Construction of class fields
over cyclotomic fields

Ja Kyung Koo and Dong Sung Yoon

Abstract Let ¢ and p be odd primes. For a positive integer p, let k, be the ray class
field of k = Q(e27%/*) modulo 2p*. We present certain class fields K, of k such that k,, C
K, C ku41,and we provide a necessary and sufficient condition for K, = k1. We also
construct, in the sense of Hilbert, primitive generators of the field K, over k, by using
Shimura’s reciprocity law and special values of theta constants.

1. Introduction

In his 12th problem, Hilbert asked what kind of analytic functions and algebraic
numbers are necessary to construct all abelian extensions of given number fields.
For any number field K and a modulus m of K, it is well known (see [29] or [7,
Theorem 8.6]) that there is a unique maximal abelian extension of K unram-
ified outside m, which is called the ray class field of K modulo m. Hence, as
a first step toward the problem we need to construct ray class fields for given
number fields. Historically, over imaginary quadratic number fields K, Hasse [10]
constructed the ray class field of K by making use of the Weber function and
the elliptic modular function. After Hasse, many people investigated this theme
(see, e.g., [2]-]9], [12], [18], [20]-[22], [28]). On the other hand, over any other
CM-fields K with [K : Q] > 2, not much seems to be known so far. For instance,
over a cyclotomic number field K with odd relative class number, Shimura [23]
showed that the Hilbert class field of K is generated by that of the maximal
real subfield of K and the unramified abelian extensions of K obtained by the
fields of moduli of two certain polarized abelian varieties having subfields of K
as endomorphism algebras. By making use of Galois representation, Ribet [19]
constructed unramified abelian, degree-p extensions of K = Q(e2™#/?) for all irreg-
ular primes p (see also [17]). Furthermore, Komatsu [14] investigated a certain
class field of K = Q(e2™*/®) and constructed its normal basis by means of Siegel
modular functions.

Now, let n be a positive integer, let k& be a CM-field with [k : Q] = 2n, let k*
be its reflex field, and let zo be the associated CM-point (see Section 3). Shimura
[27] showed that if f is a Siegel modular function which is finite at zp, then the
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special value f(zp) belongs to some abelian extension (i.e., class field) of k*. His
reciprocity law explains Galois actions on f(zp) in terms of the action of the
group G4+ on f (Proposition 3.2). Here Gyt = H; GSp,,,(Q,) x GSpy, (R) is
the restricted product with respect to the subgroups GSp,,,(Z,) of GSp,,, (Qp).
Shimura [26] also constructed Siegel modular functions by the quotient of two
theta constants

Dpezn ez (@ +r)z(@ + 1)+ (2 +1)s)

> pezn e(Ftaz)

for r,s € Q", and explicitly described the Galois actions on the special values of
theta functions (see Section 5).

In this article, we mainly consider the case of cyclotomic number fields
k= Q(e*"/*) for any odd prime £. Let p be an odd prime, and let u be a posi-
tive integer. We denote by k,, the ray class field of k¥ modulo 2p*. In Section 4,
we define the class field K, of k such that k, C K, C k, 41, which would be an
extension of Komatsu’s result [14, Proposition 1]. We shall first find the exact
degree of K, over k, for any odd prime ¢ (Theorem 4.5). We shall further pro-
vide a necessary and sufficient condition for K, to be the ray class field k1
(Corollary 4.6). In Section 6, as Hilbert proposed, by using Shimura’s reciprocity
law we shall construct a primitive generator of K, /k, in terms of a special value
of @, )(2) for some r,s € Q" at the CM-point corresponding to the polarized
abelian variety of genus n= (¢ —1)/2 (Theorem 6.4).

i

(I)(r,s)(z) =

NOTATION 1.1

For z € C, we denote by Z the complex conjugate of z and by Im(z) the imaginary
part of z, and we put e(z) = €2™%*. If R is a ring with identity and r, s € Z~, then
M, «s(R) indicates the ring of all  x s matrices with entries in R. In particular,
we set M,.(R) = M, «,(R). The identity matrix of M,(R) is written as 1,, and
the transpose of a matrix « is denoted by ‘«.. Additionally, R* stands for the
group of all invertible elements of R. When G is a group and g¢1,92,...,g. are
elements of G, let (g1, g2, ..., gr) be the subgroup of G generated by g1, 92, .-, gr,
and let G™ be the subgroup {¢" | g € G} of G for n € Z~o. Moreover, when H
is a subgroup of G, let |G : H| be the index of H in G. For a finite algebraic
extension K over F, [K : F] denotes the degree of K over F. We let (y = e2™/N
be a primitive Nth root of unity for a positive integer V.

2, Siegel modular forms

We shall briefly present necessary facts about Siegel modular forms and explain
the action of Gy on the Siegel modular functions whose Fourier coefficients lie
in some cyclotomic fields.

Let n be a positive integer, and let G be the algebraic subgroup of GLs,
defined over QQ such that

Gg= {a € GL2,(Q) | taJa =v(a)J with v(a) € Q },
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where

0 -1,
J:an[l 0 }

Let G be the adelization of G, let G be the non-Archimedean part of G, and let
G oo be the archimedean part of G,. We extend the multiplier map v : Gg — Q*
to a continuous map of G4 into Qj, which we denote again by v. Then we put
Goor ={x € G | v(z) > 0} and Gay = GGy Here t > 0 means ¢, > 0 for
all archimedean primes v of Q. For a positive integer N, let

Ry =Q* - {a € Gy | ag € GLon(Zy),aq =12, (mod N - May,(Zy))

for all primes q},

1, 0 x
a={ls 0] xegzq}

Go+ ={a€Gq|v(a)>0}.

PROPOSITION 2.1
For every positive integer N, we have

GA+ = RNAGQ+

Proof
See [24, Proposition 3.4] and [25, p. 535, (3.10.3)]. O

Let H,, = {z € M, (C) | z = 2,Im(z) > 0} be the Siegel upper half-space of
degree n. Here, for a Hermitian matrix £ we write £ > 0 to mean that £ is
positive definite. We define the action of an element a = [4 B] of Gg4 on H,, by

a(z)=(Az+ B)(Cz+ D)™,
where A, B,C,D € M, (Q). For every positive integer N, let
I(N) = {v € Sp,,(Z) | y=1s, (mod N-Mb,(Z))}.

For an integer m, a holomorphic function f :H,, — C is called a (classical) Siegel
modular form of weight m and level N if

(2.1) f(v(2)) =det(Cz + D)™ f(=2)

for all y=[AB]eT(N) and z € H,,, plus the requirement when n =1 that f
is holomorphic at every cusp. In particular, f(z) has a Fourier expansion of the
form

ZA e(tr(¢z)/N)

with A(€) € C, where & runs over all positive semidefinite half-integral symmetric
matrices of degree n (see [13, Section 4, Theorem 1]). Here, a symmetric matrix
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& € M,(Q) is called half-integral if 2€ is an integral matrix whose diagonal entries
are even.

For a subring R of C, let M,,(I'(N), R) be the vector space of all Siegel
modular forms f of weight m and level N whose Fourier coefficients A(§) belong
to R, and let M,,(R) =Ux_; Mm(L(N), R). We denote by A,,(R) the set of all
meromorphic functions of the form g/h with g € M, 1, (R), 0 # h € M, (R) (with
any r € Z), and we denote by A,,(I'(N), R) the set of all f € A,,,(R) satisfying
(2.1). In particular, we set

= Ao (T(V),Q(¢n)),

F=J 7~
N=1

For every algebraic number field K, let K, be the maximal abelian extension
of K, and let K be the idele group of K. By class field theory, every element
of K acts on K, as an automorphism. We then denote this automorphism by
[z, K]. On the other hand, every element of G4 acts on F as an automorphism
(see [26, p. 680]). If x € Go4 and f € F, then we denote by f? the image of f
under z.

PROPOSITION 2.2
Let f(z) =3 ¢ A(§e(tr(§z)/N) € Fn. Then we get the following.

(i) f8=f for B€ Ry. Moreover, Fy is the subfield of F consisting of all
the Ry -invariant elements.

(i) Let y=1[% T(i | €A, and let t be a positive integer such that t = x4
(mod NZg) for all primes q. Then we derive

fy—ZA tr (&2) /N)

where o is the automorphism of Q(CN) such that ¢ = k.
(i) f*=foa for a € Goy.

Proof
See [26, p. 681] and [27, Theorem 26.8]. O

3. Shimura’s reciprocity law

We begin with fundamental but necessary facts about Shimura’s reciprocity law
from [27, Section 26]. Let n be a positive integer, let K be a CM-field with [K :
Q] =2n, and let Ok be a ring of integers of K. Let ¢1,9s,...,¢n be n distinct
embeddings of K into C such that there are no two embeddings among them
which are complex conjugates of each other on K. Then (K;{p1,02,...,0n}) is
a CM-type, and we can take an element p in K such that

(i) p is purely imaginary,
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(ii) Im(p¥i) >0 for alli=1,...,n,
(iii) Trg/q(pg) € Z for all £ € Ok.
We denote by v(z), for z € K, the vector of C™ whose components are z¥?,...,

x¥n. The set L = {v(x) |z € Ok} is a lattice in C". We define an R-bilinear form
E(z,w) on C" by
n 21 w1
E(z,w) :Zp“’i(zim—z_iwi) forz=|:| and w=
=t Zn Wn,
Then E becomes a nondegenerate Riemann form on the complex torus C"/L
satisfying
E(v(x),0(y)) = Try/q(pry) for z,y € K,

which makes it a polarized abelian variety (see [27, pp. 43-44]). Hence, we can find
a positive integer §, a diagonal matrix € with integral elements, and a complex
n x 2n matrix  such that (see [27, Lemma 27.2] or [26, p. 675])

(i) E(Qx,Qy)=4-taJy for x,y € R®",
(i) L={Q[%]|acZm,be ez},
(iid)

€= . s 61:1761'|€Z‘+1,fOI‘Z':17...,TL—1.

€n

Now, we write 2 = [y Qo] = [v(e1) v(ez) --- v(ezn)] with Q;,Q9 € M, (C) and
€1,€2,...,62, € K, and we put zg = leﬂl. It is well known that zy € H,,. Let
®: K — M, (C) be a ring monomorphism such that

TPl

O(z) = _ for x € K.
. P
Then we can define a ring monomorphism h: K — M, (Q) by
O(x)Q=Q -'h(z) forzeK.
Here, h(x) = [ai;]1<i j<2n 18, in fact, the regular representation of x with respect

to {e1,ea,...,e2,}, namely, ze; = Z?Zl a;jej. If e=1,, then L=v(0Og)=Q-

72" =Zwv(ey) + -+ + Zv(ean) so that h(z) € My, (Z) for z € Ok. One can then
readily show that
@) = J'h(z)J~ ' for r € K,

and that zg is the CM-point of H,, induced from A which corresponds to the
principally polarized abelian variety (C"/L,E) (see [26, pp. 684-685] or [27,
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Section 24.10]). In particular, if we set S ={x € K* | 2T € Q*}, then h(S) =
{h(s)| s € S} = {a € Ggy | alz0) = 20}

Let K* be the reflex field of K, let K’ be a Galois extension of K over Q,
and extend @; (i=1,...,n) to an element of Gal(K'/Q), which we denote again
by ;. Let {1 j=1 be the set of all embeddings of K™ into C obtained from
{901'_1 i1
PROPOSITION 3.1
Let K, K*, and {¢;} be as above.

(1) (K*5{t¢1,...,%m}) is a primitive CM-type and we have

K*=Q (i 2%
=1

(ii) Isz]_[jawj with a € K*, then b€ K and bb= Ny g(a).

xGK).

Proof
See [27, pp. 62-63]. a

We call the CM-type (K*;{v;}) the reflex of (K;{y;}). By Proposition 3.1, we
can define a homomorphism ¢*: (K*)* — K* by

" (a)= Ha’/’j for a € (K™)*,
j=1
and we have ¢*(a) - ¢*(a) = Ng+ g(a) for a € (K*)*. The map h can be extended
naturally to a homomorphism Ky — Ma,(Q4a), which we also denote by h. Then
for every b e (K*); we get v(h(¢*(b))) = Ng+g(b) and h(p*(b)™') € Gas (see
[27, p. 172]).

PROPOSITION 3.2 (SHIMURA’'S RECIPROCITY LAW)

Let K, h, z9, and K* be as above. Then for every f € F which is finite at zq,
the value f(zo) belongs to K. Moreover, if be (K*)y, then FRET®TY s finite
at zy and

Fzo) KT = pre" @D (),

Proof
See [27, Theorem 26.8]. O

REMARK 3.3

For any f € F which is finite at zg, the value f(z) in fact belongs to the class
field K, of K* corresponding to the kernel of ¢*.
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4. Class fields over cyclotomic fields

Let ¢ and p be odd prime numbers. We also write for simplicity { = ;. Set
k=Q() and n= (¢ —1)/2 so that 2n=[k: Q]. For 1 <1i < 2n we denote by
©; the element of Gal(k/Q) defined by (¥ = (%. Then (k;{®1,@2,...,pn}) is a
primitive CM-type and (k; {07t 05t 0 1}) is its reflex (see [27, p. 64]). For
a positive integer u, put

Sy={ack*|a=1 (mod 2p")},
Su={(a)|aeSu},

where (a) is the principal ideal of k generated by a. Let E be the unit group of
k, and let k, be the ray class field of kK modulo 2p*. Then we have

Gal(kyt1/ku) = Su/Su1 = SuE /S E = 5,/5,11(S, N E)
by class field theory. Further, we set H, = S,,41(S, N E) and
14 2pi¢? for 1<i<n+1,
Wi = ) .
" L4 2pH(Cm + ¢t =P = (%) for n+2<i<2n.

Since the ring of integers Oy, of k is equal to Z[(] and S,,/S, 41 is isomorphic to
Ok /pOy, by a mapping

S/ Sur1 — Ok /pOk;,
(1+2pHw)Syq1 — w+pOy,  for we O,
we obtain S, /S, +1 = (Z/pZ)*" and
Su/Sur1 = ((14+20"C) Sy, (14 2p"C*) Sy, (14 2p4¢*")S,,).

Let B = [b;j] € M3,(Z) where b;; is an integer such that w,, =1 +
227“(2321 b;¢7). Then we get

1 o o ... 0
1
B 10 0 0
01
-1 1 -1
-1 1)1 1]
Hence, S,/Su+1 = (Wu,18u+1,Wp,2Su415-- Wy 2nSus1) because det(B) =

(—1)"~! is prime to p. This shows that S,,/H, = (wu1Hyu,wpoHp, .. wy2nH,
due to the fact that H,, D S,41.
Now, we define an endomorphism ¢* of £* by

©*(a) = l_Ia“"i_1 for a € k*
i=1
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and an endomorphism ¢ of k by

n

o (a)= Za“’fl for a € k.
i=1

We let
14 2pteT(¢Y) for1<i<n+1,
77#,1‘{1 for n +2 <4< 2n,
so that gp*(ww)Huj NuiHy for all 1 < < 2n. Since @* (H,) C H,, we can define
an endomorphism ¢ of S,/ H,, by ¢%(aH,) = ¢*(a)H,. Let K, be the class field
of k corresponding to the kernel of ¢¥. Note that K, =k, (k,+1 N kap), where

kap is the class field of k£ in Remark 3.3. Then we get
(41) Gal(Ku/ku) = (SM/HH)/ker((;i) = ‘;’E(SM/HM)
= <nu,1Hu777u,2H;u e 7nu,n+1HM>'

Observe that K, is the fixed field of {(%) |wH, € ker(&i)} and

Gal(K, /k,) = ( (Rn/h) (Bulhy | (Balh Yy,

(Wy,1) (wy,2) (Wy,n+1)

Here, (k*‘*—l/k) is the Artin map of k,11/k.

PROPOSITION 4.1

Let N be a positive integer, let K = Q(Cn), and let KT be its mazimal real
subfield. Let E (resp., ET ) be the unit group of K (resp., KV ), and let W be the
group of roots of unity in K. Then we have

B WE| = 1 4if N is a prime power,
2 if N is not a prime power.
Proof
See [30, Corollary 4.13]. O
PROPOSITION 4.2

Let £ be any prime, and let m € Z~q. Let Q((em)t be the mazimal real subfield
of Q(¢pm ), and let EZZ,L be its unit group. Further, we let C}}, be the subgroup of
E;q generated by —1 and the real units

1-¢5n om
§a = 21[7,?' _CI eR, l1<a<—, gecd(a,l)=1.
1 —Cem 2

Then
bt =|Ef. : Chl,

where h,, is the class number of Q((em)*.
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Proof
See [30, Lemma 8.1 and Theorem 8.2]. O

LEMMA 4.3

Let £ be an odd prime, and let p be an odd prime such that th;, where hzr 18
the class number of the mazimal real subfield of k. Then H, /S, 11 is generated
by real units of k for all p € Zq.

Proof

The (2€hzr)th power mapping of S,/S,4+1 induces an automorphism of itself
because ged(p, 2€hzr) = 1. Thus, the image of EN S, in 5,,/S,,4+1 is the same as
that of E2¢h¢ NS,,. By Propositions 4.1 and 4.2, E2h{ (€2 |1 < a < £/2) where
€0 =CL0(1=¢)/(1 =) €R. Therefore, H, /S, 11 = S,i1(EX*" 1S8,)/S,41 is
generated by real units of k. O

Let My(p) = [mij] € M, 41)x2n(Z/PZ), where my; is the coefficient of ¢/ in ¢ (¢*)
in Z/pZ. Then we get
1 ifi-j ' e{L,2,.... 7} in Z/(Z,
mi; =
! 0 otherwise.

We can then easily see that the rank of My(p) is equal to the dimension of the
vector subspace (17,1541, Mp,2Su+1s -« s Munt1Su+1) I Su/Spt1.

LEMMA 4.4
Let ¢ and p be odd primes, and let y € Z~g. For 1 <1i,j <2n, let

1 ifi-je{1,2,...,n} in Z/(Z,
nij = .
0 otherwise,

and let Ny = [ni;l1<ij<n € Mp(Z). Then the images My 1,Mu,2, - - > Nun+1 are lin-
early independent in S, /S,+1 if and only if p{det(Ny).

Proof
Let Né = [nij}1§i§n+1,1§j§2n c M(n+1)X2n(Z/pZ). It is clear that rank(Mg(p)) =
rank(Ny). Hence, the images 1,1,Mu.2,.--,M0un+1 are linearly independent in

S,/ Spu+1 if and only if Nj has rank n + 1. Now, we claim that rank(N)) =n+1
if and only if IV} induces the following row echelon form:

1 -1

1 -1
(4.2)
1 -1
1 1 -+ 1

The “if” part is obvious. Note that if n;; =1 (resp., 0), then n;—; =0 (resp., 1)
because there are no two automorphisms among 1, 2, ..., @, which are complex
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conjugates of each other. Let v; be the ith row vector of N for 1 <i<n+1,
and let

20; — Uy — Vpq1 for 1 <i<n,

/ !
U.:[p.,]1<j<2n: )
! = Up, + Unt1 for i=n+ 1.

Observe that v),,; =[1 1 --- 1] and 2 € (Z/pZ)*. For 1 <i <n, if vj; =1 (resp.,
—1), then vy—; = —1 (resp., 1). Thus, we can write v} as a linear combination
of the row vectors of the above row echelon form (4.2), and hence, the claim is
proved. By the above claim, rank(N;) = n+1 if and only if det([n;;]1<s j<n+1) Z0
(mod p). Since

[=n1j + Npj 4+ Npg1jli<j<nyr =[00 -+ 01],
we derive
det ([nij]i<ij<nt1) = det(Np).
This completes the proof. 0
THEOREM 4.5

Let £ and p be odd primes, and put n= (¢ — 1)/2. Further, let My(p) and Ny be
as above. prj(fhjn, then for every u € Z~o we deduce

Gal(K,, /k,,) = (Z/pz)rark(Me®),
If ptdet(Ny), then we obtain
Gal(K,/k,) = (Z/pZL)" .

Proof
By (4.1) it suffices to show that the dimension of (1,15,4+1,7u,25u+1,---,
Nun+1Sut1) 0 Su/Suy1 is equal to the dimension of (n,1H,,nu2Hy,. ..,
Nun+1Hy) in S, /H,. If n=1, then H, =S5,41 by Lemma 4.3; hence, we are
done in this case. Thus, we may assume n > 2. It is well known that Z[¢ + (1] is
the ring of integers of the maximal real subfield Q(¢ +¢~!) of k and [Q(¢+¢71):
Q] =n (see [16, Theorem 4]). Therefore, if wS, 11 € H, /S, 11, then by Lemma 4.3
we can write
u=1+2p" (a0 +ar(¢+¢7H) +ax(C+¢ + - an(CHCT) ) €S NE
for some a; €Z with 0<i<n—1.If p|a; for 1 <i<n-—1, then

No(ete-1)y/0(u) =14 2p#nag  (mod 2p**1)

=1 (mod 2p"*t).

Since p{n, we have p|ag and so u € Sy41.
Now, we set

b=ao+a1(C+¢ ) +a(C+ )+ +ana(¢+H!
=00 +1¢ + 020" 4 b+ bC T+ b1 Y e bi T



Class fields over cyclotomic fields 813

where b; € Z for 0 < i <n. Observe that b, =0, b,_1 =a,_1, and b,_2 = ay,_o.
Consider the following matrix:

1 -1

1 -1
by —by by—by - bu—bo by—by - by—by by —by]
€ M(n12)x2n(Z/pZ).

The last row of M is induced from the coefficients of ¢ for 1 < j < 2n in b. So,
M is row equivalent to

1 —1
1 -1
M ~
1 -1
1 1 1
0 0 0 2(bp—bo) 2(bp_1—bo) 2(b1 — bo) |
o 1
1 -1
~ K a because b,, = 0.
1 -1
1 1 o1
00 -+ 0 0 2,4 - 2b]

Here we claim that if w ¢ S,,;1, then the rank of M is n 4 2. Indeed, if p{an—1
or pfa,—_2, then we are done. Otherwise, we get

bn—3 =0an-3 (mOd p>7
bn—4 =0np—4 (HlOd p)

Hence, by induction we ensure that the rank of M is n+ 1 if and ouly if p | a;
for all 1 <i<n—1. Since u ¢ S, 41, we obtain p{a; for some 1 <i<n—1, and
the claim is proved. In the proof of Lemma 4.4 we already showed that every
row vector of My(p) can be written as a linear combination of the row vectors
of the matrix (4.2). Therefore, if v ¢ S,11, then by the above claim for each
1<i<n+1 the images of 1, ; and w in S,,/S,+1 are linearly independent, as
desired. Furthermore, if p{ det(NNy), then by Lemma 4.4 we obtain rank(M,(p)) =
n+ 1. ]

COROLLARY 4.6

Suppose that thZn. Then K,, becomes the ray class field k1 for all p € Z~g
if and only if dimg/,;(Hy/S2) =n —1 and ptdet(Ng).
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Proof

Suppose that dimg/,z(H1/S2) = n — 1 and p { det(N;). We claim that
dimg/pz(Hy/S,q1) =n — 1 for all p € Zsg. Indeed, let e1,e2,...,6,-1 be ele-
ments of S; N E whose images form a basis for H;/Ss. Since e € Hy — S5 for all
i, the images e, &b, ..., el | turn out to be a basis for Hy/S5. By induction, the
claim is proved. By Theorem 4.5 and the assumptions, we deduce

|Ga1(Ku/ku)| = |<;7\f:(5u/Hu)| =p"th

‘SM/SM+1| — pntl

|Gal(k,t1/k)| = |Su/Hyl = NPT
KI= R

Therefore, K,, =k, 11 because K, C k1.

Conversely, suppose that K, =k, for all u € Z~o. It follows from the
proof of Lemma 4.3 that |H,/S,4+1] <p"~', and so |Gal(k,+1/k,)| > p"Tt. On
the other hand, |Gal(K,/k,)| <p"™' by the formula (4.1). Since K, = k41,
we have dimg, 7 (H1/S2) =n—1 and |Gal(K,,/k,)| = p™*'; hence ptdet(N;) by
Lemma 4.4 and Theorem 4.5. ]

REMARK 4.7
(i) We are able to show that det(Ny) # 0 for £ < 10000 with the aid of Maple

software, from which we conjecture that det(N;) # 0 holds for all odd primes £.
(i) Let & =y, “(1—¢*)/(1 = ¢) €R for 1 < a < £/2. When ¢ = 5, we obtain

%=1 (mod 14)
#Z1 (mod 98).

Thus, dimg /7 (H,/S2) =1, and Corollary 4.6 is true for p= 7. In a similar way,
we can show that dimg,z(H1/S2) =1 holds for all odd primes p < 101 except
p=3. When £ =7, we see that dimg/,z(H1/S2) =2 for all odd primes p < 101.
So, we also conjecture that, for each odd prime ¢, dimg,7(H1/S2) =n —1 holds
for almost all odd primes p. If the above two conjectures are true, then we have
the isomorphism

Gal(ku-i-l/ku) = (Z/pZ)”+1

for each odd prime ¢ and almost all odd primes p.
(iii) Table 1 lists the generators of Hy /Sy for £ =5,7.

5. Theta functions

In this section, we shall provide necessary fundamental transformation formulas
of theta functions and describe the action of G4 on the quotient of two theta
constants.

Let n be a positive integer, and let u € C", z € H,,, and r,s € R". We define
a (classical) theta function by

O(u,z;r,8) = Z e(% Hae+r)ze+r)+ iz +r)(ut s))

RASYAL
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Table 1
p | generators of Hi/S> D generators of Hy/S2
£=5 =7 £=5 =17
3 1 157 1% A7 | €208 | gpRoTsA (12675
5 50 £308 368 53 | £1I0T | ¢l 19876 (148876
7 18 EEyee 59 T4 | g1A3T646 (1437646
11 30 1330 ¢ 1330 61 50 £A0TA0 ¢ 40740
13 81 ST ¢ 67 | £3TSS [ glo0esa c1ouzst
17 T2 [ ¢lT192 (34581 71| €20 €50 €10
19 I8 [ ¢16002 16002 73 | €T | 22092 (453852
23 32| ¢I2T60 (12166 79 T8 ¢ 167316 ¢ 164316
29 818 8 ¢ 83 | £05%8 SENE
31 30| ¢G9510_¢G9510 39 132 | 1233691193776
37 G8T | 16887 16851 g7 | 52 SENIE
11 120 £250_¢280 101 | &390 | ¢j212100 (7212100
43 | 5 SRy

PROPOSITION 5.1
Let r,s € R™ and a,be Z™. We have

(1) 6(7,“3 z =, 78) = @(’U,, Z5r, 5)7
(i) O(u,z;r+a,s+b) =e(*rb)O(u, z;r,s).

Proof
See [26, p. 676, (13)]. O

For a square matrix S, by {S} we mean the column vector whose components
are the diagonal entries of S.

PROPOSITION 5.2
For every v =[A B] € '(1) such that {*AC},{*BD} € 22", we get the transfor-
mation formula

@(t(Cz + D), y(2);m, s)

tT‘S _ trlsl

1
_ rs—rs 12, (1 ¢ -1
f)\,ye( 5 )det(Cz+D) 6(2 u(Cz+ D) Cu>
x O(u,z;7',s),

where Ay is a constant of absolute value 1 depending only on v and the choice of

the branch of det(Cz + D)2, and

In particular, X =1 for vy € (2).
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Proof
See [26, Propositions 1.3 and 1.4]. O

Here, the functions (0, z;r, s) are called theta constants, and these are holomor-
phic on H,, as functions in z (see [26, Proposition 1.6]).

PROPOSITION 5.3

Suppose that r, s belong to Q™. Then the theta constant ©(0,z;r,s) represents
the zero function if and only if r,s € (1/2)Z" and e(2-*rs) = —1.

Proof
See [11, Theorem 2]. O
Let
©(0,27,s)
(b(r,s) (2) = 9(0, 2;0, 0) :

Note that the poles of @) (z) are exactly the zeros of ©(0,2;0,0) =
> pezn €(3'@wzx). When n =1, ©(0,2;0,0) has no zero on H; by Jacobi’s triple
product identity (see [1, Theorem 14.6]).

LEMMA 5.4
Forr;s e R™ and a,b € Z", we obtain that

(1) @(—r,—s)(z) = @(r,s)(z)y
(ii) q)(r+a,s+b)(z) = e(trb)q)(r,S)(Z);
(iii) if y=1[4 Bl €T(1) such that {! AC},{'BD} € 2Z™, then we obtain

tpg — typlg!

D) (V(2)) = 6(f)¢(w,y)(z),

where
0-+[)
Proof
It is immediate from Propositions 5.1 and 5.2. O
PROPOSITION 5.5

Let m be a positive integer, and let r,s € (1/m)Z". Then @, 4 (z) belongs to
Fomz. Moreover, if x is an element of A such that

1, O
Ty = {0 tln] (mod 2m*Ma,,(Zy))

for all rational primes q and a positive integer t, then

(I)(r,s) (Z)l = (I)(r,ts) (Z)
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Proof
See [26, Proposition 1.7]. O
COROLLARY 5.6
For m € Z~o and r,s € (1/m)Z", let
1, 0
y=>p [o x.ln] @€ Gat

with B € Rope, xEHqZX and o € Go+. Then

((I)(r,s))y(z) = (I)(r,ts) (a(z)) 5

where t is a positive integer such that t = x, (mod 2m>Z,) for all rational
primes q.

Proof
This can be proved by Propositions 2.2 and 5.5. (I

6. Construction of class fields

We use the same notation as in Section 4. Let k= Q(¢) with ¢ = {p, and let
n=(¢—1)/2 so that 2n = [k : Q]. Let v: k — C™ be the map given by

TPl

let L =v(Ok) be a lattice in C", and let p= (¢ —(~!)/¢ € k. Then p satisfies
conditions (i)—(iii) in Section 3. We have an R-bilinear form E:C" x C* — R
defined by
n <1 w1
E(z,w):Zp‘Oi(zimfz_iwi) forz=|:]|,w=1|:|[,
i=1 . w,,
which induces a nondegenerate Riemann form on C"/L. Let
¢% for1<i<mn,
ei:{Z;_rf(Qj_l for n+1<i<2n.

Since {e1,ea,...,ean} is a free Z-basis of Oy, {v(e1),v(ea),...,v(e2,)} is a free
Z-basis of the lattice L, and we get

[E(v(e:),v(e;))] 1<ij<on =
Now, let
Q= [v(e1) v(e2) -+ v(en)] € Mux2n(C).
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ol

BE(Qzx,Qy) =t2Jy for x,y € R*",

Then (Q satisfies

a,beZ"},

because E is R-bilinear. Thus, 6 =1 and e =1,, in Section 3. Write Q = [Q; Q]
with Q1,Q5 € M, (C), and put z, = Q;lQl € H,,. We define a ring monomorphism
h of ky into Ms,(Q4) as in Section 3. Then z; is the CM-point of H,, induced
from h corresponding to the polarized abelian variety (C"/L, E).

Let p be an odd prime, and let r,s € Q™. We denote by h the set of all
non-Archimedean primes of £ and by a the set of all archimedean primes of k.
For given w € Oy, prime to 2p, we set

w= H(Wﬁl)v X H 11) X Hlv Ekg

veh vEh vEa

v|2p vi2p
Here z, is the v-component of z € k. If ®(, ) is finite at 2y, then by Proposi-
tion 3.2 and [15, Chapter 8, Section 4], we have

K[k & x5t
(I)(r,s)(zé)( @y ) :q)(r,s)(zé)[ k] ((I)(T S))h(tp (@ ))(Z() for w € O,

)

where £’ is a finite abelian extension of & containing ® ;. 4 (2¢).

LEMMA 6.1

Let p be an odd prime, let p € Z~q, let r,s € (1/p*)Z"™, and let z; be as above.
Assume that zp is not a zero of 0(0,2;0,0). prfﬂh?‘n, then @(T,S)(Zg)pa €
Koy—1-q fora=0,1,...,p4.

Proof

By Proposition 5.5 and [26, p. 682], @, ,)(2) belongs to Fap2. as a function, so
it is Rgp2n-invariant. Let wHs, 1, belong to ker(gpﬁa) such that ¢*(w) €
H,_1_o. Since ptlhfn, it follows from the proof of Theorem 4.5 th
(¢*(S2pu—1-a) N Hap—1-a)/S2p—a = {0}. Hence, ¢*(w) € Sa,—o. Write ap*/(w)
1 4 2p?#~ %Wy with wg € Ok. Then it suffices to show that (é(r’s)(zg)i”a)(k(ﬁ)
<I>(T,s)(zz)pa, where £’ is a finite abelian extension of k containing ®(, ,(2¢). By
the strong approximation theorem for Sp(n) there exists a matrix § € I'(1) such
that

-+

a

{1,1 0

24
o] mod 2,

where v :=v(h(p*(w))) = Nijo(w) = ¢* (W) - p*(w) = 1 + 2p**~ v for some vy €
Z. In fact, 8 belongs to I'(2) because h(¢*(w)) =12, (mod 2) and v =1 (mod 2).
Thus, for all rational primes g we obtain

b @), =[5, 5]R ot 2a ).
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By Lemma 5.4 and Corollary 5.6 we get that

w~—1
((I)(r,s))h(go © ))(ZZ) = q)(r,vs) (BZK)
trus — tr's!
= (f)q)(r’,s’)(zf)a

where

"I=t8| " | =th(er@) 7| (mod 2%)
=) i

()

= m +2p%7 R (wp) m (mod 2p2").

Let a,b € 2p*~Z™ C 27" such that [§] = 2p**~% - th(wp)[%]. Then we derive by
Lemma 5.4 and Proposition 3.2 that

k' /k

(¢(T’S)(Ze)p“> ) _ (q)(m)h(go*(&”)) (Zé))p“

fe"

bros—t(r+a)(s+b)\ . P
= (e( 5 )e( rb)q)(m)(z@))
trh—tas N
= e(p* g - trs)e(pa ) T)q)(r,s)(%)p
= (I)(T’S)(Zg)pa. (]

Let p € Z~g. Assume that r, s € (1/p*)Z™ and that z; is not a zero of ©(0, z;0,0).
Consider the matrices h(¢*(wop—1-a,;j)) for 1 <j<n+1land 0 <a < p—1. Then
we have

h(" (Wap-1-a,5)) = h(1 420" 717" ((7) + 2p™ )
=1y, + 2p2,uflfah(<p+ (C])) + 2p2ufah(w0)

for some wy € Ok. Also, we can deduce without difficulty

0 0 e -0 ] -1 1 7
11
0 0 0 -1 1
-1 -1 —1 —1
h(Q)= |7 0 0 0
1 1
1 1 1
11 1 1] 0 o 0
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Now, again by the strong approximation theorem for Sp(n) there exists a matrix
BQ,u—l—a,j in F(l) such that

B (Wapo1—oy)) [1” 0

l—a d 2pH),
0 'UZ,ula,j‘]-n:| Bop-1-a,j (mod 2p=*)

where V2p—1—a,j = I/(h((p*(w;uflfa’j))) = Nk/Q(OJQuflfayj) =1- 2p2"7170‘ +
2p*H =%, for some v; € Z. As a matter of fact, B2,—1_q,; belongs to I'(2) because
hMe*(wop—1-a,;)) = lan (mod 2) and va,—1-a,; =1 (mod 2). For all rational
primes ¢ we obtain

.~ 1, 0
h(<P (Wz,}fkaﬂ'))q = [0

By Lemma 5.4 and Corollary 5.6 we obtain

Vop—1—a,j 1n] Bop—1-a.j (mOd 2p2“M2n(Zq))-

h(@*(&;ufl—a,j))(zw) = ¢(7‘;U2u71—a,j5) (62“4_1_047]' (Z[))

t tol o
T02u—1—a,jS— TS
= 6( 5 ®(7/7s/)(22),

D(r,s)

where

/
[l r
| ="Bou—1-a,;
s V2p—1-a,j$

"W (Wop—1-a5)) m (mod 2p**)

| (@) |7 e [[] - Gnoa 2

For each j, let asy—1-a,j,b2u—1-a,; € 2pH~17*Z™ C 2Z™ such that
Q2p—1—a,j| _ o 2u—1—a t + g {T]
=9 -h J .
[b%lad} P (#(¢D) S

Let ¢,d € 2p*~27Z™ C 2Z™ for which [§] = 2p**~*-*h(wp)[%]. Then by Lemma 5.4
and Proposition 3.2 we derive that

Kopy—1-al/k )

(P(r (20)7") Fim10

®~—1 (27
= ((D(T,s)h(w (W2u71—oc,j))(zé)>p

_ e(pa rvgu—1-0,58 = '(r +azu—1-a,j +€)(8 + b2u—1-a, + d))
2

(6'1) X e(pa . tT(b2H717a,j + d))@(r,s) (Zg)pa

_ thz —1— '*taz —1—a,jS o
:e(—pw 1 -trs)e<pa p—l—aj 5 p—1l—aj )(I)(ns)(z[)p

a trbyy,_ 1. — tag,—1.48 o
:e(—pQ” 1-trs)e( 2p—1,j > 2u—1,j )q)(m)(zg)p )

pth root of unity
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Forgivenr;,s; € Z" with1 <:<n+1,letr = [Ti]1§i§n+1 ands = [Si}1§i§n+1-
We set @pp 0.1 (2)p = Pr, spi s, /pr) (2) for each p € Zg.

LEMMA 6.2
Let r = [r;]i<i<n+1 and s = [sili<i<nt1 for given r;,s; € Z"™. Then for each 1 <
1,7 <n+1, there exists an integer c;; such that

(Kl/k

(I’[ms;l,i] (Zé)p(ww) = C;” (I)[r,s;l,i] (zﬁ)p

for all odd primes p.

Proof
Substituting r =r;/p and s = s;/p into the formula (6.1) we get
(55 brisi\ (tribij —tay jsi
(I)[r,s;l,i] (Zf)p " = 6(— ; Z>€( e 2p 2 Z)q)[r,s;l,i](z‘/@)p

—trisi+(triby j—tay jsi)/2
:Cp ( 1 L3s:)/ (I)[r,s;l,i](zf)py

where a; j,b1 ; € 2Z™ such that [Zi;] =2-th(p*(¢?))[5]. Hence,

e t t t
Cij ‘= —T;S; + —( ribl,j — a17j8i)

2
is an integer which does not depend on p. O

We put As(r,s) = [cijli<ij<nt1 € Mpy1(Z), where ¢;; is an integer satisfying

((Kl/k)
Pprsi,ig(ze)p

= C;” (I)[r,s;l,i] (Z@)P

for all odd primes p. Note that Ay(r,s) does not depend on p by Lemma 6.2.
Now, in order to construct a primitive generator of K, over k,, we need the
following lemma.

LEMMA 6.3

Let L be an abelian extension of a number field F'. Suppose that L = F(«, ) for
some a, B € L. Let a,b be any nonzero elements of F, and let v =[L: F(a)].
Then we have

L= F(aa + b(l/ﬂ - TrL/F(a)(ﬂ))).
Proof
Let e =aa+b(vf —Try pea)(B)) € L. Then we have
Trr ey (€) = aaTrrp) (1) +bv Trp peay (B)
(6.2) —bTrr p(a)(B) Trr p(a)(1)
= aav.

Since L is an abelian extension of F', so is F'(¢) by Galois theory. Thus, €7 € F(¢)
for any o € Gal(L/F), and hence, Try,/p(a)(€) € F(g). This implies that o € F(e)
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by (6.2). Therefore, we obtain
F(e)=F(a,e) = F(a,e —aa+bTry pa)(B)) = F(a,bvp) = L. O

THEOREM 6.4

Let ¢ and p be odd primes, let n= (£ —1)/2, and let p € Z~o. Let r, s, 24, and
Ay(r,s) be as above. Assume that zy is neither a zero nor a pole of
H;jll Py 5] (2)p- If PE R0 - det(Ag(x,s)), then we have

n+1
(63) K2;¢717a = k2;¢717a (Z(I)[r,s;,u,i] (ZZ)ZQ>
i=1

for a=0,1,...,u— 1. Moreover, if dimg,z(H1/S2) =n — 1, then we have

n+1

(64) k2p7a = ku (Z (P[r,s;u,i] (Zé)§a>
i=1
fora=0,1,...,u—1.

Proof

Let x,; =r;/p" and y,; = s;/p" for each p and i. Then x,,; =x;;/p"~* and
Yui =Y1,:/p" . By Lemma 6.1, @ 5.5 (20)8" € Ka,—1—q. It then follows from
(6.1) that for 1 <i,j<n+1

o K21_.—1—cx/k)
((I)[r,s;u,i](ZUg ) (wop—1—-a,j)

t t
Xpib2p—1.5 = 02u—1Yni\
[r,s

= e(_p2M71 . tx,u,iy,u,i)e( 9 TR (Zf)gav

where agﬂ_ld,bgu_l,j € 2p“*1Z" such that

[mu} _ ot (gt () [Xw]

bou—1,5 Yu,i

— 9pht . th + /7 |:X1,7L:|
Pt - th(0T(¢)) Vi
— 1 A5
P [bl,a}

Kopy—1—a/k
((b[r,s;u,i] (2z)5a) 2p-1-0ud) )

We ensure that

t t
Xl,ibl,j — a1,5¥Y1,i
9 Cb[r,s;u,i] (Zl)g

o

(6.5)

= 6(—P'tX1,iY1,i)€(

= C;” (b[r,s;u,i] (Zf)gaa
where ¢;; is the (¢,j)th entry of Ay(r,s). Here, we observe that for 1 <i<n+
1 there exists vi € k2u—1—o¢(q)[r,s;,u,,1] (Z@)g a(b[r,s;p,,Q](Zé)g S .’¢[r’s;u’n+1] (Zg)g )
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with

(@) _ Jom =i
because p{det(A,(r,s)). Since |Gal(Kau—1-a/kou—1-a)] < p"* by (4.1), we
deduce

(6.6)
Koy 1o =kop1-a(71,725 s Ynt1)
=kop-1-a(Ppesp1) (208 sz (20)8 oo, pessppnsn) (20)8 ).
NOW, let Li = kQ}L—l—O&((p[r 57%1]( ) (I)[r s;11,2] (Zg)ga, ey (I)[I',S;lhi] (Zg)ga) for each

1<i<n+1. Suppose that L, = kg,kl,a(zgl Py 5.0, (2¢)8") for some integer
1 <m < n. Note that [L;,t1: L] =p and

Ter,+1/L ((I)[r,s,u m+1] Z@ Z C [r,s;0,m~+1] (ZZ) =0,

due to the fact that Z?;g ¢} = 0. Hence, if we take a =1 and b= 1/p, then by
Lemma 6.3 we obtain

Lm+1 = k2p,717a (Z (I)[r,s;,u,i] (ZK)ZQ ’ (I)[r,s;u,m—i-l] (Zf)ga)
i=1

m—+1

=k2p-1-a (Z Plesip1,0] (zz)ia) .

i=1
Therefore, (6.3) is proved by induction and (6.6).
If dimg,,7(H1/S2) =n — 1, then by the proof of Corollary 4.6 we get

|Gal(kgy—a/kzy—1-a)| =p"*"

Since | Gal(Kay—1-a/k2u—1-a)| =p" ™ and Ks,_1_o C koy—qa, we conclude that
Koy—1—a = kou—ao. Hence, by (6.6)

kQ[L—OL = k2,u—1—a ((I)[r,s;u,l] (Zé)ga ; (I)[r,s;p,,Q] (Zf)ga RN} (b[r,s;u,n—i-l] (Zﬁ)ga)
= ky (q)[rﬁsmyl] (Zf)ga s Qv si,2] (Zf)ga’ s Pl sipn1] (Zf)ga)

for '« = 0,1,...,p0 — 1. Let L = ku(®p s (208 P2y ()8,
Py sip0,i] (Zg)ga) for each 1 <i <n+1. Suppose that L], =k, (3" Pr.sipui] (Zg)ga)
for some integer 1 < m <n. Then we have

Trp, e, (@ spminy (20 ) =Tro,ynr (Trr, 00, (Presumi (205 7)) (=0)
= TrLl /L/ m (TrL7n+1/Lm+1 (‘I)[I‘,S;u7m+l] (Zé)ga ))

= [Lm+1 : Lm+1] ’ TrL',m,-{—l/L;n (q)[r,s;p,,m+1] (Ze)ga)7
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and so TrLin+1/Lin (CImp— (Zg)ga) = 0. Therefore, by Lemma 6.3

L;n+1 = klt (Z (b[!‘,s;y,i] (zl)ga ’ (I)[r,s;,u,m—i—l] (Zl)ga)
i=1

m—+1

= ku ( Z (I)[r,s;,u,i] (Zf)ga) )
i=1
and (6.4) is proved again by induction. O

Although we omit in the above theorem the case where p divides det(A.(r,s)),
by utilizing Theorem 4.5 we might find suitable generators of K, over k, for
each € Z~o.

Let rp = [Ti]1§i§n+1 and sg = [Si}1§i§n+17 where r; = t[l 0 - O] € Z™ and
S; = t[(Si)j]lngn eZ™ for 1 <i<n+1 with

1 ifj<i,
(s:); = .
0 otherwise.

Here we observe that @ ....i(2)p is not identically zero for all y and i by
Proposition 5.3.

COROLLARY 6.5
Let £ and p be odd primes, and let z; be as above. Put n= (£ —1)/2, and let

W€ ZL~g. Further, we assume that z; is not a zero of H?ill PRr,505.i] (2)p-

(i) Let £=7. If p#£3,7, then we have

4
(6.7) Koy 1-a=kopy-1-a (Zq)[ro,smmi] (z7)£a)
i=1

for0<a<pu—1.
(ii) Let ¢=11. If p#3,5,11, then we have

6
(6.8) Koy 1—a=kop—1-a (Z (D[ro,so;y,,i](zll)ga>
i=1
for0<a<u—1. Ifp=3, then we get
5
(69) KZuflfa = k2u717a (Z q)[ro,so;,u,i] (le)ga) .
i=1

(iil) Let £=13. If p#3,5,13, then we have

7
(6.10) Koy 1—a=kop—1-a (Z Dirg s0511.] (Zlg)ﬁa)
i—1

for0<a<u-—1.Ifp=2>5, then we obtain

6
(6.11) Kop—1-a =kop—1-a (Z q)[ro,smw] (213)ga> :
=1
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(iv) Let £=5. Then we have

(612) KQ,u—l—a = kQ,u—l—a (Cp’ﬁl‘*a + q)[ro,so;u,l] (25)5(1 + <I)[ro,so;u,3] (25)50)
for0<a<pu-—1.

Proof

Let the matrix M (p) be as in Lemma 4.4. Note that h} =1 for £ <67 (see [30,
p. 352]). We can show that z, is not a pole of H?;ll D@1y s0:,i] (2)p for £ <17 by
utilizing the RiemannTheta command in Maple.

Ky /k

o))
(i) Using (6.1) we can find <I>[r0,50;1)i](27)p( 137 for each 1< 1,5 <4 as fol-

lows:
(Kl/k) (Kl/k> (Kl/k) (Kl/k>
(w1,1) (w1,2) (w1,3) (w1,4)

(I)[!‘oyso;lwl]<z7)p -1 -1 -1 1
Prry,50:1,2)(27)p -2 —4 -2 0 — A+ (o, s0)-
(I)[To so;1 3](Z7)p 0 —10 —4 2
é[ro sp;1 4](Z7)p -3 —13 —11 9

Since det(A7(rg,sg)) = 2° is prime to p, (6.7) is true by Theorem 6.4.
(ii) First, suppose that p#3,5,11. In a similar way as in (i) we obtain

-1 -1 -1 -1 -1 1

-2 -4 -2 -4 =2

-4 -6 -4 -10 0 =2
-7 -3 —-11 -21 -3 1

-7 -5 =25 =29 -1 -1
-10 -2 —-48 -34 -6 4

Aq1(ro,s0) =

Since det(A11(rg,s0)) =27 -3-52 is prime to p, we get (6.8) by Theorem 6.4. If
p =3, then the rank of Mj;(3) is equal to 5. Since pt11 -5, by Theorem 4.5 we
deduce Gal(K, /k,) = (Z/3Z)® for all p € Z~(. We observe that the determinant

of the matrix
(&5) @5) @5) (&%) @)
(w1,2) (w1,3) (w1,4) (w1,5) (w1,6)

(I)[I‘o so;1 1](211)3 -1 -1 -1 1 1
Diry,50:1,2)(211)3 —4 -2 —4 _9 0
(I)[To so;1 3](211)3 —6 —4 —10 0 _9
¢[r0,so;1,4](211)3 -3 —~11 —921 _3 1
(I)[To,So;l,S](le)B -5 —925 —99 ] 1

is equal to 2°-5-11, which is prime to 3. Using Lemma 6.3 and (6.5) we can
conclude (6.9).
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(iii) First, suppose that p # 3,5,13. Then we derive
(-1 -1 -1 -1 -1 -1 1

0 -10 -4 -6 -4 -10 8
Ais(ro,so)=1| 5 —19 -7 —11 -11 -13 11
7 -35 —13 —-13 —-19 —15 13
2 —60 —18 -8 —32 —22 20
10 -84 —28 2 54 -22 20

Since det(A;3(ro,s0)) = —2'2 - 52 is prime to p, we have (6.10) again by Theo-
rem 6.4. If p=>5, then the rank of M;3(5) is equal to 6. Since p{ 13- 6, it follows
from Theorem 4.5 that Gal(K,,/k,) = (Z/5Z) for all u € Z. Observe that the
determinant of the matrix

(@55) (65) (@) (@5) (@5) (65).

(I)[ro,so;l,l](zl3)5 -1 -1 —1 -1 -1 1
(I)[ro,so;l,Q](zl3)5 —4 -2 —4 -2 —4 2
@[r0,50;1,3](,213)5 —10 —4 —6 —4 —10 8
@[r0,50;1’4](213)5 —-19 -7 —11 —11 —13 11
Dot (z13)s | —35 ~13 ~13 ~19 ~15 13
Bpry o016 (213)5 | —60 —18 -8 —32 —22 20

is equal to —27 - 31, which is prime to 5. Using Lemma 6.3 and (6.5) we can
deduce (6.11).

(iv) In this case, det(As(ro,s0)) =0 so we should find another generator of
Koy—1-a over koy_1_q. By [14, p. 316], Hay—1-a/S2;—a is generated by real
units of k for any odd prime p. Using the idea in the proof of Theorem 4.5, one
can show that (0*(S2u—1-a) VHau-1-a)/S2—a = {0}, and 80 @y so:p.i] (25)5 €
Ko, 1-4 for 1 <4< 3. Note that (peu—o € Fopru—o is Rgpeu-a-invariant; hence,
Cp2u-o € Koy—1_o by Proposition 3.2. Since Ny /g(way—1-a,;) =1 — 2p*~17
(mod 2p?#~%) for 1 < j < 3, we get

( Kopu—1—a/k )

(6]‘3) Cp;:’i;z;lfa‘j) = C;QCPZH—G fOI' 1 SJ § 3

Now, observe that the determinant of the matrix

(&5) (&5) (©5)

Cp2 -2 -2 -2

q)[royso;l,l] (25)1) -1 -1 1

q)[royso;lﬁ] (25)1) —4 —6 4
is equal to —22, which is prime to p. Therefore, we obtain (6.12) by Lemma 6.3,
(6.5), and (6.13). O
REMARK 6.6

(i) Especially when p =1, Corollary 6.5(iv) is reduced to Komatsu’s work
(see [14, Proposition 1]) with a few different ingredients.
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Table 2

L prime factors of det(A¢(ro,s0))

3|2

5|0

712

11| 2, 3,5

13 12,5

17 | 2,7, 17, 43

19 | 2, 3, 36137

23 | 2, 3, 11, 13, 29, 89, 241

29 | 2,3, 5,13, 113, 58057291

31 | 2, 3, 31, 109621, 1216387

37 | 2, 5,13, 37, 53, 109, 10138325056259

41 | 2, 5, 11, 17, 41, 439, 1667, 166013, 203381

43 | 2, 3, 19, 43, 211, 281345721890371109

47 | 2, 5, 83, 139, 5323, 178481, 6167669171116393

53 | 2,3, 5,139, 157, 1613, 4889, 1579367, 28153859844430949

59 | 2, 3, 59, 233, 3033169, 1899468180409634452730252070517

61 | 2, 5,11, 13, 41, 1321, 1861, 1142941857599125232990619467569

67 | 2,3, 67, 683, 12739, 20857, 513881, 1858283767, 986862333655510350967

71| 2, 5, 7, 31, 79, 127, 1129, 79241, 122021, 68755411, 1100061671,
3087543529906501

73 | 2,7,73,79,89, 16747, 134353, 5754557119657, 1150806776867233, 1190899

79 | 2, 5, 7, 13, 29, 53, 1427, 3847, 8191, 121369, 377911, 1842497, 51176393,
357204083, 32170088152177

83 |2, 3, 13, 17387, 279405653, 43059261982072584626787705301351,
8831418697, 758583423553

89 | 2, 17, 23, 89, 113, 313629821584641896139082338756559409, 4504769,
118401449, 22482210593

(ii) Table 2 gives the prime factors of det(As(rg,sp)) for £ < 89.
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