The approximate pseudorandom walk
accompanied by the pseudostochastic
process corresponding to a higher-order
heat-type equation

Tadashi Nakajima and Sadao Sato

Abstract As is well known, a standard random walk is approximate to the stochastic
process corresponding to the heat equation. Lachal constructed the approximate
pseudorandom walk which is accompanied by the pseudostochastic process correspond-
ing to an even-order heat-type equation. We have two purposes for this article. The first
is to construct the approximate pseudorandom walk which is accompanied by the
pseudostochastic process corresponding to an odd-order heat-type equation. The other
is to propose a construction method for the approximate pseudorandom walk which is
accompanied by the pseudostochastic process corresponding to an even-order heat-type
equation. This method is different from that of Lachal.

1. Introduction

Many authors have studied pseudostochastic processes of the fourth-order heat-
type equation
4

(L1) Qu_ O

ot Ox?
Hochberg [3] defined a pseudostochastic process whose density is a fundamental
solution of (1.1) and studied its stochastic integral and sojourn time. After Nish-
ioka [10]-[12], Nakajima and Sato [7], Sato [13], and Lachal [4], [5] studied the
distribution of the sojourn time and the joint distribution of a first hitting time
and a first hitting place.

Nishioka [11] first gave the joint distribution of a first hitting time and a first
hitting place of the stochastic pseudoprocess corresponding to (1.1). Sato [13]
constructed the pseudorandom walk which approximates the pseudostochastic
process corresponding to (1.1). He studied the joint distribution of a first hitting
time and a first hitting place of it by the approximate pseudorandom walk.
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Moreover, Lachal [4] studied the joint distribution of a first hitting time and
a first hitting place of a stochastic pseudoprocess whose density is a fundamental
solution of

ou 0%

ot 9x
Lachal [5] constructed the pseudorandom walk which approximates the pseudos-
tochastic process corresponding to an even-order heat-type equation.

But not many authors have studied pseudostochastic processes of odd-order
heat-type equations compared to those who have studied even-order heat-type
equations. Beghin, Hochberg, and Orsingher [1], Beghin, Orsingher, and Ragozina
[2], and Nikitin and Orsingher [9] calculated the joint distribution of the maxi-
mum and position, the distribution of the sojourn time, and the other conditional
distribution of the stochastic pseudoprocess corresponding to a third-order heat-
type equation. Shimoyama [14] gave the joint distribution of a first hitting time
and a first hitting place of the stochastic pseudoprocess corresponding to a third-
order heat-type equation. Nakajima and Sato [8] gave the joint distribution of a
first hitting time and a first hitting place of the stochastic pseudoprocess corre-
sponding to a third-order heat-type equation through the approximate random
walk.

There are two purposes for this article. The first purpose is to construct
a pseudorandom walk which approximates the pseudostochastic process corre-
sponding to an odd-order heat-type equation:

ou a2l+1u
9t T optL
The second purpose is to construct a pseudorandom walk which approximates

[=1,2,....

1=1,2,....

the pseudostochastic process corresponding to an even-order heat-type equation
which is based on the concept of a subordinator.

The article is organized as follows. In Section 2, we construct a pseudoran-
dom walk whose total variation may be different from one. This pseudorandom
walk approximates the pseudostochastic process whose density is a fundamental
solution of the odd-order heat-type equation (2.21). This construction method
is more intuitive than that in the next section. In Section 3, we construct the
same pseudorandom walk as in the previous section by another method. This
construction method is more technical than the method of the previous section,
but is more general. In Section 4, we give examples in the case of third- and
fifth-order heat-type equations. In Section 5, we construct an even-order pseudo-
random walk which approximates the pseudostochastic process with the concept
of a subordinator.
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2. A construction of a pseudorandom walk for an odd-order heat-type equation

In this section, we construct a pseudorandom walk which corresponds to the
equation

ou 921y

E: 2l+1w, l:1,2,...,

(2.1)

where Ag;41 is a real nonzero constant. For [ € N, we consider pseudoindependent
random variables {fj'} and {¢; } as

P& =1) =p;, P =0)=1-p;, j=1,2,...,01+1,
and
P(f,;:()):rk, P(g;:—l):l—rk, k:]_,Qw..’l’

where p; and r; may be complex numbers whose concrete values will be deter-
mined later. We set X as
I+1 1

XT=2 6+ 4
j=1 k=1

and X;', X5, X5 ,... are independent copies of X*.
For n > 0, we define a pseudorandom walk Z} as

Zt=x+ Z X7
k=1
We define the expectation of Z,I as Sato [13] did. For any measurable function f,

we set the expectation of f as an analogy of “the usual probability theory.” That
is,

E[f(ZD)] =) f(m)P1Z} =m],

E.[f(Z)] = B[f(Z7) | 25 ==],
and

P.[Z}=m|=P[Zf =m| Z] =]
We denote the characteristic function of X~ by
(2.2) M () = E[e"X1].
Then the characteristic function M, (0) = FE, [eiOZf'] for Z;F starting at z is

Mo (0) = o [e %]
_ E[eia(a:+xl+)]

=M (h).
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We examine M (6):
M) = E[eiexf]
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_ E[eif)(Eﬁii G4k, &)

+1

=TIt =p;+pse
j=1

I+1

= H{l +pj(e*
j=1

20+

= e’wl{l + Z q;(e”
j=1

2041
ot T oy
j=1
where we set {¢;} as
q1 = P1, 92 = P2,

qi+2 =T1,
That is,

i@)

qi+2 = T2,

!
H {re+(1- rk)e_w}
k=1
!
- [[{r+ e 1)}
k=1
—1)+ quqk(ew —1)2
J#k

_ 1)2z+1}7

qi+1 = Pi+1,

ey

q214+1 =711

cey

M) =e {1+ Qi(e” — 1)+ Qa(e" = 1)+ + Qua (e — 1)2 1},

where
20+1

(2.3) Q1 ZZ% Q2:ZQinv
i=1

1#]
If we give @1, ...

N Qg 44 (D',

Now, we shall determine @1, ...
(2.4)

By (2.1), we have the property

,Q2141, then we have q,...

20+1

Q2l+1 = H qi-
i=1

,q21+1 as solutions of the equation

A4 Qo) — Qa1 = 0.

ey

,Q21+1. For € >0, we set

Z,J{E:x—kezn:X;'.

k=1

lim W(Ew[ewzfj i) = it lim M(;?J)rl— 1
2
(2.5) = Ao Wel ¢
= Ao (i0)2H 0,
that is,
(2.6) M(cb) ~1 _ Agis1.

30 (ief)2+1



Approximate pseudorandom walk 697

For the sake of simplicity, we use the following notation:
2.7) F(z)=e {1+ Qi(e" = 1)+ Qa(e" = 1)° + -+ Qa1 (e” = 1)*F'}.

That is, F(i0) = M(0).
By (2.6), F(x) must satisfy

(2.8) F(z) =14 Ag 22T+ O(2*12).
By (
(2.9)
By (2.8),

(t+1)'F(log(t+1))

2.7), setting e” — 1 =t, we have
(t+1)'F(log(t+1)) =1+ Qit + Qaot® + -+ + Qo1 .

2l+1 2l+2)

(2.10) = (t+1)" + Ay (¢t + 1) (log(t + 1))
:(t+1)l+A2l+1t2l+1+0(t2l+2)-
On equating (2.9) and (2.10), we get {Qm} as

+ O((log(t —+ 1))

(n):  L1<m<l,

Qm = O:W l+1<m<2l,
Aoy, m=20+1.

Therefore, p1,p2,...,Di+1,71,72,...,r; are solutions of
(2.11) MNFION = 1) = Ay =0.
Moreover, we have
(2.12) M(0) =14 Ay (e — 1) 100
LEMMA 2.1
Under the condition
(2.13) 0 < (=1)! Agyyy <27CHD,

(2.11) has three real solutions and (21 —2) complex solutions.

Proof
Let

FO) =X A= 1)
Then we have
PO =NO- )@+ A= (D),
which means that the condition for the existence of three real zeros is

0< (—1)ZA21+1 < (—1)lf<2ll+T11>
1

Since (—1)'f(3) is smaller than the right-hand side, the statement gives a suffi-
cient condition. O
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Let v1,v2,v3 be real solutions, and let s1,51,...,5-1,5_1 be complex conjugate
solutions of (2.11). Then we have

2041
M(0) = e H {1+ q;(e" — 1}

3 -1
=e I+ (e = 1) TT{1 + k(e = 1) {1+ se(e” — 1)}
j=1 k=1

2
= {113 +(1- vg)efw} H(l —v; + vjeie)
j=1

-1

X H{l — Sk + skem}{ék +(1- Ek)efw}
k=1

2
={vs+(1- Ug)eiie} H(l —vj +v;e'?)
j=1
-1

x TT{2Rsk — 20kl + sk 2™ + (1+[s[2 = 2Rs)e ™}
k=1

Thus, we obtain the following.

PROPOSITION 2.2
Under the condition (2.13), we define the real pseudorandom variable Yy (k=
1,...,1—1) as

P(Y;, =0) = 2Rsy, — 2|s1|?,
(2.14) P(Yy=1) = |si]?,
P(Yy=—1)=1+|s;|* — 2Rsy,
and the three real pseudorandom variables X; as

F)()(J:O)Zl—’l)J7 P(ijl):U] (]:1,2),

P(X?,:O)ng,, P(Xg:—l):l—vg,

where {v;},{si} are solutions of (2.11) as above. Then Z+ = 2?21 X; —|—Z§€;11 Yk
is a pseudorandom variable, and the sum of its independent copies constitutes our
pseudorandom walk with a real-valued measure on the cylinder sets up to each
finite time step.

We set
p(n,m) = Ry[Z} =m).
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Then

= {Mm(0)}".

Since p(n,m) is a Fourier coefficient, we have

(2.15) p(n,m) = i/ M(@)"e~ "™ dp
2r J_,
and

Jim_p(n,m) =0.

PROPOSITION 2.3
Form=—-I,—l+1,...,l+1, we have

(2041
Po(ZF =m) =60+ (—1) +1<l+m)A2l+1’

where 6,0 s the Kronecker delta.

Proof
By (2.12), we have

s

1 .
Py(Zf =m) = > M(0)e= ™7 4o

s

—T

1 (" , ) .
_ 2_ {1 4 A2l+1 (6“9 _ 1)21+1e—191}e—zm9 do
U —T

2041
1 (™ 2l+1 20+1—j i(i—0)0 | —imo
-~ {1+A21+1 3 ( , )(—1) 3¢ia=00 \ =imo g

- PN

P 20+1
1 —imb 2 : 2 +1 214+1—75 i(j—1l—m)0
= % 7T{e +A2[+1 < ] )(—1) ]6 J deo.

§=0

We get the result. O
PROPOSITION 2.4

Under the condition (2.13) we have the property

(2.16) |M(6)] <1

and |M(0)| is an even function of 0 and decreasing in [0,7]. Let

K= (—1)l2lA2l+1.
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Then we have
K 1+1
(2.17) |M(9)|<1- E(l—cos@) .

Proof
We simply write A as Ag11. Then we have

M(@) =14+ A(em _ 1)21+1e—i0l

=1+ A — 1){(” —1)(1 - e )}

(2.18) _
=1—(=1)2"4(1 — ) (1 — cos )’
=1—-K(1—cos)* +iK(1—cosh)!sinb.

Then

’M(Q)‘Q ={1-K(1- cosH)l+1}2 +{K(1- cos@)lsin9}2
(2.19) =1-2K(1—cos8)""! + K?(1 —cos8)*{(1 — cos)? +sin® 0}
=1-2K(1—cosf)* +2K%(1 — cos#)?*1.
Let

flx)=1—-2Kat 4 2K222 1,

It is clear that f(z)=|M(#)|?> >0 for 0 <z <2, and then we decide the range of
K under f(z) <1 for 0 <x <2. Since

f(x) —1=2z Ka'(Kz' —1) <0,

we get
0< Kzl <1,

which proves K2! <1 and then
(2.20) 0<(=1)! Ay, <2720
The condition (2.13) is stronger than this inequality, and we have

Ko <l

2
The solution zg of f'(x) =0 satisfies
Ko = 27;11 z %

Thus, we get 29 > 2, and f(x) is decreasing in [0, 2].

We have
’M(G)‘Z =1-2K(1—cos) {1 - K(1—cosf)'}
=1-2Cy(1 —cosh) !

<{1-Cy(1— cost9)l+1}27
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where
ngK{l—K(l—cose)l}.
Since K2! <1/2, we have Cy > K/2. O

In the following, we usually suppose that the condition (2.13) is satisfied. For
example, we have

Ip(n,m)| <1

under this condition.
PROPOSITION 2.5
We have

o0

: n + _ _
rk{go r"P(Z;7 =0)=o0.

n=0

Proof

We set K = (—2)!Ag41. Let 0 <7 <1 and € > 0 be sufficiently small. By (2.15)
and Proposition 2.4, we have

= . 1 [" 1
Zr p(n’o)%/ﬂ—l—rM(G) de

n=0

1 1 1 1
= — _do+ — - df
2 |6]<e 1-— TM(Q) 2r e<|0|<m 1-— ’I"M(G)

=L +1 (say).

Then we have

1 1
lim I = — -
e e sy /9|<€ 1— M(6) 40

:ii 1—cos€+isin0d9
27 2K Jjgj<e (1 —cos@)it?
11 1
21 2K Jjgj<e (1 —cos0)!
= 00.
By (2.17), it is easy to see that I is bounded as r — 1 — 0. 0

REMARK 2.6
By this proposition we may claim
E[#{n:n>0,Z5 =0}] = oo,
where #A means the number of a set A. However, our random walk {Z;"} gen-

erally takes a signed measure, and it may stick on 0. Then we cannot conclude
that it is recursive as in usual probability theory.
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THEOREM 2.7
We set W€ = eZ[J{/ezzH] for any € > 0, where [x] denotes its integer part. Then

W = lim._,o Wt is the pseudostochastic process whose transition probability
density function is

1 e . .
qt(t,x) = o / exp{i(—1) Ay p® 1t —ipa} dp.
™ (oo}

This q* (¢, x) is the fundamental solution of the (21+1)th-order diffusion equation

ou 92ty

(2.21) i AQH-IW-

Proof
Let © =me, t =ne?t1. Then

pe(t,x) = p(n,m)

_ i " M(e)t/s(2l+l>e—i0m/e do

2T J_ .

1 2141 .
- —(/ +/ M (0)/ T el g
21 \Js<ip1<n Jjo1<s

=J1+Jo (say),
where § = 1. Then we prove that
1
gt (t,z) = lim ~p.(t,z).
e—0 €
First, clearly,
g (0,2) = (),

where 0(x) is Dirac’s delta function. Assume that ¢t > 0 in the following. When
0<d< |0 <m, we note from (2.17) that

|M(6)] <1- g(l — cosd)! 1,

We consider that
1

= M ()< et /e g,
21 Js<jo1<n

Ji
Since 1+ z < e”, we have
1 1 K £/t
E|J1\ < E{l - 5(1 - cosé)l+1}
1 tK
< —exp{—T(l — cosd)l+1/e2l+1}
€

ool ()"
6CXp D) D) €

—0 ase—0.
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Next, we consider that

1

Jy=—
27 Jjo1<s

M(e)t/ezHl e—i@x/e do

me—1/0+1)
€ 2041 .
M(ep)t < e dy,

T or e 1/ D)
Let € be sufficiently small. Let
log(1+ z) = z+ R(%).
Note that the inequality |R(z)| < || holds for sufficiently small z. Thus, we get
log M (0) = —K (1 — cos )™ +iK (1 — cosf)' sinf + R(6)
and
|R(0)| <2K*(1 - cos )2+,

However, we see that

[R(0)| l
— Tl <L — .
(1= cos )1 2K (1 —cos?)

Thus, we can neglect R() in comparison to the first term which acts as a discount
factor as follows. Noting that K > 0, we have

2 70T .
- / M(ep)t/<™ ™ emine gy,
¢ —a7aTD
miiEay
~ exp(— K27 7 ep 22 4 i K27 2 e — i) dp

T
T70FD

~ / exp(— K27 ep 22 4 i K27 B e — i) dp

—00
o0
— / exp{iK27 T —ipx}dp  as e — 0.
— 00
Thus, we get the conclusion. O

REMARK 2.8
It is natural to consider the case where {§J+} for j=1,2,...,01 and {¢ } for
k=1,2,...,1+ 1. Clearly, this is a transform of x to —=.

We define

P =1)=1-p;, PE=0=p;, j=12..,1
and
P =0)=1-ry, P& =-1)=mr, k=1,2,...,014+1,
where p; and rj are solutions of the equation

AT = 1) = Agip,
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where Ag;41 satisfies the condition (2.13). For n > 0, we define a pseudorandom
walk 7 as

1+1 1
D
j=1 k=1
Then X, , X, ,..., are independent copies of X, and

Zy=wt ) Xy
k=1
The characteristic function of N(¢) of Z;~ starting at zero is
N(e) =1+ A21+1(e_i9 _ 1)2l+16i0l;

that is, N(0) is the complex conjugate of M (). Moreover, the scaling limit
of {Z} is the pseudostochastic process whose transition probability density
function is

_ I . )
0 (ta)= 5o [ esp{=i(-1) At~ ) d

This ¢~ (¢, x) is the fundamental solution of the (2{+ 1)th-order diffusion equation

ou 821+1u
E = _A2l+1 6SC2Z+1 .

3. Another construction of a pseudorandom walk for an odd-order heat-type
equation
We set the random variable {¢} whose distribution is
P=m)=ay,, m=-l—-1,—-1...01,1+1,

and take {{;} as independent copies of . For n >0, we define a pseudorandom
walk Z,, as

j=1
The characteristic function M (6) of Z; starting at zero is
M(e) — E[eiGZl] — Z akeié‘k.

For our purpose, we need the property
M(0) =1+ O(9*+1).

We deduce «y, satisfying this property. Then
I+1

M@O)= > (ar— ko)™

k=—I—1

=M() —1=0(*"").
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Thus,

+1
ez(l+1)0M(0) — Z (ak _ 5k,0)620(k+l+1)
k=—-1-1

2(1+1)

= > (ajmim1 = 8j—1-1,0)¢™”

3=0
2(14+1)

= Z Bie'%  (say).
=0

Therefore, we shall find {5;} which satisfy

2(14+1)
> B =0, 0<r<2l
j=0

Define [j], as [j]o =1, and define

Ulr=dG =1 (G=r+1) (r=1).

The Stirling numbers of the second kind can be defined as the coefficients of the
expansion

(3.1) j"—i{f}[ﬂr.

=0

Then the next lemma is well known.

LEMMA 3.1
We have that

(3.2) ]Zi:o (?)(—1)jf = (_1)”{;}71!.

In particular, the left-hand side of this equation takes value zero for 0 <r <n-—1.

The next proposition is easily obtained by this lemma and derived from the
classical Newton’s difference formula. However, since this is a basic formula for
the construction of our pseudorandom walk, we state the result and give a proof.

PROPOSITION 3.2

Let n be any positive integer. Let 0 <r <n —1, and let a; #0 for some j. We
set (2) =0 forn<k or k<0 as a matter of convenience.

(i) We suppose that
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(o -aG)e

(ii) We suppose that

Then we have

n+1

Z Cljjr =0.
j=0

a; = ag (;‘) (1) + anis (j " 1) (—1)"*1-d,

Moreover, we have

Then we have

n+1
3 01 = (1 )
7=0

and
n+1
3 aa = (~1)"ap(x — )" + aprz(z — 1)
j=0

for case (i) as an+1 =0.

Proof
(i) We set M (x) =>""_qa;(1+ x)7. By the assumption,

(%)TM(x)\xzo :g%‘ 4, =0

for r <n — 1. Thus, we have

M(z) = > a;w = ap(w — 1)"
()

(ii) By the assumption, we also have for 0 <r <n—1

n+1

> a;(j—-1)"=0.
§=0

Let
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and c¢; = a; — bj. Then by the above lemma,

n+1 n
Zb G- :Zb]]fl =0 forr<n-—1.
7=0

Thus,
n+1

0= ¢(i—-1)"
j=0

n+1

S SIS YD
Therefore, according to (i),

n s
Cj+1=Cnt1 (J) (=)™,

which proves the statement with ¢,4+1 = ap41. The proof of the rest is easy. O

Set n =20+ 1. Owing to this proposition, we get

which agrees with Proposition 2.3 with 8y = 0. This shows that there only appears
the combination of (££)" and — (=)™
On the other hand, when n = 2] + 2 and we suppose that
M(z) =0(z"),

then we only see the difference formula for (-)" as Proposition 3.2(i). Though
the study of the even-order case is easy and simple, we omit it here. We will give
it in the last section by another method.
We continue the odd-order case n =214 1. We set = = ¢*?. Then we have
n+1

l+1M Z Bjxj
= (*1) Bo(z —1)" + Bprz(z — 1)"
=(=Bo + Bn+1z)(z —1)".
Thus, under the condition
Bo # Bt
we get the desired property
M(6) = (~Bo + Bus) (i6)" + O(0"H).

In addition, we consider the condition that |M(#)] < 1.
We have

M(z) =142~ (@ —1)"(=Fy + Bpi12).
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We set the variable v = 1. Since = —(1 —v)v~! and z — 1= —v~},
M(v)=1— (=1)F1(1 = v) "G () =D LBy L B (1 —v)p!)
=1—(1—v)" Dy L) Byv 4+ (1) Baga (1 - v) }
=1-(1- v)_(l+1)v_(l+1){av +b(1—v)} (say).

On the other hand, by = =€ we have

Thus,
M)=1-S""{av+b(1—v)}.
Since v =1—wv and 1 — v =wv, we have

M(v)=1-8""a(l-v)+bv}.

Then
M ()] =1- 8" (a+b) + $2D|LP,
where
L)% = |av +b(1 —v)|* = (a — b)25~" + ab.
Thus

2
7(8) = M) —1
=S (—(a+b)+ S (a+b)*+ab(S —4)}).
We need that |M(0)| <1 and |M ()| is a decreasing function of §. Then we see
that f(S) <0 and f(S) is decreasing in S € [0,4]. From S =4, we get 0 <a+b <

272l at least.
However, we state the stronger condition

(3.3) 0<a+b<2 D,

Under this condition, considering the condition such that f(S) is decreasing, we
get

(21 +1) )
> - 7
ab2 4(31+2)(a+b) ’

but we omit the details of the calculation. Now, we have the following theorem.
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THEOREM 3.3
We suppose that o_j_1 # 11,

0<(—Dla 14 (—1)lay <27,

and

1(20+1)
4(3142)
Then we have the property |M(6)| < 1. Moreover, |M(0)| is an even function of

0 and a decreasing function in [0,7|. The one-step variable & of our random walk
has the following distribution:

Qg 10q41 = — (a1 +az1)?

20+1 (71)m+l+1
m+1l+1

20+ 1 .
+am( )(—1) i,

P(=m)=0mo+a_i_1 <

m+1
form=—-1—-1,—1,...,1+1.

Moreover, we have
M@)=1+ 67i9(1+1)(ei9 — 12+ (a4 aget?)
=1—(=2)(oqy1 +a_;_1)(1 —cos@)H1
+i(=2) (g1 — a——1)(1 — cosf)! sin .
Hence, we get the next theorem through a proof similar to that of Theorem 2.7.
THEOREM 3.4
Let a1 and a1 satisfy Theorem 3.3. We set Xy = €Z|y /21417 for any € > 0.

Then Xy =lim._,o X; is the pseudostochastic process whose transition probability
density function is

1 [ . )
q(t,z) = — / exp{z(fl)l(aH_l —a__ )Pt — ipx} dp.

21 J_ oo
This q(t,x) is the fundamental solution of the (21 + 1)th-order diffusion equation
ou 0?1y
(34) E = (Oll+1 - Oé_[_l)W.

REMARK 3.5

Clearly, taking ;41 = Ag;41 and av—;—1 =0 we have Z,, = Z,‘f. Similarly, we have
Zy, = Z, by taking ay11 =0 and a_;_1 = Agy1.

4. Some examples

In this section, we give a pseudorandom walk {Z,,} for the cases =1 and | = 2.
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EXAMPLE 4.1 (2L + 1 =3)
In this case, we take [ = 1. By Theorem 3.3,

P( n+l — n*Z):O‘%
P(Zpi1—Z,=1)=—-3as —a_g,
P(Zpi1 — _O) =14 3as + 3a_s,
P(Zpi1—Zp=-1)=—as — 3a_s,
P(Zpsr — Zn = %) =a_,,

where s # g, =23 < a_g+ a3 <0, and a_sag > —%(Oé_g + ag)?.
By Theorem 3.4 its corresponding diffusion equation is

P
ot a2 a2 0x3’

Its fundamental solution is

1 e . .
q(t,z) = o / exp{—i(as — a_o)p’t — ipa ) dp.

T J—co

In particular, setting a_o =0 and ay = Az, we get the pseudorandom walk which
appeared in [8]. This pseudorandom walk can be decomposed as

Zn—Zy=X\,  Xi=&+&+6
We set {17,657} as

PEf=1)=p. PE =0)=1-p,

P& =1)=ps, P& =0)=1-ps,
and we set £, as

P& =0)=r, P& =-1)=1-r,
where py, p2, and r; are solutions of

NMA—1)=A3 for —1/2°<A3<0

by (2.13).

EXAMPLE 4.2 (2L +1=5)
In this case, we take | = 2. By Theorem 3.3,

P(Zny1 — Zn =3) = as,

P(Zps1 — n—2):—50¢3—a_3,
P(Zys1 — Zn =1) =103 + 5a_3,
P(Zps1 — Zn=0)=1—10a3 — 10a_s,
P(Zpy1 — = —1) =das + 10a_3,
P(Zps1 — —2)=—a3 — ba_s,
P( n+1 — ):

where a_3# a3, 0<a_3z+az < 2_5, and a_za3 > — 156 (a_3+az)?
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By Theorem 3.4 its corresponding diffusion equation is

O ooy
ot T T g5

Its fundamental solution is

L[> . 5,
q(t,z) = %/ exp{i(as — a_s)p’t — ipz} dp.

— 00

In particular, by setting a_3 =0 and a3 = As, this pseudorandom walk can be
decomposed as

3 2
Tpir—Zn=XF,  XF=) &+ ¢
i=1 j=1

We set {&F,&5,&5) as
PEf =1)=v, P =0)=1-u,
Pf=1)=v, P =0)=1-uvy
P& =1)=p, P =0=1-p,
and we set {£,&; } as
P&y =0) = vs, P&y =—-1)=1—us,
P&y =0)=p, P(§ =-1)=1-p,
where v1, v, v3 are real solutions and p,p are complex solutions of
NA=1)2=A45 for 0< A5 <1/2°.
5. A construction of a pseudorandom walk for an even-order heat-type equa-
tion

We construct a pseudorandom walk {Y;,} which is approximate to the 2{th-order
pseudostochastic process {X;}. This idea is basically due to Motoo [6].
We consider two pseudoindependent, identically distributed pseudorandom
variables {n;} and {7;}. The n,’s distribution is
Pnj=0)=1-2p,  P(nj=+1)=p,
and the 7;’s distribution is
P(TiZO):To, P(Tizl):Tl, cey P(Ti:l):m,

where p and rp are real numbers and 22:0 r=1.
Let o =z and 19 = 0. We set S,, = Z;;O n; and T, = 31, 7;. Define

Y, = STn-
The characteristic function of S; must be less than or equal to 1. That is,

|Eole"]| = |1 — 2p(1 — cos )| < 1.
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Then p is satisfied with
0<p<1/2.

The characteristic function of Y7 is

l
(€M) =Y Eu[e" | Ty = jIP(Ty = )
7=0

l .
= Z{l —2p(1— cosG)}Jrj.
3=0

For n>1, e> 0, we set Y,{ = €Y, and Y§ = x. We shall take p and {r;} satisfying
: 1 i0Y" i0x d2l 9.’E
oy A e
= (—=1)' Ay 0™
We consider E[e?Y7]:
1
B[] = Z{l —2p(1 — cosbe) } Tj

3=0
1 J .
= Z ( > (1 — cosfe)kr,
7=0 k=0
! I,
=) (—2p)*(1 — coshe)k Z <2) ;.
k=0 j=k

Since 1 — cosfle = 1 (fe)? 4+ O(e?) for sufficiently small €, we have

! Iy
1= Yt 0 o) Y (2
k=0 j=k
Therefore, we take p and {r;} that are satisfied with the equations
(5.2) plri= A,

l .
(5.3) 3 <£) (rj—0;0)=0, for0<k<I—1.

=k

Then we easily obtain

(1
(54) ri =050+ (—1)l+j (j)plAgl, 0<j5<I.
Then, we also get
(5.5) M(0) =14 (—2)" Ay (1 — cosh)".

Clearly, we have the following result.
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PROPOSITION 5.1
Suppose that Ay satisfies

(5.6) 0< (—1)*1Aay, <272
Then we have the property 0 < M(0) <1 and M(0) is decreasing in [0,7].

Moreover, we can show the following theorem.

THEOREM 5.2
For -1 <m <,

P(Yi=m m0+Ale< )(i) -2)'7F,
k

where (k+m) =0 if HT’” is mot an integer.
2

Proof
We have that

P(Yl = m) = %/ e—imOE[ei9Y1] do

l
1 " —im % —1 j
=5 7‘”6 9j570{1—2p+p(69+e 0)}J’I“jd9

= 4l zi:(i)(l 2p) ~Fphr;

0

<

k
> Zk: k i /TF ei(2n—k—m)0 de
—\n)2m ) . '

n

Then we have
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— o+ P A (i) Zl: (; - i) (L1)H (1 2p)i*

Jj=k

l
=00 +p Ay <k> (—2p)'~*F

l
= 6k,0 -+ pikAzl(—Q)lik (kﬁ) .

Thus, we obtain

P(Y,=m)= Ig <k§m)pk (6k,o +p P Ay (—-2)' 7" <,i)>
l

bt Ay (&) (é)(z)zk. .

k=0 2

THEOREM 5.3
Suppose that the condition (5.0) holds. We set X{ = €Y[;c21) for any € > 0. Then
X¢ =lim._,0 X5 is a pseudostochastic process whose transition probability is

1 o0
q(t, ) = —/ exp{(—1)' Agp®t — ipa} dp.

27 J_
This q(t,x) is the fundamental solution of the 2lth-order diffusion equation

ou 0%y

Proof
The proof is almost the same as the proof of Theorem 2.7, but is simpler than
that. We use the same notation. Let = = ke, t = ne?’. Then

pe(t,z) =p(n, k)

1 " ;
_ M(e)t/emefz:r@/e do
2 J_ .

1 / / /2 g
= + M(G) /€ et x/e do
27T< s<lo|<n |9\<5>

=L+1, (say),
where 6 = me®/4. Then we shall prove that
1
= lim -
q(t,z) = lim =pe(t,z)

is the fundamental solution of (5.7).
First, clearly,

¢ (0,2) = d(x),
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where §(z) is Dirac’s delta function. Let t > 0. We set K = (—1)712!4,,. We
consider that
1

_ M(eﬂ)t/eme—iwe/e do.
21 Js<io)<n

I

Since
M(0)=1—K(1—cos)" <exp{—K(1—cosb)'},

we have

1 1
I < —exp{—tK(1— cosé)lele}
€ €

1 2\1
~ — exp{—tK(ﬂ-—) e_l/z}
€ 2

—0 ase—0.

Let € be sufficiently small. We notice that

L= [ M)/ il g
2m Jio1<s

1

=_— M(eu)t/eme_m“ dpe.
27 Jjuj<me1/a

Then we have
M(0) = exp{—K(1 —cosb)' + R(0)}
and
|R(0)| < K*(1— cos )2
Therefore, we get

|R(5)’e*21 < K%(1 —cosd)?e

o K (12>2l€l
~ ) .
Thus, we obtain

2 A 1— !
o, :/ v exp{—K(ﬂ) t+0(e) —i/LiL’}d/i
€ €

517;4
- exp{(—1)' Ay p®'t —ipa}dp as e —0,

which is absolutely convergent by Lebesgue’s dominated convergence theorem.
O
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