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Abstract A planar open Riemann surfaceR admits the Schiffer span s(R,ζ) to a point

ζ ∈R. M. Shiba showed that an open Riemann surfaceR of genus one admits the hyper-

bolic span σH(R). We establish the variation formulas of σH(t) := σH(R(t)) for the

deforming openRiemann surfaceR(t) of genus onewith complex parameter t in a diskΔ

of center 0, and we show that if the total spaceR=
⋃

t∈Δ(t,R(t)) is a two-dimensional

Stein manifold, then σH(t) is subharmonic onΔ. In particular, σH(t) is harmonic onΔ

if and only ifR is biholomorphic to the productΔ×R(0).

1. Introduction

Let R0 be an open Riemann surface of genus one, and let χ0 = {A0,B0} be a

fixed canonical homology basis of R0 modulo dividing cycles. Consider a triplet

(R,χ, i) consisting of a (closed) torus R, a canonical homology basis χ= {A,B}
of R, and a conformal embedding i of R0 into R such that i(A0) (resp., i(B0))

is homologous to the cycle A (resp., B). We say that two such triplets (R,χ, i)

and (R′, χ′, i′) are equivalent if there is a conformal mapping f of R onto R′

with f ◦ i= i′ on R0. Each equivalence class is denoted by [R,χ, i] and is called

a closing of (R0, χ0).

As is well known, the closing [R,χ, i] carries a unique holomorphic differen-

tial φR with
∫
A
φR = 1. It will be called the normal differential for (R,χ). We

put

τ [R,χ, i] =

∫
B

φR,

which is referred to as the modulus of [R,χ, i]. We denote by C(R0, χ0) the set

of closings of (R0, χ0) and put

M(R0, χ0) =
{
τ ∈C

∣∣ τ = τ [R,χ, i], [R,χ, i] ∈ C(R0, χ0)
}
.

The set M(R0, χ0) obviously lies in the upper half-plane H.
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THEOREM 1.1 (M. SHIBA, [10, P. 306], [11, P. 123])

(1) M(R0, χ0) is a closed disk (which may degenerate to a singleton); there

exists τ∗ ∈H and ρ ∈R such that 0≤ ρ <�τ∗ and

M(R0, χ0) =
{
τ ∈H

∣∣ |τ − τ∗| ≤ ρ
}
.

(2) The hyperbolic diameter σH(R0) of M(R0, χ0) in H is determined solely

by the surface R0; it is invariant under any change of canonical homology basis

of R0.

We call M(R0, χ0) the moduli disk for (R0, χ0) and call σH(R0) the hyperbolic

span for the open torus R0. We shall study how σH(R0(t)) varies when R0(t)

deforms with complex parameter t from the several complex variables point of

view.

Let (R̃, π̃,Δ) be a holomorphic family such that R̃ is a two-dimensional com-

plex manifold, Δ = {t ∈Ct | |t|< r} is a disk, and π̃ is a holomorphic projection

from R̃ onto Δ. We assume that the fiber R̃(t) := π̃−1(t), t ∈Δ, is noncompact,

irreducible, and nonsingular in R̃, so that R̃(t) is an open Riemann surface. Let

(R, π,Δ) be a holomorphic subfamily of (R̃, π̃,Δ) such that R⊂ R̃, ∂R in R̃ is a

Cω smooth real three-dimensional (open) surface, R(t) := π−1(t)� R̃(t), t ∈Δ,

and R(t) is a bordered Riemann surface of genus one with Cω smooth boundary

∂R(t) in R̃(t). We set

R=
⋃
t∈Δ

(
t,R(t)

)
⊂ R̃, ∂R=

⋃
t∈Δ

(
t, ∂R(t)

)
⊂ R̃.

We identify R with the deformation of the open torus R(t),

R : t ∈Δ→R(t)� R̃(t).

Each R(t), t ∈Δ, admits the hyperbolic span σH(t) := σH(R(t)). Then we have

the following main theorem.

THEOREM 1.2

If R is a pseudoconvex domain in R̃, then

(1) the hyperbolic span σH(t) is subharmonic on Δ,

(2) σH(t) is harmonic on Δ if and only if (R, π,Δ) is a trivial holomorphic

family; (R, π,Δ)≈Δ×R(0).

In the appendix we prove the following corollary as a generalization of this theo-

rem. Let (R, π,Δ) be a holomorphic family such that R is an (n+1)-dimensional

complex manifold, Δ is a domain in C
n
t , and R(t) = π−1(t), t ∈Δ, is irreducible

and nonsingular in R such that R(t) is an open torus with finite ν (independent

of t ∈Δ) ideal boundary components. We denote by sH(t) the hyperbolic span

for R(t).
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COROLLARY 1.3

(1) Assume that, for each t0 ∈Δ, there exists a small ball δ of center t0 in

Δ such that R|δ is a Stein manifold. Then sH(t) is plurisubharmonic on Δ.

(2) Assume that

(i) R is a Stein manifold and Δ is a pseudoconvex domain in C
n
t ,

(ii) R is a topologically trivial family modulo dividing cycles,

(iii) the ideal boundary component of R(t), t ∈Δ, is nonparabolic.

Then sH(t) is pluriharmonic on Δ if and only if (R, π,Δ) is a trivial holomorphic

family.

2. Variation formulas of the second order for �τ1(t) and �τ0(t)

Let R be a bordered Riemann surface of genus one in a Riemann surface R̃ such

that R� R̃ and ∂R consists of Cω smooth contours, ∂R=C1+ · · ·+Cν . Let φ be

a holomorphic differential on R=R∪∂R, precisely, on a neighborhood of R in R̃.

If φ is semiexact on R and �φ= 0 on Cj , j = 1, . . . , ν, then φ is called a canonical

differential on R in the sense of Kusunoki; in other words, on a thin tubular

neighborhood Vj of Cj , the branch on Vj of the abelian integral Φ(z) =
∫ z

ζ0
φ is

a single-valued holomorphic function on Vj such that �Φ(z) = const on Cj (see

[7, p. 241], [1, Chapter III]).

Let χ= {A,B} be a canonical homology basis of R modulo dividing cycles

such that the orientation of A and B are equal to the x- and y-axis in Cz . It is

simply written A×B = 1. For s, −1< s≤ 1, there uniquely exists a holomorphic

differential φs on R such that

(i) e−
πi
2 sφs is a canonical differential on R,

(ii)
∫
A
φs = 1.

We set τs =
∫
B
φs. Then there uniquely exists a closing [Rs,{As,Bs}, is] of (R,χ)

such that the transplant of φs by i−1
s extends to the normal differential φRs for

(Rs,{As,Bs}), so that τ [Rs,{As,Bs}, is] = τs. In the special case s= 1 (resp., 0)

we simply call φ1 (resp., φ0) the L1- (resp., L0-) differential for (R,A), so that


φ1 = 0 (resp., �φ0 = 0) on Cj , and τ1 =
∫
B
φ1 (resp., τ0 =

∫
B
φ0).

THEOREM 2.1 ([10, P. 306], [11, P. 123])

(1) 
τ1 =
τ0.
(2) ∂M(R,χ) = {τ ∈H | |τ − τ∗|= ρ}, where

τ∗ =
1

2
(τ1 + τ0), ρ=

1

2i
(τ1 − τ0)> 0.

(3) τs = τ∗ + ρe(s−
1
2 )πi, −1< s≤ 1.

(4) The hyperbolic span σH(R) is written into σH(R) = log �τ1
�τ0

.

Now let (R̃, π̃,Δ) be the holomorphic family stated in Section 1 for Theorem 1.2.

For t ∈Δ, we fix a canonical homology basis χ(t) = {A(t),B(t)} of R(t) modulo

dividing cycles such that A(t) and B(t) move continuously in R with t ∈Δ. Then
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we have the L1- (resp., L0-) differential φ1(t, z) (resp., φ0(t, z)) for (R(t),A(t)),

so that
∫
A(t)

φ1(t, z) =
∫
A(t)

φ0(t, z) = 1. We set

τ1(t) =

∫
B(t)

φ1(t, z), τ0(t) =

∫
B(t)

φ0(t, z).

As usual we write φi(t, z) = fi(t, z)dz, i= 1,0, by use of the local parameter of

R(t). Then we have the following variation formulas for �τ1(t) and �τ0(t).

LEMMA 2.2

For t ∈Δ,

(1)
∂2�τ1(t)
∂t∂t

=
1

2

∫
∂R(t)

k2(t, z)
∣∣f1(t, z)∣∣2|dz|+ ∥∥∥∂φ1(t, z)

∂t

∥∥∥2
R(t)

,

(2)
∂2�τ0(t)
∂t∂t

=−
(1
2

∫
∂R(t)

k2(t, z)
∣∣f0(t, z)∣∣2|dz|+ ∥∥∥∂φ0(t, z)

∂t

∥∥∥2
R(t)

)
,

where

k2(t, z) = Lϕ(t, z)/
∣∣∣∂ϕ
∂z

∣∣∣3 on ∂R,

Lϕ(t, z) = ∂2ϕ

∂t∂t

∣∣∣∂ϕ
∂z

∣∣∣2 − 2

{∂ϕ

∂t

∂ϕ

∂z

∂2ϕ

∂t∂z

}
+
∣∣∣∂ϕ
∂t

∣∣∣2 ∂2ϕ

∂z∂z
on ∂R,

ϕ(t, z) is the C2 smooth defining function for ∂R in R̃.

The Levi form Lϕ(t, z) on ∂R depends on the choice of the defining function

ϕ(t, z) of ∂R, but k2(t, z) does not depend on it. Further, k2(t, z)/|dz| is a form

on ∂R with respect to the holomorphic family (R, π,Δ), so that k2(t, z)|fi(t, z)|,
i= 1,0, is a real-valued function on ∂R (see [8, (1.2)]).

3. Proof of Lemma 2.2

For Lemma 2.2, it suffices to prove it at t= 0. By Gunning and Narasimhan [2],

R̃(0) is conformally equivalent to a sheeted Riemann surface D over Cz without

branch points. Thus, if necessary, take a smaller disk Δ (of center 0) in Ct. We

may assume the following.

(a) R is an unramified domain over Δ×Cz (i.e., R⊂Δ×D) so that each

R(t), t ∈Δ, is a relatively compact domain of genus one in D such that ∂R(t) con-

sists of Cω smooth contours Cj(t), j = 1, . . . , ν. We write R(t) =R(t) ∪ ∂R(t) =

R(t)∪ (
⋃ν

j=1Cj(t))�D.

(b) A(t) = A(0) and B(t) = B(0) for t ∈ Δ such that A(0) and B(0) are

smooth Jordan curves and A(0)∩B(0) consists of a single point ζ0 with A(0)×
B(0) = 1. We write A(0) =A and B(0) =B.

For t ∈Δ, we have the L1- (resp., L0-) differential φ1(t, z) (resp., φ0(t, z)) for

(R(t),A). If necessary, take a smaller disk Δ. Since each Cj(t) is of class Cω in

R̃(0), we have a tubular neighborhood Vj of Cj(0) in D such that φ1(t, z) (resp.,
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φ0(t, z)) is holomorphically extended to R(0)∪ Vj . We set

V=

ν⋃
j=1

Vj and R=R(0)∪V(�D).(3.1)

Then φ1(t, z) (resp., φ0(t, z)) is defined in the product domain Δ × R and is

holomorphic for z ∈R, but not for t ∈Δ in general.

Let us prove Lemma 2.2(1). Each φ1(t, z), t ∈Δ, is written in the form

φ1(t, z) = f1(t, z)dz on R,

where f1(t, z) is a single-valued holomorphic function for z on R. Fix t ∈ Δ,

and consider the abelian integral Φ1(t, z) =
∫ z

ζ0
φ1(t, ·) on R. The branch Φ1(t, z)

with Φ1(t, ζ0) = 0 is a single-valued holomorphic function for z on R \ (A ∪B).

We have ∂(R(0) \ (A ∪B)) = ∂R(0) + [A+B+A−B−], where [A+B+A−B−] is a

simple closed curve in R(0). From Cauchy’s theorem we have∫
∂R(0)+[A+B+A−B−]

Φ1(t, z)f1(0, z)dz = 0.

Since φ1(t, z) is a semiexact holomorphic differential on R(0), we have by the

bilinear relation that∫
A+A−

Φ1(t, z)f1(0, z)dz =
(
−
∫
B

φ1(t, z)
)(∫

A

φ1(0, z)
)
=−τ1(t),∫

B+B−
Φ1(t, z)f1(0, z)dz =

(∫
A

φ1(t, z)
)(∫

B

φ1(0, z)
)
= τ1(0),(3.2)

∴ τ1(t)− τ1(0) =

∫
∂R(0)

Φ1(t, z)dΦ1(0, z), t ∈Δ.

We set

Φ1(t, z) = U1(t, z) + iU∗
1 (t, z) on R \ (A∪B),

where U1(t, z) and U∗
1 (t, z), t ∈Δ, are single-valued harmonic functions on R \

(A∪B). Since φ1(0, z) is the L1-differential on R(0), we have∫
Cj(0)

dU∗
1 (0, z) = 0 and

U1(0, z) = constaj(0) on Cj(0),

so that

�τ1(t)−�τ1(0) =
ν∑

j=1

∫
Cj(0)

U1(t, z)dU
∗
1 (0, z), t ∈Δ,

∴ ∂2�τ1(t)
∂t∂t

=

ν∑
j=1

∫
Cj(0)

∂2U1(t, z)

∂t∂t
dU∗

1 (0, z), t ∈Δ.
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Since U1(t, z) = constaj(t) on Cj(t), we apply Hamano’s formula (see [3, (1.2)])

to obtain

∂2U1

∂t∂t
dU∗

1 = 2k2(t, z)
∣∣∣∂U1

∂z

∣∣∣2|dz|+ 4�
{∂U1

∂t

∂2U1

∂t∂z
dz

}
+

∂2aj
∂t∂t

dU∗
1 − 4�

{∂aj
∂t

∂2U1

∂t∂z
dz

}
along Cj(t).

(3.3)

It follows that

∂2�τ1
∂t∂t

(0) = 2

∫
∂R(0)

k2(0, z)
∣∣∣∂U1

∂z

∣∣∣2|dz|+ 4�
{∫

∂R(0)

∂U1

∂t

∂2U1

∂t∂z
dz

}
+

ν∑
j=1

∂2aj
∂t∂t

∫
Cj(0)

dU∗
1 − 4�

{ ν∑
j=1

∂aj
∂t

∫
Cj(0)

∂2U1

∂t∂z
dz

}
≡ I1 + I2 + I3 + I4,

where each integrand is evaluated at t= 0 and z ∈ ∂R(0) or Cj(0). From
∂U1

∂z =
1
2f1 on Δ×V we have I1 =

1
2

∫
∂R(0)

k2(0, z)|f1(0, z)|2|dz|. Since U∗
1 (t, z), t ∈Δ,

is single-valued in Vj , we have
∫
Cj(0)

dU∗
1 (t, z) = 0, and I3 = 0. Since U1(t, z) is of

class Cω for (t, z) ∈Δ× Vj , we have
∫
Cj(0)

∂2U1(t,z)
∂t∂z

dz = 1
2

∂
∂t

∫
Cj(0)

dΦ1(t, z) = 0,

and I4 = 0. It remains to calculate I2. Since
∂U1

∂t
∂2U1

∂t∂z
, t ∈Δ, is a single-valued

function of class Cω on R \ (A∪B), we have by Green’s formula that∫
∂R(0)+[A+B+A−B−]

∂U1

∂t

∂2U1

∂t∂z
dz

(3.4)

=

∫∫
R(0)\(A∪B)

d
(∂U1

∂t

∂2U1

∂t∂z
dz

)
, t ∈Δ.

Since dz(
∂U1

∂t ) = ∂
∂t
{φ1(t, z)} is a semiexact harmonic differential on R(t), we

have ∫
A+A−

∂U1

∂t

∂2U1

∂t∂z
dz =−

( ∂

∂t


{∫

B

φ1(t, z)
})(1

2

∂

∂t

∫
A

φ1(t, z)
)

=−1

2

( ∂

∂t

τ1(t)

)( ∂

∂t
1
)
= 0.

Similarly,∫
B+B−

∂U1

∂t

∂2U1

∂t∂z
dz =

( ∂

∂t


{∫

A

φ1(t, z)
})(1

2

∂

∂t

∫
B

φ1(t, z)
)
= 0.

Since U1(t, z) is harmonic for z ∈R(0), we have ∂U1

∂z dz = 1
2φ1 and∫∫

R(0)\(A∪B)

d
(∂U1

∂t

∂2U1

∂t∂z
dz

)
=

∫∫
R(0)

(∣∣∣∂2U1

∂t∂z

∣∣∣2 + ∂U1

∂t

∂3U1

∂t∂z∂z

)
dz ∧ dz

=
i

4

∥∥∥∂φ1

∂t

∥∥∥2
R(0)

.
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By (3.4) we have I2 = ‖∂φ1

∂t
(0, z)‖2R(0), and

∂2�τ1
∂t∂t

(0) =
1

2

∫
∂R(0)

k2(0, z)
∣∣f1(0, z)∣∣2|dz|+ ∥∥∥∂φ1

∂t
(0, z)

∥∥∥2
R(0)

,

which is formula (1) at t= 0.

Let us prove Lemma 2.2(2) by a method similar to that for (1). We write

φ0(t, z) = f0(t, z)dz on R,

where f0(t, z), t ∈Δ, is a single-valued holomorphic function for z ∈R. We con-

sider the abelian integral Φ0(t, z) of φ0(t, z) on R with Φ0(t, ζ0) = 0, which is a

single-valued holomorphic function on R\ (A∪B). By the same way we obtained

(3.2), we have

τ0(t)− τ0(0) =

∫
∂R(0)

Φ0(t, z)f0(0, z)dz, t ∈Δ.

We set, for t ∈Δ,

Φ0(t, z) = U0(t, z) + iU∗
0 (t, z) on R \ (A∪B).

Since φ0(0, z) is the L0-differential for (R(0),A), Φ0(t, z) is a single-valued holo-

morphic function on R \ (A∪B) with U∗
0 (0, z) = const bj(0) on Cj(0). We have

�τ0(t)−�τ0(0) =
ν∑

j=1

∫
Cj(0)

U∗
0 (t, z)dU0(0, z)

=−
ν∑

j=1

∫
Cj(0)

U∗
0 (t, z)d

(
U∗
0 (0, z)

)∗
, t ∈Δ,

∴ ∂2�τ0(t)
∂t∂t

=−
ν∑

j=1

∫
Cj(0)

∂2U∗
0 (t, z)

∂t∂t
d
(
U∗
0 (0, z)

)∗
, t ∈Δ.

Since U∗
0 (t, z) = const bj(t) on Cj(t), similarly to (3.3) we have

∂2�τ0
∂t∂t

(0) = −
(
2

∫
∂R(0)

k2(0, z)
∣∣∣∂U∗

0

∂z

∣∣∣2|dz|+ 4�
{∫

∂R(0)

∂U∗
0

∂t

∂2U∗
0

∂t∂z
dz

}
+

ν∑
j=1

∂2bj
∂t∂t

∫
Cj(0)

d(U∗
0 )

∗ − 4�
{ ν∑
j=1

∂bj
∂t

∫
Cj(0)

∂2U∗
0

∂t∂z
dz

})
≡ − (J1 + J2 + J3 + J4),

where each integrand is evaluated at t= 0 and z ∈ ∂R(0) or Cj(0). Since
∂U∗

0

∂z =
1
2if0, we have J1 =

1
2

∫
∂R(0)

k2(0, z)|f0(0, z)|2|dz|. By the same reasons that I3 =

I4 = 0 we have J3 = J4 = 0. For J2 we have by Green’s formula∫
∂R(0)+[A+B+A−B−]

∂U∗
0

∂t

∂2U∗
0

∂t∂z
dz =

∫∫
R(0)\(A∪B)

d
(∂U∗

0

∂t

∂2U∗
0

∂t∂z
dz

)
, t ∈Δ.
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Since
∫
A
φ0(t, z) = 1 for t ∈Δ, we have∫

A+A−

∂U∗
0

∂t

∂2U∗
0

∂t∂z
dz =−

( ∂

∂t
�
{∫

B

φ0(t, z)
}) 1

2i

( ∂

∂t

∫
A

φ0(t, z)
)
= 0,∫

B+B−

∂U∗
0

∂t

∂2U∗
0

∂t∂z
dz =

( ∂

∂t
�
{∫

A

φ0(t, z)
}) 1

2i

( ∂

∂t

∫
B

φ0(t, z)
)
= 0.

It follows that∫
∂R(0)

∂U∗
0

∂t

∂2U∗
0

∂t∂z
dz =

∫∫
R(0)\{A∪B}

d
(∂U∗

0

∂t

∂2U∗
0

∂t∂z
dz

)
=

i

4

∥∥∥∂φ0(t, z)

∂t

∥∥∥2
R(0)

, t ∈Δ,

and J2 = ‖∂φ0

∂t
(0, z)‖2R(0). We thus have (2) at t= 0.

COROLLARY 3.1

If the total space R is pseudoconvex in R̃, then

(1) �τ1(t) is subharmonic on Δ,

(2) �τ0(t) is superharmonic on Δ,

(3) the Euclidean radius ρ(t) of the moduli disk M(R(t), χ(t)) is subharmonic

on Δ.

Proof

Since R is pseudoconvex in R̃, we have Lϕ(t, z) ≥ 0 on ∂R. It follows from

Lemma 2.2 that, for t ∈Δ,

∂2�τ1(t)
∂t∂t

≥
∥∥∥∂φ1(t, z)

∂t

∥∥∥2
R(t)

≥ 0,
∂2�τ0(t)
∂t∂t

≤−
∥∥∥∂φ0(t, z)

∂t

∥∥∥2
R(t)

≤ 0,(3.5)

which proves (1) and (2). These inequalities with Theorem 2.1(2) yield (3). �

REMARK 1

In the case of deforming planar open Riemann surfaces, we showed the variation

formulas of type (1) and (2) of Lemma 2.2, for the Schiffer span (see [9] for the

definition) in [4], and for the harmonic span in [6]. In [5] we showed the relation

between both spans. We showed further in [3] and [6] that, for the deformation

of an open Riemann surface of positive genus, a formula of type (1) holds but a

formula of type (2) does not hold. Formulas (1) and (2) in Lemma 2.2 with the

remarkable contrast are the first example in the case of the deforming nonplanar

open Riemann surface.

4. Proof of the main theorem

Let R be a bordered Riemann surface of genus one with Cω smooth boundary

in a larger R̃, R� R̃, and let {A,B} be a canonical homology basis of R modulo

dividing cycles. We denote by φ1 (resp., φ0) the L1- (resp., L0-) differential for
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(R,A). From Theorem 2.1(1) and (2) we have∫
B

φ1 = τ1 := ξ + iη1,

∫
B

φ0 = τ0 := ξ + iη0,

where i =
√
−1 and ξ, η1, η0 are real numbers with η1 > η0 > 0. Consider any

canonical homology basis {A′,B′} of R:{
A′ =mA+ nB

B′ =m′A+ n′B
modulo dividing cycles,

where m,n,m′, n′ ∈ Z with mn′ − nm′ = 1. Then we have the L1- and L0-

differentials ψ1 and ψ0 for (R,A′):
∫
A′ ψ1 =

∫
A′ ψ0 = 1, and∫

B′
ψ1 = τ ′1 := α+ iβ1,

∫
B′

ψ0 = τ ′0 := α+ iβ0,

respectively, where α,β1, β0 are real numbers with β1 > β0 > 0. Then we have

the following result.

LEMMA 4.1

We have {
ψ1 =

1
X ((m+ nξ)φ1 − inη1φ0) on R,

ψ0 =
1
X ((m+ nξ)φ0 − inη0φ1) on R,

(4.1)

⎧⎪⎪⎨⎪⎪⎩
α= 1

X ((m+ nξ)(m′ + n′ξ) + nn′η1η0),

β1 =
1
X η1,

β0 =
1
X η0,

(4.2)

where

X = (m+ nξ)2 + n2η1η0 > 0.

Proof

From the uniqueness of the L1-differential for (R,A′), ψ1 must be written in the

form {
ψ1 = aφ1 + ibφ0 on R for some a, b ∈R,∫
A′ ψ1 = 1.

We have ∫
A′

ψ1 =

∫
mA+nB

aφ1 + ibφ0

= a(m+ nτ1) + ib(m+ nτ0)

= a(m+ nξ)− bnη0 + i
(
anη1 + b(m+ nξ)

)
,

so that {
a(m+ nξ)− bnη0 = 1,

anη1 + b(m+ nξ) = 0.
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Since X > 0 from mn′ − nm′ = 1 and η1, η0 > 0, it follows that

a=
1

X
(m+ nξ), b=

1

X
(−nη1),

which yield the expression of ψ1 in (4.1). Hence,

τ ′1 =
m+ nξ

X

∫
m′A+n′B

φ1 − i
nη1
X

∫
m′A+n′B

φ0

=
1

X

{
(m+ nξ)(m′ + n′τ1)− inη1(m

′ + n′τ0)
}

=
1

X

{(
(m+ nξ)(m′ + n′ξ) + nn′η1η0

)
+ iη1

}
by mn′ − nm′ = 1,

which yields the expressions of α and β1 in (4.2). Since ψ0 must be written in

the form {
ψ0 = iãφ1 + b̃φ0 on R for some ã, b̃ ∈R,∫
A′ ψ0 = 1,

in the same way as we obtained ψ1, we have the expressions of ψ0 in (4.1) and

β0 in (4.2). �

By (4.2) we see that ψ1, ψ0, β1, and β0 do not depend on the choice of m′, n′ with

mn′ −nm′ = 1, that is, of B′, and that �τ1
�τ0

=
�τ ′

1

�τ ′
0
, which shows Theorem 2.1(4).

Proof of Theorem 1.2(1)

We do not lose generality in assuming (a) and (b) stated in Section 3. By Theo-

rem 2.1(4), it suffices to show the following: if R is pseudoconvex in R̃, then

∂2

∂t∂t
log

�τ1(t)
�τ0(t)

≥ 0, t ∈Δ.(4.3)

In (b), for t ∈ Δ we defined the canonical homology basis {A,B} of the

Riemann surface R(t) of genus one over Cz , and we considered the L1- (resp., L0-)

differential φ1(t, z) (resp., φ0(t, z)) for (R(t),A), so that
∫
A
φ1(t, z) =

∫
A
φ0(t, z) =

1. We put∫
B

φ1(t, z) = τ1(t) := ξ(t) + iη1(t),

∫
B

φ0(t, z) = τ0(t) := ξ(t) + iη0(t),(4.4)

where ξ(t), η1(t), η0(t) are real numbers with η1(t)> η0(t)> 0. Then, for arbitrary

m,n ∈ Z with (m,n) =±1 it holds that

η1(t)

(m+ nξ(t))2 + n2η1(t)η0(t)
is subharmonic on Δ,

η0(t)

(m+ nξ(t))2 + n2η1(t)η0(t)
is superharmonic on Δ.

(4.5)

In fact, we can find m′, n′ ∈ Z such that mn′ − nm′ = 1, and put {A′,B′}=
{mA + nB,m′A + n′B}, which is a canonical homology basis of R(t). Then

we uniquely have the L1- (resp., L0-) differential ψ1(t, z) (resp., ψ0(t, z)) for
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(R(t),A′), so that
∫
A′ ψ1(t, z) = 1 and

∫
A′ ψ0(t, z) = 1. We set∫

B′
ψ1(t, z) = τ ′1(t) := α(t) + iβ1(t),∫

B′
ψ0(t, z) = τ ′0(t) := α(t) + iβ0(t),

where α(t), β1(t), β0(t) are real numbers with β1(t) > β0(t) > 0 from

Theorem 1.1(1) and (2). By Corollary 3.1(1) and (2), we see that β1(t) (resp.,

β0(t)) is subharmonic (resp., superharmonic) on Δ. Thus, (4.2) yields (4.5).

We put

X =X(t,m,n) =
(
m+ nξ(t)

)2
+ n2η1(t)η0(t)> 0.

By straightforward calculation we have from (4.5)

X
(∂2η1
∂t∂t

X − η1
∂2X

∂t∂t

)
− 2X


{∂η1
∂t

∂X

∂t

}
+ 2

∣∣∣∂X
∂t

∣∣∣2η1 ≥ 0 on Δ,

X
(∂2η0
∂t∂t

X − η0
∂2X

∂t∂t

)
− 2X


{∂η0
∂t

∂X

∂t

}
+ 2

∣∣∣∂X
∂t

∣∣∣2η0 ≤ 0 on Δ.

Since η1(t)> η0(t)> 0 and X > 0 on Δ, we have(
η0

∂2η1
∂t∂t

− η1
∂2η0
∂t∂t

)
X − 2


{(
η0

∂η1
∂t

− η1
∂η0
∂t

)∂X
∂t

}
≥ 0 on Δ.

This is written into

A(t)
(
m+ nξ(t)

)2
+ 2B(t)n

(
m+ nξ(t)

)
+ n2C(t)≥ 0,(4.6)

where

A(t) := η0
∂2η1
∂t∂t

− η1
∂2η0
∂t∂t

,

B(t) :=−2

{(

η0
∂η1
∂t

− η1
∂η0
∂t

)∂ξ
∂t

}
,

C(t) := η1η0

(
η0

∂2η1
∂t∂t

− η1
∂2η0
∂t∂t

)
− 2

(
η20

∣∣∣∂η1
∂t

∣∣∣2 − η21

∣∣∣∂η0
∂t

∣∣∣2),
which are all real numbers independent of m,n. By (4.6) we have

A(t)
(m
n

+ ξ(t)
)2

+ 2B(t)
(m
n

+ ξ(t)
)
+C(t)≥ 0, t ∈Δ.

This is true for every (m,n) ∈ Z×Z with (m,n) =±1. It follows that, for t ∈Δ,

A(t)x2 + 2B(t)x+C(t)≥ 0 for all x ∈R,

∴A(t)≥ 0 and C(t)≥ 0 for t ∈Δ.

Let us prove (4.3). Since �τ1(t) = η1(t)> 0 and �τ0(t) = η0(t)> 0, it suffices

to show, for t ∈Δ,

L(t) := η1η0

(
η0

∂2η1
∂t∂t

− η1
∂2η0
∂t∂t

)
−
(
η20

∣∣∣∂η1
∂t

∣∣∣2 − η21

∣∣∣∂η0
∂t

∣∣∣2)≥ 0.
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In fact, we have two expressions of L(t) such that

(l1) L(t) =C(t) +
(
η20

∣∣∣∂η1
∂t

∣∣∣2 − η21

∣∣∣∂η0
∂t

∣∣∣2), t ∈Δ,

(l2) L(t) = η1η0A(t)−
(
η20

∣∣∣∂η1
∂t

∣∣∣2 − η21

∣∣∣∂η0
∂t

∣∣∣2), t ∈Δ.

These yield

L(t) =
1

2

(
C(t) + η1η0A(t)

)
,(4.7)

which is at least 0 on Δ. Theorem 1.2(1) is proved. �

Proof of Theorem 1.2(2)

Step 1: Assertion (2) holds locally. That is, at each t0 ∈Δ there exists a small

disk Δ0 of center t0 in Δ such that R|Δ0 ≈Δ0 ×R(t0) if σH(t) is harmonic on

Δ0. In fact, it suffices to prove the first step under the conditions (a) and (b) in

Section 3 (cf. the proof of Theorem 1.2(1)). For simplicity, we write 0 (resp., Δ)

for t0 (resp., Δ0). We use the same notations 0, Δ instead of t0, Δ0 in the first

step. Since σH(t) = log η1(t)
η0(t)

is harmonic on Δ, we have L(t)≡ 0 on Δ.

We shall first prove

(i) φ1(t, z) and φ0(t, z) are holomorphic for (t, z) ∈Δ×R;

(ii) the moduli disk M(R(t),{A,B}) does not move with t ∈Δ.

In fact, since C(t) ≥ 0, A(t) ≥ 0, and η1(t) > η0(t) > 0 on Δ, it follows from

L(t) = 0 on Δ and (4.7) that C(t) = A(t) = 0 on Δ. On the other hand, (3.5)

yields

A(t)≥ η0(t)
∥∥∥∂φ1

∂t

∥∥∥2
R(t)

+ η1(t)
∥∥∥∂φ0

∂t

∥∥∥2
R(t)

≥ 0 on Δ.

We have ∂φ1(t,z)
∂t

= ∂φ0(t,z)
∂t

= 0 on R|Δ, which induces (i).

By (i), τ1(t) =
∫
B
φ1(t, z) and τ0(t) =

∫
B
φ0(t, z) are holomorphic on Δ. Since

τ1(t)− τ0(t) = i(η1(t)− η0(t)) is pure imaginary, we have τ1(t)− τ0(t) = const iρ

on Δ, and hence, 1
2i

∂τ1
∂t = ∂η1

∂t = ∂η0

∂t = 1
2i

∂τ0
∂t on Δ. It follows from (l2) that

0 = (η1(t)
2 − η0(t)

2)|∂τ1∂t |2 on Δ, so that |∂τ1∂t |2 = 0 on Δ. Consequently, neither

τ1(t) nor τ0(t) depends on t ∈Δ:

(4.8) τ1(t) = τ1(0), τ0(t) = τ0(0) on Δ.

This together with Theorem 2.1(2) yields (ii).

Using (i) and (ii) we next prove the first step: R|Δ ≈ Δ × R(0). We set

ζ0 = A ∩ B and use the notation R defined by (3.1). We consider the abelian

integrals

Z =Φ1(t, z) :=

∫ z

ζ0

φ1(t, ·), (t, z) ∈Δ×R,

W =Φ0(t, z) :=

∫ z

ζ0

φ0(t, ·), (t, z) ∈Δ×R,

which are multivalued holomorphic functions for (t, z) ∈Δ×R by (i).
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Let us first fix t ∈ Δ. Since φ1(t, z) (resp., φ0(t, z)) is the L1- (resp., L0-)

differential for (R(t),A), which is holomorphic on R, the branch of Φ1(t, z) (resp.,

Φ0(t, z)) with Φ1(t, ζ0) = 0 (resp., Φ0(t, ζ0) = 0) is a single-valued holomorphic

function on R \ (A ∪B) such that Φ1(t,Cj(t)) (resp., Φ0(t,Cj(t))), j = 1, . . . , ν,

is a double vertical (resp., horizontal) segment:

Φ1

(
t,Cj(t)

)
=
[
aj(t), aj(t) + i�j(t)

]±
,

Φ0

(
t,Cj(t)

)
=
[
bj(t), bj(t) +mj(t)

]±
,

where �j(t),mj(t)> 0. We set

Σ1(t) := Φ1

(
t,R \ (A∪B)

)
, Σ0(t) := Φ0

(
t,R \ (A∪B)

)
.

If necessary, take a thin tubular neighborhood Vj ⊃ ∂Rj(t), t ∈ Δ. Then Σ1(t)

(resp., Σ0(t)) is a two-sheeted open Riemann surface over CZ (resp., CW ) with

2ν branch points aj(t), aj(t) + i�j(t) (resp., bj(t), bj(t) +mj(t)) of order one.

Next let us move t ∈Δ. Since Φ1(t, z) is a single-valued holomorphic function

for two complex variables (t, z) in Δ× (R \ (A∪B)), it follows that

(4.9) D1 :=
⋃
t∈Δ

(t,Φ1

(
t,R \ (A∪B)

)
=

⋃
t∈Δ

(
t,Σ1(t)

)
is a (two-dimensional) two-sheeted open Riemann domain over Δ×CZ with 2ν

holomorphic branch curves

C ′
1,j =

⋃
t∈Δ

(
t, aj(t)

)
and C ′′

1,j =
⋃
t∈Δ

(
t, aj(t) + i�j(t)

)
, j = 1, . . . , ν.

Therefore, aj(t), aj(t) + i�j(t) are holomorphic for t ∈ Δ. Since �j(t) is a real

number, it must be a constant on Δ; �j(t) = �j > 0, t ∈Δ.

Similarly, we see that each bj(t) is holomorphic on Δ and that mj(t) is

constant on Δ; mj(t) =mj > 0, t ∈Δ. We set

D0 :=
⋃
t∈Δ

(
t,Φ0

(
t,R \ (A∪B)

))
=

⋃
t∈Δ

(
t,Σ0(t)

)
,

which is a two-sheeted open Riemann domain over Δ×CW with 2ν holomorphic

branch curves

C ′
0,j =

⋃
t∈Δ

(
t, bj(t)

)
and C ′′

0,j =
⋃
t∈Δ

(
t, bj(t) +mj

)
, j = 1, . . . , ν.

We consider the holomorphic function for two complex variables

(4.10) W = ψ(t,Z) := Φ0

(
t,Φ−1

1 (t,Z)
)
, (t,Z) ∈D1.

Then D1 is biholomorphic to D0 namely, to Δ× (R \ (A∪B) biholomorphic by

(t,Z)→ (t,W ) = (t,ψ(t,Z)) such that ψ(t,0) = 0, ψ(t,1) = 1, and

(4.11) ψ
(
t,
[
aj(t), aj(t) + i�j

]±)
=
[
bj(t), bj(t) +mj

]±
, t ∈Δ.

Let t ∈Δ, and denote by R̂(t) the covering Riemann surface of R(t) with

respect to {A,B} modulo dividing cycles. We set R̂=
⋃

t∈Δ(t, R̂(t)). We consider
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the abelian integral

Z =Φ1(t, z) =

∫ z

ζ0

φ1(t, ·) in R̂(t),

which is univalent on R̂(t). We put

Σ̂1(t) := Φ1

(
t, R̂(t)

)
=CZ \

{ ν⋃
j=1

[
aj(t), aj(t) + ilj(t)

]
+

∞∑
m,n=−∞

m+ nτ1(t)
}
.

In our situation it becomes

Σ̂1(t) =CZ \
{ ν⋃
j=1

[
aj(t), aj(t) + ilj

]
+

∞∑
m,n=−∞

m+ nτ1(0)
}
,

where aj(t) is holomorphic on Δ and lj = lj(0). We put αj(t) = aj(t) − a1(t),

j = 1, . . . , ν, and define Σ̃1(t) := Σ̂(t)− a1(t), so that

Σ̃1(t) =CZ \
{
[0, il1] +

ν⋃
j=2

[
αj(t), αj(t) + ilj

]
+

∞∑
m,n=−∞

m+ nτ1(0)
}
.

Then Σ̃1(t)/{1, τ1(0)} and Σ̂1(t)/{1, τ1(0)} are equivalent to R(t) as Riemann

surfaces, and hence,

R̃1 :=
⋃
t∈Δ

(
t, Σ̃1(t)/

{
1, τ1(0)

})
≈R as a holomorphic family.

Thus, for the first step, it suffices to show that, for t ∈Δ,

αj(t) = αj(0), j = 2, . . . , ν.(4.12)

In the case in which ν = 1, that is, ∂R(t) consists of one component, the first

step is true. In the case in which ν ≥ 2, we shall use the following elementary

fact.

FACT 4.2

Let f(t, z) be a holomorphic function for (t, z) in δ × V (⊂ Ct ×Cz), where δ =

{|t|< r0} and V = {|z|< r1}. If there exists an open interval I ⊂ (−r1, r1) such

that, for any t ∈ δ, f(t, I) is a subset of the real axis, then f(t, z) = f(0, z) for

(t, z) ∈ δ × V .

Similarly to Σ̃1(t) we define

W =Φ0(t, z) =

∫ z

ζ0

φ0(t, ·) in R̂(t);

Σ̂0(t) := Φ0

(
t, R̂(t)

)
=CW \

{ ν⋃
j=1

[
bj(t) +mj(t)

]
+

∞∑
m,n=−∞

m+ nτ0(t)
}

=CW \
{ ν⋃
j=1

[
bj(t) +mj

]
+

∞∑
m,n=−∞

m+ nτ0(0)
}
.
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We put βj(t) = bj(t)− b1(0), j = 1, . . . , ν, and Σ̃0(t) := Σ̂0(t)− b1(t), so that

Σ̃0(t) =CW \
{
[0,m1] +

ν⋃
j=2

[
βj(t), βj(t) +mj

]
+

∞∑
m,n=−∞

m+ nτ0(t)
}
,

Σ̃0(t)/
{
1, τ0(0)

}
∼R(t) as a Riemann surface,

R̃0 :=
⋃
t∈Δ

(
t, Σ̃0(t)/

{
1, τ0(0)

})
≈R as a holomorphic family.

We thus have the automorphism

W = ψ̃(t,Z) := Σ̃1(t)→ Σ̃0(t), t ∈Δ,

such that, for j = 2, . . . , ν,

ψ̃
(
t, [0, il1]

±) = [0,m1]
± and

ψ̃
(
t
[
αj(t), αj(t) + ilj

]±)
=

[
βj(t), βj(t) +mj

]±
.

Applying the above elementary fact to the first equation we have

ψ̃(t,Z) = ψ̃(0,Z), t ∈Δ.

It follows from the second equation that, for each j = 2, . . . , ν,[
βj(t), βj(t) +mj)

]±
= ψ̃

(
0,
[
αj(t), αj(t) +mj

]±)
, t ∈Δ.

This implies (4.12). In fact, if (4.12) were not true, we have αj(t) �= αj(0) for

some j, 2 ≤ j ≤ ν and some sufficiently small t �= 0. Hence ψ̃(0,Z) would be

one-to-one.

Step 2: Assertion (2) holds. In fact, we have the L1-differential φ1(t, z) for

(R(t),A(t)) and put τ1(t) :=
∫
B(t)

φ1(t, ·). Systematically applying the first step

we see that φ1(t, z) is holomorphic for (t, z) ∈R and τ1(t) = τ1(0) for t ∈Δ.

Since Δ is simply connected, we have a continuous section ξ : t ∈Δ→R(t) of

R and a canonical homology basis {A(t),B(t)} of R(t) with A(t) ∩B(t) = ξ(t),

t ∈Δ, which moves continuously in R with t ∈Δ.

Let t ∈Δ, denote by R̂(t) the covering Riemann surface of R(t) with respect

to {A(t),B(t)} modulo dividing cycles, and put R̂=
⋃

t∈Δ(t, R̂(t)). By the first

step we find small disks Δk = {|t− tk|< rk}�Δ, k = 1,2, . . ., with Δ=
⋃∞

k=1Δk

and limk→∞ ∂Δk = ∂Δ such that the following statements hold.

(1) For Δk ∩Δl �= ∅, l, k = 1,2, . . ., we have a disk Δkl ⊃Δk ∪Δl in Δ such

that R|Δkl
is holomorphically trivial and is realized as an unramified domain

Dkl over Δkl × Cw such that Dkl contains the bidisk Δkl × {|w| < r} in which

ξ|Δkl
= {ξ(t) : t ∈Δkl} is realized. We write Wk(t) in R(t), which corresponds to

{t} × {|w|< r}, t ∈Δk, and Wk =
⋃

t∈Δk
(t,Wk(t))(⊂R|Δk

).

(2) For k = 1,2, . . . we draw a holomorphic section ζk : t ∈ Δk → ζk(t) of

R|Δk
such that ζk(tk) = ξ(tk) and ζk|Δk

⊂Wk. If we put, for t ∈Δk,

Φ1k(t, z) :=

∫ z

ζk(t)

φ1(t, ·), z ∈ R̂(t),
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then Σ̂k(t) := Φ1k(t, R̂(t)) is a (univalent) domain in C and

Σ̂k(t) = Σ̂k(tk) +

∫ ζk(tk)

ζk(t)

φ1(t, ·) in C

=: Σ̂k(tk) + hk(t) in C,

where the integral path is an arc from ζk(t) to ζk(tk) in Wk(t). For a fixed t ∈Δk

we have

Σ̂k(t)/
{
1, τ1(t)

}
≈
(
Σ̂k(tk) + hk(t)

)
/
{
1, τ1(tk)

}
≈ Σ̂k(tk)/

{
1, τ1(tk)

}
,

which stands for an equality between the bordered tori. It follows that

R|Δk
≈

⋃
t∈Δk

(
t, Σ̂k(tk)/

{
1, τ1(tk)

})
.

Now let Δk∩Δl �= ∅, k, l= 1,2, . . ., and let (t, z) ∈ R̂|Δk∩Δl
. If we draw an arc

γkl(t) connecting ζk(t) and ζl(t) in Wk(t)∪Wl(t), then the condition ζk|Δk
⊂Wk

yields

Φ1k(t, z)−Φ1l(t, z) =

∫
γkl(t)

φ1(t, ·) =: αkl(t), z ∈ R̂(t).(4.13)

We note that αkl(t) is independent of the choice of γkl(t) in Wk(t) ∪Wl(t) and

is a holomorphic function on Δk ∩Δl such that αkl(t) =−αlk(t).

Given any point t ∈Δk∩Δl∩Δm �= ∅, since γkl(t)◦γlm(t)◦γmk(t) is a closed

curve in the simply connected domain Wk(t)∪Wl(t)∪Wm(t), we have

αkl(t) + αlm(t) + αmk(t) = 0 on Δk ∩Δl ∩Δm.(4.14)

Since the first Cousin problem is solvable on the disk Δ, we find a holomorphic

function αk(t) on Δk, k = 1,2, . . ., such that αkl(t) = αk(t)−αl(t) on Δkl for any

pair {k, l}. Hence,

h(t, z) := Φ1k(t, z)− αk(t), (t, z) ∈ R̂|Δk
,

is independent of k = 1,2, . . ., that is, h(t, z) is the (single-valued) holomorphic

function for (t, z) in the whole R̂. We put

Ŝ(t) := h
(
t, R̂(t)

)
=CZ \

{ ν⋃
j=1

[
α̂j(t), α̂j(t) + i�j

]±
+

∞∑
m,n=−∞

m+ nτ1(t)
}
,

where α̂j(t), j = 1, . . . , ν, is a holomorphic function on Δ. Then Ŝ(t)/{1, τ1(t)} ∼
R(t), t ∈Δ. Since R(t) ∼ R(0), t ∈Δ, we have τ1(t) = τ1(0) and α̂j(t)− α̂1(t) =

α̂j(0)− α̂1(0), t ∈Δ, j = 1, . . . , ν.

If we put aj := α̂j(0)− α̂1(0), then the univalent function H(t, z) := h(t, z)−
α̂1(t) on R̂(t) is written into

H
(
t,R(t)

)
=CZ \

{ ν⋃
j=1

[aj ,aj + i�j ]
± +

∞∑
m,n=−∞

m+ nτ1(0)
}
, t ∈Δ.(4.15)
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It follows that

R(t)∼H
(
t,R(t)

)
/
{
1, τ1(t)

}
=H

(
0,R(0)

)
/
{
1, τ(0)

}
∼R(0), t ∈Δ.(4.16)

Since H(t, z) is holomorphic for (t, z) ∈ R̂ and τ1(t) = τ1(0) for t ∈Δ, we prove

the second step. �

Appendix

To prove Corollary 3.1(1) we fix t0 ∈Δ. By the assumption we have a ball δ̃ of

center t0 in Δ such that R|δ̃ is an (n+ 1)-dimensional Stein manifold. Let δ be

a ball of center t0 such that δ � δ̃. Then we have a strictly plurisubharmonic

exhaustion function ψ(t, z) on R|δ̃ . For a sufficiently large integer k > 1 we set

Rk :=
{
(t, z) ∈R|δ : ψ(t, z)< k

}
=:

⋃
t∈δ

(
t,Rk(t)

)
�R.

Then Rk is a Stein manifold such that ∂Rk is smooth in R|δ and each Rk(t),

t ∈ δ, is an open torus with ν smooth contours C1k(t), . . . ,Cνk(t) in R(t). We

denote by σHk(t) the hyperbolic span for Rk(t). By Theorem 1.2(1), σHk(t) is

plurisubharmonic on δ. Since σHk(t)↘ σH(t) as k→∞ for t ∈ δ, it follows that

σH(t) is plurisubharmonic on δ, and hence, on Δ.

To prove Corollary 3.1(2) let (R, π,Δ) be a holomorphic family with condi-

tions (i), (ii), and (iii). We use the exhaustion method as in the proof of Corol-

lary 3.1(1). Then, by the standard argument under the pluriharmonicity of σH(t)

(which is the limit of the plurisubharmonic function σHk(t)) and condition (iii),

we may assume that there exists an (n+ 1)-dimensional manifold R̃ such that

R =
⋃

t∈Δ(t,R(t)) ⊂ R̃ =
⋃

t∈Δ(t, R̃(t)) and ∂R(t), t ∈Δ, consists of ν smooth

contours Cj(t) in R̃(t). Therefore, Corollary 3.1(2) holds locally in Δ by the

same argument as that of the proof of the first step in Theorem 1.2 under the

pluriharmonicity of σH(t) in Δ. To go from locally in Δ to globally on Δ for

Corollary 3.1(2), we introduce the κ-cycle.

Let R be a bordered torus with smooth contours C1, . . . ,Cν . We denote by

Rκ the Kerékjártó–Stöılow compactification of R; in short, we consider each Cj

as one point in Rκ. Let γ be a closed curve in R or consist of a finite number of

arcs {γk}k=1,...,m in R whose closure γ∗ in Rκ is a closed curve in Rκ. We see

that such γ in the second case yields a closed curve γ′ in R which is homologous

to γ∗ in Rκ. If γ′′ is another closed curve in R homologous to γ∗ in Rκ, then it

holds that γ′ ∼ γ′′ in R modulo dividing cycles and vice versa. We call such γ in R

the κ-cycle in R, which is identified with γ∗ in Rκ or with the closed curve γ′ in

R stated above. For two κ-cycles γ1 and γ2 in R, if γ∗
1 ∼ γ∗

2 in Rκ, then we write

γ1 ∼κ γ2 in R. For two κ-cycles A,B in R with A×B = 1 in R, if A∗,B∗ is the

canonical homology basis of Rκ, then we call {A,B} the κ-canonical homology

basis of R.
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REMARK 2

The κ-canonical homology basis {A,B} of R uniquely induces the L1-differential

φ1(z) for (R,A) and the modulus τ1 :=
∫
B
φ1.

By condition (ii) we have a continuous section ξ : t ∈ Δ → R(t) of R and a

κ-canonical homology basis {A(t),B(t)} of R(t) with A(t) ∩B(t) = ξ(t), t ∈Δ,

which moves continuously in Rκ with t ∈Δ. We uniquely have the L1-differential

φ1(t, z) for (R(t),A(t)). We put τ1(t) :=
∫
B(t)

φ1(t, z). SinceR is locally trivial, we

see that φ1(t, z) is holomorphic for (t, z) ∈R and τ1(t) = τ1(0) for t ∈Δ. Using

Remark 2 and the same argument as that of the second step of the proof of

Theorem 1.2(2), we have (4.13) and (4.14) for Δ(⊂C
n
t ). Then by the solvability

of the first Cousin problem in the pseudoconvex domain Δ, we have (4.15) and

(4.16) for Δ. Then, similar to Theorem 1.2(2) we have Corollary 1.3(2). �
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