On spherically symmetric solutions
of the Einstein-Euler equations

Tetu Makino

Abstract We construct spherically symmetric solutions to the Einstein-Euler equa-
tions, which give models of gaseous stars in the framework of the general theory of
relativity. We assume a realistic barotropic equation of state. Equilibria of the spheri-
cally symmetric Einstein-Euler equations are given by the Tolman—-Oppenheimer—
Volkoff equations, and time-periodic solutions around the equilibrium of the linearized
equations can be considered. Our aim is to find true solutions near these time-periodic
approximations. Solutions satisfying a so-called physical boundary condition at the free
boundary with the vacuum will be constructed using the Nash—Moser theorem. This
work also can be considered as a touchstone in order to estimate the universality of the
method which was originally developed for the nonrelativistic Euler—Poisson equations.

1. Introduction

Recently, U. Brauer and L. Karp [2, Theorem 2.3] established a local existence
theorem of solutions to the Cauchy problem for the Einstein—FEuler equations,
which describes a relativistic self-gravitating perfect fluid having density either
compactly supported or falling off at infinity in an appropriate manner. In their
work [2] the energy-momentum tensor of the perfect fluid takes the form

T = (e + P)UMU" — Pg"",

where € = c?p is the energy density, P is the pressure, and U* is the velocity 4
vector. Here it is assumed that P = Ke?, K >0, v > 1, and the quantity

wi=e'T = ApTE
is introduced. The main result requires that the initial data satisfy w € Hg4q
with s > 3/2 so that w € C! at least.

However, a spherically symmetric equilibrium, which solves the Tolman-—
Oppenheimer-Volkoff equation, satisfies w ~ const(r, —r)'/? as r — r, — 0 pro-
vided that the equilibrium has a finite radius r; (see Section 3). Hence, such an
equilibrium is excluded from the class of density distributions admissible to this
local existence theorem. We are faced with the same situation in the nonrela-
tivistic problem governed by the Euler—Poisson equations as discussed in [6].
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Recently, this trouble was partially overcome by [8] in the Euler—Poisson
equations for the nonrelativistic case. So, a similar discussion is required for the
relativistic problem. That is the aim of this article.

2. Spherically symmetric evolution equations

The Einstein equations read ([5, (95.5)])

1 8rG
(21) Ruy - ig’WR = CT

Here R, is the Ricci tensor, R is the scalar curvature g*? R.p associated with
the metric

Tyw-

(2.2) ds® = g, dat da”,

T*H¥ is the energy-momentum tensor of the matter, G is the constant of gravita-
tion (6.67 x 10=8 cm3/g-s?), and c is the speed of light (3.00 x 101 cm/s). The
Einstein equations (2.1) imply the Euler equations

(2.3) v, T" =0,

where V denotes the covariant derivative associated with the metric (2.2). The
details can be found in [5] or [11].
The energy-momentum tensor of a perfect fluid is given by ([5, (94.4)])

(2.4) ™" = (*p+ P)U*U" — Pg”,

where p is the mass density, P is the pressure, and U* stands for the 4-dimensional
velocity vector such that U#U,, = 1. In this article we always assume the follow-
ing.

ASSUMPTION 1
We assume that P is a given analytic function of p > 0 such that 0 < P, 0 <
dP/dp < c? for p>0, and P — 0 as p — +0.

If we assume spherical symmetry, then the Einstein—Euler equations are reduced
as follows. We consider the metric of the form ([5, p. 304, (1)])

(2.5) ds* = 2P dt* — 2 dr® — R*(d6? + sin® 0 d¢?),

where F', H, and R are functions of t,r > 0. (Here R does not mean the scalar
curvature ¢g"”R,,.) Then the nonzero components of the Einstein tensor
GY := RY, — 501 R, where R is the scalar curvature, are (see [5, p. 305, (2), (3),

4), (5)])

R? R' _H'R R? HR 1
0_ _—2H T 9 —2F I i i
@ =e ( =20 + 2 )+ (R2+2R)+R2,
R? R _FR R? F'R 1
1_ —2F i o9l MY —2H I - =
Gi=e <R2+2R 2_R> ¢ (R2+2 R )+1#’



On spherically symmetric solutions of the Einstein—Euler equations 245

e
R// H/R/ F/R/
—2H 1 12 IEnli
- L pr_p2LgF _
e ( R TR R)
—2F 2
L H+ R HF ———),
Te (R+ T +

R HR F'R
MGy =T A=~ )

Here A stands for dA/cot and A’ stands for AA/dr. Of course the coordinates
z# are taken as

20 = et, at=r, z2 =0, 3 =¢.

By the freedom of choice of r we take it in such a way that the flow is
apparently static, say, we suppose

(2.6) Ul=e ', U'=U?=U%=0.

Then the energy-momentum tensor turns out to be

(2.7) =cp, T =T:=T}=-P, Tg=T)=0.

The equation VT =0 gives
. 2R

(2.8) p+ (H+3)(p+P) =0,

and the equation V,T{" =0 gives

(2.9) P+ F'(*p+P)=0.
By integrating (2.9) we can suppose that F is a function of p given by

P01 dP

2.10 F=F(p)=- —— —dp.

(2:10) = w5
Let us introduce the variable m by

R r
(2.11) m:47T/ pRQdR:47T/ pR2R' dr.
0 0

The variable V is defined by

(2.12) V=ce FR.

Then the equation G§ =0 turns out to be

-1 gV
2.13 =-ef'—.
Substituting (2.12) and (2.13) into (2.8), we have
1 v o2V
2. F(2
Eliminating the time derivatives from the equation GY = 8:2G p, we have
81G

/

1
—pRR = (—RR?e™ + SRV + R)
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Integrating this, keeping in mind that R should vanish at r =0, we get

2 V2
2.15 m:ﬁ — +1—R?e2),
2G \ 2
from which we get
V2  2Gm\ -1
2H 12
. (14 2my e
(2.16) =1+ -52) R

Differentiating (2.12) with respect to ¢ and using the equation G} = — 8Z4GP and
(2.15), we obtain

R3 c?

V p  GR/m 4xP oy RP
(2.17) —e = 62( ) e 2,1 P

or from (2.16),

e m | 4nPy V_Q_ 2Gm P’
(2.18) e eV = GR(RB + 2 ) (1 c2 CZR)R'(P“‘P/CQ).

Differentiating (2.15) with respect to ¢t and using the equation GY =0, we have

47 R?
(2.19) meF = -2 PV
c
Now (2.12), (2.14), (2.18), and (2.19) govern the evolution of unknowns R,
H, p, V, m. The system of equations to be studied is

(2.20a) e FeR=V,

_F . v 2V
(2.20b) e FCP:*(PJrP/CQ)(ﬁJFE)’
ﬁ+47rP)_( V_2_2Gm) P
RS 02 02 CQR R/(p+P/C2),

(2.20c) e Fev = —GR(

4
(2.20d) e~ Ferm = —— R2PV.
C

Of course, we assume (2.10) and (2.11). The above equations were derived by
[10]. The equations (2.20a), (2.20b), (2.20c), and (2.20d) are none other than
[10, (1.12-R), (8.11), (1.12-U), (1.12-m)], respectively.

The system of coordinates (¢,7) is a comoving Lagrangian system of coordi-
nates moving at each point with the fluid. Therefore, if p >0 for 0 <r <r; and
p=0 for ry <r att=0, then it remains so for all small £ > 0 along the time evo-
lution as long as the C''-solution exists, while the surface radius r is constant.
(Of course, the value of R at the surface can change in time.) Especially, we have
that m =my is constant at r =ry for all ¢ > 0. Hence, we can take (t,m) as
another system of comoving Lagrangian coordinates. Then we have the formula

oy 0 AT ooy D
(2.21) (50), = (30),, e PV g
o 9., 0



On spherically symmetric solutions of the Einstein—Euler equations 247

Here (9/0t), stands for the partial derivative with respect to ¢t keeping r constant,
and (0/0t), stands for that keeping m constant.

Note that
OR 1
2.2 -
(2.23) Om  4npR?’
and
OR
2
(2.24) p= (4R am)
Thus, (2.20a) reads
OR P

—-r (04 _ s

(2.25) ¢ ( ot )m (1 * 02p>V’

and (2.20d) reads

(%), = v —an(3 )

2
(2.26) " vg 2G " PC 1 P
m _
S 2y DY 0P
( * 2 2R + 2p ™ om
where we have used the relation
P’ oP
—) 22
R’ PR om’

which comes from (2.22).

In summary, the system of equations (2.25)—(2.26) should be solved, while
p, P = P(p) are given functions of R20R/0m through (2.24). Moreover, under
Assumption 2 specified in the next section, we can put

(2.27) F:—c% + F(0)

in order to fix the idea, where F'(0) is a constant and

, 1 dP
o p+P(p)/c* dp

is a given function of R2OR/Om, too (see (2.10)). Hence, the unknown functions
are only (t,m)— R and (¢t,m)—V.
The system of equations (2.25)—(2.26) will be called (E.):

e_Fa—Rz (1—1—;)‘/,

ot
e*Faa—‘;_i—”mPVg—V GR(ﬂ 4:—213)
_(1+V—22—2§—;”)(1+%) A 3227];.
OR 9V

Here we have written 28, 2 simply instead of (22),,, (%% )m. The nonrelativis-

tic limit as ¢ = 400 is of course (E):
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OR

0=

ov Gm 5 OP
ot T e g

which is reduced to the second-order single equation [8, (4)], where go, r stand
for G, R, respectively.

SUPPLEMENTARY REMARK 1
The function F' = F(¢,7) in the components of the metric (2.5) should satisfy
(2.9). Therefore, generally speaking, (2.27) should read

u
F=-5+ ()

where F (t) is an arbitrary smooth function of ¢, being constant with respect
to r, or

e2F C’(t)Qfee*Q“/CZ,

where k is a positive constant which will be specified in the next section (see
(3.9)) and where C(t) is an arbitrary positive smooth function of ¢. Then the
left-hand sides of (2.25)—(2.26) or (E.) should be interpreted with

r0 1 1 =20

ot Clt)Vr ot
Of course, we can and shall assume that C(t) =1 by taking

instead of ¢, that is, we specify
(2.28) el = ﬁexp(—%),
c

without loss of generality.

In this sense, if we are allowed to forestall the discussion, then we should say
that, in order to fix the idea, the definitions of J, Hy, Hs in Section 6 (see (6.8a),
(6.8b), and (6.9)) should be done by using (2.28), where u is a given function
of p given by

_ Ay 1
p=p(1+y) 2(1+y+ra—i> . (4.5)

3. Equilibrium configurations

Let us consider a solution of (2.20a)—(2.20d) which is independent of ¢, that is,
F=F(p(r)), H=H(r), p=p(r), P=P(p(r)), V=0, R=r. Then the system
of equations (2.20a)—(2.20d) is reduced to
m  4nP 2Gm P’
5 (o2

0=Gr( o
" r3+ c? c2r /p+ P/c?
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Therefore, the equation to be studied is

dm

(3.1a) o= 4mr?p,
m 7'('7"3 02
(3.1b) =l P G,

This equation was first derived by Oppenheimer and Volkoff [12] in 1939.
Let us observe solutions of the Tolman—Oppenheimer—Volkoff equation (3.1).
We assume Assumption 1.

PROPOSITION 1

Let p. (>0) and P, = P(p.) be the given central density and central pressure,
respectively. Then there is a unique local solution (m(r), P(r)), 0 <r <4, of (3.1),
0 being a small positive number, such that m =0, P = P, at r =0. Moreover, we

have

m= 4%/%7’3 +0(r°),

P=P.—(p.+P./)*G (47rpc/3—|—47rP/c) —I—O()
asr— 0.

A proof can be found in [7].

We consider the domain of (3.1) as D :={(r,m,P) |0<r < 400,0< P <
+00,0 < 2Gm/c*r < 1}. Prolonging the local solution as long as possible in the
domain D, we have (0,r4) for the maximal interval of existence. Here r4 < +o00
is a constant.

DEFINITION 1
If 4 = 400, then the solution will be called a long equilibrium with central
density p.. If 1 < +o0, then the solution will be called a short equilibrium.

REMARK

It will be shown that if r, < +oco, then p and P tend to 0 but 2Gm/c?*r tends
to a positive number strictly less than 1 as r — r; — 0. In this sense the solution
can be said to be “short” if 4 < 4o00.

The equation of state for neutron stars is given by

P Ko q*dq
(1+¢2)1/2

- %ch’ (50 +C2)(§C2 —1) +log(C+ (¢ +1)1/2)),
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¢
p:3KC3/ <1+q2)1/2q2dq
0

3
= KA+ (G +DY2 —log(¢ + (¢ +1)1?)).
See [15, p. 188, (6.8.4), (6.8.5)]. In this case we have
1 .
P= gK 2/3p5/3(1 +K 2/3p2/3/02]1),

where [X]; stands for a convergent power series of the form » -, a; X 7. Keeping
in mind this case, we suppose the following assumption of the behavior of P(p)
as p— 0.

ASSUMPTION 2
There are positive constants A, v such that

P=4p"(1+[p""]1)

as p— 40, and 1 <y < 2.

Under Assumptions 1 and 2 we can introduce the new variable u by

P

apP
.2 = —_—
(3.2) U /OP+P/CQ,

which satisfies
Ay
_ y—1 1 y—1
u | P+ [ )
as p — +0. Let (m(r), P(r)), 0 <7 <71y, be an equilibrium, where (0,7 ) is the
maximal interval of existence. Then the corresponding u = u(r) satisfies

du  G(m+4mr®P/c?)

(3:3) "ar T r(1—2Gm/c?r)

Then u(r) is monotone decreasing, and, moreover, we have the following result.

PROPOSITION 2
We have u(r) =0 asr —ry —0.

The proof is the same as that of [7, Lemmal. (We do not use the assumption

v>4/3.)
Let us introduce the variables

3.4 = — 42
(3.4) z= y=dnrtg
The equations read

d .
(3.5) o = a(u) — z + 2*G,
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d -
(3.6) rel = y(2- Blu)ad),
r
du ~
(3.7 T = —uzG,
where
P —1
a=—=1""4 [ul1,
up v
(o dP uN  2-—v
ﬂ_<2dp P)_*y—1+[u]1’
G G(1+4rr3P/mc®)  G(1+w(u)y/c’x)
 1-2Gm/re2 1-2Guz/c®
P2
PROPOSITION 3

Let x(r) correspond to an equilibrium (m(r), P(r)), 0 <r <ry. If there is o €
(0,74) such that x(rg) > 1/G, then ro < 400 and enjoys the estimate
1
< —_— .
=T eXp(G:r(rg) — 1)

A proof can be found in the last part of the proof of [7, Theorem 1].
As in [7] we can claim the following result.

PROPOSITION 4
If 4/3 <~ <2, then any equilibrium is short.

When 6/5 <y <4/3, it is known that if A is small and if P(p) is sufficiently
near to the exact y-law P = Ap?, then any equilibrium is short (see [14]). Even
if 1 <~ <6/5, it is possible that there are short equilibria, since Proposition 3
guarantees the existence of tails of short equilibria in any case and we can arbi-
trarily modify the equation of state in the higher density region. Anyway, in this
article we assume Assumptions 1 and 2 only with 1 <y < 2 and suppose that a
short equilibrium is given to us.

Let us observe roughly the behavior of a short equilibrium (m(r), P(r)) at
the surface » = r. By Proposition 2 we have v € C((0,74]) with u(ry) =0, so
P(r), p(r) are as well. Hence,

s
r—m(r)= / 4 p(r') dr”’
0
belongs to C'((0,7]). Put

(3.8) my =m(ry) = /OT+ 4712 p(r) dr.
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By definition we have 1 —2Gm/c?r > 0. Therefore,
(3.9) k= lim 1—2Gm/c*r=1-2Gm, /c*r,

T‘—)T+
is nonnegative. We claim that x > 0. Otherwise, if kK =0, then
d m) 2Gmy 1

2G
2\ —
E(l—QGm/c r)——c—2(47rrp—r—2 oz

=
as r —ry —0 and

1
1—2Gm/c*r ~ ——(ry —7),
T+

which contradicts that 1 —2Gm/c*r >0 for r <r,. Hence, k> 0 and

du

— = -K
dr

as r = r4 — 0. Here

- Gm+

=2

r3(1—=2Gmy /c?ry)
is a positive constant. Hence, since u — 0 as » — r, we see that

u~K(ry —r)

(3.10)

and thus we have the following result.

PROPOSITION 5
Let (m(r), P(r)), 0<r <ry4, be a short equilibrium. Then we have

o ()

as r— 1y — 0, where K is the positive constant given by (3.10).

REMARK
If (m(r),P(r)), 0 <r <ry, is a short equilibrium, then for r > r we put p=
P =0 (vacuum) and we put
2Gm dr?
2 _ +\ .2 52 20702 1 12 742
dS = (1— 7)0 dt — W—T‘ (da + sin 9d¢> ),

which is the Schwarzschild’s metric (see [5, p. 301]). Here we must take

1 1 2G
F(O)zilogn:§log(1— m+>.

Then the components of the metric are continuously differentiable across r =r.

Ary

More precise behavior of the equilibrium at the surface can be given as follows.

PROPOSITION 6

Assume Assumptions 1 and 2, and let (m(r), P(r)), 0 <r <ry, be a short equi-
librium. If % is an integer, then u(r) is analytic at r =r,.
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Proof

We consider the variables
1 ur dnrtu?p?
x=lt_w Y:%: 772 14
T m x m?P
Since du/dr < 0, we can take u as the independent variable instead of r, and the
equations turn out to be

dX 1
(3.11a) u = (1 F X+ aY))X,

dy 1
(3.11b) s = (2+B+ 5(—4X+204Y))Y,

where we note

(3.12) G:G(H%%)/(l—i—f%).

Note that G >0 and G — G/k as u — +0, where & is the positive constant
given in (3.9). Put

(3.13) X="=_ V- =

)

)
- X r Y drtus=1 p?
u m w1 m2P

We know that u+ X and u+ Y belong to C([0,u.)) and X|,—o, Yl]u—o are
positive. Therefore u— G = G(1+ W§)/( - i—?%) belongs to C([0,u.)).
Integrating (3.11a), we have

“1 . v~
X:Cluexp{/ 5(—X—|—auﬁY)du].
0

Since the integrand is continuous, we see that u ~— X belongs to C*([0,u.)).
Integrating (3.11b), we have

Y = Couv T exp [/Ou(é(élX +20u7TY) + Q(u)) du},

where

2+ 8= ﬁ FQu)u,  Q(u) = [ulo.

Fixing uo > 0 small, we put X := X(uo), Y, = Y(uo). Since we know that

7—1>%i

; ¢ Tt : -
X(u) = X, = =, Y(u)—)Y*.—47r( T ot

my
as u — 0, we see that if ug is sufficiently small, then X, Yy is arbitrarily near
to X, Y., respectively. Now (X (u),Y (u)) is the unique solution of the integral
equation
uo

et

D
+
Q
IS
2
i
5(
Q
=

(3.14a)  X(u) = Xoexp [_

(3.14b) Y(u):%exp[—/uo(é(—uzmau%?)+Q(u)) du].

u
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Let us denote by Ds the set {(z1,22) € C? | |21 — X.| <0, |20 — Yi| < 8}, with &
being a small positive number. Note that if |u| < ey, with g being a fixed small
positive number, and if (X,Y) € Ds, 0 < 6 < &y, then |1/é| < My, My depending
upon only &g, do. In fact, since X, >0 and ¢ is very small, we can suppose that
(X,Y) € Ds guarantees | X| > §. Let us consider the functional family §(e,d) of
all analytic functions (¢;(u),¢2(u)) defined and analytic for |u| <e and valued
in Ds. The right-hand sides of (3.14a) and (3.14b), in which X = ¢1(u) and
Y = ¢(u), will be denoted by ¢;(u) and ¢o(u), respectively. Then it is easy to
see that if |ug| < e, with & being sufficiently small, then (Xo,Yp) € Ds/9, and
if (¢1,02) € F(g,9), then (¢1,d2) € F(e,d). Applying the well-known fixed point
theorem (see, e.g., [4, Chapter I, Théoréme 7]), we have a fixed function in F(e, ).
This is our (X (u),Y (u)) by dint of the uniqueness.

Integrating
ldr X
rdu G’
we see that u+— r is analytic and dr/du < 0 including u = 0. Hence, the inverse
function r — w is analytic at r =r,. ]

Hereafter we suppose the following.

ASSUMPTION 3
We assume that 1 <« <2 and that ﬁ is an integer.

Under this assumption, is an integer, and since

1
~y—1

—1 \5=1
(3.15) p= (") 0+,
the density distribution p of the equilibrium is analytic at r =r, too:

((7—1)K 71

(3.16) =" >W71(T+—T)ﬁ(1+[r+—r]1).

SUPPLEMENTARY REMARK 2
Here we are considering a short equilibrium with surface » = ry and the
Schwartzschild’s metric in the exterior vacuum region. In other words, the metric
ds® = gooc® dt* + g1y dr? — r2(d6?* 4 sin® 0 d¢?)
is given by
1 _ 2Gm+

2r T4 <r,

e2F = ge=2/¢* <r<rgi,
goo =

o = ezH:(l—chzT)_1 0<r<rg,
I = 2G _
(1-=Z+)"!

T+<’I”.

Let us check that the components ggo, g11 are of class C? across r =r,.
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It is clear that gop and g1; are continuous since u — 0, m = my asr —ry —0
and k= 1—2Gm /c*r, . Moreover, we have

d 2k du

o 2Gm+
dar 30 r=ri—0  c2dr

r=ry—0 c? 7"_2'_ ’

since du/dr — —K with K given by (3.10), and

d2

4Gm+
@900 -

r=ry—0 cri

747/<;<d7u>2 2k d%u
cA \dr

r=r4y—0 B r=ry—0 B Cﬁp
This can be verified by differentiating (3.3) and seeing
d*u
dr?

Hence, ggo is twice continuously differentiable at 7 =r,. On the other hand, it

_Xomy 2(%)2_

r=ry—0  T3K A\ rik

is easy to see that the patched function

y ){m(r) 0<r<rg,

mir
my T'+<T'

is of class C* if and only if v < k/(k — 1) since

dm (v— l)K)l/(’v—l)

2 2
Ezéhrpr :47T7‘+( i

Hence 7 and gy, are of class C? since v < 2.

(ry — )77 (14 [y —7]1).

4. Equations for perturbations

Let us fix a short equilibrium p(r) which is positive on 0 <r <r;. Put my =
m(ry). Then we can take m as an independent variable and get an equilibrium
p=p(m) and r =r(m), 0 <m < my. We have to consider solutions of (F.) near
this equilibrium of the form

(4.1) R=r(m)(1+y),
(4.2) V =r(m)v.

Here y and v are small perturbations. The equations turn out to be

(4.3) e_F@ = (1 + %)v,

ot
*F% - %ﬁa + y)2Pv%(rv)
(4.4) . 7"3(1G+y)2 (m + %Prg(l + y)3)
(1 AN (14 ) S

Instead of m, let us take r =r(m) as the independent variable. Since

d
d—T: = 4mpr?,
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we see

o __1 9

om  Anpr2 or’
Therefore, (2.24) and (4.1) imply

oy 1
—_ 5 -2 -J
(4.5) p=p1+y) (1+y+rar>
so that
. dy dy

p=p(t-su—rgo+ g )

Here [X7, X5]2 denotes a convergent double power series of the form

2 : k k
ak1k2X11X22.
k1+ko>2

Let us recall that (p)?~! € C*°([0,74]), provided that /(v — 1) is an integer,
say, from Assumption 3.
Then (4.4) reads

_0v 1 P 0
e F—:C—2(1+y)2gv—(m)

ot or
G dr 4 3
r?v? 2Gm PN\-1(1+y)?0P
a (1 * 2 (1 —|—y)) ( %> rp or’

We have to solve (4.3)—(4.6) for unknown functions (¢,7) — y,v, where r is con-
fined to the fixed interval [0,7]. Here m = m(r) is determined by the equilibrium
through

m= 47r/ p(r)r? dr,
0

and p, P(p), u(p) are given functions of p(r) and the unknowns y, 70y /dr through
(4.5).

The perturbation of p is expressed by (4.5). Similar expressions of P and u
are necessary. If P(p) was the exact y-law, say, if P = Ap”, then we would have

_ oy\ —7
P:P(1+y)_27(1+y+ra—i{)

O R )

However, this exact y-law is not treated by this article, since it violates the
condition dP/dp < c? for large p. Our case should be treated more carefully.
We should introduce the quantity

(4.7 AP =

vl
Sk
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Then under the Assumption 2 we see that

v =+ [y,
and using this function, we can express
_ i dy i dy
_ P 9Y\ &P 9y
(4.8) P—P(l 0% (u)(?)y—i—rar) o (u,y,rar)),
where

O (u,y,ry') = [u; 9,79 lo,2.
Here [Xo; X1, X2]o;2 denotes a convergent triple power series of the form
ko yvk1 vk
Z Ukokyke X" X1 X3
ko>0,k1+k2>2

We note that

<1+—> ( ;) (1+02};(1+(§))_1(7P1)(3y+r§z)

+[50r31],.)

SUPPLEMENTARY REMARK 3

The letter r is used, on the one hand, as one of the comoving coordinates for
the metric (2.5) and, on the other hand, as one of the independent variables
of (4.6). However, these two quantities denoted by the same letter r do not
coincide if we consider moving solutions. Therefore, in order to clarify the relation
between these two quantities, we shall denote by r* the latter r, that is, one of
the independent variables for (4.6).

(4.9)

In other words, the definition of 7* = ¢(¢,7) is as follows. Put
m=fir)i=4x [ gl (0<r<r)
0

along the equilibrium fixed. Then we have the inverse function r = f; !(m)
defined on 0 < m < m. But along the moving solutions, m is one of the variables
of (2.25)—(2.26) or (E.) defined by (2.11). So we denote

m= fot,r) = 471'/ p(t, 7 \R(t, 7" )20, R(t,r") dr’
0
along the moving solutions under consideration. Then we put

= (tr) = fi (falt.)).

Let us determine the function ¢(t, ). The function m = f2(t,r) should satisty
(2.20d); that is,

—pdm _

(4.10) =

4
~=ZRPV.
C
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The left-hand side of (4.10) is
1 o _ 1 or”
NG otk ot

On the other hand, we are going to construct moving solutions of the form

R:r*(1+y(t,r*)), V =r*o(t,r"),

e/ Dfi(r) e/ 4mp(r) (r*)?

P=P(p),  p=pr")(1+y(tr) 1yt 20)

with y,v € C*°([0,7T] x [0,74]), which are very small. Suppose that we have con-
structed such solutions. Then the function (¢, r) should satisfy

0 _ \/E —u/c2 2P
(411) at(p(tvr)_ CQ e (1+y) ﬁU QO(t7T),

where u = u(p), y, P = P(p), p, v on the right-hand side are evaluated at
(t,r*) = (t,(t,r)). The formula (4.11) can be considered as an ordinary dif-
ferential equation for ¢(-,r) for each fixed r, which determines ¢(-,7) provided
that the initial value p(0,7) = f; *(f2(0,7)) is given.

But we can assume that ¢(0,r) = r without loss of generality. In fact,
©(0,7) =7 means f1(r) = f2(0,7), and even if f; # f2(0,), we can find the change
of variable r = 1 (r”) such that f(r”) = f»(0,9(r")). Considering r° instead of r,
we can assume f1(r) = f2(0,7) or ©(0,7) = r. Clearly the C'*°-solution ¢ is
uniquely determined and @(t,r) —r is very small with its derivatives. Of course,
©(t,0) =0 and @(t,r4) =714 since P/p vanishes at » =ry — 0. Hence, we have
the solutions

R= @(ta T’) (1 + y(ta @(ta T’))), V= @(ta T)U(t, Sp(ta T))

and so on as functions of the original comoving coordinates t, r.

5. Analysis of the linearized equation

We are going to analyze the linearized equations for (4.3)—(4.6) and establish the
existence of time-periodic solutions to the linearized equations of the form

y = const sin(VAt + const) ) (r),

where A >0 and ¢(r) is an analytic function of r in a neighborhood of [0,7].
Using the formulas listed in the last part of the preceding section, we see
that the linearizations of (4.3)—(4.6) turn out to be

dy P

_F _

(513) e a = (1-’-%)1),

(5.1b) e*F% = Exy" + Evy' + Eoy,

where y"" = 0%y/0r?, 3y = dy/Or, and
(5.2a) Eo=e¢2H(p+ P/c*) NP P,
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E, 47TG 20 P 3 (yFPry
By P~ (o iy (1o D)2y 3L TP
- e
R O e A B e o)
14+ P/c2p v ~PPr’
ArG
o= 2 .3(+F —1)P
c?
/
(5.2¢) +(-1- 3yFPe ™ 1 3(7F —1)e 27 (1 + P/p) ) (p+P/c*)t
PP I
+3672H(p+P/02)717(7 . ) .
Here p, P,_ ~vF, F, H are abbreviations for_ the quantities p(r), P = P(p(r)),
vP(u(r)), F = F(ua(r)) = —u(r) + tlogk, H=—1log(1 — 24) along the con-

sidered equilibrium. Throughout the above mampulatlons we have used the equa-
tion
4G
:—2€2H(p +P/P)r=F +H,
which can be derived from the differentiation of
o—2H _q _ 2Gm

=1
c3r

and (3.1b), and also the relation
(1+P/c?p) 1 ( )P’
1+P/c2p  p+P/c? AP ) 2

In other words, the linearized second-order single equation is

82
5.3 L 0,
( ) at2 + y=
where
a a’ 1

(5.4) Ly=—3y" =2y +Qy=—1(ay) +Qy,

B " Eq B ~F prd Fan
(5.5a) a—exp{/ 7 dr} = 1P, e ,
(5.5b) b= (1+P/c?p) L prie  FH3H
(5.5¢) Q= —e*"(1+ P/c?p)Fy.

In order to investigate the spectral property of the second-order linear dif-
ferential operator £, we reduce the eigenvalue problem

(5.6) Ly=\y
to the normal form
d2
(5.7) T =

T dez
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by the Liouville transformation

"olb "I _rim
(5'83‘) 62/0 \/;dr:/o ’)/P—Pe dr,

(5.8b) n=(ab)"/*y = (v"pP)V/ 42 (14 P/ p) = 2eMy,

when the result is
/ ! Vi

oo a=erg((Teg) iR (D)

See [1, p. 275, Theorem 6].
Since

WPLP ~ const(ry —r) "2,

we can define the finite value

(5.10) £y 7/ \/7 o~ F+H g

The interval (0,7;) is mapped onto (0,&).
First let us observe the behavior of ¢ as £ — 0 (r — 0). We see that Q@ = O(1),

a4 a N b8 (g’ g/)’ 8
a b r2’
Therefore,

On the other hand we have

§N (’YPPP_1€2F_2H‘TZO)_1/2T-

Hence, we have

~ 52 .
Note that 2 > 3/4.
Next we observe the behavior of g as £ — &4 (r — r4). Note that P'/p — — K,
where K is the constant defined by (3.10). Therefore, we see that Q = O(1).
Moreover, we have

v dp
so that (yF)" /4" = o(p'/p). Hence, we see that
a N v 1 a v o+l 1
a y—1ry—1’ a b Ny—1ry—r
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Therefore, we have

q~ Ke

2F-2H| (y+1)B—v) 1
T16(y—1) e -1

On the other hand, we have

2
€ — &~ —me T HA

Hence, we have

GHhB-9) 1
i-12 (& -0

It follows from 1 <y < 2 that
(+DB-) 3
4(y—1)2 4’
Therefore, both boundary points £ =0 and £, are of limit point type, and [13,

p. 159, Theorem X.10] gives the following conclusion, which is the same as [8,
Proposition 1].

PROPOSITION 7

The operator Ty, D(Tp) = C5°(0,&4), Ton = —nee + qn, in L*(0,&4) has the
Friedrichs extension T, a self-adjoint operator, whose spectrum consists of simple
eigenvalues A\; < -+ < A, < -+ — 400. In other words, the operator &g, D(S¢) =
Cs°(0,r4), Goy = Ly in L*((0,r4),bdr) has the Friedrichs extension &, a self-
adjoint operator with eigenvalues (Ap ).

In order to investigate the structure of the linear operator £, we introduce the
new independent variable z instead of r defined by

tan? 6
A1 P h=— o~ F+H
(5:11) T tanZg VO 2@; 2@; \/ PP dr.

The interval [0,r] of the variable r is mapped onto [O7 1] of z, and we have

d = b d
(5.12a) & e r(l—x) P
a2 T\2b a2 1— 2z
1o =) se-0m+ (5
' §+ alad b\ d
d=a 530 () )
We note
d d
(5.13) r% = x[(w)]a,

where and hereafter [(z)] denotes an analytic function of z in a neighborhood of
the interval [0,1]. In fact, (5.12a) implies the following observations. As r — 0
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(x —0), we see

[~P

)

r=0
and
b 2 x
—:i£(1+[x]1),
a w™ T
so that
r—=2x(1+[x]1)i.
dr dz
Asr—ry (r—1), we have
T2 1
1 l—a=(Z - "1 _ hCh—
(5.15) x (§+) Ci(ry —r)(1+[ry —7]1) with Cy R
(see (3.16) and note e~ =k + [ry —r]; with kK =1—2Gm, /c?ry) and
b ™ Cl
2= 1+ [1—a]y),
\/; §+ \/1—1}( [ x]l)
so that
d T \2 d
7"@:(—_‘—) C]_?“_A'_(l-i-[l—x]l)%
Now we can write
£, @ dy (62
(5.16) (2) ey=—a(t—2) 5 - 5L+ (25) Q.
where
12z & a/lad /b 1da
CUNESS St LG OREo!
e Asr—0 (x —0), we see
B=_+[z]h
We have
lad /b lda 1(y"Pp) , 4 (1+P/2p)
25ara) tad =3 PPy T TR,
4
=)
and
a_ 'YPPeFfH
b P
VPP oy 2 r
(5], ) se- 7z (1 lel)
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Clearly
Q=e"(1+P/p)E = [r*]o = [x]o-

e Asr—ry (x—1), we see

B—*%Jr[l*xh
We have
lad /b lda  1y+1 1
zhdra) Tadr ~ aymi =0l
y+1/7 C
:7ﬁ<a> 1—1x(1+[17x]1)
and
1 1 2
ZCH(T+T)(1+[T+T]1)CIZ(€:) (I*z)(1+[lfx] )
Clearly

Q= [ulo=[ry —rlo=[1—2zo.
In summary, we have the following conclusion, which is the same as [8, Propo-

sition 3].

PROPOSITION 8
We can write

N2 . *y (5 N \dy dy
(5.18) <?> Ly=—z(1 —l‘)w - (5(1 —z)— gx) . —|—L1(9:)% + Lo(z)y,
where Ly (z) = z(1 — x)[(z)], Lo(xz) =[(z)]. Here N is the parameter defined by
2y N
(5.19) N—Py_1 or  Y=5—5

Assumption 3 reads that N is an even integer greater than 4. As long as we are
concerned with investigating the analytic structure of the operator £, we may
assume that £ =7 without loss of generality.

PROPOSITION 9

Let A =\, be a positive eigenvalue, and let v be an associated eigenfunction
which belongs to L([0,1]; 2% (1 — ) ~*dz). Then

(5.20) Yy = sin(V/ At 4 0 ()

is a time-periodic solution of the linearized problem (5.53).

Thanks to Proposition 8, we can claim the following proposition on the analytic
property of the eigenfunction, which is the same as [8, Proposition 4].



264 Tetu Makino

PROPOSITION 10

We have
(5.21a) Y(x)=co(l+[z]1) asxz—0,
(5.21b) Y@)=ci(1+[1—a];) asz—1.

Here ¢y, c1 are nonzero constants. Other independent solutions of Ly = \y do
not belong to L([0,1); (1 —z)2 ~dz) as x ~ 1.

Therefore 9 (x) = [(x)], and Y7 is an analytic function of ¢ € C and x on a neigh-
borhood of [0,1] independent of ¢t. Hereafter we fix such a time-periodic func-
tion Y1 .

6. Rewriting of the equations (4.3)-(4.6) using the linear operator £

Let us go back to the system of equations (4.3)—(4.6). In order to rewrite these
equations using the linear operator £, we shall use the following observations.
We are considering the perturbed P such that

(6.1) P=P(1-~"(a)(3y +2) - 2"(a,y,2)),
where z =rdy/0r. Then we have
10P  1dP 1. 18 ,-,
' P 1 dP
+T—ﬁ'[Q0]+T—ﬁ%'[Q1],
where

2 = P
o o9(s P P 170 du p_ 1ldy P
(6:30) Q0] =2, +0.07) (14 3) 7S+ T1(0,07 — L0 By +2)0.27),

(6.3b) [Q1]:= & — (3y + 2)0.®F.

Here we have used the relation

(6.4) (0, —30,)0" =2(+" +09.0")(1 +y) '~
Let us analyze
(6.5) the right-hand side of (4.6) = [R1] + [R2],
where
m 4P
(6.6a) e _G(1+y)<7‘3(1+y)3 = )
.6a
r?v? 2Gm s 1 (1+y)2oP
_(1+ c? _02r(1+y))(1+P/C 2 g or’
— L 2P 2 ith w=7r2"
(6.6b) [R2]:= = (1+4vy) 5 (v +ovw) withw= L
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Let us put
[R1] = [R3] + [R4] + [R5] + [R6] + [RT],
where
m 47 P
R =G0+ (5t )
Gm  4nGP

e R + [R3L] + [R3Q)],

[R3L] := Gm . 2y + ﬁpvp(i%y +2z)+ %Py,
73 2 2

_ Gm/ 1 ﬁ P ﬁ B

(R3Q) == —— ((1 - 2)) + —5 PO+ (P~ Py,

2,2
(RA] ::7<1+rv . 2Gm

1 (1+y)* dP
c? 2T(1+y))(1+P/C2p) rp dr
(-2 04 ) EZ—P + [RAL] + [RAQ),

[RAL] := ( 262m(1 FP/Ep) -y
+

2Gm 1, P
(1 2, )CQ 1+ P/c?p) " (v" = 1)By +2)
2Gm = o1 1 dP
+(1_ c2r >(1+P/C P’ Qy)rp dr’

o 1 p r2v? 2Gm 2 -1
[R5) := (1+7—Pazq> )(1+ . *c2r(1+y)>(”P/C 0)

2
» (14+y)* 0

9 pP
7 orl? (3y +2),
r2yp? 2G'm I3
= (1 1+ P/c? 1 —
(R0 = (14 = gy ) (L /e 00 (@)
r2v? 2Gm 9 1 dP
R = (1 = gy ) L P/ A+ (1,
Then, using (3.1b), we have
[R1] = [R3L] + [R3Q] + [RAL] + [R4Q] + [R5] + [R6] + [RT7).
Let us define G by
N 1 P 1+T¢2:—32_0272"8Ty)1+p/625 2
61 146i= (14 50.07) 1= 1y, Y
Then
2Gm 11 8
[R5]_(1+G1)<1 - )(1+P/c P s VP (3y + 2),

265
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and, by definition,
—e 2F(1+ P/c?p) 'Ly = [R3L] + [RAL]

2G'm 9.1
+(1_ c2r )(1+P/C P)

= [R3L] + [RAL) +

1+G
This implies
[R1] = —(1+G1)e 2 (14 P/c*p) 'Ly
-Gy ([RSL] + [R4L]) + [R3Q] + [R4Q] + [R6] + [RT].
Now, putting
(6.8a) Hy=e"2F(1+P/?p) 1+ Gy),
(6.8b) Hy :=el'Gy,
Ga:= (1+G1)([R3L] + [R4L]) — [R3] — [R4]
o ~ [R6] — [R7] ~ [R2],
we can write
e’ x (the right-hand side of (4.6)) = —H; Ly — H>.
The following observation will play a crucial role in the analysis of the equa-
tion as in [8].
PROPOSITION 11
There is an analytic function a of 1 —x, y, z, v, w, ¥, y" such that
(0, H )Ly + 0,Hy = (1 —1x)a

as x — 1.

Proof
For the sake of abbreviations, hereafter we will denote

Q1=Qo
if there is an analytic function Q(1 — z,y, z,v,w,y’,y") such that
Q1=Qo+ (1 —2)Q.
We are considering
(0. H\)Ly + 0. Ho = (0,F - Hy + 2P (1 4+ P/c?p)~10,G1) Ly
+0,F-Hy+e0,Gs.
First we note that (2.27) and(4.5) imply

1
0.F = du

C—Zpd—p(l +y+z)7"
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and that

pZ—Z:('y—l)u(l—i—[u]l), u=u(1+ [(z;y,2]1) =0.

(Here [(x;y, z]1 stands for an analytic function of  in a neighborhood of [0,1] and
Y,z in a neighborhood of (0,0) of the form Y7, ;- ak,,(x)y* 2*.) Therefore,
0,F =0 and

(0.H )Ly + 0. Hy = el [S],

where
[S] = (0:G1)e™*F (14 P/c*p) "' Ly + 0.G
B 2Gm 110 5 p
~(0:0) (1= "5 ) 0+ PIp) T g Py 3y 2)
0 0
+ (14 Gl) ([R3L] [RAL]) — 5([1%3] + [R4] + [R6] + [R7] + [R2]).
But, keeping in mind that P/s= P/p=0 and that
P 4P L
e pdp(1+y+2) =0,
o P\ _( dP P L
&(;)—(—d—p"‘r )(1+y—|—z) =0,
we see
Gm 110 5 p
~(0:G) (1= "5 ) (L PID) ™ g Py (3y +-2)
2,,2 D
_ 24P revt  2Gm 2 1 dP
=-0%® (1+ = CQT(Hy>)(1+y) 7 dr YT

On the other hand, it is easy to see

0 0 0 0 0 0

a[RSL] = a[RélL] p [R3] = % [R4] = 9 [R6] = E [R2]=0
and

0 r?v? 2Gm , 1 dP 2P

- |RT)= (1+ 5 —CQT(1+y)>(1+y) g By +2)teT.

Hence we have [S] =0 so that
(0.H1)Ly+0,H,=0

This was to be shown. (]
REMARK
Note that O[R7]/0z # 0. In fact, we have

1 dP K

—— > ——F#0

rp dr T4
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and
P,d dP dP
2pP — (2 YN\ —2(1—A~F —oF
0? p(dppderdp)( +y+2)2(1-~+"By+2) )
= —(v+1)A+y+2)2(1 =By +2) — @7(0,y,2)) #0
as ¢ — 1.

Now, putting

(6.9) J:=ef' (14 P/?p),
we rewrite the system of equations (4.3)—(4.6) as
Yy
6.10 ——Jv=0
(6-100) W u=0,
ov

Here the unknown functions are (¢,x) — y,v.

7. Framework to apply the Nash-Moser(—-Hamilton) theorem

Having fixed a time-periodic solution Y; of the linearized equation, we put

(7.1) y=eY1+Y),
dy . oYy

2 =2 =e(Z1+ Z h 7, =r—2

(7.2) =Ty e(Z1+2Z) with Zy Lt
. 1 9Y;

(7.3) v=e(Vi+V) withV} = Fa—tl'
Here
(7.4) J% = J|yereo = eF (1+ P/c*p),

and Y, Z=rdY/0r, and V are new unknown functions. The parameter ¢ will

be taken sufficiently small.
Now the system of equations turns out to be

Y

(7.52) 8@7 —JV = (ANV; = (J = J°)° WA,

oV 1 10 1.,
(7.5b)  —- + HILY + (AHL)(LY1) + —AHz = 7<H1 - ﬁ) (£Y1) — —Hg,
where
(7.6a) (J = J°) = (J = J°)|y—z—0 = J|y—evs omez, — J,
(7.6b) AT =J—-J° = (J—=J°)°=J = Jly=evi,2=¢71

1\° 1
(Hl B ﬁ) ' (Hl - ﬁ) ‘Y:Z:V:O

(7.6¢) )

= Hl‘y:sYl,zzaZl,'uzeVl - ﬁv
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AH 1 1\°
e (- )
(7.6d)
= Hl - Hl |y:6Y1,z:€Z1,v:5V17
(766) H§ = HQ‘y:EYhz:aZl;u:EVla
(7.6f) AH, = H, — HS.
Let us introduce the vector-valued unknown function
Y
7.7 U= )
1) a=y]
We put
. _ |the left-hand side of (7.5a)
(7.8) P(w) = Lhe left-hand side of (7.5l>)] ’
and
(7.9) oo 1 [the right-hand side of (7.5a)
' ¢ |the right-hand side of (7.5b)

The equation to be solved now is
(7.10) PB(w) =ec.

We are going to apply the Nash-Moser(-Hamilton) theorem to find @ =
P~1(e?). To do it, we must analyze the Fréchet derivative D' of the mapping
P at a given fixed W € C*°([0,T)¢ x [0,1],). By introducing the new variable

- |h
A1 h=
(711) e
the Fréchet derivative is defined by

DY) = lim ~ (B + sh) — (D))

(712) s—0 8
_[ipP1]
= lpP2)
where
0
[DP1 = —h—J -k
(7.13a) 9
— (((%J)U + (59])111"5)}%
P2 = Lk Hy - oh
T ot !
0
(7.13b) + (@ H) Ly +0,Hy + ((8ZH1)£y+azHg)r§)h

0
+ <(3vH1)ﬁy + 0y Ho + 0, Hy - ra) k.

Thanks to Proposition 11, we can claim the following result.
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PROPOSITION 12

We have
(7.14a) (0 J)r— 0 = [(2;y, Dy, D*y,v, Dv]y - (1 —x)g
. z or Yy, Yy, Y, 0° al‘
(7.14b) ((8ZH1)£y+8ZH2)r§r [(; y, Dy, D%y, v, Dvlp - z(1 —Js)%
0 5 0
(7.14c) OwH> T = [(z;y, Dy, D*y,v, Dv]g - (1 — x)a—
r
Here D=0/0zx.
Proof
Since
0 0
U 2x(1+ [x]l)%

as ¢ — 0 (r — 0), the problem is concentrated to the situation as ¢ — 1 (r — ).
Now, since

B o100 L pP
8,0 = (0,F)J + ¢ 282() e (1+y+z) ,

it is clear that 9,J =0 (mod(1 — z)), that is, (7.14'@). From Proposition 11, we
have (7.14b). By definition we have

P
20 =0,

1
OwHy = e!'0,,Gy = —e"'0,,[R2] = —eFC—2(1 +y)
that is, (7.14c). 0

Consequently, we can claim that there are analytic functions ag1, ago, @11, @10,
az1, ao of z, y, Dy, D%y, v, Dv, where D =0/0x, y=e(Y1+Y),v=¢(V1 +V),
such that the components of DY (w)h can be written as

(715&) [DPl] = %h—Jk?—F (CL()lZE(l—LE)D—FCLQ())h,

d
[DP2] = 5k + HiLh+ (a112(1 —2)D +aio)h

+ (aglib(l - x)D + ago)k‘.

We note that ag1,...,a20 = O(e) provided that Y, DY, V, DV =0O(1). On
the other hand we note, by definition, that

J= e (14 P/ p) = (14 P/p) (1 + [(z:y. Dyls)

(7.15b)

and
Hy=el 2P (14 P/2p) (14 Gy)

=e (14 P/?p) 7 (1+ [(w;y, Dy + v*[(w;9, Dylo).
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Hence,
J=el(1+P/p)(1+0(e)),
Hi=e T(14+P/p) " (14 0(e))
provided that Y, DY = O(1).
REMARK
We see J — 1, Hy — 1+ [y,2]; as 1/c> — 0, while P/p, 4 are supposed to be
bounded. (The equilibrium depends upon the central density p. and the speed

of light ¢.) But we do not discuss the details of the nonrelativistic limit in this
article.

8. Main conclusion
Now we are ready to propose the main conclusion of this article.

THEOREM 1

Given T > 0, there is a positive number eo(T) such that, for |e| <eo(T), there is
a solution W € C*([0,T] x [0,1]) of (7.10) such that
sup

NI DNk
j+k<n (E)J(%) wHLm([O,T]x[o,ﬂ)SC”'E'

and, hence, a solution (y,v) € C([0,T] x [0,r+]) of (4.3)-(4.6) of the form
y=cY, +0(?).

Note that for this solution the component R of the metric (2.5) behaves like
R=r(1+eY1+0(e%)),
and the density distribution enjoys

{o@@+vaUa+ow+m)ogr<u,
p:
0 ry <71

Here C(t) is a smooth positive function of ¢.
In other words, the value R, (t) of the Eulerian coordinate R at the surface
of the star r =1 is approximately oscillating as

Ry(t) =7y (1+esin(v'M +600)y(1) + O(e?)).

A proof can be given by an application of the Nash—Moser(—Hamilton) the-
orem (see [3, p. 171, Theorem II1.1.1.1]) as in [8] and [9]. The discussion is quite
parallel. Therefore, omitting the repetitions of the details, we will explain only
the points for which some modifications are necessary.

First the mapping 3 is considered on the tame spaces ¢ and @0. Here € =
¢ x € with € = C>([0,T] x [0,1]) and ¢y = ¢ x ¢ with ¢, = {pe€|p=
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0 at t =0}. Since € admits the gradings of norms as in [8], ¢ is a tame space
as the direct Cartesian product. The domain of B is 4, the set of all functions
W= (Y,V)T € € such that

Y|+ |DY|+ V| +|DV] < 1.

We consider ¢ such that |e] < ep, with g1 being a fixed bufﬁClently small positive
number. The mapping 8 is a tame mapping from 4 into €.
Introducing the operator

d? 5 N \ d
(8.1) A—x(l—a:)wﬁ-(i(l—x)——x) T
just as [8, (20)], we rewrite the second component of D (w%)h as
[DP2) = %k HiAh
(8.2) 3 3
+ leh =+ boh =+ angk —+ agok,
where
(8.3a) D—x(l—x)g
’ B oz’
H,L,
.3b b= ———
(8.3b) 1 x(l—aj)+a11’
(83(3) bo = H1L0 + aqp.-

Then b1, by, as1, ago are analytic functions of z, y, Dy, D%y, v, Dv. Let us
introduce the Hilbert spaces X = X%, X1, X2, in the same manner as in [8], by

X =r2((0,1);2% (1 —2)% ' dx),
={¢6%‘D¢::m%e%},

={pcXx' | -Apc X}

We write the equation

DR(@)h =g,
where §= (g1,92)7 is a given function in ¢, as
60 wlil+ [ -0
where
(8.5a) a1 = ag1 D + ago,
(8.5b) ag = ag D + ago,

(8.5¢) A= —H;A+b; D+ by.
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Then the standard calculation leads us to the equality

s [+ (500 01

+ (81D | Dh) + (82Dl | h) + (BsDh | k) + (Bah | k) + (Bsk | k)

= (%Dh ‘ D91> + (k| g2),

where
1 - H1a01 1 8 Hl Hl e
— (34 (N 2D —53, 7+t (D
8 4(3_|_( +3)x + ) 29t J + J( ap1 + ago),
Hy .
52—711911007
H: - .
By = == DJ + DHy + /a1 = 2)(b1 + az).
64:b0,
Bs = ago.
Here

1 : N
(61%) = (#] ¥)x = / opat(1-2)31dr  and ¢l = l6llx = V(?] D)x.
and we have used the formula
(aDh| DDh) = (a*Dh | Dh) with a* = —i (3+ (N +3)z+2D)a,

which holds for h € X2 and o € C*°([0,1]), together with [8, Proposition 8].
Since o is confined to i and |e| is restricted to at most g, we can assume

1 1
— < J < M — < H; < M
My =7 0 My = 1= Mo

with a constant M, independent of . Now the energy
H, . .
£:=||k|2 + (71Dh ’ bn)
enjoys the inequality

1 dg N2 - -
537 < MRS+ IR]51gls),

where $ = X! x X and
H(¢,¢)THZ = 1% + 19113 = lI8]1* + 1Dg|1* + [|2]%,

and
M= > |Bjllr=+ (Mo)* + 1.
1<5<5

Since
1
(Mp)?

(I&I> + 1 DR]?) < € < (Mo)?(|IK|I* + |1 DAI),
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using the same Gronwall’s argument as [8, Proposition 9] and [9, Lemma 3], we
see that the initial value problem for (8.4) with the initial condition

h=k=0 att=0

admits a unique solution & = (h, k)T in C([0,T7], %2 x X!) for given §e C([0,T],
X! x X), which enjoys the energy estimate

t
Iills < C / 15, dt"

Therefore, DP(w) admits an inverse, and its tame estimates can be shown in
the same manner as in [8]. An outline of this procedure can be found in the
Appendix. This completes the proof of the main conclusion.

9. Cauchy problems

As a supplement let us consider the Cauchy problem associated with equations

(6.10a)—(6.10Db), that is, (CP):
oy v

(9.1) — —Jv=0, — +HLy+ Hy=0, t>0,0<z<1
ot ot

(9.2) Yli=0 = Yo(z), vli=0 = Y1 (7).

Here 19 and )y are functions given in C*°([0,1]).

Let us recall that

)

J=e"(1+ P/Pp) = J(x,y.2)

is an analytic function of x (in a neighborhood of [0,1]), y (small), and z =

r% = x[(x)]% (small), where [(x)] stands for an analytic function of z in a

neighborhood of [0,1]. Recall that Hy and Hs are analytic functions of z, y, z,
v, and w = T% (quadratic in v/c,w/c), and recall that the linear operator £ has

the form

d?y 5 N \dy
Ly=—e(l=w)gs - (30-0-5) 3
d

+h(@)z(1—2) 22 + Lo(2)y,

where Iy and Ly are analytic functions of z in a neighborhood of [0, 1].
We claim the following result.

THEOREM 2
For any given T > 0 there exists a sufficiently small positive number § such that

if Yo, 11 € C>([0,1]) satisfy
(&) o, <o

d \F
ma{[| () o] .
then there exists a unique solution (y,v) of (CP) in C([0,T] x [0,1]). Here &
is a sufficiently large number depending only upon -y.
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Proof
The proof can be done in almost the same manner as that of [8, Theorem 2]. Let
us take the functions

(9-3) yi =vo(z) +tJ° (@)1 (z), o =4i(2),
which satisfy the initial conditions, where
J(x) = J(x,0,0)

as in (7.4). Then we seek a solution (y,v) of the form

(9.4) Y=yl +Y,  v=o]+V.
The initial condition for @ := (Y, V)T is
(9.5) W10 = (0,0)"
and the equations to be satisfied by @ = (Y, V)T are
oY
(96&) E —JV — (AJ)'UT = Cq,
ov .

(96b) E + HlL‘Y + (AHl)Eyl + AHQ = C2,
where

. . , oY
(9.7a) J=J(x,yi +Y, 21 + Z), with Z:= L

(9.7b) AT =J(x,yi +Y, 25+ Z) — J(z, 97, 27),
(970) 1= (J(a:,yf,zi‘) - J(x7070))’UT7

ov
9.7d) Hy=Hi(z,y7 + Y, 27 + Z,v] + V,w] + W), with W:rﬁ,

9.7¢) AH,=Hi(x,y] +Y,2] + Z, o] + V,wi + W) — Hy(z,y7, 27, v], w7),
)

9.7f

(
(
( A1{2 :HQ(mvyT +Y;Zf +Z7’UT +‘/7wI +W) _HQ(x7yTaZI?UI7wT)7
(

97g) C2 = —Hl(x,yf,zf,vi‘,wf)ﬁyf - HQ(JI,?/T,ZT,UT,U)T).

The problem can be written as

(9-8) P(w) =7,
where
. |the left-hand side of (9.6a)
(9:9) F(w) = [the left-hand side of (9.6b)]’
S5 |G
(9.10) c= LJ .

Then the Nash—-Moser(—Hamilton) theorem can be applied in the same manner
as the proof of Theorem 1, since the Fréchet derivative of 3 has the same form
as (7.12)—(7.13). This completes the proof. O
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REMARK
The initial data read

Rli—o = r(1+ 1o (x(r))),

OR 1 2Gm.,. 1
Ot li=0 ¢ L= cry exp[ c? u(p )]Wl}l( (r ))
where
0_5 dibo
#= o)1+ 90)? (14 o +752)
SUPPLEMENTARY REMARK 4

Let us consider moving solutions constructed as in Sections 8 and 9, which are
defined on 0 <t <T, 0 <r <r;. We should discuss how to extend the metric
onto the exterior vacuum region r > r;. We owe the idea to [10].

If a spherically symmetric extension to the vacuum region is possible, then
Birkhoff’s theorem says that it should be the Schwartzschild metric

2Gm 9Gmy 1 .
ds? = (1 ch,f)Cz(dtﬁ)Z - (1- CQR;) (dRF)? — (R})2(d6? + sin® 0.d¢?).

Here t* = t#(t,r) and R* = Rf(t,r) are smooth functions of 0 <t <7 and r; <
r < 0o. We have that there are t#(¢,r), R¥(t,r) such that the components of the
metric are of class C1([0,T] x [0, +00)).

Let us verify this. We are considering the patched metric

ds® = gooc® dt? + 2go1cdt dr + gi1 dr® + goo (d92 + sin® 9d(;52)7

where
ke~ 2u/<” 0<r<ry,
o {KWB—@”)? ~ L(EH TN <,
0<r<ry,
{ KHOEO0 LKA <,
_ TG 0<r<ry,
o { il Bf“ — (KO <,
—R? 0<t<ry,
922:{ (RH2 ry <
Here
Kﬁ—1—2Gm+.
2Rt

Let us assume R = Rf and 0,R = 0,R* at r =7 so that gso will be of class C!.
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First, in order for gop to be continuous across r =ry, we require

ot V2 2Gmo\1/2
9.11 & JR(K? *1<1 ———+)

(9.11) g = VRIS 1+ 5 — =g 7

on r=ry, where V=V(t,r; —0) (= ﬁa—f). In order for go1 to be continuous,

we require

ott 1 V2 2Gm.\-1/2_ R
_:_Kﬁ—1<1 __—+> Pl
or 2 () * c? 2R or
on r =r,. It can be shown that (9.12) is sufficient in order for g;; to be continuous
across r = r4. In summary, the g,,’s are continuous if (9.11) and (9.12) hold.

Note that, since

(9.12)

. V2 Ger . OR .

Kﬁfli, 1+0727 C2R =K, Eil?

the right-hand side of (9.12) = V/c? so that dt*/9r # 0 and t* should actually
depend upon r if V #£0, that is, if the solution is actually moving.

By a tedious calculation we can show that the differentiation of (9.11) with

respect to ¢ gives the continuity of 0,gpo. On the other hand the continuity of

0rgo1 reads as a condition of the form

ott 9%t 1 OR O*’R*

9.13 K2 (gh-12E _
(9.13) gor el GrgE Th

on 7 =r, where b; is a function of the values of 9;t%, 0,t*, 9,0,t*, R, 0, R, 0,0, R

on r =r4. The continuity of 0,911 reads as a condition of the form

oLt 9t

9.14 K —— — (KP) 7

( ) ¢ Or or? (K)

on r =7y, where by is a function of the same kind as by. If we consider (9.13)-

(9.14) as a system of simultaneous linear equations for the unknown 92t*/9r2,
O?R*/Or?, then the determinant of the coefficient matrix is

V2 2Gmy\~1/20R

V(14 2 2meyoR,

\/E( + 2 2R or

which is near to —1, since

1+ V_2 _ 2Gmy . OR .

c? 2R 7 or -’
Since by, by are known by (9.11)-(9.12), the values 0%t*/0r?, 9?RF/Or? along
r =714 + 0 are uniquely determined. Then all g,,,’s are of class Cct.

However, we mnote that this 92R¥/0r? generally does not coincide with
0?R/0r? on r =r,, which is necessary for gso to be twice continuously dif-
ferentiable. In fact by a tedious calculation we get

PR _ (ORN2  O’R
or? lr=ri+0 (E> or?

1.

r=ry—0
where
A:_E(%+Li0_V)( Vj_%)”
2 \2R? kot c? 2R
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evaluated at r =74 — 0. Since

Gm+( V_2 2Gm+) 2; Gmy
c2R? c2 2R

S #0,

i 02r

we see that 02R*/0r? = 0R/0r? if and only if V =0 at r =, — 0, which is the
case if the solution under consideration is an equilibrium.
We have determined the functions

fo(t) = R(t,74), f1(t) =0, R(t,r),

0’R?
fa(t) :== 5,2 at r=r; +0,
ot ¢
H(t) := 5 at r=Ry +0, ho(t) ::/ H(t')dt
ot 0%t
hl(t)::W at r=ry +0, hg(t)::W atr=ry 40

for 0 <t < T. Using these functions we define t#(¢,r), R¥(t,r) for 0 <t <T, r, <
r < 400 as follows:

R{t.7) = fo) 4 A0 — ) + (0~ r )Pl — ),
4(t,r) = ho(t) + (Ia(0)(r = 7) + Sha(t)r =2 )x (5 = 1)).

Here x is a smooth cutoff function in C*°[0, +00) such that 0 < x(s) <1, x(s) =1
for 0<s<1, and x(s) =0 for 2<s < +oo and § is a sufficiently small positive
number. Since fo(t) =7y, f1(t) =1, fo(t) =0, H(t) = 1, we see that OR*/or =1
and Ott /Ot =1 uniformly. Then the coefficients of the metric goo, go1, g11, and
gaz are of class C'([0,7] x [0, +00)) and their second-order derivatives may have
discontinuity of at most the first kind along the segment r = r,, and they satisfy
the Einstein equations in the usual sense on 7 # ry. So, we can say that this
metric is a weak solution of the Einstein equations on [0,77] x R? in the following
sense. The Einstein equations can be written as

8rG 1
o S - )

and

T =TT,pg,

1
R,uu = §gaﬂ(_aaaﬁg;w - 8uaugaﬁ + aﬁaugua + 8,uaagﬁu) + F,ul/;

Lo o
Fuy = 5009°" (0095 + 0u9pv — a9uw)

1
- 581,9@6 (0a98u + Ougpa — 989ua)-
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Therefore, for ( W,)WM Te L10C given, ds? = Guv dx* dz¥ is said to be a weak
solution if g,.,,, g be H . and for any test function (¢*¥),, there holds

1
5 [ (05901000670 6") 4 01905)0, 670 0)

— (B0910)05 (4™ — (Dagsn)D(g™P ) + / i

G 1 y
R

Appendix

Let us give an outline of the tame estimate of the mapping (i, ) — h when
DP(@)h = §. The equation (8.4) is split as [8] using a cutoff function w € C*°
such that w(z) =1 for  <1/3, 0 <w(z) <1 for 1/3 <z <2/3, and w(x) =0 for
2/3 <z. Put

WOl (z) =w(z)h(z),  h(z)= (1 —w(z))h(2).

The equations turn out to be

9 nl ald — g [nlk
Bt [k | T {4l gt | [kl
(] [1—p]
_ |91 el O R
ol 280
where 1 =0,1 and
(]

a = ag1 D 4 agp — (—1) ag; Dw,

a[QM = a1 D + azo — (—1)*az Dw,

AW = —H A+ (by + (—1)"2H, (Dw)) D + b + (—1)*(H1 A — by D)o,
c11 = ag Dw,
¢o1 = —2H1(Dw)D + by (Dw) — Hy (Aw),

Co2 = a21Dw-

Therefore, the problem is reduced to the tame estimate of an equation of the
form

oh -
—+4+2Ah =g
at + g,
o | ™ J| ao1D + ago J
o A ao o —bgA"i‘le—‘er a21D+a20 ’
under the boundary condition h|,—1 =0, where
d? N d - d
A=x —— D=xz—
dx? + 2 dz’ iz

with N standing for either 2v/(y — 1) or 5.
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As in [8], we use the notations

a= (a”i)Z:O = (b03b17b27a013a007a217a205 J)7

@i = sup_|aln,
0<t<T
|(T|n = max ||8ngaiHL°°7

J+k<n,0<i<7

o r o, 1/2
S = (X [ nerhia) "

Jtk<n
o 1/2
1l = (2 W+ ®7)
0<e<k

Here (¢), means the same as it does in [9].
Then the elliptic a priori estimate [9, Proposition 8] should read

|Bllns1 < C (IR + (1 + |@lnsa) I 2]lo)-
This can be verified if we keep in mind that
lahlly < C(lell|All2 + [IAll1),
llazkllo < C(lell[E]l + [|E]lo),

which come from

1 pP -1 r dx
aOl_CQe p(1+y+z) 5(‘/1—’_‘/)3:(1_%‘) d’/"
1 P 9 r dz
= ——efT V)— &
21 626 ,5(1+y) €(V1+ )I(lfl') dr

In fact, estimates of the commutators
128, Alp]|,, < C(lal2]|@llnts + ldlnssll6]o0),
114 a], ]|, < C(|d@lsl@lnra + ldlnis]¢llo),
1A, 18], < C(|a@lali@llntr + |@lnyslllo)

can be derived as in [9] and used to prove the elliptic a priori estimate by induction
on n.
On the other hand, the energy estimate should read

— — T —
I < C(Ilmoll + [ G )] at).
0
where

= : 1/2 .
| = (1 + I DHI? + |KI2)? with 0=y

for any solution H = (H, K)T of



On spherically symmetric solutions of the Einstein—Euler equations 281

which may not vanish at ¢ =0, so that

t t
ol < ¢ (1opFe-ol + [ 1orgl+ [ llir.207).
Moreover, we have an estimate
107 Rle=oll < C (1 + Wa(@) + a5 L),
where
Wn(g) = Z ||atj§‘t:0||k7
j+k<n

provided that |@]4 and Wy(g) are bounded. In order to verify this, it is sufficient
to show

7 7 — (0 — (0 —»
107 Rliolli < C(Wr(8) + 11515 Wo (@) + 111 Wi -1(9))
inductively on n using

124h]]n < C(I1hllns1 + [@lnrallPllo)-

Then the same discussion using the auxiliary quantity

Za(h)=">_ |0k

jt+k=n
as in [9] leads us to the estimate
t
7t i (' - = (T
1 <01+ [ a1+ W@ + 131 + @)
for 0<t<T.

This estimate for the split problem is sufficient to get the tame estimate for
the original A = A% 4 Al as in [8]. We omit the repetition of the discussion.
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