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Abstract Actions of locally compact groups and quantum groups onW∗-ternary rings

of operators are discussed, and related crossed products are introduced. The results gen-

eralize those for von Neumann algebraic actions with proofs based mostly on passing to

the linking vonNeumann algebra. They aremotivated by the study of fixed-point spaces

for convolution operators generated by contractive, not necessarily positive measures,

both in the classical and in the quantum context.

The notion of a Poisson boundary, related to spaces of harmonic functions in

the context of probability theory, that is, the fixed points of convolution oper-

ators associated to probability measures, has played an important role in the

theory of random walks and various aspects of potential theory for more than 40

years. Since the groundbreaking work of Izumi [9], the concept (originally intro-

duced for random walks on Z, but later studied for any locally compact group)

has also been extended to quantum groups. For the history of further develop-

ments we refer to article [12], where the abstract structure of noncommutative

Poisson boundaries is studied in detail and connected to the crossed products

of von Neumann algebras. The quantum extension shows very clearly that from

the modern point of view the construction of the Poisson boundary is a special

instance of the Choi–Effros product from the theory of operator algebras grant-

ing a von Neumann algebra structure to a space of fixed points of a given unital

completely positive map on a von Neumann algebra; this is indeed one of the key

observations which led to the current work.

When one considers convolution operators, be it in the classical or the quan-

tum framework, it is natural to analyze not only those associated to probability

measures, but also those arising from general signed measures. In general, the

problem of the study of the fixed points then becomes far more complicated,
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and even the characterization of idempotent signed measures (i.e., those whose

convolution operators are idempotent maps) remains unknown for nonabelian

groups (see [18] for a longer discussion). The questions become more tractable

if one focuses on contractive signed measures. In the classical and the dual to

classical context, related issues are studied, for example, in the monograph [2];

in the quantum framework the idempotent problem was solved in [18]. In both

of these works, one can see the natural emergence of the W∗-TRO structures

(W∗-ternary rings of operators). This was a motivation for a systematic study

of the spaces of fixed points of completely contractive maps, which we conduct

in this article.

It turns out that, whenever M is a von Neumann algebra and P :M→M is a

completely contractive normal map, a Choi–Effros type construction, exploiting

the algebraic properties of P established in [23], equips the space FixP with a

unique structure of a W∗-TRO, which we may call a generalized noncommutative

Poisson boundary related to P . To understand the structure of the resulting TRO

for a contractive convolution operator, one needs to develop also the notion of

(quantum) group actions onW∗-TROs and analyze appropriate crossed products.

(In the classical context one can find related work in [8].) Several theorems follow

here relatively easily from their von Neumann algebraic counterparts, as each

W∗-TRO is a corner in its linking von Neumann algebra; some others require

special care, as we mention below.

Once a satisfactory theory of crossed products is developed, it is natural to

expect a generalization of the main result of [12], which would show that the

generalized noncommutative Poisson boundary for an “extended” contractive

convolution operator Θμ is isomorphic to the crossed product of the analogous

boundary for the “standard” convolution operator Rμ by a natural action of

the underlying group. This is indeed what we prove here, but only for classical

locally compact groups. (The positive case considered in [12] yielded the result

for general locally compact quantum groups.) Here we see an example where the

passage from the von Neumann algebra framework to the TRO case is highly

nontrivial—very roughly speaking the reason is that the Choi–Effros-type con-

struction connects a given concrete initial data (the pair (M, P )) with an abstract

W∗-TRO X—and the linking von Neumann algebra of X arises naturally only

once we fix a concrete realization of the latter, which need not be related in any

explicit way to the original data.

The plan of the article is as follows: in the first section we recall basic facts

regarding the ternary rings of operators. We also prove a few technical lemmas

and connect the fixed points of the completely contractive maps to the TROs,

introducing the corresponding version of the Choi–Effros product and discussing

its basic properties. In Section 2 we develop the notion of actions of locally

compact groups on TROs and construct respective crossed products, carefully

developing various points of view on this concept. The next section extends the

construction to the case of locally compact quantum groups and deals with cer-

tain technicalities, describing the way in which one can induce actions on TROs
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arising as fixed-point spaces. These are applied in Section 4 to the discussion of

the TROs arising from fixed-point spaces of contractive convolution operators on

locally compact (quantum) groups.

The angled brackets will denote the closed linear span. Hilbert space scalar

products will be linear on the right. For a locally compact group G we write L2(G)

for the L2-space with respect to the left invariant Haar measure; the group von

Neumann algebra VN(G), will be the von Neumann algebra generated by the left

regular representation.

1. W∗-ternary rings of operators and fixed points of completely contractive
maps

Recall that a (concrete) TRO, that is, a ternary ring of operators, X is a closed

subspace of B(H;K), where H and K are some Hilbert spaces, which is closed

under the ternary product: (a, b, c) �→ ab∗c. TROs possess natural operator space

structure and in fact can also be characterized abstractly, as operator spaces with

a ternary product satisfying certain properties (see [17]). To each TRO X one

can associate a C∗-algebra AX ⊂B(K⊕H), called the linking algebra of X. It is

explicitly defined as

AX :=

(
〈XX∗〉 X

X∗ 〈X∗X〉

)
⊂B(K⊕H).

We always view X, X∗ and the C∗-algebras 〈XX∗〉, 〈X∗X〉 as subspaces of AX. If

X and Y are TROs, then a linear map α : X→ Y is said to be a TRO morphism

if it preserves the ternary product. A TRO morphism admits a unique extension

to a ∗-homomorphism γ : AX → AY; this was proved by M. Hamana [7] (see also

[8] and [24]), and we will call this map the Hamana extension of α. Note that

γ is defined in a natural way, so for example if x ∈ X, then γ(xx∗) = α(x)α(x)∗.

Further we call a TRO morphism α : X→ Y nondegenerate if the linear spans

of α(X)Y∗Y and α(X)∗YY∗ are norm dense, respectively, in Y and Y∗; in other

words the space α(X), which is a sub-TRO of Y by [7], is a nondegenerate sub-

TRO of Y, as defined for example in [19]. Then by using the Hamana extensions

one can easily show that α is nondegenerate if and only if its Hamana extension

γ : AX → AY is nondegenerate (as a ∗-homomorphism between C∗-algebras; see

[19, Proposition 1.1] for this result phrased in terms of sub-TROs).

We say that X is a W∗-TRO if it is weak∗-closed in B(H;K). We will usually

assume that the TROs we study are nondegenerately represented, that is, 〈XH〉=
K, 〈X∗K〉 = H. The linking von Neumann algebra associated to X, equal to A′′

X,

will be denoted by RX, so that

RX :=

(
〈XX∗〉′′ X

X∗ 〈X∗X〉′′
)
⊂B(K⊕H).

For a TRO morphism between W∗-TROs nondegeneracy will mean that the

linear spans of the spaces introduced in the paragraph above are weak∗-dense in

the respective TROs. The predual of a W∗-TRO X will be denoted by X∗; it is

not difficult to see that X∗ = {ω|X : ω ∈ (RX)∗}.
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There is also an abstract characterization of TROs and W∗-TROs due to

Zettl [24], which we now recall. An abstract TRO is a Banach space X equipped

with a ternary operation

{·, ·, ·} : X×X×X→ X

such that the following conditions hold (x, y, z, u, v ∈ X):

(1) the operation is linear in the first and the third variables and conjugate

linear in the second;

(2) {{x, y, z}, u, v}= {x,{u, z, y}, v}= {x, y,{z,u, v}};
(3) ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖;
(4) ‖{x,x,x}‖= ‖x‖3.

An abstract W∗-TRO is an abstract TRO that is a dual Banach space. Zettl

[24] proved that these abstractly defined objects have concrete representations

as TROs and W∗-TROs, respectively.

The next result is a W∗-version of the fact due to Hamana regarding images

of TROs, observed in [1, Section 8.5.18].

LEMMA 1.1

If X and Y are W∗-TROs and α : X→ Y is a normal TRO morphism, then α(X)

is a W∗-TRO.

Proposition 3.1 of [19] shows that a TRO morphism α : X→ Y is nondegenerate if

and only if the W∗-TRO α(X) is nondegenerately represented. Lemma 1.1 can be

used to note that Hamana extensions can be considered also in the W∗-category

and, moreover, have the expected properties.

PROPOSITION 1.2

Let X and Y be W∗-TROs, and let α : X→ Y be a normal TRO morphism. Then

there exists a unique normal ∗-homomorphism β : RX → RY such that

β

(
0 x

0 0

)
=

(
0 α(x)

0 0

)
, x ∈ X.

Moreover, β|AX
is the Hamana extension discussed above, the extension construc-

tion preserves the composition, and moreover,

(i) α is injective if and only if β is injective;

(ii) α is nondegenerate if and only if β is unital.

Proof

There are at least two ways to see the first statement. (The rest is relatively

easy.) In the first step one observes that we can assume that α is surjective,

using Lemma 1.1. (Indeed, if Z = α(X), then RZ is a von Neumann subalgebra

of RY.)
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Now we can either proceed directly, as in [19], using nondegeneracy, or first

pass to the situation where α is isometric, quotienting out its kernel (this leads to

another W∗-TRO, as follows from [7]) and then by using the proof of [21, Corol-

lary 3.4]. The reason we cannot use this corollary directly is that we need to verify

that the map obtained there (or, rather, via [21, Theorem 2.1]) coincides with

the weak∗-continuous extension of the Hamana extension. This, however, can be

checked directly, following the arguments in [21, Corollary 3.4 and Lemma 2.5].

The injectivity of α (resp., β) is equivalent to α (resp., β) being isometric.

Thus, [21] implies that the injectivity of α is equivalent to that of β.

For a W∗-TRO X⊂B(H;K) it is elementary to check that X is nondegener-

ately represented if and only if RX contains the unit of B(K⊕H). This together

with the comments before the proposition implies the last statement. �

Note that in the situation above, by the boundedness and normality of the maps

in question, we have the following consequence of the algebraic form of Hamana

extensions (in which we view both X and 〈XX∗〉′′ as subspaces of RX):

(1.1) β(z)α(x) = α(zx), x ∈ X, z ∈ 〈XX∗〉′′.

If X happens to be a von Neumann algebra, then RX
∼=M2(X); if Y is another

von Neumann algebra and we assume that α : X→ Y is a ∗-homomorphism, then

β is the usual matrix lifting of α. Finally we note an easy observation which will

be useful later.

COROLLARY 1.3

Let X and Y be W∗-TROs, and let β : RX → RY be a normal ∗-homomorphism.

Then β is the Hamana extension of a normal TRO morphism between X and Y

if and only if β(X)⊂ Y. If X and Y are, respectively, nondegenerately represented

in B(H1;K1) and in B(H2;K2), then the conditions above are equivalent to the

equality

PK2β(PK1xPH1)PH2 = β(PK1xPH1)

being valid for all x ∈ RX.

Proof

A simple calculation shows that if β(X) ⊂ Y, then β|X is a TRO morphism.

Then the equivalence follows from the uniqueness of Hamana extensions, and

the second statement is an easy consequence of the definitions of RX and RY. �

Given two W∗-TROs X ⊂ B(H1;K1) and Y ⊂ B(H2;K2), we can naturally con-

sider the W∗-TRO X ⊗ Y defined as the weak∗ closure of the algebraic tensor

product XY ⊂B(H1 ⊗H2;K1 ⊗ K2). The fact that it is closed under the ternary

product can be easily checked. Note that if M is a von Neumann algebra, then

we have a natural identification of RX⊗M with RX ⊗M; this will be of use later.

Similarly note for future use that if Z⊂ B(H) is a weak∗-closed subalgebra

and P ∈ Z is a projection, then PZ is weak∗-closed. This implies that if, say,
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Q ∈ Z is another projection and W⊂B(K) is a weak∗-closed subalgebra, then

PZQ⊗W= (P ⊗ IK)(Z⊗W)(Q⊗ IK).

As usual, Z⊗W denotes the weak∗ closure of the algebraic tensor product ZW

inside B(H)⊗B(K).

Finally recall (see, e.g., [4, Chapter 7]) that if X and Y are dual operator

spaces, then their Fubini tensor product X ⊗F Y is defined abstractly as the

operator space dual of X∗⊗̂Y∗; if X and Y are weak∗-closed subspaces of, say,

B(H) and B(K), then X⊗F Y can be realized as{
u ∈B(H)⊗B(K) : (ω ⊗ id)u ∈ Y and (id⊗ σ)u ∈ X

for every ω ∈B(H)∗, σ ∈B(K)∗
}
.

Clearly, X⊗ Y is contained in X⊗F Y.

LEMMA 1.4

Let X and Y be dual operator spaces that are weak∗ completely contractively com-

plemented in von Neumann algebras. (Note that, in particular, W∗-TROs sat-

isfy these assumptions.) Then the natural weak∗-continuous completely isometric

embedding X⊗ Y ↪→ X⊗F Y is in fact an isomorphism.

Proof

By the assumptions, there are von Neumann algebras RX and RY containing X

and Y, respectively, and normal completely contractive projections PX :RX → X

and PY : RY → Y. The algebraic tensor product PX  PY extends uniquely to a

normal map PX ⊗ PY from RX ⊗RY =RX ⊗F RY to X⊗F Y (see [4, Chapter 7]

and [5, Proposition 4.3]). As X ⊗F Y ⊂ RX ⊗ RY, the uniqueness of extensions

implies that PX ⊗ PY is the identity map when restricted to X ⊗F Y. Let u ∈
X⊗F Y, and let (ui)i∈I be a net in the algebraic tensor product RX RY that

converges to u in the weak∗ topology. Then

u= (PX ⊗ PY)(u) = w∗- lim
i∈I

(PX  PY)(ui) ∈ X⊗ Y. �

Consider a TRO morphism α : X→ Y. It follows from [7] that α is completely

contractive. Moreover, [8, Proposition 1.1] implies that if Z is another W∗-TRO,

then the map idZ ⊗ α extends uniquely to a complete contraction from Z⊗F X to

Z⊗F Y—this does not require that the original map be normal. If α is in addition

normal, then the resulting extension is also normal, as follows for example from

the identification of the predual of the Fubini tensor product as the projective

tensor product of the preduals of the individual factors. So when α is normal, we

can view idZ ⊗ α as a normal TRO morphism from Z⊗ X to Z⊗ Y. If we want

to stress that we are working with a not necessarily normal extension, we will

write idZ ⊗F α.

The celebrated Choi–Effros construction equips a fixed-point space of a com-

pletely positive map with a C∗-algebra structure. Below we present an analogous

result for completely contractive maps and TRO structures.
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The first proposition is essentially a theorem of Youngson [23] (see also [1,

Theorem 4.4.9]).

PROPOSITION 1.5

Let A be a C∗-algebra, and let P : A→ A be a completely contractive projection.

Then X̃ := P (A) possesses a TRO structure, with the product given by the formula

{a, b, c} := P (ab∗c), a, b, c ∈ X̃.

Denote the resulting TRO by X. Then the identity map ι : X̃→ X is a completely

isometric isomorphism (where X̃ inherits the operator space structure from A

and X is an operator space as a TRO). If A is a von Neumann algebra and X̃

happens to be weak∗-closed, then X is a W∗-TRO and ι : X̃→ X is in addition a

homeomorphism for weak∗ topologies.

Proof

The fact that the displayed formula defines a TRO structure (with the norm

induced from A) is [23, p. 508, Theorem]—it follows also from the abstract

description due to Zettl mentioned earlier. The map ι is thus an isometry. Apply-

ing the same construction to P (n) : Mn(A) → Mn(A) gives a TRO based on

Mn(X̃), and this TRO is naturally isomorphic to Mn(X). Proposition 2.1 of [7]

implies that this isomorphism is an isometry. Thus, ι is in fact a complete isome-

try. The second part follows from the uniqueness of a predual of a W∗-TRO (see

[3, Proposition 2.4]). �

THEOREM 1.6

Let M be a von Neumann algebra, and let P :M→M be a completely contractive

normal map. Consider the space FixP = {x ∈ M : Px = x}. Then FixP is a

weak∗-closed subspace of M and so, in particular, is a dual operator space. It

possesses a unique ternary product, which makes it a W∗-TRO. It is explicitly

given by the formula

{a, b, c} := P̃β(ab
∗c), a, b, c ∈ FixP,

where β is a fixed free ultrafilter,

P̃β(x) = β − lim
n∈N

1

n

n−1∑
k=0

P k(x), x ∈M,

and the limit is understood in a weak∗ topology.

Proof

To show the existence of the ternary product described above, it suffices to verify

that P̃β :M→M is a completely contractive projection onto FixP . The fact that

P̃β is a projection onto FixP follows by standard Cesàro limit arguments; the

(complete) contractivity of Pβ follows from the analogous property of P and the
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fact that a weak∗ limit of contractions is a contraction. The uniqueness of the

ternary product follows once again from [7, Proposition 2.1]. �

REMARK 1.7

Let us stress that Proposition 1.5 implies, in particular, that the W∗-TRO struc-

ture of FixP does not depend on the choice of the ultrafilter in the above proof

(although the map P̃β may well do so).

The following result is an abstract extension of [2, Proposition 3.3.1]; the proof

is essentially the same.

PROPOSITION 1.8

Suppose that the assumptions of Theorem 1.6 hold. If there exists a normal (i.e.,

weak∗–weak∗-continuous) projection Q :M→ FixP such that Q◦P = P ◦Q, then

P̃β =Q for any free ultrafilter β.

Proof

Recall that a normal projection is necessarily bounded. Thus, we have for each

x ∈M (and a free ultrafilter β)

P̃β(x) =QP̃β(x) =Q
(
β− lim

n∈N

1

n

n−1∑
k=0

P k(x)
)

= β− lim
n∈N

Q
( 1

n

n−1∑
k=0

P k(x)
)

= β− lim
n∈N

1

n

n−1∑
k=0

P k(Qx) =Qx.
�

2. Actions of locally compact groups on W∗-TROs and resulting crossed
products

In this section we discuss actions of locally compact groups on W∗-TROs and

the associated crossed products. A correspondent study in the operator space

context was undertaken in [8]; we will comment on some specific analogies at the

end of this section.

DEFINITION 2.1

Let G be a locally compact group, and let X be a W∗-TRO. Denote by Aut(X) the

set of all normal automorphisms of X, that is, normal bijective TRO morphisms

from X onto itself. A (continuous) action of G on X is a homomorphism α :G→
Aut(X) such that for each x ∈ X the map αx :G→ X defined by

αx(s) =
(
α(s)

)
(x), s ∈G,

is weak∗-continuous. We shall write αs = α(s) for s ∈G.
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The continuity condition above has several equivalent formulations which can be

deduced from [22, Sections 13.4 and 13.5]. We record one of them in the following

proposition.

PROPOSITION 2.2

Let G be a locally compact group, and let X be a W∗-TRO. A homomorphism

α :G→Aut(X) is a continuous action of G on X if and only if the map G×X∗ �
(s,ϕ) �→ ϕ ◦ αs ∈ X∗ is norm-continuous.

We are ready to connect the action of G on X with the action on RX.

THEOREM 2.3

Let α be an action of a locally compact group G on a W∗-TRO X. Then it

possesses a unique extension to an action of G on RX.

Proof

First fix g ∈G, and extend αg ∈Aut(X) to a normal automorphism βg ∈Aut(RX)

via Proposition 1.2. The uniqueness of the extensions implies that the resulting

family {βg : g ∈ G} defines a homomorphism β : G → Aut(RX). It remains to

check that it satisfies the continuity requirement. We do it separately for each

corner of the map β, presenting the argument only for the upper-left corner.

Take z ∈ 〈XX∗〉′′, and consider the map βz :G→ RX. We need to show that

it is weak∗-continuous. As all the maps in question are contractive and we may

assume that X is nondegenerately represented in B(H;K), it suffices to check

that, for all ξ ∈ K, x ∈ X, η ∈H, and a net of elements (si)i∈I of G converging to

e ∈G, we have 〈
ξ, βsi(z)xη

〉 i∈I−→ 〈ξ, zxη〉.

Note that, by (1.1), 〈
ξ, βsi(z)xη

〉
=
〈
ξ, βsi(z)αsi

(
αs−1

i
(x)

)
η
〉

=
〈
ξ,αsi

(
zαs−1

i
(x)

)
η
〉

= ωξ,η ◦ αsi

(
zαs−1

i
(x)

)
,

so putting ω := ωξ,η we obtain〈
ξ, βsi(z)xη

〉
− 〈ξ, zxη〉= (ω ◦ αsi − ω)

(
zαs−1

i
(x)

)
+ ω

(
zαs−1

i
(x)− zx

)
.

Applying Proposition 2.2, we see that the upper-left corner of βz is weak∗-

continuous. The remaining parts of the proof follow analogously. �

For an action α of G on a W∗-TRO X we define the fixed-point space Fixα as

Fixα=
{
x ∈ X : ∀g∈Gαg(x) = x

}
.

It is clear that Fixα is a W∗-sub-TRO of X.
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COROLLARY 2.4

Assume that X is a W∗-TRO that is nondegenerately represented in some B(H;K),

α is an action of G on X, and β is an action of G on RX introduced in Theo-

rem 2.3. Then Fixα= PK(Fixβ)PH.

Proof

Let x ∈ X, g ∈ G. If αg(x) = x, then we also have βg(x) = x, and naturally

PKxPH = x, which proves the inclusion ⊂ in the desired equality. On the other

hand if x= PKzPH for some z ∈ Fixβ, then

αg(x) = βg(x) = βg(PKzPH) = βg(PK)βg(z)βg(PH) = PKzPH = x,

where we used the fact that βg is a homomorphism and that (by construction)

it preserves the projections PK and PH. �

We now discuss the connection of the pointwise actions defined above with their

integrated incarnations. The interaction between the two plays a crucial role

in [8]—the situation studied there is, however, subtler, as the W∗-context (as

opposed to the C∗-problems studied by Hamana) and the presence of linking von

Neumann algebras lead to certain simplifications. Recall that if G is a locally

compact group, then L∞(G) admits a natural coproduct (see also Section 3)

Δ : L∞(G)→ L∞(G)⊗ L∞(G), defined via the isomorphism L∞(G)⊗ L∞(G)∼=
L∞(G×G) and the formula

Δ(f)(g,h) = f(gh), f ∈ L∞(G), g, h ∈G.

THEOREM 2.5

Suppose that α : G → Aut(X) is an action of a locally compact group G on a

W∗-TRO X. Then there exists a unique map πα : X→ L∞(G)⊗ X such that for

each f ∈ L1(G), φ ∈ X∗, and x ∈ X we have

(2.1) (f ⊗ φ)
(
πα(x)

)
=

∫
G

f(g)φ
(
αg−1(x)

)
dg.

Moreover, if we write γ := πα, then γ is an injective, normal, nondegenerate

TRO morphism such that

(2.2) (Δ⊗ idX) ◦ γ = (idL∞(G) ⊗ γ) ◦ γ.

Conversely, if γ : X→ L∞(G) ⊗ X is an injective, normal, nondegenerate TRO

morphism satisfying (2.2), then there exists a unique action α of G on X such

that γ = πα.

Proof

We may assume that X is nondegenerately represented in B(H;K). Assume that

we are given an action α : G → Aut(X), and extend it pointwise, using Theo-

rem 2.3, to a continuous action β : G → Aut(RX). The discussion in [22, Sec-

tion 18.6] implies that there exists an injective, normal, unital ∗-homomorphism
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πβ : RX → L∞(G)⊗ RX such that for each f ∈ L1(G), φ ∈ (RX)∗, and z ∈ RX we

have

(2.3) (f ⊗ φ)
(
πβ(z)

)
=

∫
G

f(g)φ
(
βg−1(z)

)
dg

and (Δ⊗ id) ◦πβ = (id⊗ πβ) ◦πβ . (Note that our formulas are formally different

from Strătilă’s: the difference is, however, only in the fact that we choose to

work with maps taking values in L∞(G) ⊗ RX, and not in RX ⊗ L∞(G), which

allows us to work with the standard coproduct of L∞(G), and not with the

opposite one as in [22].) Consider the map πβ |X. We want to show that it takes

values in Y := L∞(G) ⊗ X. Considerations before Lemma 1.4 imply that the

latter space is a W∗-TRO equal to (IL2(G) ⊗ PK)(L
∞(G) ⊗ RX)(IL2(G) ⊗ PH);

moreover, RY = L∞(G) ⊗ RX. Then let x ∈ X. It suffices to show that for any

f ∈ L1(G) and φ ∈ (RX)∗ we have

(f ⊗ φ)
(
πβ(x)

)
= (f ⊗ φ)

(
(IL2(G) ⊗ PK)πβ(x)(IL2(G) ⊗ PH)

)
.

This, however, follows immediately from (2.3) once we note that βg(x) = αg(x) for

all g ∈G and that y �→ φ(PKyPH) is a normal functional on RX. Thus, we showed

that γ := πβ |X maps X into Y. It is an injective, normal TRO morphism satisfying

(2.2) (as a restriction of an injective, normal ∗-homomorphism satisfying (2.2)).

By the uniqueness of Hamana extensions and the above identification of RY, we

deduce that πβ is the Hamana extension of γ, so that the nondegeneracy of γ

follows from the unitality of πβ via Proposition 1.2.

Assume now that γ : X→ L∞(G)⊗ X is an injective, normal, nondegenerate

TRO morphism satisfying the action equation (2.2). Again write Y = L∞(G)⊗ X,

and let π : RX → RY = L∞(G) ⊗ RX denote the Hamana extension of γ. Propo-

sition 1.2 implies that π is a unital, injective, normal ∗-homomorphism. The

normality of π and Δ implies that it suffices to check the validity of the action

equation with γ replaced by π on a weak∗-dense subset; this follows in turn from

computations of the type (x, z ∈ X):

(Δ⊗ idX)
(
π(xz∗)

)
= (Δ⊗ idX)

(
γ(x)γ(z)∗

)
= (Δ⊗ idX)

(
γ(x)

)
(Δ⊗ idX)

(
γ(z)

)∗
= (idL∞(G) ⊗ γ)

(
γ(x)

)
(idL∞(G) ⊗ γ)

(
γ(z)

)∗
= (idL∞(G) ⊗ π)

(
γ(x)γ(z)∗

)
= (idL∞(G) ⊗ π)

(
π(xz∗)

)
.

It follows from [22, Section 18.6] (or rather its left version) that there exists an

action β :G→Aut(RX) such that π = πβ , where πβ is defined via formula (2.3).

It remains to show that for each g ∈ G the map αg := βg|X takes values in X,

as then it will be easy to check that the family (αg)g∈G defines an action of G

on X and that γ arises from this action via the formulas given in the theorem.

Then fix x ∈ X, and define zg = βg−1(x) for each g ∈ G. Then z : G → RX is a

weak∗-continuous function, and we know that for all f ∈ L1(G) and all φ ∈ (RX)∗
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such that φ(X) = {0} we have∫
G

f(g)φ(zg)dg = 0.

But then we deduce immediately that φ(zg) is 0 for almost all g ∈G, and as it is

a continuous function it must actually be 0 everywhere. This in turn means that

zg ∈ X for all g ∈G, which ends the proof. �

The next proposition is also familiar from the von Neumann algebraic context.

PROPOSITION 2.6

Suppose that α : G → Aut(X) is an action of a locally compact group G on a

W∗-TRO X, and assume that X is nondegenerately represented in B(H;K). Then

the map πα introduced in Theorem 2.5 may be viewed as a faithful representation

of X in B(L2(G;H);L2(G;K)), and we have for all x ∈ X and ζ ∈ L2(G;H)(
πα(x)(ζ)

)
(g) = αg−1(x)ζ(g) for almost every g ∈G.

Proof

The fact that πα can be viewed as a faithful representation of X in B(L2(G;H);

L2(G;K)) follows from Theorem 2.5.

It remains to prove the displayed formula. We identify L2(G;H) with L2(G)⊗
H and L2(G;K) with L2(G)⊗ K, and let ξ ∈H, η ∈ K, and f,h ∈ L2(G). Then〈

h⊗ η,πα(x)(f ⊗ ξ)
〉
=

∫ 〈
h(g)η,

(
πα(x)(f ⊗ ξ)

)
(g)

〉
dg.

By Theorem 2.5, the left-hand side of the previous identity is equal to∫
f(g)h(g)

〈
η,αg−1(x)ξ

〉
dg =

∫ 〈
h(g)η, f(g)αg−1(x)ξ

〉
dg.

Then the displayed formula follows by density. �

In the next lemma we show how implemented actions of G on W∗-TROs look.

LEMMA 2.7

Assume that X is a concrete W∗-TRO in B(H;K), that σ : G→ B(H), τ : G→
B(K) are so-continuous representations of G, and that for each g ∈G and x ∈ X

the operator τgxσ
∗
g belongs to X. Then the map α :G→Aut(X) defined by

αg(x) = τgxσ
∗
g , g ∈G, x ∈ X,

is an action of G on X.

Proof

We can conduct straightforward checks: we first observe that αg is indeed a

normal TRO automorphism of X and then verify that α is a homomorphism and

that the continuity conditions are satisfied. �
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In fact, all actions of groups on TROs can be put in this form, at the cost

of extending the TRO in question. This is analogous to the crossed product

construction for the actions of groups on von Neumann subalgebras.

LEMMA 2.8

Let α : G → Aut(X) be an action of a locally compact group G on a W∗-

TRO X. Assume that X is concretely represented as a W∗-sub-TRO of B(H;K).

Let π := πα : X → B(L2(G) ⊗ H;L2(G) ⊗ K) be the representation of X intro-

duced in Proposition 2.6, and let τ = λ ⊗ IK, σ = λ ⊗ IH denote the respective

amplifications of the left regular representation of G. Then the space

(2.4) w∗-clLin
{(

VN(G)⊗ IK
)
π(X)

}
is equal to

w∗-clLin
{
τgπ(x) : g ∈G,x ∈ X

}
=w∗-clLin

{
τgπ(x)σg′ : g, g′ ∈G,x ∈ X

}
=w∗-clLin

{
π(x)σg : g ∈G,x ∈ X

}
and is a W∗-TRO. Moreover, we have the following formula:

(2.5) π
(
αg(x)

)
= τgπ(x)σ

∗
g , g ∈G, x ∈ X.

Proof

It suffices to prove the formula (2.5). The rest is based on easy checks.

For x ∈ X, ξ ∈ L2(G;H), and almost every g,h ∈G, we have(
τgπ(x)σ

∗
gξ
)
(h) =

(
π(x)σg−1ξ

)
(g−1h) = αh−1g(x)

(
(σg−1ξ)(g−1h)

)
= αh−1

(
αg(x)

)(
ξ(h)

)
= π

(
αg(x)ξ

)
(h),

as claimed. �

DEFINITION 2.9

Let α :G→Aut(X) be an action of a locally compact group G on a W∗-TRO X.

The W∗-TRO described by formula (2.4) above is called the crossed product of

X by α and is denoted G�α X.

PROPOSITION 2.10

Let α :G→Aut(X) be an action of a locally compact group G on a W∗-TRO X,

and let β : G → Aut(RX) be an action of G on RX introduced in Theorem 2.3.

Then the crossed product G�α X is the corner in the crossed product G�β RX:

if we start from X represented nondegenerately in B(H;K), we obtain

(IL2(G) ⊗ PK)(G�β RX)(IL2(G) ⊗ PH) =G�α X.

Proof

This is an immediate consequence of the fact that the space

(IL2(G) ⊗ PK)
((
VN(G)⊗ IK⊕H

)
πβ(RX)

)
(IL2(G) ⊗ PH)
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coincides with (VN(G)⊗ IK)πα(X), which was established in the proof of Theo-

rem 2.5 and through the weak∗ density of respective spaces. �

The following corollary is now easy to observe, once again by using the von

Neumann algebra result and referring to the properties of Hamana extensions.

COROLLARY 2.11

The crossed product G�αX does not depend on the choice of the original faithful

nondegenerate representation of X.

The final result in this section explains the connection between the definition

of the crossed product introduced above and that of Hamana [8]. Before we

formulate it we need to introduce another action: if α :G→Aut(X) is an action,

then Adρ ⊗ α is an action of G on the W∗-TRO B(L2(G)) ⊗ X given by the

formula

(2.6) (Adρ ⊗ α)g(z) = (Adρg ⊗ αg)(z), z ∈B
(
L2(G)

)
⊗ X,

where ρ :G→B(L2(G)) is the right regular representation and we take the con-

vention that Adρg (z) = ρgzρ
∗
g for z ∈B(L2(G)). Note for further use the following

fact: if we write δ := Adρ ⊗ α, then the corresponding map πδ :B(L2(G))⊗ X→
L∞(G)⊗B(L2(G))⊗ X is given explicitly by the formula

(2.7)
πδ(z) = χ12

(
(V ∗ ⊗ idX)(idB(L2(G)) ⊗ πα)(z)(V ⊗ idX)

)
,

z ∈B
(
L2(G)

)
⊗ X,

where V ∈B(L2(G)⊗ L2(G)) is the right multiplicative unitary of G, defined by

the formula

(2.8) (V f)(g,h) = δ(h)1/2f(gh,h), f ∈ L2(G), g, h ∈G,

where δ is the modular function of G, and χ12 flips the first two legs of the tensor

product.

PROPOSITION 2.12

If α :G→Aut(X) is an action of G on a W∗-TRO X, then the following equality

holds:

G�α X=Fix(Adρ ⊗ α).

Proof

Assume that X is nondegenerately represented in B(H;K), and consider the

extension of α to an action β of G on the von Neumann algebra RX given by

Lemma 2.3. The uniqueness of Hamana extensions shows that the action Adρ ⊗ β

of G on B(L2(G)) ⊗ RX is the canonical extension of Adρ ⊗ α, the action of G

on B(L2(G)) ⊗ X. The left version of [22, Corollary 19.13], attributed there to

M. Takesaki and T. Digernes, shows that G�β RX = Fix(Adρ ⊗ β). In view of
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Proposition 2.10 it remains to show that

Fix(Adρ ⊗ α) = (IL2(G) ⊗ PK)Fix(Adρ ⊗ β)(IL2(G) ⊗ PH).

This, however, follows from Corollary 2.4 in view of the comments above. �

REMARK 2.13

Hamana [8] defines the crossed product for an action of a group on an operator

space directly via the fixed-point formula of the type above. Note, however, that

his definition does not coincide explicitly with ours, as he follows the approach of

[16], where everything is formulated in terms of the right invariant Haar measure

of G (so that the crossed product contains the amplification of the right group

von Neumann algebra).

It should be clear from the above discussions that it is also possible to develop

the TRO crossed product construction in the C∗-setting, we will, however, not

need it in the rest of this article.

3. Actions of locally compact quantum groups on W∗-TROs and resulting
crossed products

In this section we discuss actions of locally compact quantum groups on W∗-

TROs and define associated crossed products.

We follow the von Neumann algebraic approach to locally compact quan-

tum groups due to Kustermans and Vaes [15] (see also [11] and [12] for more

background). A locally compact quantum group G, effectively a virtual object,

is studied via the von Neumann algebra L∞(G), playing the role of the alge-

bra of essentially bounded measurable functions on G, equipped with a coprod-

uct Δ : L∞(G) → L∞(G) ⊗ L∞(G), which is a unital normal coassociative ∗-

homomorphism. A locally compact quantum group G is by definition assumed

to admit a left Haar weight φ and a right Haar weight ψ; these are faithful,

normal, semifinite weights on L∞(G) satisfying suitable invariance conditions.

The Gelfand–Naimark–Segal representation space for the left Haar weight will

be denoted by L2(G). All the information about G is contained in the right mul-

tiplicative unitary V ∈B(L2(G)⊗ L2(G)); it is a unitary operator such that we

have

Δ(x) = V (x⊗ IL2(G))V
∗, x ∈ L∞(G).

This fact enables us to define a natural extension of the coproduct, the map

Δ̃ :B(L2(G))→B(L2(G)⊗ L2(G)) given by the same formula

(3.1) Δ̃(y) = V (y ⊗ IL2(G))V
∗, y ∈B

(
L2(G)

)
.

In fact, Δ̃ takes values in B(L2(G)) ⊗ L∞(G) as V ∈ L∞(Ĝ)′ ⊗ L∞(G), where

Ĝ is the dual locally compact quantum group of G. (The algebra L∞(Ĝ) acts

naturally on L2(G).) If G = G happens to be a locally compact group, then

L∞(Ĝ) = VN(G). Finally note that by analogy with the classical situation we

denote the predual of L∞(G) by L1(G).
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Recall the standard definition of an action of G on a von Neumann alge-

bra M. A (continuous, left) action of G on M is an injective, normal, unital
∗-homomorphism β :M→ L∞(G)⊗M satisfying the action equation

(idL∞(G) ⊗ β) ◦ β = (ΔG ⊗ idM) ◦ β.

Replacing a von Neumann algebra with a W∗-TRO yields no extra compli-

cations.

DEFINITION 3.1

Let X be a W∗-TRO, and let G be a locally compact quantum group. An action of

G on X is an injective, normal, nondegenerate TRO morphism α : X→ L∞(G)⊗
X such that

(idL∞(G) ⊗ α) ◦ α= (ΔG ⊗ idM) ◦ α.

Theorem 2.5 implies that if G = G happens to be a classical locally compact

group, then the definition above agrees with Definition 2.1.

PROPOSITION 3.2

Let X be a W∗-TRO, and let G be a locally compact quantum group acting on X

via α : X→ L∞(G)⊗ X. Then the extension provided by Proposition 1.2 defines

an action β = RX → L∞(G)⊗ RX of G on RX.

Proof

Similar to the proof of Theorem 2.5: effectively we use the fact that if we denote

the W∗-TRO L∞(G)⊗ X by Y, then we have RY
∼= L∞(G)⊗ RX. �

If β : M → L∞(G) ⊗ M is an action of G on a von Neumann algebra M, then

the crossed product G�β M is defined as the von Neumann algebra ((L∞(Ĝ)⊗
IM)β(M))′′. Equivalently,

G�β M=w∗-clLin
{
(y ⊗ IM)β(m) : y ∈ L∞(Ĝ),m ∈M

}
.

The last equality amounts to the fact that the weak∗ closure of (L∞(Ĝ) ⊗
IM)β(M) is a ∗-subspace of B(L2(G))⊗M. This is a well-known fact, formulated

for example in [13, Proposition 2.3]: it can be shown using a simpler version of

the C∗-algebraic calculations in [20] after [20, Definition 2.4].

DEFINITION 3.3

Let X be a W∗-TRO nondegenerately represented in B(H;K), and let G be a

locally compact quantum group acting on X via α : X→ L∞(G) ⊗ X. The W∗-

TRO crossed product G�α X is defined as the weak∗ closure of the linear span

of (L∞(Ĝ)⊗ IK)α(X).

We will soon note that again the crossed product has several other descriptions,

but we first need to record the quantum version of Proposition 2.10.
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PROPOSITION 3.4

Let X be a W∗-TRO nondegenerately represented in B(H;K), and let G be a

locally compact quantum group acting on X via α : X→ L∞(G)⊗ X. Let β : RX →
L∞(G)⊗ RX be the action of G on RX provided by Proposition 3.2. Then

(IL2(G) ⊗ PK)(G�β RX)(IL2(G) ⊗ PH) =G�α X.

Proof

This result follows exactly as in the case of Proposition 2.10. �

COROLLARY 3.5

Under the assumptions of Definition 3.3, we have the following equalities:

G�α X=w∗-clLin
{(

L∞(Ĝ)⊗ IK
)
α(X)

(
L∞(Ĝ)⊗ IH

)}
=w∗-clLin

{
α(X)

(
L∞(Ĝ)⊗ IH

)}
.

Moreover, G�α X is the W∗-TRO generated in B(L2(G)⊗H;L2(G)⊗ K) by the

set (L∞(Ĝ)⊗ IK)α(X). It does not depend (up to an isomorphism) on the initial

choice of a faithful nondegenerate representation of X.

Proof

This follows immediately from the analogous facts for the von Neumann crossed

products and Proposition 3.4. �

If α : X→ L∞(G) ⊗ X is an action of G on a W∗-TRO X, then the fixed-point

space of α is defined as

Fixα=
{
x ∈ X : α(x) = IL2(G) ⊗ x

}
.

PROPOSITION 3.6

Assume that X is a W∗-TRO nondegenerately represented in some B(H;K), α is

an action of G on X, and β is an action of G on RX as introduced in Proposi-

tion 3.2. Then Fixα= PK(Fixβ)PH.

Proof

This result follows as in Corollary 2.4. �

Let α : X → L∞(G) ⊗ X be an action of G on X, and consider the map δ :

B(L2(G))⊗ X→ L∞(G)⊗B(L2(G))⊗ X:

(3.2)
δ(z) = χ12

(
(V ∗ ⊗ idX)(idB(L2(G)) ⊗ α)(z)(V ⊗ idX)

)
,

z ∈B
(
L2(G)

)
⊗ X,

where V is the right multiplicative unitary of G. (Compare this to the formula

(2.7), remembering that for quantum groups we denote simply by α what used

to be πα.)
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The following result is a quantum version of Proposition 2.12, this time

following from the von Neumann algebraic result due to Enock [6] (see also [12]).

THEOREM 3.7

Let X be a W∗-TRO, and let G be a locally compact quantum group acting on X

via α : X→ L∞(G) ⊗ X. The map δ : B(L2(G)) ⊗ X→ L∞(G) ⊗ B(L2(G)) ⊗ X

defined by (3.2) is an action of G on the W∗-TRO B(L2(G))⊗ X. Moreover, we

have the following equality:

G�α X=Fix δ.

Proof

Let X be nondegenerately represented in B(H;K), and let β be the action of G

on RX provided in Theorem 3.2. Then [12, Theorem 2.3], which is a simplified

version of [6, Theorem 11.6], says that the map γ :B(L2(G))⊗ RX → L∞(G)⊗
B(L2(G))⊗ RX,

(3.3)
γ(t) = χ12

(
(V ∗ ⊗ idX)(idB(L2(G)) ⊗ β)(t)(V ⊗ idX)

)
,

t ∈B
(
L2(G)

)
⊗ RX,

is an action of G on RX and

(3.4) G�β RX =Fixγ.

It is easy to verify that in fact for z ∈B(L2(G))⊗ X⊂B(L2(G))⊗ RX we have

δ(z) = (IL2(G) ⊗ IL2(G) ⊗ PK)γ(z)(IL2(G) ⊗ IL2(G) ⊗ PH).

This implies, via Corollary 1.3, that δ is a normal TRO morphism whose Hamana

extension is γ. An explicit computation and another application of Proposi-

tion 1.2 show that δ is in fact an action of G on the W∗-TRO B(L2(G)) ⊗ X,

with γ clearly being the extension of δ provided by Proposition 3.2. Then formula

(3.4) and Propositions 3.4 and 3.6 end the proof. �

We finish this section by discussing certain connections between the TROs aris-

ing as fixed-point spaces of completely contractive maps, which were studied in

Section 1, and (quantum) group actions.

PROPOSITION 3.8

Let M be a von Neumann algebra, and let β :M→ L∞(G)⊗M be an action of a

locally compact quantum group on M. Let X̃ be a weak∗-closed subspace of M, and

let P :M→M be a completely contractive idempotent map such that P (M) = X̃

and

(3.5) β ◦ P = (idL∞(G) ⊗F P ) ◦ β.

Then the formula (see Proposition 1.5)

α= (idL∞(G) ⊗ ι) ◦ β ◦ ι−1
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defines a normal, injective TRO morphism α : X → L∞(G) ⊗ X satisfying the

action equation

(idL∞(G) ⊗ α) ◦ α= (ΔG ⊗ idM) ◦ α.

Proof

For x, y, z ∈ X̃, we have

α
({

ι(x), ι(y), ι(z)
}
X

)
= (idL∞(G) ⊗ ι) ◦ β

(
P (xy∗z)

)
= (idL∞(G) ⊗ ι) ◦ (idL∞(G) ⊗F P )

(
β(x)β(y)∗β(z)

)
=
{
α
(
ι(x)

)
, α

(
ι(y)

)
, α

(
ι(z)

)}
L∞(G)⊗X

.

Hence, α is a TRO morphism, and it is normal, because ι is a weak∗-homeo-

morphism. It is also easy to check that α is injective and satisfies the coassocia-

tivity condition, using the corresponding properties of β. �

REMARK 3.9

We do not know whether the map constructed above is an action of G on X,

as it is not clear whether it is nondegenerate. Let us sketch a natural approach

to proving nondegeneracy, so that it is clear where it breaks down. Using the

notation of the last proposition we should show that the weak∗-closed linear

span of elements of the form{
α
(
ι(x)

)
, a⊗ ι(y), b⊗ ι(z)

}
L∞(G)⊗X

, x, y, z ∈ X̃, a, b ∈ L∞(G),

is equal to L∞(G)⊗ X. Writing x= P (m) for m ∈M, we have{
α
(
ι(x)

)
, a⊗ ι(y), b⊗ ι(z)

}
L∞(G)⊗X

=
{
(idL∞(G) ⊗ ιP )β(m), a⊗ ι(y), b⊗ ι(z)

}
L∞(G)⊗X

= (idL∞(G) ⊗ ιP )
(
β(m)(a∗b⊗ y∗z)

)
,

where we used Youngson’s identity

P
(
P (m1)P (m2)

∗P (m3)
)
= P

(
m1P (m2)

∗P (m3)
)
.

In other words, it suffices to show that (id⊗ P )(β(M)(L∞(G)⊗ X̃∗X̃)) is linearly

weak∗-dense in L∞(G)⊗ X̃. Now we know on one hand via [13, Proposition 2.9]

that β(M)(L∞(G)⊗ 1) is linearly weak∗-dense in L∞(G)⊗M and on the other

hand that P (MX̃∗X̃) is weak∗-dense in X̃ (essentially because X is a W∗-TRO).

Combining these two facts brings us close to completing the proof, but P is not

assumed to be normal (and cannot be for applications; see, e.g., [2, Propositions

3.1.1 and 3.1.3], which show that, given a locally compact group G and a norm

one function σ in the Fourier–Stieltjes algebra B(G) such that the set σ−1({1}) is
not open, the projection from VN(G) onto the set I⊥σ ⊂VN(G) is never normal).

Note that in the positive case (by which we mean the case where P is a completely

positive projection and X is a von Neumann algebra) the argument goes through

simply by choosing m= 1.
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The problem disappears in the case in which G is a classical group, as then we

can use the pointwise picture of the actions.

THEOREM 3.10

Let M be a von Neumann algebra, and let β : G → Aut(M) be an action of a

locally compact group G on M. Let X̃ be a weak∗-closed subspace of M, and let

P :M→M be a completely contractive idempotent map such that P (M) = X̃ and

(3.6) βg ◦ P = P ◦ βg, g ∈G.

Then the formula (see Proposition 1.5)

αg = ι ◦ βg ◦ ι−1, g ∈G,

defines an action α of G on the W∗-TRO X.

Proof

The fact that each αg (g ∈G) is a normal TRO morphism follows as in the last

proposition; as we have for g,h ∈G

αg ◦ αh = ι ◦ βg ◦ ι−1 ◦ ι ◦ βh ◦ ι−1 = ι ◦ βg ◦ βh ◦ ι−1 = ι ◦ βgh ◦ ι−1 = αgh

and αe = idX, each αg is in fact an automorphism, and α :G→Aut(X) is a homo-

morphism. Finally the continuity condition follows from that for β: if (gi)i∈I is

a net of elements of G converging to g ∈G and x ∈ X, then, as ι is a homeomor-

phism with respect to weak∗ topologies, we have

w∗- lim
i∈I

αx(gi) = w∗- lim
i∈I

αgi(x) = w∗- lim
i∈I

ι
(
βgi

(
ι−1(x)

))
= ι

(
w∗- lim

i∈I
βgi

(
ι−1(x)

))
= ι

(
βg

(
ι−1(x)

))
= αx(g). �

Note that, although the projection P features in one of the conditions in both

Proposition 3.8 and Theorem 3.10, the actual maps constructed there depend

only on its image.

4. Poisson boundaries associated with contractive functionals in Cu
0 (G)∗

Let G be a locally compact quantum group, let Cu
0 (G) be the universal C∗-

algebra associated with G, and let Δu be the coproduct on Cu
0 (G) (see [14]).

The Banach space dual of Cu
0 (G) will be denoted Mu(G) and called the measure

algebra of G. It is a Banach algebra with the product defined by

μ � ν := (μ⊗ ν) ◦Δu, μ, ν ∈Mu(G).

Given μ ∈Mu(G) the associated right convolution operator Rμ : L∞(G)→
L∞(G) is defined by the formula〈

Rμ(x), ω
〉
= 〈ω � μ,x〉, x ∈ L∞(G), ω ∈ L1(G).

This is well defined, as L1(G) is an ideal in Mu(G). Moreover, Rμ is normal.
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We are ready to apply the results of the earlier sections to the construction of

extended Poisson boundaries for contractive (not necessarily positive) quantum

measures. We say that μ ∈Mu(G) is contractive if ‖μ‖ ≤ 1.

THEOREM 4.1

Let μ ∈Mu(G) be contractive. Then the fixed-point space FixRμ := {x ∈ L∞(G) :

Rμ(x) = x} has a unique (up to a weak∗-continuous complete isometry) structure

of a W∗-TRO, which we will denote Xμ.

Proof

This is an immediate consequence of Theorem 1.6, as Rμ : L∞(G)→ L∞(G) is a

complete contraction. �

We will call the space FixRμ with the W∗-TRO structure induced via Theo-

rem 4.1 an extended Poisson boundary associated to μ.

LEMMA 4.2

Let μ ∈Mu(G) be contractive. The extended Poisson boundary FixRμ is a unital

subspace of L∞(G) if and only if μ is a state.

Proof

The statement follows from the equivalences Rμ(IL∞(G)) = IL∞(G) if and only if

μ(IMCu
0 (G)) = 1 if and only if μ is a state. (Here MCu

0 (G) denotes the multiplier

algebra of Cu
0 (G).) �

COROLLARY 4.3

A locally compact quantum group G is amenable if and only if there exists a

contractive μ ∈Mu(G) such that FixRμ =CIL∞(G).

Proof

This follows from the last lemma and [11, Theorem 4.2]. �

Given a contractive μ ∈Mu(G) we can also consider an associated convolution

operator Θμ acting on B(L2(G)), as defined in [10] (see also [12]): it is a unique,

normal, completely bounded map such that

(4.1) Δ̃ ◦Θμ = (idB(L2(G)) ⊗Rμ) ◦ Δ̃.

THEOREM 4.4

Let μ ∈ Mu(G) be a contractive. Then the fixed-point space FixΘμ := {x ∈
B(L2(G)) : Θμ(x) = x} has a unique (up to a weak∗-continuous complete isome-

try) structure of a W∗-TRO, which we will denote Yμ.

Proof

This is an immediate consequence of Theorem 1.6, as Θμ :B(L2(G))→B(L2(G))

is a normal complete contraction. �
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Let μ ∈ Mu(G) be contractive. Fix a free ultrafilter β, and use it as in The-

orem 1.6 to construct completely contractive projections P from L∞(G) onto

FixRμ and PΘ from B(L2(G)) onto FixΘμ. It is then not difficult to see that

due to (4.1) we also have

(4.2) Δ̃ ◦ PΘ = (idB(L2(G)) ⊗F P ) ◦ Δ̃.

PROPOSITION 4.5

Let G and μ be as above, and let ι : FixRμ → Xμ, κ : FixΘμ → Yμ denote the

respective weak∗ homeomorphisms. Then the formula

γ = (idB(L2(G)) ⊗ ι) ◦ Δ̃ ◦ κ−1

defines an injective normal TRO morphism γ : Yμ →B(L2(G))⊗ Xμ.

Proof

This is proved similarly as Proposition 3.8, using the intertwining relation (4.2).

�

In the case in which G is a classical group and μ ∈M(G) is contractive, we can in

fact identify the image of the map γ. First of all we can show via Theorem 3.10

that there is a natural action of G on the W∗-TRO arising from FixRμ.

LEMMA 4.6

Let G be a locally compact group, and let μ ∈M(G) be contractive. Then there

is a natural action α of G on the W∗-TRO Xμ, given essentially by left multipli-

cation.

Proof

Consider the action β of G on L∞(G) given by the formula(
βg(f)

)
(h) = f(g−1h), f ∈ L∞(G), g, h ∈G.

It is then easy to check that we have βg ◦Rμ =Rμ ◦βg , and so also βg ◦P = P ◦βg ,

where P is a completely contractive projection given by the limit (along some

ultrafilter) of iterates of Rμ. Theorem 3.10 ends the proof. �

We are now ready to establish the connection between the W∗-TROs Xμ and Yμ.

THEOREM 4.7

Let G be a locally compact group, and let μ ∈ M(G) be contractive. Let α be

the action of G on the W∗-TRO Xμ introduced in Lemma 4.6. We then have a

natural isomorphism

Yμ
∼=G�α Xμ,

given by the map γ introduced in Proposition 4.5.
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Proof

We begin by showing that γ(Yμ) is contained in G�α Xμ. By Proposition 2.12 it

suffices to show that for each x ∈ Ỹμ and g ∈G we have (Adρ ⊗ α)g(γ(κ(x))) =

γ(κ(x)). Recall that by the definition of the action constructed in Lemma 4.6

we have αg ◦ ι = ι ◦ βg . Recall also that if we view L∞(G) as a subalgebra of

B(L2(G)), then the map βg is equal to (Adλ)g , where λ denotes again the left

regular representation. This means that(
(Adρ)g ⊗ αg

)(
(id⊗ ι) ◦ Δ̃(x)

)
= (id⊗ ι)

(
(ρg ⊗ λg)V (x⊗ 1)V ∗(ρ∗g ⊗ λ∗

g)
)
.

Recall once again that the right multiplicative unitary for G is given by the

formula (2.8). Then an explicit calculation shows that for any y ∈B(L2(G)) we

have

(ρg ⊗ λg)V (y ⊗ 1)V ∗(ρ∗g ⊗ λ∗
g) = V (y ⊗ 1)V ∗.

Thus, (Adρ ⊗ α)g(γ(κ(x))) does not in fact depend on g, and the first part of

the theorem is proved.

As γ is a normal TRO morphism, it has a weak∗-closed image. Thus, to

show that γ(Yμ) contains G�α Xμ it suffices (by Lemma 2.8 and Definition 2.9)

to show that for every g ∈ G and x ∈ FixRμ we have (λg ⊗ I)(πα(ι(x))) ∈
γ(Yμ). (Note that the symbol I above can be interpreted explicitly once we

fix a concrete representation of Xμ.) This is equivalent to proving that (id ⊗
ι−1)((λg ⊗ I)(πα(ι(x)))) ∈ Δ̃(FixΘμ). Consider the map (id⊗ ι−1) :B(L2(G))⊗
Xμ → B(L2(G)) ⊗ FixRμ. Note that both the domain and range spaces are in

fact B(L2(G)) left modules in a natural way and, moreover, that (id ⊗ ι−1) is

a B(L2(G))-module map. Thus, recalling how the action α was constructed in

Lemma 4.6 we can first verify that the integrated forms of actions α and β satisfy

the equality (id⊗ ι) ◦ πβ = πα ◦ ι (remembering that ι is a homeomorphism for

weak∗ topologies and by using equality (2.1)) and then see that (id⊗ ι−1)((λg ⊗
I)(πα(ι(x)))) = (λg ⊗ I)πβ(x). Now the integrated form of the action β is nothing

but the coproduct, so we need to show simply that (λg ⊗ I)Δ(x) ∈ Δ̃(FixΘμ).

To this end we consider λgx ∈B(L2(G)). As Θμ is a VN(G)-module map which

extends Rμ and x ∈ FixRμ, we have λgx ∈ FixΘμ. Then as the first leg of V

commutes with VN(G) we have Δ̃(λgx) = (λg ⊗ I)Δ̃(x) = (λg ⊗ I)Δ(x). This

ends the proof. �

REMARK 4.8

The analogous result for μ being a state is shown in [11] for G replaced by

any locally compact quantum group. Here the stumbling block in extending the

last theorem to the quantum setting is precisely the fact that we are not able to

deduce in general that the map α constructed in Proposition 3.8 is nondegenerate.

(Otherwise we could use Theorem 3.7 instead of Proposition 2.12.)
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