δ→ · · · .

Here we use induction on i, and we assume that H∗
Gn

(X(i))∼=H∗
Gi−1

⊗Λ(ei).

From Lemma 4.2, we already have H∗
Gn

(E(i))∼=H∗
Gi

⊗Λ(f). For dimensional

reasons, we see that δ(ei) ∈H0
Gn

(E(i))∼= Z/�.

Now we consider the case 2 ≤ r and mr < i < (m+ 1)r ≤ n. Note that the

�-Sylow subgroups of Gi and Gi−1 are the same, and H∗
Gi

∼=H∗
Gi−1

. In this case

we can assume that

H∗
Gi

∼=H∗
Gi−1

∼= · · · ∼=H∗
Gmr

∼= Z/�[cr, . . . , cmr]⊗Λ(er, . . . , emr).

Hence, the above exact sequence is written as

→H∗
Gmr

⊗Λ(f)
i∗→H∗

Gn

(
X(i+ 1)

) j∗→H∗
Gmr

⊗Λ(ei)→ · · · .

From Proposition 3.2, we have ci = 0 in H∗
Gn

. This implies that i∗(1) = ci = 0

in H∗
Gn

(X(i+ 1)), and hence, δ(ei) �= 0 ∈ Z/�.
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Thus, we have the isomorphism (letting i∗(f) = ei+1)

H∗
Gn

(
X(i+ 1)

)∼=H∗
Gmr

{
1, i∗(f)

}∼=H∗
Gmr

{1, ei+1} ∼=H∗
Gi

⊗Λ(ei+1).

When i= (m+1)r, the arguments work similarly to those in the case r = 1. �

REMARK

Localized exact sequences (defined just before Lemma 4.1) induce the spectral

sequence

E∗′,∗
1

∼=
n−1⊕
i=1

H∗
Gn

(
E(i)

)
=⇒H∗

Gn

(
X(n)

)∼=H∗
Gn

(Gm)

with the differential dr = δ(j∗)−r+1i∗. Here, from Lemma 4.2, we have

H∗
Gn

(E(i))∼=H∗
Gi

⊗Λ(fi) with deg(fi) = 1. When r = 1, the proof of Lemma 4.3

shows that δ = 0, namely, dr = 0, and so the above spectral sequence collapses.

In fact,

H∗
Gn

(
E(i)

) i∗∼=H∗
Gi
{ci, ei+1} ⊂H∗

Gn

(
X(n)

)∼=H∗
Gn

/(cn).

REMARK

We can give another proof of Lemma 4.3 as follows. Let us write simply SΛ =

Z/�[c1, . . . , cn]⊗Λ(e1, . . . , en). Then we have SΛ⊂H∗(BGn). This fact is proved

by Proposition 3.2 and the restriction to the diagonal subgroup Dn of Gn so that

H∗(BDn)∼=H∗(B(Z/�)n). Hence, for each m≥ 0, we get rankZ/�(H
m(BGn))≥

rankZ/�(SΛ
m). We consider the following sum of rank:

s(m) =
∑

1≤i≤n−1,2i≤m

rankZ/�
(
H∗

Gn

(
E(i)⊗Z/�[cn]

)m−2i)
.

Then from Lemma 4.2 and the previous remark, s(m) = rankZ/�(SΛ
m). So

the spectral sequence collapses; otherwise, rankZ/�(H
m(BGn)) < s(m) =

rankZ/�(SΛ
m) for some m.

REMARK

When 2 ≤ r and mr < i < (m + 1)r ≤ n, the proof of Theorem 4.4 shows that

d1(fi) �= 0 ∈H0(E(i+ 1))∼= Z/�. Hence, in H∗(E(i)), we see that H∗
Gi

⊂ Im(d1)

and d1 :HGi{fi} ∼=H∗
Gi+1

. For i=mr, we note that δ = 0. Thus, we get

Ei,∗
2

∼=

⎧⎪⎪⎨
⎪⎪⎩
H∗

Gmr
if i=mr,

H∗
G(m−1)r

{fi} if i=mr− 1 or i= n,

0 otherwise.

Hence, we have H∗
Gmr

i∗∼= H∗
Gmr

{cmr} ⊂ H∗
Gn

(X(n)), and H∗
G(m−1)r

{fmr−1}
i∗∼=

H∗
G(m−1)r

{emr} ⊂ H∗
Gn

(X(n)). Therefore, this spectral sequence collapses from

the E2-term.
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5. Special linear group SLn

We consider the case G= SLn. Denote SLn(Fq) by SGn.

PROPOSITION 5.1

For the case r ≥ 2, the following composition map is injective:

Z/�[cr, . . . , c[n/r]r]→H∗(BGLn)
F →H∗(BSGn).

When r = 1, the map Z/�[c2, . . . , cn]→H∗(BSGn) is injective.

Proof

When r ≥ 2, Gn and SGn have the same Sylow �-subgroup. Hence, H∗(BGn)→
H∗(BSGn) is injective, and so we have the proposition. For r = 1, the proposition

follows from an argument similar to that for the case r = 1 in Section 3 by using

H∗(BST)∼= Z/�[t1, . . . , tn]/(
∑

ti). �

By using Corollary 2.5 and arguments similar to those in Section 4, we get the

following result.

THEOREM 5.2

Let � �= 2. For the case r ≥ 2, we have an isomorphism H∗(BSGn)∼=H∗(BGn)

of graded rings. When r = 1, we have a graded ring isomorphism

H∗(BSGn)∼= Z/�[c2, . . . , cn]⊗Λ(e2, . . . , en).

6. Motivic cohomology

In this section, we consider the motivic version of previous sections. Let

H∗,∗′
(X;Z/�) be the mod � motivic cohomology over k = F̄p. Let X be a G-

variety defined over k. Let us write

H∗,∗′

G (X) = lim
N

H∗,∗′
(VN ×G X;Z/�)

for the (equivariant) mod � motivic cohomology over k = F̄p. Then we have the

long exact sequence

→H∗−2i,∗′−i
Gn

(
E(i)

) i∗→H∗,∗′

Gn

(
X(i+ 1)

) j∗→H∗,∗′

Gn

(
X(i)

) δ→ · · · .

In general, the Künneth formula does not hold in the mod � motivic coho-

mology. However, it holds for H∗,∗′
(Bμqn−1) by Voevodsky [20], [19]. We can

easily see that, for a Gn-variety Y ,

H∗,∗′

Gn

(
Y ×X(1)

)∼=H∗,∗′
(Y )⊗Λ(f).

Then we can prove that Lemma 4.2 holds for the motivic cohomology. The argu-

ments in the previous sections also work for the motivic cohomology with degree

deg(ci) = (2i, i), deg(ei) = (2i− 1, i).

Thus, we get Theorem 1.2 from the Introduction.
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7. Drinfeld space

For G=GLn and w = (1, . . . , n) ∈ Sn, it is known from [3, Theorem 2.1] that

X̃(ẇ)∼=Q′ = Spec
(
k[x1, . . . , xn]/

(
cn,0 = (−1)n−1

))
.

(Here Q′ ∼=Q as varieties over k = F̄p by (x) �→ (ζx) for the (qn − 1)th root ζ of

−1 (when n is even; see the proof of Lemma 2.1).) We have a quasi-isomorphism

(see [3, Corollary 1.12], [7, Theorem 0.4(b)])

(7.1) Q′/Gn
∼=Gn \ X̃(ẇ)∼= U/

(
U ∩ ad(ẇ)U

)∼=A
n−1.

(Quasi-isomorphisms are isomorphisms for maps generated by morphisms of vari-

eties and (the inverse of) Frobenius maps; for a definition, see [7, Section 2.1].)

In this section, we will show that the above quasi-isomorphism can be explicitly

written by the Dickson elements cn,i given in Section 2.

Take an adequate basis of the n-dimensional vector space such that

w =

⎛
⎜⎜⎜⎝
0 0 · · · 1

1 0 · · · 0
...

...
. . .

...

0 · · · 1 0

⎞
⎟⎟⎟⎠ , U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...

0 · · · 0 1

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
∗ ∈ k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Let xi,j(a) = 1 + aei,j , where ei,j is the elementary matrix with 1 in the (i, j)th

entry and 0 otherwise. Then U is generated by xi,j(a),

U =
〈
xi,j(a)

∣∣ 1≤ i < j ≤ n,a ∈ k
〉
,

with the relation

xi,j(a)xi,j(b) = xi,j(a+ b),
[
xi,j(a), xk,l(b)

]
= δj,kxi,l(ab) (for i < l).

Note that ad(w)xi,j(a) = xi+1,j+1(a) for i, j ∈ Z/n.

Let us denote by Uw the intersection U ∩ ad(w)U . Hence, Uw
∼=

〈xi,j | x1,j = 0〉. We consider the Uw-action on U , which is given by (see [3,

(1.11.4)])

ρ(u)v = ad(ẇ−1)(u)vF (u−1) ∈ U for u ∈ Uw, v ∈ U.

LEMMA 7.1

The composition of natural maps of algebraic groups〈
xin(k)

∣∣ i < n
〉
⊂ U → U/ρ(Uw)

induces the isomorphism A
n−1 ∼= U/ρ(Uw) in (7.1), where 〈xin(k)|i < n〉 is writ-

ten as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
1 0 · · · 0 d1
...

...
. . .

... ∗
0 0 · · · 1 dn−1

0 0 · · · 0 1

⎞
⎟⎟⎟⎠ ∈ U

∣∣∣∣∣∣∣∣∣
d1, . . . , dn−1 ∈ k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∼=A
n−1.
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Proof

We consider the ρ-action in the case u= xi,j(a) for 1< i and v = xk,l(b),

ρ(u)v = ad(ẇ−1)
(
xij(a)

)
xk,l(b)F

(
xi,j(a)

−1
)

= xi−1,j−1(a)xk,l(b)xi,j(−aq).

For generators xi,j and xi′,j′ , we define an order xi,j < xi′,j′ if j < j′ or j = j′,

i < i′. Then any v ∈ U is uniquely written as the product
∏

xi,j(bi,j) with respect

to the order; namely,∏
xi,j(bi,j) = xi0,j0(bi0,j0) · · ·xis,js(bis,js), xi0,i0 < · · ·< xis,js .

Here, let xi0,j0(bi0,j0) �= 1 and j0 < n. Take u= xī,j̄(a) with ī= i0 +1, j̄ = j0 +1,

and a=−bi0,j0 . (Note that xī,j̄(a) ∈ Uw since ī > 1.) Then the equation

ρ(u)v = ad(ẇ−1)
(
xīj̄(a)

)(∏
xi,j(bij)

)
F
(
xī,j̄(a)

−1
)

= xi0,j0(−bi0,j0)
(∏

xi,j(bi,j)
)
xī,j̄(−aq)

=
( ∏
(i0,j0)<(i,j)

xi,j(bi,j)
)
xi0+1,j0+1(−aq)

implies that a nonzero minimal generator of ρ(u)v is larger than xi0,j0 .

By repeating this process, for each v ∈ U , there is u ∈ Uw such that

ρ(u)v ∈
〈
xi,n(k)

∣∣ i < n
〉∼=A

n−1.

Since we know that U/ρ(Uw)∼=A
n−1 from (7.1), we get the lemma. �

Recall that we can identify

Q′ =
{
x= (x1, . . . , xn) ∈A

n
∣∣ e(x)q−1 = (−1)n−1

}

∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x=

⎛
⎜⎜⎜⎜⎝

x1 xq
1 · · · xqn−1

1

x2 xq
2 · · · xqn−1

2
...

...
. . .

...

xn xq
n · · · xqn−1

n

⎞
⎟⎟⎟⎟⎠ ∈GLn(k)

∣∣∣∣∣∣∣∣∣∣
|x|q−1 = det(x)q−1 = (−1)n−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

THEOREM 7.2

We get the quasi-isomorphism f :Q′/Gn → U/(ρ(Uw)) by x �→ ẇ−1x−1Fx. This

map f(x) is written as

f(x) =

⎛
⎜⎜⎜⎝
1 0 · · · 0 (−1)n−2cn,1
...

...
. . .

... ∗
0 0 · · · 1 cn,n−1

0 0 · · · 0 1

⎞
⎟⎟⎟⎠ ,

where cn,i = cn,i(x1, . . . , xn) is the Dickson element defined in Section 2.
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Proof

We prove only that f(x) is expressed by cn,i above. Let us write

en

(
i1 i2 · · · in
j1 j2 · · · jn

)
=

∣∣∣∣∣∣∣∣∣∣∣

xqi1

j1
xqi2

j1
· · · xqin

j1

xqi1

j2
xqi2

j2
· · · xqin

j2
...

...
. . .

...

xqi1

jn
xqi2

jn
· · · xqin

jn

∣∣∣∣∣∣∣∣∣∣∣
so that

en

(
0 1 · · · n− 1

1 2 · · · n

)
= e(x) = |x|.

Then the (j, i)-cofactor of the matrix x is expressed as

Dj,i = (−1)i+jen−1

(
0 1 · · · ˆi− 1 · · · n− 1

1 2 · · · ĵ · · · n

)
.

By Cramér’s theorem, we know that

x−1 = |x|−1(Dj,i)
t = |x|−1(Di,j).

Let us write (Bi,j) = |x|x−1F (x). Then we can compute

Bs,t =
(
DF (x)

)
s,t

=
∑

Ds,kx(k, t)
q

=
∑

Ds,kx
qt

k

(
where x(k, t) is the (k, t)th entry of x

)

=

∣∣∣∣∣∣∣∣∣∣∣

x1 · · ·
s

xqt

1 · · · xqn−1

1

x2 · · · xqt

2 · · · xqn−1

2
...

. . .
...

. . .
...

xn · · · xqt

n · · · xqn−1

n

∣∣∣∣∣∣∣∣∣∣∣
.

This element is nonzero only if t = s− 1 or t = n. If t = s− 1, then the above

element is |x|. If t = n, then the above element is, indeed, (−1)n−s|x|cn,s−1 by

the definition of the Dickson elements as stated in Section 2. Thus, we have

x−1F (x) = |x|−1(Bst) =

⎛
⎜⎜⎜⎝
0 0 · · · 0 (−1)n−1cn,0
1 0 · · · 0 (−1)n−2cn,1
...

...
. . .

... ∗
0 0 · · · 1 cn,n−1

⎞
⎟⎟⎟⎠ .

Here (−1)n−1cn,0 = 1, and acting ẇ−1, we have the desired result. �
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