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Tetu Makino

Abstract We construct spherically symmetric solutions to the Einstein–Euler equa-

tions, which give models of gaseous stars in the framework of the general theory of

relativity. We assume a realistic barotropic equation of state. Equilibria of the spheri-

cally symmetric Einstein–Euler equations are given by the Tolman–Oppenheimer–

Volkoff equations, and time-periodic solutions around the equilibrium of the linearized

equations can be considered. Our aim is to find true solutions near these time-periodic

approximations. Solutions satisfying a so-called physical boundary condition at the free

boundary with the vacuum will be constructed using the Nash–Moser theorem. This

work also can be considered as a touchstone in order to estimate the universality of the

method which was originally developed for the nonrelativistic Euler–Poisson equations.

1. Introduction

Recently, U. Brauer and L. Karp [2, Theorem 2.3] established a local existence

theorem of solutions to the Cauchy problem for the Einstein–Euler equations,

which describes a relativistic self-gravitating perfect fluid having density either

compactly supported or falling off at infinity in an appropriate manner. In their

work [2] the energy-momentum tensor of the perfect fluid takes the form

Tμν = (ε+ P )UμUν − Pgμν ,

where ε= c2ρ is the energy density, P is the pressure, and Uμ is the velocity 4

vector. Here it is assumed that P =Kεγ , K > 0, γ > 1, and the quantity

w := ε
γ−1
2 = cγ−1ρ

γ−1
2

is introduced. The main result requires that the initial data satisfy w ∈ Hs+1

with s > 3/2 so that w ∈C1 at least.

However, a spherically symmetric equilibrium, which solves the Tolman–

Oppenheimer–Volkoff equation, satisfies w ∼ const(r+ − r)1/2 as r→ r+ − 0 pro-

vided that the equilibrium has a finite radius r+ (see Section 3). Hence, such an

equilibrium is excluded from the class of density distributions admissible to this

local existence theorem. We are faced with the same situation in the nonrela-

tivistic problem governed by the Euler–Poisson equations as discussed in [6].
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Recently, this trouble was partially overcome by [8] in the Euler–Poisson

equations for the nonrelativistic case. So, a similar discussion is required for the

relativistic problem. That is the aim of this article.

2. Spherically symmetric evolution equations

The Einstein equations read ([5, (95.5)])

(2.1) Rμν −
1

2
gμνR=

8πG

c4
Tμν .

Here Rμν is the Ricci tensor, R is the scalar curvature gαβRαβ associated with

the metric

(2.2) ds2 = gμν dx
μ dxν ,

Tμν is the energy-momentum tensor of the matter, G is the constant of gravita-

tion (6.67× 10−8 cm3/g · s2), and c is the speed of light (3.00× 1010 cm/s). The

Einstein equations (2.1) imply the Euler equations

(2.3) ∇νT
μν = 0,

where ∇ denotes the covariant derivative associated with the metric (2.2). The

details can be found in [5] or [11].

The energy-momentum tensor of a perfect fluid is given by ([5, (94.4)])

(2.4) Tμν = (c2ρ+ P )UμUν − Pgμν ,

where ρ is the mass density, P is the pressure, and Uμ stands for the 4-dimensional

velocity vector such that UμUμ = 1. In this article we always assume the follow-

ing.

ASSUMPTION 1

We assume that P is a given analytic function of ρ > 0 such that 0 < P , 0 <

dP/dρ < c2 for ρ > 0, and P → 0 as ρ→+0.

If we assume spherical symmetry, then the Einstein–Euler equations are reduced

as follows. We consider the metric of the form ([5, p. 304, (1)])

(2.5) ds2 = e2F c2 dt2 − e2H dr2 −R2(dθ2 + sin2 θ dφ2),

where F , H , and R are functions of t, r ≥ 0. (Here R does not mean the scalar

curvature gμνRμν .) Then the nonzero components of the Einstein tensor

Gν
μ :=Rν

μ − 1
2δ

ν
μR, where R is the scalar curvature, are (see [5, p. 305, (2), (3),

(4), (5)])

G0
0 = e−2H

(
−R′2

R2
− 2

R′′

R
+ 2

H ′R′

R

)
+ e−2F

( Ṙ2

R2
+ 2

ḢṘ

R

)
+

1

R2
,

G1
1 = e−2F

( Ṙ2

R2
+ 2

R̈

R
− 2

Ḟ Ṙ

R

)
− e−2H

(R′2

R2
+ 2

F ′R′

R

)
+

1

R2
,
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G2
2 = G3

3

= e−2H
(
−R′′

R
− F ′′ − F ′2 +H ′F ′ +

H ′R′

R
− F ′R′

R

)

+ e−2F
( R̈

R
+ Ḧ + Ḣ2 − ḢḞ +

ḢṘ

R
− Ḟ Ṙ

R

)
,

e2HG1
0 = −e2FG0

1 = 2
( Ṙ′

R
− ḢR′

R
− F ′Ṙ

R

)
.

Here Ȧ stands for ∂A/c∂t and A′ stands for ∂A/∂r. Of course the coordinates

xμ are taken as

x0 = ct, x1 = r, x2 = θ, x3 = φ.

By the freedom of choice of r we take it in such a way that the flow is

apparently static, say, we suppose

(2.6) U0 = e−F , U1 = U2 = U3 = 0.

Then the energy-momentum tensor turns out to be

(2.7) T 0
0 = c2ρ, T 1

1 = T 2
2 = T 3

3 =−P, T 1
0 = T 0

1 = 0.

The equation ∇μT
μ
0 = 0 gives

(2.8) c2ρ̇+
(
Ḣ +

2Ṙ

R

)
(c2ρ+ P ) = 0,

and the equation ∇μT
μ
1 = 0 gives

(2.9) P ′ + F ′(c2ρ+ P ) = 0.

By integrating (2.9) we can suppose that F is a function of ρ given by

(2.10) F = F (ρ) =−
∫ ρ 1

c2ρ+ P

dP

dρ
dρ.

Let us introduce the variable m by

(2.11) m= 4π

∫ R

0

ρR2 dR= 4π

∫ r

0

ρR2R′ dr.

The variable V is defined by

(2.12) V = ce−F Ṙ.

Then the equation G1
0 = 0 turns out to be

(2.13) Ḣ =
1

c
eF

V ′

R′ .

Substituting (2.12) and (2.13) into (2.8), we have

(2.14) c2ρ̇=−1

c
eF (c2ρ+ P )

(V ′

R′ +
2V

R

)
.

Eliminating the time derivatives from the equation G0
0 =

8πG
c2 ρ, we have

8πG

c2
ρR2R′ =

(
−RR′2e−2H +

1

c2
RV 2 +R

)′
.
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Integrating this, keeping in mind that R should vanish at r = 0, we get

(2.15) m=
c2R

2G

(V 2

c2
+ 1−R′2e−2H

)
,

from which we get

(2.16) e2H =
(
1 +

V 2

c2
− 2Gm

c2R

)−1

R′2.

Differentiating (2.12) with respect to t and using the equation G1
1 =−8πG

c4 P and

(2.15), we obtain

(2.17)
V̇

c
e−F =−GR

c2

( m

R3
+

4πP

c2

)
− e−2H R′P ′

c2ρ+ P
,

or from (2.16),

(2.18) e−F cV̇ =−GR
( m

R3
+

4πP

c2

)
−

(
1 +

V 2

c2
− 2Gm

c2R

) P ′

R′(ρ+ P/c2)
.

Differentiating (2.15) with respect to t and using the equation G0
1 = 0, we have

(2.19) ṁe−F =−4πR2

c3
PV.

Now (2.12), (2.14), (2.18), and (2.19) govern the evolution of unknowns R,

H , ρ, V , m. The system of equations to be studied is

e−F cṘ = V,(2.20a)

e−F cρ̇ = −(ρ+ P/c2)
(V ′

R′ +
2V

R

)
,(2.20b)

e−F cV̇ = −GR
( m

R3
+

4πP

c2

)
−

(
1 +

V 2

c2
− 2Gm

c2R

) P ′

R′(ρ+ P/c2)
,(2.20c)

e−F cṁ = −4π

c2
R2PV.(2.20d)

Of course, we assume (2.10) and (2.11). The above equations were derived by

[10]. The equations (2.20a), (2.20b), (2.20c), and (2.20d) are none other than

[10, (1.12-R), (8.11), (1.12-U ), (1.12-m)], respectively.

The system of coordinates (t, r) is a comoving Lagrangian system of coordi-

nates moving at each point with the fluid. Therefore, if ρ > 0 for 0≤ r < r+ and

ρ= 0 for r+ ≤ r at t= 0, then it remains so for all small t > 0 along the time evo-

lution as long as the C1-solution exists, while the surface radius r+ is constant.

(Of course, the value of R at the surface can change in time.) Especially, we have

that m = m+ is constant at r = r+ for all t > 0. Hence, we can take (t,m) as

another system of comoving Lagrangian coordinates. Then we have the formula( ∂

∂t

)
r
=

( ∂

∂t

)
m
− 4π

c2
eFR2PV

∂

∂m
,(2.21)

∂

∂r
= 4πρR2R′ ∂

∂m
.(2.22)
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Here (∂/∂t)r stands for the partial derivative with respect to t keeping r constant,

and (∂/∂t)m stands for that keeping m constant.

Note that

(2.23)
∂R

∂m
=

1

4πρR2
,

and

(2.24) ρ=
(
4πR2 ∂R

∂m

)−1

.

Thus, (2.20a) reads

(2.25) e−F
(∂R

∂t

)
m
=

(
1 +

P

c2ρ

)
V,

and (2.20d) reads

e−F
(∂V

∂t

)
m
=

4π

c2
R2PV

∂V

∂m
−GR

( m

R3
+

4πP

c2

)
(2.26)

−
(
1 +

V 2

c2
− 2Gm

c2R

)(
1 +

P

c2ρ

)−1

· 4πR2 ∂P

∂m
,

where we have used the relation

P ′

R′ = 4πρR2 ∂P

∂m
,

which comes from (2.22).

In summary, the system of equations (2.25)–(2.26) should be solved, while

ρ, P = P (ρ) are given functions of R2∂R/∂m through (2.24). Moreover, under

Assumption 2 specified in the next section, we can put

(2.27) F =− u

c2
+ F (0)

in order to fix the idea, where F (0) is a constant and

u=

∫ ρ

0

1

ρ+ P (ρ)/c2
dP

dρ
dρ

is a given function of R2∂R/∂m, too (see (2.10)). Hence, the unknown functions

are only (t,m) �→R and (t,m) �→ V .

The system of equations (2.25)–(2.26) will be called (Ec):

e−F ∂R

∂t
=

(
1 +

P

c2ρ

)
V,

e−F ∂V

∂t
=

4π

c2
R2PV

∂V

∂m
−GR

( m

R3
+

4πP

c2

)

−
(
1 +

V 2

c2
− 2Gm

c2R

)(
1 +

P

c2ρ

)−1

· 4πR2 ∂P

∂m
.

Here we have written ∂R
∂t ,

∂V
∂t simply instead of (∂R∂t )m, (∂V∂t )m. The nonrelativis-

tic limit as c→+∞ is of course (E∞):
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∂R

∂t
= V,

∂V

∂t
= −Gm

R2
− 4πR2 ∂P

∂m
,

which is reduced to the second-order single equation [8, (4)], where g0, r stand

for G, R, respectively.

SUPPLEMENTARY REMARK 1

The function F = F (t, r) in the components of the metric (2.5) should satisfy

(2.9). Therefore, generally speaking, (2.27) should read

F =− u

c2
+ F+(t),

where F+(t) is an arbitrary smooth function of t, being constant with respect

to r, or

e2F =C(t)2κe−2u/c2 ,

where κ is a positive constant which will be specified in the next section (see

(3.9)) and where C(t) is an arbitrary positive smooth function of t. Then the

left-hand sides of (2.25)–(2.26) or (Ec) should be interpreted with

e−F ∂

∂t
=

1

C(t)

1√
κ
eu/c

2 ∂

∂t
.

Of course, we can and shall assume that C(t)≡ 1 by taking

t∗ = t∗(t) :=

∫ t

0

C(t′)dt′

instead of t, that is, we specify

(2.28) eF =
√
κ exp

(
− u

c2

)
,

without loss of generality.

In this sense, if we are allowed to forestall the discussion, then we should say

that, in order to fix the idea, the definitions of J , H1, H2 in Section 6 (see (6.8a),

(6.8b), and (6.9)) should be done by using (2.28), where u is a given function

of ρ given by

ρ= ρ̄(1 + y)−2
(
1 + y+ r

∂y

∂r

)−1

. (4.5)

3. Equilibrium configurations

Let us consider a solution of (2.20a)–(2.20d) which is independent of t, that is,

F = F (ρ(r)), H =H(r), ρ= ρ(r), P = P (ρ(r)), V ≡ 0, R ≡ r. Then the system

of equations (2.20a)–(2.20d) is reduced to

0 =Gr
(m

r3
+

4πP

c2

)
+

(
1− 2Gm

c2r

) P ′

ρ+ P/c2
.
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Therefore, the equation to be studied is

dm

dr
= 4πr2ρ,(3.1a)

dP

dr
= −(ρ+ P/c2)

G(m+ 4πr3P/c2)

r2(1− 2Gm/c2r)
.(3.1b)

This equation was first derived by Oppenheimer and Volkoff [12] in 1939.

Let us observe solutions of the Tolman–Oppenheimer–Volkoff equation (3.1).

We assume Assumption 1.

PROPOSITION 1

Let ρc (> 0) and Pc = P (ρc) be the given central density and central pressure,

respectively. Then there is a unique local solution (m(r), P (r)), 0≤ r ≤ δ, of (3.1),

δ being a small positive number, such that m= 0, P = Pc at r = 0. Moreover, we

have

m =
4π

3
ρcr

3 +O(r5),

P = Pc − (ρc + Pc/c
2)G(4πρc/3 + 4πPc/c

2)
r2

2
+O(r4)

as r→ 0.

A proof can be found in [7].

We consider the domain of (3.1) as D := {(r,m,P ) | 0 < r < +∞,0 < P <

+∞,0< 2Gm/c2r < 1}. Prolonging the local solution as long as possible in the

domain D, we have (0, r+) for the maximal interval of existence. Here r+ ≤+∞
is a constant.

DEFINITION 1

If r+ = +∞, then the solution will be called a long equilibrium with central

density ρc. If r+ <+∞, then the solution will be called a short equilibrium.

REMARK

It will be shown that if r+ <+∞, then ρ and P tend to 0 but 2Gm/c2r tends

to a positive number strictly less than 1 as r→ r+ − 0. In this sense the solution

can be said to be “short” if r+ <+∞.

The equation of state for neutron stars is given by

P =Kc5
∫ ζ

0

q4 dq

(1 + q2)1/2

=
3

8
Kc5

(
5(1 + ζ2)

(2

3
ζ2 − 1

)
+ log

(
ζ + (ζ2 + 1)1/2

))
,



250 Tetu Makino

ρ = 3Kc3
∫ ζ

0

(1 + q2)1/2q2 dq

=
3

8
Kc3(2ζ2 + 1)

(
ζ(ζ2 + 1)1/2 − log

(
ζ + (ζ2 + 1)1/2

))
.

See [15, p. 188, (6.8.4), (6.8.5)]. In this case we have

P =
1

5
K−2/3ρ5/3

(
1 + [K−2/3ρ2/3/c2]1

)
,

where [X]1 stands for a convergent power series of the form
∑

j≥1 ajX
j . Keeping

in mind this case, we suppose the following assumption of the behavior of P (ρ)

as ρ→ 0.

ASSUMPTION 2

There are positive constants A, γ such that

P =Aργ
(
1 + [ργ−1]1

)
as ρ→+0, and 1< γ < 2.

Under Assumptions 1 and 2 we can introduce the new variable u by

(3.2) u=

∫ P

0

dP

ρ+ P/c2
,

which satisfies

u=
Aγ

γ − 1
ργ−1

(
1 + [ργ−1]1

)
as ρ→+0. Let (m(r), P (r)), 0< r < r+, be an equilibrium, where (0, r+) is the

maximal interval of existence. Then the corresponding u= u(r) satisfies

(3.3) r
du

dr
=−G(m+ 4πr3P/c2)

r(1− 2Gm/c2r)
.

Then u(r) is monotone decreasing, and, moreover, we have the following result.

PROPOSITION 2

We have u(r)→ 0 as r→ r+ − 0.

The proof is the same as that of [7, Lemma]. (We do not use the assumption

γ > 4/3.)

Let us introduce the variables

(3.4) x=
m

ur
, y = 4πr2

ρ2

P
.

The equations read

r
dx

dr
= α(u)− x+ x2G̃,(3.5)
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r
dy

dr
= y

(
2− β(u)xG̃

)
,(3.6)

r
du

dr
= −uxG̃,(3.7)

where

α =
P

uρ
=

γ − 1

γ
+ [u]1,

β =
(
2
dP

dρ
− u

P

)
=

2− γ

γ − 1
+ [u]1,

G̃ =
G(1 + 4πr3P/mc2)

1− 2Gm/rc2
=

G(1 + ω(u)y/c2x)

1− 2Gux/c2
,

ω =
P 2

uρ2
= [u]1.

PROPOSITION 3

Let x(r) correspond to an equilibrium (m(r), P (r)), 0< r < r+. If there is r0 ∈
(0, r+) such that x(r0)> 1/G, then r+ <+∞ and enjoys the estimate

r+ < r0 exp
( 1

Gx(r0)− 1

)
.

A proof can be found in the last part of the proof of [7, Theorem 1].

As in [7] we can claim the following result.

PROPOSITION 4

If 4/3< γ < 2, then any equilibrium is short.

When 6/5 < γ ≤ 4/3, it is known that if A is small and if P (ρ) is sufficiently

near to the exact γ-law P =Aργ , then any equilibrium is short (see [14]). Even

if 1< γ ≤ 6/5, it is possible that there are short equilibria, since Proposition 3

guarantees the existence of tails of short equilibria in any case and we can arbi-

trarily modify the equation of state in the higher density region. Anyway, in this

article we assume Assumptions 1 and 2 only with 1< γ < 2 and suppose that a

short equilibrium is given to us.

Let us observe roughly the behavior of a short equilibrium (m(r), P (r)) at

the surface r = r+. By Proposition 2 we have u ∈ C((0, r+]) with u(r+) = 0, so

P (r), ρ(r) are as well. Hence,

r �→m(r) =

∫ r

0

4πr′2ρ(r′)dr′

belongs to C((0, r+]). Put

(3.8) m+ =m(r+) =

∫ r+

0

4πr2ρ(r)dr.
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By definition we have 1− 2Gm/c2r > 0. Therefore,

(3.9) κ= lim
r→r+

1− 2Gm/c2r = 1− 2Gm+/c
2r+

is nonnegative. We claim that κ > 0. Otherwise, if κ= 0, then

d

dr
(1− 2Gm/c2r) =−2G

c2

(
4πrρ− m

r2

)
→ 2Gm+

c2r2+
=

1

r+

as r→ r+ − 0 and

1− 2Gm/c2r ∼− 1

r+
(r+ − r),

which contradicts that 1− 2Gm/c2r > 0 for r < r+. Hence, κ > 0 and

du

dr
→−K

as r→ r+ − 0. Here

(3.10) K =
Gm+

r2+(1− 2Gm+/c2r+)

is a positive constant. Hence, since u→ 0 as r→ r+, we see that

u∼K(r+ − r)

and thus we have the following result.

PROPOSITION 5

Let (m(r), P (r)), 0< r < r+, be a short equilibrium. Then we have

ρ∼
( (γ − 1)K

Aγ

) 1
γ−1

(r+ − r)
1

γ−1

as r→ r+ − 0, where K is the positive constant given by (3.10).

REMARK

If (m(r), P (r)), 0 < r < r+, is a short equilibrium, then for r ≥ r+ we put ρ =

P = 0 (vacuum) and we put

ds2 =
(
1− 2Gm+

c2r

)
c2 dt2 − dr2

1− 2Gm+

c2r

− r2(dθ2 + sin2 θ dφ2),

which is the Schwarzschild’s metric (see [5, p. 301]). Here we must take

F (0) =
1

2
logκ=

1

2
log

(
1− 2Gm+

c2r+

)
.

Then the components of the metric are continuously differentiable across r = r+.

More precise behavior of the equilibrium at the surface can be given as follows.

PROPOSITION 6

Assume Assumptions 1 and 2, and let (m(r), P (r)), 0< r < r+, be a short equi-

librium. If γ
γ−1 is an integer, then u(r) is analytic at r = r+.
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Proof

We consider the variables

X =
1

x
=

ur

m
, Y =

y

x2
=

4πr4u2ρ2

m2P
.

Since du/dr < 0, we can take u as the independent variable instead of r, and the

equations turn out to be

u
dX

du
=

(
1 +

1

G̃
(−X + αY )

)
X,(3.11a)

u
dY

du
=

(
2 + β +

1

G̃
(−4X + 2αY )

)
Y,(3.11b)

where we note

(3.12) G̃=G
(
1 +

ωu

c2
Y

X

)/(
1− 2G

c2
u

X

)
.

Note that G̃ > 0 and G̃→G/κ as u→+0, where κ is the positive constant

given in (3.9). Put

(3.13) X̌ =
X

u
=

r

m
, Y̌ =

Y

u
γ

γ−1

=
4πr4u

γ−2
γ−1 ρ2

m2P
.

We know that u �→ X̌ and u �→ Y̌ belong to C([0, uc)) and X̌|u=0, Y̌ |u=0 are

positive. Therefore u �→ G̃=G(1+ ωu1/(γ−1)

c2
Y̌
X̌
)/(1− 2G

c2
1
X̌
) belongs to C([0, uc)).

Integrating (3.11a), we have

X =C1u exp
[∫ u

0

1

G̃
(−X̌ + αu

γ
γ−1 Y̌ )du

]
.

Since the integrand is continuous, we see that u �→ X̌ belongs to C1([0, uc)).

Integrating (3.11b), we have

Y =C2u
γ

γ−1 exp
[∫ u

0

( 1

G̃
(−4X̌ + 2αu

γ
γ−1 Y̌ ) +Ω(u)

)
du

]
,

where

2 + β =
γ

γ − 1
+Ω(u)u, Ω(u) = [u]0.

Fixing u0 > 0 small, we put X̌0 := X̌(u0), Y̌0 := Y̌ (u0). Since we know that

X̌(u)→ X̌∗ :=
r+
m+

, Y̌ (u)→ Y̌∗ := 4π
(γ − 1

Aγ

) 2−γ
γ−1 r4+

m2
+

as u→ 0, we see that if u0 is sufficiently small, then X̌0, Y̌0 is arbitrarily near

to X̌∗, Y̌∗, respectively. Now (X̌(u), Y̌ (u)) is the unique solution of the integral

equation

X̌(u) = X̌0 exp
[
−

∫ u0

u

1

G̃
(−X̌ + αu

γ
γ−1 Y̌ )du

]
,(3.14a)

Y̌ (u) = Y̌0 exp
[
−

∫ u0

u

( 1

G̃
(−4X̌ + 2αu

γ
γ−1 Y̌ ) +Ω(u)

)
du

]
.(3.14b)
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Let us denote by Dδ the set {(z1, z2) ∈ C
2 | |z1 − X̌∗|< δ, |z2 − Y̌∗|< δ}, with δ

being a small positive number. Note that if |u| ≤ ε0, with ε0 being a fixed small

positive number, and if (X̌, Y̌ ) ∈Dδ , 0< δ ≤ δ0, then |1/G̃| ≤M0,M0 depending

upon only ε0, δ0. In fact, since X̌∗ > 0 and δ is very small, we can suppose that

(X̌, Y̌ ) ∈Dδ guarantees |X̌| ≥ δ. Let us consider the functional family F(ε, δ) of

all analytic functions (φ1(u), φ2(u)) defined and analytic for |u| ≤ ε and valued

in Dδ . The right-hand sides of (3.14a) and (3.14b), in which X̌ = φ1(u) and

Y̌ = φ2(u), will be denoted by φ̄1(u) and φ̄2(u), respectively. Then it is easy to

see that if |u0| ≤ ε, with ε being sufficiently small, then (X̌0, Y̌0) ∈ Dδ/2, and

if (φ1, φ2) ∈ F(ε, δ), then (φ̄1, φ̄2) ∈ F(ε, δ). Applying the well-known fixed point

theorem (see, e.g., [4, Chapter I, Théorème 7]), we have a fixed function in F(ε, δ).

This is our (X̌(u), Y̌ (u)) by dint of the uniqueness.

Integrating

1

r

dr

du
=−X̌

G̃
,

we see that u �→ r is analytic and dr/du < 0 including u= 0. Hence, the inverse

function r �→ u is analytic at r = r+. �

Hereafter we suppose the following.

ASSUMPTION 3

We assume that 1< γ < 2 and that γ
γ−1 is an integer.

Under this assumption, 1
γ−1 is an integer, and since

(3.15) ρ=
(γ − 1

Aγ
u
) 1

γ−1 (
1 + [u]1

)
,

the density distribution ρ of the equilibrium is analytic at r = r+, too:

(3.16) ρ=
( (γ − 1)K

Aγ

) 1
γ−1

(r+ − r)
1

γ−1
(
1 + [r+ − r]1

)
.

SUPPLEMENTARY REMARK 2

Here we are considering a short equilibrium with surface r = r+ and the

Schwartzschild’s metric in the exterior vacuum region. In other words, the metric

ds2 = g00c
2 dt2 + g11 dr

2 − r2(dθ2 + sin2 θ dφ2)

is given by

g00 =

{
e2F = κe−2u/c2 0≤ r ≤ r+,

1− 2Gm+

c2r r+ < r,

−g11 =

{
e2H = (1− 2Gm

c2r )−1 0≤ r ≤ r+,

(1− 2Gm+

c2r )−1 r+ < r.

Let us check that the components g00, g11 are of class C2 across r = r+.
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It is clear that g00 and g11 are continuous since u→ 0, m→m+ as r→ r+−0

and κ= 1− 2Gm+/c
2r+. Moreover, we have

d

dr
g00

∣∣∣
r=r+−0

=−2κ

c2
du

dr

∣∣∣
r=r+−0

=
2Gm+

c2r2+
,

since du/dr→−K with K given by (3.10), and

d2

dx2
g00

∣∣∣
r=r+−0

=
4κ

c4

(du

dr

)2

r=r+−0
− 2κ

c2
d2u

dr2

∣∣∣
r=r+−0

=−4Gm+

c2r3+
.

This can be verified by differentiating (3.3) and seeing

d2u

dr2

∣∣∣
r=r+−0

=
2Gm+

r3+κ
+

2

c2

(Gm+

r2+κ

)2

.

Hence, g00 is twice continuously differentiable at r = r+. On the other hand, it

is easy to see that the patched function

m̃(r) =

{
m(r) 0≤ r ≤ r+,

m+ r+ < r

is of class Ck if and only if γ < k/(k− 1) since

dm

dr
= 4πρr2 = 4πr2+

( (γ − 1)K

Aγ

)1/(γ−1)

(r+ − r)
1

γ−1
(
1 + [r+ − r]1

)
.

Hence m̃ and g11 are of class C2 since γ < 2.

4. Equations for perturbations

Let us fix a short equilibrium ρ(r) which is positive on 0 ≤ r < r+. Put m+ =

m(r+). Then we can take m as an independent variable and get an equilibrium

ρ= ρ̄(m) and r = r(m), 0≤m≤m+. We have to consider solutions of (Ec) near

this equilibrium of the form

R = r(m)(1 + y),(4.1)

V = r(m)v.(4.2)

Here y and v are small perturbations. The equations turn out to be

e−F ∂y

∂t
=

(
1 +

P

c2ρ

)
v,(4.3)

e−F ∂v

∂t
=

4π

c2
r2(1 + y)2Pv

∂

∂m
(rv)

− G

r3(1 + y)2

(
m+

4π

c2
Pr3(1 + y)3

)
(4.4)

−
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)(
1 +

P

c2ρ

)−1

· 4πr(1 + y)2
∂P

∂m
.

Instead of m, let us take r = r(m) as the independent variable. Since

dm

dr
= 4πρ̄r2,
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we see

∂

∂m
=

1

4πρ̄r2
∂

∂r
.

Therefore, (2.24) and (4.1) imply

(4.5) ρ= ρ̄(1 + y)−2
(
1 + y+ r

∂y

∂r

)−1

so that

ρ= ρ̄
(
1− 3y− r

∂y

∂r
+

[
y, r

∂y

∂r

]
2

)
.

Here [X1,X2]2 denotes a convergent double power series of the form∑
k1+k2≥2

ak1k2X
k1
1 Xk2

2 .

Let us recall that (ρ̄)γ−1 ∈C∞([0, r+]), provided that γ/(γ−1) is an integer,

say, from Assumption 3.

Then (4.4) reads

e−F ∂v

∂t
=

1

c2
(1 + y)2

P

ρ̄
v
∂

∂r
(rv)

− G

r3(1 + y)2

(
m+

4π

c2
Pr3(1 + y)3

)
(4.6)

−
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)(
1 +

P

c2ρ

)−1 (1 + y)2

rρ̄

∂P

∂r
.

We have to solve (4.3)–(4.6) for unknown functions (t, r) �→ y, v, where r is con-

fined to the fixed interval [0, r+]. Here m=m(r) is determined by the equilibrium

through

m= 4π

∫ r

0

ρ̄(r)r2 dr,

and ρ, P (ρ), u(ρ) are given functions of ρ̄(r) and the unknowns y, r∂y/∂r through

(4.5).

The perturbation of ρ is expressed by (4.5). Similar expressions of P and u

are necessary. If P (ρ) was the exact γ-law, say, if P =Aργ , then we would have

P = P̄ (1 + y)−2γ
(
1 + y+ r

∂y

∂r

)−γ

= P̄
(
1− γ

(
3y+ r

∂y

∂r

)
+

[
y, r

∂y

∂r

]
2

)
.

However, this exact γ-law is not treated by this article, since it violates the

condition dP/dρ < c2 for large ρ. Our case should be treated more carefully.

We should introduce the quantity

(4.7) γP :=
ρ

P

dP

dρ
.
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Then under the Assumption 2 we see that

γP = γ + [u]1,

and using this function, we can express

(4.8) P = P̄
(
1− γP (ū)

(
3y+ r

∂y

∂r

)
−ΦP

(
ū, y, r

∂y

∂r

))
,

where

ΦP (u, y, ry′) = [u;y, ry′]0;2.

Here [X0;X1,X2]0;2 denotes a convergent triple power series of the form∑
k0≥0,k1+k2≥2

ak0k1k2X
k0
0 Xk1

1 Xk2
2 .

We note that(
1 +

P

c2ρ

)−1

=
(
1 +

P̄

c2ρ̄

)−1(
1 +

P̄

c2ρ̄

(
1 +

P̄

c2ρ̄

)−1

(γP − 1)
(
3y+ r

∂y

∂r

)
(4.9)

+
[
ū;y, r

∂y

∂r

]
0;2

)
.

SUPPLEMENTARY REMARK 3

The letter r is used, on the one hand, as one of the comoving coordinates for

the metric (2.5) and, on the other hand, as one of the independent variables

of (4.6). However, these two quantities denoted by the same letter r do not

coincide if we consider moving solutions. Therefore, in order to clarify the relation

between these two quantities, we shall denote by r∗ the latter r, that is, one of

the independent variables for (4.6).

In other words, the definition of r∗ = ϕ(t, r) is as follows. Put

m= f1(r) := 4π

∫ r

0

ρ̄(r′)r′2 dr′ (0≤ r ≤ r+)

along the equilibrium fixed. Then we have the inverse function r = f−1
1 (m)

defined on 0≤m≤m+. But along the moving solutions, m is one of the variables

of (2.25)–(2.26) or (Ec) defined by (2.11). So we denote

m= f2(t, r) := 4π

∫ r

0

ρ(t, r′)R(t, r′)2∂rR(t, r′)dr′

along the moving solutions under consideration. Then we put

r∗ = ϕ(t, r) := f−1
1

(
f2(t, r)

)
.

Let us determine the function ϕ(t, x). The functionm= f2(t, r) should satisfy

(2.20d); that is,

(4.10) e−F ∂m

∂t
=−4π

c2
RPV.
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The left-hand side of (4.10) is

1√
κ
eu/c

2

Df1(r
∗)
∂r∗

∂t
=

1√
κ
eu/c

2 · 4πρ̄(r∗)(r∗)2 ∂r
∗

∂t
.

On the other hand, we are going to construct moving solutions of the form

R = r∗
(
1 + y(t, r∗)

)
, V = r∗v(t, r∗),

P = P (ρ), ρ= ρ̄(r∗)
(
1 + y(t, r∗)

)−2
(
1 + y+ r∗

∂y

∂r∗

)−1

with y, v ∈C∞([0, T ]× [0, r+]), which are very small. Suppose that we have con-

structed such solutions. Then the function ϕ(t, r) should satisfy

(4.11)
∂

∂t
ϕ(t, r) =−

√
κ

c2
e−u/c2(1 + y)2

P

ρ̄
v · ϕ(t, r),

where u = u(ρ), y, P = P (ρ), ρ̄, v on the right-hand side are evaluated at

(t, r∗) = (t,ϕ(t, r)). The formula (4.11) can be considered as an ordinary dif-

ferential equation for ϕ(·, r) for each fixed r, which determines ϕ(·, r) provided

that the initial value ϕ(0, r) = f−1
1 (f2(0, r)) is given.

But we can assume that ϕ(0, r) = r without loss of generality. In fact,

ϕ(0, r) = r means f1(r) = f2(0, r), and even if f1 �= f2(0, ·), we can find the change

of variable r = ψ(r�) such that f1(r
�) = f2(0, ψ(r

�)). Considering r� instead of r,

we can assume f1(r) = f2(0, r) or ϕ(0, r) = r. Clearly the C∞-solution ϕ is

uniquely determined and ϕ(t, r)− r is very small with its derivatives. Of course,

ϕ(t,0) = 0 and ϕ(t, r+) = r+ since P/ρ̄ vanishes at r = r+ − 0. Hence, we have

the solutions

R= ϕ(t, r)
(
1 + y

(
t,ϕ(t, r)

))
, V = ϕ(t, r)v

(
t,ϕ(t, r)

)
and so on as functions of the original comoving coordinates t, r.

5. Analysis of the linearized equation

We are going to analyze the linearized equations for (4.3)–(4.6) and establish the

existence of time-periodic solutions to the linearized equations of the form

y = const sin(
√
λt+ const)ψ̃(r),

where λ > 0 and ψ̃(r) is an analytic function of r in a neighborhood of [0, r+].

Using the formulas listed in the last part of the preceding section, we see

that the linearizations of (4.3)–(4.6) turn out to be

e−F ∂y

∂t
=

(
1 +

P

c2ρ

)
v,(5.1a)

e−F ∂v

∂t
= E2y

′′ +E1y
′ +E0y,(5.1b)

where y′′ = ∂2y/∂r2, y′ = ∂y/∂r, and

E2 = e−2H(ρ+ P/c2)−1γPP,(5.2a)
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E1

E2
=

4πG

c2
e2H(ρ+ P/c2)r− (ρ+ P/c2)−1

(
1− 1

γp

)P ′

c2
+

3

r
+

(γPPr)′

γPPr
(5.2b)

= F ′ +H ′ − (1 + P/c2ρ)′

1 + P/c2ρ
+

3

r
+

(γPPr)′

γPPr
,

E0 =
4πG

c2
· 3(γP − 1)P

+
(
−1− 3γP e−2H + 3(γP − 1)e−2H(1 + P/c2ρ)−1

)
(ρ+ P/c2)−1P

′

r
(5.2c)

+ 3e−2H(ρ+ P/c2)−1 (γ
PP )′

r
.

Here ρ, P , γP , F , H are abbreviations for the quantities ρ̄(r), P̄ = P (ρ̄(r)),

γP (ū(r)), F̄ = F (ū(r)) =− 1
c2 ū(r)+

1
2 logκ, H̄ =−1

2 log(1−
2Gm
c2r ) along the con-

sidered equilibrium. Throughout the above manipulations we have used the equa-

tion

4πG

c2
e2H(ρ+ P/c2)r = F ′ +H ′,

which can be derived from the differentiation of

e−2H = 1− 2Gm

c2r

and (3.1b), and also the relation

(1 + P/c2ρ)′

1 + P/c2ρ
=

1

ρ+ P/c2

(
1− 1

γP

)P ′

c2
.

In other words, the linearized second-order single equation is

(5.3)
∂2y

∂t2
+Ly = 0,

where

(5.4) Ly =−a

b
y′′ − a′

b
y′ +Qy =−1

b
(ay′)′ +Qy,

a = exp
[∫ r E1

E2
dr

]
=

γPPr4

1 + P/c2ρ
eF+H ,(5.5a)

b = (1+ P/c2ρ)−1ρr4e−F+3H ,(5.5b)

Q = −e2F (1 + P/c2ρ)E0.(5.5c)

In order to investigate the spectral property of the second-order linear dif-

ferential operator L, we reduce the eigenvalue problem

(5.6) Ly = λy

to the normal form

(5.7) −d2η

dξ2
+ q(ξ)η = λη
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by the Liouville transformation

ξ =

∫ r

0

√
b

a
dr =

∫ r

0

√
ρ

γPP
e−F+H dr,(5.8a)

η = (ab)1/4y = (γP ρP )1/4r2(1 + P/c2ρ)−1/2eHy,(5.8b)

when the result is

(5.9) q =Q+
a

4b

((a′

a
+

b′

b

)′
− 1

4

(a′

a
+

b′

b

)2

+
a′

a

(a′

a
+

b′

b

))
.

See [1, p. 275, Theorem 6].

Since √
ρ

γPP
∼ const(r+ − r)−1/2,

we can define the finite value

(5.10) ξ+ :=

∫ r+

0

√
ρ

γPP
e−F+H dr.

The interval (0, r+) is mapped onto (0, ξ+).

First let us observe the behavior of q as ξ → 0 (r→ 0). We see that Q=O(1),

a′

a
∼ 4

r
,

a′

a
+

b′

b
∼ 8

r
,

(a′

a
+

b′

b

)′
∼− 8

r2
.

Therefore,

q ∼ 2γPPρ−1e2F−2H |r=0
1

r2
.

On the other hand we have

ξ ∼ (γPPρ−1e2F−2H |r=0)
−1/2r.

Hence, we have

q ∼ 2

ξ2
.

Note that 2> 3/4.

Next we observe the behavior of q as ξ → ξ+ (r→ r+). Note that P ′/ρ→−K,

where K is the constant defined by (3.10). Therefore, we see that Q = O(1).

Moreover, we have

ρ

γP

d

dρ
γP =O(u)→ 0,

so that (γP )′/γP = o(ρ′/ρ). Hence, we see that

a′

a
∼ − γ

γ − 1

1

r+ − r
,

a′

a
+

b′

b
∼−γ + 1

γ − 1

1

r+ − r
,

(a′

a
+

b′

b

)′
∼ −γ + 1

γ − 1

1

(r+ − r)2
.
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Therefore, we have

q ∼Ke2F−2H |r=r+

(γ + 1)(3− γ)

16(γ − 1)

1

r+ − r
.

On the other hand, we have

ξ+ − ξ ∼ 2√
(γ − 1)K

e−F+H
∣∣∣
r=r+

√
r+ − r.

Hence, we have

q ∼ (γ + 1)(3− γ)

4(γ − 1)2
1

(ξ+ − ξ)2
.

It follows from 1< γ < 2 that

(γ + 1)(3− γ)

4(γ − 1)2
>

3

4
.

Therefore, both boundary points ξ = 0 and ξ+ are of limit point type, and [13,

p. 159, Theorem X.10] gives the following conclusion, which is the same as [8,

Proposition 1].

PROPOSITION 7

The operator T0, D(T0) = C∞
0 (0, ξ+), T0η = −ηξξ + qη, in L2(0, ξ+) has the

Friedrichs extension T, a self-adjoint operator, whose spectrum consists of simple

eigenvalues λ1 < · · ·< λn < · · · →+∞. In other words, the operator S0, D(S0) =

C∞
0 (0, r+), S0y = Ly in L2((0, r+), bdr) has the Friedrichs extension S, a self-

adjoint operator with eigenvalues (λn)n.

In order to investigate the structure of the linear operator L, we introduce the

new independent variable x instead of r defined by

(5.11) x :=
tan2 θ

1 + tan2 θ
with θ :=

πξ

2ξ+
=

π

2ξ+

∫ r

0

√
ρ

γPP
e−F+H dr.

The interval [0, r+] of the variable r is mapped onto [0,1] of x, and we have

d

dr
=

π

ξ+

√
x(1− x)

√
b

a

d

dx
,(5.12a)

d2

dr2
=

( π

ξ+

)2 b

a

(
x(1− x)

d2

dx2
+

(1− 2x

2
(5.12b)

+
ξ+
π

√
x(1− x)

√
a

b

1

2

a

b

d

dr

( b

a

)) d

dx

)
.

We note

(5.13) r
d

dr
= x[(x)]

d

dx
,

where and hereafter [(x)] denotes an analytic function of x in a neighborhood of

the interval [0,1]. In fact, (5.12a) implies the following observations. As r → 0
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(x→ 0), we see

(5.14) r =
ξ+
π
C0

√
x
(
1 + [x]1

)
with C0 = 2

√
γPP

ρ
eF−H

∣∣∣
r=0

,

and √
b

a
=

2ξ+
π

√
x

r

(
1 + [x]1

)
,

so that

r
d

dr
= 2x

(
1 + [x]1

) d

dx
.

As r→ r+ (x→ 1), we have

(5.15) 1− x=
( π

ξ+

)2

C1(r+ − r)
(
1 + [r+ − r]1

)
with C1 =

1

(γ − 1)κ2K

(see (3.16) and note eF−H = κ+ [r+ − r]1 with κ= 1− 2Gm+/c
2r+) and√

b

a
=

π

ξ+

C1√
1− x

(
1 + [1− x]1

)
,

so that

r
d

dr
=

( π

ξ+

)2

C1r+
(
1 + [1− x]1

) d

dx
.

Now we can write

(5.16)
(ξ+
π

)2

Ly =−x(1− x)
d2

dx2
−B

dy

dx
+

(ξ+
π

)2

Qy,

where

(5.17) B =
1− 2x

2
+

ξ+
π

√
x(1− x)

√
a

b

(1

2

a

b

d

dr

( b

a

)
+

1

a

da

dr

)
.

• As r→ 0 (x→ 0), we see

B =
5

2
+ [x]1.

We have

1

2

a

b

d

dr

( b

a

)
+

1

a

da

dr
=

1

2

(γPPρ)′

γPPρ
+ 2H ′ +

4

r
− (1 + P/c2ρ)′

1 + P/c2ρ

=
4

r

(
1 + [r2]1

)
and √

a

b
=

√
γPP

ρ
eF−H

=
(√

γPP

ρ
eF−H

)∣∣∣
r=0

(
1 + [r2]1

)
=

π

2ξ+

r√
x

(
1 + [x]1

)
.
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Clearly

Q= e−F (1 + P/c2ρ)E0 = [r2]0 = [x]0.

• As r→ r+ (x→ 1), we see

B =− γ

γ − 1
+ [1− x]1.

We have

1

2

a

b

d

dr

( b

a

)
+

1

a

da

dr
= −1

2

γ + 1

γ − 1

1

r+ − r

(
1 + [r+ − r]1

)

= −γ + 1

γ − 1

( π

ξ+

)2 C1

1− x

(
1 + [1− x]1

)
and

a

b
=

1

C1
(r+ − r)

(
1 + [r+ − r]1

)
=

1

C2
1

(ξ+
π

)2

(1− x)
(
1 + [1− x]1

)
.

Clearly

Q= [u]0 = [r+ − r]0 = [1− x]0.

In summary, we have the following conclusion, which is the same as [8, Propo-

sition 3].

PROPOSITION 8

We can write

(5.18)
(ξ+
π

)2

Ly =−x(1−x)
d2y

dx2
−

(5

2
(1−x)−N

2
x
)dy

dx
+L1(x)

dy

dx
+L0(x)y,

where L1(x) = x(1− x)[(x)], L0(x) = [(x)]. Here N is the parameter defined by

(5.19) N =
2γ

γ − 1
or γ =

N

N − 2
.

Assumption 3 reads that N is an even integer greater than 4. As long as we are

concerned with investigating the analytic structure of the operator L, we may

assume that ξ+ = π without loss of generality.

PROPOSITION 9

Let λ = λn be a positive eigenvalue, and let ψ be an associated eigenfunction

which belongs to L2([0,1];x
3
2 (1− x)

N
2 −1 dx). Then

(5.20) Y1 = sin(
√
λt+Θ0)ψ(x)

is a time-periodic solution of the linearized problem (5.3).

Thanks to Proposition 8, we can claim the following proposition on the analytic

property of the eigenfunction, which is the same as [8, Proposition 4].
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PROPOSITION 10

We have

ψ(x) = c0
(
1 + [x]1

)
as x→ 0,(5.21a)

ψ(x) = c1
(
1 + [1− x]1

)
as x→ 1.(5.21b)

Here c0, c1 are nonzero constants. Other independent solutions of Ly = λy do

not belong to L2([0,1]; (1− x)
N
2 −1 dx) as x∼ 1.

Therefore ψ(x) = [(x)], and Y1 is an analytic function of t ∈C and x on a neigh-

borhood of [0,1] independent of t. Hereafter we fix such a time-periodic func-

tion Y1.

6. Rewriting of the equations (4.3)–(4.6) using the linear operator L

Let us go back to the system of equations (4.3)–(4.6). In order to rewrite these

equations using the linear operator L, we shall use the following observations.

We are considering the perturbed P such that

(6.1) P = P̄
(
1− γP (ū)(3y+ z)−ΦP (ū, y, z)

)
,

where z = r∂y/∂r. Then we have

− 1

rρ̄

∂P

∂r
= − 1

rρ̄

dP̄

dr
+

(
1 +

1

γP
∂zΦ

P
) 1

rρ̄

∂

∂r

(
P̄ γP (3y+ z)

)
(6.2)

+
P̄

rρ̄
· [Q0] +

1

rρ̄

dP̄

dr
· [Q1],

where

[Q0] := 2(γP + ∂zΦ
P )(1 + y)−1 z

2

r
+

dū

dr

(
∂uΦ

P − 1

γP

dγP

du
(3y+ z)∂zΦ

P
)
,(6.3a)

[Q1] := ΦP − (3y+ z)∂zΦ
P .(6.3b)

Here we have used the relation

(6.4) (∂y − 3∂z)Φ
P = 2(γP + ∂zΦ

P )(1 + y)−1z.

Let us analyze

(6.5) the right-hand side of (4.6) = [R1] + [R2],

where

[R1] := −G(1 + y)
( m

r3(1 + y)3
+

4πP

c2

)
(6.6a)

−
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1 (1 + y)2

rρ̄

∂P

∂r
,

[R2] :=
1

c2
(1 + y)2

P

ρ̄
(v2 + vw) with w = r

∂v

∂r
.(6.6b)
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Let us put

[R1] = [R3] + [R4] + [R5] + [R6] + [R7],

where

[R3] := −G(1 + y)
( m

r3(1 + y)3
+

4πP

c2

)

= −Gm

r3
− 4πGP̄

c2
+ [R3L] + [R3Q],

[R3L] :=
Gm

r3
· 2y+ 4πG

c2
P̄ γP (3y+ z) +

4πG

c2
P̄ y,

[R3Q] := −Gm

r3

( 1

(1 + y)2
− (1− 2y)

)
+

4πG

c2
P̄ΦP +

4πG

c2
(P − P̄ )y,

[R4] := −
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1 (1 + y)2

rρ̄

dP̄

dr

= −
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 1

rρ̄

dP̄

dr
+ [R4L] + [R4Q],

[R4L] :=
(
−2Gm

c2r
(1 + P̄ /c2ρ̄)−1 · y

+
(
1− 2Gm

c2r

) P̄

c2ρ̄
(1 + P̄ /c2ρ)−1(γP − 1)(3y+ z)

+
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 · 2y

) 1

rρ̄

dP̄

dr
,

[R5] :=
(
1 +

1

γP
∂zΦ

P
)(

1 +
r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1

× (1 + y)2

rρ̄

∂

∂r
P̄ γP (3y+ z),

[R6] :=
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1(1 + y)2

P̄

rρ̄
· [Q0],

[R7] :=
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1(1 + y)2

1

rρ̄

dP̄

dr
· [Q1].

Then, using (3.1b), we have

[R1] = [R3L] + [R3Q] + [R4L] + [R4Q] + [R5] + [R6] + [R7].

Let us define G1 by

(6.7) 1 +G1 =
(
1 +

1

γP
∂zΦ

P
)1 + r2v2

c2 − 2Gm
c2r(1+y)

1− 2Gm
c2r

1 + P̄ /c2ρ̄

1 + P/c2ρ
(1 + y)2.

Then

[R5] = (1 +G1)
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 1

rρ̄

∂

∂r
P̄ γP (3y+ z),
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and, by definition,

−e−2F̄ (1 + P̄ /c2ρ̄)−1Ly = [R3L] + [R4L]

+
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 1

rρ̄

∂

∂r
P̄ γP (3y+ z)

= [R3L] + [R4L] +
1

1 +G1
[R5].

This implies

[R1] = −(1 +G1)e
−2F̄ (1 + P̄ /c2ρ̄)−1Ly

−G1

(
[R3L] + [R4L]

)
+ [R3Q] + [R4Q] + [R6] + [R7].

Now, putting

H1 := eF−2F̄ (1 + P̄ /c2ρ̄)−1(1 +G1),(6.8a)

H2 := eFG2,(6.8b)

G2 := (1 +G1)
(
[R3L] + [R4L]

)
− [R3]− [R4]

(6.8c)
− [R6]− [R7]− [R2],

we can write

eF ×
(
the right-hand side of (4.6)

)
=−H1Ly−H2.

The following observation will play a crucial role in the analysis of the equa-

tion as in [8].

PROPOSITION 11

There is an analytic function â of 1− x, y, z, v, w, y′, y′′ such that

(∂zH1)Ly+ ∂zH2 = (1− x)â

as x→ 1.

Proof

For the sake of abbreviations, hereafter we will denote

Q1 ≡Q0

if there is an analytic function Ω(1− x, y, z, v,w, y′, y′′) such that

Q1 =Q0 + (1− x)Ω.

We are considering

(∂zH1)Ly+ ∂zH2 =
(
∂zF ·H1 + eF−2F̄ (1 + P̄ /c2ρ)−1∂zG1

)
Ly

+ ∂zF ·H2 + eF∂zG2.

First we note that (2.27) and(4.5) imply

∂zF =
1

c2
ρ
du

dρ
(1 + y+ z)−1
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and that

ρ
du

dρ
= (γ − 1)u

(
1 + [u]1

)
, u= ū

(
1 + [(x;y, z]1

)
≡ 0.

(Here [(x;y, z]1 stands for an analytic function of x in a neighborhood of [0,1] and

y, z in a neighborhood of (0,0) of the form
∑

k1+k2≥1 ak1k2(x)y
k1zk2 .) Therefore,

∂zF ≡ 0 and

(∂zH1)Ly+ ∂zH2 ≡ eF [S],

where

[S] = (∂zG1)e
−2F̄ (1 + P̄ /c2ρ)−1Ly+ ∂zG2

= −(∂zG1)
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 1

rρ̄

∂

∂r
P̄ γP (3y+ z)

+ (1 +G1)
∂

∂z

(
[R3L] + [R4L]

)
− ∂

∂z

(
[R3] + [R4] + [R6] + [R7] + [R2]

)
.

But, keeping in mind that P̄ /ρ̄≡ P/ρ≡ 0 and that

∂P

∂z
= −ρ

dP

dρ
(1 + y+ z)−1 ≡ 0,

∂

∂z

(P

ρ

)
=

(
−dP

dρ
+

P

ρ

)
(1 + y+ z)−1 ≡ 0,

we see

−(∂zG1)
(
1− 2Gm

c2r

)
(1 + P̄ /c2ρ̄)−1 1

rρ̄

∂

∂r
P̄ γP (3y+ z)

≡−∂2
zΦ

P
(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + y)2

1

rρ̄

dP̄

dr
(3y+ z).

On the other hand, it is easy to see

∂

∂z
[R3L]≡ ∂

∂z
[R4L]≡ ∂

∂z
[R3]≡ ∂

∂z
[R4]≡ ∂

∂z
[R6]≡ ∂

∂z
[R2]≡ 0

and

∂

∂z
[R7]≡−

(
1 +

r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + y)2

1

rρ̄

dP̄

dr
(3y+ z)∂2

zΦ
P .

Hence we have [S]≡ 0 so that

(∂zH1)Ly+ ∂zH2 ≡ 0.

This was to be shown. �

REMARK

Note that ∂[R7]/∂z �≡ 0. In fact, we have

1

rρ̄

dP̄

dr
→−K

r+
�= 0
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and

∂2
zΦ

P = −P

ρ

( d

dρ
ρ
dP

dρ
+

dP

dρ

)
(1 + y+ z)−2

(
1− γP (3y+ z)−ΦP

)
→−(γ + 1)(1 + y+ z)−2

(
1− γ(3y+ z)−ΦP (0, y, z)

)
�= 0

as x→ 1.

Now, putting

(6.9) J := eF (1 + P/c2ρ),

we rewrite the system of equations (4.3)–(4.6) as

∂y

∂t
− Jv = 0,(6.10a)

∂v

∂t
+H1Ly+H2 = 0.(6.10b)

Here the unknown functions are (t, x) �→ y, v.

7. Framework to apply the Nash–Moser(–Hamilton) theorem

Having fixed a time-periodic solution Y1 of the linearized equation, we put

y = ε(Y1 + Y ),(7.1)

z = r
∂y

∂r
= ε(Z1 +Z) with Z1 = r

∂Y1

∂r
,(7.2)

v = ε(V1 + V ) with V1 =
1

Jo

∂Y1

∂t
.(7.3)

Here

(7.4) Jo := J |y=z=0 = eF̄ (1 + P̄ /c2ρ̄),

and Y , Z = r∂Y/∂r, and V are new unknown functions. The parameter ε will

be taken sufficiently small.

Now the system of equations turns out to be

∂Y

∂t
− JV − (ΔJ)V1 = (J − Jo)oV1,(7.5a)

∂V

∂t
+H1LY + (ΔH1)(LY1) +

1

ε
ΔH2 = −

(
H1 −

1

Jo

)o

(LY1)−
1

ε
Ho

2 ,(7.5b)

where

(J − Jo)o := (J − Jo)|Y=Z=0 = J |y=εY1,z=εZ1 − Jo,(7.6a)

ΔJ := J − Jo − (J − Jo)o = J − J |y=εY1,z=εZ1 ,(7.6b) (
H1 −

1

Jo

)o

:=
(
H1 −

1

Jo

)∣∣∣
Y=Z=V=0

(7.6c)

= H1|y=εY1,z=εZ1,v=εV1 −
1

Jo
,
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ΔH1 :=H1 −
1

Jo
−

(
H1 −

1

Jo

)o

(7.6d)
= H1 −H1|y=εY1,z=εZ1,v=εV1 ,

Ho
2 :=H2|y=εY1,z=εZ1,v=εV1 ,(7.6e)

ΔH2 = H2 −Ho
2 .(7.6f)

Let us introduce the vector-valued unknown function

(7.7) �w =

[
Y

V

]
.

We put

(7.8) P(�w) =

[
the left-hand side of (7.5a)

the left-hand side of (7.5b)

]
,

and

(7.9) �c=
1

ε

[
the right-hand side of (7.5a)

the right-hand side of (7.5b)

]
.

The equation to be solved now is

(7.10) P(�w) = ε�c.

We are going to apply the Nash–Moser(–Hamilton) theorem to find �w =

P−1(ε�c ). To do it, we must analyze the Fréchet derivative DP of the mapping

P at a given fixed �w ∈C∞([0, T ]t × [0,1]x). By introducing the new variable

(7.11) �h=

[
h

k

]
,

the Fréchet derivative is defined by

DP(�w)�h = lim
s→0

1

s

(
P(�w+ s�h)−P(�w)

)
(7.12)

=

[
[DP1]

[DP2]

]
,

where

[DP1] =
∂

∂t
h− J · k

(7.13a)

−
(
(∂yJ)v+ (∂zJ)vr

∂

∂r

)
h,

[DP2] =
∂

∂t
k+H1 · Lh

+
(
(∂yH1)Ly+ ∂yH2 +

(
(∂zH1)Ly+ ∂zH2

)
r
∂

∂r

)
h(7.13b)

+
(
(∂vH1)Ly+ ∂vH2 + ∂wH2 · r

∂

∂r

)
k.

Thanks to Proposition 11, we can claim the following result.
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PROPOSITION 12

We have

(∂zJ)r
∂

∂r
= [(x;y,Dy,D2y, v,Dv]0 · x(1− x)

∂

∂x
,(7.14a)

(
(∂zH1)Ly+ ∂zH2

)
r
∂

∂r
= [(x;y,Dy,D2y, v,Dv]0 · x(1− x)

∂

∂x
,(7.14b)

∂wH2 · r
∂

∂r
= [(x;y,Dy,D2y, v,Dv]0 · x(1− x)

∂

∂x
.(7.14c)

Here D = ∂/∂x.

Proof

Since

r
∂

∂r
= 2x

(
1 + [x]1

) ∂

∂x

as x→ 0 (r→ 0), the problem is concentrated to the situation as x→ 1 (r→ r+).

Now, since

∂zJ = (∂zF )J + eF
1

c2
∂

∂z

(P

ρ

)
=

1

c2
eF

P

ρ
(1 + y+ z)−1,

it is clear that ∂zJ ≡ 0 (mod(1− x)), that is, (7.14a). From Proposition 11, we

have (7.14b). By definition we have

∂wH2 = eF∂wG2 =−eF∂w[R2] =−eF
1

c2
(1 + y)2

P

ρ̄
v ≡ 0,

that is, (7.14c). �

Consequently, we can claim that there are analytic functions a01, a00, a11, a10,

a21, a20 of x, y, Dy, D2y, v, Dv, where D = ∂/∂x, y = ε(Y1+Y ), v = ε(V1+V ),

such that the components of DP(�w)�h can be written as

[DP1] =
∂

∂t
h− Jk+

(
a01x(1− x)D+ a00

)
h,(7.15a)

[DP2] =
∂

∂t
k+H1Lh+

(
a11x(1− x)D+ a10

)
h

(7.15b)
+

(
a21x(1− x)D+ a20

)
k.

We note that a01, . . . , a20 =O(ε) provided that Y , DY , V , DV =O(1). On

the other hand we note, by definition, that

J = eF (1 + P/c2ρ) = eF̄ (1 + P̄ /c2ρ̄)
(
1 + [(x;y,Dy]1

)
and

H1 = eF−2F̄ (1 + P̄ /c2ρ̄)−1(1 +G1)

= e−F̄ (1 + P̄ /c2ρ̄)−1
(
1 + [(x;y,Dy]1 + v2[(x;y,Dy]0

)
.
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Hence,

J = eF̄ (1 + P̄ /c2ρ̄)
(
1 +O(ε)

)
,

H1 = e−F̄ (1 + P̄ /c2ρ̄)−1
(
1 +O(ε)

)
provided that Y , DY =O(1).

REMARK

We see J → 1, H1 → 1 + [y, z]1 as 1/c2 → 0, while P̄ /ρ̄, ū are supposed to be

bounded. (The equilibrium depends upon the central density ρc and the speed

of light c.) But we do not discuss the details of the nonrelativistic limit in this

article.

8. Main conclusion

Now we are ready to propose the main conclusion of this article.

THEOREM 1

Given T > 0, there is a positive number ε0(T ) such that, for |ε| ≤ ε0(T ), there is

a solution �w ∈C∞([0, T ]× [0,1]) of (7.10) such that

sup
j+k≤n

∥∥∥( ∂

∂t

)j( ∂

∂x

)k

�w
∥∥∥
L∞([0,T ]×[0,1])

≤Cn|ε|

and, hence, a solution (y, v) ∈C∞([0, T ]× [0, r+]) of (4.3)–(4.6) of the form

y = εY1 +O(ε2).

Note that for this solution the component R of the metric (2.5) behaves like

R= r
(
1 + εY1 +O(ε2)

)
,

and the density distribution enjoys

ρ=

{
C(t)(r+ − r)1/(γ−1)(1 +O(r+ − r)) 0≤ r < r+,

0 r+ ≤ r.

Here C(t) is a smooth positive function of t.

In other words, the value R+(t) of the Eulerian coordinate R at the surface

of the star r = r+ is approximately oscillating as

R+(t) = r+
(
1 + ε sin(

√
λt+Θ0)ψ(1) +O(ε2)

)
.

A proof can be given by an application of the Nash–Moser(–Hamilton) the-

orem (see [3, p. 171, Theorem III.1.1.1]) as in [8] and [9]. The discussion is quite

parallel. Therefore, omitting the repetitions of the details, we will explain only

the points for which some modifications are necessary.

First the mapping P is considered on the tame spaces �E and �E0. Here �E=

E × E with E = C∞([0, T ] × [0,1]) and �E0 = E0 × E0 with E0 = {φ ∈ E | φ =
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0 at t = 0}. Since E admits the gradings of norms as in [8], �E is a tame space

as the direct Cartesian product. The domain of P is �U, the set of all functions

�w = (Y,V )T ∈ �E0 such that

|Y |+ |DY |+ |V |+ |DV |< 1.

We consider ε such that |ε| ≤ ε1, with ε1 being a fixed sufficiently small positive

number. The mapping P is a tame mapping from �U into �E.

Introducing the operator

(8.1) Λ = x(1− x)
d2

dx2
+

(5

2
(1− x)− N

2
x
) d

dx
,

just as [8, (20)], we rewrite the second component of DP(�w)�h as

[DP2] =
∂

∂t
k−H1Λh

(8.2)
+ b1Ďh+ b0h+ a21Ďk+ a20k,

where

Ď = x(1− x)
∂

∂x
,(8.3a)

b1 =
H1L1

x(1− x)
+ a11,(8.3b)

b0 =H1L0 + a10.(8.3c)

Then b1, b0, a21, a20 are analytic functions of x, y, Dy, D2y, v, Dv. Let us

introduce the Hilbert spaces X=X0,X1,X2, in the same manner as in [8], by

X = L2
(
(0,1);x

3
2 (1− x)

N
2 −1 dx

)
,

X1 =
{
φ ∈X

∣∣∣ Ḋφ :=
√
x(1− x)

dφ

dx
∈X

}
,

X2 = {φ ∈X1 | −Λφ ∈X}.

We write the equation

DP(�w)�h= �g,

where �g = (g1, g2)
T is a given function in �E, as

(8.4)
∂

∂t

[
h

k

]
+

[
a1 −J

A a2

][
h

k

]
=

[
g1
g2

]
,

where

a1 = a01Ď+ a00,(8.5a)

a2 = a21Ď+ a20,(8.5b)

A = −H1Λ+ b1Ď+ b0.(8.5c)
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Then the standard calculation leads us to the equality

1

2

d

dt

[
‖k‖2 +

(H1

J
Ḋh

∣∣∣ Ḋh
)]

+ (β1Ḋh | Ḋh) + (β2Ḋh | h) + (β3Ḋh | k) + (β4h | k) + (β5k | k)

=
(H1

J
Ḋh

∣∣∣ Ḋg1

)
+ (k | g2),

where

β1 = −1

4

(
3 + (N + 3)x+ 2Ď

)H1a01
J

− 1

2

∂

∂t

H1

J
+

H1

J
(Ďa01 + a00),

β2 =
H1

J
Ḋa00,

β3 = −H1

J
ḊJ + ḊH1 +

√
x(1− x)(b1 + a21),

β4 = b0,

β5 = a20.

Here

(φ | ψ) = (φ | ψ)X =

∫ 1

0

φψ̄x
3
2 (1−x)

N
2 −1 dx and ‖φ‖= ‖φ‖X =

√
(φ | φ)X,

and we have used the formula

(αḊh | ḊĎh) = (α∗Ḋh | Ḋh) with α∗ =−1

4

(
3 + (N + 3)x+ 2Ď

)
α,

which holds for h ∈X2 and α ∈C∞([0,1]), together with [8, Proposition 8].

Since �w is confined to �U and |ε| is restricted to at most ε0, we can assume

1

M0
≤ J ≤M0,

1

M0
≤H1 ≤M0

with a constant M0 independent of �w. Now the energy

E := ‖k‖2 +
(H1

J
Ḋh

∣∣∣ Ḋh
)

enjoys the inequality

1

2

dE
dt

≤M
(
‖�h‖2H + ‖�h‖H‖�g‖H

)
,

where H=X1 ×X and∥∥(φ,ψ)T∥∥2

H
= ‖φ‖2X1 + ‖ψ‖2X = ‖φ‖2 + ‖Ḋφ‖2 + ‖ψ‖2,

and

M =
∑

1≤j≤5

‖βj‖L∞ + (M0)
2 + 1.

Since

1

(M0)2
(
‖k‖2 + ‖Ḋh‖2

)
≤ E ≤ (M0)

2
(
‖k‖2 + ‖Ḋh‖2

)
,



274 Tetu Makino

using the same Gronwall’s argument as [8, Proposition 9] and [9, Lemma 3], we

see that the initial value problem for (8.4) with the initial condition

h= k = 0 at t= 0

admits a unique solution �h= (h,k)T in C([0, T ],X2 ×X1) for given �g ∈C([0, T ],

X1 ×X), which enjoys the energy estimate

‖�h‖H ≤C

∫ t

0

∥∥�g(t′)∥∥
H
dt′.

Therefore, DP(�w) admits an inverse, and its tame estimates can be shown in

the same manner as in [8]. An outline of this procedure can be found in the

Appendix. This completes the proof of the main conclusion.

9. Cauchy problems

As a supplement let us consider the Cauchy problem associated with equations

(6.10a)–(6.10b), that is, (CP):

∂y

∂t
− Jv = 0,

∂v

∂t
+H1Ly+H2 = 0, t≥ 0,0≤ x≤ 1,(9.1)

y|t=0 = ψ0(x), v|t=0 = ψ1(x).(9.2)

Here ψ0 and ψ1 are functions given in C∞([0,1]).

Let us recall that

J = eF (1 + P/c2ρ) = J(x, y, z)

is an analytic function of x (in a neighborhood of [0,1]), y (small), and z =

r ∂y
∂r = x[(x)] ∂y∂x (small), where [(x)] stands for an analytic function of x in a

neighborhood of [0,1]. Recall that H1 and H2 are analytic functions of x, y, z,

v, and w = r ∂v
∂r (quadratic in v/c,w/c), and recall that the linear operator L has

the form

Ly = −x(1− x)
d2y

dx2
−

(5

2
(1− x)− N

2
x
)dy

dx

+ l1(x)x(1− x)
dy

dx
+L0(x)y,

where l1 and L0 are analytic functions of x in a neighborhood of [0,1].

We claim the following result.

THEOREM 2

For any given T > 0 there exists a sufficiently small positive number δ such that

if ψ0, ψ1 ∈C∞([0,1]) satisfy

max
k≤K

{∥∥∥( d

dx

)k

ψ0

∥∥∥
L∞

,
∥∥∥( d

dx

)k

ψ1

∥∥∥
L∞

}
≤ δ,

then there exists a unique solution (y, v) of (CP) in C∞([0, T ]× [0,1]). Here K

is a sufficiently large number depending only upon γ.
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Proof

The proof can be done in almost the same manner as that of [8, Theorem 2]. Let

us take the functions

(9.3) y∗1 = ψ0(x) + tJo(x)ψ1(x), v∗1 = ψ1(x),

which satisfy the initial conditions, where

Jo(x) = J(x,0,0)

as in (7.4). Then we seek a solution (y, v) of the form

(9.4) y = y∗1 + Y, v = v∗1 + V.

The initial condition for �w := (Y,V )T is

(9.5) �w|t=0 = (0,0)T

and the equations to be satisfied by �w = (Y,V )T are

∂Y

∂t
− JV − (ΔJ)v∗1 = c1,(9.6a)

∂V

∂t
+H1LY + (ΔH1)Ly∗1 +ΔH2 = c2,(9.6b)

where

J = J(x, y∗1 + Y, z∗1 +Z), with Z := r
∂Y

∂r
,(9.7a)

ΔJ = J(x, y∗1 + Y, z∗1 +Z)− J(x, y∗1 , z
∗
1),(9.7b)

c1 =
(
J(x, y∗1 , z

∗
1)− J(x,0,0)

)
v∗1 ,(9.7c)

H1 =H1(x, y
∗
1 + Y, z∗1 +Z,v∗1 + V,w∗

1 +W ), with W = r
∂V

∂r
,(9.7d)

ΔH1 =H1(x, y
∗
1 + Y, z∗1 +Z,v∗1 + V,w∗

1 +W )−H1(x, y
∗
1 , z

∗
1 , v

∗
1 ,w

∗
1),(9.7e)

ΔH2 =H2(x, y
∗
1 + Y, z∗1 +Z,v∗1 + V,w∗

1 +W )−H2(x, y
∗
1 , z

∗
1 , v

∗
1 ,w

∗
1),(9.7f)

c2 = −H1(x, y
∗
1 , z

∗
1 , v

∗
1 ,w

∗
1)Ly∗1 −H2(x, y

∗
1 , z

∗
1 , v

∗
1 ,w

∗
1).(9.7g)

The problem can be written as

(9.8) P(�w) = �c,

where

P(�w) =

[
the left-hand side of (9.6a)

the left-hand side of (9.6b)

]
,(9.9)

�c =

[
c1
c2

]
.(9.10)

Then the Nash–Moser(–Hamilton) theorem can be applied in the same manner

as the proof of Theorem 1, since the Fréchet derivative of P has the same form

as (7.12)–(7.13). This completes the proof. �
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REMARK

The initial data read

R|t=0 = r
(
1 +ψ0

(
x(r)

))
,

∂R

∂t

∣∣∣
t=0

=
1

c

√
1− 2Gm+

c2r+
exp

[
− 1

c2
u(ρ0)

]
rψ1

(
x(r)

)
,

where

ρ0 = ρ̄(r)(1 +ψ0)
−2

(
1 + ψ0 + r

dψ0

dr

)−1

.

SUPPLEMENTARY REMARK 4

Let us consider moving solutions constructed as in Sections 8 and 9, which are

defined on 0 ≤ t ≤ T , 0 ≤ r ≤ r+. We should discuss how to extend the metric

onto the exterior vacuum region r > r+. We owe the idea to [10].

If a spherically symmetric extension to the vacuum region is possible, then

Birkhoff’s theorem says that it should be the Schwartzschild metric

ds2 =
(
1− 2Gm+

c2R�

)
c2(dt�)2 −

(
1− 2Gm+

c2R�

)−1

(dR�)2 − (R�)2(dθ2 + sin2 θ dφ2).

Here t� = t�(t, r) and R� = R�(t, r) are smooth functions of 0≤ t≤ T and r+ ≤
r <∞. We have that there are t�(t, r),R�(t, r) such that the components of the

metric are of class C1([0, T ]× [0,+∞)).

Let us verify this. We are considering the patched metric

ds2 = g00c
2 dt2 + 2g01cdtdr+ g11 dr

2 + g22(dθ
2 + sin2 θ dφ2),

where

g00 =

{
κe−2u/c2 0≤ r ≤ r+,

K�(∂t
�

∂t )
2 − 1

c2 (K
�)−1(∂R

�

∂t )2 r+ < r,

g01 =

{
0 0≤ r ≤ r+,

cK� ∂t�

∂t
∂t�

∂r − 1
c (K

�)−1 ∂R�

∂t
∂R�

∂r r+ < r,

g11 =

{
−(1 + V 2

c2 − 2Gm
c2R )−1(∂R∂r )

2 0≤ r ≤ r+,

c2K�(∂t
�

∂r )
2 − (K�)−1(∂R

�

∂r )2 r+ < r,

g22 =

{
−R2 0≤ t≤ r+,

−(R�)2 r+ < r.

Here

K� = 1− 2Gm+

c2R�
.

Let us assume R=R� and ∂rR= ∂rR
� at r = r+ so that g22 will be of class C1.
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First, in order for g00 to be continuous across r = r+, we require

(9.11)
∂t�

∂t
=
√
κ(K�)−1

(
1 +

V 2

c2
− 2Gm+

c2R

)1/2

,

on r = r+, where V = V (t, r+ − 0) (= 1√
κ

∂R
∂t ). In order for g01 to be continuous,

we require

(9.12)
∂t�

∂r
=

1

c2
(K�)−1

(
1 +

V 2

c2
− 2Gm+

c2R

)−1/2

V
∂R

∂r

on r = r+. It can be shown that (9.12) is sufficient in order for g11 to be continuous

across r = r+. In summary, the gμν ’s are continuous if (9.11) and (9.12) hold.

Note that, since

K� � κ, 1 +
V 2

c2
− Gm+

c2R
� κ,

∂R

∂r
� 1,

the right-hand side of (9.12) � V/c2 so that ∂t�/∂r �= 0 and t� should actually

depend upon r if V �= 0, that is, if the solution is actually moving.

By a tedious calculation we can show that the differentiation of (9.11) with

respect to t gives the continuity of ∂rg00. On the other hand the continuity of

∂rg01 reads as a condition of the form

(9.13) K� ∂t
�

∂t

∂2t�

∂r2
− 1

c2
(K�)−1 ∂R

∂t

∂2R�

∂r2
= b1

on r = r+, where b1 is a function of the values of ∂tt
�, ∂rt

�, ∂t∂rt
�, R, ∂rR, ∂t∂rR

on r = r+. The continuity of ∂rg11 reads as a condition of the form

(9.14) c2K� ∂t
�

∂r

∂2t�

∂r2
− (K�)−1 ∂R

∂r

∂2R�

∂r2
= b2,

on r = r+, where b2 is a function of the same kind as b1. If we consider (9.13)–

(9.14) as a system of simultaneous linear equations for the unknown ∂2t�/∂r2,

∂2R�/∂r2, then the determinant of the coefficient matrix is

−
√
κ
(
1 +

V 2

c2
− 2Gm+

c2R

)−1/2 ∂R

∂r
,

which is near to −1, since

1 +
V 2

c2
− 2Gm+

c2R
� κ,

∂R

∂r
� 1.

Since b1, b2 are known by (9.11)–(9.12), the values ∂2t�/∂r2, ∂2R�/∂r2 along

r = r+ + 0 are uniquely determined. Then all gμν ’s are of class C1.

However, we note that this ∂2R�/∂r2 generally does not coincide with

∂2R/∂r2 on r = r+, which is necessary for g22 to be twice continuously dif-

ferentiable. In fact by a tedious calculation we get

∂2R�

∂r2

∣∣∣
r=r++0

=A
(∂R

∂r

)2

+
∂2R

∂r2

∣∣∣
r=r+−0

,

where

A=−V 2

c2

(Gm+

c2R2
+

1√
κ

1

c2
∂V

∂t

)(
1 +

V 2

c2
− 2Gm+

c2R

)−2
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evaluated at r = r+ − 0. Since

Gm+

c2R2

(
1 +

V 2

c2
− 2Gm+

c2R

)−2

� Gm+

c2r2+κ
2
�= 0,

we see that ∂2R�/∂r2 ≡ ∂2R/∂r2 if and only if V ≡ 0 at r = r+ − 0, which is the

case if the solution under consideration is an equilibrium.

We have determined the functions

f0(t) := R(t, r+), f1(t) := ∂rR(t, r+),

f2(t) :=
∂2R�

∂r2
at r = r+ + 0,

H(t) :=
∂t�

∂t
at r =R+ + 0, h0(t) :=

∫ t

0

H(t′)dt′,

h1(t) :=
∂t�

∂r
at r = r+ + 0, h2(t) :=

∂2t�

∂r2
at r = r+ + 0

for 0≤ t≤ T . Using these functions we define t�(t, r),R�(t, r) for 0≤ t≤ T , r+ ≤
r <+∞ as follows:

R�(t, r) = f0(t) + f1(t)(r− r+) +
1

2
f2(t)(r− r+)

2χ(r− r+),

t�(t, r) = h0(t) +
(
h1(t)(r− r+) +

1

2
h2(t)(r− r+)

2
)
χ
(
δ(r− r+)

)
.

Here χ is a smooth cutoff function in C∞[0,+∞) such that 0≤ χ(s)≤ 1, χ(s) = 1

for 0≤ s≤ 1, and χ(s) = 0 for 2≤ s <+∞ and δ is a sufficiently small positive

number. Since f0(t)� r+, f1(t)� 1, f2(t) � 0, H(t) � 1, we see that ∂R�/∂r � 1

and ∂t�/∂t � 1 uniformly. Then the coefficients of the metric g00, g01, g11, and

g22 are of class C1([0, T ]× [0,+∞)) and their second-order derivatives may have

discontinuity of at most the first kind along the segment r = r+, and they satisfy

the Einstein equations in the usual sense on r �= r+. So, we can say that this

metric is a weak solution of the Einstein equations on [0, T ]×R
3 in the following

sense. The Einstein equations can be written as

Rμν =
8πG

c4

(
Tμν −

1

2
gμνT

)
and

T = TαβTαβ ,

Rμν =
1

2
gαβ(−∂α∂βgμν − ∂μ∂νgαβ + ∂β∂νgμα + ∂μ∂αgβν) + Fμν ,

Fμν =
1

2
∂αg

αβ(∂νgβμ + ∂μgβν − ∂βgμν)

− 1

2
∂νg

αβ(∂αgβμ + ∂μgβα − ∂βgμα).
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Therefore, for (Tμν)μν , T ∈ L2
loc given, ds2 = gμν dx

μ dxν is said to be a weak

solution if gμν , g
αβ ∈H1

loc and for any test function (φμν)μν there holds

1

2

∫
(∂βgμν)∂α(g

αβφμν) + (∂νgαβ)∂μ(g
αβφμν)

− (∂νgμα)∂β(g
αβφμν)− (∂αgβν)∂μ(g

αβφμν) +

∫
Fμνφ

μν

=
8πG

c4

∫ (
Tμν −

1

2
gμνT

)
φμν .

Appendix

Let us give an outline of the tame estimate of the mapping (�w,�g) �→ �h when

DP(�w)�h = �g. The equation (8.4) is split as [8] using a cutoff function ω ∈ C∞

such that ω(x) = 1 for x≤ 1/3, 0<ω(x)< 1 for 1/3< x< 2/3, and ω(x) = 0 for

2/3≤ x. Put

�h[0](x) = ω(x)�h(x), �h[1](x) =
(
1− ω(x)

)
�h(x).

The equations turn out to be

∂

∂t

[
h[μ]

k[μ]

]
+

[
a
[μ]
1 −J

A[μ] a
[μ]
2

][
h[μ]

k[μ]

]

=

[
g
[μ]
1

g
[μ]
2

]
+ (−1)μ

[
c11 0

c21 c22

][
h[1−μ]

k[1−μ]

]
,

where μ= 0,1 and

a
[μ]
1 = a01Ď+ a00 − (−1)μa01Ďω,

a
[μ]
2 = a21Ď+ a20 − (−1)μa21Ďω,

A[μ] = −H1Λ+
(
b1 + (−1)μ2H1(Dω)

)
Ď+ b0 + (−1)μ(H1Λ− b1Ď)ω,

c11 = a01Ďω,

c21 = −2H1(Dω)Ď+ b1(Ďω)−H1(Λω),

c22 = a21Ďω.

Therefore, the problem is reduced to the tame estimate of an equation of the

form

∂�h

∂t
+A�h = �g,

A =

[
a1 J

A a2

]
=

[
a01Ď+ a00 J

−b2�+ b1Ď+ b0 a21Ď+ a20

]
,

under the boundary condition h|x=1 = 0, where

�= x
d2

dx2
+

N

2

d

dx
, Ď = x

d

dx

with N standing for either 2γ/(γ − 1) or 5.



280 Tetu Makino

As in [8], we use the notations

�a = (ai)
7
i=0 = (b0, b1, b2, a01, a00, a21, a20, J),

|�a|〈T 〉
n = sup

0≤t≤T
|�a|n,

|�a|n = max
j+k≤n,0≤i≤7

‖∂j
t Ḋ

kai‖L∞ ,

‖�h‖〈T 〉
n =

( ∑
j+k≤n

∫ T

0

‖∂j
t
�h‖2k dt

)1/2

,

‖�h‖k =
( ∑
0≤�≤k

〈h〉2�+1 + 〈k〉2�
)1/2

.

Here 〈φ〉� means the same as it does in [9].

Then the elliptic a priori estimate [9, Proposition 8] should read

‖�h‖n+1 ≤C
(
‖A�h‖n +

(
1 + |�a|n+4

)
‖�h‖0

)
.

This can be verified if we keep in mind that

‖a1h‖1 ≤ C
(
|ε|‖h‖2 + ‖h‖1

)
,

‖a2k‖0 ≤ C
(
|ε|‖k‖1 + ‖k‖0

)
,

which come from

a01 =
1

c2
eF

P

ρ
(1 + y+ z)−1ε(V1 + V )

r

x(1− x)

dx

dr
,

a21 = − 1

c2
eF

P

ρ̄
(1 + y)2ε(V1 + V )

r

x(1− x)

dx

dr
.

In fact, estimates of the commutators∥∥[�,A]φ
∥∥
n
≤ C

(
|�a|2‖φ‖n+3 + |�a|n+5‖φ‖0

)
,∥∥[�,a], φ

∥∥
n
≤ C

(
|�a|3‖φ‖n+2 + |�a|n+5‖φ‖0

)
,∥∥[�, J ]φ

∥∥
n
≤ C

(
|�a|4‖φ‖n+1 + |�a|n+5‖φ‖0

)
can be derived as in [9] and used to prove the elliptic a priori estimate by induction

on n.

On the other hand, the energy estimate should read

‖ �H‖ ≤C
(
‖ �H|t=0‖+

∫ T

0

∥∥�G(t′)
∥∥dt′),

where

‖ �H‖=
(
‖H‖2 + ‖ḊH‖2 + ‖K‖2

)1/2
with ‖ · ‖= ‖ · ‖

L2(x
N
2

−1 dx)
,

for any solution �H = (H,K)T of

∂ �H

∂t
+A �H = �G, H|x=1 = 0,
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which may not vanish at t= 0, so that

‖∂n
t
�h‖ ≤C

(
‖∂n

t
�h|t=0‖+

∫ t

0

‖∂n
t �g‖+

∫ t

0

∥∥[∂n
t ,A]

�h
∥∥)

.

Moreover, we have an estimate

‖∂n+1
t

�h|t=0‖ ≤C
(
1 +Wn(�g) + |�a|〈0〉n+3

)
,

where

Wn(�g) =
∑

j+k≤n

‖∂j
t�g|t=0‖k,

provided that |�a|4 and W0(�g) are bounded. In order to verify this, it is sufficient

to show

‖∂n+1
t

�h|t=0‖k ≤C
(
Wn+k(�g) + |�a|〈0〉n+k+3W0(�g) + |�a|〈0〉k+4Wn−1(�g)

)
inductively on n using

‖A�h‖n ≤C
(
‖�h‖n+1 + |�a|n+4‖�h‖0

)
.

Then the same discussion using the auxiliary quantity

Zn(�h) =
∑

j+k=n

‖∂j
t
�h‖k

as in [9] leads us to the estimate

‖�h‖〈t〉n+1 ≤C
(
1 +

∫ t

0

‖�g‖〈t
′〉

n+1 dt
′ +Wn(�g) + ‖�g‖〈T 〉

n + |�a|〈T 〉
n+3

)
for 0≤ t≤ T .

This estimate for the split problem is sufficient to get the tame estimate for

the original �h=�h[0] +�h[1] as in [8]. We omit the repetition of the discussion.
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du premier ordre dans le champ complexe, Publ. Math. Soc. Japan, Tokyo,

1961. MR 0124549.

[5] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2, 4th ed.,

Pergamon Press, Oxford, 1975. MR 0475345.

[6] T. Makino, “On a local existence theorem for the evolution equation of gaseous

stars” in Patterns and Waves, Stud. Math. Appl. 18, North-Holland,

Amsterdam, 1986, 459–479. MR 0882389. DOI 10.1016/S0168-2024(08)70142-5.

[7] , On spherically symmetric stellar models in general relativity, Kyoto J.

Math. 38 (1998), 55–69. MR 1628067.

[8] , On spherically symmetric motions of a gaseous star governed by the

Euler-Poisson equations, Osaka J. Math. 52 (2015), 545–580. MR 3326626.

[9] , On spherically symmetric motions of the atmosphere surrounding a

planet governed by the compressible Euler equations, Funkcial. Ekvac. 58

(2015), 43–85. MR 3379135.

[10] C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically

symmetric gravitational collapse, Phys. Rev. (2) 136 (1964), B571–B576.

MR 0177783.

[11] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San

Francisco, Calif., 1970. MR 0418833.

[12] J. P. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55

(1939), 374–381. DOI 10.1103/PhysRev.55.374.

[13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier

Analysis, Self-Adjointness, Academic Press, New York, 1975. MR 0493420.

[14] A. D. Rendall and B. G. Schmidt, Existence and properties of spherically

symmetric static fluid bodies with a given equation of state, Class. Quantum

Gravity 8 (1991), 985–1000. MR 1104769.

[15] Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, 1: Stars and

Relativity, Univ. Chicago Press, Chicago, 1971.

Department of Applied Mathematics, Yamaguchi University, Ube, Japan;

makino@yamaguchi-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=0656198
http://dx.doi.org/10.1090/S0273-0979-1982-15004-2
http://dx.doi.org/10.1090/S0273-0979-1982-15004-2
http://www.ams.org/mathscinet-getitem?mr=0124549
http://www.ams.org/mathscinet-getitem?mr=0475345
http://www.ams.org/mathscinet-getitem?mr=0882389
http://dx.doi.org/10.1016/S0168-2024(08)70142-5
http://dx.doi.org/10.1016/S0168-2024(08)70142-5
http://www.ams.org/mathscinet-getitem?mr=1628067
http://www.ams.org/mathscinet-getitem?mr=3326626
http://www.ams.org/mathscinet-getitem?mr=3379135
http://www.ams.org/mathscinet-getitem?mr=0177783
http://www.ams.org/mathscinet-getitem?mr=0418833
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://www.ams.org/mathscinet-getitem?mr=0493420
http://www.ams.org/mathscinet-getitem?mr=1104769
mailto:makino@yamaguchi-u.ac.jp

	Introduction
	Spherically symmetric evolution equations
	Equilibrium conﬁgurations
	Equations for perturbations
	Analysis of the linearized equation
	Rewriting of the equations (4.3)-(4.6) using the linear operator L
	Framework to apply the Nash-Moser(-Hamilton) theorem
	Main conclusion
	Cauchy problems
	Appendix
	Acknowledgments
	References
	Author's Addresses

