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Abstract In this article, we propose a geometric analogue of Dirichlet’s unit theorem

on arithmetic varieties; that is, ifX is a normal projective variety over a finite field and

D is a pseudo-effective Q-Cartier divisor onX, does it follow thatD is Q-effective? We

also give affirmative answers on an abelian variety and a projective bundle over a curve.

Introduction

Let K be a number field, and let OK be the ring of integers in K. Let K(C) be
the set of all embeddings K ↪→ C. For σ ∈K(C), the complex conjugation of σ

is denoted by σ; that is, σ(x) = σ(x) (x ∈K). Here we define ΞK and Ξ0
K to be{

ΞK := {ξ ∈RK(C) | ξ(σ) = ξ(σ) (∀σ)},
Ξ0
K := {ξ ∈ ΞK |

∑
σ∈K(C) ξ(σ) = 0}.

The Dirichlet unit theorem asserts that the group O×
K consisting of units in OK

is a finitely generated abelian group of rank s := dimRΞ
0
K .

Let us consider the homomorphism L :K× →RK(C) given by

L(x)(σ) := log
∣∣σ(x)∣∣ (

x ∈K×, σ ∈K(C)
)
.

It is easy to see the following.

(a) For a compact set B in RK(C), the set {x ∈O×
K | L(x) ∈B} is finite.

(b) L :K× →RK(C) extends to LR :K× ⊗R→RK(C).

(c) LR :O×
K ⊗R→RK(C) is injective.

(d) LR(O
×
K ⊗R)⊆ Ξ0

K .

By using (a) and (c), we can see that O×
K is a finitely generated abelian group.

The most essential part of the Dirichlet unit theorem is to show that O×
K is of

rank s, which is equivalent to seeing that, for any ξ ∈ Ξ0
K , there is x ∈O×

K ⊗R
with LR(x) = ξ.

To understand the equality LR(x) = ξ in terms of Arakelov geometry, let

us introduce several notations for arithmetic divisors on the arithmetic curve

Spec(OK). An arithmetic R-divisor on Spec(OK) is a pair (D,ξ) consisting of
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an R-divisor D on Spec(OK) and ξ ∈ ΞK . We often denote the pair (D,ξ) by D.

The arithmetic principal R-divisor (̂x)R of x ∈K×⊗R is the arithmetic R-divisor
given by

(̂x)R :=
(∑

P

ordP (x)[P ],−2LR(x)
)
,

where P runs over the set of all maximal ideals of OK and

ordP (x) := a1 ordP (x1) + · · ·+ ar ordP (xr)

for x = xa1
1 · · ·xar

r (x1, . . . , xr ∈ K× and a1, . . . , ar ∈ R). The arithmetic degree

d̂eg(D) of an arithmetic R-divisor D = (
∑

P aP [P ], ξ) is defined to be

d̂eg(D) :=
∑
P

aP log#(OK/P ) +
1

2

∑
σ∈K(C)

ξ(σ).

Note that

d̂eg
(
(̂x)R

)
= 0 (x ∈K× ⊗R)

by virtue of the product formula. Further, D = (
∑

P aP [P ], ξ) is said to be effec-

tive if aP ≥ 0 for all P and ξ(σ)≥ 0 for all σ.

In [17, Section 3.4], we proved the following.

(0.1) “If d̂eg(D)≥ 0, then D+ (̂x)R is effective for some x ∈K× ⊗R.”

This implies the essential part of the Dirichlet unit theorem. Indeed, we set

D = (0, ξ) for ξ ∈ Ξ0
K . As d̂eg(D) = 0, by (0.1), D + (̂y)R is effective for some

y ∈ K× ⊗ R, and hence D + (̂y)R = (0,0) because d̂eg(D + (̂y)R) = 0. Here we

set y = ua1
1 · · ·uar

r such that u1, . . . , ur ∈ K×, a1, . . . , ar ∈ R, and a1, . . . , ar are

linearly independent over Q. By using the linear independence of a1, . . . , ar over

Q, ordP (y) = 0 implies that ordP (ui) = 0 for all maximal ideals P of OK and i=

1, . . . , r; that is, ui ∈O×
K for i= 1, . . . , r. Therefore, ξ = LR(y

2) and y ∈O×
K ⊗R,

as required. In this sense, (0.1) is an Arakelov-theoretic interpretation of the

classical Dirichlet unit theorem.

In [17] and [18], we considered a higher-dimensional analogue of (0.1). In the

higher-dimensional case, the condition “d̂eg(D)≥ 0” should be replaced by the

pseudo-effectivity of D. Of course, this analogue is not true in general (cf. [5]).

It is, however, a very interesting problem to find a sufficient condition for the

existence of an arithmetic small R-section, that is, an element x such that

x= xa1
1 · · ·xar

r (x1, . . . , xr are rational functions and a1, . . . , ar ∈R)

and D + (̂x)R is effective. For example, in [17] and [18], we proved that if D is

numerically trivial and D is pseudo-effective, then D has an arithmetic small

R-section. In this article, we would like to consider a geometric analogue of the

Dirichlet unit theorem in the above sense.

Let X be a normal projective variety over an algebraically closed field k. Let

Div(X) denote the group of Cartier divisors on X . Let K be either the field Q
of rational numbers or the field R of real numbers. We define Div(X)K to be
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Div(X)K := Div(X) ⊗Z K, whose elements are called K-Cartier divisors on X .

For K-Cartier divisors D1 and D2, we say that D1 is K-linearly equivalent to D2,

which is denoted by D1 ∼K D2, if there are nonzero rational functions φ1, . . . , φr

on X and a1, . . . , ar ∈K such that

D1 −D2 = a1(φ1) + · · ·+ ar(φr).

Let D be a K-Cartier divisor on X . We say that D is big if there is an ample

Q-Cartier divisor A on X such that D−A is K-linearly equivalent to an effective

K-Cartier divisor. Further, D is said to be pseudo-effective if D + B is big for

any big K-Cartier divisor B on X . Note that if D is K-effective (i.e., D is K-

linearly equivalent to an effective K-Cartier divisor), then D is pseudo-effective.

The converse of the above statement holds on toric varieties (e.g., [4, Proposi-

tion 4.9]). However, it is not true in general. In the case where k is uncountable

(e.g., k = C), several examples are known such as nontorsion numerically triv-

ial invertible sheaves and Mumford’s example on a minimal ruled surface (cf.

[8, Chapter 1, Example 10.6], [14]). Nevertheless, we would like to propose the

following question.

QUESTION 0.2 (K-VERSION)

We assume that k is an algebraic closure of a finite field. If a K-Cartier divisor

D on X is pseudo-effective, does it follow that D is K-effective?

This question is a geometric analogue of the fundamental question introduced

in [17]. In this sense, it turns out to be a geometric Dirichlet’s unit theorem

if it is true, so that we often say that a K-Cartier divisor D has the Dirichlet

property if D is K-effective. Note that the R-version implies the Q-version (cf.

Proposition 1.5). Moreover, the R-version does not hold in general. In Exam-

ple 3.2, we give an example, so that, for the R-version, the question should

be

“Under what conditions does it follow that D is K-effective?”

Further, the Q-version implies the following question due to Keel (cf. [10, Ques-

tion 0.9], Remark 2.4). The similar arguments on an algebraic surface are dis-

cussed in the recent article by Langer [12, Conjectures 1.7–1.9 and Lemma 1.10].

QUESTION 0.3 (S. KEEL)

We assume that k is an algebraic closure of a finite field and thatX is an algebraic

surface over k. Let D be a Cartier divisor on X . If (D ·C)> 0 for all irreducible

curves C on X , is D ample?

By virtue of the Zariski decomposition, Question 0.2 on an algebraic surface is

equivalent to asking the following:

“If D is nef, then is D K-effective?”
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One might expect that D is semiample (cf. [10, Question 0.8.2]). However, Totaro

[23, Theorem 6.1] found a Cartier divisor D on an algebraic surface over a finite

field such that D is nef but not semiample. Totaro’s example does not give

a counterexample to our question because we assert only the Q-effectivity in

Question 0.2. Inspired by Biswas and Subramanian [3], we have the following

partial answer to the above question.

THEOREM 0.4

We assume that k is an algebraic closure of a finite field. Let C be a smooth

projective curve over k, and let E be a locally free sheaf of rank r on C. Let P(E)

be the projective bundle of E; that is, P(E) := Proj(
⊕∞

m=0 Sym
m(E)). If D is a

pseudo-effective K-Cartier divisor on P(E), then D is K-effective.

In addition to the above result, we can also give an affirmative answer to the

Q-version of Question 0.2 on abelian varieties.

PROPOSITION 0.5

We assume that k is an algebraic closure of a finite field. Let A be an abelian

variety over k. If D is a pseudo-effective Q-Cartier divisor on A, then D is

Q-effective.

1. Preliminaries

Let k be an algebraic closed field. Let C be a smooth projective curve over k,

and let E be a locally free sheaf of rank r on C. The projective bundle P(E) of

E is given by

P(E) := Proj
( ∞⊕
m=0

Symm(E)
)
.

The canonical morphism P(E) → C is denoted by fE . A tautological divisor

ΘE on P(E) is a Cartier divisor on P(E) such that OP(E)(ΘE) is isomorphic

to the tautological invertible sheaf OP(E)(1) on P(E). We say that E is strongly

semistable if, for any surjective morphism π :C ′ →C of smooth projective curves,

π∗(E) is semistable. By definition, if E is strongly semistable and π : C ′ → C is

a surjective morphism of smooth projective curves over k, then π∗(E) is also

strongly semistable. A filtration

0 =E0 �E1 �E2 � · · ·�Es−1 �Es =E

of E is called the strong Harder–Narasimhan filtration if

μ(E1/E0)> μ(E2/E1)> · · ·> μ(Es−1/Es−2)> μ(Es/Es−1)

and Ei/Ei−1 is a strongly semistable locally free sheaf on C for each i= 1, . . . , s.

Recall the following well-known facts (F1)–(F5) on strong semistability.
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(F1) A locally free sheaf E on C is strong semistable if and only if ΘE −
f∗
E(ξE/r) is nef, where ξE is a Cartier divisor on C with OC(ξE)	 det(E) (e.g.,

see [16, Proposition 7.1(3)]).

(F2) Let π : C ′ → C be a surjective morphism of smooth projective curves

over k such that the function field of C ′ is a separable extension field over the

function field of C. If E is semistable, then π∗(E) is also semistable (e.g., see [16,

Proposition 7.1(1)]). In particular, if char(k) = 0, then E is strongly semistable

if and only if E is semistable. Moreover, in the case where char(k) > 0, E is

strongly semistable if and only if (Fm)∗(E) is semistable for all m ≥ 0, where

F :C →C is the absolute Frobenius map and

Fm =

m︷ ︸︸ ︷
F ◦ · · · ◦ F .

(F3) If E and G are strongly semistable locally free sheaves on C, then

Symm(E) and E ⊗ G are also strongly semistable for all m ≥ 1 (e.g., see [16,

Theorem 7.2, Corollary 7.3]).

(F4) There is a surjective morphism π :C ′ →C of smooth projective curves

over k such that π∗(E) has the strong Harder–Narasimhan filtration (cf. [11,

Theorem 7.2]).

(F5) We assume that k is an algebraic closure of a finite field. If E is a

strongly semistable locally free sheaf on C with det(E) 	 OC , then there is a

surjective morphism π : C ′ → C of smooth projective curves over k such that

π∗(E)	O⊕ rkE
C′ (cf. [1, p. 557], [22, Theorem 3.2], [3]).

The purpose of this section is to prove the following characterizations of

pseudo-effective R-Cartier divisors and nef R-Cartier divisors on P(E). This

result is essentially due to Nakayama [21, Lemma 3.7] in which he works over the

complex number field.

PROPOSITION 1.1

We assume that E has the strong Harder–Narasimhan filtration

0 =E0 �E1 �E2 � · · ·�Es−1 �Es =E.

Then, for an R-divisor A on C, we have the following:

(a) ΘE − f∗(A) is pseudo-effective if and only if deg(A)≤ μ(E1).

(b) ΘE − f∗(A) is nef if and only if deg(A)≤ μ(E/Es−1).

Let us begin with the following lemma.

LEMMA 1.2

We assume that E has a filtration

0 =E0 �E1 � · · ·�Es−1 �Es =E
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such that Ei/Ei−1 is a strongly semistable locally free sheaf on C and deg(Ei/

Ei−1)< 0 for all i= 1, . . . , s. Then, H0(C,Symm(E)⊗G) = 0 for m≥ 1 and a

strongly semistable locally free sheaf G on C with deg(G)≤ 0.

Proof

We prove it by induction on s. In the case where s= 1, E is strongly semistable

and deg(E)< 0, so that Symm(E)⊗G is also strongly semistable by (F3) and

deg
(
Symm(E)⊗G

)
< 0.

Therefore, H0(C,Symm(E)⊗G) = 0.

Here we assume that s > 1. Let us consider an exact sequence

0→Es−1 →E →E/Es−1 → 0.

By [9, Chapter II, Exercise 5.16(c)], there is a filtration

Symm(E) = F 0 � F 1 � · · ·� Fm � Fm+1 = 0

such that

F j/F j+1 	 Symj(Es−1)⊗ Symm−j(E/Es−1)

for each j = 0, . . . ,m. By using the hypothesis of induction,

H0
(
C, (F j/F j+1)⊗G

)
= 0

for j = 1, . . . ,m because Symm−j(E/Es−1) ⊗ G is strongly semistable by (F3)

and

deg
(
Symm−j(E/Es−1)⊗G

)
≤ 0.

Moreover, since Symm(E/Es−1)⊗G is strongly semistable by (F3) and

deg
(
Symm(E/Es−1)⊗G

)
< 0,

we have that

H0
(
C, (F 0/F 1)⊗G

)
=H0

(
C,Symm(E/Es−1)⊗G

)
= 0.

Therefore, by using an exact sequence

0→ F j+1 ⊗G→ F j ⊗G→ (F j/F j+1)⊗G→ 0,

we have that

H0(C,F j+1 ⊗G)
∼−→H0(C,F j ⊗G)

for j = 0, . . . ,m, which implies that H0(C,Symm(E)⊗G) = 0, as required. �

Proof of Proposition 1.1

It is sufficient to show the following.

(a) If A is a Q-Cartier divisor and deg(A) < μ(E1), then ΘE − f∗(A) is

Q-effective.
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(b) If A is a Q-Cartier divisor and deg(A)> μ(E1), then ΘE − f∗(A) is not

pseudo-effective.

(c) If ΘE − f∗(A) is nef, then deg(A)≤ μ(E/Es−1).

(d) If ΘE − f∗(A) is not nef, then deg(A)> μ(E/Es−1).

(a) Let θ be a divisor on C with deg(θ) = 1. As E1 is strongly semistable,

by (F1), ΘE1 − μ(E1)f
∗
E1

(θ) is nef, so that we can see that ΘE1 − f∗
E1

(A) is nef

and big because

ΘE1 − deg(A)f∗
E1

(θ) = ΘE1 − μ(E1)f
∗
E1

(θ) +
(
μ(E1)− deg(A)

)
f∗
E1

(θ).

Therefore, there is a positive integer m1 such that m1A is a divisor on C

and

H0
(
P(E1),OP(E1)

(
m1ΘE1 − f∗

E1
(m1A)

))
�= 0.

In addition,

H0
(
P(E1),OP(E1)

(
m1ΘE1 − f∗

E1
(m1A)

))
=H0

(
C,Symm1(E1)⊗OC(−m1A)

)
⊆H0

(
C,Symm1(E)⊗OC(−m1A)

)
=H0

(
P(E),OP(E)

(
m1ΘE − f∗

E(m1A)
))
,

so that ΘE − f∗
E(A) is Q-effective.

(b) Let B be an ample Q-divisor on C with deg(B)< deg(A)− μ(E1). Let

π : C ′ → C be a surjective morphism of smooth projective curves over k such

that π∗(−A+B) is a Cartier divisor on C ′. Note that

μ
(
π∗(Ei/Ei−1)⊗OC′

(
π∗(−A+B)

))
< 0

for i= 1, . . . , s, and hence, by Lemma 1.2,

H0
(
C ′,Symm

(
π∗(E)

)
⊗OC′

(
mπ∗(−A+B)

))
= 0

for all m ≥ 1. In particular, if b is a positive integer such that b(−A+ B) is a

Cartier divisor, then

H0
(
C,Symmb(E)⊗OC

(
mb(−A+B)

))
= 0

for m ≥ 1. Here we assume that ΘE − f∗
E(A) is pseudo-effective. Let a be a

positive integer such that ΘE − f∗
E(A) + af∗

E(B) is ample. Then

(a− 1)
(
ΘE − f∗

E(A)
)
+ΘE − f∗

E(A) + af∗
E(B) = a

(
ΘE + f∗

E(−A+B)
)

is big, so that we can find a positive integer m1 such that

H0
(
C,Symm1ab(E)⊗OC

(
m1ab(−A+B)

))
=H0

(
P(E),OP(E)

(
m1ab

(
ΘE + f∗

E(−A+B)
)))

�= 0,

which is a contradiction.
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(c) Note that

P(E/Es−1)⊆ P(E), ΘE/Es−1
∼ΘE |P(E/Es−1), and

fE/Es−1
= fE |P(E/Es−1),

so that ΘE/Es−1
− f∗

E/Es−1
(A) is nef on P(E/Es−1). Let ξE/Es−1

be a Cartier

divisor on C with OC(ξE/Es−1
) 	 det(E/Es−1). If we set e = rkE/Es−1 and

G= ξE/Es−1
/e−A, then

ΘE/Es−1
− f∗

E/Es−1
(A) = ΘE/Es−1

− f∗
E/Es−1

(ξE/Es−1
/e) + f∗

E/Es−1
(G).

Since ΘE/Es−1
− f∗

E/Es−1
(ξE/Es−1

/e) is nef by (F1) and(
ΘE/Es−1

− f∗
E/Es−1

(ξE/Es−1
/e)

)e
= 0,

we have that

0≤
(
ΘE/Es−1

− f∗
E/Es−1

(A)
)e

= edeg(G).

Therefore, deg(G)≥ 0, and hence deg(A)≤ μ(E/Es−1).

(d) We can find an irreducible curve C0 ofX such that (ΘE − f∗
E(A) ·C0)< 0.

Clearly C0 is flat over C. Let C1 be the normalization of C0, and let h : C1 →
C be the induced morphism. Let us consider the following commutative dia-

gram:

P(E)
P(h)←−−−− P

(
h∗(E)

)
fE

⏐⏐� ⏐⏐�fh∗(E)

C
h←−−−− C1

Note that P(h)∗(ΘE −f∗
E(A))∼R Θh∗(E)−f∗

h∗(E)(h
∗(A)). Further, there is a sec-

tion S of fh∗(E) such that P(h)∗(S) = C0. Let Q be the quotient line bundle of

h∗(E) corresponding to the section S. As

0 = h∗(E0)� h∗(E1)� h∗(E2)� · · ·� h∗(Es−1)� h∗(Es) = h∗(E)

is the Harder–Narasimhan filtration of h∗(E), we can easily see that

deg(Q)≥ μ
(
h∗(E/Es−1)

)
= deg(h)μ(E/Es−1).

On the other hand,

deg(Q)− deg(h)deg(A) =
(
Θh∗(E) − f∗

h∗(E)

(
h∗(A)

)
· S

)
=
(
ΘE − f∗

E(A) ·C0

)
< 0,

and hence μ(E/Es−1)< deg(A). �

Finally let us consider the following three results.

LEMMA 1.3

Let K be either Q or R. Let μ :X ′ →X be a generically finite morphism of normal
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projective varieties over k. For a K-Cartier divisor D on X, D is K-effective if

and only if μ∗(D) is K-effective.

Proof

Clearly, if D is K-effective, then μ∗(D) is K-effective. Let K and K ′ be the

function fields of X and X ′, respectively. Here we assume that μ∗(D) is K-

effective; that is, there are φ′
1, . . . , φ

′
r ∈K ′× and a1, . . . , ar ∈K such that μ∗(D)+

a1(φ
′
1) + · · ·+ ar(φ

′
r) is effective, so that

μ∗
(
μ∗(D) + a1(φ

′
1) + · · ·+ ar(φ

′
r)
)
= deg(μ)D+ a1μ∗

(
(φ′

1)
)
+ · · ·+ arμ∗

(
(φ′

r)
)

is effective. Note that μ∗(φ
′
i) = (NK′/K(φ′

i)) (cf. [7, Proposition 1.4]), where

NK′/K is the norm map of K ′ over K, and hence

D+
(
a1/deg(μ)

)(
NK′/K(φ′

1)
)
+ · · ·+

(
ar/deg(μ)

)(
NK′/K(φ′

r)
)

is effective. Therefore, D is K-effective. �

LEMMA 1.4

Let K be either Q or R. We assume that k is an algebraic closure of a finite field.

Let X be a normal projective variety over k, and let D be a K-Cartier divisor

on X. If D is numerically trivial, then D is K-linearly equivalent to the zero

divisor.

Proof

If K=Q, then the assertion is well known, so that we assume that K= R. We

set D = a1D1 + · · · + arDr, where D1, . . . ,Dr are Cartier divisors on X and

a1, . . . , ar ∈ R. Considering a Q-basis of Qa1 + · · ·+Qar in R, we may assume

that a1, . . . , ar are linearly independent over Q. Let C be an irreducible curve on

X . Note that

0 = (D ·C) = a1(D1 ·C) + · · ·+ ar(Dr ·C)

and (D1 · C), . . . , (Dr · C) ∈ Z, and hence (D1 · C) = · · · = (Dr · C) = 0 because

a1, . . . , ar are linearly independent over Q. Thus, D1, . . . ,Dr are numerically

equivalent to zero, so thatD1, . . . ,Dr are Q-linearly equivalent to the zero divisor.

Therefore, the assertion follows. �

PROPOSITION 1.5

Let X be a normal projective variety over k, and let D be a Q-Cartier divisor

on X. If D is R-effective, then D is Q-effective.

Proof

As D is R-effective, there are nonzero rational functions ψ1, . . . , ψl on X and

b1, . . . , bl ∈ R such that D + b1(ψ1) + · · ·+ bl(ψl) is effective. We set V =Qb1 +

· · ·+Qbl ⊆R. If V ⊆Q, then b1, . . . , bl ∈Q, so that we may assume that V �Q.
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CLAIM 1.5.1

There are nonzero rational functions φ1, . . . , φr on X, a1, . . . , ar ∈ R, and a Q-

Cartier divisor D′ on X such that D ∼Q D′, D′+a1(φ1)+ · · ·+ar(φr) is effective,

and 1, a1, . . . , ar are linearly independent over Q.

Proof

We can find a basis a1, . . . , ar of V over Q with the following properties:

(i) If we set bi =
∑r

j=1 cijaj , then cij ∈ Z for all i, j.

(ii) If V ∩Q �= {0}, then a1 ∈Q×.

We put φj =
∏l

i=1ψ
cij
i . Note that

∑l
i=1 bi(ψi) =

∑r
j=1 aj(φj). Therefore, in the

case where V ∩Q = {0}, 1, a1, . . . , ar are linearly independent over Q and D +∑r
j=1 aj(φj) is effective. Otherwise, 1, a2, . . . , ar are linearly independent over Q

and (D+ a1(φ1)) +
∑r

j=2 aj(φj) is effective. �

We set L=D′+a1(φ1)+ · · ·+ar(φr). Let Γ be a prime divisor with Γ� Supp(L).

Then

0 =multΓ(L) =multΓ(D
′) + a1 ordΓ(φ1) + · · ·+ ar ordΓ(φr),

so that multΓ(D
′) = ordΓ(φ1) = · · · = ordΓ(φr) = 0 because 1, a1, . . . , ar are lin-

early independent over Q. Thus,

Supp(D′),Supp
(
(φ1)

)
, . . . ,Supp

(
(φr)

)
⊆ Supp(L).

Therefore, we can find a′1, . . . , a
′
r ∈ Q such that D′ + a′1(φ1) + · · · + a′r(φr) is

effective, and hence D is Q-effective. �

2. Proof of Theorem 0.4

Let k be an algebraic closure of a finite field. Let C be a smooth projective curve

over k. Let us begin with the following lemma.

LEMMA 2.1

Let K be either Q or R. Let A be a K-Cartier divisor on C. If deg(A)≥ 0, then

A is K-effective.

Proof

If K = Q, then the assertion is obvious. We assume that K = R. If deg(A) = 0,

then the assertion follows from Lemma 1.4. Next we consider the case where

deg(A)> 0. We can find a Q-Cartier divisor A′ such that A′ ≤A and deg(A′)> 0.

Thus, the previous observation implies the assertion. �

As a consequence of (F3), (F4), and (F5), we have the following splitting theorem,

which was obtained by Biswas and Parameswaran [2, Proposition 2.1].
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THEOREM 2.2

For a locally free sheaf E on C, there are a surjective morphism π : C ′ → C of

smooth projective curves over k and invertible sheaves L1, . . . ,Lr on C ′ such that

π∗(E)	 L1 ⊕ · · · ⊕Lr.

Proof

For the reader’s convenience, we give a sketch of the proof. First we assume that

E is strongly semistable. Let ξE be a Cartier divisor on C with OC(ξE)	 det(E).

Let h :B →C be a surjective morphism of smooth projective curves over k such

that h∗(ξE) is divisible by rk(E). We set E′ = h∗(E)⊗OB(−h∗(ξE)/ rk(E)). As

det(E′)	OB , the assertion follows from (F5).

By the above observation, it is sufficient to find a surjective morphism π :

C ′ → C of smooth projective curves over k and strongly semistable locally free

sheaves Q1, . . . ,Qn on C ′ such that

π∗(E) =Q1 ⊕ · · · ⊕Qn.

Moreover, by (F4), we may assume that E has the strong Harder–Narasimhan

filtration

0 =E0 �E1 �E2 � · · ·�En−1 �En =E.

Clearly we may further assume that n≥ 2. For a nonnegative integer m, we set

Cm :=X ×Spec(k) Spec(k),

where the morphism Spec(k)→ Spec(k) is given by x �→ x1/pm

. Let Fm
k :Cm →C

be the relative mth Frobenius morphism over k. Put

Gm
i,j := (Fm

k )∗
(
(Ej/Ei)⊗ (Ei/Ei−1)

∨)⊗ ωCm

for i= 1, . . . , n− 1 and j = i, . . . , n. We can find a positive integer m such that

μ(Gm
i,i+1) = pm

(
μ(Ei+1/Ei)− μ(Ei/Ei−1)

)
+deg(ωC)< 0

for all i= 1, . . . , n− 1. By using (F3), we can see that

0 =Gm
i,i �Gm

i,i+1 �Gm
i,i+2 � · · ·�Gm

i,n−1 �Gm
i,n

is the strong Harder–Narasimhan filtration of Gm
i,n, so that H0(Cm,Gm

i,n) = {0},
which yields

Ext1
(
(Fm

k )∗(E/Ei), (F
m
k )∗(Ei/Ei−1)

)
= 0

because of Serre’s duality theorem. Therefore, an exact sequence

0→ (Fm
k )∗(Ei/Ei−1)→ (Fm

k )∗(E/Ei−1)→ (Fm
k )∗(E/Ei)→ 0

splits; that is, (Fm
k )∗(E/Ei−1)	 (Fm

k )∗(Ei/Ei−1)⊕ (Fm
k )∗(E/Ei) for i= 1, . . . ,

n− 1, and hence

(Fm
k )∗(E)	

n⊕
i=1

(Fm
k )∗(Ei/Ei−1),

as required. �
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Proof of Theorem 0.4

By virtue of Theorem 2.2 and Lemma 1.3, we may assume that

E 	 L1 ⊕ · · · ⊕Lr

for some invertible sheaves L1, . . . ,Lr on C. We set

d=max
{
deg(L1), . . . ,deg(Lr)

}
and I =

{
i
∣∣ deg(Li) = d

}
.

There is a K-Cartier divisor A on C such that D ∼K λΘE − f∗
E(A) for some

λ ∈K. Let M be an ample divisor on C such that T := ΘE + f∗
E(M) is ample.

As D is pseudo-effective, we have that

0≤
(
D · T r−2 · f∗

E(M)
)
=
((
λT − f∗

E(A+ λM)
)
· T r−2 · f∗

E(M)
)
= λdeg(M),

and hence λ≥ 0. If λ= 0, then 0≤ (D · T r−1) = deg(−A). Thus, by Lemma 2.1,

−A is K-effective, so that the assertion follows.

We assume that λ > 0. Replacing D by D/λ, we may assume that λ= 1. Let

ξ be a Cartier divisor on C such that OC(ξ)	 Li0 for some i0 ∈ I . Note that the

first part E1 of the strong Harder–Narasimhan filtration of E is
⊕

i∈I Li, so that,

by Proposition 1.1, deg(A)≤ deg(ξ). If we set B = ξ −A, then, by Lemma 2.1,

B is K-effective because deg(B)≥ 0. Moreover, as

ΘE − f∗
E(A) = ΘE − f∗

E(ξ) + f∗
E(B),

it is sufficient to consider the case where D = ΘE − f∗
E(ξ). In this case, the

assertion is obvious because

H0
(
P(E),OP(E)(D)

)
=H0

(
C,E ⊗OC(−ξ)

)
=H0

(
C,

r⊕
i=1

Li ⊗OC(−ξ)
)
�= {0}.

�

As a consequence of Theorem 0.4, we can recover a result due to [3].

COROLLARY 2.3

Let k, C, and E be the same as in Theorem 0.4. We assume that r = 2. Let D

be a Cartier divisor on P(E) such that (D · Y ) > 0 for all irreducible curves Y

on P(E). Then D is ample.

Proof

As D is nef, D is pseudo-effective, so that, by Theorem 0.4, there is an effective

Q-Cartier divisor E on X such that D ∼Q E. As E �= 0, we have that (D ·D) =

(D ·E)> 0. Therefore, D is ample by the Nakai–Moishezon criterion. �

REMARK 2.4

The argument in the proof of Corollary 2.3 actually shows that the Q-version of

Question 0.2 on algebraic surfaces implies Question 0.3.
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3. Numerical effectivity on abelian varieties

The purpose of this section is to give an affirmative answer for the Q-version of

Question 0.2 on abelian varieties. Let A be an abelian variety over an algebraically

closed field k. A key observation is the following proposition.

PROPOSITION 3.1

If a Q-Cartier divisor D on A is nef, then D is numerically equivalent to a

Q-effective Q-Cartier divisor.

Proof

We prove it by induction on dimA. If dimA≤ 1, then the assertion is obvious.

Clearly we may assume that D is a Cartier divisor, so that we set L=OA(D). As

L⊗ [−1]∗(L) is numerically equivalent to L⊗2 (cf. [20, p. 75, (iv)]), we may assume

that L is symmetric; that is, L	 [−1]∗(L). Let K(L) be the closed subgroup of

A given by K(L) = {x ∈ A | T ∗
x (L) 	 L} (cf. [20, p. 60, Definition]). If K(L) is

finite, then L is nef and big by virtue of [20, p. 150, Riemann–Roch theorem],

so that D is Q-effective. Otherwise, let B be the connected component of K(L)

containing 0.

CLAIM 3.1.1

(a) T ∗
x (L)|B 	 L|B for all x ∈A.

(b) L⊗2|B+x 	OB+x for x ∈A.

Proof

(a) Let N be an invertible sheaf on A×A given by

N =m∗(L)⊗ p∗1(L
−1)⊗ p∗2(L

−1),

where pi : A × A → A is the projection to the ith factor (i = 1,2) and m is

the addition morphism. Note that N |B×A 	OB×A (cf. [20, Section 13, p. 123]).

Fixing x ∈A, let us consider a morphism α :B →B ×A given by α(y) = (y,x).

Then

OB 	 α∗(m∗(L)⊗ p∗1(L
−1)⊗ p∗2(L

−1)|B×A

)
	 T ∗

x (L)|B ⊗L−1|B ,

as required.

(b) First we consider the case where x= 0. As N |B×A 	OB×A, we have that

N |B×B 	OB×B . Using a morphism β :B →B ×B given by β(y) = (y,−y), we

have that

OB 	 β∗(N |B×B) = L−1|B ⊗ [−1]∗(L−1)|B 	 L⊗−2|B,

as required.



812 Atsushi Moriwaki

In general, for x ∈A, by (a) and the previous observation together with the

following commutative diagram

B + x −−−−→ A

T−x

⏐⏐� ⏐⏐�T−x

B −−−−→ A,

we can see that

OB+x = T ∗
−x(OB)	 T ∗

−x(L
⊗2|B)	 T ∗

−x

(
T ∗
x (L)

⊗2|B
)

= T ∗
−x

(
T ∗
x (L

⊗2)|B
)
= T ∗

−x

(
T ∗
x (L

⊗2)
)
|B+x = L⊗2|B+x. �

Let π :A→A/B be the canonical homomorphism. By Claim 3.1.1(b),

dimk(y)H
0
(
π−1(y),L⊗2

)
= 1

for all y ∈ A/B, so that, by [20, p. 51, Corollary 2], π∗(L
⊗2) is an invertible

sheaf on A/B and π∗(L
⊗2)⊗ k(y)

∼−→H0(π−1(y),L⊗2). Therefore, the natural

homomorphism π∗(π∗(L
⊗2)) → L⊗2 is an isomorphism; that is, there is a Q-

Cartier divisor D′ on A/B such that π∗(D′)∼Q D. Note that D′ is also nef, so

that, by the hypothesis of induction, D′ is numerically equivalent to a Q-effective

Q-Cartier divisor, and hence the assertion follows. �

Proof of Proposition 0.5

Proposition 0.5 is a consequence of Lemma 1.4 and Proposition 3.1 because a

pseudo-effective Q-Cartier divisor on an abelian variety is nef. �

EXAMPLE 3.2

Here we show that the R-version of Question 0.2 does not hold in general. Let

k be an algebraically closed field. (Note that k is not necessarily an algebraic

closure of a finite field.) Let C be an elliptic curve over k, and let A := C ×C.

Let NS(A) be the Néron–Severi group of A. Note that ρ := rkNS(A)≥ 3. By using

the Hodge index theorem, we can find a basis e1, . . . , eρ of NS(A)Q := NS(A)⊗ZQ
with the following properties:

(a) e1 is the class of the divisor {0}×C+C×{0}. In particular, (e1 ·e1) = 2.

(b) (ei · ei)< 0 for all i= 2, . . . , ρ.

(c) (ei · ej) = 0 for all 1≤ i �= j ≤ ρ.

We set λi :=−(ei · ei) for i= 2, . . . , ρ. Let Amp(A) be the closed cone in NS(A)R :=

NS(A)⊗Z R generated by ample Q-Cartier divisors on A. It is well known that

Amp(A) =
{
ξ ∈NS(A)R

∣∣ (ξ2)≥ 0, (ξ · e1)≥ 0
}

= {x1e1 + x2e2 + · · ·+ xρeρ | λ2x
2
2 + · · ·+ λρx

2
ρ ≤ 2x2

1, x1 ≥ 0}.

We choose (a2, . . . , aρ) ∈Rρ−1 such that

(a2, . . . , aρ) /∈Qρ−1 and λ2a
2
2 + · · ·+ λρa

2
ρ = 2.
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Let Ei be a Q-Cartier divisor on A such that the class of Ei in NS(A)Q is equal

to ei for i = 1, . . . , ρ. If we set D := E1 + a2E2 + · · ·+ aρEρ, then we have the

following claim, which is sufficient for our purpose.

CLAIM 3.2.1

We have that D is nef and D is not numerically equivalent to an effective R-
Cartier divisor.

Proof

Clearly D is nef. If we set e′1 = e1/
√
2 and e′i = ei/

√
λi for i= 2, . . . , ρ, then

Amp(A) = {y1e′1 + y2e
′
2 + · · ·+ yρe

′
ρ | y22 + · · ·+ yρ

2 ≤ y1
2, y1 ≥ 0}.

Therefore, as [D] ∈ ∂(Amp(A)R), we can choose

H ∈HomR

(
NS(A)R,R

)
such that

H ≥ 0 on Amp(A) and {H = 0} ∩Amp(A) =R≥0[D],

where [D] is the class of D in NS(A)R. We assume that D is numerically equiva-

lent to an effective R-Cartier divisor c1Γ1+ · · ·+ crΓr, where c1, . . . , cr ∈R≥0 and

Γ1, . . . ,Γr are prime divisors on A. As [D] �= 0, we may assume that c1, . . . , cr ∈
R>0. Note that [Γ1], . . . , [Γr] ∈Amp(A) and

0 =H
(
[D]

)
= c1H

(
[Γ1]

)
+ · · ·+ crH

(
[Γr]

)
,

so that H([Γ1]) = · · ·=H([Γr]) = 0, and hence [Γ1], . . . , [Γr] ∈R≥0[D]. In partic-

ular, there is t ∈R≥0 with [Γ1] = t[D]. Here we can set

[Γ1] = b1e1 + · · ·+ bρeρ (b1, . . . , bρ ∈Q).

Thus, b1 = t, b2 = ta2, . . . , bρ = taρ. As [Γ1] �= 0, t ∈Q×, and hence (a2, . . . , aρ) =

t−1(b2, . . . , bρ) ∈Qρ−1. This is a contradiction. �

REMARK 3.3

Let k be an algebraic closure of a finite field, and let X be a normal projective

variety over k. Let NS(X) be the Néron–Severi group of X , and let NS(X)R :=

NS(X) ⊗Z R. Let Eff(X) be the closed cone in NS(X)R generated by pseudo-

effective R-Cartier divisors on X . We assume that Eff(X) is a rational polyhedral

cone; that is, there are pseudo-effective Q-Cartier divisors D1, . . . ,Dn on X such

that Eff(X) is generated by the classes of D1, . . . ,Dn. Then the Q-version of

Question 0.2 implies the R-version of Question 0.2.

EXAMPLE 3.4

This is an example due to Yuan [24]. Let us fix an algebraically closed field k and

an integer g ≥ 2. Let C be a smooth projective curve over k, and let f :X →C be

an abelian scheme over C of relative dimension g. Let L be an f -ample invertible
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sheaf on X such that [−1]∗(L) 	 L and L is trivial along the zero section of

f :X →C.

CLAIM 3.4.1

(a) [2]∗(L)	 L⊗4.

(b) L is nef.

Proof

(a) As [2]∗(L)|f−1(x) 	 L⊗4|f−1(x) for all x ∈ C, there is an invertible sheaf M

on C such that [2]∗(L)	 L⊗4 ⊗ f∗(M). Let Z0 be the zero section of f :X →C.

Then

OZ0 	 [2]∗(L|Z0) = [2]∗(L)|Z0 	 L⊗4 ⊗ f∗(M)|Z0 	M,

so that we have the assertion.

(b) Let A be an ample invertible sheaf on C such that L⊗ f∗(A) is ample.

Let Δ be a horizontal curve on X . As f ◦ [2n] = f and [2n]∗(L)	 L⊗4n , by using

(a),

0≤
(
L⊗ f∗(A) · [2n]∗(Δ)

)
=
(
[2n]∗

(
L⊗ f∗(A)

)
·Δ

)
=
(
L⊗4n ⊗ f∗(A) ·Δ

)
,

so that (L ·Δ)≥−4−n(f∗(A) ·Δ) for all n > 0. Thus, (L ·Δ)≥ 0. �

CLAIM 3.4.2

If the characteristic of k is zero and f is nonisotrivial, then L does not have the

Dirichlet property (i.e., L is not Q-effective).

Proof

The following proof is due to Yuan [24]. An alternative proof can be found in [6,

Theorem 4.3]. We need to see that H0(X,L⊗n) = 0 for all n > 0. We set dn =

rkf∗(L
⊗n). By changing the base C if necessary, we may assume that all (dn)

2-

torsion points on the generic fiber Xη of f :X →C are defined over the function

field of C. By using the algebraic theta theory due to Mumford (especially [19, last

line on p. 81]), there is an invertible sheaf M on C such that f∗(L
⊗n) =M⊕dn .

On the other hand, by [13],

deg
(
det

(
f∗(L

⊗n)
)⊗2 ⊗ f∗(ωX/C)

⊗dn
)
= 0;

that is, 2deg(M) + deg(f∗(ωX/C)) = 0. As f is nonisotrivial, we can see that

deg(f∗(ωX/C))> 0, so that deg(M)< 0, and hence the assertion follows. �

When the characteristic of k is positive, we do not know the Q-effectivity of L

in general. In [15], there is an example with the following properties:

(a) g = 2 and C = P1
k.

(b) There are an abelian surface A over k and an isogeny h : A× P1
k →X

over P1
k.
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CLAIM 3.4.3

In the above example, L has the Dirichlet property.

Proof

Replacing L by L⊗n, we may assume that d := rkf∗(L)> 0. Let

p1 :A× P1
k →A and p2 :A× P1

k → P1
k

be the projections to A and P1
k, respectively. Note that h∗(L) is symmetric and

h∗(L) is trivial along the zero section of p2. Since ωA×P1
k/P

1
k
	 p∗1(ωA), we have

that (p2)∗(ωA×P1
k/P

1
k
) 	 OP1

k
, so that, by [13], deg(det((p2)∗(h

∗(L)))) = 0; that

is, if we set

(p2)∗
(
h∗(L)

)
=OP1

k
(a1)⊕ · · · ⊕OP1

k
(ad),

then a1 + · · ·+ ad = 0. Thus, ai ≥ 0 for some i, and hence

H0
(
A× P1

k, h
∗(L)

)
�= 0.

Therefore, L is Q-effective by Lemma 1.3. �

The above claim suggests that the set of preperiodic points of the map [2] :X →X

is not dense in the analytification Xan
v at any place v of P1

k with respect to the

analytic topology (cf. [5]).
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