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Abstract As is well known, a standard random walk is approximate to the stochastic

process corresponding to the heat equation. Lachal constructed the approximate

pseudorandomwalk which is accompanied by the pseudostochastic process correspond-

ing to an even-order heat-type equation.We have two purposes for this article. The first

is to construct the approximate pseudorandom walk which is accompanied by the

pseudostochastic process corresponding to an odd-order heat-type equation. The other

is to propose a construction method for the approximate pseudorandom walk which is

accompanied by the pseudostochastic process corresponding to an even-order heat-type

equation. This method is different from that of Lachal.

1. Introduction

Many authors have studied pseudostochastic processes of the fourth-order heat-

type equation

(1.1)
∂u

∂t
=−∂4u

∂x4
.

Hochberg [3] defined a pseudostochastic process whose density is a fundamental

solution of (1.1) and studied its stochastic integral and sojourn time. After Nish-

ioka [10]–[12], Nakajima and Sato [7], Sato [13], and Lachal [4], [5] studied the

distribution of the sojourn time and the joint distribution of a first hitting time

and a first hitting place.

Nishioka [11] first gave the joint distribution of a first hitting time and a first

hitting place of the stochastic pseudoprocess corresponding to (1.1). Sato [13]

constructed the pseudorandom walk which approximates the pseudostochastic

process corresponding to (1.1). He studied the joint distribution of a first hitting

time and a first hitting place of it by the approximate pseudorandom walk.
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Moreover, Lachal [4] studied the joint distribution of a first hitting time and

a first hitting place of a stochastic pseudoprocess whose density is a fundamental

solution of

∂u

∂t
=±∂2lu

∂x2l
, l= 1,2, . . . .

Lachal [5] constructed the pseudorandom walk which approximates the pseudos-

tochastic process corresponding to an even-order heat-type equation.

But not many authors have studied pseudostochastic processes of odd-order

heat-type equations compared to those who have studied even-order heat-type

equations. Beghin, Hochberg, and Orsingher [1], Beghin, Orsingher, and Ragozina

[2], and Nikitin and Orsingher [9] calculated the joint distribution of the maxi-

mum and position, the distribution of the sojourn time, and the other conditional

distribution of the stochastic pseudoprocess corresponding to a third-order heat-

type equation. Shimoyama [14] gave the joint distribution of a first hitting time

and a first hitting place of the stochastic pseudoprocess corresponding to a third-

order heat-type equation. Nakajima and Sato [8] gave the joint distribution of a

first hitting time and a first hitting place of the stochastic pseudoprocess corre-

sponding to a third-order heat-type equation through the approximate random

walk.

There are two purposes for this article. The first purpose is to construct

a pseudorandom walk which approximates the pseudostochastic process corre-

sponding to an odd-order heat-type equation:

∂u

∂t
=±∂2l+1u

∂x2l+1
, l= 1,2, . . . .

The second purpose is to construct a pseudorandom walk which approximates

the pseudostochastic process corresponding to an even-order heat-type equation

which is based on the concept of a subordinator.

The article is organized as follows. In Section 2, we construct a pseudoran-

dom walk whose total variation may be different from one. This pseudorandom

walk approximates the pseudostochastic process whose density is a fundamental

solution of the odd-order heat-type equation (2.21). This construction method

is more intuitive than that in the next section. In Section 3, we construct the

same pseudorandom walk as in the previous section by another method. This

construction method is more technical than the method of the previous section,

but is more general. In Section 4, we give examples in the case of third- and

fifth-order heat-type equations. In Section 5, we construct an even-order pseudo-

random walk which approximates the pseudostochastic process with the concept

of a subordinator.



Approximate pseudorandom walk 695

2. A construction of a pseudorandom walk for an odd-order heat-type equation

In this section, we construct a pseudorandom walk which corresponds to the

equation

(2.1)
∂u

∂t
=A2l+1

∂2l+1u

∂x2l+1
, l= 1,2, . . . ,

where A2l+1 is a real nonzero constant. For l ∈N, we consider pseudoindependent

random variables {ξ+j } and {ξ−k } as

P (ξ+j = 1) = pj , P (ξ+j = 0) = 1− pj , j = 1,2, . . . , l+ 1,

and

P (ξ−k = 0) = rk, P (ξ−k =−1) = 1− rk, k = 1,2, . . . , l,

where pj and rk may be complex numbers whose concrete values will be deter-

mined later. We set X+ as

X+ =
l+1∑
j=1

ξ+j +
l∑

k=1

ξ−k ,

and X+
1 ,X+

2 ,X+
3 , . . . are independent copies of X+.

For n≥ 0, we define a pseudorandom walk Z+
n as

Z+
n ≡ x+

n∑
k=1

X+
k .

We define the expectation of Z+
n as Sato [13] did. For any measurable function f ,

we set the expectation of f as an analogy of “the usual probability theory.” That

is,

E
[
f(Z+

n )
]
=

∑
m

f(m)P [Z+
n =m],

Ex

[
f(Z+

n )
]
= E

[
f(Z+

n ) | Z+
0 = x

]
,

and

Px[Z
+
n =m]≡ P [Z+

n =m | Z+
0 = x].

We denote the characteristic function of X+
1 by

(2.2) M(θ)≡E[eiθX
+
1 ].

Then the characteristic function Mx(θ)≡Ex[e
iθZ+

1 ] for Z+
1 starting at x is

Mx(θ)≡Ex[e
iθZ+

1 ]

=E[eiθ(x+X+
1 )]

= eiθxM(θ).
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We examine M(θ):

M(θ) ≡ E[eiθX
+
1 ]

= E[eiθ(
∑l+1

j=1 ξ+j +
∑l

k=1 ξ−k )]

=

l+1∏
j=1

(1− pj + pje
iθ)

l∏
k=1

{
rk + (1− rk)e

−iθ
}

= e−iθl
l+1∏
j=1

{
1 + pj(e

iθ − 1)
} l∏

k=1

{
1 + rk(e

iθ − 1)
}

= e−iθl
{
1 +

2l+l∑
j=1

qj(e
iθ − 1) +

∑
j �=k

qjqk(e
iθ − 1)2

+ · · ·+
2l+1∏
j=1

qj(e
iθ − 1)2l+1

}
,

where we set {qj} as

q1 = p1, q2 = p2, . . . , ql+1 = pl+1,

ql+2 = r1, ql+2 = r2, . . . , q2l+1 = rl.

That is,

M(θ) = e−iθl
{
1 +Q1(e

iθ − 1) +Q2(e
iθ − 1)2 + · · ·+Q2l+1(e

iθ − 1)2l+1
}
,

where

(2.3) Q1 =

2l+l∑
i=1

qi, Q2 =
∑
i �=j

qiqj , . . . , Q2l+1 =

2l+1∏
i=1

qi.

If we give Q1, . . . ,Q2l+1, then we have q1, . . . , q2l+1 as solutions of the equation

λ2l+1 −Q1λ2l + · · ·+ (−1)lQlλ
l+1 + · · ·+Q2lλ−Q2l+1 = 0.

Now, we shall determine Q1, . . . ,Q2l+1. For ε > 0, we set

(2.4) Z+ε
n = x+ ε

n∑
k=1

X+
k .

By (2.1), we have the property

lim
ε→0

1

ε2l+1

(
Ex[e

iθZ+ε
1 ]− eiθx

)
= eiθx lim

ε→0

M(εθ)− 1

ε2l+1

=A2l+1
d2l+1

dx2l+1
eiθx(2.5)

=A2l+1(iθ)
2l+1eiθx;

that is,

(2.6) lim
ε→0

M(εθ)− 1

(iεθ)2l+1
=A2l+1.
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For the sake of simplicity, we use the following notation:

(2.7) F (x)≡ e−lx
{
1 +Q1(e

x − 1) +Q2(e
x − 1)2 + · · ·+Q2l+1(e

x − 1)2l+1
}
.

That is, F (iθ) =M(θ).

By (2.6), F (x) must satisfy

(2.8) F (x) = 1+A2l+1x
2l+1 +O(x2l+2).

By (2.7), setting ex − 1 = t, we have

(2.9) (t+ 1)lF
(
log(t+ 1)

)
= 1+Q1t+Q2t

2 + · · ·+Q2l+1t
2l+1.

By (2.8),

(t+ 1)lF
(
log(t+ 1)

)
= (t+ 1)l +A2l+1(t+ 1)l

(
log(t+ 1)

)2l+1
+O

((
log(t+ 1)

)2l+2)
(2.10)

= (t+ 1)l +A2l+1t
2l+1 +O(t2l+2).

On equating (2.9) and (2.10), we get {Qm} as

Qm =

⎧⎪⎪⎨
⎪⎪⎩
(
l
m

)
, 1≤m≤ l,

0, l+ 1≤m≤ 2l,

A2l+1, m= 2l+ 1.

Therefore, p1, p2, . . . , pl+1, r1, r2, . . . , rl are solutions of

(2.11) λl+1(λ− 1)l −A2l+1 = 0.

Moreover, we have

(2.12) M(θ) = 1+A2l+1(e
iθ − 1)2l+1e−iθl.

LEMMA 2.1

Under the condition

(2.13) 0< (−1)lA2l+1 ≤ 2−(2l+1),

(2.11) has three real solutions and (2l− 2) complex solutions.

Proof

Let

f(λ)≡ λl+1(λ− 1)l.

Then we have

f ′(λ) = λl(λ− 1)l−1
{
(2l+ 1)λ− (l+ 1)

}
,

which means that the condition for the existence of three real zeros is

0< (−1)lA2l+1 < (−1)lf
( l+ 1

2l+ 1

)
.

Since (−1)lf( 12 ) is smaller than the right-hand side, the statement gives a suffi-

cient condition. �
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Let v1, v2, v3 be real solutions, and let s1, s̄1, . . . , sl−1, s̄l−1 be complex conjugate

solutions of (2.11). Then we have

M(θ) = e−iθl
2l+1∏
j=1

{
1 + qj(e

iθ − 1)
}

= e−iθl
3∏

j=1

(
1 + vj(e

iθ − 1)
) l−1∏
k=1

{
1 + sk(e

iθ − 1)
}{

1 + s̄k(e
iθ − 1)

}

=
{
v3 + (1− v3)e

−iθ
} 2∏

j=1

(1− vj + vje
iθ)

×
l−1∏
k=1

{1− sk + ske
iθ}

{
s̄k + (1− s̄k)e

−iθ
}

=
{
v3 + (1− v3)e

−iθ
} 2∏

j=1

(1− vj + vje
iθ)

×
l−1∏
k=1

{
2�sk − 2|sk|2 + |sk|2eiθ +

(
1 + |sk|2 − 2�sk

)
e−iθ

}
.

Thus, we obtain the following.

PROPOSITION 2.2

Under the condition (2.13), we define the real pseudorandom variable Yk (k =

1, . . . , l− 1) as

P (Yk = 0) = 2�sk − 2|sk|2,

P (Yk = 1) = |sk|2,(2.14)

P (Yk =−1) = 1+ |sk|2 − 2�sk
and the three real pseudorandom variables Xj as

P (Xj = 0) = 1− vj , P (Xj = 1) = vj (j = 1,2),

P (X3 = 0) = v3, P (X3 =−1) = 1− v3,

where {vj},{sk} are solutions of (2.11) as above. Then Z+ =
∑3

j=1Xj+
∑l−1

k=1 Yk

is a pseudorandom variable, and the sum of its independent copies constitutes our

pseudorandom walk with a real-valued measure on the cylinder sets up to each

finite time step.

We set

p(n,m)≡ P0[Z
+
n =m].
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Then ∑
m

p(n,m)eimθ =E0[e
iθZ+

n ]

=E[eiθ
∑n

k=1 X+
k ]

=E[eiθX
+
1 ] · · ·E[eiθX

+
n ]

=
{
M(θ)

}n
.

Since p(n,m) is a Fourier coefficient, we have

(2.15) p(n,m) =
1

2π

∫ π

−π

M(θ)ne−imθ dθ

and

lim
m→∞

p(n,m) = 0.

PROPOSITION 2.3

For m=−l,−l+ 1, . . . , l+ 1, we have

P0(Z
+
1 =m) = δm,0 + (−1)l−m+1

(
2l+ 1

l+m

)
A2l+1,

where δm,0 is the Kronecker delta.

Proof

By (2.12), we have

P0(Z
+
1 =m) =

1

2π

∫ π

−π

M(θ)e−imθ dθ

=
1

2π

∫ π

−π

{
1 +A2l+1(e

iθ − 1)2l+1e−iθl
}
e−imθ dθ

=
1

2π

∫ π

−π

{
1 +A2l+1

2l+1∑
j=0

(
2l+ 1

j

)
(−1)2l+1−jei(j−l)θ

}
e−imθ dθ

=
1

2π

∫ π

−π

{
e−imθ +A2l+1

2l+1∑
j=0

(
2l+ 1

j

)
(−1)2l+1−jei(j−l−m)θ

}
dθ.

We get the result. �

PROPOSITION 2.4

Under the condition (2.13) we have the property

(2.16)
∣∣M(θ)

∣∣≤ 1

and |M(θ)| is an even function of θ and decreasing in [0, π]. Let

K ≡ (−1)l2lA2l+1.



700 Tadashi Nakajima and Sadao Sato

Then we have

(2.17)
∣∣M(θ)

∣∣≤ 1− K

2
(1− cosθ)l+1.

Proof

We simply write A as A2l+1. Then we have

M(θ) = 1+A(eiθ − 1)2l+1e−iθl

= 1+A(eiθ − 1)
{
(eiθ − 1)(1− e−iθ)

}l

(2.18)
= 1− (−1)l2lA(1− eiθ)(1− cosθ)l

= 1−K(1− cosθ)l+1 + iK(1− cosθ)l sinθ.

Then ∣∣M(θ)
∣∣2 = {

1−K(1− cosθ)l+1
}2

+
{
K(1− cosθ)l sinθ

}2

= 1− 2K(1− cosθ)l+1 +K2(1− cosθ)2l
{
(1− cosθ)2 + sin2 θ

}
(2.19)

= 1− 2K(1− cosθ)l+1 + 2K2(1− cosθ)2l+1.

Let

f(x)≡ 1− 2Kxl+1 + 2K2x2l+1.

It is clear that f(x) = |M(θ)|2 ≥ 0 for 0≤ x≤ 2, and then we decide the range of

K under f(x)≤ 1 for 0≤ x≤ 2. Since

f(x)− 1 = 2x ·Kxl(Kxl − 1)≤ 0,

we get

0≤Kxl ≤ 1,

which proves K2l ≤ 1 and then

(2.20) 0< (−1)lA2l+1 ≤ 2−2l.

The condition (2.13) is stronger than this inequality, and we have

K2l ≤ 1

2
.

The solution x0 of f ′(x) = 0 satisfies

Kxl
0 =

l+ 1

2l+ 1
≥ 1

2
.

Thus, we get x0 ≥ 2, and f(x) is decreasing in [0,2].

We have ∣∣M(θ)
∣∣2 = 1− 2K(1− cosθ)l+1

{
1−K(1− cosθ)l

}
= 1− 2Cθ(1− cosθ)l+1

≤
{
1−Cθ(1− cosθ)l+1

}2
,
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where

Cθ =K
{
1−K(1− cosθ)l

}
.

Since K2l ≤ 1/2, we have Cθ ≥K/2. �

In the following, we usually suppose that the condition (2.13) is satisfied. For

example, we have ∣∣p(n,m)
∣∣≤ 1

under this condition.

PROPOSITION 2.5

We have

lim
r→1−0

∞∑
n=0

rnP (Z+
n = 0) =∞.

Proof

We set K = (−2)lA2l+1. Let 0< r < 1 and ε > 0 be sufficiently small. By (2.15)

and Proposition 2.4, we have
∞∑

n=0

rnp(n,0) =
1

2π

∫ π

−π

1

1− rM(θ)
dθ

=
1

2π

∫
|θ|<ε

1

1− rM(θ)
dθ+

1

2π

∫
ε≤|θ|≤π

1

1− rM(θ)
dθ

= I1 + I2 (say).

Then we have

lim
r→1−0

I1 =
1

2π

∫
|θ|<ε

1

1−M(θ)
dθ

=
1

2π

1

2K

∫
|θ|<ε

1− cosθ+ i sinθ

(1− cosθ)l+1
dθ

=
1

2π

1

2K

∫
|θ|<ε

1

(1− cosθ)l
dθ

=∞.

By (2.17), it is easy to see that I2 is bounded as r→ 1− 0. �

REMARK 2.6

By this proposition we may claim

E
[
#{n : n≥ 0,Z+

n = 0}
]
=∞,

where #A means the number of a set A. However, our random walk {Z+
n } gen-

erally takes a signed measure, and it may stick on 0. Then we cannot conclude

that it is recursive as in usual probability theory.
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THEOREM 2.7

We set W+ε
t = εZ+

[t/ε2l+1]
for any ε > 0, where [x] denotes its integer part. Then

W+
t = limε→0W

+ε
t is the pseudostochastic process whose transition probability

density function is

q+(t, x) =
1

2π

∫ ∞

−∞
exp

{
i(−1)lA2l+1μ

2l+1t− iμx
}
dμ.

This q+(t, x) is the fundamental solution of the (2l+1)th-order diffusion equation

(2.21)
∂u

∂t
=A2l+1

∂2l+1u

∂x2l+1
.

Proof

Let x=mε, t= nε2l+1. Then

pε(t, x)≡ p(n,m)

=
1

2π

∫ π

−π

M(θ)t/ε
(2l+1)

e−iθx/ε dθ

=
1

2π

(∫
δ<|θ|≤π

+

∫
|θ|<δ

)
M(θ)t/ε

2l+1

e−iθx/ε dθ

= J1 + J2 (say),

where δ = πε
l

l+1 . Then we prove that

q+(t, x) = lim
ε→0

1

ε
pε(t, x).

First, clearly,

q+(0, x) = δ(x),

where δ(x) is Dirac’s delta function. Assume that t > 0 in the following. When

0< δ < |θ|< π, we note from (2.17) that∣∣M(θ)
∣∣≤ 1− K

2
(1− cos δ)l+1.

We consider that

J1 =
1

2π

∫
δ<|θ|≤π

M(θ)t/ε
2l+1

e−iθx/ε dθ.

Since 1 + x≤ ex, we have

1

ε
|J1| ≤

1

ε

{
1− K

2
(1− cos δ)l+1

}t/ε(2l+1)

≤ 1

ε
exp

{
− tK

2
(1− cos δ)l+1/ε2l+1

}

∼ 1

ε
exp

{
− tK

2

(π2

2

)l+1

ε−1
}

→ 0 as ε→ 0.
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Next, we consider that

J2 =
1

2π

∫
|θ|<δ

M(θ)t/ε
2l+1

e−iθx/ε dθ

=
ε

2π

∫ πε−1/(l+1)

−πε−1/(l+1)

M(εμ)t/ε
2l+1

e−iμx dμ.

Let ε be sufficiently small. Let

log(1 + z)≡ z +R(z).

Note that the inequality |R(z)| ≤ |z|2 holds for sufficiently small z. Thus, we get

logM(θ) =−K(1− cosθ)l+1 + iK(1− cosθ)l sinθ+R(θ)

and ∣∣R(θ)
∣∣≤ 2K2(1− cosθ)2l+1.

However, we see that

|R(θ)|
K(1− cosθ)l+1

≤ 2K(1− cosθ)l.

Thus, we can neglect R(θ) in comparison to the first term which acts as a discount

factor as follows. Noting that K > 0, we have

2π

ε
J2 =

∫ π

ε1/(l+1)

− π

ε1/(l+1)

M(εμ)t/ε
2l+1

e−iμx dμ



∫ π

ε1/(l+1)

− π

ε1/(l+1)

exp(−K2−l−1εμ2l+2t+ iK2−lμ2l+1t− iμx)dμ



∫ ∞

−∞
exp(−K2−l−1εμ2l+2t+ iK2−lμ2l+1t− iμx)dμ

→
∫ ∞

−∞
exp{iK2−lμ2l+1t− iμx}dμ as ε→ 0.

Thus, we get the conclusion. �

REMARK 2.8

It is natural to consider the case where {ξ+j } for j = 1,2, . . . , l and {ξ−k } for

k = 1,2, . . . , l+ 1. Clearly, this is a transform of x to −x.

We define

P (ξ+j = 1) = 1− pj , P (ξ+j = 0) = pj , j = 1,2, . . . , l,

and

P (ξ−k = 0) = 1− rk, P (ξ−k =−1) = rk, k = 1,2, . . . , l+ 1,

where pj and rk are solutions of the equation

λl+1(λ− 1)l =A2l+1,
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where A2l+1 satisfies the condition (2.13). For n≥ 0, we define a pseudorandom

walk Z−
n as

X− ≡
l+1∑
j=1

ξ+j +

l∑
k=1

ξ−k .

Then X−
1 ,X−

2 , . . . , are independent copies of X−, and

Z−
n ≡ x+

n∑
k=1

X−
k .

The characteristic function of N(θ) of Z−
1 starting at zero is

N(θ) = 1+A2l+1(e
−iθ − 1)2l+1eiθl;

that is, N(θ) is the complex conjugate of M(θ). Moreover, the scaling limit

of {Z−
n } is the pseudostochastic process whose transition probability density

function is

q−(t, x) =
1

2π

∫ ∞

−∞
exp

{
−i(−1)lA2l+1μ

2l+1t− iμx
}
dμ.

This q−(t, x) is the fundamental solution of the (2l+1)th-order diffusion equation

∂u

∂t
=−A2l+1

∂2l+1u

∂x2l+1
.

3. Another construction of a pseudorandom walk for an odd-order heat-type
equation

We set the random variable {ξ} whose distribution is

P (ξ =m) = αm, m=−l− 1,−l, . . . , l, l+ 1,

and take {ξj} as independent copies of ξ. For n≥ 0, we define a pseudorandom

walk Zn as

Zn = x+

n∑
j=1

ξj .

The characteristic function M(θ) of Z1 starting at zero is

M(θ) =E[eiθZ1 ] =

l+1∑
k=−l−1

αke
iθk.

For our purpose, we need the property

M(θ) = 1+O(θ2l+1).

We deduce αk satisfying this property. Then

M̃(θ) =

l+1∑
k=−l−1

(αk − δk,0)e
iθk

=M(θ)− 1 =O(θ2l+1).
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Thus,

ei(l+1)θM̃(θ) =

l+1∑
k=−l−1

(αk − δk,0)e
iθ(k+l+1)

=

2(l+1)∑
j=0

(αj−l−1 − δj−l−1,0)e
iθj

=

2(l+1)∑
j=0

βje
iθj (say).

Therefore, we shall find {βj} which satisfy

2(l+1)∑
j=0

βjj
r = 0, 0≤ r ≤ 2l.

Define [j]r as [j]0 = 1, and define

[j]r = j(j − 1) · · · (j − r+ 1) (r ≥ 1).

The Stirling numbers of the second kind can be defined as the coefficients of the

expansion

(3.1) jn =

n∑
r=0

{
n

r

}
[j]r.

Then the next lemma is well known.

LEMMA 3.1

We have that

(3.2)

n∑
j=0

(
n

j

)
(−1)jjr = (−1)n

{
r

n

}
n!.

In particular, the left-hand side of this equation takes value zero for 0≤ r ≤ n−1.

The next proposition is easily obtained by this lemma and derived from the

classical Newton’s difference formula. However, since this is a basic formula for

the construction of our pseudorandom walk, we state the result and give a proof.

PROPOSITION 3.2

Let n be any positive integer. Let 0 ≤ r ≤ n− 1, and let aj �= 0 for some j. We

set
(
n
k

)
= 0 for n < k or k < 0 as a matter of convenience.

(i) We suppose that

n∑
j=0

ajj
r = 0.
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Then we have

aj = an

(
n

j

)
(−1)n−j = a0

(
n

j

)
(−1)j .

(ii) We suppose that

n+1∑
j=0

ajj
r = 0.

Then we have

aj = a0

(
n

j

)
(−1)j + an+1

(
n

j − 1

)
(−1)n+1−j .

Moreover, we have

n+1∑
j=0

ajj
n+1 = n!

(
(−1)na0 + an+1

)
and

n+1∑
j=0

ajx
j = (−1)na0(x− 1)n + an+1x(x− 1)n

for case (i) as an+1 = 0.

Proof

(i) We set M(x) =
∑n

j=0 aj(1 + x)j . By the assumption,

( d

dx

)r

M(x)|x=0 =

n∑
j=0

aj [j]r = 0

for r ≤ n− 1. Thus, we have

M(x) =

n∑
j=0

aj(1 + x)j = anx
n.

Letting w = 1+ x, we get

M(x) =
n∑

j=0

ajw
j = an(w− 1)n

= an

n∑
j=0

(
n

j

)
(−1)n−jwj .

(ii) By the assumption, we also have for 0≤ r ≤ n− 1

n+1∑
j=0

aj(j − 1)r = 0.

Let

bj = a0

(
n

j

)
(−1)j
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and cj = aj − bj . Then by the above lemma,

n+1∑
j=0

bj(j − 1)r =

n∑
j=0

bj(j − 1)r = 0 for r ≤ n− 1.

Thus,

0 =

n+1∑
j=0

cj(j − 1)r

=

n+1∑
j=1

cj(j − 1)r =

n∑
j=0

cj+1j
r.

Therefore, according to (i),

cj+1 = cn+1

(
n

j

)
(−1)n−j ,

which proves the statement with cn+1 = an+1. The proof of the rest is easy. �

Set n= 2l+ 1. Owing to this proposition, we get

βj = β0

(
n

j

)
(−1)j + βn+1

(
n

j − 1

)
(−1)n+1−j ,

which agrees with Proposition 2.3 with β0 = 0. This shows that there only appears

the combination of ( d
dx )

n and −( d
dx )

n.

On the other hand, when n= 2l+ 2 and we suppose that

M(x) =O(xn),

then we only see the difference formula for ( d
dx )

n as Proposition 3.2(i). Though

the study of the even-order case is easy and simple, we omit it here. We will give

it in the last section by another method.

We continue the odd-order case n= 2l+ 1. We set x= eiθ. Then we have

xl+1M̃(x) =
n+1∑
j=0

βjx
j

= (−1)nβ0(x− 1)n + βn+1x(x− 1)n

= (−β0 + βn+1x)(x− 1)n.

Thus, under the condition

β0 �= βn+1

we get the desired property

M̃(θ) = (−β0 + βn+1)(iθ)
n +O(θn+1).

In addition, we consider the condition that |M(θ)| ≤ 1.

We have

M(x) = 1+ x−(l+1)(x− 1)n(−β0 + βn+1x).
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We set the variable v = 1
1−x . Since x=−(1− v)v−1 and x− 1 =−v−1,

M(v) = 1− (−1)l+1(1− v)−(l+1)vl+1(−v)−(2l+1)
{
β0 + βn+1(1− v)v−1

}
= 1− (1− v)−(l+1)v−(l+1)

{
(−1)lβ0v+ (−1)lβn+1(1− v)

}
= 1− (1− v)−(l+1)v−(l+1)

{
av+ b(1− v)

}
(say).

On the other hand, by x= eiθ we have

v(1− v) =− eiθ

(eiθ − 1)2

=
1

4sin2 θ
2

= S−1 (say).

Thus,

M(v) = 1− Sl+1
{
av+ b(1− v)

}
.

Since v̄ = 1− v and 1− v = v, we have

M̄(v) = 1− Sl+1
{
a(1− v) + bv

}
.

Then ∣∣M(v)
∣∣2 = 1− Sl+1(a+ b) + S2(l+1)|L|2,

where

|L|2 =
∣∣av+ b(1− v)

∣∣2 = (a− b)2S−1 + ab.

Thus,

f(S) =
∣∣M(v)

∣∣2 − 1

= Sl+1
(
−(a+ b) + Sl

{
(a+ b)2 + ab(S − 4)

})
.

We need that |M(θ)| ≤ 1 and |M(θ)| is a decreasing function of θ. Then we see

that f(S)≤ 0 and f(S) is decreasing in S ∈ [0,4]. From S = 4, we get 0< a+ b≤
2−2l at least.

However, we state the stronger condition

(3.3) 0< a+ b≤ 2−(2l+1).

Under this condition, considering the condition such that f(S) is decreasing, we

get

ab≥− l(2l+ 1)

4(3l+ 2)
(a+ b)2,

but we omit the details of the calculation. Now, we have the following theorem.
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THEOREM 3.3

We suppose that α−l−1 �= αl+1,

0< (−1)lα−l−1 + (−1)lαl+1 ≤ 2−(2l+1),

and

α−l−1αl+1 ≥− l(2l+ 1)

4(3l+ 2)
(α−l−1 + αl+1)

2.

Then we have the property |M(θ)| ≤ 1. Moreover, |M(θ)| is an even function of

θ and a decreasing function in [0, π]. The one-step variable ξ of our random walk

has the following distribution:

P (ξ =m) = δm,0 + α−l−1

(
2l+ 1

m+ l+ 1

)
(−1)m+l+1

+ αl+1

(
2l+ 1

m+ l

)
(−1)m+l+1,

for m=−l− 1,−l, . . . , l+ 1.

Moreover, we have

M(θ) = 1+ e−iθ(l+1)(eiθ − 1)2l+1(−α−l−1 + αl+1e
iθ)

= 1− (−2)l(αl+1 + α−l−1)(1− cosθ)l+1

+ i(−2)l(αl+1 − α−l−1)(1− cosθ)l sinθ.

Hence, we get the next theorem through a proof similar to that of Theorem 2.7.

THEOREM 3.4

Let αl+1 and α−l−1 satisfy Theorem 3.3. We set Xε
t = εZ[t/ε2l+1] for any ε > 0.

Then Xt = limε→0X
ε
t is the pseudostochastic process whose transition probability

density function is

q(t, x) =
1

2π

∫ ∞

−∞
exp

{
i(−1)l(αl+1 − α−l−1)μ

2l+1t− iμx
}
dμ.

This q(t, x) is the fundamental solution of the (2l+1)th-order diffusion equation

(3.4)
∂u

∂t
= (αl+1 − α−l−1)

∂2l+1u

∂x2l+1
.

REMARK 3.5

Clearly, taking αl+1 =A2l+1 and α−l−1 = 0 we have Zn = Z+
n . Similarly, we have

Zn = Z−
n by taking αl+1 = 0 and α−l−1 =A2l+1.

4. Some examples

In this section, we give a pseudorandom walk {Zn} for the cases l= 1 and l= 2.
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EXAMPLE 4.1 (2L+ 1= 3)

In this case, we take l= 1. By Theorem 3.3,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P (Zn+1 −Zn = 2) = α2,

P (Zn+1 −Zn = 1) =−3α2 − α−2,

P (Zn+1 −Zn = 0) = 1+ 3α2 + 3α−2,

P (Zn+1 −Zn =−1) =−α2 − 3α−2,

P (Zn+1 −Zn =−2) = α−2,

where α−2 �= α2, −2−3 ≤ α−2 + α2 < 0, and α−2α2 ≥− 3
20 (α−2 + α2)

2.

By Theorem 3.4 its corresponding diffusion equation is

∂u

∂t
= (α2 − α−2)

∂3u

∂x3
.

Its fundamental solution is

q(t, x) =
1

2π

∫ ∞

−∞
exp

{
−i(α2 − α−2)μ

3t− iμx
}
dμ.

In particular, setting α−2 = 0 and α2 =A3, we get the pseudorandom walk which

appeared in [8]. This pseudorandom walk can be decomposed as

Zn −Zn−1 =X+
n , X+

n = ξ+1 + ξ+2 + ξ−1 .

We set {ξ+1 , ξ+2 } as

P (ξ+1 = 1) = p1, P (ξ+1 = 0) = 1− p1,

P (ξ+2 = 1) = p2, P (ξ+2 = 0) = 1− p2,

and we set ξ−1 as

P (ξ−1 = 0) = r1, P (ξ−1 =−1) = 1− r1,

where p1, p2, and r1 are solutions of

λ2(λ− 1) =A3 for − 1/23 ≤A3 < 0

by (2.13).

EXAMPLE 4.2 (2L+ 1= 5)

In this case, we take l= 2. By Theorem 3.3,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (Zn+1 −Zn = 3) = α3,

P (Zn+1 −Zn = 2) =−5α3 − α−3,

P (Zn+1 −Zn = 1) = 10α3 + 5α−3,

P (Zn+1 −Zn = 0) = 1− 10α3 − 10α−3,

P (Zn+1 −Zn =−1) = 5α3 + 10α−3,

P (Zn+1 −Zn =−2) =−α3 − 5α−3,

P (Zn+1 −Zn =−3) = α−3,

where α−3 �= α3, 0<α−3 + α3 ≤ 2−5, and α−3α3 ≥− 5
16 (α−3 + α3)

2.
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By Theorem 3.4 its corresponding diffusion equation is

∂u

∂t
= (α3 − α−3)

∂5u

∂x5
.

Its fundamental solution is

q(t, x) =
1

2π

∫ ∞

−∞
exp

{
i(α3 − α−3)μ

5t− iμx
}
dμ.

In particular, by setting α−3 = 0 and α3 = A5, this pseudorandom walk can be

decomposed as

Zn+1 −Zn =X+
n , X+

n =

3∑
i=1

ξ+i +

2∑
j=1

ξ−j .

We set {ξ+1 , ξ+2 , ξ+3 } as

P (ξ+1 = 1) = v1, P (ξ+1 = 0) = 1− v1,

P (ξ+2 = 1) = v2, P (ξ+2 = 0) = 1− v2,

P (ξ+3 = 1) = p, P (ξ+3 = 0) = 1− p,

and we set {ξ−1 , ξ−2 } as

P (ξ−1 = 0) = v3, P (ξ−1 =−1) = 1− v3,

P (ξ−2 = 0) = p̄, P (ξ−2 =−1) = 1− p̄,

where v1, v2, v3 are real solutions and p, p̄ are complex solutions of

λ3(λ− 1)2 =A5 for 0<A5 ≤ 1/25.

5. A construction of a pseudorandom walk for an even-order heat-type equa-
tion

We construct a pseudorandom walk {Yn} which is approximate to the 2lth-order

pseudostochastic process {Xt}. This idea is basically due to Motoo [6].

We consider two pseudoindependent, identically distributed pseudorandom

variables {ηj} and {τi}. The ηj ’s distribution is

P (ηj = 0) = 1− 2p, P (ηj =±1) = p,

and the τi’s distribution is

P (τi = 0) = r0, P (τi = 1) = r1, . . . , P (τi = l) = rl,

where p and rk are real numbers and
∑l

k=0 rk = 1.

Let η0 = x and τ0 = 0. We set Sn =
∑n

j=0 ηj and Tn =
∑n

i=0 τi. Define

Yn = STn .

The characteristic function of S1 must be less than or equal to 1. That is,∣∣E0[e
iθS1 ]

∣∣= ∣∣1− 2p(1− cosθ)
∣∣≤ 1.
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Then p is satisfied with

0< p≤ 1/2.

The characteristic function of Y1 is

Ex[e
iθY1 ] =

l∑
j=0

Ex[e
iθSj | T1 = j]P (T1 = j)

= eiθx
l∑

j=0

{
1− 2p(1− cosθ)

}j
rj .

For n≥ 1, ε > 0, we set Y ε
n = εYn and Y ε

0 = x. We shall take p and {rj} satisfying

(5.1)
lim
ε→0

1

ε2l
(
Ex[e

iθY ε
1 ]− eiθx

)
=A2l

d2l

dx2l
eiθx

= (−1)lA2lθ
2leiθx.

We consider E[eiθY
ε
1 ]:

E[eiθY
ε
1 ] =

l∑
j=0

{
1− 2p(1− cosθε)

}j
rj

=

l∑
j=0

j∑
k=0

(
j

k

)
(−2p)k(1− cosθε)krj

=

l∑
k=0

(−2p)k(1− cosθε)k
l∑

j=k

(
j

k

)
rj .

Since 1− cosθε= 1
2 (θε)

2 +O(ε4) for sufficiently small ε, we have

E[eiθY
ε
1 ] =

l∑
k=0

(−p)k
(
(θε)2k +O(ε4k)

) l∑
j=k

(
j

k

)
rj .

Therefore, we take p and {rk} that are satisfied with the equations

plrl =A2l,(5.2)

l∑
j=k

(
j

k

)
(rj − δj,0) = 0, for 0≤ k ≤ l− 1.(5.3)

Then we easily obtain

(5.4) rj = δj,0 + (−1)l+j

(
l

j

)
p−lA2l, 0≤ j ≤ l.

Then, we also get

(5.5) M(θ) = 1+ (−2)lA2l(1− cosθ)l.

Clearly, we have the following result.
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PROPOSITION 5.1

Suppose that A2l satisfies

(5.6) 0< (−1)l+1A2l ≤ 2−2l.

Then we have the property 0≤M(θ)≤ 1 and M(θ) is decreasing in [0, π].

Moreover, we can show the following theorem.

THEOREM 5.2

For −l≤m≤ l,

P (Y1 =m) = δm,0 +A2l

l∑
k=0

(
l

k

)(
k

k+m
2

)
(−2)l−k,

where
(

k
k+m

2

)
= 0 if k+m

2 is not an integer.

Proof

We have that

P (Y1 =m) =
1

2π

∫ π

−π

e−imθE[eiθY1 ]dθ

=
1

2π

∫ π

−π

e−imθ
l∑

j=0

{
1− 2p+ p(eiθ + e−iθ)

}j
rj dθ

=

l∑
j=0

j∑
k=0

(
j

k

)
(1− 2p)j−kpkrj

×
k∑

n=0

(
k

n

)
1

2π

∫ π

−π

ei(2n−k−m)θ dθ.

Then we have

P (Y1 =m) =

l∑
j=0

j∑
k=0

(
j

k

)(
k

k+m
2

)
(1− 2p)j−kpkrj

=

l∑
k=0

(
k

k+m
2

)
pk

l∑
j=k

(
j

k

)
(1− 2p)j−krj .

The inner sum is

l∑
j=k

(
j

k

)
(1− 2p)j−krj

=

l∑
j=k

(
j

k

)
(1− 2p)j−k

(
δj,0 + (−1)l+j

(
l

j

)
p−lA2l

)
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= δk,0 + p−lA2l

(
l

k

) l∑
j=k

(
l− k

j − k

)
(−1)l+j(1− 2p)j−k

= δk,0 + p−lA2l

(
l

k

)
(−2p)l−k

= δk,0 + p−kA2l(−2)l−k

(
l

k

)
.

Thus, we obtain

P (Y1 =m) =

l∑
k=0

(
k

k+m
2

)
pk
(
δk,0 + p−kA2l(−2)l−k

(
l

k

))

= δm,0 +A2l

l∑
k=0

(
k

k+m
2

)(
l

k

)
(−2)l−k.

�

THEOREM 5.3

Suppose that the condition (5.6) holds. We set Xε
t = εY[t/ε2l] for any ε > 0. Then

Xt = limε→0X
ε
t is a pseudostochastic process whose transition probability is

q(t, x) =
1

2π

∫ ∞

−∞
exp

{
(−1)lA2lμ

2lt− iμx
}
dμ.

This q(t, x) is the fundamental solution of the 2lth-order diffusion equation

(5.7)
∂u

∂t
=A2l

∂2lu

∂x2l
.

Proof

The proof is almost the same as the proof of Theorem 2.7, but is simpler than

that. We use the same notation. Let x= kε, t= nε2l. Then

pε(t, x)≡ p(n,k)

=
1

2π

∫ π

−π

M(θ)t/ε
2l

e−ixθ/ε dθ

=
1

2π

(∫
δ<|θ|≤π

+

∫
|θ|<δ

)
M(θ)t/ε

2l+1

e−iθx/ε dθ

= I1 + I2 (say),

where δ ≡ πε3/4. Then we shall prove that

q(t, x)≡ lim
ε→0

1

ε
pε(t, x)

is the fundamental solution of (5.7).

First, clearly,

q+(0, x) = δ(x),
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where δ(x) is Dirac’s delta function. Let t > 0. We set K ≡ (−1)l+12lA2l. We

consider that

I1 =
1

2π

∫
δ<|θ|≤π

M(εμ)t/ε
2l

e−ixθ/ε dθ.

Since

M(θ) = 1−K(1− cosθ)l ≤ exp
{
−K(1− cosθ)l

}
,

we have

1

ε
I1 ≤

1

ε
exp

{
−tK(1− cos δ)lε−2l

}

 1

ε
exp

{
−tK

(π2

2

)l

ε−l/2
}

→ 0 as ε→ 0.

Let ε be sufficiently small. We notice that

I2 =
1

2π

∫
|θ|≤δ

M(θ)t/ε
2l

e−ixθ/ε dθ

=
1

2π

∫
|μ|≤πε−1/4

M(εμ)t/ε
2l

e−ixμ dμε.

Then we have

M(θ) = exp
{
−K(1− cosθ)l +R(θ)

}
and ∣∣R(θ)

∣∣≤K2(1− cosθ)2l.

Therefore, we get ∣∣R(δ)
∣∣ε−2l ≤K2(1− cos δ)2lε−2l


K2
(π2

2

)2l

εl.

Thus, we obtain

2π

ε
I2 =

∫ π

ε1/4

− π

ε1/4

exp
{
−K

(1− cos εμ

ε2

)l

t+O(εl)− iμx
}
dμ

→
∫ ∞

−∞
exp

{
(−1)lA2lμ

2lt− iμx
}
dμ as ε→ 0,

which is absolutely convergent by Lebesgue’s dominated convergence theorem.

�
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