Hyperbolic span and pseudoconvexity

Sachiko Hamano, Masakazu Shiba, and Hiroshi Yamaguchi

To Professor Yukio Kusunoki on the occasion of his 90th birthday

Abstract

A planar open Riemann surface R admits the Schiffer span $s(R, \zeta)$ to a point $\zeta \in R$. M. Shiba showed that an open Riemann surface R of genus one admits the hyperbolic span $\sigma_{H}(R)$. We establish the variation formulas of $\sigma_{H}(t):=\sigma_{H}(R(t))$ for the deforming open Riemann surface $R(t)$ of genus one with complex parameter t in a disk Δ of center 0 , and we show that if the total space $\mathcal{R}=\bigcup_{t \in \Delta}(t, R(t))$ is a two-dimensional Stein manifold, then $\sigma_{H}(t)$ is subharmonic on Δ. In particular, $\sigma_{H}(t)$ is harmonic on Δ if and only if \mathcal{R} is biholomorphic to the product $\Delta \times R(0)$.

1. Introduction

Let R_{0} be an open Riemann surface of genus one, and let $\chi_{0}=\left\{A_{0}, B_{0}\right\}$ be a fixed canonical homology basis of R_{0} modulo dividing cycles. Consider a triplet (R, χ, i) consisting of a (closed) torus R, a canonical homology basis $\chi=\{A, B\}$ of R, and a conformal embedding i of R_{0} into R such that $i\left(A_{0}\right)$ (resp., $i\left(B_{0}\right)$) is homologous to the cycle A (resp., B). We say that two such triplets (R, χ, i) and $\left(R^{\prime}, \chi^{\prime}, i^{\prime}\right)$ are equivalent if there is a conformal mapping f of R onto R^{\prime} with $f \circ i=i^{\prime}$ on R_{0}. Each equivalence class is denoted by $[R, \chi, i]$ and is called a closing of $\left(R_{0}, \chi_{0}\right)$.

As is well known, the closing $[R, \chi, i]$ carries a unique holomorphic differential ϕ^{R} with $\int_{A} \phi^{R}=1$. It will be called the normal differential for (R, χ). We put

$$
\tau[R, \chi, i]=\int_{B} \phi^{R}
$$

which is referred to as the modulus of $[R, \chi, i]$. We denote by $\mathcal{C}\left(R_{0}, \chi_{0}\right)$ the set of closings of $\left(R_{0}, \chi_{0}\right)$ and put

$$
\mathfrak{M}\left(R_{0}, \chi_{0}\right)=\left\{\tau \in \mathbb{C} \mid \tau=\tau[R, \chi, i],[R, \chi, i] \in \mathcal{C}\left(R_{0}, \chi_{0}\right)\right\} .
$$

The set $\mathfrak{M}\left(R_{0}, \chi_{0}\right)$ obviously lies in the upper half-plane \mathbb{H}.

THEOREM 1.1 (M. SHIBA, [10, P. 306], [11, P. 123])
(1) $\mathfrak{M}\left(R_{0}, \chi_{0}\right)$ is a closed disk (which may degenerate to a singleton); there exists $\tau^{*} \in \mathbb{H}$ and $\rho \in \mathbb{R}$ such that $0 \leq \rho<\Im \tau^{*}$ and

$$
\mathfrak{M}\left(R_{0}, \chi_{0}\right)=\left\{\tau \in \mathbb{H}| | \tau-\tau^{*} \mid \leq \rho\right\}
$$

(2) The hyperbolic diameter $\sigma_{H}\left(R_{0}\right)$ of $\mathfrak{M}\left(R_{0}, \chi_{0}\right)$ in \mathbb{H} is determined solely by the surface R_{0}; it is invariant under any change of canonical homology basis of R_{0}.

We call $\mathfrak{M}\left(R_{0}, \chi_{0}\right)$ the moduli disk for $\left(R_{0}, \chi_{0}\right)$ and call $\sigma_{H}\left(R_{0}\right)$ the hyperbolic span for the open torus R_{0}. We shall study how $\sigma_{H}\left(R_{0}(t)\right)$ varies when $R_{0}(t)$ deforms with complex parameter t from the several complex variables point of view.

Let $(\widetilde{\mathcal{R}}, \widetilde{\pi}, \Delta)$ be a holomorphic family such that $\widetilde{\mathcal{R}}$ is a two-dimensional complex manifold, $\Delta=\left\{t \in \mathbb{C}_{t}| | t \mid<r\right\}$ is a disk, and $\widetilde{\pi}$ is a holomorphic projection from $\widetilde{\mathcal{R}}$ onto Δ. We assume that the fiber $\widetilde{R}(t):=\widetilde{\pi}^{-1}(t), t \in \Delta$, is noncompact, irreducible, and nonsingular in $\widetilde{\mathcal{R}}$, so that $\widetilde{R}(t)$ is an open Riemann surface. Let $(\mathcal{R}, \pi, \Delta)$ be a holomorphic subfamily of $(\widetilde{\mathcal{R}}, \widetilde{\pi}, \Delta)$ such that $\mathcal{R} \subset \widetilde{\mathcal{R}}, \partial \mathcal{R}$ in $\widetilde{\mathcal{R}}$ is a C^{ω} smooth real three-dimensional (open) surface, $R(t):=\pi^{-1}(t) \Subset \widetilde{R}(t), t \in \Delta$, and $R(t)$ is a bordered Riemann surface of genus one with C^{ω} smooth boundary $\partial R(t)$ in $\widetilde{R}(t)$. We set

$$
\mathcal{R}=\bigcup_{t \in \Delta}(t, R(t)) \subset \widetilde{\mathcal{R}}, \quad \partial \mathcal{R}=\bigcup_{t \in \Delta}(t, \partial R(t)) \subset \widetilde{\mathcal{R}}
$$

We identify \mathcal{R} with the deformation of the open torus $R(t)$,

$$
\mathcal{R}: t \in \Delta \rightarrow R(t) \Subset \widetilde{R}(t)
$$

Each $R(t), t \in \Delta$, admits the hyperbolic span $\sigma_{H}(t):=\sigma_{H}(R(t))$. Then we have the following main theorem.

THEOREM 1.2

If \mathcal{R} is a pseudoconvex domain in $\widetilde{\mathcal{R}}$, then
(1) the hyperbolic span $\sigma_{H}(t)$ is subharmonic on Δ,
(2) $\sigma_{H}(t)$ is harmonic on Δ if and only if $(\mathcal{R}, \pi, \Delta)$ is a trivial holomorphic family; $(\mathcal{R}, \pi, \Delta) \approx \Delta \times R(0)$.

In the appendix we prove the following corollary as a generalization of this theorem. Let $(\mathcal{R}, \pi, \Delta)$ be a holomorphic family such that \mathcal{R} is an $(n+1)$-dimensional complex manifold, Δ is a domain in \mathbb{C}_{t}^{n}, and $R(t)=\pi^{-1}(t), t \in \Delta$, is irreducible and nonsingular in \mathcal{R} such that $R(t)$ is an open torus with finite ν (independent of $t \in \Delta$) ideal boundary components. We denote by $s_{H}(t)$ the hyperbolic span for $R(t)$.

COROLLARY 1.3

(1) Assume that, for each $t_{0} \in \Delta$, there exists a small ball δ of center t_{0} in Δ such that $\left.\mathcal{R}\right|_{\delta}$ is a Stein manifold. Then $s_{H}(t)$ is plurisubharmonic on Δ.
(2) Assume that
(i) \mathcal{R} is a Stein manifold and Δ is a pseudoconvex domain in \mathbb{C}_{t}^{n},
(ii) \mathcal{R} is a topologically trivial family modulo dividing cycles,
(iii) the ideal boundary component of $R(t), t \in \Delta$, is nonparabolic.

Then $s_{H}(t)$ is pluriharmonic on Δ if and only if $(\mathcal{R}, \pi, \Delta)$ is a trivial holomorphic family.

2. Variation formulas of the second order for $\Im \tau_{1}(t)$ and $\Im \tau_{0}(t)$

Let R be a bordered Riemann surface of genus one in a Riemann surface \widetilde{R} such that $R \Subset \widetilde{R}$ and ∂R consists of C^{ω} smooth contours, $\partial R=C_{1}+\cdots+C_{\nu}$. Let ϕ be a holomorphic differential on $\bar{R}=R \cup \partial R$, precisely, on a neighborhood of \bar{R} in \widetilde{R}. If ϕ is semiexact on R and $\Im \phi=0$ on $C_{j}, j=1, \ldots, \nu$, then ϕ is called a canonical differential on R in the sense of Kusunoki; in other words, on a thin tubular neighborhood V_{j} of C_{j}, the branch on V_{j} of the abelian integral $\Phi(z)=\int_{\zeta_{0}}^{z} \phi$ is a single-valued holomorphic function on V_{j} such that $\Im \Phi(z)=$ const on C_{j} (see [7, p. 241], [1, Chapter III]).

Let $\chi=\{A, B\}$ be a canonical homology basis of R modulo dividing cycles such that the orientation of A and B are equal to the x - and y-axis in \mathbb{C}_{z}. It is simply written $A \times B=1$. For $s,-1<s \leq 1$, there uniquely exists a holomorphic differential ϕ_{s} on R such that
(i) $e^{-\frac{\pi i}{2} s} \phi_{s}$ is a canonical differential on R,
(ii) $\int_{A} \phi_{s}=1$.

We set $\tau_{s}=\int_{B} \phi_{s}$. Then there uniquely exists a closing $\left[R_{s},\left\{A_{s}, B_{s}\right\}, i_{s}\right]$ of (R, χ) such that the transplant of ϕ_{s} by i_{s}^{-1} extends to the normal differential $\phi^{R_{s}}$ for $\left(R_{s},\left\{A_{s}, B_{s}\right\}\right)$, so that $\tau\left[R_{s},\left\{A_{s}, B_{s}\right\}, i_{s}\right]=\tau_{s}$. In the special case $s=1$ (resp., 0) we simply call ϕ_{1} (resp., ϕ_{0}) the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential for (R, A), so that $\Re \phi_{1}=0$ (resp., $\Im \phi_{0}=0$) on C_{j}, and $\tau_{1}=\int_{B} \phi_{1}$ (resp., $\tau_{0}=\int_{B} \phi_{0}$).

THEOREM 2.1 ([10, P. 306], [11, P. 123])
(1) $\Re \tau_{1}=\Re \tau_{0}$.
(2) $\partial \mathfrak{M}(R, \chi)=\left\{\tau \in \mathbb{H}| | \tau-\tau^{*} \mid=\rho\right\}$, where

$$
\tau^{*}=\frac{1}{2}\left(\tau_{1}+\tau_{0}\right), \quad \rho=\frac{1}{2 i}\left(\tau_{1}-\tau_{0}\right)>0 .
$$

(3) $\tau_{s}=\tau^{*}+\rho e^{\left(s-\frac{1}{2}\right) \pi i},-1<s \leq 1$.
(4) The hyperbolic span $\sigma_{H}(R)$ is written into $\sigma_{H}(R)=\log \frac{\Im \tau_{1}}{\Im \tau_{0}}$.

Now let $(\widetilde{\mathcal{R}}, \widetilde{\pi}, \Delta)$ be the holomorphic family stated in Section 1 for Theorem 1.2. For $t \in \Delta$, we fix a canonical homology basis $\chi(t)=\{A(t), B(t)\}$ of $R(t)$ modulo dividing cycles such that $A(t)$ and $B(t)$ move continuously in \mathcal{R} with $t \in \Delta$. Then
we have the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential $\phi_{1}(t, z)$ (resp., $\phi_{0}(t, z)$) for $(R(t), A(t)$), so that $\int_{A(t)} \phi_{1}(t, z)=\int_{A(t)} \phi_{0}(t, z)=1$. We set

$$
\tau_{1}(t)=\int_{B(t)} \phi_{1}(t, z), \quad \tau_{0}(t)=\int_{B(t)} \phi_{0}(t, z) .
$$

As usual we write $\phi_{i}(t, z)=f_{i}(t, z) d z, i=1,0$, by use of the local parameter of $R(t)$. Then we have the following variation formulas for $\Im \tau_{1}(t)$ and $\Im \tau_{0}(t)$.

LEMMA 2.2
For $t \in \Delta$,
(1) $\frac{\partial^{2} \Im \tau_{1}(t)}{\partial t \partial \bar{t}}=\frac{1}{2} \int_{\partial R(t)} k_{2}(t, z)\left|f_{1}(t, z)\right|^{2}|d z|+\left\|\frac{\partial \phi_{1}(t, z)}{\partial \bar{t}}\right\|_{R(t)}^{2}$,
(2) $\frac{\partial^{2} \Im \tau_{0}(t)}{\partial t \partial \bar{t}}=-\left(\frac{1}{2} \int_{\partial R(t)} k_{2}(t, z)\left|f_{0}(t, z)\right|^{2}|d z|+\left\|\frac{\partial \phi_{0}(t, z)}{\partial \bar{t}}\right\|_{R(t)}^{2}\right)$,
where

$$
\begin{aligned}
k_{2}(t, z) & =\mathcal{L} \varphi(t, z) /\left|\frac{\partial \varphi}{\partial z}\right|^{3} \quad \text { on } \partial \mathcal{R}, \\
\mathcal{L} \varphi(t, z) & =\frac{\partial^{2} \varphi}{\partial t \partial \bar{t}}\left|\frac{\partial \varphi}{\partial z}\right|^{2}-2 \Re\left\{\frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \bar{z}} \frac{\partial^{2} \varphi}{\partial \bar{t} \partial z}\right\}+\left|\frac{\partial \varphi}{\partial t}\right|^{2} \frac{\partial^{2} \varphi}{\partial z \partial \bar{z}} \quad \text { on } \partial \mathcal{R}, \\
\varphi(t, z) & \text { is the } C^{2} \text { smooth defining function for } \partial \mathcal{R} \text { in } \widetilde{\mathcal{R}} .
\end{aligned}
$$

The Levi form $\mathcal{L} \varphi(t, z)$ on $\partial \mathcal{R}$ depends on the choice of the defining function $\varphi(t, z)$ of $\partial \mathcal{R}$, but $k_{2}(t, z)$ does not depend on it. Further, $k_{2}(t, z) /|d z|$ is a form on $\partial \mathcal{R}$ with respect to the holomorphic family $(\mathcal{R}, \pi, \Delta)$, so that $k_{2}(t, z)\left|f_{i}(t, z)\right|$, $i=1,0$, is a real-valued function on $\partial \mathcal{R}$ (see [8, (1.2)]).

3. Proof of Lemma 2.2

For Lemma 2.2, it suffices to prove it at $t=0$. By Gunning and Narasimhan [2], $\widetilde{R}(0)$ is conformally equivalent to a sheeted Riemann surface \mathbf{D} over \mathbb{C}_{z} without branch points. Thus, if necessary, take a smaller disk Δ (of center 0) in \mathbb{C}_{t}. We may assume the following.
(a) \mathcal{R} is an unramified domain over $\Delta \times \mathbb{C}_{z}$ (i.e., $\mathcal{R} \subset \Delta \times \mathbf{D}$) so that each $R(t), t \in \Delta$, is a relatively compact domain of genus one in \mathbf{D} such that $\partial R(t)$ consists of C^{ω} smooth contours $C_{j}(t), j=1, \ldots, \nu$. We write $\overline{R(t)}=R(t) \cup \partial R(t)=$ $R(t) \cup\left(\bigcup_{j=1}^{\nu} C_{j}(t)\right) \Subset \mathbf{D}$.
(b) $A(t)=A(0)$ and $B(t)=B(0)$ for $t \in \Delta$ such that $A(0)$ and $B(0)$ are smooth Jordan curves and $A(0) \cap B(0)$ consists of a single point ζ_{0} with $A(0) \times$ $B(0)=1$. We write $A(0)=A$ and $B(0)=B$.

For $t \in \Delta$, we have the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential $\phi_{1}(t, z)$ (resp., $\phi_{0}(t, z)$) for $(R(t), A)$. If necessary, take a smaller disk Δ. Since each $C_{j}(t)$ is of class C^{ω} in $\widetilde{R}(0)$, we have a tubular neighborhood V_{j} of $C_{j}(0)$ in \mathbf{D} such that $\phi_{1}(t, z)$ (resp.,
$\left.\phi_{0}(t, z)\right)$ is holomorphically extended to $R(0) \cup V_{j}$. We set

$$
\begin{equation*}
\mathbf{V}=\bigcup_{j=1}^{\nu} V_{j} \quad \text { and } \quad \mathbf{R}=R(0) \cup \mathbf{V}(\Subset \mathbf{D}) . \tag{3.1}
\end{equation*}
$$

Then $\phi_{1}(t, z)$ (resp., $\phi_{0}(t, z)$) is defined in the product domain $\Delta \times \mathbf{R}$ and is holomorphic for $z \in \mathbf{R}$, but not for $t \in \Delta$ in general.

Let us prove Lemma 2.2(1). Each $\phi_{1}(t, z), t \in \Delta$, is written in the form

$$
\phi_{1}(t, z)=f_{1}(t, z) d z \quad \text { on } \mathbf{R},
$$

where $f_{1}(t, z)$ is a single-valued holomorphic function for z on \mathbf{R}. Fix $t \in \Delta$, and consider the abelian integral $\Phi_{1}(t, z)=\int_{\zeta_{0}}^{z} \phi_{1}(t, \cdot)$ on \mathbf{R}. The branch $\Phi_{1}(t, z)$ with $\Phi_{1}\left(t, \zeta_{0}\right)=0$ is a single-valued holomorphic function for z on $\mathbf{R} \backslash(A \cup B)$. We have $\partial(R(0) \backslash(A \cup B))=\partial R(0)+\left[A^{+} B^{+} A^{-} B^{-}\right]$, where $\left[A^{+} B^{+} A^{-} B^{-}\right]$is a simple closed curve in $R(0)$. From Cauchy's theorem we have

$$
\int_{\partial R(0)+\left[A^{+} B^{+} A^{-} B^{-}\right]} \Phi_{1}(t, z) f_{1}(0, z) d z=0 .
$$

Since $\phi_{1}(t, z)$ is a semiexact holomorphic differential on $R(0)$, we have by the bilinear relation that

$$
\begin{align*}
\int_{A^{+} A^{-}} \Phi_{1}(t, z) f_{1}(0, z) d z & =\left(-\int_{B} \phi_{1}(t, z)\right)\left(\int_{A} \phi_{1}(0, z)\right)=-\tau_{1}(t), \\
\int_{B^{+} B^{-}} \Phi_{1}(t, z) f_{1}(0, z) d z & =\left(\int_{A} \phi_{1}(t, z)\right)\left(\int_{B} \phi_{1}(0, z)\right)=\tau_{1}(0) \tag{3.2}\\
\therefore \tau_{1}(t)-\tau_{1}(0) & =\int_{\partial R(0)} \Phi_{1}(t, z) d \Phi_{1}(0, z), \quad t \in \Delta .
\end{align*}
$$

We set

$$
\Phi_{1}(t, z)=U_{1}(t, z)+i U_{1}^{*}(t, z) \quad \text { on } \mathbf{R} \backslash(A \cup B),
$$

where $U_{1}(t, z)$ and $U_{1}^{*}(t, z), t \in \Delta$, are single-valued harmonic functions on $\mathbf{R} \backslash$ $(A \cup B)$. Since $\phi_{1}(0, z)$ is the L_{1}-differential on $R(0)$, we have

$$
\begin{aligned}
\int_{C_{j}(0)} d U_{1}^{*}(0, z) & =0 \quad \text { and } \\
U_{1}(0, z) & =\operatorname{const} a_{j}(0) \quad \text { on } C_{j}(0)
\end{aligned}
$$

so that

$$
\begin{aligned}
\Im \tau_{1}(t)-\Im \tau_{1}(0) & =\sum_{j=1}^{\nu} \int_{C_{j}(0)} U_{1}(t, z) d U_{1}^{*}(0, z), \quad t \in \Delta, \\
\therefore \frac{\partial^{2} \Im \tau_{1}(t)}{\partial t \partial \bar{t}} & =\sum_{j=1}^{\nu} \int_{C_{j}(0)} \frac{\partial^{2} U_{1}(t, z)}{\partial t \partial \bar{t}} d U_{1}^{*}(0, z), \quad t \in \Delta .
\end{aligned}
$$

Since $U_{1}(t, z)=$ const $a_{j}(t)$ on $C_{j}(t)$, we apply Hamano's formula (see [3, (1.2)]) to obtain

$$
\begin{align*}
\frac{\partial^{2} U_{1}}{\partial t \partial \bar{t}} d U_{1}^{*}= & 2 k_{2}(t, z)\left|\frac{\partial U_{1}}{\partial z}\right|^{2}|d z|+4 \Im\left\{\frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right\} \tag{3.3}\\
& +\frac{\partial^{2} a_{j}}{\partial t \partial \bar{t}} d U_{1}^{*}-4 \Im\left\{\frac{\partial a_{j}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right\} \quad \text { along } C_{j}(t)
\end{align*}
$$

It follows that

$$
\begin{aligned}
\frac{\partial^{2} \Im \tau_{1}}{\partial t \partial \bar{t}}(0)= & 2 \int_{\partial R(0)} k_{2}(0, z)\left|\frac{\partial U_{1}}{\partial z}\right|^{2}|d z|+4 \Im\left\{\int_{\partial R(0)} \frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right\} \\
& +\sum_{j=1}^{\nu} \frac{\partial^{2} a_{j}}{\partial t \partial \bar{t}} \int_{C_{j}(0)} d U_{1}^{*}-4 \Im\left\{\sum_{j=1}^{\nu} \frac{\partial a_{j}}{\partial t} \int_{C_{j}(0)} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right\} \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

where each integrand is evaluated at $t=0$ and $z \in \partial R(0)$ or $C_{j}(0)$. From $\frac{\partial U_{1}}{\partial z}=$ $\frac{1}{2} f_{1}$ on $\Delta \times \mathbf{V}$ we have $I_{1}=\frac{1}{2} \int_{\partial R(0)} k_{2}(0, z)\left|f_{1}(0, z)\right|^{2}|d z|$. Since $U_{1}^{*}(t, z), t \in \Delta$, is single-valued in V_{j}, we have $\int_{C_{j}(0)} d U_{1}^{*}(t, z)=0$, and $I_{3}=0$. Since $U_{1}(t, z)$ is of class C^{ω} for $(t, z) \in \Delta \times V_{j}$, we have $\int_{C_{j}(0)} \frac{\partial^{2} U_{1}(t, z)}{\partial t \partial z} d z=\frac{1}{2} \frac{\partial}{\partial t} \int_{C_{j}(0)} d \Phi_{1}(t, z)=0$, and $I_{4}=0$. It remains to calculate I_{2}. Since $\frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial t \partial z}, t \in \Delta$, is a single-valued function of class C^{ω} on $\mathbf{R} \backslash(A \cup B)$, we have by Green's formula that

$$
\begin{align*}
& \int_{\partial R(0)+\left[A^{+} B^{+} A^{-} B^{-}\right]} \frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z \\
& \quad=\iint_{R(0) \backslash(A \cup B)} d\left(\frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right), \quad t \in \Delta . \tag{3.4}
\end{align*}
$$

Since $d_{z}\left(\frac{\partial U_{1}}{\partial t}\right)=\frac{\partial}{\partial t} \Re\left\{\phi_{1}(t, z)\right\}$ is a semiexact harmonic differential on $R(t)$, we have

$$
\begin{aligned}
\int_{A^{+} A^{-}} \frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z & =-\left(\frac{\partial}{\partial t} \Re\left\{\int_{B} \phi_{1}(t, z)\right\}\right)\left(\frac{1}{2} \frac{\partial}{\partial \bar{t}} \int_{A} \phi_{1}(t, z)\right) \\
& =-\frac{1}{2}\left(\frac{\partial}{\partial t} \Re \tau_{1}(t)\right)\left(\frac{\partial}{\partial \bar{t}} 1\right)=0 .
\end{aligned}
$$

Similarly,

$$
\int_{B^{+} B^{-}} \frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z=\left(\frac{\partial}{\partial t} \Re\left\{\int_{A} \phi_{1}(t, z)\right\}\right)\left(\frac{1}{2} \frac{\partial}{\partial \bar{t}} \int_{B} \phi_{1}(t, z)\right)=0 .
$$

Since $U_{1}(t, z)$ is harmonic for $z \in R(0)$, we have $\frac{\partial U_{1}}{\partial z} d z=\frac{1}{2} \phi_{1}$ and

$$
\begin{aligned}
\iint_{R(0) \backslash(A \cup B)} d\left(\frac{\partial U_{1}}{\partial t} \frac{\partial^{2} U_{1}}{\partial \bar{t} \partial z} d z\right) & =\iint_{R(0)}\left(\left|\frac{\partial^{2} U_{1}}{\partial t \partial \bar{z}}\right|^{2}+\frac{\partial U_{1}}{\partial t} \frac{\partial^{3} U_{1}}{\partial \bar{t} \partial z \partial \bar{z}}\right) d \bar{z} \wedge d z \\
& =\frac{i}{4}\left\|\frac{\partial \phi_{1}}{\partial \bar{t}}\right\|_{R(0)}^{2}
\end{aligned}
$$

By (3.4) we have $I_{2}=\left\|\frac{\partial \phi_{1}}{\partial t}(0, z)\right\|_{R(0)}^{2}$, and

$$
\frac{\partial^{2} \Im \tau_{1}}{\partial t \partial \bar{t}}(0)=\frac{1}{2} \int_{\partial R(0)} k_{2}(0, z)\left|f_{1}(0, z)\right|^{2}|d z|+\left\|\frac{\partial \phi_{1}}{\partial \bar{t}}(0, z)\right\|_{R(0)}^{2},
$$

which is formula (1) at $t=0$.
Let us prove Lemma 2.2(2) by a method similar to that for (1). We write

$$
\phi_{0}(t, z)=f_{0}(t, z) d z \quad \text { on } \mathbf{R},
$$

where $f_{0}(t, z), t \in \Delta$, is a single-valued holomorphic function for $z \in \mathbf{R}$. We consider the abelian integral $\Phi_{0}(t, z)$ of $\phi_{0}(t, z)$ on \mathbf{R} with $\Phi_{0}\left(t, \zeta_{0}\right)=0$, which is a single-valued holomorphic function on $\mathbf{R} \backslash(A \cup B)$. By the same way we obtained (3.2), we have

$$
\tau_{0}(t)-\tau_{0}(0)=\int_{\partial R(0)} \Phi_{0}(t, z) f_{0}(0, z) d z, \quad t \in \Delta .
$$

We set, for $t \in \Delta$,

$$
\Phi_{0}(t, z)=U_{0}(t, z)+i U_{0}^{*}(t, z) \quad \text { on } \mathbf{R} \backslash(A \cup B) .
$$

Since $\phi_{0}(0, z)$ is the L_{0}-differential for $(R(0), A), \Phi_{0}(t, z)$ is a single-valued holomorphic function on $\mathbf{R} \backslash(A \cup B)$ with $U_{0}^{*}(0, z)=\operatorname{const} b_{j}(0)$ on $C_{j}(0)$. We have

$$
\begin{aligned}
\Im \tau_{0}(t)-\Im \tau_{0}(0) & =\sum_{j=1}^{\nu} \int_{C_{j}(0)} U_{0}^{*}(t, z) d U_{0}(0, z) \\
& =-\sum_{j=1}^{\nu} \int_{C_{j}(0)} U_{0}^{*}(t, z) d\left(U_{0}^{*}(0, z)\right)^{*}, \quad t \in \Delta, \\
\therefore \frac{\partial^{2} \Im \tau_{0}(t)}{\partial t \partial \bar{t}} & =-\sum_{j=1}^{\nu} \int_{C_{j}(0)} \frac{\partial^{2} U_{0}^{*}(t, z)}{\partial t \partial \bar{t}} d\left(U_{0}^{*}(0, z)\right)^{*}, \quad t \in \Delta .
\end{aligned}
$$

Since $U_{0}^{*}(t, z)=$ const $b_{j}(t)$ on $C_{j}(t)$, similarly to (3.3) we have

$$
\begin{aligned}
\frac{\partial^{2} \Im \tau_{0}}{\partial t \partial \bar{t}}(0)= & -\left(2 \int_{\partial R(0)} k_{2}(0, z)\left|\frac{\partial U_{0}^{*}}{\partial z}\right|^{2}|d z|+4 \Im\left\{\int_{\partial R(0)} \frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z\right\}\right. \\
& \left.+\sum_{j=1}^{\nu} \frac{\partial^{2} b_{j}}{\partial t \partial \bar{t}} \int_{C_{j}(0)} d\left(U_{0}^{*}\right)^{*}-4 \Im\left\{\sum_{j=1}^{\nu} \frac{\partial b_{j}}{\partial t} \int_{C_{j}(0)} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z\right\}\right) \\
\equiv & -\left(J_{1}+J_{2}+J_{3}+J_{4}\right)
\end{aligned}
$$

where each integrand is evaluated at $t=0$ and $z \in \partial R(0)$ or $C_{j}(0)$. Since $\frac{\partial U_{0}^{*}}{\partial z}=$ $\frac{1}{2 i} f_{0}$, we have $J_{1}=\frac{1}{2} \int_{\partial R(0)} k_{2}(0, z)\left|f_{0}(0, z)\right|^{2}|d z|$. By the same reasons that $I_{3}=$ $I_{4}=0$ we have $J_{3}=J_{4}=0$. For J_{2} we have by Green's formula

$$
\int_{\partial R(0)+\left[A^{+} B^{+} A^{-} B^{-}\right]} \frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z=\iint_{R(0) \backslash(A \cup B)} d\left(\frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z\right), \quad t \in \Delta .
$$

Since $\int_{A} \phi_{0}(t, z)=1$ for $t \in \Delta$, we have

$$
\begin{aligned}
& \int_{A^{+} A^{-}} \frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z=-\left(\frac{\partial}{\partial t} \Im\left\{\int_{B} \phi_{0}(t, z)\right\}\right) \frac{1}{2 i}\left(\frac{\partial}{\partial \bar{t}} \int_{A} \phi_{0}(t, z)\right)=0, \\
& \int_{B^{+} B^{-}} \frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z=\left(\frac{\partial}{\partial t} \Im\left\{\int_{A} \phi_{0}(t, z)\right\}\right) \frac{1}{2 i}\left(\frac{\partial}{\partial \bar{t}} \int_{B} \phi_{0}(t, z)\right)=0 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{\partial R(0)} \frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z & =\iint_{R(0) \backslash\{A \cup B\}} d\left(\frac{\partial U_{0}^{*}}{\partial t} \frac{\partial^{2} U_{0}^{*}}{\partial \bar{t} \partial z} d z\right) \\
& =\frac{i}{4}\left\|\frac{\partial \phi_{0}(t, z)}{\partial \bar{t}}\right\|_{R(0)}^{2}, \quad t \in \Delta,
\end{aligned}
$$

and $J_{2}=\left\|\frac{\partial \phi_{0}}{\partial t}(0, z)\right\|_{R(0)}^{2}$. We thus have (2) at $t=0$.
COROLLARY 3.1
If the total space \mathcal{R} is pseudoconvex in $\widetilde{\mathcal{R}}$, then
(1) $\Im \tau_{1}(t)$ is subharmonic on Δ,
(2) $\Im \tau_{0}(t)$ is superharmonic on Δ,
(3) the Euclidean radius $\rho(t)$ of the moduli disk $\mathfrak{M}(R(t), \chi(t))$ is subharmonic on Δ.

Proof
Since \mathcal{R} is pseudoconvex in $\widetilde{\mathcal{R}}$, we have $\mathcal{L} \varphi(t, z) \geq 0$ on $\partial \mathcal{R}$. It follows from Lemma 2.2 that, for $t \in \Delta$,

$$
\begin{equation*}
\frac{\partial^{2} \Im \tau_{1}(t)}{\partial t \partial \bar{t}} \geq\left\|\frac{\partial \phi_{1}(t, z)}{\partial \bar{t}}\right\|_{R(t)}^{2} \geq 0, \quad \frac{\partial^{2} \Im \tau_{0}(t)}{\partial t \partial \bar{t}} \leq-\left\|\frac{\partial \phi_{0}(t, z)}{\partial \bar{t}}\right\|_{R(t)}^{2} \leq 0 \tag{3.5}
\end{equation*}
$$

which proves (1) and (2). These inequalities with Theorem 2.1(2) yield (3).

REMARK 1
In the case of deforming planar open Riemann surfaces, we showed the variation formulas of type (1) and (2) of Lemma 2.2, for the Schiffer span (see [9] for the definition) in [4], and for the harmonic span in [6]. In [5] we showed the relation between both spans. We showed further in [3] and [6] that, for the deformation of an open Riemann surface of positive genus, a formula of type (1) holds but a formula of type (2) does not hold. Formulas (1) and (2) in Lemma 2.2 with the remarkable contrast are the first example in the case of the deforming nonplanar open Riemann surface.

4. Proof of the main theorem

Let R be a bordered Riemann surface of genus one with C^{ω} smooth boundary in a larger $\widetilde{R}, R \Subset \widetilde{R}$, and let $\{A, B\}$ be a canonical homology basis of R modulo dividing cycles. We denote by ϕ_{1} (resp., ϕ_{0}) the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential for
(R, A). From Theorem 2.1(1) and (2) we have

$$
\int_{B} \phi_{1}=\tau_{1}:=\xi+i \eta_{1}, \quad \int_{B} \phi_{0}=\tau_{0}:=\xi+i \eta_{0}
$$

where $i=\sqrt{-1}$ and ξ, η_{1}, η_{0} are real numbers with $\eta_{1}>\eta_{0}>0$. Consider any canonical homology basis $\left\{A^{\prime}, B^{\prime}\right\}$ of R :

$$
\left\{\begin{array}{l}
A^{\prime}=m A+n B \\
B^{\prime}=m^{\prime} A+n^{\prime} B
\end{array} \quad\right. \text { modulo dividing cycles }
$$

where $m, n, m^{\prime}, n^{\prime} \in \mathbb{Z}$ with $m n^{\prime}-n m^{\prime}=1$. Then we have the $L_{1^{-}}$and $L_{0^{-}}$ differentials ψ_{1} and ψ_{0} for $\left(R, A^{\prime}\right): \int_{A^{\prime}} \psi_{1}=\int_{A^{\prime}} \psi_{0}=1$, and

$$
\int_{B^{\prime}} \psi_{1}=\tau_{1}^{\prime}:=\alpha+i \beta_{1}, \quad \int_{B^{\prime}} \psi_{0}=\tau_{0}^{\prime}:=\alpha+i \beta_{0}
$$

respectively, where $\alpha, \beta_{1}, \beta_{0}$ are real numbers with $\beta_{1}>\beta_{0}>0$. Then we have the following result.

LEMMA 4.1
We have

$$
\begin{align*}
& \begin{cases}\psi_{1}=\frac{1}{X}\left((m+n \xi) \phi_{1}-i n \eta_{1} \phi_{0}\right) & \text { on } R, \\
\psi_{0}=\frac{1}{X}\left((m+n \xi) \phi_{0}-i n \eta_{0} \phi_{1}\right) & \text { on } R,\end{cases} \tag{4.1}\\
& \left\{\begin{array}{l}
\alpha=\frac{1}{X}\left((m+n \xi)\left(m^{\prime}+n^{\prime} \xi\right)+n n^{\prime} \eta_{1} \eta_{0}\right), \\
\beta_{1}=\frac{1}{X} \eta_{1}, \\
\beta_{0}=\frac{1}{X} \eta_{0},
\end{array}\right. \tag{4.2}
\end{align*}
$$

where

$$
X=(m+n \xi)^{2}+n^{2} \eta_{1} \eta_{0}>0 .
$$

Proof
From the uniqueness of the L_{1}-differential for $\left(R, A^{\prime}\right), \psi_{1}$ must be written in the form

$$
\left\{\begin{array}{l}
\psi_{1}=a \phi_{1}+i b \phi_{0} \quad \text { on } R \text { for some } a, b \in \mathbb{R} \\
\int_{A^{\prime}} \psi_{1}=1
\end{array}\right.
$$

We have

$$
\begin{aligned}
\int_{A^{\prime}} \psi_{1} & =\int_{m A+n B} a \phi_{1}+i b \phi_{0} \\
& =a\left(m+n \tau_{1}\right)+i b\left(m+n \tau_{0}\right) \\
& =a(m+n \xi)-b n \eta_{0}+i\left(a n \eta_{1}+b(m+n \xi)\right)
\end{aligned}
$$

so that

$$
\left\{\begin{array}{l}
a(m+n \xi)-b n \eta_{0}=1, \\
a n \eta_{1}+b(m+n \xi)=0
\end{array}\right.
$$

Since $X>0$ from $m n^{\prime}-n m^{\prime}=1$ and $\eta_{1}, \eta_{0}>0$, it follows that

$$
a=\frac{1}{X}(m+n \xi), \quad b=\frac{1}{X}\left(-n \eta_{1}\right),
$$

which yield the expression of ψ_{1} in (4.1). Hence,

$$
\begin{aligned}
\tau_{1}^{\prime} & =\frac{m+n \xi}{X} \int_{m^{\prime} A+n^{\prime} B} \phi_{1}-i \frac{n \eta_{1}}{X} \int_{m^{\prime} A+n^{\prime} B} \phi_{0} \\
& =\frac{1}{X}\left\{(m+n \xi)\left(m^{\prime}+n^{\prime} \tau_{1}\right)-i n \eta_{1}\left(m^{\prime}+n^{\prime} \tau_{0}\right)\right\} \\
& =\frac{1}{X}\left\{\left((m+n \xi)\left(m^{\prime}+n^{\prime} \xi\right)+n n^{\prime} \eta_{1} \eta_{0}\right)+i \eta_{1}\right\} \quad \text { by } m n^{\prime}-n m^{\prime}=1,
\end{aligned}
$$

which yields the expressions of α and β_{1} in (4.2). Since ψ_{0} must be written in the form

$$
\left\{\begin{array}{l}
\psi_{0}=i \widetilde{a} \phi_{1}+\widetilde{b} \phi_{0} \quad \text { on } R \text { for some } \tilde{a}, \widetilde{b} \in \mathbb{R} \\
\int_{A^{\prime}} \psi_{0}=1,
\end{array}\right.
$$

in the same way as we obtained ψ_{1}, we have the expressions of ψ_{0} in (4.1) and β_{0} in (4.2).

By (4.2) we see that $\psi_{1}, \psi_{0}, \beta_{1}$, and β_{0} do not depend on the choice of m^{\prime}, n^{\prime} with $m n^{\prime}-n m^{\prime}=1$, that is, of B^{\prime}, and that $\frac{\Im \tau_{1}}{\Im \tau_{0}}=\frac{\Im \tau_{1}^{\prime}}{\Im \tau_{0}^{\prime}}$, which shows Theorem 2.1(4).

Proof of Theorem 1.2(1)
We do not lose generality in assuming (a) and (b) stated in Section 3. By Theorem 2.1(4), it suffices to show the following: if \mathcal{R} is pseudoconvex in $\widetilde{\mathcal{R}}$, then

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t \partial \bar{t}} \log \frac{\Im \tau_{1}(t)}{\Im \tau_{0}(t)} \geq 0, \quad t \in \Delta \tag{4.3}
\end{equation*}
$$

In (b), for $t \in \Delta$ we defined the canonical homology basis $\{A, B\}$ of the Riemann surface $R(t)$ of genus one over \mathbb{C}_{z}, and we considered the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential $\phi_{1}(t, z)$ (resp., $\left.\phi_{0}(t, z)\right)$ for $(R(t), A)$, so that $\int_{A} \phi_{1}(t, z)=\int_{A} \phi_{0}(t, z)=$ 1. We put

$$
\begin{equation*}
\int_{B} \phi_{1}(t, z)=\tau_{1}(t):=\xi(t)+i \eta_{1}(t), \quad \int_{B} \phi_{0}(t, z)=\tau_{0}(t):=\xi(t)+i \eta_{0}(t), \tag{4.4}
\end{equation*}
$$

where $\xi(t), \eta_{1}(t), \eta_{0}(t)$ are real numbers with $\eta_{1}(t)>\eta_{0}(t)>0$. Then, for arbitrary $m, n \in \mathbb{Z}$ with $(m, n)= \pm 1$ it holds that

$$
\begin{array}{cl}
\frac{\eta_{1}(t)}{(m+n \xi(t))^{2}+n^{2} \eta_{1}(t) \eta_{0}(t)} & \text { is subharmonic on } \Delta \tag{4.5}\\
\frac{\eta_{0}(t)}{(m+n \xi(t))^{2}+n^{2} \eta_{1}(t) \eta_{0}(t)} & \text { is superharmonic on } \Delta
\end{array}
$$

In fact, we can find $m^{\prime}, n^{\prime} \in \mathbb{Z}$ such that $m n^{\prime}-n m^{\prime}=1$, and put $\left\{A^{\prime}, B^{\prime}\right\}=$ $\left\{m A+n B, m^{\prime} A+n^{\prime} B\right\}$, which is a canonical homology basis of $R(t)$. Then we uniquely have the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential $\psi_{1}(t, z)$ (resp., $\psi_{0}(t, z)$) for
$\left(R(t), A^{\prime}\right)$, so that $\int_{A^{\prime}} \psi_{1}(t, z)=1$ and $\int_{A^{\prime}} \psi_{0}(t, z)=1$. We set

$$
\begin{aligned}
& \int_{B^{\prime}} \psi_{1}(t, z)=\tau_{1}^{\prime}(t):=\alpha(t)+i \beta_{1}(t) \\
& \int_{B^{\prime}} \psi_{0}(t, z)=\tau_{0}^{\prime}(t):=\alpha(t)+i \beta_{0}(t)
\end{aligned}
$$

where $\alpha(t), \beta_{1}(t), \beta_{0}(t)$ are real numbers with $\beta_{1}(t)>\beta_{0}(t)>0$ from Theorem 1.1(1) and (2). By Corollary 3.1(1) and (2), we see that $\beta_{1}(t)$ (resp., $\beta_{0}(t)$) is subharmonic (resp., superharmonic) on Δ. Thus, (4.2) yields (4.5).

We put

$$
X=X(t, m, n)=(m+n \xi(t))^{2}+n^{2} \eta_{1}(t) \eta_{0}(t)>0 .
$$

By straightforward calculation we have from (4.5)

$$
\begin{aligned}
& X\left(\frac{\partial^{2} \eta_{1}}{\partial t \partial \bar{t}} X-\eta_{1} \frac{\partial^{2} X}{\partial t \partial \bar{t}}\right)-2 X \Re\left\{\frac{\partial \eta_{1}}{\partial \bar{t}} \frac{\partial X}{\partial t}\right\}+2\left|\frac{\partial X}{\partial t}\right|^{2} \eta_{1} \geq 0 \quad \text { on } \Delta, \\
& X\left(\frac{\partial^{2} \eta_{0}}{\partial t \partial \bar{t}} X-\eta_{0} \frac{\partial^{2} X}{\partial t \partial \bar{t}}\right)-2 X \Re\left\{\frac{\partial \eta_{0}}{\partial \bar{t}} \frac{\partial X}{\partial t}\right\}+2\left|\frac{\partial X}{\partial t}\right|^{2} \eta_{0} \leq 0 \quad \text { on } \Delta .
\end{aligned}
$$

Since $\eta_{1}(t)>\eta_{0}(t)>0$ and $X>0$ on Δ, we have

$$
\left(\eta_{0} \frac{\partial^{2} \eta_{1}}{\partial t \partial \bar{t}}-\eta_{1} \frac{\partial^{2} \eta_{0}}{\partial t \partial \bar{t}}\right) X-2 \Re\left\{\left(\eta_{0} \frac{\partial \eta_{1}}{\partial \bar{t}}-\eta_{1} \frac{\partial \eta_{0}}{\partial \bar{t}}\right) \frac{\partial X}{\partial t}\right\} \geq 0 \quad \text { on } \Delta .
$$

This is written into

$$
\begin{equation*}
A(t)(m+n \xi(t))^{2}+2 B(t) n(m+n \xi(t))+n^{2} C(t) \geq 0 \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& A(t):=\eta_{0} \frac{\partial^{2} \eta_{1}}{\partial t \partial \bar{t}}-\eta_{1} \frac{\partial^{2} \eta_{0}}{\partial t \partial \bar{t}} \bar{\prime} \\
& B(t):=-2 \Re\left\{\left(\eta_{0} \frac{\partial \eta_{1}}{\partial \bar{t}}-\eta_{1} \frac{\partial \eta_{0}}{\partial \bar{t}}\right) \frac{\partial \xi}{\partial t}\right\}, \\
& C(t):=\eta_{1} \eta_{0}\left(\eta_{0} \frac{\partial^{2} \eta_{1}}{\partial t \partial \bar{t}}-\eta_{1} \frac{\partial^{2} \eta_{0}}{\partial t \partial \bar{t}}\right)-2\left(\eta_{0}^{2}\left|\frac{\partial \eta_{1}}{\partial t}\right|^{2}-\eta_{1}^{2}\left|\frac{\partial \eta_{0}}{\partial t}\right|^{2}\right),
\end{aligned}
$$

which are all real numbers independent of m, n. By (4.6) we have

$$
A(t)\left(\frac{m}{n}+\xi(t)\right)^{2}+2 B(t)\left(\frac{m}{n}+\xi(t)\right)+C(t) \geq 0, \quad t \in \Delta
$$

This is true for every $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ with $(m, n)= \pm 1$. It follows that, for $t \in \Delta$,

$$
\begin{aligned}
& A(t) x^{2}+2 B(t) x+C(t) \geq 0 \quad \text { for all } x \in \mathbb{R} \\
& \therefore A(t) \geq 0 \quad \text { and } \quad C(t) \geq 0 \quad \text { for } t \in \Delta .
\end{aligned}
$$

Let us prove (4.3). Since $\Im \tau_{1}(t)=\eta_{1}(t)>0$ and $\Im \tau_{0}(t)=\eta_{0}(t)>0$, it suffices to show, for $t \in \Delta$,

$$
L(t):=\eta_{1} \eta_{0}\left(\eta_{0} \frac{\partial^{2} \eta_{1}}{\partial t \partial \bar{t}}-\eta_{1} \frac{\partial^{2} \eta_{0}}{\partial t \partial \bar{t}}\right)-\left(\eta_{0}^{2}\left|\frac{\partial \eta_{1}}{\partial t}\right|^{2}-\eta_{1}^{2}\left|\frac{\partial \eta_{0}}{\partial t}\right|^{2}\right) \geq 0
$$

In fact, we have two expressions of $L(t)$ such that

$$
\begin{align*}
& L(t)=C(t)+\left(\eta_{0}^{2}\left|\frac{\partial \eta_{1}}{\partial t}\right|^{2}-\eta_{1}^{2}\left|\frac{\partial \eta_{0}}{\partial t}\right|^{2}\right), \quad t \in \Delta \tag{l1}\\
& L(t)=\eta_{1} \eta_{0} A(t)-\left(\eta_{0}^{2}\left|\frac{\partial \eta_{1}}{\partial t}\right|^{2}-\eta_{1}^{2}\left|\frac{\partial \eta_{0}}{\partial t}\right|^{2}\right), \quad t \in \Delta \tag{l2}
\end{align*}
$$

These yield

$$
\begin{equation*}
L(t)=\frac{1}{2}\left(C(t)+\eta_{1} \eta_{0} A(t)\right), \tag{4.7}
\end{equation*}
$$

which is at least 0 on Δ. Theorem $1.2(1)$ is proved.
Proof of Theorem 1.2(2)
Step 1: Assertion (2) holds locally. That is, at each $t_{0} \in \Delta$ there exists a small disk Δ_{0} of center t_{0} in Δ such that $\left.\mathcal{R}\right|_{\Delta_{0}} \approx \Delta_{0} \times R\left(t_{0}\right)$ if $\sigma_{H}(t)$ is harmonic on Δ_{0}. In fact, it suffices to prove the first step under the conditions (a) and (b) in Section 3 (cf. the proof of Theorem 1.2(1)). For simplicity, we write 0 (resp., Δ) for t_{0} (resp., Δ_{0}). We use the same notations $0, \Delta$ instead of t_{0}, Δ_{0} in the first step. Since $\sigma_{H}(t)=\log \frac{\eta_{1}(t)}{\eta_{0}(t)}$ is harmonic on Δ, we have $L(t) \equiv 0$ on Δ.

We shall first prove
(i) $\phi_{1}(t, z)$ and $\phi_{0}(t, z)$ are holomorphic for $(t, z) \in \Delta \times \mathbf{R}$;
(ii) the moduli disk $\mathfrak{M}(R(t),\{A, B\})$ does not move with $t \in \Delta$.

In fact, since $C(t) \geq 0, A(t) \geq 0$, and $\eta_{1}(t)>\eta_{0}(t)>0$ on Δ, it follows from $L(t)=0$ on Δ and (4.7) that $C(t)=A(t)=0$ on Δ. On the other hand, (3.5) yields

$$
A(t) \geq \eta_{0}(t)\left\|\frac{\partial \phi_{1}}{\partial \bar{t}}\right\|_{R(t)}^{2}+\eta_{1}(t)\left\|\frac{\partial \phi_{0}}{\partial \bar{t}}\right\|_{R(t)}^{2} \geq 0 \quad \text { on } \Delta .
$$

We have $\frac{\partial \phi_{1}(t, z)}{\partial \bar{t}}=\frac{\partial \phi_{0}(t, z)}{\partial \bar{t}}=0$ on $\left.\mathcal{R}\right|_{\Delta}$, which induces (i).
By (i), $\tau_{1}(t)=\int_{B} \phi_{1}(t, z)$ and $\tau_{0}(t)=\int_{B} \phi_{0}(t, z)$ are holomorphic on Δ. Since $\tau_{1}(t)-\tau_{0}(t)=i\left(\eta_{1}(t)-\eta_{0}(t)\right)$ is pure imaginary, we have $\tau_{1}(t)-\tau_{0}(t)=$ const $i \rho$ on Δ, and hence, $\frac{1}{2 i} \frac{\partial \tau_{1}}{\partial t}=\frac{\partial \eta_{1}}{\partial t}=\frac{\partial \eta_{0}}{\partial t}=\frac{1}{2 i} \frac{\partial \tau_{0}}{\partial t}$ on Δ. It follows from (l2) that $0=\left(\eta_{1}(t)^{2}-\eta_{0}(t)^{2}\right)\left|\frac{\partial \tau_{1}}{\partial t}\right|^{2}$ on Δ, so that $\left|\frac{\partial \tau_{1}}{\partial t}\right|^{2}=0$ on Δ. Consequently, neither $\tau_{1}(t)$ nor $\tau_{0}(t)$ depends on $t \in \Delta$:

$$
\begin{equation*}
\tau_{1}(t)=\tau_{1}(0), \quad \tau_{0}(t)=\tau_{0}(0) \quad \text { on } \Delta . \tag{4.8}
\end{equation*}
$$

This together with Theorem 2.1(2) yields (ii).
Using (i) and (ii) we next prove the first step: $\left.\mathcal{R}\right|_{\Delta} \approx \Delta \times R(0)$. We set $\zeta_{0}=A \cap B$ and use the notation \mathbf{R} defined by (3.1). We consider the abelian integrals

$$
\begin{aligned}
Z=\Phi_{1}(t, z) & :=\int_{\zeta_{0}}^{z} \phi_{1}(t, \cdot), \quad(t, z) \in \Delta \times \mathbf{R}, \\
W=\Phi_{0}(t, z) & :=\int_{\zeta_{0}}^{z} \phi_{0}(t, \cdot), \quad(t, z) \in \Delta \times \mathbf{R},
\end{aligned}
$$

which are multivalued holomorphic functions for $(t, z) \in \Delta \times \mathbf{R}$ by (i).

Let us first fix $t \in \Delta$. Since $\phi_{1}(t, z)$ (resp., $\left.\phi_{0}(t, z)\right)$ is the $L_{1^{-}}$(resp., $L_{0^{-}}$) differential for $(R(t), A)$, which is holomorphic on \mathbf{R}, the branch of $\Phi_{1}(t, z)$ (resp., $\Phi_{0}(t, z)$) with $\Phi_{1}\left(t, \zeta_{0}\right)=0$ (resp., $\left.\Phi_{0}\left(t, \zeta_{0}\right)=0\right)$ is a single-valued holomorphic function on $\mathbf{R} \backslash(A \cup B)$ such that $\Phi_{1}\left(t, C_{j}(t)\right)$ (resp., $\left.\Phi_{0}\left(t, C_{j}(t)\right)\right), j=1, \ldots, \nu$, is a double vertical (resp., horizontal) segment:

$$
\begin{aligned}
& \Phi_{1}\left(t, C_{j}(t)\right)=\left[a_{j}(t), a_{j}(t)+i \ell_{j}(t)\right]^{ \pm}, \\
& \Phi_{0}\left(t, C_{j}(t)\right)=\left[b_{j}(t), b_{j}(t)+m_{j}(t)\right]^{ \pm},
\end{aligned}
$$

where $\ell_{j}(t), m_{j}(t)>0$. We set

$$
\Sigma_{1}(t):=\Phi_{1}(t, \mathbf{R} \backslash(A \cup B)), \quad \Sigma_{0}(t):=\Phi_{0}(t, \mathbf{R} \backslash(A \cup B)) .
$$

If necessary, take a thin tubular neighborhood $V_{j} \supset \partial R_{j}(t), t \in \Delta$. Then $\Sigma_{1}(t)$ (resp., $\left.\Sigma_{0}(t)\right)$ is a two-sheeted open Riemann surface over \mathbb{C}_{Z} (resp., \mathbb{C}_{W}) with 2ν branch points $a_{j}(t), a_{j}(t)+i \ell_{j}(t)$ (resp., $\left.b_{j}(t), b_{j}(t)+m_{j}(t)\right)$ of order one.

Next let us move $t \in \Delta$. Since $\Phi_{1}(t, z)$ is a single-valued holomorphic function for two complex variables (t, z) in $\Delta \times(\mathbf{R} \backslash(A \cup B))$, it follows that

$$
\begin{equation*}
\mathbf{D}_{1}:=\bigcup_{t \in \Delta}\left(t, \Phi_{1}(t, \mathbf{R} \backslash(A \cup B))=\bigcup_{t \in \Delta}\left(t, \Sigma_{1}(t)\right)\right. \tag{4.9}
\end{equation*}
$$

is a (two-dimensional) two-sheeted open Riemann domain over $\Delta \times \mathbb{C}_{Z}$ with 2ν holomorphic branch curves

$$
C_{1, j}^{\prime}=\bigcup_{t \in \Delta}\left(t, a_{j}(t)\right) \quad \text { and } \quad C_{1, j}^{\prime \prime}=\bigcup_{t \in \Delta}\left(t, a_{j}(t)+i \ell_{j}(t)\right), \quad j=1, \ldots, \nu
$$

Therefore, $a_{j}(t), a_{j}(t)+i \ell_{j}(t)$ are holomorphic for $t \in \Delta$. Since $\ell_{j}(t)$ is a real number, it must be a constant on $\Delta ; \ell_{j}(t)=\ell_{j}>0, t \in \Delta$.

Similarly, we see that each $b_{j}(t)$ is holomorphic on Δ and that $m_{j}(t)$ is constant on $\Delta ; m_{j}(t)=m_{j}>0, t \in \Delta$. We set

$$
\mathbf{D}_{0}:=\bigcup_{t \in \Delta}\left(t, \Phi_{0}(t, \mathbf{R} \backslash(A \cup B))\right)=\bigcup_{t \in \Delta}\left(t, \Sigma_{0}(t)\right),
$$

which is a two-sheeted open Riemann domain over $\Delta \times \mathbb{C}_{W}$ with 2ν holomorphic branch curves

$$
C_{0, j}^{\prime}=\bigcup_{t \in \Delta}\left(t, b_{j}(t)\right) \quad \text { and } \quad C_{0, j}^{\prime \prime}=\bigcup_{t \in \Delta}\left(t, b_{j}(t)+m_{j}\right), \quad j=1, \ldots, \nu .
$$

We consider the holomorphic function for two complex variables

$$
\begin{equation*}
W=\psi(t, Z):=\Phi_{0}\left(t, \Phi_{1}^{-1}(t, Z)\right), \quad(t, Z) \in \mathbf{D}_{1} \tag{4.10}
\end{equation*}
$$

Then \mathbf{D}_{1} is biholomorphic to \mathbf{D}_{0} namely, to $\Delta \times(\mathbf{R} \backslash(A \cup B)$ biholomorphic by $(t, Z) \rightarrow(t, W)=(t, \psi(t, Z))$ such that $\psi(t, 0)=0, \psi(t, 1)=1$, and

$$
\begin{equation*}
\psi\left(t,\left[a_{j}(t), a_{j}(t)+i \ell_{j}\right]^{ \pm}\right)=\left[b_{j}(t), b_{j}(t)+m_{j}\right]^{ \pm}, \quad t \in \Delta . \tag{4.11}
\end{equation*}
$$

Let $t \in \Delta$, and denote by $\widehat{R}(t)$ the covering Riemann surface of $R(t)$ with respect to $\{A, B\}$ modulo dividing cycles. We set $\widehat{\mathcal{R}}=\bigcup_{t \in \Delta}(t, \widehat{R}(t))$. We consider
the abelian integral

$$
Z=\Phi_{1}(t, z)=\int_{\zeta_{0}}^{z} \phi_{1}(t, \cdot) \quad \text { in } \widehat{R}(t)
$$

which is univalent on $\widehat{R}(t)$. We put

$$
\widehat{\Sigma}_{1}(t):=\Phi_{1}(t, \widehat{R}(t))=\mathbb{C}_{Z} \backslash\left\{\bigcup_{j=1}^{\nu}\left[a_{j}(t), a_{j}(t)+i l_{j}(t)\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{1}(t)\right\}
$$

In our situation it becomes

$$
\widehat{\Sigma}_{1}(t)=\mathbb{C}_{Z} \backslash\left\{\bigcup_{j=1}^{\nu}\left[a_{j}(t), a_{j}(t)+i l_{j}\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{1}(0)\right\}
$$

where $a_{j}(t)$ is holomorphic on Δ and $l_{j}=l_{j}(0)$. We put $\alpha_{j}(t)=a_{j}(t)-a_{1}(t)$, $j=1, \ldots, \nu$, and define $\widetilde{\Sigma}_{1}(t):=\widehat{\Sigma}(t)-a_{1}(t)$, so that

$$
\widetilde{\Sigma}_{1}(t)=\mathbb{C}_{Z} \backslash\left\{\left[0, i l_{1}\right]+\bigcup_{j=2}^{\nu}\left[\alpha_{j}(t), \alpha_{j}(t)+i l_{j}\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{1}(0)\right\}
$$

Then $\widetilde{\Sigma}_{1}(t) /\left\{1, \tau_{1}(0)\right\}$ and $\widehat{\Sigma}_{1}(t) /\left\{1, \tau_{1}(0)\right\}$ are equivalent to $R(t)$ as Riemann surfaces, and hence,

$$
\widetilde{\mathcal{R}}_{1}:=\bigcup_{t \in \Delta}\left(t, \widetilde{\Sigma}_{1}(t) /\left\{1, \tau_{1}(0)\right\}\right) \approx \mathcal{R} \quad \text { as a holomorphic family. }
$$

Thus, for the first step, it suffices to show that, for $t \in \Delta$,

$$
\begin{equation*}
\alpha_{j}(t)=\alpha_{j}(0), \quad j=2, \ldots, \nu \tag{4.12}
\end{equation*}
$$

In the case in which $\nu=1$, that is, $\partial R(t)$ consists of one component, the first step is true. In the case in which $\nu \geq 2$, we shall use the following elementary fact.

FACT 4.2

Let $f(t, z)$ be a holomorphic function for (t, z) in $\delta \times V\left(\subset \mathbb{C}_{t} \times \mathbb{C}_{z}\right)$, where $\delta=$ $\left\{|t|<r_{0}\right\}$ and $V=\left\{|z|<r_{1}\right\}$. If there exists an open interval $I \subset\left(-r_{1}, r_{1}\right)$ such that, for any $t \in \delta, f(t, I)$ is a subset of the real axis, then $f(t, z)=f(0, z)$ for $(t, z) \in \delta \times V$.

Similarly to $\widetilde{\Sigma}_{1}(t)$ we define

$$
\begin{aligned}
W & =\Phi_{0}(t, z)=\int_{\zeta_{0}}^{z} \phi_{0}(t, \cdot) \quad \text { in } \widehat{R}(t) ; \\
\widehat{\Sigma}_{0}(t) & :=\Phi_{0}(t, \widehat{R}(t))=\mathbb{C}_{W} \backslash\left\{\bigcup_{j=1}^{\nu}\left[b_{j}(t)+m_{j}(t)\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{0}(t)\right\} \\
& =\mathbb{C}_{W} \backslash\left\{\bigcup_{j=1}^{\nu}\left[b_{j}(t)+m_{j}\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{0}(0)\right\} .
\end{aligned}
$$

We put $\beta_{j}(t)=b_{j}(t)-b_{1}(0), j=1, \ldots, \nu$, and $\widetilde{\Sigma}_{0}(t):=\widehat{\Sigma}_{0}(t)-b_{1}(t)$, so that

$$
\begin{aligned}
& \widetilde{\Sigma}_{0}(t)=\mathbb{C}_{W} \backslash\left\{\left[0, m_{1}\right]+\bigcup_{j=2}^{\nu}\left[\beta_{j}(t), \beta_{j}(t)+m_{j}\right]+\sum_{m, n=-\infty}^{\infty} m+n \tau_{0}(t)\right\}, \\
& \widetilde{\Sigma}_{0}(t) /\left\{1, \tau_{0}(0)\right\} \sim R(t) \quad \text { as a Riemann surface }, \\
& \widetilde{\mathcal{R}}_{0}:=\bigcup_{t \in \Delta}\left(t, \widetilde{\Sigma}_{0}(t) /\left\{1, \tau_{0}(0)\right\}\right) \approx \mathcal{R} \quad \text { as a holomorphic family. }
\end{aligned}
$$

We thus have the automorphism

$$
W=\widetilde{\psi}(t, Z):=\widetilde{\Sigma}_{1}(t) \rightarrow \widetilde{\Sigma}_{0}(t), \quad t \in \Delta,
$$

such that, for $j=2, \ldots, \nu$,

$$
\begin{aligned}
\widetilde{\psi}\left(t,\left[0, i l_{1}\right]^{ \pm}\right) & =\left[0, m_{1}\right]^{ \pm} \quad \text { and } \\
\widetilde{\psi}\left(t\left[\alpha_{j}(t), \alpha_{j}(t)+i l_{j}\right]^{ \pm}\right) & =\left[\beta_{j}(t), \beta_{j}(t)+m_{j}\right]^{ \pm} .
\end{aligned}
$$

Applying the above elementary fact to the first equation we have

$$
\widetilde{\psi}(t, Z)=\widetilde{\psi}(0, Z), \quad t \in \Delta .
$$

It follows from the second equation that, for each $j=2, \ldots, \nu$,

$$
\left.\left[\beta_{j}(t), \beta_{j}(t)+m_{j}\right)\right]^{ \pm}=\widetilde{\psi}\left(0,\left[\alpha_{j}(t), \alpha_{j}(t)+m_{j}\right]^{ \pm}\right), \quad t \in \Delta .
$$

This implies (4.12). In fact, if (4.12) were not true, we have $\alpha_{j}(t) \neq \alpha_{j}(0)$ for some $j, 2 \leq j \leq \nu$ and some sufficiently small $t \neq 0$. Hence $\widetilde{\psi}(0, Z)$ would be one-to-one.
Step 2: Assertion (2) holds. In fact, we have the L_{1}-differential $\phi_{1}(t, z)$ for $(R(t), A(t))$ and put $\tau_{1}(t):=\int_{B(t)} \phi_{1}(t, \cdot)$. Systematically applying the first step we see that $\phi_{1}(t, z)$ is holomorphic for $(t, z) \in \mathcal{R}$ and $\tau_{1}(t)=\tau_{1}(0)$ for $t \in \Delta$.

Since Δ is simply connected, we have a continuous section $\xi: t \in \Delta \rightarrow R(t)$ of \mathcal{R} and a canonical homology basis $\{A(t), B(t)\}$ of $R(t)$ with $A(t) \cap B(t)=\xi(t)$, $t \in \Delta$, which moves continuously in \mathcal{R} with $t \in \Delta$.

Let $t \in \Delta$, denote by $\widehat{R}(t)$ the covering Riemann surface of $R(t)$ with respect to $\{A(t), B(t)\}$ modulo dividing cycles, and put $\widehat{\mathcal{R}}=\bigcup_{t \in \Delta}(t, \widehat{R}(t))$. By the first step we find small disks $\Delta_{k}=\left\{\left|t-t_{k}\right|<r_{k}\right\} \Subset \Delta, k=1,2, \ldots$, with $\Delta=\bigcup_{k=1}^{\infty} \Delta_{k}$ and $\lim _{k \rightarrow \infty} \partial \Delta_{k}=\partial \Delta$ such that the following statements hold.
(1) For $\Delta_{k} \cap \Delta_{l} \neq \emptyset, l, k=1,2, \ldots$, we have a disk $\Delta_{k l} \supset \Delta_{k} \cup \Delta_{l}$ in Δ such that $\left.\mathcal{R}\right|_{\Delta_{k l}}$ is holomorphically trivial and is realized as an unramified domain $\mathcal{D}_{k l}$ over $\Delta_{k l} \times \mathbb{C}_{w}$ such that $\mathcal{D}_{k l}$ contains the bidisk $\Delta_{k l} \times\{|w|<r\}$ in which $\left.\xi\right|_{\Delta_{k l}}=\left\{\xi(t): t \in \Delta_{k l}\right\}$ is realized. We write $W_{k}(t)$ in $R(t)$, which corresponds to $\{t\} \times\{|w|<r\}, t \in \Delta_{k}$, and $\mathcal{W}_{k}=\bigcup_{t \in \Delta_{k}}\left(t, W_{k}(t)\right)\left(\left.\subset \mathcal{R}\right|_{\Delta_{k}}\right)$.
(2) For $k=1,2, \ldots$ we draw a holomorphic section $\zeta_{k}: t \in \Delta_{k} \rightarrow \zeta_{k}(t)$ of $\left.\mathcal{R}\right|_{\Delta_{k}}$ such that $\zeta_{k}\left(t_{k}\right)=\xi\left(t_{k}\right)$ and $\left.\zeta_{k}\right|_{\Delta_{k}} \subset \mathcal{W}_{k}$. If we put, for $t \in \Delta_{k}$,

$$
\Phi_{1 k}(t, z):=\int_{\zeta_{k}(t)}^{z} \phi_{1}(t, \cdot), \quad z \in \widehat{R}(t),
$$

then $\widehat{\Sigma}_{k}(t):=\Phi_{1 k}(t, \widehat{R}(t))$ is a (univalent) domain in \mathbb{C} and

$$
\begin{aligned}
\widehat{\Sigma}_{k}(t) & =\widehat{\Sigma}_{k}\left(t_{k}\right)+\int_{\zeta_{k}(t)}^{\zeta_{k}\left(t_{k}\right)} \phi_{1}(t, \cdot) \quad \text { in } \mathbb{C} \\
& =: \widehat{\Sigma}_{k}\left(t_{k}\right)+h_{k}(t) \quad \text { in } \mathbb{C}
\end{aligned}
$$

where the integral path is an arc from $\zeta_{k}(t)$ to $\zeta_{k}\left(t_{k}\right)$ in $W_{k}(t)$. For a fixed $t \in \Delta_{k}$ we have

$$
\widehat{\Sigma}_{k}(t) /\left\{1, \tau_{1}(t)\right\} \approx\left(\widehat{\Sigma}_{k}\left(t_{k}\right)+h_{k}(t)\right) /\left\{1, \tau_{1}\left(t_{k}\right)\right\} \approx \widehat{\Sigma}_{k}\left(t_{k}\right) /\left\{1, \tau_{1}\left(t_{k}\right)\right\}
$$

which stands for an equality between the bordered tori. It follows that

$$
\left.\mathcal{R}\right|_{\Delta_{k}} \approx \bigcup_{t \in \Delta_{k}}\left(t, \widehat{\Sigma}_{k}\left(t_{k}\right) /\left\{1, \tau_{1}\left(t_{k}\right)\right\}\right)
$$

Now let $\Delta_{k} \cap \Delta_{l} \neq \emptyset, k, l=1,2, \ldots$, and let $\left.(t, z) \in \widehat{\mathcal{R}}\right|_{\Delta_{k} \cap \Delta_{l}}$. If we draw an arc $\gamma_{k l}(t)$ connecting $\zeta_{k}(t)$ and $\zeta_{l}(t)$ in $\mathcal{W}_{k}(t) \cup \mathcal{W}_{l}(t)$, then the condition $\left.\zeta_{k}\right|_{\Delta_{k}} \subset \mathcal{W}_{k}$ yields

$$
\begin{equation*}
\Phi_{1 k}(t, z)-\Phi_{1 l}(t, z)=\int_{\gamma_{k l(t)}} \phi_{1}(t, \cdot)=: \alpha_{k l}(t), \quad z \in \widehat{R}(t) . \tag{4.13}
\end{equation*}
$$

We note that $\alpha_{k l}(t)$ is independent of the choice of $\gamma_{k l}(t)$ in $W_{k}(t) \cup W_{l}(t)$ and is a holomorphic function on $\Delta_{k} \cap \Delta_{l}$ such that $\alpha_{k l}(t)=-\alpha_{l k}(t)$.

Given any point $t \in \Delta_{k} \cap \Delta_{l} \cap \Delta_{m} \neq \emptyset$, since $\gamma_{k l}(t) \circ \gamma_{l m}(t) \circ \gamma_{m k}(t)$ is a closed curve in the simply connected domain $W_{k}(t) \cup W_{l}(t) \cup W_{m}(t)$, we have

$$
\begin{equation*}
\alpha_{k l}(t)+\alpha_{l m}(t)+\alpha_{m k}(t)=0 \quad \text { on } \Delta_{k} \cap \Delta_{l} \cap \Delta_{m} \tag{4.14}
\end{equation*}
$$

Since the first Cousin problem is solvable on the disk Δ, we find a holomorphic function $\alpha_{k}(t)$ on $\Delta_{k}, k=1,2, \ldots$, such that $\alpha_{k l}(t)=\alpha_{k}(t)-\alpha_{l}(t)$ on $\Delta_{k l}$ for any pair $\{k, l\}$. Hence,

$$
h(t, z):=\Phi_{1 k}(t, z)-\alpha_{k}(t),\left.\quad(t, z) \in \widehat{\mathcal{R}}\right|_{\Delta_{k}},
$$

is independent of $k=1,2, \ldots$, that is, $h(t, z)$ is the (single-valued) holomorphic function for (t, z) in the whole $\widehat{\mathcal{R}}$. We put

$$
\widehat{S}(t):=h(t, \widehat{R}(t))=\mathbb{C}_{Z} \backslash\left\{\bigcup_{j=1}^{\nu}\left[\widehat{\alpha}_{j}(t), \widehat{\alpha}_{j}(t)+i \ell_{j}\right]^{ \pm}+\sum_{m, n=-\infty}^{\infty} m+n \tau_{1}(t)\right\},
$$

where $\widehat{\alpha}_{j}(t), j=1, \ldots, \nu$, is a holomorphic function on Δ. Then $\widehat{S}(t) /\left\{1, \tau_{1}(t)\right\} \sim$ $R(t), t \in \Delta$. Since $R(t) \sim R(0), t \in \Delta$, we have $\tau_{1}(t)=\tau_{1}(0)$ and $\widehat{\alpha}_{j}(t)-\widehat{\alpha}_{1}(t)=$ $\widehat{\alpha}_{j}(0)-\widehat{\alpha}_{1}(0), t \in \Delta, j=1, \ldots, \nu$.

If we put $\mathbf{a}_{j}:=\widehat{\alpha}_{j}(0)-\widehat{\alpha}_{1}(0)$, then the univalent function $H(t, z):=h(t, z)-$ $\widehat{\alpha}_{1}(t)$ on $\widehat{R}(t)$ is written into

$$
\begin{equation*}
H(t, R(t))=\mathbb{C}_{Z} \backslash\left\{\bigcup_{j=1}^{\nu}\left[\mathbf{a}_{j}, \mathbf{a}_{j}+i \ell_{j}\right]^{ \pm}+\sum_{m, n=-\infty}^{\infty} m+n \tau_{1}(0)\right\}, \quad t \in \Delta \tag{4.15}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
R(t) \sim H(t, R(t)) /\left\{1, \tau_{1}(t)\right\}=H(0, R(0)) /\{1, \tau(0)\} \sim R(0), \quad t \in \Delta \tag{4.16}
\end{equation*}
$$

Since $H(t, z)$ is holomorphic for $(t, z) \in \widehat{\mathcal{R}}$ and $\tau_{1}(t)=\tau_{1}(0)$ for $t \in \Delta$, we prove the second step.

Appendix

To prove Corollary $3.1(1)$ we fix $t_{0} \in \Delta$. By the assumption we have a ball $\widetilde{\delta}$ of center t_{0} in Δ such that $\left.\mathcal{R}\right|_{\tilde{\delta}}$ is an $(n+1)$-dimensional Stein manifold. Let δ be a ball of center t_{0} such that $\delta \Subset \widetilde{\delta}$. Then we have a strictly plurisubharmonic exhaustion function $\psi(t, z)$ on $\left.\mathcal{R}\right|_{\tilde{\delta}}$. For a sufficiently large integer $k>1$ we set

$$
\mathcal{R}_{k}:=\left\{\left.(t, z) \in \mathcal{R}\right|_{\delta}: \psi(t, z)<k\right\}=: \bigcup_{t \in \delta}\left(t, R_{k}(t)\right) \Subset \mathcal{R}
$$

Then \mathcal{R}_{k} is a Stein manifold such that $\partial \mathcal{R}_{k}$ is smooth in $\left.\mathcal{R}\right|_{\delta}$ and each $R_{k}(t)$, $t \in \delta$, is an open torus with ν smooth contours $C_{1 k}(t), \ldots, C_{\nu k}(t)$ in $R(t)$. We denote by $\sigma_{H k}(t)$ the hyperbolic span for $R_{k}(t)$. By Theorem $1.2(1), \sigma_{H k}(t)$ is plurisubharmonic on δ. Since $\sigma_{H k}(t) \searrow \sigma_{H}(t)$ as $k \rightarrow \infty$ for $t \in \delta$, it follows that $\sigma_{H}(t)$ is plurisubharmonic on δ, and hence, on Δ.

To prove Corollary $3.1(2)$ let $(\mathcal{R}, \pi, \Delta)$ be a holomorphic family with conditions (i), (ii), and (iii). We use the exhaustion method as in the proof of Corollary $3.1(1)$. Then, by the standard argument under the pluriharmonicity of $\sigma_{H}(t)$ (which is the limit of the plurisubharmonic function $\sigma_{H k}(t)$) and condition (iii), we may assume that there exists an $(n+1)$-dimensional manifold $\widetilde{\mathcal{R}}$ such that $\mathcal{R}=\bigcup_{t \in \Delta}(t, R(t)) \subset \widetilde{\mathcal{R}}=\bigcup_{t \in \Delta}(t, \widetilde{R}(t))$ and $\partial R(t), t \in \Delta$, consists of ν smooth contours $C_{j}(t)$ in $\widetilde{R}(t)$. Therefore, Corollary 3.1(2) holds locally in Δ by the same argument as that of the proof of the first step in Theorem 1.2 under the pluriharmonicity of $\sigma_{H}(t)$ in Δ. To go from locally in Δ to globally on Δ for Corollary $3.1(2)$, we introduce the κ-cycle.

Let R be a bordered torus with smooth contours C_{1}, \ldots, C_{ν}. We denote by R^{κ} the Kerékjártó-Stoïlow compactification of R; in short, we consider each C_{j} as one point in R^{κ}. Let γ be a closed curve in R or consist of a finite number of $\operatorname{arcs}\left\{\gamma_{k}\right\}_{k=1, \ldots, m}$ in R whose closure γ^{*} in R^{κ} is a closed curve in R^{κ}. We see that such γ in the second case yields a closed curve γ^{\prime} in R which is homologous to γ^{*} in R^{κ}. If $\gamma^{\prime \prime}$ is another closed curve in R homologous to γ^{*} in R^{κ}, then it holds that $\gamma^{\prime} \sim \gamma^{\prime \prime}$ in R modulo dividing cycles and vice versa. We call such γ in R the κ-cycle in R, which is identified with γ^{*} in R^{κ} or with the closed curve γ^{\prime} in R stated above. For two κ-cycles γ_{1} and γ_{2} in R, if $\gamma_{1}^{*} \sim \gamma_{2}^{*}$ in R^{κ}, then we write $\gamma_{1} \sim_{\kappa} \gamma_{2}$ in R. For two κ-cycles A, B in R with $A \times B=1$ in R, if A^{*}, B^{*} is the canonical homology basis of R^{κ}, then we call $\{A, B\}$ the κ-canonical homology basis of R.

REMARK 2

The κ-canonical homology basis $\{A, B\}$ of R uniquely induces the L_{1}-differential $\phi_{1}(z)$ for (R, A) and the modulus $\tau_{1}:=\int_{B} \phi_{1}$.

By condition (ii) we have a continuous section $\xi: t \in \Delta \rightarrow R(t)$ of \mathcal{R} and a κ-canonical homology basis $\{A(t), B(t)\}$ of $R(t)$ with $A(t) \cap B(t)=\xi(t), t \in \Delta$, which moves continuously in \mathcal{R}^{κ} with $t \in \Delta$. We uniquely have the L_{1}-differential $\phi_{1}(t, z)$ for $(R(t), A(t))$. We put $\tau_{1}(t):=\int_{B(t)} \phi_{1}(t, z)$. Since \mathcal{R} is locally trivial, we see that $\phi_{1}(t, z)$ is holomorphic for $(t, z) \in \mathcal{R}$ and $\tau_{1}(t)=\tau_{1}(0)$ for $t \in \Delta$. Using Remark 2 and the same argument as that of the second step of the proof of Theorem $1.2(2)$, we have (4.13) and (4.14) for $\Delta\left(\subset \mathbb{C}_{t}^{n}\right)$. Then by the solvability of the first Cousin problem in the pseudoconvex domain Δ, we have (4.15) and (4.16) for Δ. Then, similar to Theorem 1.2(2) we have Corollary 1.3(2).

Acknowledgment. The authors sincerely thank the referee(s) for the careful reading of the manuscript and warm encouragement, including bits of useful advice.

References

[1] L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Math. Ser. 26, Princeton Univ. Press, Princeton, 1960. MR 0114911.
[2] R. C. Gunning and R. Narasimhan, Immersion of open Riemann surfaces, Math. Ann. 174 (1967), 103-108. MR 0223560.
[3] S. Hamano, Variation formulas for L_{1}-principal functions and the application to the simultaneous uniformization problem, Michigan Math. J. 60 (2011), $271-288$. MR 2825263. DOI $10.1307 / \mathrm{mmj} / 1310667977$.
[4] , Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces, Ann. Polon. Math. 111 (2014), 165-181. MR 3215397. DOI 10.4064/ap111-2-5.
[5] , Log-plurisubharmonicity of metric deformations induced by Schiffer and harmonic spans, Math. Z. 284 (2016), no. 1-2, 491-505. MR 3545502. DOI 10.1007/s00209-016-1663-4.
[6] S. Hamano, F. Maitani, and H. Yamaguchi, Variation formulas for principal functions, II: Applications to variation for harmonic spans, Nagoya Math. J. 204 (2011), 19-56. MR 2863364. DOI 10.1215/00277630-1431822.
[7] Y. Kusunoki, Theory of Abelian integrals and its applications to conformal mappings, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (1959), 235-258. MR 0110793.
[8] N. Levenberg and H. Yamaguchi, The metric induced by the Robin function, Mem. Amer. Math. Soc. 92 (1991), no. 448. MR 1061928.
DOI 10.1090/memo/0448.
[9] M. Schiffer, The span of multiply connected domains, Duke Math. J. 10 (1943), 209-216. MR 0008259.
[10] M. Shiba, The moduli of compact continuations of an open Riemann surface of genus one, Trans. Amer. Math. Soc. 301, (1987), no. 1 299-311. MR 0879575. DOI 10.2307/2000340.
[11] , The Euclidean, hyperbolic, and spherical spans of an open Riemann surface of low genus and the related area theorems, Kodai Math. J. 16 (1993), 118-137. MR 1207995. DOI 10.2996/kmj/1138039710.

Hamano: Department of Mathematics, Faculty of Human Development and Culture, Fukushima University, Fukushima, Japan; current: Department of Mathematics, Graduate School of Science, Osaka City University, Osaka, Japan; hamano@sci.osaka-cu.ac.jp

Shiba: Professor emeritus, Hiroshima University, Hiroshima, Japan; masaka_zu_hause@muc.biglobe.ne.jp

Yamaguchi: Professor emeritus, Shiga University, Japan; h.yamaguchi@s2.dion.ne.jp

