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Abstract Let Ḡ= (G,ω) be a vertex-weighted graph, and let δ be a divisor class onG.

Let rḠ(δ) denote the (combinatorial) rank of δ. Caporaso has introduced the algebraic

rank ralg
Ḡ

(δ) of δ by using nodal curveswith dual graph Ḡ. In this paper, when Ḡ is hyper-

elliptic or of genus3,we showthat ralg
Ḡ

(δ)≥ rḠ(δ)holds, generalizing ourprevious result.

We also show that, with respect to the specializationmap from a nonhyperelliptic curve

of genus 3 to its reduction graph, any divisor on the graph lifts to a divisor on the curve

of the same rank.

1. Introduction

Let k be an algebraically closed field. The correspondence between nodal curves

over k and their (vertex-weighted) dual graphs appears naturally in algebraic

geometry, as in the description of the stratification of the Deligne–Mumford

moduli space of stable curves. Recently, a theory of divisors on graphs has been

developed (see, e.g., [2], [3], [5], [6]). This enables one to study the relationship

between linear systems on a nodal curve and those on the corresponding graph

(and also between linear systems on the generic fiber and those on the dual graph

of the special fiber of a semistable curve over a discrete valuation ring; see, e.g.,

[1], [4], [8]–[10], [13], [14]). In particular, a tropical proof of the Brill–Noether

theorem has been obtained in [13].

In this development, Caporaso [9] has defined the algebraic rank ralg
Ḡ

(δ) of a

divisor class δ on a vertex-weighted graph Ḡ= (G,ω) by using nodal curves with

dual graph Ḡ. It was shown in [9, Summary 3.4] that, on some graphs Ḡ, the alge-

braic rank ralg
Ḡ

(δ) equals the combinatorial rank rḠ(δ) for any divisor class δ. Fur-

ther, Caporaso, Len, and Melo [11] have recently shown that ralg
Ḡ

(δ)≤ rḠ(δ) holds

for any divisor class δ on any vertex-weighted graph Ḡ. In [14, Proposition 1.5],

we have shown that if char(k) �= 2 and Ḡ is a hyperelliptic vertex-weighted graph

satisfying a certain assumption on the bridges of G, then ralg
Ḡ

(δ) ≥ rḠ(δ) holds

for any divisor class δ.
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In this paper, first, we show, based on [14, Proposition 1.5], that the above

assumption on the bridges for hyperelliptic graphs is not necessary.

THEOREM 1.1

Assume that char(k) �= 2. Let Ḡ= (G,ω) be a hyperelliptic vertex-weighted graph.

Then, for any divisor class δ on G, we have ralg
Ḡ

(δ)≥ rḠ(δ).

Second, we show the same inequality on nonhyperelliptic graphs of genus 3.

THEOREM 1.2

Let Ḡ= (G,ω) be a vertex-weighted graph. Assume that Ḡ is nonhyperelliptic and

of genus 3. Then, for any divisor class δ on G, we have ralg
Ḡ

(δ)≥ rḠ(δ).

These results, combined with the above result of Caporaso, Len, and Melo, show

that the algebraic rank equals the combinatorial rank on all hyperelliptic vertex-

weighted graphs (when char(k) �= 2) and nonhyperelliptic vertex-weighted graphs

of genus 3 (and certain graphs which are built from hyperelliptic vertex-weighted

graphs and vertex-weighted graphs of genus at most 3; see Remark 5.3).

Caporaso [9, Conjecture 2.1] conjectured that the algebraic rank equals the

combinatorial rank on any vertex-weighted graphs. It turns out that this is not the

case in general. Caporaso, Len, and Melo [11] have found counterexamples, which

we have learned about while preparing this article. Since there are many graphs

on which the algebraic rank equals the combinatorial rank (see Remark 5.3), it

will be an interesting question to characterize such graphs. See also [12] for very

recent progress.

To prove Theorem 1.1, we study the algebraic and combinatorial ranks of

vertex-weighted graphs with a bridge.

PROPOSITION 1.3

Let Ḡ= (G,ω) be a vertex-weighted graph having a bridge e with endpoints v1, v2.

Let G1 and G2 be the connected components of G� {e} such that v1 ∈ V (G1),

v2 ∈ V (G2), and set Ḡi = (Gi, ω|V (Gi)) for i= 1,2. Let d ∈Div(G), and let di ∈
Div(Gi) be the restriction of d to Gi. Then we have

(1.1) rḠ(d)≤
{
rḠ1

(d1) + rḠ2
(d2) + 1 if vi ∈Bs(|di|•) for each i= 1,2,

rḠ1
(d1) + rḠ2

(d2) otherwise.

(For the definition of Bs(|di|•), see Sections 2.1 and 2.2.)

There is a formula corresponding to (1.1) (with the inequality replaced by equal-

ity) for nodal curves (see Lemma 3.3). We prove Theorem 1.1 by induction on

the number of bridges, using Proposition 1.3, Lemma 3.3, and [14, Corollary 1.7].

(The induction step is a little tricky because of base points (see Lemma 4.1).)
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To prove Theorem 1.2, we show the following proposition (see Section 2.4 for

the notation).

PROPOSITION 1.4

Let R be a complete discrete valuation ring with fractional field K and residue

field k. Let Ḡ= (G,ω) be a nonhyperelliptic graph of genus 3. Let X be a reg-

ular, generically smooth, semistable R-curve with reduction graph Ḡ. Then the

following condition (F) holds.

(F) For any d ∈ Div(G), there exists a divisor D̃ ∈ Div(XK) such that

ρ̃∗(D̃) = d and rḠ(d) = rXK
(D̃),

where XK is the generic fiber of X and ρ̃∗ : Div(XK)→ Div(G) is the special-

ization map defined in (2.2).

We remark that a similar result for hyperelliptic graphs under a necessary

assumption on their bridges is obtained in [14, Theorem 8.2] (see Remark 5.2;

see also Proposition 5.1 for a related result, which says that any nonhyperellip-

tic graph of genus 3 satisfies [14, condition (C)]). The proof of Proposition 1.4

uses the specialization lemma of Amini and Caporaso [2, Theorem 4.10], which is

based on Baker’s specialization lemma [4, Lemma 2.8], and Raynaud’s theorem

on the surjectivity of the specialization map between principal divisors (see [16],

[4, Corollary A2], Theorem A.1). Then we deduce Theorem 1.2 from Proposi-

tion 1.4 by the same argument as that in [14], which is due to Caporaso.

In relation to [11, Question 5.18], the referee has asked whether, also in

char(k) = 2, the algebraic rank and the combinatorial rank coincide for hyperel-

liptic graphs. At this moment, we do not know a satisfactory answer.

2. Combinatorial and algebraic ranks of divisors on graphs

In this section, we recall definitions and properties of combinatorial and algebraic

ranks of divisors on graphs, which will be used later.

2.1. Divisors on finite graphs
We briefly recall the theory of divisors on finite graphs. Our basic references are

[5] and [6].

Throughout this paper, a finite graph means an unweighted, finite connected

graph. We allow a finite graph to have loops and multiple edges. For a finite

graph G, let V (G) denote the set of vertices, and let E(G) denote the set of edges.

The genus of G is defined as g(G) = |E(G)| − |V (G)|+ 1. An edge e ∈ E(G) is

called a bridge if the deletion of e makes G disconnected.

Let Div(G) be the free abelian group generated by V (G). We call the ele-

ments of Div(G) divisors on G. Any divisor d ∈ Div(G) is uniquely written as

d=
∑

v∈V (G) nv[v] for nv ∈ Z. The coefficient nv at [v] is denoted by d(v). A divi-

sor d is effective, written as d ≥ 0, if d(v) ≥ 0 for any v ∈ V (G). The degree of

a divisor d is defined as deg(d) =
∑

v∈V (G) d(v).
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A rational function on G is an integer-valued function on V (G). We denote

by Rat(G) the set of rational functions on G. For f ∈ Rat(G) and a vertex v

of G, we set ordv(f) =
∑

e=wv∈E(G)(f(w)− f(v)), where the e’s run through all

the edges of G with endpoint v. Then

div(f) :=
∑

v∈V (G)

ordv(f)[v]

is a divisor on G. The set of principal divisors on G is defined as Prin(G) =

{div(f) | f ∈ Rat(G)}. Then Prin(G) is a subgroup of Div(G), and we write

Pic(G) = Div(G)/Prin(G). For a divisor d ∈Div(G), let cl(d) denote its divisor

class in Pic(G).

Two divisors d, d′ ∈ Div(G) are said to be linearly equivalent, expressed as

d ∼ d′, if d − d′ ∈ Prin(G). For d ∈ Div(G), the complete linear system |d| is

defined by

|d|=
{
d′ ∈Div(G)

∣∣ d′ ≥ 0, d′ ∼ d
}
.

DEFINITION 2.1 ((COMBINATORIAL) RANK OF A DIVISOR [5])

Let G be a finite graph. Let d ∈ Div(G). If |d|= ∅, then we set rG(d) :=−1. If

|d| �= ∅, then we set

rG(d) := max
{
s ∈ Z≥0

∣∣ |d− e| �= ∅ for any effective divisor e with deg(e) = s
}
.

We note that rG(d) depends only on the divisor class of d. For δ = cl(d) ∈ Pic(G),

we set rG(δ) := rG(d).

A vertex v ∈ V (G) is called a base point of the complete linear system |d| if
rG(d− [v]) = rG(d). The set of base points of |d| is denoted by Bs(|d|). If |d|= ∅,
then any vertex of G is a base point of |d| by definition.

In the rest of this Section 2.1, we assume that G is loopless. For any subset

A⊆ V (G) and v ∈ V (G), the out-degree of v from A, denoted by outdegA(v), is

the number of edges of G having v as one endpoint and whose other endpoint

lies in V (G)�A. For d ∈Div(G), a vertex v ∈A is saturated for d with respect

to A if d(v)≥ outdegA(v), and nonsaturated otherwise.

DEFINITION 2.2 (v0-REDUCED DIVISOR [5])

Fix a base vertex v0 ∈ V (G). A divisor d ∈Div(G) is called a v0-reduced divisor if

d(v)≥ 0 for any v ∈ V (G)� {v0}, and every nonempty subset A of V (G)� {v0}
contains a nonsaturated vertex v ∈A for d with respect to A.

We recall from [5] key properties of v0-reduced divisors, which will be used later.

PROPOSITION 2.3 ([5, PROPOSITION 3.1 AND ITS PROOF])

Fix a base vertex v0 ∈ V (G). Then for any d ∈ Div(G), there exists a unique

v0-reduced divisor d′ ∈Div(G) that is linearly equivalent to d. Further, rG(d)≥ 0

if and only if d′ is effective.



Algebraic rank 181

The canonical divisor KG on G is defined by KG =
∑

v∈V (G)(val(v) − 2)[v] ∈
Div(G), where val(v) denotes the number of edges with endpoint v. We remark

that, with the above definition of rank, the notion of v0-reduced divisors, and

the canonical divisor on G, Baker and Norine [5, Theorem 1.12] established the

Riemann–Roch theorem on a loopless finite graph.

Finally, we recall the definition of hyperelliptic graphs.

DEFINITION 2.4 (HYPERELLIPTIC GRAPH [6])

A loopless finite graph G of g(G)≥ 2 is said to be hyperelliptic if there exists a

divisor d ∈Div(G) such that deg(d) = 2 and rG(d) = 1.

2.2. Rank of divisors on vertex-weighted graphs
We briefly recall the theory of divisors on vertex-weighted graphs. Our basic

references are [2] and [9].

A vertex-weighted graph Ḡ = (G,ω) is the pair of a finite graph G and a

function (called a vertex-weight function) ω : V (G) → Z≥0. The genus of Ḡ is

defined as g(Ḡ) = g(G) +
∑

v∈V (G) ω(v).

For a vertex-weighted graph Ḡ= (G,ω), we make a loopless finite graph Ḡ•

as follows. We add ω(v) loops to G at v for every vertex v ∈ V (G). Then we

insert a vertex in every loop edge. The graph Ḡ• is called the virtual loopless

finite graph of Ḡ. We remark that G may have loops, but Ḡ• does not.

We have natural embeddings of the vertices V (G)⊆ V (Ḡ•), and of the divisor

groups Div(G)⊆Div(Ḡ•). For d ∈Div(G), the rank rḠ(d) of d is defined by

rḠ(d) := rḠ•(d),

where the right-hand side is defined in Definition 2.1. Since Prin(G)⊆ Prin(Ḡ•),

rḠ(d) depends only on the divisor class of d. For δ = cl(d) ∈ Pic(G), we set

rḠ(δ) := rḠ(d).

For d ∈ Div(G), we write |d|• for the complete linear system |d| on Ḡ•.

Namely, we have

|d|• :=
{
d′ ∈Div(Ḡ•)

∣∣ d′ ≥ 0, d′ is linearly equivalent to d in Ḡ•}.
Here we use the notation • to emphasize that we are considering divisors on Ḡ•.

Let KḠ• be the canonical divisor of Ḡ•. Then the support of KḠ• lies in

V (G). We regard KḠ• as an element of Div(G), and we define the canonical

divisor KḠ of Ḡ by KḠ :=KḠ• ∈Div(G). We remark that if G is loopless, then

KḠ =KG +
∑

v∈V (G) 2ω(v)[v].

A vertex-weighted graph Ḡ of g(Ḡ)≥ 2 is said to be hyperelliptic if its virtual

loopless finite graph Ḡ• is hyperelliptic. By Definition 2.4, this is equivalent to

the existence of d ∈Div(Ḡ•) such that deg(d) = 2 and rḠ(d) = 1.

2.3. Algebraic rank
Following [9], we recall the notion of the algebraic rank of a divisor class δ on a

vertex-weighted graph.
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Let k be a fixed algebraically closed field. By a nodal curve, we mean a con-

nected, reduced, projective, one-dimensional scheme over k with at most ordinary

double points as singularities.

For a nodal curve X , the group of Cartier divisors is denoted by Div(X). We

set Pic(X) = Div(X)/Prin(X), where Prin(X) denotes the group of principal

divisors. For L ∈ Pic(X), we write rX(L) = dimkH
0(X,L)− 1.

Given a nodal curve X , the (vertex-weighted) dual graph Ḡ = (G,ω) asso-

ciated to X is defined as follows. Let C1, . . . ,Cr be the irreducible components

of X . Then G has vertices v1, . . . , vr which correspond to C1, . . . ,Cr, respectively.

Two vertices vi, vj (i �= j) of G are connected by aij edges if #Ci ∩ Cj = aij .

A vertex vi has bi loops if #Sing(Ci) = bi. The vertex-weighted function ω is

given by assigning to vi the geometric genus of Xi.

Let Ḡ= (G,ω) be a vertex-weighted graph. Let Malg(Ḡ) be a family of nodal

curves representing all the isomorphism classes of nodal curves with dual graph Ḡ.

For X ∈Malg(Ḡ), we write X =
⋃

v∈V (G)Cv , where Cv is the irreducible curve

corresponding to v ∈ V (G). We have a natural map

(2.1) ρ∗ : Div(X)→Div(G), D �→
∑

v∈V (G)

(
deg(D|Cv )

)
[v].

In other words, for a Cartier divisor D on X , ρ∗(D) ∈Div(G) gives the multide-

gree of D. Since linear equivalent divisors on X have the same multidegree, ρ∗
descends to Pic(X)→Div(G). Then we have a stratification of Pic(X):

Pic(X) =
⊔

d∈Div(G)

Picd(X),

where Picd(X) = {L ∈ Pic(X) | deg(L|Cv ) = dv for any v ∈ V (G)} for d =

(dv)v∈V (G) ∈Div(G).

DEFINITION 2.5 (ALGEBRAIC RANK [9])

Let Ḡ= (G,ω) be a vertex-weighted graph, and let δ ∈ Pic(G) be a divisor class

on G. We set

ralg
Ḡ

(δ) = max
X∈Malg(Ḡ)

{
min
d∈δ

{
max

L∈Picd(X)

{
rX(L)

}}}
,

and call ralg
Ḡ

(δ) the algebraic rank of the divisor class δ.

2.4. The specialization lemma for vertex-weighted graphs
We recall the specialization lemma for vertex-weighted graphs due to Amini and

Caporaso [2], which generalizes Baker’s specialization lemma [4, Lemma 2.8] for

loopless finite graphs. Our basic references are [2] and [4].

Let k be a fixed algebraically closed field. Let R be a complete discrete

valuation ring with residue field k. Let K denote the fractional field of R.

By an R-curve, we mean an integral scheme of dimension 2 that is proper

and flat over Spec(R). For an R-curve X , we denote by XK the generic fiber

of X , and by X the special fiber of X . We say that X is a semistable R-curve
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if X is a nodal curve. The vertex-weighted dual graph Ḡ= (G,ω) of X is then

called the reduction graph of X .

Let X be a regular, generically smooth, semistable R-curve. Since XK is

smooth (resp., X is regular), the group of Cartier divisors on XK (resp., X ) is

the same as the group of Weil divisors. The Zariski closure of an effective divisor

on XK in X is a Cartier divisor. Extending by linearity, one can associate to any

divisor on XK a Cartier divisor on X , which is also called the Zariski closure of

the divisor.

Let D̃ be a divisor on XK, and let D̃ be the Zariski closure of D̃. Let OX (D̃)

be the invertible sheaf on X associated to D̃ . We define the specialization map

ρ̃∗ : Div(XK)→Div(G) by (see [4, Section 2.1])

(2.2) ρ̃∗(D̃) :=
∑

v∈V (G)

deg
(
OX (D̃)|Cv

)
[v] ∈Div(G).

The map ρ̃∗ is compatible with the map ρ∗ in (2.1). Namely, let D ∈ Div(X)

be a Cartier divisor on the special fiber such that the associated invertible sheaf

OX(D) is isomorphic to OX (D̃)|X . Then, by definition, we have

(2.3) ρ∗(D) = ρ̃∗(D̃).

REMARK 2.6

In [14], ρ̃∗ is denoted by ρ∗. Here we use the notation ρ̃∗, for we have already

used the notation ρ∗ in (2.1).

Let Div(X (K)) be the subgroup of Div(XK) generated by K-valued points of X .

Then

(2.4) ρ̃∗|Div(XK) : Div
(
X (K)

)
→Div(G)

is surjective (see [4, Remark 2.3], [15, Proposition 10.1.40(b)]).

THEOREM 2.7 (AMINI–CAPORASO’S SPECIALIZATION LEMMA [2, THEOREM 4.10])

Let X be a regular, generically smooth, semistable R-curve with reduction graph

Ḡ= (G,ω). Then, for any D̃ ∈Div(XK), one has rḠ(ρ̃∗(D̃))≥ rXK
(D̃).

Theorem 2.7 is a generalization of Baker’s specialization lemma [4, Lemma 2.8] for

loopless finite graphs. Although Amini and Caporaso consider a smooth quasipro-

jective curve B over k (in place of Spec(R)), that is, they consider a morphism

φ : X → B, we remark that their arguments also work over Spec(R). (By the

surjectivity of the map (2.4), the argument over R works the same as the argu-

ment for φ : X →B that admits a section passing through any given component

of the special fiber.)

3. Reduced divisors and decomposition of graphs

In this section, we prove Proposition 1.3. We first show some properties of divisors

on a graph with a bridge.
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LEMMA 3.1

Let G be a loopless finite graph with a bridge e having endpoints v1, v2. Let G1 and

G2 be the connected components of G�{e} such that v1 ∈ V (G1), v2 ∈ V (G2). For

i= 1,2, let ji : V (Gi) ↪→ V (G) be the natural embedding, and let ji∗ : Div(Gi) ↪→
Div(G) be the induced map.

(a) For i= 1,2, we have ji∗(Prin(Gi))⊆ Prin(G).

(b) For i= 1,2, let di be a vi-reduced divisor on Gi. Then

(3.1) j1∗
(
d1 − d1(v1)[v1]

)
+ j2∗

(
d2 − d2(v2)[v2]

)
+
(
d1(v1) + d2(v2)

)
[v1]

is a v1-reduced divisor on G.

Proof

(a) We may assume that i= 1. Let f1 be a rational function on G1. We extend

f1 to a rational function f̃1 on G by setting f̃1(w) = f1(v1) for any w ∈ V (G2).

Then we have div(f̃) = j1∗(div(f1)). Thus, j1∗(div(f1)) ∈ Prin(G), which gives

the assertion.

(b) We put

d := j1∗
(
d1 − d1(v1)[v1]

)
+ j2∗

(
d2 − d2(v2)[v2]

)
.

Since being v1-reduced does not depend on the coefficient of the divisor at [v1],

it suffices to show that d is a v1-reduced divisor on G. Let A⊆ V (G)� {v1} be

any nonempty subset, and we are going to show that there exists a nonsaturated

vertex v ∈A for d with respect to A.

If v2 ∈ A, then it follows from v1 /∈ A that outdegA(v2) ≥ 1 (from the con-

tribution of the bridge e). Since d(v2) = 0, we see that v2 ∈ V (G) � {v1} is a

nonsaturated vertex for d with respect to A. Thus, we may and do assume that

v2 /∈A, and hence, A⊆ V (G)� {v1, v2}.
We set A1 := A ∩ V (G1) and A2 := A ∩ V (G2). Then A1 ⊆ V (G) � {v1}

and A2 ⊆ V (G) � {v2}. Since A �= ∅, we have A1 �= ∅ or A2 �= ∅. Without loss

of generality, we assume that A1 �= ∅. Since d1 is a v1-reduced divisor on G1,

there exists a nonsaturated vertex v ∈ A1 for d1 with respect to A1, that is,

d1(v)< outdegA1
(v). Since d1(v) = d(v) and outdegA1

(v) = outdegA(v), we have

d(v)< outdegA(v). Thus, v ∈A is a nonsaturated vertex for d with respect to A,

which shows the lemma. �

The next lemma will be used in Section 5.

LEMMA 3.2

Let Ḡ = (G,ω) be a vertex-weighted graph. Let d ∈ Div(G). If rḠ(d) ≥ 0, then

there exists an effective divisor e ∈Div(G) that is linearly equivalent to d in G.

Proof

Let Ḡ• be the virtual loopless finite graph of Ḡ. Via the natural embedding of

the sets of vertices, we regard V (G)⊆ V (Ḡ•). The condition rḠ(d) := rḠ•(d)≥ 0
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means that there exists a rational function f̄ ∈Rat(Ḡ•) such that d′ := d+div(f̄)

is an effective divisor on Ḡ•.

Let w ∈ V (Ḡ•) � V (G). This means that w is a vertex inserted in a loop

edge. Thus, there exist exactly two edges e1, e2 of Ḡ• with endpoint w, and the

other endpoint of e1 and that of e2 are the same, which we denote by w′. Since

d(w) = 0 and d′(w)≥ 0, we see that f̄(w′)≥ f̄(w).

We set f := f̄ |V (G) ∈ Rat(G). Since d ∈ Div(G) and f̄(w′)≥ f̄(w) for every

w ∈ V (Ḡ•)� V (G), we see that e := d+div(f) is an effective divisor on G. This

shows the lemma. �

We begin the proof of Proposition 1.3.

Proof of Proposition 1.3

Let Ḡ•, Ḡ•
1, and Ḡ•

2 be the virtual loopless finite graphs of Ḡ, Ḡ1, and Ḡ2,

respectively. Note that Ḡ• is the graph obtained by connecting Ḡ•
1 and Ḡ•

2 with

the edge e. For i= 1,2, let j•i∗ : Div(Ḡ•
i ) ↪→Div(Ḡ•) be the induced embedding

of divisors.

Via the natural embedding of the sets of vertices, we regard V (Gi)⊆ V (G)⊆
V (Ḡ•) and V (Gi)⊆ V (Ḡ•

i )⊆ V (Ḡ•) for i= 1,2. Thus, in the following argument,

we will often identify the vertex vi ∈ V (Gi) with the corresponding vertices in

G, Ḡ•
i , and Ḡ•.

For i = 1,2, we set ri = rḠi
(di). By the definition of the rank, there exists

an effective divisor ei ∈ Div(G•
i ) with deg(ei) = ri + 1 such that rḠ•

i
(di − ei) =

−1. We set ci = di − ei, and let c′i ∈ Div(G•
i ) be the vi-reduced divisor that is

linearly equivalent to ci on G•
i . Since rḠ•

i
(di − ei) = −1, we have c′i(vi) < 0 by

Proposition 2.3.

We claim that rḠ•(d − j•1∗(e1) − j•2∗(e2)) = −1. Indeed, we see from

Lemma 3.1(a) that, as divisors on Ḡ•,

d− j•1∗(e1)− j•2∗(e2)

= j•1∗(d1 − e1) + j•2∗(d2 − e2)

∼ j•1∗(c
′
1) + j•2∗(c

′
2)

∼ j•1∗
(
c′1 − c′1(v1)[v1]

)
+ j•2∗

(
c′2 − c′2(v2)[v2]

)
+
(
c′1(v1) + c′2(v2)

)
[v1].

We denote by g the divisor in the last line in the above equation. Then, by

Lemma 3.1(b), g is a v1-reduced divisor on Ḡ•. Since g(v1) = c′1(v1)+ c′2(v2)< 0,

we have rḠ•(d− j•1∗(e1)− j•2∗(e2)) =−1 by Proposition 2.3.

It follows that

rḠ(d) = rḠ•(d)≤ deg
(
j•1∗(e1) + j•2∗(e2)

)
− 1

= r1 + r2 + 1= rḠ1
(d1) + rḠ2

(d2) + 1.

In particular, this inequality shows the first case of the inequality in (1.1).
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Suppose now that v1 /∈ Bs(|d1|•) or v2 /∈ Bs(|d2|•). We need to show the

stronger inequality

rḠ(d)≤ rḠ1
(d1) + rḠ2

(d2).

Without loss of generality, we may assume that v2 /∈ Bs(|d2|•). This means that

|d2|• �= ∅ and rḠ2
(d2 − [v2]) = r2 − 1. In particular, r2 ≥ 0.

By the definition of the rank, there exists an effective divisor ẽ2 ∈Div(Ḡ•
2)

with deg(ẽ2) = r2 such that rḠ•
2
(d2 − [v2]− ẽ2) =−1. We set h2 = d2 − ẽ2, and

let h′
2 ∈ Div(Ḡ•

2) be the v2-reduced divisor that is linearly equivalent to h2 on

Ḡ•
2. Since rḠ2

(d2) = r2, we have rḠ•
2
(d2− ẽ2)≥ 0; hence, h′

2 is an effective divisor

on Ḡ•
2 by Proposition 2.3. Since h′

2 is v2-reduced and since rḠ•
2
(h′

2 − [v2]) =

rḠ•
2
(d2 − [v2]− ẽ2) =−1, we see that h′

2(v2) = 0.

It follows from Lemma 3.1(a) that

d− j•1∗(e1)− j•2∗(ẽ2) = j•1∗(d1 − e1) + j•2∗(d2 − ẽ2)

∼ j•1∗(c
′
1) + j•2∗(h

′
2).

Since h′
2(v2) = 0, we see that j•1∗(c

′
1) + j•2∗(h

′
2) is a v1-reduced divisor on Ḡ• by

Lemma 3.1(b). Since j•1∗(c
′
1)(v1) + j•2∗(h

′
2)(v1) = c′1(v1)< 0, Proposition 2.3 tells

us that rḠ•(d− j•1∗(e1)− j•2∗(ẽ2)) =−1. Then

rḠ(d) = rḠ•(d)≤ deg
(
j•1∗(e1) + j•2∗(ẽ2)

)
− 1

= r1 + r2 = rḠ1
(d1) + rḠ2

(d2).

Thus, we obtain the inequality in the remaining case. �

There exists a formula corresponding to Proposition 1.3 (with the inequality

replaced by equality) for nodal curves.

LEMMA 3.3

Let X be a nodal curve. We assume that X has a decomposition as X =X1 ∪X2

into two nodal curves so that X1 and X2 meet at exactly one point p. Let D be

a Cartier divisor on X, and we set Di =D|Xi ∈Div(Xi) for i= 1,2. Then

(3.2) rX(D) =

{
rX1(D1) + rX2(D2) + 1 if p ∈Bs(|Di|) for each i= 1,2,

rX1(D1) + rX2(D2) otherwise.

Proof

This is a well-known fact, so we omit a proof (see also [9, Remark 1.5]). �

The following simple remark will be used in the next section.

REMARK 3.4

Let X , X1, X2, p be as in Lemma 3.3. For i= 1,2, let Di be a Cartier divisor

on Xi. Then there exists a Cartier divisor D on X such that D|Xi is linearly

equivalent to Di. Indeed, let pi :X →Xi be the morphism given by the identity
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on Xi and the constant map to p on the other component. Let OXi(Di) be the

invertible sheaf on Xi associated to Di. Then it suffices to take D ∈ Div(X)

such that the associated invertible sheaf OX(D) is isomorphic to p∗1(OX1(D1))⊗
p∗2(OX2(D2)).

4. Graphs with a bridge and hyperelliptic graphs

In this section, we prove Theorem 1.1. We begin by showing the following lemma.

LEMMA 4.1

Let Ḡ= (G,ω) be a vertex-weighted graph with a bridge e with endpoints v1, v2.

Let G1 and G2 be the connected components of G � {e} such that v1 ∈ V (G1)

and v2 ∈ V (G2), and we set Ḡi = (Gi, ω|V (Gi)) for i= 1,2. Let d ∈Div(G), and

let di ∈Div(Gi) be the restriction of d to Gi. Let X be a nodal curve over k with

dual graph Ḡ, and we write Xi for the union of irreducible components of X cor-

responding to Ḡi. Let ρ∗ : Div(X)→Div(G) and ρi∗ : Div(Xi)→Div(Gi) be the

maps defined in (2.1). For i= 1,2, we assume that, for any divisor ei ∈Div(Gi),

there exists a Cartier divisor Ei on Xi satisfying ρi∗(Ei) = ei and rXi(Ei) ≥
rḠi

(ei). Then there exists a Cartier divisor D on X satisfying ρ∗(D) = d and

rX(D)≥
{
rḠ1

(d1 − [v1]) + rḠ2
(d2 − [v2]) + 2 if vi /∈Bs(|di|•) for each i= 1,2,

rḠ1
(d1 − [v1]) + rḠ2

(d2 − [v2]) + 1 otherwise.

Proof

Case 1. Suppose that vi /∈ Bs(|di|•) for each i = 1,2. This means that |di|• �= ∅
and

(4.1) rḠi

(
di − [vi]

)
= rḠi

(di)− 1.

We take a Cartier divisor Di on Xi satisfying ρi∗(Di) = di and rXi(Di)≥ rḠi
(di).

By Remark 3.4, there exists a Cartier divisor D on X such that D|Xi is linearly

equivalent to Di on Xi. Then we have

ρ∗(D) = ρ1∗(D|X1) + ρ2∗(D|X2)

= ρ1∗(D1) + ρ2∗(D2) = d1 + d2 = d.

Further, we have

rX(D) ≥ rX1(D|X1) + rX2(D|X2) (from Lemma 3.3)

= rX1(D1) + rX2(D2) (since D|Xi ∼Di for each i= 1,2)

≥ rḠ1
(d1) + rḠ2

(d2) (from the assumptions on Di)

= rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 2

(
from (4.1)

)
.

This gives the desired properties in this case.

Case 2. Suppose that v1 ∈Bs(|d1|•) or v2 ∈Bs(|d2|•). For i= 1,2, we take a

Cartier divisorD′
i onXi satisfying ρi∗(D

′
i) = di− [vi] and rXi(D

′
i)≥ rḠi

(di− [vi]).
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We remark that X =X1 ∪X2 and that X1 ∩X2 consists of the node of X

corresponding to the edge e. Let p denote this node. Since p is a smooth point

on Xi, the Weil divisor [p] is regarded as a Cartier divisor on Xi. We set

Di =D′
i + [p] ∈Div(Xi).

By Remark 3.4, there exists a Cartier divisor D on X such that D|Xi is linearly

equivalent to Di on Xi. Then we have ρ∗(D) = d as in Case 1.

For i= 1,2, we set

εi =

{
1 if p ∈Bs(Di),

0 if p /∈Bs(Di),

so that rXi(D
′
i) = rX(Di)− (1− εi). Then it follows from Lemma 3.3 that

rX(D) = rX1(D|X1) + rX2(D|X2) + ε1ε2

= rX1(D1) + rX2(D2) + ε1ε2

= rX1(D
′
1) + rX2(D

′
2) + (1− ε1) + (1− ε2) + ε1ε2

≥ rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 1+ (1− ε1)(1− ε2)

≥ rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 1.

This gives the desired properties in the remaining case, thus completing the

proof. �

Next, we reinterpret Proposition 1.3.

LEMMA 4.2

In the setting of Proposition 1.3, we have

(4.2) rḠ(d)≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rḠ1

(d1 − [v1]) + rḠ2
(d2 − [v2]) + 2

if vi /∈Bs(|di|•) for each i= 1,2,

rḠ1
(d1 − [v1]) + rḠ2

(d2 − [v2]) + 1

otherwise.

Proof

First we consider the case where vi /∈ Bs(|di|•) for each i = 1,2. Then, since

rḠi
(di − [vi]) = rḠi

(di)− 1, it follows from Proposition 1.3 that

rḠ(d)≤ rḠ1
(d1) + rḠ2

(d2) = rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 2.

This shows the inequality (4.2) in this case.

Next consider the case where v1 ∈ Bs(|d1|•) and v2 /∈ Bs(|d2|•). (The case

of v1 /∈ Bs(|d1|•) and v2 ∈ Bs(|d2|•) is shown in the same way.) Then we have

rḠ1
(d1− [v1]) = rḠ1

(d1), and rḠ2
(d2− [v2]) = rḠ2

(d2)− 1. It follows from Propo-

sition 1.3 that

rḠ(d)≤ rḠ1
(d1) + rḠ2

(d2) = rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 1,
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which shows (4.2) in this case.

Finally, consider the case where vi ∈ Bs(|di|•) for each i= 1,2. This means

that rḠi
(di − [vi]) = rḠi

(di), and Proposition 1.3 gives

rḠ(d)≤ rḠ1
(d1) + rḠ2

(d2) + 1 = rḠ1

(
d1 − [v1]

)
+ rḠ2

(
d2 − [v2]

)
+ 1.

Thus, we obtain (4.2). �

To prove Theorem 1.1, we consider the following condition for a vertex-weighted

graph Ḡ.

(FS) There exists a nodal curve X with dual graph Ḡ such that, for any

d ∈ Div(G), there exists a Cartier divisor D on X such that ρ∗(D) = d and

rX(D)≥ rḠ(d), where ρ∗ : Div(X)→Div(G) is the map defined in (2.1).

We note that if a vertex-weighted graph Ḡ satisfies the condition (FS), then

we have ralg
Ḡ

(δ) ≥ rḠ(δ) for any divisor class δ ∈ Pic(G). Indeed, let δ be any

divisor class of G. We take the nodal curve X as in the condition (FS). Then for

any representative d ∈Div(G) of δ, we take a Cartier divisor D on X as in (FS).

With X as above, we obtain mind∈δ{maxL∈Picd(X){rX(L)}} ≥ rḠ(δ). Thus, we

get ralg
Ḡ

(δ)≥ rḠ(δ).

Proof of Theorem 1.1

Let Ḡ be a hyperelliptic vertex-weighted graph. We will show that Ḡ satisfies the

condition (FS) by induction on the number of bridges. As is explained above, we

will then have the desired inequality ralg
Ḡ

(δ)≥ rḠ(δ) for any divisor class δ on G.

If G has no bridges, then [14, Proposition 1.5 and its proof and Theorem 8.2]

tells us that Ḡ satisfies the condition (FS). (More generally, if there are at most

(2ω(v) + 2) positive-type bridges emanating from each vertex v ∈ V (G), then Ḡ

satisfies the condition (FS) (see [14]).) Also, a vertex-weighted graph of genus

at most 1 satisfies the condition (FS) (cf. [14, Proposition 1.5 and its proof and

Proposition 7.5]).

Now we consider the general case, and suppose that Ḡ has a bridge. Let G1

and G2 be the connected components of G� {e}, and set Ḡi = (Gi, ω|V (Gi)) for

i= 1,2. Then we find that Ḡi is a hyperelliptic or g(Ḡi)≤ 1 (see [6, Section 5.2]

or [14, Lemma 3.4]).

By the induction on the number of bridges, we may and do assume that Ḡi

satisfies the condition (FS) for each i= 1,2. Thus, there exists a nodal curve Xi

such that, for any ei ∈Div(Gi), there exists a Cartier divisor Ei on Xi satisfying

ρi∗(Ei) = ei and rXi(Ei) ≥ rḠi
(ei), where ρi∗ : Div(Xi) → Div(Gi) is the map

defined in (2.1).

Let pi be a smooth point of Xi for each i = 1,2. Then we patch X1 and

X2 by p1 = p2 (=: p) to obtain a nodal curve X such that X = X1 ∪X2 and

X1 ∩X2 = {p}. Here we take each pi so that X =X1 ∪X2 is a nodal curve with

dual graph Ḡ and so that each Gi is the subgraph of G corresponding to the

component Xi. Let ρ∗ : Div(X)→Div(G) be the map defined in (2.1).
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We prove that, with this X , Ḡ satisfies the condition (FS). Indeed, let d be

any divisor on G. For i= 1,2, let di be the restriction of d to Gi. By Lemma 4.1,

there exists a Cartier divisor D on X satisfying ρ∗(D) = d and

rX(D)≥
{
rḠ1

(d1 − [v1]) + rḠ2
(d2 − [v2]) + 2 if vi /∈Bs(|di|•) for each i= 1,2,

rḠ1
(d1 − [v1]) + rḠ2

(d2 − [v2]) + 1 otherwise.

By Lemma 4.2, the right-hand side is at least rḠ(d). Thus, we obtain rX(D)≥
rḠ(d), which shows that Ḡ satisfies the condition (FS). �

5. Rank of divisors on graphs and curves of genus 3

In this section, we prove Proposition 1.4 and then Theorem 1.2. Let R be a

complete discrete valuation ring with fractional field K and residue field k. Let

X be a regular, generically smooth, semistable R-curve. Let Ḡ= (G,ω) be the

reduction graph of X . Let ρ̃∗ : Div(XK) → Div(G) be the specialization map

defined in (2.2).

We begin with the proof of Proposition 1.4.

Proof of Proposition 1.4

Recall that Ḡ= (G,ω) is a nonhyperelliptic graph of genus 3, and recall that X

is a regular, generically smooth, semistable R-curve X with reduction graph Ḡ.

First we claim that if deg(d)≤ 2, then rḠ(d)≤ 0. Indeed, to argue by contra-

diction, suppose that rḠ(d)≥ 1. Since rḠ(d)≤ deg(d), this means (1) deg(d) = 1

and rḠ(d) = 1; (2) deg(d) = 2 and rḠ(d) = 1; or (3) deg(d) = 2 and rḠ(d) = 2.

In (1), the existence of d forces Ḡ• to be a tree, which is a contradiction. In (2),

Ḡ is hyperelliptic, which is excluded at the beginning. In (3), there exists a ver-

tex v of Ḡ• such that rḠ•(d − [v]) = 1 and deg(d − [v]) = 1, where we regard

d ∈ Div(Ḡ•) via the natural embedding Div(G) ⊆ Div(Ḡ•) as before. The exis-

tence of the divisor d− [v] forces Ḡ• to be a tree, which is a contradiction. Hence

we obtain the claim.

Case 1. Suppose that rḠ(d) =−1. By the surjectivity of the homomorphism

(2.4), there exists D̃ ∈Div(XK) with ρ̃∗(D̃) = d. Then the specialization lemma

(Theorem 2.7) tells us that −1 = rḠ(d)≥ rXK
(D̃). It follows that rXK

(D̃) =−1.

Thus the equality rXK
(D̃) = rḠ(d) holds.

Case 2. Suppose that rḠ(d) = 0. Then it follows from Lemma 3.2 that there

exists an effective divisor e ∈Div(G) such that e is linearly equivalent to d in G.

Since the homomorphism (2.4) induces a surjective map between the sets of

effective divisors, there exists an effective divisor Ẽ ∈Div(XK) with ρ̃∗(Ẽ) = e.

Now we use Raynaud’s theorem (Theorem A.1 below) as in the proof of [14,

Theorem 1.5]. It follows that there exists a principal divisor Ñ ∈Div(XK) such

that ρ̃∗(Ñ) = d − e. We set D̃ = Ẽ + Ñ . Then ρ∗(D̃) = d. Since D̃ is linearly

equivalent to Ẽ on XK, we have rXK
(D̃) = rXK

(Ẽ)≥ 0. Since

0 = rḠ(d) = rḠ(e)≥ rXK
(Ẽ)
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by the specialization lemma (Theorem 2.7), we obtain the equality rXK
(D̃) =

rḠ(d) (= 0).

Case 3. Suppose that rḠ(d) ≥ 1. By the above claim, we have deg(d) ≥ 3.

We put d′ :=KḠ − d ∈ Div(G). Then deg(d′) = 4− deg(d) ≤ 1. Thus, rḠ(d
′) ≤

deg(d′)≤ 1. Since Ḡ• is not a tree, we have rḠ(d
′) �= 1. It follows that rḠ(d

′)≤ 0.

By Cases 1 and 2, there exists a divisor D̃′ ∈Div(XK) such that ρ̃∗(D̃′) = d′ and

rXK
(D̃′) = rḠ(d

′).

By [4, Remark 4.18 and Remark 4.21], there exists a canonical divisor KXK

of XK such that ρ̃∗(KXK
) =KḠ. We set D̃ :=KXK

− D̃′. Then we have ρ̃∗(D̃) =

KḠ − d′ = d. Further, the Riemann–Roch formulae on XK and Ḡ (cf. [2, Theo-

rem 3.8]) give

rXK
(D̃) =−2 + deg(D̃) + rXK

(D̃′) =−2 + deg(d) + rḠ(d
′) = rḠ(d).

Thus, we obtain Proposition 1.4. �

Proof of Theorem 1.2

The proof goes in the same way as in [14]; Theorem 1.2 will be deduced from

Proposition 1.4.

Recall that k is a fixed algebraically closed field. We take a complete discrete

valuation ring R with residue field k. For example, we may take R as the ring

of formal power series k[[t]] over k. Let K be the fractional field of R. We take a

regular, generically smooth, semistable R-curve X with reduction graph Ḡ. We

note that such X always exists (see [4, Theorem B.2]).

Let XK denote the generic fiber of X , and let X denote the special fiber

of X . For d ∈ Div(G), Proposition 1.4 shows that there exists a divisor D̃ ∈
Div(XK) such that ρ̃∗(D̃) = d and rḠ(d) = rXK

(D̃). Let D̃ be the Zariski closure

of D̃ in X . We denote by OX (D̃) the invertible sheaf on X associated to D̃ . Let

D ∈Div(X) be a divisor on X such that the associated invertible sheaf OX(D)

is isomorphic to OX (D̃)|X . By the upper-semicontinuity of the cohomology, we

have rX(D)≥ rXK
(D̃). Hence, rX(D)≥ rḠ(d). Also, by (2.3), we have ρ∗(D) = d.

If follows that Ḡ satisfies the condition (FS) in Section 4, and we get ralg
Ḡ

(δ)≥
rḠ(δ) for any divisor class δ ∈ Pic(G). �

In the rest of this section, we will show a metric graph version of Proposition 1.4.

Let X be a regular, generically smooth, semistable R-curve with reduction graph

Ḡ= (G,ω). Let Γ be the metric graph associated to G, where each edge of G is

assigned length one. Let ΓQ be the set of points of Γ whose distance from every

vertex of G is rational.

We follow the arguments in [4, Section 2.3]. Let K′/K be a finite extension.

Let R′ be the ring of integers of K′. Then R′ is a complete discrete valuation ring

with residue field k. Let X ′ be the minimal resolution of X ×Spec(R) Spec(R
′).

Then X ′ is a regular, generically smooth, semistable R′-curve with generic fiber

X ×Spec(K) Spec(K
′). Let e(K′/K) be the ramification index of K′/K. The dual

graph Ḡ′ = (G′, ω′) of the special fiber of X ′ is the graph obtained by inserting
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e(K′/K) − 1 vertices to each edge of G, and ω′ is the extension of ω, where

ω′(w) = 0 for any w ∈ V (G′)� V (G). If we assign a length of 1/e(K′/K) to each

edge of G′, then the corresponding metric graph equals Γ. The pair Γ with a

vertex-weight function Γ→ Z (given by the zero extension of ω) is denoted by Γ̄.

Let K̄ be an algebraic closure of K. For D̃ ∈Div(XK̄), we take a finite exten-

sion K
′/K such that D̃ ∈ Div(X (K′)), and then we set τ̃∗(D̃) = ρ̃′∗(D̃), where

ρ̃′∗ is the specialization map for X ′. This gives rise to the specialization map

τ̃∗ : Div(XK̄)→Div(ΓQ).

(This map is denoted by τ∗ in [14]. Here we write τ̃∗ instead because of the

compatibility with the notation ρ̃∗ (cf. Remark 2.6).) We remark that the metric

graph Γ can be seen as the Berkovich skeleton S(X ) and that the specialization

map is generalized to the strong retraction map from the Berkovich space (XK̄)
an

to S(X ) (see [7] for details).

For each d ∈Div(ΓQ), we take a graph Ḡ′ = (G′, ω′) with Supp(d)⊂ V (G′),

and define rΓ̄(d) := rḠ′(d), which does not depend on the choice of Ḡ′ by [2,

Section 1]. By Amini–Caporaso’s specialization lemma (Theorem 2.7), we have

rḠ′(ρ′∗(D̃))≥ rX
K′ (D̃) for any D̃ ∈Div(XK′). As is mentioned in [4, Remark 2.9],

if D̃ ∈ Div(XK′) � Div(X (K′)), then ρ̃′∗(D̃) and τ̃∗(D̃) may be different, but

ρ̃∗(D̃) and τ̃∗(D̃) are at least linearly equivalent in G′. Thus, we have the spe-

cialization lemma for vertex-weighted metric graphs: for any D̃ ∈Div(XK̄), one

has

rΓ̄
(
τ∗(D̃)

)
≥ rX

K̄
(D̃).

Also for metric graphs, we have Raynaud’s theorem, which asserts the sur-

jectivity of the map τ̃∗|Prin(X
K̄
) : Prin(XK̄)→ Prin(ΓQ) (see [4, Corollary A.9]).

Then, by the same argument as in the proof of Proposition 1.4, we obtain the

following proposition.

PROPOSITION 5.1

Let R be a complete discrete valuation ring with fractional field K and residue

field k. Let Ḡ = (G,ω) be a nonhyperelliptic graph of genus 3, and let Γ be the

metric graph associated to G, where each edge of G is assigned length one. Let

X be a regular, generically smooth, semistable R-curve with reduction graph Ḡ.

Then the following condition (C) holds.

(C) For any d ∈ Div(ΓQ), there exists a divisor D̃ ∈ Div(XK̄) such that

τ̃∗(D̃) = d and rΓ̄(d) = rX
K̄
(D̃).

REMARK 5.2

Let R be a complete discrete valuation ring with fractional field K and residue

field k. Let Ḡ= (G,ω) be a vertex-weighted graph. In [14], we have asked under

what condition on Ḡ there exists a regular, generically smooth, semistable R-

curve with reduction graph Ḡ that satisfies the conditions (F) and (C) in Propo-

sitions 1.4 and 5.1, respectively. In [14], when char(k) �= 2, we have completely
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answered this question for hyperelliptic graphs: a hyperelliptic graph Ḡ= (G,ω)

satisfies the conditions (F) and (C) if and only if every vertex v of G has at

most 2ω(v)+2 positive-type bridges emanating from it. In this paper, we answer

this question for nonhyperelliptic graphs of genus 3: every nonhyperelliptic graph

of genus 3 satisfies (F) and (C). It is then natural to ask this question for non-

hyperelliptic graphs of genus 4. In this case, the arguments in the proof of Propo-

sition 1.4 show the existence of a desired lift D̃ of d except for divisors d with

deg(d) = 3 and rḠ(d) = 1.

REMARK 5.3

Assume that char(k) �= 2. Let Ḡ = (G,ω) be a vertex-weighted graph. Let e1,

. . . , er be the set of bridges of G, and we write G�{e1, . . . , er}=G1∪· · ·∪Gr+1 as

the disjoint union of connected finite graphs. We set Ḡi = (Gi, ω|Gi). The proofs

of Theorems 1.1 and 1.2 show that hyperelliptic graphs and graphs of genus at

most 3 satisfy the condition (FS). It follows from the proof of Theorem 1.1 that

if each Ḡi is hyperelliptic or of genus at most 3, then Ḡ satisfies the condition

(FS), and thus we have ralg
Ḡ

(δ)≥ rḠ(δ) for any divisor class δ ∈ Pic(G).

Appendix: Raynaud’s theorem

The purpose of this appendix is to show that, for a finite graph with loops, the

specialization map between principal divisors is still surjective. Our proof of the

surjectivity will be given by reducing to the case of loopless finite graphs. The

surjectivity in the loopless case is shown in Baker [4].

In [4], the surjectivity of the specialization map (in the loopless case) is

attributed to Raynaud because this surjectivity follows from reinterpretation

of Raynaud’s results in [16] (see [4, Appendix A]). In this paper, we also call

Theorem A.1, which asserts the surjectivity, Raynaud’s theorem.

Let k be an algebraically closed field as before. Let R be a complete valuation

ring with residue field k. Let K be the fractional field of R. Let X → Spec(R)

be a regular, generically smooth, semistable R-curve. We write X for the special

fiber of X , and Ḡ= (G,ω) for the dual graph of X . Let ρ̃∗ : Div(XK)→Div(G)

be the specialization map defined in (2.2).

THEOREM A.1

The specialization map between principal divisors is surjective. Namely,

ρ̃∗|Prin(XK) : Prin(XK)→ Prin(G) is surjective.

Proof

We put p := char(k)≥ 0. When G is loopless, the assertion is exactly [4, Corol-

lary A.8]. We will reduce the general case to the loopless case.

Let d be an integer with d≥ 2. When p > 0, we require that (d, p) = 1. We

fix a finite Galois extension K
′ of K of degree d. (For example, we may take

K
′ =K( d

√
π), where π ∈R is a uniformizer of R.) Since k is algebraically closed
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and K
′/K is a Galois extension of degree d, the ramification index e(K′/K) equals

d. We denote by R′ the ring of integers of K′.

Let X ′ be the minimal resolution of X ×Spec(R) Spec(R
′). Let ν : X ′ → X

be the natural map. By slight abuse of notation, we denote the restriction of ν to

the generic fibers by the same notation ν. Let X ′ be the special fiber of X ′. Let

G′ be dual graph of X ′, and let ρ̃′∗ : Div(XK′)→ Div(G′) be the specialization

map with respect to X ′. Since G′ is the graph obtained by inserting (d − 1)

vertices to each edge of G, we have a natural embedding V (G)⊆ V (G′) and also

Div(X)⊆Div(X ′).

CLAIM A.1.1

Let D̃ ∈Div(XK) such that ρ̃′∗(ν
∗(D̃)) ∈Div(G). Then ρ̃′∗(ν

∗(D̃)) = ρ̃∗(D̃).

Indeed, we take any v ∈ V (G). Let Cv be the irreducible component of X corre-

sponding to v, and let C ′
v be the irreducible component of X ′ with ν(C ′

v) =Cv .

Let D ∈ Div(X ) and D ′ ∈ Div(X ′) be the Zariski closures of D̃ and ν∗(D̃),

respectively. We have ρ̃∗(D̃)(v) = (Cv ·D) and ρ̃′∗(ν
∗(D̃))(v) = (C ′

v ·D ′).

Since ν∗(D ′) = dD , we have d(Cv ·D) = (ν∗(Cv) ·D ′) by the projection for-

mula. By the assumption that ρ̃′∗(ν
∗(D)) ∈Div(G), we have (E′ ·D ′) = 0 for any

exceptional prime divisor E′ for ν. Since ν∗(Cv)− dC ′
v is a linear combination of

exceptional divisors, it follows that (ν∗(Cv) ·D ′) = d(C ′
v ·D ′).

Then

ρ̃∗(D̃)(v) = (Cv ·D) =
(ν∗(Cv) ·D ′)

d
= (C ′

v ·D ′) = ρ̃′∗
(
ν∗(D̃)

)
(v).

Since ρ̃′∗(ν
∗(D̃)) ∈Div(G) and v ∈ V (G) is arbitrary, we obtain Claim A.1.1.

Let σ1, . . . , σd be the elements of Gal(K′/K). Each σi induces an auto-

morphism σ∗
i : Spec(R′)→ Spec(R′) and an automorphism ϕi : X ′ → X ′ over

R (induced from the Cartesian product). Let ϕ∗
i : Div(X ′) → Div(X ′) and

ϕ∗
i : Div(XK′)→Div(XK′) be the induced maps.

CLAIM A.1.2

For any D̃′ ∈Div(XK′), we have ρ̃′∗((ϕi)
∗(D̃′)) = ρ̃′∗(D̃

′) for i= 1, . . . , d.

Indeed, since σi induces the trivial action on the residue field k, the restriction

of ϕi to the special fiber X ′ is trivial. Thus, (ϕi)∗(C
′) = C ′ for any irreducible

component C ′ of X ′.

We take any D̃′ ∈Div(XK′) and let D ′ be the Zariski closure of D̃′ in X ′.

Note that ϕ∗
i (D

′) is the Zariski closure of ϕ∗
i (D̃

′). For any v ∈ V (G′), let C ′
v be

the corresponding irreducible component of X ′. Then

ρ̃′∗
(
ϕ∗
i (D̃

′)
)
(v) =

(
C ′

v · ϕ∗
i (D

′)
)
=
(
(ϕi)∗(C

′
v) ·D ′)= (C ′

v ·D ′) = ρ̃′∗(D̃
′)(v),

which shows the desired equality. We obtain Claim A.1.2.

We take any n ∈ Prin(G). Then n ∈ Prin(G′). Since G′ is loopless, we know

that ρ̃′∗ : Prin(XK′) → Prin(G′) is surjective by [4, Corollary A.8]. Let f be
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a nonzero rational function on XK′ such that ρ̃′∗(div(f)) = n. We set g′ :=

ϕ∗
1(f) · · ·ϕ∗

d(f), which is a nonzero rational function on XK′ . Then div(g′) =

ϕ∗
1(div(f))+ · · ·+ϕ∗

d(div(f)), so that Claim A.1.2 tells us that ρ̃′∗(div(g
′)) = dn.

Since g′ is a Gal(K′/K)-invariant function on XK′ , it descends to a function g

on XK. We have div(g′) = ν∗(div(g)), and thus ρ̃′∗(ν
∗(div(g))) = dn ∈Div(G). By

Claim A.1.1, we obtain ρ̃∗(div(g)) = dn. In conclusion, L̃ := div(g) is a principal

divisor on XK with ρ̃∗(L̃) = dn.

Let e > 2 be another integer with (e, d) = 1. When p > 0, we require that

(e, p) = 1. By the above argument with e in place of d, there exists a principal

divisor M̃ ∈ Prin(XK) with ρ̃∗(M̃) = en. We take integers α and β such that

αd+ βe= 1, and set Ñ := αL̃+ βM̃ . Then Ñ ∈ Prin(XK) and ρ̃∗(Ñ) = n. This

shows the theorem. �
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