Toward a geometric analogue of Dirichlet’s
unit theorem

Atsushi Moriwaki

Abstract In this article, we propose a geometric analogue of Dirichlet’s unit theorem
on arithmetic varieties; that is, if X is a normal projective variety over a finite field and
D is a pseudo-effective Q-Cartier divisor on X, does it follow that D is Q-effective? We
also give affirmative answers on an abelian variety and a projective bundle over a curve.

Introduction

Let K be a number field, and let Ok be the ring of integers in K. Let K(C) be
the set of all embeddings K — C. For o € K(C), the complex conjugation of o

is denoted by @; that is, 7(z) = o(z) (x € K). Here we define Zx and E; to be

{EK = {£ eRFO) | ¢(0) =¢(7) (Vo)},
2 ={¢€Ek]| ZaeK(c)f(U) =0}

The Dirichlet unit theorem asserts that the group O consisting of units in Og
is a finitely generated abelian group of rank s := dimg Z9%.
Let us consider the homomorphism L : K% — R¥(©) given by

L(z)(o) :=1log ’O’(J?)’ (e K*,0€ K(C)).
It is easy to see the following.

(a) For a compact set B in RX(®) the set {x € O | L(x) € B} is finite.
(b) L: K* - RX(© extends to Ly : K* @ R — RX(©),
(¢) Lg:0f @R — RE(© is injective.
(d) Lr(Ox ®R) C Ej.
By using (a) and (c), we can see that O is a finitely generated abelian group.
The most essential part of the Dirichlet unit theorem is to show that Oy is of
rank s, which is equivalent to seeing that, for any ¢ € 2%, there is = € Ox ®R
with Lg(x)=¢.

To understand the equality Lr(z) =¢ in terms of Arakelov geometry, let
us introduce several notations for arithmetic divisors on the arithmetic curve
Spec(Ok). An arithmetic R-divisor on Spec(Of) is a pair (D,&) consisting of
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an R-divisor D on Spec(Of) and ¢ € Zx. We often denote the pair (D, ¢) by D.
The arithmetic principal R-divisor (z)p of 2 € K* ® R is the arithmetic R-divisor
given by

(2)s = (D ordp(@)[P], ~2Lx(x)).
P

where P runs over the set of all maximal ideals of Ok and
ordp(x) :=ayordp(x1) + -+ + a, ordp(z;)

for x =27 2% (21,...,2, € K* and aq,...,a, € R). The arithmetic degree

d/e\g(ﬁ) of an arithmetic R-divisor D = (3" pap[P],£) is defined to be

dea(D) = Y arlog #(Ox/P) + 5 3 &(0).

ceK(C)
Note that
deg((x)) =0 (z€K* @R)

by virtue of the product formula. Further, D = (3", ap[P],£) is said to be effec-
tive if ap >0 for all P and £(o) >0 for all o.
In [17, Section 3.4], we proved the following.

0.1 “If deg(D >0, then D + /x\ is effective for some z € K* @ R.”
( g ) R

This implies the essential part of the Dirichlet unit /tl\leorem. Indeed, we set
D = (0,¢) for £ € Z%. As ggg(ﬁ) =0, by (0.1), D + (y)g is effective for some
y € KX ®R, and hence D + (y/\)R = (0,0) because d/e\g(ﬁ + (y/\)R) = 0. Here we
set y =wuj'---ud such that us,...,u, € K*, a1,...,a, € R, and a1,...,aq, are
linearly independent over Q. By using the linear independence of aq,...,a, over
Q, ordp(y) = 0 implies that ordp(u;) =0 for all maximal ideals P of Ok and i =
1,...,r; that is, u; € OF for i =1,...,r. Therefore, £ = Lg(y?) and y € Of @ R,
as required. In this sense, (0.1) is an Arakelov-theoretic interpretation of the
classical Dirichlet unit theorem.

In [17] and [18], we considered a higher-dimensional analogue of (0.1). In the
higher-dimensional case, the condition “d/%(ﬁ) > 0” should be replaced by the
pseudo-effectivity of D. Of course, this analogue is not true in general (cf. [5]).
It is, however, a very interesting problem to find a sufficient condition for the
existence of an arithmetic small R-section, that is, an element x such that

ar

r=ai'---xy"  (21,...,2, are rational functions and ay,...,a, € R)

o~

and D + (z)g is effective. For example, in [17] and [18], we proved that if D is
numerically trivial and D is pseudo-effective, then D has an arithmetic small
R-section. In this article, we would like to consider a geometric analogue of the
Dirichlet unit theorem in the above sense.

Let X be a normal projective variety over an algebraically closed field k. Let
Div(X) denote the group of Cartier divisors on X. Let K be either the field Q
of rational numbers or the field R of real numbers. We define Div(X)k to be
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Div(X)k := Div(X) ®z K, whose elements are called K-Cartier divisors on X.
For K-Cartier divisors Dy and Dy, we say that Dy is K-linearly equivalent to Ds,
which is denoted by D; ~g Ds, if there are nonzero rational functions ¢1,..., ¢,
on X and ay,...,a, € K such that

Dy —Dy=ai(¢1) + -+ ar(¢r).

Let D be a K-Cartier divisor on X. We say that D is big if there is an ample
Q-Cartier divisor A on X such that D — A is K-linearly equivalent to an effective
K-Cartier divisor. Further, D is said to be pseudo-effective if D + B is big for
any big K-Cartier divisor B on X. Note that if D is K-effective (i.e., D is K-
linearly equivalent to an effective K-Cartier divisor), then D is pseudo-effective.
The converse of the above statement holds on toric varieties (e.g., [4, Proposi-
tion 4.9]). However, it is not true in general. In the case where k is uncountable
(e.g., k =C), several examples are known such as nontorsion numerically triv-
ial invertible sheaves and Mumford’s example on a minimal ruled surface (cf.
[8, Chapter 1, Example 10.6], [14]). Nevertheless, we would like to propose the
following question.

QUESTION 0.2 (K-VERSION)
We assume that k is an algebraic closure of a finite field. If a K-Cartier divisor
D on X is pseudo-effective, does it follow that D is K-effective?

This question is a geometric analogue of the fundamental question introduced
n [17]. In this sense, it turns out to be a geometric Dirichlet’s unit theorem
if it is true, so that we often say that a K-Cartier divisor D has the Dirichlet
property if D is K-effective. Note that the R-version implies the Q-version (cf.
Proposition 1.5). Moreover, the R-version does not hold in general. In Exam-
ple 3.2, we give an example, so that, for the R-version, the question should
be

“Under what conditions does it follow that D is K-effective?”

Further, the Q-version implies the following question due to Keel (cf. [10, Ques-
tion 0.9], Remark 2.4). The similar arguments on an algebraic surface are dis-
cussed in the recent article by Langer [12, Conjectures 1.7-1.9 and Lemma 1.10].

QUESTION 0.3 (S. KEEL)

We assume that k is an algebraic closure of a finite field and that X is an algebraic
surface over k. Let D be a Cartier divisor on X. If (D -C) > 0 for all irreducible
curves C on X, is D ample?

By virtue of the Zariski decomposition, Question 0.2 on an algebraic surface is
equivalent to asking the following:

“If D is nef, then is D K-effective?”
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One might expect that D is semiample (cf. [10, Question 0.8.2]). However, Totaro
[23, Theorem 6.1] found a Cartier divisor D on an algebraic surface over a finite
field such that D is nef but not semiample. Totaro’s example does not give
a counterexample to our question because we assert only the Q-effectivity in
Question 0.2. Inspired by Biswas and Subramanian [3], we have the following
partial answer to the above question.

THEOREM 0.4

We assume that k is an algebraic closure of a finite field. Let C' be a smooth
projective curve over k, and let E be a locally free sheaf of rank r on C. Let P(E)
be the projective bundle of E; that is, P(E) :=Proj(,._,Sym™(E)). If D is a
pseudo-effective K-Cartier divisor on P(E), then D is K-effective.

In addition to the above result, we can also give an affirmative answer to the
Q-version of Question 0.2 on abelian varieties.

PROPOSITION 0.5
We assume that k is an algebraic closure of a finite field. Let A be an abelian
variety over k. If D is a pseudo-effective Q-Cartier divisor on A, then D is

Q-effective.

1. Preliminaries

Let k£ be an algebraic closed field. Let C' be a smooth projective curve over k,
and let F be a locally free sheaf of rank r on C. The projective bundle P(E) of
FE is given by

P(E) :=Proj (é Symm(E)).
m=0

The canonical morphism P(E) — C is denoted by fg. A tautological divisor
O©p on P(F) is a Cartier divisor on P(E) such that Opg)(©p) is isomorphic
to the tautological invertible sheaf Op(g)(1) on P(E). We say that E is strongly
semistable if, for any surjective morphism 7 : C’ — C of smooth projective curves,
7*(E) is semistable. By definition, if E is strongly semistable and 7 : C’ — C' is
a surjective morphism of smooth projective curves over k, then 7*(E) is also
strongly semistable. A filtration

0=EGCECEGC - CE 1 CE=E
of E is called the strong Harder—Narasimhan filtration if
n(Er/Eo) > p(E2/Er) >+ > p(Es—1/Es—2) > W(Es/Es—1)

and E;/F;_1 is a strongly semistable locally free sheaf on C for each i =1,...,s.
Recall the following well-known facts (F1)—(F'5) on strong semistability.
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(F1) A locally free sheaf F on C is strong semistable if and only if O —
fE(€g/r) is nef, where &g is a Cartier divisor on C with O¢(£g) ~ det(E) (e.g.,
see [16, Proposition 7.1(3)]).

(F2) Let w:C" — C be a surjective morphism of smooth projective curves
over k such that the function field of C’ is a separable extension field over the
function field of C. If E is semistable, then 7*(E) is also semistable (e.g., see [16,
Proposition 7.1(1)]). In particular, if char(k) =0, then E is strongly semistable
if and only if F is semistable. Moreover, in the case where char(k) >0, E is
strongly semistable if and only if (F"™)*(E) is semistable for all m > 0, where
F:C — C is the absolute Frobenius map and

m

—
F"=Fo..-0oF.

(F3) If E and G are strongly semistable locally free sheaves on C, then
Sym™(E) and E ® G are also strongly semistable for all m >1 (e.g., see [16,
Theorem 7.2, Corollary 7.3]).

(F4) There is a surjective morphism 7 : C’ — C of smooth projective curves
over k such that 7*(E) has the strong Harder—Narasimhan filtration (cf. [11,
Theorem 7.2]).

(F5) We assume that k is an algebraic closure of a finite field. If F is a
strongly semistable locally free sheaf on C' with det(F) ~ O¢, then there is a
surjective morphism 7 : C' — C of smooth projective curves over k such that
(E) ~ OF™F (cf. [1, p. 557], [22, Theorem 3.2], [3]).

The purpose of this section is to prove the following characterizations of
pseudo-effective R-Cartier divisors and nef R-Cartier divisors on P(FE). This
result is essentially due to Nakayama [21, Lemma 3.7] in which he works over the
complex number field.

PROPOSITION 1.1
We assume that E has the strong Harder—Narasimhan filtration

0=EcCE1CE G- CE 1 CE=E.
Then, for an R-divisor A on C, we have the following:
(a) O — f*(A) is pseudo-effective if and only if deg(A) < u(Eq).
(b) ©r — f*(A) is nef if and only if deg(A) < u(E/Es_1).

Let us begin with the following lemma.

LEMMA 1.2
We assume that E has a filtration

0=FEyCEC--CE, 1 CE=FE
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such that E;/E;_1 is a strongly semistable locally free sheaf on C and deg(E;/
E; 1) <0 foralli=1,...,s. Then, H*(C,Sym™(E) ® G) =0 for m>1 and a
strongly semistable locally free sheaf G on C with deg(G) < 0.

Proof
We prove it by induction on s. In the case where s =1, F is strongly semistable
and deg(E) <0, so that Sym™ (F) ® G is also strongly semistable by (I'3) and

deg(Sym™(E) ® G) <0.

Therefore, H°(C,Sym™(E) ® G) = 0.
Here we assume that s > 1. Let us consider an exact sequence

0—-E;1—>E—E/E;_1—0.
By [9, Chapter II, Exercise 5.16(c)], there is a filtration
Sym™(E)=F 2 F'2>...DF" D F™tl =0
such that
FI/JFIH ~ Sym! (B, 1) @ Sym™ ™ (E/E,_1)
for each j =0,...,m. By using the hypothesis of induction,
H(C,(F//FIT) @ G) =0

for j=1,...,m because Sym™ ?(E/E,_1) ® G is strongly semistable by (F3)
and

deg(Sym™ 7/ (E/E,_1) ® G) <0.
Moreover, since Sym™ (E/E;_1) ® G is strongly semistable by (F3) and
deg(Sym™(E/Es—1) ® G) <0,
we have that
H(C,(F°/F") @ G) = H°(C,Sym™(E/E;_1) ® G) =0.
Therefore, by using an exact sequence
0> FItl G- FleG— (FI/FFITYeG—0,
we have that
HY(C,FiI''@G) = HY(C,FI ® Q)
for j=0,...,m, which implies that H°(C,Sym™(F) ® G) =0, as required.  [J
Proof of Proposition 1.1
It is sufficient to show the following.

(a) If A is a Q-Cartier divisor and deg(A) < u(E), then O — f*(A) is
Q-effective.
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(b) If A is a Q-Cartier divisor and deg(A) > u(F1), then O — f*(A) is not
pseudo-effective.

(¢) If ©g — f*(A) is nef, then deg(A) < w(E/Es_1).

(d) If O — f*(A) is not nef, then deg(A4) > u(E/FEs_1).

(a) Let 6 be a divisor on C' with deg(f) =1. As E is strongly semistable,
by (F'1), ©g, — u(E1)f5, (0) is nef, so that we can see that O, — ff (A) is nef
and big because

Op, — deg(A)ff, (0) = Op, — p(E1) f5,(0) + (1(Er) — deg(A)) fE, (6).

Therefore, there is a positive integer m; such that m;A is a divisor on C
and

H°(P(E1), Opg,) (m1©g, — f, (m1A))) #0.
In addition,
H°(P(E1),Op(p,) (m1Og, — [, (m14)))
= HO(C,Sym™ (E1) ® Oc (—m A))
C H°(C,Sym™ (E) ® Oc(—mi A))
=H(P(E), Op(p) (1O — [ (m14))),

so that O — f5(A) is Q-effective.

(b) Let B be an ample Q-divisor on C' with deg(B) < deg(A) — u(E1). Let
7 :C" — C be a surjective morphism of smooth projective curves over k such
that 7*(—A + B) is a Cartier divisor on C’. Note that

/,L(W*(Ei/Ei_l) ® Ocr (7'('*(—14 + B))) <0
fori=1,...,s, and hence, by Lemma 1.2,
H°(C',Sym™ (7*(E)) ® Oc+ (mn*(—A+ B))) =0

for all m > 1. In particular, if b is a positive integer such that b(—A + B) is a
Cartier divisor, then

H°(C,Sym™ (E) ® Oc (mb(—A + B))) =0

for m > 1. Here we assume that O — f5(A) is pseudo-effective. Let a be a
positive integer such that O — f5(A) + aff(B) is ample. Then

(a—1)(Op — f5(A) +Op — f5(A) +af5(B)=a(Op + f5(—A+ B))
is big, so that we can find a positive integer m; such that
H°(C,Sym™“*(E) ® Oc (miab(—A + B)))
= HO (P(E), O]P’(E) (mlab(OE + fg(—A + B)))) 75 0,

which is a contradiction.
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(¢) Note that
P(E/Es1) CP(E), Op/g,_, ~OFlpE/E, 1) and

Te/E., = fElP(E/E._1),
so that ©p/p, , — fi/p, ,(A) is nef on P(E/E,_1). Let {g/p, , be a Cartier
divisor on C' with Oc(€g/p, ,) ~ det(E/Es_1). If we set e =1k E/E,_; and
G=E&g/p,_,/e— A, then
Op/p. . — fe/p, (A)=O5/5, — fp/p,_,EB/B. 1 /€) + [E/E, ,(G).
Since Op/p, |, — fE/Es_l(gE/Es—l/e) is nef by (F'1) and

(@E/ES,l - fE‘/ES,l (€E/E571/e))e =0,

we have that

0< (®pyp,_, — [ly/p._,(A)° =edeg(@).

Therefore, deg(G) > 0, and hence deg(A) < u(E/E;s_1).

(d) We can find an irreducible curve Cy of X such that (O — f£(A) - Cp) <O0.
Clearly Cj is flat over C. Let Cy be the normalization of Cy, and let h: C; —
C be the induced morphism. Let us consider the following commutative dia-
gram:

P(E) " P(h*(E))

fEl lfh*(E)
C =
Note that P(h)*(Or — f5(A)) ~r Op-(p) — f:*(E)(h* (A)). Further, there is a sec-

tion S of fj-(g) such that P(h).(S) = Co. Let @ be the quotient line bundle of
h*(E) corresponding to the section S. As

0= h*(Eo) C h*(Ex) G h*(E2) © -+ C h*(Ey1) C h*(By) = h*(E)
is the Harder—Narasimhan filtration of h*(E), we can easily see that
deg(Q) > pu(h*(E/Es-1)) = deg(h)u(E/Es—1).
On the other hand,
deg(Q) — deg(h) deg(A) = (On-(r) — fi-(s) (" (A)) - 5)
= (@E — f(4)- CO) <0,
and hence u(E/FE,_1) < deg(A). O

Finally let us consider the following three results.

LEMMA 1.3
Let K be either Q or R. Let i : X' — X be a generically finite morphism of normal
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projective varieties over k. For a K-Cartier divisor D on X, D is K-effective if
and only if u*(D) is K-effective.

Proof

Clearly, if D is K-effective, then p*(D) is K-effective. Let K and K’ be the
function fields of X and X', respectively. Here we assume that p*(D) is K-
effective; that is, there are ¢/,...,¢.. € K™ and a1,...,a, € K such that u*(D) +
ay () + -+ ar(¢)) is effective, so that

ts (1 (D) 4 a1(¢)) + -+ - + ar(¢,)) = deg(p) D + arp ((61)) + -+ + arps ((67))

is effective. Note that p.(¢}) = (NK’/K(¢2)) (cf. [7, Proposition 1.4]), where
Nk is the norm map of K’ over K, and hence

D + (a1/deg(p)) (Ngryi (61)) + -+ + (ar/ deg(p)) (Nkr /& (67))
is effective. Therefore, D is K-effective. ([l

LEMMA 1.4

Let K be either Q or R. We assume that k is an algebraic closure of a finite field.
Let X be a normal projective variety over k, and let D be a K-Cartier divisor
on X. If D is numerically trivial, then D is K-linearly equivalent to the zero
divisor.

Proof
If K= Q, then the assertion is well known, so that we assume that K=R. We
set D=a1Dy+ -+ a.D,, where D1,...,D, are Cartier divisors on X and

ai,.-.,ar € R. Considering a Q-basis of Qa; + -+ 4+ Qa, in R, we may assume
that aq,...,a, are linearly independent over Q. Let C' be an irreducible curve on
X. Note that

0:(DC):a1(D10)++ar(DTC)

and (Dy-C),...,(D,-C) €Z, and hence (D;-C)=---= (D, - C) =0 because
ai,...,a, are linearly independent over Q. Thus, Di,...,D, are numerically
equivalent to zero, so that D1,..., D, are Q-linearly equivalent to the zero divisor.
Therefore, the assertion follows. O

PROPOSITION 1.5

Let X be a normal projective variety over k, and let D be a Q-Cartier divisor
on X. If D is R-effective, then D is Q-effective.

Proof

As D is R-effective, there are nonzero rational functions 1,...,%; on X and
b1,...,b; € R such that D+ by(¢1) + -+ + bi () is effective. We set V = Qb; +
<4+ Qb CR.If V CQ, then by,...,b € Q, so that we may assume that V ¢ Q.
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CLAIM 1.5.1

There are nonzero rational functions ¢1,...,¢, on X, ai,...,a, €R, and a Q-
Cartier divisor D' on X such that D ~g D', D' +a1(¢1)+- - +ar(ér) is effective,
and 1,a1,...,a, are linearly independent over Q.

Proof

We can find a basis a1, ...,a, of V over Q with the following properties:

(i) If weset b; =>_"_, cija;, then ¢;; € Z for all 4, .
(ii) If VNQ # {0}, then a; € Q*.

We put ¢; = [];_, ¥{". Note that Y°i_, b;(1);) = Y7_ a;(¢;). Therefore, in the
case where VN Q= {0}, 1,ay,...,a, are linearly independent over Q and D +
22:1 a;(¢;) is effective. Otherwise, 1,as,...,a, are linearly independent over Q
and (D +a1(¢1)) + 25—y a;(¢;) is effective. O

Weset L =D'+ay(¢1)+--+a,(¢). Let I be a prime divisor with I' ¢ Supp(L).
Then

0 = multr (L) = multr (D’) + ay ordr(¢1) + - - - + a, ordr(¢,.),

so that multp(D’) = ordr(¢y) = --- = ordr(¢,) = 0 because 1,ay,...,a, are lin-
early independent over Q. Thus,

Supp(D’), Supp((#1)),. - .,Supp((¢r)) € Supp(L).

Therefore, we can find af,...,a, € Q such that D’ + o (¢1) + - + al.(¢,) is
effective, and hence D is Q-effective. O

2. Proof of Theorem 0.4

Let k be an algebraic closure of a finite field. Let C be a smooth projective curve
over k. Let us begin with the following lemma.

LEMMA 2.1
Let K be either Q or R. Let A be a K-Cartier divisor on C. If deg(A) >0, then
A is K-effective.

Proof

If K=Q, then the assertion is obvious. We assume that K =R. If deg(A) =0,
then the assertion follows from Lemma 1.4. Next we consider the case where
deg(A) > 0. We can find a Q-Cartier divisor A’ such that A’ < A and deg(A’) > 0.
Thus, the previous observation implies the assertion. O

As a consequence of (I'3), (F4), and (F'5), we have the following splitting theorem,
which was obtained by Biswas and Parameswaran [2, Proposition 2.1].
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THEOREM 2.2
For a locally free sheaf E on C, there are a surjective morphism 7 :C' — C of
smooth projective curves over k and invertible sheaves Ly, ..., L, on C' such that

7 (E)~L1 & @ L,.

Proof
For the reader’s convenience, we give a sketch of the proof. First we assume that
E is strongly semistable. Let {g be a Cartier divisor on C' with O¢(£g) ~ det(E).
Let h: B— C be a surjective morphism of smooth projective curves over k such
that h*(£g) is divisible by rk(E). We set E' = h*(E) ® Op(—h*(€g)/rk(E)). As
det(E’) ~ Op, the assertion follows from (F5).

By the above observation, it is sufficient to find a surjective morphism 7 :
C" — C of smooth projective curves over k and strongly semistable locally free
sheaves Q1,...,Q, on C’ such that

T (E)=Q18 & Qn.

Moreover, by (F4), we may assume that E has the strong Harder-Narasimhan
filtration

0=EyCE CEC-- CE, 1 C B, =E.
Clearly we may further assume that n > 2. For a nonnegative integer m, we set
Cmi=X X Spec(k) Spec(k)a
where the morphism Spec(k) — Spec(k) is given by 2+ z'/?" . Let Fj" : C,, — C
be the relative mth Frobenius morphism over k. Put
Gy = (F")* ((B;/Ei) © (Ei/Ei—1)") @we,,
fori=1,....,n—1and j=1,...,n. We can find a positive integer m such that
1(Gs) =" (1(Big1/ Ei) — w(Ei/Ei—1)) + deg(we) <0
for all i=1,...,n— 1. By using (F3), we can see that

0=Gr GGl CGn G S G S G,

1,1+ i,n—1 =
is the strong Harder Narasimhan filtration of G, so that H°(C,,G}",) = {0},

which yields 7
Ext! ((F")* (E/E2), (F") (Es/ Fi 1)) =0
because of Serre’s duality theorem. Therefore, an exact sequence
0= (B (Ei/ Bi-1) — (B (E/Ei 1) — (B (E/E;) 0

splits; that is, (F;")*(E/E;—1) ~ (F{")*(E;/Ei—1) ® (F;")*(E/E;) for i=1,...,
n — 1, and hence

n

()" (B) ~ D (F") (Bi/ Bia),

i=1

as required. O
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Proof of Theorem 0./
By virtue of Theorem 2.2 and Lemma 1.3, we may assume that

B~ Ll D---P LT
for some invertible sheaves L1,..., L, on C. We set
d=max{deg(L1),...,deg(Ly)}  and  I={i|deg(L;)=d}.

There is a K-Cartier divisor A on C such that D ~g A\Og — fj(A) for some
A€ K. Let M be an ample divisor on C such that T:=Og + f5 (M) is ample.
As D is pseudo-effective, we have that

0< (D-T72 f(M)) = (\T — f3(A+AM)) - T"2 (M) = Adeg(M),

and hence A > 0. If A= 0, then 0 < (D77~ ') =deg(—A). Thus, by Lemma 2.1,
—A is K-effective, so that the assertion follows.

We assume that A > 0. Replacing D by D/\, we may assume that A = 1. Let
¢ be a Cartier divisor on C such that O¢ (&) ~ L;, for some iy € I. Note that the
first part £ of the strong Harder-Narasimhan filtration of E is @, L;, so that,
by Proposition 1.1, deg(A) < deg(&). If we set B=¢ — A, then, by Lemma 2.1,
B is K-effective because deg(B) > 0. Moreover, as

Op — fe(A) =05 — fE(§) + f5(B),

it is sufficient to consider the case where D = Qg — f5(§). In this case, the
assertion is obvious because

HO(P(E), Op(s) (D)) = H*(C, E ® Oc(~£))
= H(C.P L@ Oc(~¢)) #{0}.

As a consequence of Theorem 0.4, we can recover a result due to [3].

COROLLARY 2.3

Let k, C, and E be the same as in Theorem 0./. We assume that r = 2. Let D
be a Cartier divisor on P(E) such that (D -Y) >0 for all irreducible curves Y
on P(E). Then D is ample.

Proof

As D is nef, D is pseudo-effective, so that, by Theorem 0.4, there is an effective
Q-Cartier divisor E on X such that D ~g E. As E # 0, we have that (D- D)=
(D - E) > 0. Therefore, D is ample by the Nakai-Moishezon criterion. O

REMARK 2.4
The argument in the proof of Corollary 2.3 actually shows that the Q-version of
Question 0.2 on algebraic surfaces implies Question 0.3.
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3. Numerical effectivity on abelian varieties

The purpose of this section is to give an affirmative answer for the Q-version of
Question 0.2 on abelian varieties. Let A be an abelian variety over an algebraically
closed field k. A key observation is the following proposition.

PROPOSITION 3.1

If a Q-Cartier divisor D on A is nef, then D is numerically equivalent to a
Q-effective Q-Cartier divisor.

Proof

We prove it by induction on dim A. If dim A < 1, then the assertion is obvious.
Clearly we may assume that D is a Cartier divisor, so that we set L =04(D). As
L®[—1]*(L) is numerically equivalent to L®? (cf. [20, p. 75, (iv)]), we may assume
that L is symmetric; that is, L ~ [—1]*(L). Let K(L) be the closed subgroup of
A given by K(L)={zx € A|T} (L)~ L} (cf. [20, p. 60, Definition]). If K(L) is
finite, then L is nef and big by virtue of [20, p. 150, Riemann—Roch theorem],
so that D is Q-effective. Otherwise, let B be the connected component of K (L)
containing 0.

CLAIM 3.11
(a) Tx(L)|p~L|p for all x € A.
(b) L®2|B+m ~0Op4q forx € A.

Proof
(a) Let N be an invertible sheaf on A x A given by
N=m*(L)@pi(L™") @p3(L7),

where p; : A x A — A is the projection to the ith factor (i =1,2) and m is
the addition morphism. Note that N|gxa ~ Opxa (cf. [20, Section 13, p. 123]).
Fixing x € A, let us consider a morphism «: B — B X A given by a(y) = (y,z).
Then

Op ~a*(m*(L) @ pi(L™") @ps(L7Y)[pxa) = T; (L) p ® L™,

as required.

(b) First we consider the case where £ =0. As N|pxa ~ Opxa, we have that
N|gx = Opxp. Using a morphism 8: B — B x B given by 8(y) = (y,—y), we
have that

Op =" (Nlpxp) = L7 |5 ® [-1"(L7 s = L],

as required.
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In general, for € A, by (a) and the previous observation together with the
following commutative diagram

B+x —— A

.| |-

B — A

we can see that
OBJrZ = TiI(OB) = Tim(L®2‘B) = Tiz (T;(L>®2|B)
=T (T (L%%)|B) = T* (T3 (L®?)) B 4o = L®?| B1a- O

Let m: A— A/B be the canonical homomorphism. By Claim 3.1.1(b),
dimy,) H (77 (y), L¥?) =1

for all y € A/B, so that, by [20, p. 51, Corollary 2], m.(L®?) is an invertible
sheaf on A/B and 7,(L%?) ® k(y) — H°(n~'(y), L®?). Therefore, the natural
homomorphism 7* (7w, (L®?)) — L®? is an isomorphism; that is, there is a Q-
Cartier divisor D’ on A/B such that 7*(D’) ~g D. Note that D’ is also nef, so
that, by the hypothesis of induction, D’ is numerically equivalent to a Q-effective
Q-Cartier divisor, and hence the assertion follows. O

Proof of Proposition 0.5
Proposition 0.5 is a consequence of Lemma 1.4 and Proposition 3.1 because a
pseudo-effective Q-Cartier divisor on an abelian variety is nef. |

EXAMPLE 3.2

Here we show that the R-version of Question 0.2 does not hold in general. Let
k be an algebraically closed field. (Note that k is not necessarily an algebraic
closure of a finite field.) Let C' be an elliptic curve over k, and let A:=C x C.
Let NS(A) be the Néron—Severi group of A. Note that p :=rkNS(A) > 3. By using
the Hodge index theorem, we can find a basis ey, ..., e, of NS(A4)g := NS(4) @z Q
with the following properties:

(a) eq is the class of the divisor {0} x C'+C x {0}. In particular, (e1-e1) = 2.
(b) (ei-e;)<0foralli=2,...,p.
(c) (ei-ej)=0forall 1<i##j<p.

Weset \; := —(e;-e;) fori=2,...,p. Let Amp(A) be the closed cone in NS(A)g :=
NS(A) ®z R generated by ample Q-Cartier divisors on A. It is well known that

Amp(A) = {£eNS(A)r | (£%) >0,(£-e1) >0}
={z161 + Toea + -+ Tpe, | Aow3 4+ + )\pxi <22 x>0}
We choose (as, ...,a,) € RP~! such that

(az,...,a,) ¢ Q*~* and )\ga§+-~-+)\pa,2):2.
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Let E; be a Q-Cartier divisor on A such that the class of E; in NS(A4)g is equal
toe; fori=1,...,p. If we set D:=FE; +asly +---+a,E,, then we have the
following claim, which is sufficient for our purpose.

CLAIM 3.2.1
We have that D is nef and D is not numerically equivalent to an effective R-
Cartier divisor.

Proof
Clearly D is nef. If we set e} =e;/v/2 and €, =¢e;//A; for i=2,...,p, then

Amp(A) = {yr1€] +yaeh + -+ ype, |2+ +y,° <pi®y >0}
Therefore, as [D] € 9(Amp(A)gr), we can choose
H € Homgp (NS(A)}R, R)
such that
H >0 on Amp(A4) and {H=0}NAmp(A4) =R>¢[D],
where [D] is the class of D in NS(A)g. We assume that D is numerically equiva-
lent to an effective R-Cartier divisor ¢;I'y +---+¢,I';, where ¢q,...,c, € R>p and
Ty,...,T, are prime divisors on A. As [D] # 0, we may assume that c;,...,¢,. €
Rs¢. Note that [I'1],...,[I';] € Amp(A) and
0=H([D]) =c1H([I]) +- +c.H(L,]),
so that H([I'1]) =---=H([T'v]) =0, and hence [I'1],...,[I';] € R>¢[D]. In partic-
ular, there is t € R>o with [['1] =¢[D]. Here we can set
[Fl}:blel—&-n-—l—bpep (bl,...,bPEQ).

Thus, by =t, by =tas, ..., b, =ta,. As [['1] #0, t € Q*, and hence (as,...,a,)
t=1(bg,...,b,) € Q°~1. This is a contradiction.

Ol

REMARK 3.3

Let k be an algebraic closure of a finite field, and let X be a normal projective
variety over k. Let NS(X) be the Néron—Severi group of X, and let NS(X)g :=
NS(X) ®z R. Let Eff(X) be the closed cone in NS(X)g generated by pseudo-
effective R-Cartier divisors on X. We assume that Eff(X) is a rational polyhedral
cone; that is, there are pseudo-effective Q-Cartier divisors D1,...,D,, on X such
that Eff(X) is generated by the classes of Di,...,D,. Then the Q-version of
Question 0.2 implies the R-version of Question 0.2.

EXAMPLE 3.4

This is an example due to Yuan [24]. Let us fix an algebraically closed field k and
an integer g > 2. Let C' be a smooth projective curve over k, and let f: X — C be
an abelian scheme over C' of relative dimension g. Let L be an f-ample invertible
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sheaf on X such that [-1]*(L) ~ L and L is trivial along the zero section of
f:X—=C.

CLAIM 3.4.1
(a) [2]*(L)~L#.
(b) L is nef.

Proof
(a) As [2]*(L)|p-1(s) = L4 j-1(y) for all z € C, there is an invertible sheaf M
on C such that [2]*(L) ~ L®* ® f*(M). Let Zy be the zero section of f: X — C.
Then

Oz, = [2"(Llz,) = 2" (L)] 2, = L% @ f*(M)]|z, = M,

so that we have the assertion.
(b) Let A be an ample invertible sheaf on C' such that L ® f*(A) is ample.
Let A be a horizontal curve on X. As fo[2"] = f and [2"]*(L) ~ L®*", by using
(a),
0< (L@ [5(4)[2'.(4)) = (2T (L® f*(4)) - A) = (L% @ [*(4) - A),
so that (L-A)>—4""(f*(A)-A) for all n > 0. Thus, (L-A)>0. O

CLAIM 3.4.2
If the characteristic of k is zero and f is nonisotrivial, then L does not have the
Dirichlet property (i.e., L is not Q-effective).

Proof

The following proof is due to Yuan [24]. An alternative proof can be found in [6,
Theorem 4.3]. We need to see that H°(X,L®") =0 for all n > 0. We set d,, =
rk f.(L®™). By changing the base C' if necessary, we may assume that all (d,,)?-
torsion points on the generic fiber X,, of f: X — C' are defined over the function
field of C'. By using the algebraic theta theory due to Mumford (especially [19, last
line on p. 81]), there is an invertible sheaf M on C such that f,(L®") = M®d.
On the other hand, by [13],

deg(det (fo(L8™)%* ® f.(wx/c)®™) =0;

that is, 2deg(M) + deg(f«(wx/c)) =0. As f is nonisotrivial, we can see that
deg(f«(wx/c)) >0, so that deg(M) <0, and hence the assertion follows. O

When the characteristic of k is positive, we do not know the Q-effectivity of L
in general. In [15], there is an example with the following properties:

(a) g=2and C=Pj.
(b) There are an abelian surface A over k and an isogeny h: A x Pi — X
over Pi.
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CLAIM 343
In the above example, L has the Dirichlet property.

Proof
Replacing L by L®", we may assume that d :=rk f.(L) > 0. Let

pr:AxPL— A and py: AxPL—Pr

be the projections to A and P}, respectively. Note that h*(L) is symmetric and
h*(L) is trivial along the zero section of ps. Since w4y p1/pr =~ pi(wa), We have
that (p2).(waxpi/pr) = Opy, so that, by [13], deg(det((p2).(h*(L)))) = 0; that
is, if we set

(p2)«(h*(L)) = Op1 (a1) @ - - & Op1 (aq),
then a1 + -+ aq =0. Thus, a; > 0 for some 7, and hence
H(Ax P}, h*(L)) #0.
Therefore, L is Q-effective by Lemma 1.3. O

The above claim suggests that the set of preperiodic points of the map [2] : X — X
is not dense in the analytification X3" at any place v of IE”,l€ with respect to the
analytic topology (cf. [5]).

Acknowledgments. 1 would like to thank Professors Biswas, Keel, Langer, Tanaka,
and Totaro for their helpful comments. I would especially like to express my
hearty thanks to Professor Yuan for his nice example. I would also like to thank
the referee for the suggestions.

References

[1] I. Biswas and Y. I. Holla, Comparison of fundamental group schemes of a
projective variety and an ample hypersurface, J. Algebraic Geom. 16 (2007),
547-597. MR 2306280. DOI 10.1090/51056-3911-07-00449-3.

[2] I Biswas and A. J. Parameswaran, On vector bundles on curves over Fp,, C. R.
Math. Acad. Sci. Paris 350 (2012), 213-216. MR 2891114.

DOI 10.1016/j.crma.2012.01.006.

3] I. Biswas and S. Subramanian, On a question of Sean Keel, J. Pure Appl.
Algebra, 215 (2011), 2600-2602. MR 2802149. DOI 10.1016/.jpaa.2011.03.002.

[4] J. I. Burgos Gil, A. Moriwaki, P. Philippon, and M. Sombra, Arithmetic
positivity on toric varieties, to appear in J. Algebraic Geom., preprint,
arXiv:1210.7692v1 [math.AG].

[5] H. Chen and A. Moriwaki, Algebraic dynamical systems and Dirichlet’s unit

theorem on arithmetic varieties, Int. Math. Res. Not. IMRN, published
electronically 1 May 2015. DOI 10.1093/imrn/rnv097.


http://www.ams.org/mathscinet-getitem?mr=2306280
http://dx.doi.org/10.1090/S1056-3911-07-00449-3
http://dx.doi.org/10.1090/S1056-3911-07-00449-3
http://www.ams.org/mathscinet-getitem?mr=2891114
http://dx.doi.org/10.1016/j.crma.2012.01.006
http://dx.doi.org/10.1016/j.crma.2012.01.006
http://www.ams.org/mathscinet-getitem?mr=2802149
http://dx.doi.org/10.1016/j.jpaa.2011.03.002
http://dx.doi.org/10.1016/j.jpaa.2011.03.002
http://arxiv.org/abs/arXiv:1210.7692v1
http://dx.doi.org/10.1093/imrn/rnv097
http://dx.doi.org/10.1093/imrn/rnv097

816

(6]

(7l

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

21]

22]

23]

(24]

Atsushi Moriwaki

E. Colombo and G. P. Pirola, An intersection result for families of abelian
varieties, J. Pure Appl. Algebra 129 (1998), 111-122. MR 1624442.
DOI 10.1016,/S0022-4049(97)00093-5.

W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2,
Springer, Berlin, 1998. MR 1644323. DOT 10.1007/978-1-4612-1700-8.

R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in
Math. 156, Springer, New York, 1970. MR 0282977.

, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York,
1977. MR 0463157.

S. Keel, Polarized pushouts over finite fields, Comm. Algebra 31 (2003),
3955-3982. MR 2007391. DOI 10.1081/AGB-120022449.

A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159
(2004), 251-276. MR 2051393. DOT 10.4007 /annals.2004.159.251.

, On positivity and semistability of vector bundles in finite and mized
characteristics, J. Ramanujan Math. Soc. 28A (2013), 287-309. MR 3115197.

V. Maillot and D. Rossler, On the determinant bundles of abelian schemes,
Compos. Math. 144 (2008), 495-502. MR 2406120.
DOT 10.1112/S0010437X07003235.

V. Mehta and S. Subramanian, Nef line bundles which are not ample, Math. Z.
219 (1995), 235-244. MR 1337219. DOI 10.1007/BF02572363.

L. Moret-Bailly, “Familles de courbes et de variétés abéliennes sur P'” in
Séminaire sur les pinceauzr de courbes de genre au moins deux, Astérisque 86,
Soc. Math. France, Paris, 1981, 125-140. MR 0642675.

A. Moriwaki, Relative Bogomolov’s inequality and the cone of positive divisors
on the moduli space of stable curves, J. Amer. Math. Soc. 11 (1998), 569-600.
MR 1488349. DOI 10.1090/50894-0347-98-00261-6.

, Toward Dirichlet’s unit theorem on arithmetic varieties, Kyoto J.
Math. 53 (2013), 197-259. MR 3049312. DOI 10.1215/21562261-1966116.

, Adelic divisors on arithmetic varieties, to appear in Mem. Amer.
Math. Soc., preprint, arXiv:1302.1922v2 [math.AG].

D. Mumford, On the equations defining abelian varieties, II, Invent. Math. 3
(1967), 75-135. MR 0219541.

, Abelian Varieties, Tata Inst. Fundam. Res. Stud. Math. 5, Oxford
Univ. Press, London, 1974. MR 0282985.

N. Nakayama, Zariski-decomposition and abundance, MSJ Mem. 14, Math. Soc.
Japan, Tokyo, 2004. MR 2104208.

S. Subramanian, Strongly semistable bundles on a curve over a finite field, Arch.
Math. (Basel) 89 (2007), 68-72. MR 2322782. DOI 10.1007/s00013-007-1995-8.

B. Totaro, Moving codimension-one subvarieties over finite fields, Amer. J.
Math. 131 (2009), 1815-1833. MR 2567508. DOI 10.1353/ajm.0.0088.

X. Yuan, personal communication, December 2013.


http://www.ams.org/mathscinet-getitem?mr=1624442
http://dx.doi.org/10.1016/S0022-4049(97)00093-5
http://dx.doi.org/10.1016/S0022-4049(97)00093-5
http://www.ams.org/mathscinet-getitem?mr=1644323
http://dx.doi.org/10.1007/978-1-4612-1700-8
http://dx.doi.org/10.1007/978-1-4612-1700-8
http://www.ams.org/mathscinet-getitem?mr=0282977
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.ams.org/mathscinet-getitem?mr=2007391
http://dx.doi.org/10.1081/AGB-120022449
http://dx.doi.org/10.1081/AGB-120022449
http://www.ams.org/mathscinet-getitem?mr=2051393
http://dx.doi.org/10.4007/annals.2004.159.251
http://dx.doi.org/10.4007/annals.2004.159.251
http://www.ams.org/mathscinet-getitem?mr=3115197
http://www.ams.org/mathscinet-getitem?mr=2406120
http://dx.doi.org/10.1112/S0010437X07003235
http://dx.doi.org/10.1112/S0010437X07003235
http://www.ams.org/mathscinet-getitem?mr=1337219
http://dx.doi.org/10.1007/BF02572363
http://dx.doi.org/10.1007/BF02572363
http://www.ams.org/mathscinet-getitem?mr=0642675
http://www.ams.org/mathscinet-getitem?mr=1488349
http://dx.doi.org/10.1090/S0894-0347-98-00261-6
http://dx.doi.org/10.1090/S0894-0347-98-00261-6
http://www.ams.org/mathscinet-getitem?mr=3049312
http://dx.doi.org/10.1215/21562261-1966116
http://dx.doi.org/10.1215/21562261-1966116
http://arxiv.org/abs/arXiv:1302.1922v2
http://www.ams.org/mathscinet-getitem?mr=0219541
http://www.ams.org/mathscinet-getitem?mr=0282985
http://www.ams.org/mathscinet-getitem?mr=2104208
http://www.ams.org/mathscinet-getitem?mr=2322782
http://dx.doi.org/10.1007/s00013-007-1995-8
http://dx.doi.org/10.1007/s00013-007-1995-8
http://www.ams.org/mathscinet-getitem?mr=2567508
http://dx.doi.org/10.1353/ajm.0.0088
http://dx.doi.org/10.1353/ajm.0.0088

Toward a geometric analogue of Dirichlet’s unit theorem 817

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502,
Japan; moriwaki@math.kyoto-u.ac.jp


mailto:moriwaki@math.kyoto-u.ac.jp

	Introduction
	Preliminaries
	Proof of Theorem 0.4
	Numerical effectivity on abelian varieties
	Acknowledgments
	References
	Author's Addresses

