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Abstract We construct new families of nonhyperelliptic Lefschetz fibrations by apply-

ing the daisy substitutions to the families of words (c1c2 · · · c2g−1c2gc2g+1
2c2g ·

c2g−1 · · · c2c1)2 = 1, (c1c2 · · · c2gc2g+1)2g+2 = 1, and (c1c2 · · · c2g−1c2g)2(2g+1) = 1 in

the mapping class group Γg of the closed orientable surface of genus g, and we study the

sections of theseLefschetz fibrations. Furthermore,we show that the total spaces of some

of these Lefschetz fibrations are irreducible exotic 4-manifolds, and we compute their

Seiberg–Witten invariants.Byapplying the knot surgery to the family ofLefschetz fibra-

tions obtained fromtheword (c1c2 · · · c2gc2g+1)2g+2 = 1viadaisy substitutions,we also

construct an infinite family of pairwise nondiffeomorphic irreducible symplectic and

nonsymplectic 4-manifolds homeomorphic to (g2 − g + 1)CP2#(3g2 − g(k − 3) +

2k+ 3)CP2 for any g ≥ 3 and k = 2, . . . , g+ 1.

1. Introduction

The Lefschetz fibrations are fundamental objects to study in 4-dimensional topol-

ogy. In his remarkable works, Simon Donaldson [9] showed that every closed sym-

plectic 4-manifold admits a structure of Lefschetz pencil, which can be blown up

at its base points to yield a Lefschetz fibration, and conversely, Robert Gompf [19]

showed that the total space of a genus g Lefschetz fibration admits a symplectic

structure, provided that the homology class of the fiber is nontrivial. Given a Lef-

schetz fibration over S2, one can associate to it a word in the mapping class group

of the fiber composed solely of right-handed Dehn twists, and conversely, given

such a factorization in the mapping class group, one can construct a Lefschetz

fibration over S2 (see, e.g., [19]).

Recently, there has been much interest in trying to understand the topologi-

cal interpretation of various relations in the mapping class group. A particularly

well-understood case is the daisy relation, which corresponds to the symplec-

tic operation of rational blowdown (see [11], [12]). Another interesting problem,

which is still open, is whether any Lefschetz fibration over S
2 admits a section
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(see, e.g., [33]). Furthermore, one would like to determine how many disjoint sec-

tions the given Lefschetz fibration admits. The later problem has been studied

for the standard family of hyperelliptic Lefschetz fibrations (with total spaces

CP
2#(4g+5)CP2) in [25], [28], and [35], using the computations in the mapping

class group, and such results are useful in constructing (exotic) Stein fillings (see

[1], [2]).

Motivated by these results and problems, our goal in this article is to con-

struct new families of Lefschetz fibrations over S
2 by applying the sequence of

daisy substitutions and conjugations to the hyperelliptic words (c1c2 · · · c2g−1 ·
c2gc2g+1

2c2gc2g−1 · · · c2c1)2 = 1, (c1c2 · · · c2gc2g+1)
2g+2 = 1, and (c1c2 · · · c2g−1 ·

c2g)
2(2g+1) = 1 in the mapping class group of the closed orientable surface of genus

g for any g ≥ 3 and study the sections of these Lefschetz fibrations (cf. Theorems

24–28). Furthermore, we show that the total spaces of our Lefschetz fibrations

given by the last two words are irreducible exotic symplectic 4-manifolds, and

we compute their Seiberg–Witten invariants (cf. Theorem 31). Analogous (but

weaker) results for the special case of g = 2, using the lantern substitutions only,

were obtained in [11] and [3]. We would like to remark that the mapping class

group computations in our article are more involved and subtle than those in [11]

and [3]. One family of examples, obtained from the fiber sums of the Lefschetz

fibrations by using daisy relations, were studied in [12]. However, the examples

obtained in [12] have larger topology, and the computations of Seiberg–Witten

invariants and study of sections were not addressed in [12]. Moreover, we prove

the nonhyperellipticity of our Lefschetz fibrations and provide some criteria for

nonhyperellipticity under the daisy substitutions (cf. Theorem 29). Some of our

examples can be used to produce the families of nonisomorphic Lefschetz fibra-

tions over S
2 with the same total spaces and exotic Stein fillings. We hope to

return to these examples in future work.

The organization of our article is as follows. In Sections 2 and 3 we recall

the main definitions and results that will be used throughout the article. In

Section 4, we prove some technical lemmas, important in the proofs of our main

theorems. In Sections 5 and 6, we construct new families of Lefschetz fibrations

by applying the daisy substitutions to the words given above, study the sections,

and prove the nonhyperellipticity of our Lefschetz fibrations (Theorems 24–29).

Finally, in Section 7, we prove that the total spaces of some of these Lefschetz

fibrations are exotic symplectic 4-manifolds, which we verify by computing their

Seiberg–Witten invariants and obtaining an infinite family of exotic 4-manifolds

via knot surgery (Theorems 31, 32), and make some remarks and raise questions.

We would like to remark that the main technical content of our article is more

algebraic since our proofs rely heavily on mapping class group techniques. It is

possible to pursue a more geometric approach (see Example 12), but such an

approach alone does not yield the optimal results as presented here.
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2. Mapping class groups

Let Σn
g be a 2-dimensional, compact, oriented, and connected surface of genus

g with n boundary components. Let Diff+(Σn
g ) be the group of all orientation-

preserving self-diffeomorphisms of Σn
g which are the identity on the boundary,

and let Diff+
0 (Σg) be the subgroup of Diff+(Σg) consisting of all orientation-

preserving self-diffeomorphisms that are isotopic to the identity. The isotopies

are also assumed to fix the points on the boundary. The mapping class group

Γn
g of Σn

g is defined to be the group of isotopy classes of orientation-preserving

diffeomorphisms of Σn
g ; that is,

Γn
g =Diff+(Σn

g )/Diff+
0 (Σ

n
g ).

For simplicity, we write Σg = Σ0
g and Γg = Γ0

g . The hyperelliptic mapping class

group Hg of Σg is defined as the subgroup of Γg consisting of all isotopy classes

commuting with the isotopy class of the hyperelliptic involution ι : Σg →Σg .

DEFINITION 1

Let α be a simple closed curve on Σn
g . A right-handed (or positive) Dehn twist

about α is a diffeomorphism of tα : Σn
g →Σn

g obtained by cutting the surface Σn
g

along α and gluing the ends back after rotating one of the ends 2π to the right.

It is well known that the mapping class group Γn
g is generated by Dehn twists. It

is an elementary fact that the conjugate of a Dehn twist is again a Dehn twist: if

φ : Σn
g →Σn

g is an orientation-preserving diffeomorphism, then φ◦tα◦φ−1 = tφ(α).

The following lemma is easy to verify (see [22] for a proof).

LEMMA 2

Let α and β be two simple closed curves on Σn
g . If α and β are disjoint, then

their corresponding Dehn twists satisfy the commutativity relation tαtβ = tβtα. If

α and β transversely intersect at a single point, then their corresponding Dehn

twists satisfy the braid relation tαtβtα = tβtαtβ .

2.1. Daisy relation and daisy substitution
We recall the definition of the daisy relation (see [30], [12], [7]).

DEFINITION 3

Let Σp+2
0 denote a sphere with p+2 boundary components (p≥ 2). Let δ0, δ1, δ2,

. . . , δp+1 be the p boundary curves of Σp+2
0 , and let x1, x2, . . . , xp+1 be the interior

curves as shown in Figure 1. Then, we have the daisy relation of type p

tp−1
δ0

tδ1tδ2 · · · tδp+1 = tx1tx2 · · · txp+1 .

We call the following relator the daisy relator of type p:

t−1
δp+1

· · · t−1
δ2

t−1
δ1

t−p+1
δ0

tx1tx2 · · · txp+1(= 1).
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Figure 1. Daisy relation.

REMARK 4

When p= 2, the daisy relation is commonly known as the lantern relation (see

[8], [23]).

We next introduce a daisy substitution, a substitution technique introduced by

T. Fuller.

DEFINITION 5

Let d1, . . . , dm and e1, . . . , en be simple closed curves on Γn
g , and let R be a

product R = td1td2 · · · tdl
t−1
em · · · t−1

e2 t−1
e1 . Suppose that R = 1 in Γn

g . Let � be a

word in Γn
g including td1td2 · · · tdl

as a subword:

�= U · td1td2 · · · tdl
· V,

where U and V are words. Thus, we obtain a new word in Γn
g , denoted by �′, as

follows:

�′ : = U · te1te2 · · · tem · V.

Then, we say that �′ is obtained by applying an R-substitution to �. In particular,

if R is a daisy relator of type p, then we say that �′ is obtained by applying a

daisy substitution of type p to �.

3. Lefschetz fibrations

DEFINITION 6

Let X be a closed, oriented smooth 4-manifold. A smooth map f :X → S
2 is a

genus g Lefschetz fibration if it satisfies the following conditions:

(i) f has finitely many critical values b1, . . . , bm ∈ S2, and f is a smooth

Σg-bundle over S2 − {b1, . . . , bm};
(ii) for each i (i = 1, . . . ,m), there exists a unique critical point pi in the

singular fiber f−1(bi) such that about each pi and bi there are local complex

coordinate charts agreeing with the orientations of X and S
2 on which f is of

the form f(z1, z2) = z21 + z22 ;

(iii) f is relatively minimal (i.e., no fiber contains a (−1)-sphere).
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Each singular fiber is obtained by collapsing a simple closed curve (the vanishing

cycle) in the regular fiber. The monodromy of the fibration around a singular

fiber is given by a right-handed Dehn twist along the corresponding vanishing

cycle. For a genus g Lefschetz fibration over S
2, the product of right-handed

Dehn twists tvi about the vanishing cycles vi, for i= 1, . . . ,m, gives us the global

monodromy of the Lefschetz fibration, the relation tv1tv2 · · · tvm = 1 in Γg . This

relation is called the positive relator. Conversely, such a positive relator defines

a genus g Lefschetz fibration over S2 with the vanishing cycles v1, . . . , vm.

According to Kas [24] and Matsumoto [27], if g ≥ 2, then the isomorphism

class of a Lefschetz fibration is determined by a positive relator modulo simulta-

neous conjugations

tv1tv2 · · · tvm ∼ tφ(v1)tφ(v2) · · · tφ(vm) for all φ ∈Mg

and elementary transformations

tv1 · · · tvi−1tvitvi+1tvi+2 · · · tvm ∼ tv1 · · · tvi−1ttvi (vi+1)tvitvi+2 · · · tvm ,

tv1 · · · tvi−2tvi−1tvitvi+1 · · · tvm ∼ tv1 · · · tvi−2tvitt−1
vi (vi−1)

tvi+1 · · · tvm .

Note that φtviφ
−1 = tφ(vi). We denote a Lefschetz fibration associated to a posi-

tive relator � ∈ Γg by f�.

For a Lefschetz fibration f :X → S
2, a map σ : S2 →X is called a section of

f if f ◦ σ = idS2 . We define the self-intersection of σ to be the self-intersection

number of the homology class [σ(S2)] in H2(X;Z). Let δ1, δ2, . . . , δn be n bound-

ary curves of Σn
g . If there exists a lift of a positive relator �= tv1tv2 · · · tvm = 1 in

Γg to Γn
g as

tṽ1tṽ2 · · · tṽm = tδ1tδ2 · · · tδn ,

then f� admits n disjoint sections of self-intersection −1. Here, tṽi is a Dehn

twist mapped to tvi under Γn
g → Γg . Conversely, if a genus g Lefschetz fibration

admits n disjoint sections of self-intersection −1, then we obtain such a relation

in Γn
g .

Next, let us recall the signature formula for hyperelliptic Lefschetz fibrations,

which is due to Matsumoto and Endo. We will make use of this formula in

Section 6, where we prove that all our Lefschetz fibrations obtained via daisy

substitutions are nonhyperelliptic.

THEOREM 7 ([26], [27], [10])

Let f : X → S
2 be a genus g hyperelliptic Lefschetz fibration. Let s0 and s =∑[g/2]

h=1 sh be the number of nonseparating and separating vanishing cycles of f ,

where sh denotes the number of separating vanishing cycles which separate the

surface of genus g into two surfaces, one of which has genus h. Then, we have

the following formula for the signature:

σ(X) =− g+ 1

2g + 1
s0 +

[
g

2 ]∑
h=1

(4h(g− h)

2g+ 1
− 1

)
sh.
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3.1. Spinness criteria for Lefschetz fibrations
In this section, we recall a few results due to A. Stipsicz [34] concerning the

nonspinness and spinness of the Lefschetz fibrations over D2 and S
2. We will use

them to verify that our families of Lefschetz fibrations in Theorem 31 all are

nonspin. Since Rohlin’s criteria [31] cannot be used to verify nonspinness when

the signature of our families of Lefschetz fibrations is divisible by 16, Stipsicz’s

results will be more suitable for our purpose.

Let f :X → D
2 be a Lefschetz fibration over a disk, and let F denote the

generic fiber of f . Denote the homology classes of the vanishing cycles of the

given fibration by v1, . . . , vm ∈H1(F ;Z2).

THEOREM 8 ([34])

The Lefschetz fibration f : X → D
2 is not spin if and only if there are l van-

ishing cycles v1, . . . , vl such that v =
∑l

i=1 vi is also a vanishing cycle and l +∑
1≤i<j≤l vi · vj ≡ 0 (mod 2).

Note that the above theorem implies that if the Lefschetz fibration has the sepa-

rating vanishing cycle, then its total space is not spin. To see this, set l= 0, and

take the empty sum to be 0.

THEOREM 9 ([34])

The Lefschetz fibration f :X → S
2 is spin if and only if X \ ν(F ) is spin and for

some dual σ of F we have σ2 ≡ 0 (mod 2).

3.2. Three families of hyperelliptic Lefschetz fibrations
In this section, we introduce three well-known families of hyperelliptic Lefschetz

fibrations, which will serve as building blocks in our construction of new Lefschetz

fibrations. Let c1, c2, . . . , c2g, c2g+1 denote the collection of simple closed curves

given in Figure 2, and let ci denote the right-handed Dehn twists tci along the

curve ci. It is well known that the following relations hold in the mapping class

group Γg :

H(g) = (c1c2 · · · c2g−1c2gc2g+1
2c2gc2g−1 · · · c2c1)2 = 1,

I(g) = (c1c2 · · · c2gc2g+1)
2g+2 = 1,(1)

G(g) = (c1c2 · · · c2g−1c2g)
2(2g+1) = 1.

Figure 2. Vanishing cycles of the genus g Lefschetz fibration on X(g), Y (g), and Z(g).
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Let X(g), Y (g), and Z(g) denote the total spaces of the above genus g

hyperelliptic Lefschetz fibrations given by the monodromies H(g) = 1, I(g) = 1,

and J(g) = 1, respectively, in the mapping class group Γg . For the first mon-

odromy relation, the corresponding genus g Lefschetz fibrations over S
2 have

total space X(g) = CP
2#(4g + 5)CP2, the complex projective plane blown up

at 4g + 5 points. In the case of the second and third relations, the total spaces

of the corresponding genus g Lefschetz fibrations over S
2 are also well-known

families of complex surfaces. For example, Y (2) = K3#2CP2 and Z(2) is the

Horikawa surface. In what follows, we recall the branched-cover description of

the 4-manifolds Y (g) and Z(g), which we will use in the proofs of our main

results. The branched-cover description of X(g) is well known, and we refer the

reader to [19, Remark 7.3.5, p. 257].

LEMMA 10

The genus g Lefschetz fibration on Y (g) over S
2 with the monodromy (c1c2 · · · ·

c2g+1)
2g+2 = 1 can be obtained as the double branched covering of CP2#CP2

branched along a smooth algebraic curve B in the linear system |2(g + 1)L̃|,
where L̃ is the proper transform of line L in CP

2 avoiding the blown-up point.

Furthermore, this Lefschetz fibration admits two disjoint (−1)-sphere sections.

Proof

We will follow the proof of [4, Lemma 3.1], where the g = 2 case has been con-

sidered (see also the discussion in [6]), and make necessary adjustments where

needed. Let D denote an algebraic curve of degree d in CP
2. We fix a generic

projection map π :CP2 \ pt→CP
1 such that the pole of π does not belong to D.

It was shown in [37] that the braid monodromy of D in CP
2 is given via a braid

factorization. More specifically, the braid monodromy around the point at infin-

ity in CP
1, which is given by the central element Δ2 in Bd, can be written as the

product of the monodromies about the critical points of π. Hence, the factoriza-

tion Δ2 = (σ1 · · ·σd−1)
d holds in the braid group Bd, where σi denotes a positive

half-twist exchanging two points and fixing the remaining d− 2 points.

Now let us degenerate the smooth algebraic curve B in CP
2#CP

2 into

a union of 2(g + 1) lines in a general position. By the discussion above, the

braid group factorization corresponding to the configuration B is given by Δ2 =

(σ1σ2 · · ·σ2gσ2g+1)
2g+2. Now, by lifting this braid factorization to the mapping

class group of the genus g surface, we obtain the monodromy factorization

(c1c2 · · · c2g+1)
2g+2 = 1 for the corresponding double branched covering.

Moreover, observe that a regular fiber of the given fibration is a 2-fold cover

of a sphere in CP
2#CP

2 with homology class f = h− e1 branched over 2(g+ 1)

points, where h denotes the hyperplane class in CP2. Hence, a regular fiber is

a surface of genus g. The exceptional sphere e1 in CP
2#CP

2, which intersects

f = h− e1 once positively, lifts to two disjoint (−1)-sphere sections in Y (g). �
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The proof of the following lemma can be extracted from [19, Example 7.3.27,

p. 268]; we omit the proof.

LEMMA 11

The double branched cover W (g) of CP
2 along a smooth algebraic curve B in

the linear system |2(g + 1)L̃| can be decomposed as the fiber sum of two copies

of CP2#(g + 1)2CP2 along a complex curve of genus equal to g(g − 1)/2. More-

over, W (g) admits a genus g Lefschetz pencil with two base points, and Y (g) =

W (g)#2CP2.

EXAMPLE 12

In this example, we study the topology of complex surfaces W (g) in some detail.

Recall that by Lemma 11 the complex surface W (g) is the fiber sum of two copies

of the rational surface CP2#(g2+2g+1)CP2 along the complex curve Σ of genus

g(g−1)/2 and self-intersection zero. Using the fiber sum decomposition, we com-

pute the Euler characteristic and the signature of W (g) as follows: e(W (g)) =

2e(CP2#(g2+2g+1)CP2)−2e(Σ) = 4g2+2g+4, and σ(W (g)) = 2σ(CP2#(g2+

2g+1)CP2) =−2(g2+2g). Next, we recall from [17] that CP2#(g2+2g+1)CP2 =

Φg(g−1)/2(1) ∪ Ng(g−1)/2(1), where Φg(g−1)/2(1) and Ng(g−1)/2(1) are the Mil-

nor fiber and generalized Gompf nucleus in CP2#(g2 +2g+1)CP2, respectively.

Notice that this decomposition shows that the intersection form of CP2#(g2 +

2g + 1)CP2 splits as N ⊕M(g), where N = ( 0 1
1 −1 ) and M(g) is a matrix whose

entries are given by a negative definite plumbing tree in Figure 3. Consequently,

we obtain the following decomposition of the intersection form of W (g): 2M(g)⊕
H ⊕ g(g − 1)H , where H is a hyperbolic pair. Let us choose the following basis

which realizes the intersection matrix M(g)⊕N of CP2#(g2 +2g+1)CP2: 〈f =

(g+1)h− e1 − · · ·− e(g+1)2 , e(g+1)2 , e1− e2, e2− e3, . . . , e(g+1)2−2− e(g+1)2−1, h−
e(g+1)2−(g+1) − · · · − e(g+1)2−2 − e(g+1)2−1〉. Observe that the last (g + 1)2 − 1

classes can be represented by spheres and their self-intersections are given as in

Figure 3. Here, f is the class of fibers of the genus g(g− 1)/2 Lefschetz fibration

on CP
2#(g2 +2g+1)CP2 and e(g+1)2 is a sphere section of self-intersection −1.

By using the generalized fiber sum decomposition of W (g), it is not hard to see

the surfaces that generate the intersection matrix 2M(g)⊕H ⊕ g(g − 1)H . The

two copies of the Milnor fiber Φg(g−1)/2(1)⊂CP
2#(g2+2g+1)CP2 are in W (g),

providing 2((g+1)2 − 1) spheres of self-intersections −2 and −g (corresponding

to the classes {e1 − e2, e2 − e3, . . . , e(g+1)2−2 − e(g+1)2−1, h− e(g+1)2−(g+1) − · · ·−

Figure 3. Plumbing tree for Φg(g−1)/2(1).
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e(g+1)2−3+ e(g+1)2−2+ e(g+1)2−1} and {e′1− e′2, e
′
2− e′3, . . . , e

′
(g+1)2−2− e′(g+1)2−1,

h′−e(g+1)2−(g+1)−· · ·−e′(g+1)2−3−e′(g+1)2−2−e′(g+1)2−1}), and realize two copies

of M(g). One copy of the hyperbolic pair H comes from an identification of

the fibers f and f ′, and a sphere section σ of self-intersection −2 obtained by

sewing the sphere sections e(g+1)2 and e′(g+1)2 . The remaining g(g − 1) copies

of H come from g(g − 1) rim tori and their dual (−2)-spheres (see related dis-

cussion in [19, p. 73]). These 4g2 + 2g + 2 classes generate H2 of W (g). Fur-

thermore, using the formula for the canonical class of the generalized symplectic

sum and the adjunction inequality, we compute KW (g) = (g − 2)(h+ h′). Also,

the class of the genus g surface of square 2 of the genus g Lefschetz pencil on

W (g) is given by h + h′. As a consequence, the class of the genus g fiber in

W (g)#2CP2 is given by h+ h′ −E1 −E2, where E1 and E2 are the homology

classes of the exceptional spheres of the blowups at the points p1 and p2, the

base points of the pencil. We can also verify that the symplectic surface Σ, given

by the class h+h′ −E1−E2, has genus g by applying the adjunction formula to

(W (g)#2CP2,Σ): g(Σ) = 1+1/2(KW (g)#2CP2 · [Σ]+ [Σ]2) = 1+((g−2)(h+h′)+

E1 +E2) · (h+h′ −E1 −E2)+ (h+h′ −E1 −E2)
2)/2 = 1+ (2(g− 2)+ 2)/2 = g.

We can notice from the intersection form of W (g) that all rim tori can be cho-

sen to have no intersections with the genus g surface in the pencil given by the

homology class h+ h′. Thus, the genus g fiber Σ can be chosen to be disjoint

from the rim tori that descend to W (g)#2CP2.

Let k be any nonnegative integer, and let Fk denote the kth Hirzebruch surface.

Recall that Fk admits the structure of the holomorphic CP
1 bundle over CP

1

with two disjoint holomorphic sections Δ+k and Δ−k with Δ±k =±k.

LEMMA 13

The genus g Lefschetz fibration on Z(g) over S
2 with the monodromy (c1c2 · · · ·

c2g)
2(2g+1) = 1 can be obtained as the 2-fold cover of F2 branched over the disjoint

union of a smooth curve C in the linear system |(2g+ 1)Δ+2| and Δ−2.

Proof

The Lefschetz fibration on Z(g)→CP
1 is obtained by composing the branched-

cover map Z(g) → F2 with the bundle map F2 → CP1. A generic fiber is the

double cover of a sphere fiber of F2 branched over 2g+2 points. The monodromy

of this Lefschetz fibration can be derived from the braid monodromy of the

branch curve C ∪ Δ−2. The fibration admits a holomorphic sphere section S

with S2 =−1, which is obtained by lifting Δ−2 to Z(g). �

3.3. Rational blowdown
In this section, we review the rational blowdown surgery introduced by Fintushel

and Stern [14]. For details the reader is referred to [14] and [29].

Let p≥ 2, and let Cp be the smooth 4-manifold obtained by plumbing disk

bundles over the 2-sphere according to the following linear diagram:
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−(p+ 2) −2 −2

up−1 up−2 u1

� � · · ·· · ·· · ·· · · �

where each vertex ui of the linear diagram represents a disk bundle over the

2-sphere with the given Euler number.

The boundary of Cp is the lens space L(p2,1 − p), which also bounds a

rational ball Bp with π1(Bp) = Zp and π1(∂Bp) → π1(Bp) surjective. If Cp is

embedded in a 4-manifoldX , then the rational blowdown manifoldXp is obtained

by replacing Cp with Bp, that is, Xp = (X \Cp)∪Bp. If X and X \Cp are simply

connected, then so is Xp. The following lemma is easy to check, so we omit the

proof.

LEMMA 14

We have b+2 (Xp) = b+2 (X), e(Xp) = e(X) − (p − 1), σ(Xp) = σ(X) + (p − 1),

c21(Xp) = c21(X) + (p− 1), and χh(Xp) = χh(X).

We now collect some theorems on rational blowdown for later use.

THEOREM 15 ([14], [29])

Suppose that X is a smooth 4-manifold with b+2 (X)> 1 which contains a configu-

ration Cp. If L is a Seiberg–Witten invariant basic class of X satisfying L ·ui = 0

for any i with 1≤ i≤ p− 2 and L ·up−1 =±p, then L induces an SW basic class

L̄ of Xp such that SWXp(L̄) = SWX(L).

THEOREM 16 ([14], [29])

If a simply connected smooth 4-manifold X contains a configuration Cp, then the

Seiberg–Witten invariants of Xp are completely determined by those of X. That

is, for any characteristic line bundle L̄ on Xp with SWXp(L̄) �= 0, there exists a

characteristic line bundle L on X such that SWX(L) = SWXp(L̄).

THEOREM 17 ([13], [11] (P = 2), [12] (P ≥ 3))

Let �, �′ be positive relators of Γg, and let X�, X�′ be the corresponding Lefschetz

fibrations over S
2, respectively. Suppose that �′ is obtained by applying a daisy

substitution of type p to �. Then, X�′ is a rational blowdown of X� along a

configuration Cp. Therefore, we have

σ(X ′
�) = σ(X�) + (p− 1) and e(X ′

�) = e(X�)− (p− 1).

3.4. Knot surgery
In this section, we briefly review the knot surgery operation, which gives rise to

mutually nondiffeomorphic manifolds. For details, the reader is referred to [15].

Let X be a 4-manifold with b+2 (X)> 1 and containing a homologically essen-

tial torus T of self-intersection 0. LetN(K) be a tubular neighborhood ofK in S
3,

and let T ×D2 be a tubular neighborhood of T in X . The knot surgery manifold
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XK is defined by XK = (X \ (T ×D2)) ∪ (S1 × (S3 \N(K))) where two pieces

are glued in such a way that the homology class of [pt× ∂D2] is identified with

[pt×λ], where λ is the class of the longitude of knot K. Fintushel and Stern [15]

proved the theorem that shows that Seiberg–Witten invariants of XK can be

completely determined by the Seiberg–Witten invariant of X and the Alexander

polynomial of K. Moreover, if X and X \T are simply connected, then so is XK .

THEOREM 18

Suppose that π1(X) = π1(X \T ) = 1, and suppose that T lies in a cusp neighbor-

hood in X. Then XK is homeomorphic to X and the Seiberg–Witten invariants

of XK are SWXK
= SWX ·ΔK(t2), where t = tT (in the notation of [15]) and

ΔK is the symmetrized Alexander polynomial of K. If the Alexander polynomial

ΔK(t) of knot K is not monic, then XK admits no symplectic structure. More-

over, if X is symplectic and K is a fibered knot, then XK admits a symplectic

structure.

4. Lemmas

In this section, we construct some relations by applying elementary transforma-

tions. These relations will be used to construct new relations obtained by daisy

substitutions in Section 6.

Let a1, . . . , ak be a sequence of simple closed curves on an oriented surface

such that ai and aj are disjoint if |i− j| ≥ 2 and such that ai and ai+1 intersect

at one point. For simplicity of notation, we write ai, f (ai) instead of tai , tf(ai) =

ftaif
−1, respectively. Moreover, write

bi = ai+1(ai) and b̄i = a−1
i+1

(ai).

Below we denote the arrangement using the conjugation (i.e., the cyclic permu-

tation) and the arrangement using the relation (i) by
C−→ and

(i)−→, respectively.

We recall the following relations:

ai+1 · ai ∼ bi · ai+1 and ai · ai+1 ∼ ai+1 · b̄i.

In particular, we note that

ai · aj ∼ aj · ai for |i− j|> 1.

By drawing the curves, it is easy to verify that, for m = 1, . . . , k − 1 and

i=m, . . . , k− 1,

akak−1 · · ·am+1am(ai+1) = ai and amam+1 · · ·ak−1ak(ai) = ai+1.

Using the relation tf(c) = ftcf
−1, we obtain the following:

(akak−1 · · ·am+1am) · ai+1 ∼ ai · (akak−1 · · ·am+1am),(2)

(amam+1 · · ·ak−1ak) · ai ∼ ai+1 · (amam+1 · · ·ak−1ak).(3)
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LEMMA 19

For 2≤ k, we have the following relations:

(a) (ak−1ak−2 · · ·a2a1) · (akak−1 · · ·a2a1)∼ akk · b̄k−1 · · · b̄2b̄1,

(b) (a1a2 · · ·ak−1ak) · (a1a2 · · ·ak−2ak−1)∼ b1b2 · · · bk−1 · akk.

Proof

The proof will be given by induction on k. Suppose that k = 2. Then, we have

a1a2a1
(2)−−→ a2a1a2 ∼ a22 · b̄1.

Hence, the conclusion of the lemma holds for k = 2.

Let us assume inductively that the relation holds for k = j. Then,

(ajaj−1 · · ·a1) · (aj+1aj · · ·a1)

∼ ajaj+1 · (aj−1 · · ·a1) · (aj · · ·a1)

∼ ajaj+1 · aj+1
j · b̄j−1 · · · b̄1

(3)−−→ aj+1
j+1 · ajaj+1 · b̄j−1 · · · b̄1

∼ aj+1
j+1 · aj+1 · b̄j · b̄j−1 · · · b̄1.

This proves part (a). The proof of (b) is similar and therefore omitted. �

LEMMA 20

Let l≥ 0. We define an element φ to be

φl = al+1
2l+1a

l
2l−1 · · ·a35a23a1.

Let D and E be two products of right-handed Dehn twists, and write them as

D = d1 · · ·dk1 and E = e1 · · ·ek2 , respectively. If a word W1 is obtained by applying

a sequence of the conjugation and the elementary transformations to a word W2,

then we denote it by ∼C . For l≥ 1, we have the following:

(a) D · a2l · · ·a2a1 · a2l+1 · · ·a2a1 ·E

∼C φl
(D) · (al+1

2l+1 · a2l · · ·a2a1) · (b2l · · · b4 · b2) · φl
(E),

(b) D · a1a2 · · ·a2l+1 · a1a2 · · ·a2l ·E

∼C φ−1
l
(D) · (b̄2 · b̄4 · · · b̄2l) · (a1a2 · · ·a2l · al+1

2l+1) · φ−1
l
(E),

where φl
(D) = φl

(d1) · · ·φl
(dk1) and φl

(E) = φl
(e1) · · ·φl

(ek2).

Proof

For 1≤m≤ 2l− 1 and m≤ i≤ 2l− 1, we have the following equalities from (2)

and (3):
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(a2l · · ·a1 · a2l+1 · · ·am) · ai+2 ∼ ai · (a2l · · ·a1 · a2l+1 · · ·am),(4)

ai+2 · (am · · ·a2l+1 · a1 · · ·a2l) ∼ (am · · ·a2l+1 · a1 · · ·a2l) · ai.(5)

We first show (a). Since

φl−1
(D) · (a2la2l−1 · · ·a1) · (b2lb2l−2 · · · b2) · al+1

2l+1 · φl−1
(E)

C−→ al+1
2l+1φl−1

(D) · al+1
2l+1 · (a2la2l−1 · · ·a1) · (b2lb2l−2 · · · b2) · al+1

2l+1φl−1
(E)

= φl
(D) · al+1

2l+1 · (a2la2l−1 · · ·a1) · (b2lb2l−2 · · · b2) · φl
(E),

it is sufficient to prove

D · (a2la2l−1 · · ·a1) · (a2l+1a2l · · ·a1) ·E

∼ φl−1
(D) · (a2la2l−1 · · ·a1) · (b2lb2l−2 · · · b2) · al+1

2l+1 · φl−1
(E).

The proof is by induction on l. Suppose that l= 0. Then, we have

D · a2a1 · a3a2a1 ·E
C−→ a1(D) · a1 · a2a1 · a3a2 · a1(E)

(4)−−→ a1(D) · a2a1 · a3a2 · a3 · a1(E)

∼ a1(D) · a2a1 · b2 · a3 · a3 · a1(E).

Since φ0 = a1, the conclusion of the lemma holds for l= 0.

Let us assume, inductively, that the relation holds for l= j. Note that since

φj−1(a2j+2) = a2j+2 and φj−1(a2j+3) = a2j+3, we have

φj−1(Da2j+2a2j+1a2j+3a2j+2) = φj−1(D)a2j+2a2j+1a2j+3a2j+2.

Since a2j+3 is disjoint from b2, b4, . . . , b2j and φj = aj+1
2j+1φj−1, we have

D · (a2j+2a2j+1a2j · · ·a1) · (a2j+3a2j+2a2j+1 · · ·a1) ·E

∼D · a2j+2a2j+1a2j+3a2j+2 · (a2j · · ·a1) · (a2j+1 · · ·a1) ·E

∼ φj−1(D) · a2j+2a2j+1a2j+3a2j+2 · (a2j · · ·a1) · (b2j · · · b2) · aj+1
2j+1 · φj−1(E)

C−→ φj (D) · aj+1
2j+1 · a2j+2a2j+1a2j+3a2j+2 · (a2j · · ·a1) · (b2j · · · b2) · φj (E)

∼ φj (D) · aj+1
2j+1 · (a2j+2a2j+1a2j · · ·a1) · a2j+3a2j+2 · (b2j · · · b2) · φj (E)

(4)−−→ φj (D) · (a2j+2a2j+1a2j · · ·a1) · a2j+3a2j+2 · aj+1
2j+3 · (b2j · · · b2) · φj (E)

∼ φj (D) · (a2j+2a2j+1a2j · · ·a1) · b2j+2 · a2j+3 · aj+1
2j+3 · (b2j · · · b2) · φj (E)

∼ φj (D) · (a2j+2a2j+1a2j · · ·a1) · (b2j+2b2j · · · b2) · aj+2
2j+3 · φj (E).

This proves part (a) of the lemma. The proof of part (b) is similar and left to

the reader. �
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5. A lift of hyperelliptic relations

In this section, we construct a relation which gives a lift of a relation (and which is

Hurwitz equivalent to I(g)) from Γg to Γ1
g . This relation will be used in Section 6.

Suppose that g ≥ 2. Let Σn
g be the surface of genus g with b boundary

components δ1, δ2, . . . , δn. Let α1, α2, . . . , α2g, α2g+1, α
′
2g+1 and δ, ζ1, . . . , ζn be the

simple closed curves as shown in Figure 4.

LEMMA 21

The following relation holds in Γn
g :

(α1α2 · · ·α2g)
2g+1 = (α1α2 · · ·α2g−1)

2g · α2g · · ·α2α1α1α2 · · ·α2g.

Proof

The proof follows from the braid relations, αi · αi+1 · αi = αi+1 · αi · αi+1 and

αi · αj = αj · αi for |i− j|> 1. �

LEMMA 22

The following relation holds in Γn
g :

δ = (α2g+1α2g · · ·α2α1α1α2 · · ·α2gα
′
2g+1)

2.

In particular, since δ1 = δ for n= 1, this relation is a lift of H(g) from Γg to Γ1
g.

Proof

A regular neighborhood of α1∪α2∪· · ·∪a2g−1 is a subsurface of genus g−1 with

two boundary components, α2g+1 and α′
2g+1. Moreover, a regular neighborhood

of α1 ∪α2 ∪ · · · ∪ a2g is a subsurface of genus g with one boundary component δ.

Then, it is well known that the following relations, called the chain relations,

hold:

Figure 4. The curves α1, . . . , α2g+1,α
′
2g+1, δ, ζ1, . . . , ζn on Σn

g and the boundary components δ1, . . . , δn

of Σn
g .
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α2g+1α
′
2g+1 = (α1 · · ·α2g−1)

2g, δ = (α1α2α3 · · ·α2g)
4g+2.

By applying the relations above and Lemma 21, we obtain the following relation:

δ = (α2g+1α
′
2g+1α2g · · ·α2α1α1α2 · · ·α2g)

2.

Since α′
2g+1 is disjoint from α2g+1, by the conjugation of α′

2g+1, we obtain the

claim. If n = 1, then it is easily seen that this is a lift of H(g) from Γg to Γ1
g .

This completes the proof. �

LEMMA 23

The following relation holds in Γn
g :

(α2g+1α2g · · ·α2α1α1α2 · · ·α2gα
′
2g+1)

2

∼ (α2g+1α2g · · ·α2α1)
2 · (α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1).

Proof

By drawing a picture, we find that, for each i= 1,2, . . . ,2g,

α2g+1 · · ·α2α1α1α2 · · ·α2g+1(αi) = αi,

α2g · · ·α2α1α1α2 · · ·α2g(α
′
2g+1) = α2g+1.

These give the following relations:

α2g+1 · · ·α2α1α1α2 · · ·α2g+1 · αi ∼ αi · α2g+1 · · ·α2α1α1α2 · · ·α2g+1,(6)

α2g · · ·α2α1α1α2 · · ·α2g · α′
2g+1 ∼ α2g+1 · α2g · · ·α2α1α1α2 · · ·α2g.(7)

From these relations, we have

α2g+1α2g · · ·α2α1α1α2 · · ·α2gα
′
2g+1α2g+1α2g · · ·α2α1α1α2 · · ·α2gα

′
2g+1

(7)−−→ α2g+1 · α2g+1α2g · · ·α2α1α1α2 · · ·α2gα2g+1 · α2g · · ·α2α1

· α1α2 · · ·α2gα
′
2g+1

(6)−−→ (α2g+1α2g · · ·α2α1) · (α2g+1α2g · · ·α2α1α1α2 · · ·α2gα2g+1)

· (α1α2 · · ·α2gα
′
2g+1).

This completes the proof. �

6. New words in the mapping class group via daisy relation

We define φ in Γn
g to be

φ= αg+1
2g+1α

g
2g−1 · · ·α3

5α
2
3α1.

Note that φ(α2i−1) = α2i−1 for each i= 1, . . . , g + 1 and φ(α′
2g+1) = α′

2g+1. For

simplicity of notation, we write

βi = αi+1(αi), β̄i = α−1
i+1

(αi), γi+1 = αi(αi+1), γ̄i+1 = α−1
i
(αi+1).
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Figure 5. The curves x1, . . . , xg , x
′
1, . . . , x

′
g , and y1, . . . , yg on Σg .

We denote by ϕ, di, d̄i, ei+1, and ēi+1 the images of φ, βi, β̄i, γi+1 and γ̄i+1

under the map Γn
g → Γg ; that is,

ϕ= cg+1
2g+1c

g
2g−1 · · · c35c23c1,

di = ci+1(ci), d̄i = c−1
i+1

(ci), ei+1 = ci(ci+1), and ēi+1 = c−1
i
(ci+1).

Then, note that ϕ(c2i−1) = c2i−1 for each i= 1, . . . , g+1. If a word W1 is obtained

by applying simultaneous conjugations by ψ to a word W2, then we denote it

by
ψ−→.

Let x1, . . . , xg , x
′
1, . . . , x

′
g , and y1, . . . , yg be the simple closed curves on Σg

given in Figure 5. Moreover, we define yg+1, . . . , y2g−1 to be x2, . . . , xg , respec-

tively. We take the following two daisy relators of type g− 1 in Γg :

Dg−1 := c−1
1 c−1

3 · · · c−1
2g−1 · c

−(g−2)
2g+1 · x1x2 · · ·xg,

D′
g−1 := c−1

1 c−1
3 · · · c−1

2g−1 · c
−(g−2)
2g+1 · x′

1x
′
2 · · ·x′

g,

and the following daisy relator of type 2(g− 1):

D2(g−1) := c−1
2g+1c

−1
2g−1 · · · c−1

5 c−1
3 · c−1

3 c−1
5 · · · c−1

2g−1 · c
−2g+3
2g+1 · y1y2 · · ·y2g−1

= c−2
3 c−2

5 · · · c−2
2g−1 · c

−2g+2
2g+1 · y1y2 · · ·y2g−1.

Let χ1, . . . , χg be the simple closed curves on Σn
g given in Figure 6. We denote

by Dg−1 the following daisy relator of type g− 1 in Γn
g :

Dg−1 = α−1
1 α−1

3 · · ·α−1
2g−1 · α

−(g−2)
2g+1 · χ1χ2 · · ·χg.

Since it is easily seen that αi and χi are mapped to ci and xi under the map

Γn
g → Γg , we see that the image of this map of Dg−1 is Dg−1.

THEOREM 24

There is a positive relator

H(g,1) = ϕ−1(d̄2g) · · ·ϕ−1(d̄2)ϕ−1(d̄1)d̄2d̄4 · · · d̄2ge2e4 · · ·e2gx1x2 · · ·xgc
2g+6
2g+1,

which is obtained by applying Dg−1-substitution once to H(g). Moreover, the

Lefschetz fibration fH(g,1) has 2g+ 6 disjoint sections of self-intersection −1.
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Figure 6. The curves χ1, . . . , χg on Σn
g .

Proof

Note that by Lemma 19(a), we have

(α2g+1α2g · · ·α1)
2 = α2g+1 · (α2g · · ·α1) · (α2g+1α2g · · ·α1)

∼ α2g+2
2g+1β̄2g · · · β̄1.

(8)

Moreover, one can check that

α1α2α3 · · ·α2g ∼ (γ2γ4γ6 · · ·γ2g) · (α1α3α5 · · ·α2g−1).(9)

Therefore, by Lemma 20(b), we have

(α2g+1α2g · · ·α2α1)
2 · (α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1)

(8)−−→ α2g+2
2g+1β̄2g · · · β̄1 · (α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2g)α

′
2g+1

∼C φ−1{α2g+2
2g+1 · β̄2g · · · β̄1} · (β̄2β̄4 · · · β̄2g) · (α1α2 · · ·α2g · αg+1

2g+1) · α′
2g+1

= α2g+2
2g+1 · φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (α1α2 · · ·α2g · αg+1

2g+1) · α′
2g+1

C−→ φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (α1α2 · · ·α2g) · α3g+3
2g+1 · α′

2g+1

(9)−−→ φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (α1α3 · · ·α2g−1)

· α3g+3
2g+1 · α′

2g+1.

Since δ is a central element of the group generated by α1, . . . , α2g+1, α
′
2g+1, by

Lemma 23, the operation ∼C is Hurwitz equivalent (e.g., see [5, Lemma 6]). We

have the following relation in Γ2g+6
g which is Hurwitz equivalent to the relation

δ = (α2g+1α2g · · ·α2α1α1α2 · · ·α2gα
′
2g+1)

2:

δ = φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (α1α3 · · ·α2g−1)

· α3g+3
2g+1 · α′

2g+1.
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By applying Dg−1-substitution once to this relation, we have the following

relation:

δ = φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

· α2g+5
2g+1 · α′

2g+1.

Moreover, by α2g+5
2g+1 · α′

2g+1 · δ1δ2 · · · δ2g+6 = α2g+5
2g+1 · δ1δ2 · · · δ2g+6 · α′

2g+1 and the

daisy relation α2g+5
2g+1 · δ1δ2 · · · δ2g+6 · α′

2g+1 = ζ1ζ2 · · · ζ2g+6 · δ, we obtain

δ · δ1δ2 · · · δ2g+6

= φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

· α2g+5
2g+1 · α′

2g+1 · δ1δ2 · · · δ2g+6

= φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

· ζ1ζ2 · · · ζ2g+6 · δ.

Therefore, we have the following relation in Γ2g+6
g :

δ1 · δ2 · · · δ2g+6

= φ−1(β̄2g) · · ·φ−1(β̄1) · (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

· ζ1ζ2 · · · ζ2g+6.

It is easily seen that ζ1, . . . , ζ2g+6 are mapped to c2g+1 under the map Γ2g+6
g → Γg .

This completes the proof. �

THEOREM 25

There is a positive relator

H(g,2) = ϕ−2(ē2g) · · ·ϕ−2(ē4)ϕ−2(ē2)ϕ−2(d2g) · · ·ϕ−2(d4) · ϕ−2(d2)

· d̄2d̄4 · · · d̄2ge2e4 · · ·e2g(x1x2 · · ·xg)
2c82g+1

which is obtained by applying Dg−1-substitutions twice to H(g). Moreover, the

Lefschetz fibration fH(g,2) has eight disjoint sections of self-intersection −1.

Proof

Let D be a product of Dehn twists. Then, we note that by Lemma 20(a) we have

(α2g+1α2g · · ·α2α1)
2 ·D = α2g+1 · (α2g · · ·α1) · (α2g+1α2g · · ·α1) ·D

∼C αg+2
2g+1 · (α2g · · ·α2α1) · (β2g · · ·β4β2) · φ(D).

(10)

Moreover, we have

α2g · · ·α3α2α1 ∼ (α2g−1 · · ·α5α3α1) · (γ̄2g · · · γ̄6γ̄4γ̄2).(11)

Then, by Lemma 20(b) we have

(α2g+1α2g · · ·α2α1)
2 · (α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1)

(10)−−→ αg+2
2g+1 · (α2g · · ·α2α1) · (β2g · · ·β4β2)
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· φ
{
(α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1)

}
(11)−−→ αg+2

2g+1 · (α2g−1 · · ·α3α1) · (γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

· φ
{
(α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1)

}
φ−1

−−→ φ−1

{
αg+2
2g+1 · (α2g−1 · · ·α3α1) · (γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

}
· (α1α2 · · ·α2gα2g+1) · (α1α2 · · ·α2gα

′
2g+1)

∼C φ−2

{
αg+2
2g+1 · (α2g−1 · · ·α3α1) · (γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

}
· (β̄2β̄4 · · · β̄2g) · (α1α2 · · ·α2g · αg+1

2g+1) · α′
2g+1

= αg+2
2g+1 · (α2g−1 · · ·α3α1) · φ−2

{
(γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

}
· (β̄2β̄4 · · · β̄2g) · (α1α2 · · ·α2g · αg+1

2g+1) · α′
2g+1

(9)−−→ αg+2
2g+1 · (α2g−1 · · ·α3α1) · φ−2

{
(γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

}
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (α1α3 · · ·α2g−1) · αg+1

2g+1 · α′
2g+1

C−→ φ−2

{
(γ̄2g · · · γ̄4γ̄2) · (β2g · · ·β4β2)

}
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · α2

1α
2
3 · · ·α2

2g−1 · α2g+3
2g+1 · α′

2g+1

=
(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · α2

1α
2
3 · · ·α2

2g−1 · α2g+3
2g+1 · α′

2g+1.

Note that, by Lemma 23, the operation
φ−1

−−→ is also Hurwitz equivalent from

[5, Lemma 6]. We have the following relation in Γ8
g , which is Hurwitz equivalent

to the relation δ = (α2g+1α2g · · ·α2α1α1α2 · · ·α2gα
′
2g+1)

2:

δ =
(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
(12)

· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · α2
1α

2
3 · · ·α2

2g−1 · α2g+3
2g+1 · α′

2g+1.

By applying Dg−1-substitutions twice to this relation, we have the following

relation:

δ =
(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

2 · α7
2g+1 · α′

2g+1.

Moreover, by α7
2g+1 · α′

2g+1 · δ1δ2 · · · δ8 = α7
2g+1 · δ1δ2 · · · δ8 · α′

2g+1 and the daisy

relation α7
2g+1 · δ1δ2 · · · δ8 · α′

2g+1 = ζ1ζ2 · · · ζ8 · δ, we obtain

δ · δ1δ2 · · · δ8
=

(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

2

· α7
2g+1 · α′

2g+1 · δ1δ2 · · · δ8
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=
(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

2 · ζ1ζ2 · · · ζ8 · δ.

Therefore, we have the following relation in Γ8
g :

δ1δ2 · · · δ8 =
(
φ−2(γ̄2g) · · ·φ−2(γ̄4) · φ−2(γ̄2)

)
·
(
φ−2(β2g) · · ·φ−2(β4) · φ−2(β2)

)
· (β̄2β̄4 · · · β̄2g) · (γ2γ4 · · ·γ2g) · (χ1χ2 · · ·χg)

2 · ζ1ζ2 · · · ζ8.

It is easily seen that αi and χi are mapped to ci and xi, respectively, and

ζ1, . . . , ζ8 are mapped to c2g+1 under the map Γ8
g → Γg . This completes the

proof. �

For j = 1, . . . ,2g, we write

fj = (cj−1cj+1)−1(d̄j),

where c0 = 1.

THEOREM 26

Let g ≥ 3. Then, the monodromy of the hyperelliptic Lefschetz fibration given

by the word H(g) = 1 can be conjugated to contain a daisy relations of type

2(g− 1).

Proof

Since αi and δ are mapped to ci and 1 under the map Γn
g → Γg , respectively, by

(12) acquired in Theorem 25, we obtain the following relator:

1 =
(
ϕ−2(ē2g) · · ·ϕ−2(ē4) · ϕ−2(ē2)

)
·
(
ϕ−2(d2g) · · ·ϕ−2(d4) · ϕ−2(d2)

)
· (d̄2d̄4 · · · d̄2g) · (e2e4 · · ·e2g) · c21c23 · · · c22g−1 · c2g+4

2g+1.

This relator contains the D2(g−1)-relator. This completes the proof. �

THEOREM 27

Let g ≥ 3. Then, the monodromy of the Lefschetz fibration given by the word

I(g) = 1 can be conjugated to contain

(i) g+ 1 daisy relations of type g− 1, and

(ii) (g + 1)/2 (resp., g/2) daisy relations of type 2(g − 1) for odd (resp.,

even) g.

Proof

Let us first prove (i). Since ϕ(c2i−1) = c2i−1 for each i = 1, . . . , g + 1, by

Lemma 20(b) we have

(c1c2 · · · c2gc2g+1)
2 = (c1c2 · · · c2gc2g+1) · (c1c2 · · · c2g) · c2g+1

∼C (d̄2d̄4 · · · d̄2g) · (c1c2 · · · c2g · cg+1
2g+1) · c2g+1.

(13)



Lefschetz fibrations via daisy substitutions 521

Moreover, we have

c1c2c3 · · · c2g ∼ (e2e4e6 · · ·e2g) · (c1c3c5 · · · c2g−1).(14)

Therefore, we have

(c1c2 · · · c2g+1)
2g+2 (13)−−→ (d̄2d̄4 · · · d̄2g · c1c2 · · · c2g · cg+2

2g+1)
g+1

(14)−−→ (d̄2d̄4 · · · d̄2g · e2e4 · · ·e2g · c1c3 · · · c2g−1 · cg+2
2g+1)

g+1.

Then, we see that we can apply D′
g−1-substitution once and Dg−1-substitutions

g times to (d̄2d̄4 · · · d̄2g · e2e4 · · ·e2g · c1c3 · · · c2g−1c
g+2
2g+1)

g+1. The reason that we

apply D′
g−1-substitution once is to construct a minimal symplectic manifold

Y (g, k) in Theorem 31 (see the proof of Theorem 31 and Remark 36). This

completes the proof of (i).

Next we prove (ii). By Lemma 19(b) we have

(c1c2 · · · c2gc2g+1)
2 = (c1c2 · · · c2gc2g+1) · (c1c2 · · · c2g) · c2g+1

∼ (d1d2 · · ·d2g · c2g+1
2g+1) · c2g+1.

(15)

Moreover, we have

(c1c2 · · · c2g+1)
2 ∼ (c21c

2
3 · · · c22g+1) · (f2f4 · · ·f2g) · (d̄2d̄4 · · · d̄2g).(16)

From the above relations, we have

(c1c2 · · · c2gc2g+1)
4

(15)−−→ (d1d2 · · ·d2g · c2g+2
2g+1) · (c1c2 · · · c2gc2g+1)

2

(16)−−→ (d1d2 · · ·d2g · c2g+2
2g+1) · (c21c23 · · · c22g+1) · (f2f4 · · ·f2g) · (d̄2d̄4 · · · d̄2g)

∼ (d1d2 · · ·d2g) · (c21c23 · · · c22g−1c
2g+4
2g+1) · (f2f4 · · ·f2g) · (d̄2d̄4 · · · d̄2g).

From this, we see that (c1c2 · · · c2gc2g+1)
4 can be conjugated to contain daisy

relations of type 2(g− 1). Therefore,

I(g) =

{
(c1c2 · · · c2g+1)

4k · (c1c2 · · · c2g+1)
2 g = 2k,

(c1c2 · · · c2g+1)
4(k+1) g = 2k+ 1

gives the proof of (ii). �

THEOREM 28

Let g ≥ 3. Then, the monodromy of the Lefschetz fibration given by the word

G(g) = 1 can be conjugated to contain g daisy relations of type 2(g− 1).

Proof

By a similar argument to the proof of Theorem 27, we have

(c1 · · · c2g−1c2g)
4

∼ (d1d2 · · ·d2g−1) · (c22c24 · · · c22g−2c
2g+3
2g ) · (f1f3 · · ·f2g−1) · (d̄1d̄3 · · · d̄2g−1).
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Let h := (a1 · · ·a2ga2g+1). Note that h(ai) = ai+1 for i = 1, . . . ,2g. Then, we

have

(c1 · · · c2g−1c2g)
4

∼ (d1d2 · · ·d2g−1) · (c22c24 · · · c22g−2c
2g+3
2g ) · (f1f3 · · ·f2g−1) · (d̄1d̄3 · · · d̄2g−1)

h−→ (d2d3 · · ·d2g) · (c23c25 · · · c22g−1c
2g+3
2g+1) · (f2f3 · · ·f2g) · (d̄2d̄4 · · · d̄2g).

From this, we see that (c1c2 · · · c2gc2g)4 can be conjugated to contain daisy rela-

tions of type 2(g− 1). Then G(g) = (c1 · · · c2g−1c2g)
4g · (c1 · · · c2g−1c2g)

2 gives the

proof. �

6.1. Nonhyperellipticity of our Lefschetz fibrations
The purpose of this section is to prove that all the Lefschetz fibrations obtained

in this article via daisy substitutions are nonhyperelliptic. The proof will be

obtained as a corollary of the more general theorem given below.

THEOREM 29

Let g ≥ 3. Let f�1 :X�1 → S
2 be a genus g hyperelliptic Lefschetz fibration with

only nonseparating vanishing cycles, and let �1 be a positive relator corresponding

to f . Let k1 and k2 be nonnegative integers such that k1 + k2 > 0, and let k be a

positive integer. Then we have the following.

(i) If we can obtain a positive relator, denoted by �2, by applying Dg−1-

substitutions k1 times and D′
g−1-substitutions k2 times to �, then the genus g

Lefschetz fibration f�2 :X�2 → S
2 is nonhyperelliptic.

(ii) If we can obtain a positive relator, denoted by �3, by applying D2(g−1)-

substitutions k times to �, then the genus g Lefschetz fibration f�3 :X�3 → S
2 is

nonhyperelliptic.

COROLLARY 30

All our Lefschetz fibrations are nonhyperelliptic.

Proof of Theorem 29

Let s0 be the number of nonseparating vanishing cycles of f�1 . Note that, by

Theorem 7, we have σ(X�1) =− g+1
2g+1s0.

First, we assume that f�2 is a hyperelliptic Lefschetz fibration. The relators

Dg−1 and D′
g−1 consist of only Dehn twists about nonseparating simple closed

curves c1, c3, . . . , c2g+1 and x1, x
′
1, . . . , xg, x

′
g as in Figure 5. Therefore, we see

that �2 consists of only right-handed Dehn twists about nonseparating simple

closed curves, so f�2 has only nonseparating vanishing cycles. In particular, the

number of nonseparating vanishing cycles of f�2 is s0 − {(g − 1)− 1}(k1 + k2).

By Theorem 7, we have

σ(X�2) =− g+ 1

2g+ 1

{
s0 − (g− 2)(k1 + k2)

}
.
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On the other hand, since the relators Dg−1 and D′
g−1 are daisy relators of type

g− 1, by Theorem 17, we have

σ(X�2) = σ(X�1) + (g− 2)(k1 + k2) =− g+ 1

2g+ 1
s0 + (g− 2)(k1 + k2).

We get a contradiction since the above equality does not hold for g ≥ 3 and

k1 + k2 > 0.

Next, we assume that f�3 is a hyperelliptic Lefschetz fibration. The rela-

tor D2(g−1) consists of Dehn twists about nonseparating simple closed curves

c3, c5, . . . , c2g+1 and y2, y3, . . . , y2g−1 in Figure 5 and a Dehn twist about the sep-

arating simple closed curve y1 in Figure 5. Note that yg+1 = x2, yg+2 = x3, . . . ,

y2g−1 = xg , and note that y1 separates Σg into two surfaces, one of which has

genus 1. Therefore, f�3 has s0 − k{2(g− 1)} nonseparating vanishing cycles and

k separating vanishing cycles which are y1. By Theorem 7, we have

σ(X�3) =− g+ 1

2g + 1

{
s0 − 2k(g− 1)

}
+

(4(g− 1)

2g+ 1
− 1

)
k

=− g+ 1

2g + 1
s0 +

2g2 + 2g− 7

2g+ 1
k.

On the other hand, since the relator D2(g−1) is a daisy relator of type 2(g − 1),

by Theorem 17, we have

σ(X�3) = σ(X�1) + (2g− 3)k =− g+ 1

2g+ 1
s0 + (2g− 3)k.

Since g ≥ 3, we have(
− g+ 1

2g+ 1
s0 + (2g− 3)k

)
−

(
− g+ 1

2g+ 1
s0 +

2g2 + 2g− 7

2g+ 1
k
)

=
2(g− 1)(g− 2)

2g+ 1
k > 0.

This is a contradiction to the above equality. �

7. Constructing exotic 4-manifolds

The purpose of this section is to show that the symplectic 4-manifolds obtained

in Theorem 27(i) are irreducible. Moreover, by performing the knot surgery oper-

ation along a homologically essential torus on these symplectic 4-manifolds, we

obtain infinite families of mutually nondiffeomorphic irreducible smooth struc-

tures.

THEOREM 31

Let g ≥ 3, and let M be one of the following 4-manifolds: (g2−g+1)CP2#(3g2+

3g + 3− (g − 2)k)CP2 for k = 2, . . . , g + 1. There exists an irreducible symplec-

tic 4-manifold Y (g, k) homeomorphic but not diffeomorphic to M that can be
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obtained from the genus g Lefschetz fibration on Y (g) over S2 with the mon-

odromy (c1c2 · · · c2g+1)
2g+2 = 1 in the mapping class group Γg by applying k daisy

substitutions of type g− 1.

Proof

Let Y (g, k) denote the symplectic 4-manifold obtained from Y (g) =W (g)#2CP2

by applying k − 1 Dg−1-substitutions and one D′
g−1-substitution as in Theo-

rem 27. Applying Lemma 14, we compute the topological invariants of Y (g, k)

as

e
(
Y (g, k)

)
= e

(
W (g)#2CP2

)
− k(g− 2) = 2(2g2 + g+ 3)− k(g − 2),

σ
(
Y (g, k)

)
= σ

(
W (g)#2CP2

)
+ k(g − 2) =−2(g+ 1)2 + k(g− 2).

Using the factorization of the global monodromy in terms of right-handed

Dehn twists of the genus g Lefschetz fibration on Y (g, k) (see Theorem 27(i)), it

is easy to check that π1(Y (g, k)) = 1.

Next, we show that Y (g, k) is a nonspin 4-manifold. Let c1, . . . , c2g+1 be

the curves in Figure 2, and let x1, . . . , xg, x
′
1, . . . , x

′
g be the curves in Figure 5.

Note that d̄i = c−1
i+1

(ci) and ei+1 = ci(ci+1). The vanishing cycles of Lefschetz

fibrations in Theorem 27 include the curves d̄2i, e2i for i = 1, . . . , g, xj , x
′
j for

j = 1, . . . , g, and c2g+1. In H1(Σg;Z2), we find that d̄2g = c2g+1 + c2g , e2g =

c2g−1 + c2g , and xg = c2g−1 + c2g+1. Therefore, we have d̄2g + e2g = xg . In the

notation of Theorem 8, we have l= 2 and d̄2g ·e2g = 0. Therefore, 2+ d̄2g ·e2g ≡ 0

(mod 2).

By Theorem 9, Y (g, k) is nonspin, and thus, it has an odd intersection form.

By Freedman’s classification (see [16]), we see that Y (g, k) is homeomorphic to

(g2 − g+ 1)CP2#(3g2 + 3g+ 3− (g− 2)k)CP2.

Next, using the fact that W (g) is a minimal complex surface of general

type with b2
+ > 1 and the blow-up formula for the Seiberg–Witten function

(see [15]), we compute SWW (g)#2CP2 = SWW (g) ·
∏2

j=1(e
Ei + e−Ei) = (eKW (g) +

e−KW (g))(eE1 + e−E1)(eE2 + e−E2), where Ei denotes the exceptional class of

the ith blowup. By the above formula, the SW basic classes of W (g)#2CP2

are given by ±KW (g) ± E1 ± E2, and the values of the Seiberg–Witten invari-

ants on these classes are ±1. Notice that, by [14, Corollary 8.6], Y (g, k) has

Seiberg–Witten simple type. Furthermore, by applying Theorems 15 and 16, we

completely determine the Seiberg–Witten invariants of Y (g, k) by using the basic

classes and invariants ofW (g)#2CP2. Up to sign, the symplectic manifold Y (g, k)

has only one basic class which descends from the ± canonical class of Y (g) (see

the detailed explanation below). By Theorem 16 or Taubes’s work [36], the values

of the Seiberg–Witten function on these basic classes, ±KY (g,k), are ±1.

In what follows, we spell out the details of the above discussion. By Theorems

15 and 16, we can determine the Seiberg–Witten invariants of Y (g, k) by comput-

ing the algebraic intersection number of the basic classes ±KW (g) ±E1 ±E2 of

W (g)#2CP2, with the classes of spheres of k disjoint Cg−1 configurations in Y (g).

Notice that the leading spheres of the configurations Cg−1 are the components
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of the singular fibers of Y (g). By looking at the regions on the genus g surface,

where the rational blowdowns along Cg−1 are performed, and the location of the

base points of the genus g pencil, we compute the algebraic intersection num-

bers as follows. Let Sj
1 denote the homology class of the −(g + 1)-sphere of the

jth configurations Cg−1, and let Sj
2, . . . , S

j
g−2 be the homology classes of (−2)-

spheres of Cg−1 in W (g)#2CP2, where j = 1,2. These two rational blowdowns

along Cg−1 are chosen such that they correspond to one Dg−1-substitution and

one D′
g−1-substitution as in Theorem 27(i).

We have S1
1 ·E1 = 1, S1

1 ·E2 = 0, S2
1 ·E2 = 1, S2

1 ·E1 = 0, Sj
1 ·KWg = g−2, and

the canonical divisor does not intersect with Sj
i for 2≤ i≤ g − 1. Consequently,

Sj
1 · ±(KWg + E1 + E2) = ±(g − 1) for j = 1,2, and Sj

1 · (±KWg ± E1 ∓ E2) �=
±(g− 1) for one j. Observe that among the eight basic classes ±KWg ±E1±E2,

only KWg +E1+E2 and −(KWg +E1+E2) have algebraic intersection ±(g−1)

with −(g + 1)-spheres of Cg−1. Thus, Theorem 15 implies that these are the

only two basic classes that descend to Y (g,2) and, consequently, to Y (g, k) from

W (g)#2CP2.

By invoking the connected sum theorem for Seiberg–Witten invariants, we

see that the SW function is trivial for (g2 − g + 1)CP2#(3g2 + 3g + 3 −
(g−2)k)CP2. Since the Seiberg–Witten invariants are diffeomorphism invariants,

Y (g, k) is not diffeomorphic to (g2 − g+ 1)CP2#(3g2 + 3g+ 3− (g− 2)k)CP2.

The minimality of Y (g, k) is a consequence of the fact that Y (g, k) has no

two Seiberg–Witten basic classes K and K ′ such that (K −K ′)2 = −4. Notice

that ±KY (g,k) are the only basic classes of Y (g, k), and note that (K2
Y (g,k) −

(−KY (g,k)))
2 = 4(K2

Y (g,k))≥ 0. Thus, we conclude that Y (g, k) is symplectically

minimal. Furthermore, since symplectic minimality implies irreducibility for sim-

ply connected 4-manifolds (see [21]), we deduce that Y (g, k) is also smoothly

irreducible. �

The analogous for g = 2, using lantern substitution, was proved in [3] (see The-

orem 17).

THEOREM 32

There exists an infinite family of irreducible symplectic and an infinite family of

irreducible nonsymplectic pairwise nondiffeomorphic 4-manifolds all homeomor-

phic to Y (g, k).

Proof

We have that Y (g, k) contains g(g−1) Lagrangian tori which are disjoint from the

singular fibers of the genus g Lefschetz fibration on Y (g, k). These tori descend

from W (g) (see Example 12) and survive in Y (g, k) after the rational blow-

downs along Cg−1. These tori are Lagrangian, but we can perturb the symplectic

form on Y (g, k) so that one of these tori, say, T , becomes symplectic. Moreover,

π1(Y (g, k) \ T ) = 1, which follows from Van Kampen’s theorem by using the

facts that π1(Y (g, k)) = 1 and any rim torus has a dual (−2)-sphere (see [20,
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Proposition 1.2] or Gompf [18, p. 564]). Hence, we have a symplectic torus T

in Y (g, k) of self-intersection 0 such that π1(Y (g, k) \ T ) = 1. By performing a

knot surgery on T , inside Y (g, k), we obtain an irreducible 4-manifold Y (g, k)K
that is homeomorphic to Y (g, k). By varying our choice of the knot K, we can

realize infinitely many pairwise nondiffeomorphic 4-manifolds, either symplectic

or nonsymplectic. �

REMARK 33

We obtain analogous results to Theorem 31 for the genus g Lefschetz fibrations

obtained in Theorem 28. The total space Z(g) of the Lefschetz fibration with

the monodromy (c1c2 · · · c2g+1)
2(2g+1) = 1 in the mapping class group Γg is the

complex surface of general type with b2
+ > 1 and the single blowup of a min-

imal complex surface (see [19, Section 8.4, pp. 320–322]). The computation of

the Seiberg–Witten invariants follows the same line of argument as that of Theo-

rem 31. In fact, the SW computation is simpler, since Z(g) only admits one pair of

basic classes. Also, the results of our article can be easily extendable to the Lef-

schetz fibrations with monodromies (c1c2 · · · c2g−1c2gc
2
2g+1c2gc2g−1 · · · c2c1)2n =

1, (c1c2 · · · c2gc2g+1)
(2g+2)n = 1, and (c1c2 · · · c2g−1c2g)

2(2g+1)n = 1 for n≥ 2. Since

the computations are lengthy, we will not present them here.

REMARK 34

Note that all the Lefschetz fibrations constructed in our article are nonspin. The

fibrations obtained in Theorems 24 and 25 admit a section of self-intersection

−1. The fibrations in Theorem 26 and 28 contain separating vanishing cycles.

(The curve y1 in Figure 5 is separating.) Thus, the total spaces are nonspin. In

general, if we apply the daisy substitution of type 2(g − 1) to a positive relator

in Γg , then the resulting Lefschetz fibration always contains separating vanishing

cycles. The fibrations in Theorem 27 do not contain any separating vanishing

cycles, but they are nonspin due to Stipsicz’s criteria (see proof of Theorem 31).

REMARK 35

It would be interesting to know if an analogue of Theorem 31 holds for the Lef-

schetz fibrations of Theorem 25. Their corresponding monodromies are obtained

by applying Dg−1-substitutions twice to H(g). In the opposite direction, we can

prove that the total spaces of the Lefschetz fibrations of Theorem 24, whose mon-

odromies are obtained by applying one Dg−1-substitution to H(g), are blowups

of the complex projective plane. Notice that by Theorem 24 they admit at least

(2g+ 6)-sphere sections of self-intersection −1. By using a result of Y. Sato [32,

Theorem 1.2, p. 194], we see that the total spaces of these Lefschetz fibrations

are diffeomorphic to CP
2#(3g+ 5)CP2.

REMARK 36

In the proof of Theorem 27(i), if we apply k Dg−1-substitutions for k = 1, . . . , g+1

without applying a D′
g−1-substitution, then the Lefschetz fibrations over S2 given
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by the resulting relations admit a section of self-intersection −1. (That is, the

total spaces of the fibrations are nonminimal.)
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