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Abstract Let A = A(E,σ),A′ = A(E′, σ′) be Noetherian Artin-Schelter regular geo-
metric algebras with dimk A1 = dimk A′

1 = n, and let ν, ν′ be generalized Nakayama
automorphisms of A,A′. In this paper, we study relationships between the conditions

(A) A is graded Morita equivalent to A′, and
(B) A(E,ν∗σn) is isomorphic to A(E′, (ν′)∗(σ′)n) as graded algebras.

It is proved that if A,A′ are “generic” 3-dimensional quadratic Artin-Schelter regular
algebras, then (A) is equivalent to (B), and if A,A′ are n-dimensional skew polynomial
algebras, then (A) implies (B).

1. Introduction

In noncommutative algebraic geometry, classification of Artin-Schelter (AS-) reg-
ular algebras has been one of the major projects since its beginning. In fact, AS-
regular algebras up to dimension 3 were classified. Since classifying 4-dimensional
AS-regular algebras up to isomorphism of graded algebras is difficult, it is natural
to try to classify them up to something weaker than graded isomorphisms, such
as graded Morita equivalences. In general, it is difficult to check whether two
graded algebras are graded Morita equivalent. The motivation of this paper is to
find a nice criterion of graded Morita equivalence for AS-regular algebras. In this
paper, we associate to a geometric AS-regular algebra A a symmetric AS-regular
algebra B, and we will prove that B is isomorphic to B′ if (and only if) A is
graded Morita equivalent to A′ in some nice cases.

Throughout this paper, we fix an algebraically closed field k. Let A be
a graded k-algebra. We denote by GrModA the category of graded right A-
modules and right A-module homomorphisms preserving degree. We say that
two graded algebras A and A′ are graded Morita equivalent if there exists an
equivalence of categories between GrModA and GrModA′. For M ∈ GrModA

and n ∈ Z, the shift of M , denoted by M(n), is the graded right A-module such
that M(n)i = Mi+n. For M,N ∈ GrModA, we define the graded k-vector spaces
HomA(M,N) =

⊕
n∈Z

HomA(M,N(n)) and Exti
A(M,N) =

⊕
n∈Z

Exti
A(M,

N(n)). We say that A is connected if Ai = 0 for all i < 0, and A0 = k.
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An AS-regular algebra defined below is one of the first classes of algebras
studied in noncommutative algebraic geometry.

DEFINITION 1.1 ([1])

Let A be a connected graded k-algebra. Then A is called a d-dimensional AS-
regular (resp., AS-Gorenstein) algebra if it satisfies the following conditions:

• gldimA = d < ∞ (resp., id(A) = d < ∞),
• GKdimA < ∞, and
• (Gorenstein condition)

Exti
A(k,A) ∼=

{
0 if i �= d,

k(l) for some l ∈ Z if i = d.

A 1-dimensional AS-regular algebra is isomorphic to a polynomial algebra k[x].
A 2-dimensional AS-regular algebra generated in degree 1 is isomorphic to either
of the forms

k〈x, y〉/(−x2 + xy − yx) or k〈x, y〉/(xy − λyx) (λ �= 0).

Moreover, every 2-dimensional AS-regular algebra generated in degree 1 is graded
Morita equivalent to k[x, y]. Classification of 3-dimensional AS-regular algebras
generated in degree 1 was started by Artin and Schelter in their paper [1]. Later
Artin, Tate, and Van den Bergh [2] completed the classification of 3-dimensional
AS-regular algebras generated in degree 1 by using geometric approach.

Let T (V ) be the tensor algebra on V over k, where V is a finite-dimensional
vector space. We say that A is a quadratic algebra if A is a graded algebra of the
form T (V )/(R), where R ⊆ V ⊗k V is a subspace and (R) is the ideal of T (V )
generated by R. For a quadratic algebra A = T (V )/(R), we define

Γ2 :=
{
(p, q) ∈ P(V ∗) × P(V ∗)

∣∣ f(p, q) = 0 for all f ∈ R
}
.

DEFINITION 1.2 ([5, DEFINITION 4.3])

A quadratic algebra A = T (V )/(R) is called geometric if there exists a geometric
pair (E,σ), where E ⊆ P(V ∗) is a closed k-subscheme and σ is a k-automorphism
of E such that

(G1) Γ2 = {(p,σ(p)) ∈ P(V ∗) × P(V ∗) | p ∈ E}, and
(G2) R = {f ∈ V ⊗k V | f(p,σ(p)) = 0 for all p ∈ E}.

Let A = T (V )/(R) be a quadratic algebra. If A satisfies condition (G1), then
A determines a geometric pair (E,σ). If A satisfies condition (G2), then A is
determined by a geometric pair (E,σ), so we write A = A(E,σ).

If A is a 3-dimensional quadratic AS-regular algebra, then A = A(E,σ) is
geometric, and E is either P2 or a cubic curve in P2. Artin, Tate, and Van den
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Bergh [2] described the “generic” classification of 3-dimensional quadratic AS-
regular algebras in terms of their geometric pairs (E,σ). In their classification,
E is one of the following:

(i) a triangle,
(ii) a union of a line and a conic meeting at two points,
(iii) an elliptic curve.

For example, a 3-dimensional Sklyanin algebra A = A(E,σ) is a 3-dimensional
quadratic AS-regular algebra such that E is an elliptic curve and σ is given by
the translation automorphism by a fixed point p ∈ E. As another example, an
n-dimensional skew polynomial algebra A, namely,

A = k〈x1, . . . , xn〉/(xixj − αijxjxi) (αijαji = αii = 1, ∀i, j ∈ {1, . . . , n}),

is an n-dimensional geometric AS-regular algebra. Note that skew polynomial
algebras are Noetherian Koszul.

Let A be a Noetherian d-dimensional AS-Gorenstein algebra, and let m :=
A≥1 be the unique maximal homogeneous ideal of A. We define the graded (A-A)
bimodule ωA by

ωA := Hd
m(A)∗ = Homk

(
lim

n→∞
Extd

A(A/A≥n,A), k
)
.

It is known that ωA
∼= νA(−l) as graded (A-A)-bimodules for some graded k-

algebra automorphism ν ∈ Autk A, where νA is the graded (A-A)-bimodule
defined by νA = A as a graded k-vector space with a new action a ∗ x ∗ b := ν(a)xb

(cf. [4, Theorem 1.2]).

DEFINITION 1.3 ([6])

Let A be a Noetherian d-dimensional AS-Gorenstein algebra. We call ν ∈ Autk A

the generalized Nakayama automorphism of A, where ωA
∼= νA(−l) as graded

(A-A)-bimodules. If the generalized Nakayama automorphism ν ∈ Autk A is idA,
then A is called symmetric.

A finite-dimensional algebra A is called graded Frobenius if A∗ ∼= A(−l) as
right- and left-graded A-modules. Let A be a graded Frobenius algebra. Then
A∗ ∼= νA(−l) as graded A-A bimodules, where ν is the usual Nakayama auto-
morphism. Since A is a Noetherian AS-Gorenstein algebra of id(A) = 0 and
ωA = H0

m(A)∗ ∼= A∗ ∼= νA(−l), the generalized Nakayama automorphism of A is
the usual Nakayama automorphism (see [6]).

The following theorem motivates this paper.

THEOREM 1.4 ([5, THEOREM 5.4])

Let A = A(E,σ),A′ = A(E′, σ′) be 3-dimensional Sklyanin algebras. If σ9, σ′9 �=
id, then the following are equivalent:

(1) GrMod A(E,σ) ∼= GrMod A(E′, σ′).
(2) A(E,σ3) ∼= A(E′, σ′3) as graded algebras.
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So we consider relationships between the following conditions for Noetherian geo-
metric AS-regular algebras A = A(E,σ),A′ = A(E′, σ′) with dimk A1 =
dimk A′

1 = n:

(A) GrMod A(E,σ) ∼= GrMod A(E′, σ′),
(B) A(E,ν∗σn) ∼= A(E′, (ν′)∗(σ′)n) as graded algebras,

where ν ∈ Autk A,ν′ ∈ Autk A′ are the generalized Nakayama automorphisms.
The generalized Nakayama automorphism of a 3-dimensional Sklyanin alge-

bra A is idA (cf. [8, Example 10.1]). Hence if A = A(E,σ),A′ = A(E′, σ′) are
3-dimensional Sklyanin algebras with σ9, σ′9 �= id, then (A) ⇔ (B) is true.

In this paper, we prove (A) ⇔ (B) for “generic” 3-dimensional quadratic
AS-regular algebras A,A′ whose geometric pairs are of the same type (see The-
orem 3.1). Moreover, we show that if A,A′ are n-dimensional skew polynomial
algebras, then (A) ⇒ (B) is true (see Theorem 4.1). However, (B) ⇒ (A) is false
for n = 4. In each situation, we also show that A(E,ν∗σn) is symmetric (see
Theorems 3.2, 4.3).

2. Preliminaries

For the purpose of this paper, we define the types of some geometric pairs (E,σ)
of 3-dimensional quadratic AS-regular algebras as follows.

• Type P2: E is P2, and σ ∈ Autk P2 = PGL3(k).
• Type S1: E is a triangle, and σ stabilizes each component.
• Type S2: E is a triangle, and σ interchanges two components.
• Type S3: E is a triangle, and σ circulates three components.
• Type S′

1: E is a union of a line and a conic meeting at two points, and σ

stabilizes each component and two intersection points.
• Type S′

2: E is a union of a line and a conic meeting at two points, and σ

stabilizes each component and interchanges two intersection points.

REMARK 2.1

If E is a union of a line and a conic meeting at two points, and σ interchanges
these two components, then A(E,σ) is not an AS-regular algebra (see [2, Propo-
sition 4.11]). Thus the above types completely cover the “generic” singular cases
and E = P2.

Recall that the Hilbert series of A is defined by

HA(t) =
∞∑

i=− ∞
(dimAi)ti ∈ Z

[
[t, t−1]

]
.

If A is a 3-dimensional quadratic AS-regular algebra, then A is a Noetherian
Koszul domain and HA(t) = (1 − t)−3.

For geometric algebras, isomorphism and graded Morita equivalence can be
characterized in terms of their geometric pairs.
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THEOREM 2.2 ([5, THEOREM 4.7])

Let A = A(E,σ),A′ = A(E′, σ′) be geometric algebras. Then the following hold.

(1) We have A ∼= A′ as graded algebras if and only if there exists an isomor-
phism τ : E → E′ which extends to an automorphism τ̄ : P(V ∗) → P(V ∗) such
that the diagram

E
τ

σ

E′

σ′

E
τ

E′

commutes.
(2) We have GrModA ∼= GrModA′ if and only if there exists a sequence

isomorphism τn : E → E′ for n ∈ Z which extends to automorphisms τ̄n : P(V ∗) →
P(V ∗) such that the diagrams

E
τn

σ

E′

σ′

E
τn+1

E′

commute for n ∈ Z.

If A = A(E,σ) is a 3-dimensional skew polynomial algebra, then the geometric
pair (E,σ) is of type P2 or S1. In either case, the following theorem holds.

THEOREM 2.3

Let

A = k〈x1, . . . , xn〉/(xixj − αijxjxi), A′ = k〈x1, . . . , xn〉/(xixj − α′
ijxjxi)

be n-dimensional skew polynomial algebras. Then the following hold.

(1) We have A ∼= A′ as graded algebras if and only if there exists a permu-
tation θ ∈ Sn such that α′

ij = αθ(i)θ(j) for any 1 ≤ i, j ≤ n (see [10, Lemma 2.1]).
(2) We have GrModA ∼= GrModA′ if and only if there exists a permutation

θ ∈ Sn such that α′
kiα

′
ijα

′
jk = αθ(k)θ(i)αθ(i)θ(j)αθ(j)θ(k) for any 1 ≤ i, j, k ≤ n (see

[3, Theorem 5.1]).

The following lemma shows when two algebras of type S′
1 are isomorphic.

LEMMA 2.4

Let

A = k〈x, y, z〉/(xy − αyx, zx − αxz, −x2 + yz − αzy),
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A′ = k〈x, y, z〉/(xy − α′yx, zx − α′xz, −x2 + yz − α′zy),

where α,α′ �= 0, α3, α′3 �= 1. Then A ∼= A′ if and only if α′ = α±1.

Proof
We prove (⇒) by using Theorem 2.2(1). Now A = A(E,σ) is a geomertic algebra
such that E = C ∪ l,C = V (x2 + γyz), l = V (x), γ = α2 − α−1, and σ ∈ Autk E is
given by

σ|l(0, b, c) = (0, b,αc),

σ|C(a, b, c) = (a,αb,α−1c)

(type S′
1). The same is true for A′ = A(E′, σ′). If τ : E → E′ is an isomor-

phism which extends to an automorphism τ̄ : P(V ∗) → P(V ∗), then τ sends
two intersection points {(0,1,0), (0,0,1)} = C ∩ l ⊂ E to two intersection points
{(0,1,0), (0,0,1)} = C ′ ∩ l′ ⊂ E′, so

τ̄(a, b, c) = (a, pa + qb, ra + sc) (fixing two intersection points)

or

τ̄(a, b, c) = (a, ra + sc, pa + qb) (interchanging two intersection points),

where p, q, r, s ∈ k. It follows from τσ = σ′τ that α′ = α±1. �

If A = T (V )/(R) is a quadratic algebra, then we define the quadratic dual algebra
of A by

A! = T (V ∗)/(R⊥), R⊥ =
{
λ ∈ V ∗ ⊗k V ∗ ∣∣ λ(r) = 0 for all r ∈ R

}
.

Let A = T (V )/(R) = A(E,σ) be a Noetherian AS-regular geometric algebra
of dimA1 = n. If ν is the generalized Nakayama automorphism of A, then it
restricts to an automorphism ν ∈ Autk V = Autk A1. So its dual induces an
automorphism ν∗ ∈ Autk P(V ∗), which induces an automorphism ν∗ ∈ Autk E

(see [6]). Moreover, ν∗ extends to the unique graded algebra automorphism
ν∗ ∈ Autk A!, and ν! = εn+1ν∗ ∈ Autk A! is the Nakayama automorphism of A!,
where ε ∈ Autk A! is the multiplication by (−1)i on A!

i (see [9]), so ν∗ = ν! in
Autk E.

If A = A(E,σ) is a d-dimensional Koszul AS-regular algebra, then A! is
graded Frobenius (see [8, Theorem 5.10]), so dimk A!

d = 1, and the map (−, −) :
A! × A! → k ∼= A!

d defined by

(a, b) = the component ab in A!
d

is a nondegenerate bilinear pairing (Frobenius pairing) such that (ab, c) = (a, bc)
for all a, b, c ∈ A! (see [8, Lemma 3.2]). If ν! is the Nakayama automorphism of
A!, then

(a, b) =
(
ν!(b), a

)
for all a, b ∈ A! (see [8, Lemma 3.3]). Using these facts, we can calculate ν∗ ∈
Autk E.
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3. Results for three-dimensional AS-regular algebras

In this section, we prove (A) ⇔ (B) for “generic” 3-dimensional quadratic AS-
regular algebras.

THEOREM 3.1

Let A = A(E,σ),A′ = A(E′, σ′) be 3-dimensional quadratic AS-regular algebras,
and let ν ∈ Autk A,ν′ ∈ Autk A′ be the generalized Nakayama automorphisms. If
(E,σ) and (E′, σ′) are of the following same type: P2, S1, S2, S3, S′

1 or S′
2, then

GrMod A(E,σ) ∼= GrMod A(E′, σ′) ⇔ A(E,ν∗σ3) ∼= A
(
E′, (ν′)∗(σ′)3

)
.

Proof
We give proofs for types P2, S1, S2, and S′

1. Using [5, proof of Theorem 5.2], the
proofs for the other types are analogous.

Case (I). Assume that both (E,σ) and (E′, σ′) are of type P2. In this case,
applying Theorem 2.2(2), we can show that

GrMod A(P2, σ) ∼= GrMod A(P2, id) ∼= GrModk[x, y, z]

for any σ ∈ PGL3(k), so it is enough to show

A(P2, ν∗σ3) ∼= k[x, y, z]

for any σ ∈ PGL3(k). Since A(P2, σ) ∼= A(P2, τστ −1) for any τ ∈ PGL3(k) by
Theorem 2.2(1), we may assume that σ ∈ PGL3(k) is one of the following three
cases: ⎛

⎝α 0 0
0 β 0
0 0 γ

⎞
⎠ ,

⎛
⎝α 0 0

1 α 0
0 0 β

⎞
⎠ ,

⎛
⎝α 0 0

1 α 0
0 1 α

⎞
⎠

by Jordan canonical form.
If σ =

(α 0 0
0 β 0
0 0 γ

)
, then A = A(P2, σ) is k〈x, y, z〉 with the defining relations

xy − βα−1yx, yz − γβ−1zy, zx − αγ−1xz.

Now A! is k〈x, y, z〉 with the defining relations

βα−1xy + yx, x2, γβ−1yz + zy, y2, αγ−1zx + xz, z2.

Since

(yz,x) = (yz)x = βγα−2x(yz) = (βγα−2x, yz),

(zx, y) = (zx)y = αγβ−2y(zx) = (αγβ−2y, zx),

(xy, z) = (xy)z = αβγ−2z(xy) = (αβγ−2z,xy)
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in A!, the automorphisms ν∗ = (−1)3+1ν∗ = ν! ∈ Autk V ∗ and ν∗ ∈ Autk P2 are
given by

ν∗ =

⎛
⎝βγα−2 0 0

0 αγβ−2 0
0 0 αβγ−2

⎞
⎠(3.1)

when viewed as an element in GL3(k) and in PGL3(k), respectively. Then ν∗σ3

is id; so B = A(P2, ν∗σ3) ∼= k[x, y, z].
If σ =

(
α 0 0
1 α 0
0 0 β

)
, then A = A(P2, σ) is k〈x, y, z〉 with the defining relations

xy − α−1x2 − yx, xz + αyz − βzy, zx − αβ−1xz.

Now A! is k〈x, y, z〉 with the defining relations

xy + αx2, xy + yx, β−1zy + xz + αβ−1zx,

xy + αβ−1zy, y2, z2.

Since

(byz + czx)x = (βα−1x − 3βα−2y)(byz + czx),

(zx)y = βα−1y(zx),

(xy)z = α2β−2z(xy)

in A!, the automorphisms ν∗ ∈ Autk V ∗ and ν∗ ∈ Autk P2 are given by

ν∗ =

⎛
⎝ βα−1 0 0

−3βα−2 βα−1 0
0 0 α2β−2

⎞
⎠ .

Then ν∗σ3 is id, so A = A(P2, ν∗σ3) ∼= k[x, y, z].
The proof for σ =

(
α 0 0
1 α 0
0 1 α

)
is similar to the above and is left to the readers.

Case (II). Assume that both (E,σ) and (E′, σ′) are of type S1 (cf. [5, Example
4.10], [7, Example 2.15]). We may assume that E = E′ = l1 ∪ l2 ∪ l3, where
l1 = V (x), l2 = V (y), l3 = V (z), and σ ∈ Autk E is given by

σ|l1(0, b, c) = (0, b,αc),

σ|l2(a,0, c) = (βa,0, c),

σ|l3(a, b,0) = (a, γb,0),

and σ′ ∈ Autk E′ is given by

σ′ |l1(0, b, c) = (0, b,α′c),

σ′ |l2(a,0, c) = (β′a,0, c),

σ′ |l3(a, b,0) = (a, γ′b,0),
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where αβγ,α′β′γ′ �= 0,1. Then A = A(E,σ) is k〈x, y, z〉 with the defining rela-
tions

yz − αzy, zx − βxz, xy − γyx,

and A′ = A(E′, σ′) is k〈x, y, z〉 with the defining relations

yz − α′zy, zx − β′xz, xy − γ′yx.

Now A! is k〈x, y, z〉 with the defining relations

αyz + zy, x2, βzx + xz, y2, γxy + yx, z2.

Since

(zy)x = γβ−1x(zy),

(xz)y = αγ−1y(xz),

(yx)z = βα−1z(yx)

in A!, the automorphisms ν∗ ∈ Autk V ∗ and ν∗ ∈ Autk E are given by

ν∗ =

⎛
⎝γβ−1 0 0

0 αγ−1 0
0 0 βα−1

⎞
⎠.(3.2)

Then ν∗σ3 is given by

ν∗σ3|l1(0, b, c) = (0, b,αβγc),

ν∗σ3|l2(a,0, c) = (αβγa,0, c),

ν∗σ3|l3(a, b,0) = (a,αβγb,0),

so B = A(E,ν∗σ3) is k〈x, y, z〉 with the defining relations

yz − αβγzy, zx − αβγxz, xy − αβγyx.

Similarly, B′ = A(E′, (ν′)∗(σ′)3) is k〈x, y, z〉 with the defining relations

yz − α′β′γ′zy, zx − α′β′γ′xz, xy − α′β′γ′yx.

It follows that if both (E,σ) and (E′, σ′) are of type S1, then

A(E,ν∗σ3) ∼= A
(
E′, (ν′)∗(σ′)3

)
⇐⇒ α′β′γ′ = (αβγ)±1

by Theorem 2.3(1). Furthermore, [5, Example 4.10] says that

GrMod A(E,σ) ∼= GrMod A(E′, σ′) ⇐⇒ α′β′γ′ = (αβγ)±1.

The assertion is proved.

Case (III). Assume that both (E,σ) and (E′, σ′) are of type S2. We may assume
that E = E′ = l1 ∪ l2 ∪ l3, where l1 = V (x), l2 = V (y), l3 = V (z), and σ ∈ Autk E

is given by

σ|l1(0, b, c) = (αb,0, c),
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σ|l2(a,0, c) = (0, a, βc),

σ|l3(a, b,0) = (b, γa,0),

and σ′ ∈ Autk E′ is given by

σ′ |l1(0, b, c) = (α′b,0, c),

σ′ |l2(a,0, c) = (0, a, β′c),

σ′ |l3(a, b,0) = (b, γ′a,0),

where αβγ,α′β′γ′ �= 0,1. Then A is k〈x, y, z〉 with the defining relations

zx − αyz, xz − βzy, y2 − γx2,

and A′ is k〈x, y, z〉 with the defining relations

zx − α′yz, xz − β′zy, y2 − γ′x2.

Now A! is k〈x, y, z〉 with the defining relations

αzx + yz, xy, βxz + zy, yx, γy2 + x2, z2.

Since

(zx)x = −α−1y(zx),

(xz)y = −βx(xz),

(y2)z = −α2γz(y2) = −γ−1β−2z(y2)

in A!, we must have

−α2γ = −γ−1β−2.

(Suppose z(y2) = 0; then HA!(t) �= (1 + t)3, which contradicts the fact that A

is a 3-dimensional quadratic AS-regular algebra.) It follows from αβγ �= 1 that
αβγ = −1 is a necessary condition for A to be a 3-dimensional AS-regular algebra.
Furthermore, the automorphisms ν∗ ∈ Autk V ∗ and ν∗ ∈ Autk E are given by

ν∗ =

⎛
⎝ 0 β 0

α−1 0 0
0 0 α2γ

⎞
⎠.

Then ν∗σ3 is given by

ν∗σ3|l1(0, b, c) = (0, b, −c),

ν∗σ3|l2(a,0, c) = (−a,0, c),

ν∗σ3|l3(a, b,0) = (a, −b,0),

so B = A(E,ν∗σ3) is k〈x, y, z〉 with the defining relations

yz + zy, zx + xz, xy + yx.

Similarly, B′ = A(E′, (ν′)∗(σ′)3) is k〈x, y, z〉 with the defining relations

yz + zy, zx + xz, xy + yx.
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It follows that if both (E,σ) and (E′, σ′) are of type S2 such that A(E,σ) and
A(E′, σ′) are AS-regular algebras, then

A(E,ν∗σ3) ∼= A
(
E′, (ν′)∗(σ′)3

)
.

Furthermore, since αβγ = α′β′γ′ = −1,

GrMod A(E,σ) ∼= GrMod A(E′, σ′)

by Theorem 2.2(2). The assertion is proved.

Case (IV). Assume that both (E,σ) and (E′, σ′) are of type S′
1. We may assume

that E = C ∪ l, where C = V (x2 + γyz), l = V (x), γ = αβ − β−1, and σ ∈ Autk E

is given by

σ|l(0, b, c) = (0, b,αc),

σ|C(a, b, c) = (a,βb, β−1c).

Similalry, we assume that E′ = C ′ ∪ l′, where C ′ = V (x2 + γ′yz), l′ = V (x), γ′ =
α′β′ − β′ −1, and σ′ ∈ Autk E′ is given by

σ′ |l′ (0, b, c) = (0, b,α′c),

σ′ |C′ (a, b, c) = (a,β′b, β′ −1c),

where αβ2, α′β′2 �= 0,1. Then A is k〈x, y, z〉 with the defining relations

xy − βyx, zx − βxz, −x2 + yz − αzy,

and A′ is k〈x, y, z〉 with the defining relations

xy − β′yx, zx − β′xz, −x2 + yz − α′zy.

Now A! is k〈x, y, z〉 with the defining relations

βxy + yx, y2, βzx + xz, z2, x2 + yz, αyz + zy.

Since

(zy)x = x(zy),

(xz)y = αβ−1y(xz),

(yx)z = βα−1z(yx)

in A!, the automorphisms ν∗ ∈ Autk V ∗ and ν∗ ∈ Autk E are given by

ν∗ =

⎛
⎝1 0 0

0 αβ−1 0
0 0 βα−1

⎞
⎠.(3.3)

Then ν∗σ3 is given by

ν∗σ3|l(0, b, c) = (0, b,αβ2c),

ν∗σ3|C(a, b, c) = (a,αβ2b,α−1β−2c).
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(1) If (αβ2)3 �= 1, then (E,ν∗σ3) is of type S′
1, so B = A(E,ν∗σ3) is k〈x, y, z〉

with the defining relations

xy − αβ2yx, zx − αβ2xz, −δγ−1x2 + yz − αβ2zy,

where δ = (αβ2)2 − (αβ2)−1. If we define the new graded algebra B = k〈x, y, z〉
with the defining relations

xy − αβ2yx, zx − αβ2xz, −x2 + yz − αβ2zy,

then B ∼= B by change of generators x �→
√

γδ−1x.
Similarly, if (α′β′2)3 �= 1, then B′ = A(E′, (ν′)∗(σ′)3) is k〈x, y, z〉 with the

defining relations

xy − α′β′2yx, zx − α′β′2xz, −δ′γ′ −1x2 + yz − α′β′2zy,

where δ′ = (α′β′2)2 − (α′β′2)−1. We define B′ = k〈x, y, z〉 with the defining rela-
tions

xy − α′β′2yx, zx − α′β′2xz, −x2 + yz − α′β′2zy;

then B′ ∼= B′. Thus, by Lemma 2.4,

B ∼= B′ ⇐⇒ B ∼= B′ ⇐⇒ α′β′2 = (αβ2)±1.

(2) If (αβ2)3 = 1, then (E,ν∗σ3) is of type P2, so B = A(E,ν∗σ3) is k〈x, y, z〉
with the defining relations

xy − αβ2yx, zx − αβ2xz, yz − αβ2zy.

Similarly, if (α′β′2)3 = 1, then B′ = A(E′, (ν′)∗(σ′)3) is k〈x, y, z〉 with the defining
relations

xy − α′β′2yx, zx − α′β′2xz, yz − α′β′2zy.

Thus, by Theorem 2.3(1),

B ∼= B′ ⇐⇒ α′β′2 = (αβ2)±1.

It follows that if both (E,σ) and (E′, σ′) are of type S′
1, then

A(E,ν∗σ3) ∼= A
(
E′, (ν′)∗(σ′)3

)
⇐⇒ α′β′2 = (αβ2)±1.

Applying Theorem 2.2(2), we can show that

GrMod A(E,σ) ∼= GrMod A(E′, σ′) ⇐⇒ α′β′2 = (αβ2)±1

by Theorem 2.2(2). The assertion is proved. �

Next, we show that A(E,ν∗σ3) in the above theorem are symmetric.

THEOREM 3.2

Let A = A(E,σ) be a 3-dimensional quadratic AS-regular algebra, and let ν ∈
Autk A be the generalized Nakayama automorphism. If (E,σ) is of the following
types: P2, S1, S2, S3, S′

1 or S′
2, then B = A(E,ν∗σ3) is symmetric.
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Proof
We will give proofs for types P2, S2, and S′

1. The proofs for the other types are
analogous. Since

νB = idB ∈ Autk B ⇔ νB = id ∈ Autk V ⇔ ν∗
B = id ∈ Autk V ∗,

it is enough to show ν∗
B = id ∈ Autk V ∗, where νB is the generalized Nakayama

automorphism of B.
If (E,σ) is of type P2, then B = A(E,ν∗σ3) is k[x, y, z], so B is symmetric.
Assume that (E,σ) is of type S2. Then B = A(E,ν∗σ3) is k〈x, y, z〉 with the

defining relations

yz + zy, zx + xz, xy + yx,

so (E,ν∗σ3) is of type S1. By (3.2), ν∗
B = id ∈ Autk V ∗, so the generalized

Nakayama automorphism νB is idB .
Next, we assume that (E,σ) is of type S′

1. If (αβ2)3 �= 1, then (E,ν∗σ3) is
of type S′

1. Since B ∼= B, we consider B = k〈x, y, z〉 with the defining relations

xy − αβ2yx, zx − αβ2xz, −x2 + yz − αβ2zy.

By (3.3), ν∗
B

∈ Autk V ∗ is given by

ν∗
B

=

⎛
⎝1 0 0

0 (αβ2)(αβ2)−1 0
0 0 (αβ2)(αβ2)−1

⎞
⎠ = id.

Thus the generalized Nakayama automorphism νB is idB .
If (αβ2)3 = 1, then (E,ν∗σ3) is of type P2, so B = A(E,ν∗σ3) is k〈x, y, z〉

with the defining relations

xy − αβ2yx, zx − αβ2xz, yz − αβ2zy,

and ν∗σ3 is given by ⎛
⎝1 0 0

0 αβ2 0
0 0 (αβ2)2

⎞
⎠,

so by (3.1), ν∗
B = id ∈ Autk V ∗. Thus the generalized Nakayama automorphism

ν is idB . �

4. Results for skew polynomial algebras

We prove (A) ⇒ (B) for skew polynomial algebras.

THEOREM 4.1

If A = A(E,σ),A′ = A(E′, σ′) are n-dimensional skew polynomial algebras and
ν ∈ Autk A,ν′ ∈ Autk A′ are the generalized Nakayama automorphisms, then

GrMod A(E,σ) ∼= GrMod A(E′, σ′) ⇒ A(E,ν∗σn) ∼= A
(
E′, (ν′)∗(σ′)n

)
.



498 Kenta Ueyama

Proof
Let A = k〈x1, . . . , xn〉/(xixj − αijxjxi) be an n-dimensional skew polynomial
algebra. Then A = A(E,σ) is geometric, where

E =
⋂

αijαjkαki 	=1

V (xixjxk)

by [3, Proposition 3.1] and [10, Proposition 3.1], and σ ∈ Autk E is given by

σ(0, . . . ,0, ai,0, . . . ,0, aj ,0, . . . ,0) = (0, . . . ,0, ai,0, . . . ,0, αijaj ,0, . . . ,0)

for any i < j by [3, Remark 3.4].
Now A! is k〈x1, . . . , xn〉/(αijxixj + xjxi, x

2
i ). Since aii = 1 and

(x1 · · · xi−1xi+1 · · · xn)xi

= (−1)n−1αin · · · αi,i+1αi,i−1 · · · αi1xi(x1 · · · xi−1xi+1 · · · xn)

in A! for any i, the automorphism ν! ∈ AutV ∗ induced by the Nakayama auto-
morphism of A! is given by

ν!(xi)1≤i≤n =
( ∏

1≤s≤n

(−1)n−1αisxi

)
1≤i≤n

.(4.1)

So the automorphism ν∗ : E → E is given by

ν∗(ai)1≤i≤n =
( ∏

1≤s≤n

αisai

)
1≤i≤n

.

Thus

ν∗σn(0, . . . ,0, ai,0, . . . ,0, aj ,0, . . . ,0)

= ν∗(0, . . . ,0, ai,0, . . . ,0, αn
ijaj ,0, . . . ,0)

=
(
0, . . . ,0,

∏
1≤s≤n

αisai,0, . . . ,0, αn
ij

∏
1≤s≤n

αjsaj ,0, . . . ,0
)

=
(
0, . . . ,0, ai,0, . . . ,0, αn

ij

∏
1≤s≤n αjs∏
1≤s≤n αis

aj ,0, . . . ,0
)

=
(
0, . . . ,0, ai,0, . . . ,0, αn

ij

∏
1≤s≤n

αsiαjsaj ,0, . . . ,0
)

=
(
0, . . . ,0, ai,0, . . . ,0,

∏
1≤s≤n

(αsiαijαjs)aj ,0, . . . ,0
)
.

Hence

B = A(E,ν∗σn) = k〈x1, . . . , xn〉/
(
xixj −

∏
1≤s≤n

(αsiαijαjs)xjxi

)

= k〈x1, . . . , xn〉/(xixj − βijxjxi),

where βij :=
∏

1≤s≤n(αsiαijαjs).
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Let A′ = A(E′, σ′) = k〈x1, . . . , xn〉/(xixj − α′
ijxjxi) be another skew polyno-

mial algebra. Then

B′ = A(E,ν∗σn) = k〈x1, . . . , xn〉/
(
xixj −

∏
1≤s≤n

(α′
siα

′
ijα

′
js)xjxi

)

= k〈x1, . . . , xn〉/(xixj − β′
ijxjxi),

where β′
ij :=

∏
1≤s≤n(α′

siα
′
ijα

′
js).

By Theorem 2.3(1), (2),

GrModA ∼= GrModA′

⇐⇒ ∃θ ∈ Sn such that α′
siα

′
ijα

′
js = αθ(s)θ(i)αθ(i)θ(j)αθ(j)θ(s)

=⇒ ∃θ ∈ Sn such that
∏

1≤s≤n

α′
siα

′
ijα

′
js =

∏
1≤s≤n

αθ(s)θ(i)αθ(i)θ(j)αθ(j)θ(s)

⇐⇒ ∃θ ∈ Sn such that
∏

1≤s≤n

α′
siα

′
ijα

′
js =

∏
1≤s≤n

αsθ(i)αθ(i)θ(j)αθ(j)s

⇐⇒ ∃θ ∈ Sn such that β′
ij = βθ(i)θ(j)

⇐⇒ B ∼= B′.

Hence this is the result. �

Unfortunately, the converse of Theorem 4.1 is false for n = 4. We construct a
counterexample.

EXAMPLE 4.2

Let A = A(E,σ) = C〈x1, x2, x3, x4〉 be a 4-dimensional skew polynomial algebra
with defining relations

x1x2 − 2x2x1, x1x3 − 2x3x1, x1x4 − 2x4x1,

x2x3 − 2x3x2, x2x4 − 2x4x2, x3x4 − 2x4x3,

that is,

α12 = α13 = α14 = α23 = α24 = α34 = 2.

By the definition of B = A(E,ν∗σn) in the proof of Theorem 4.1,

β12 = α31α12α23α41α12α24 = 4, β13 = α21α13α32α41α13α34 = 1,

β14 = α21α14α42α31α14α43 = 4−1, β23 = α12α23α31α42α23α34 = 4,

β24 = α12α24α41α32α24α43 = 1, β34 = α13α34α41α23α34α42 = 4,

so B is C〈x1, x2, x3, x4〉 with defining relations

x1x2 − 4x2x1, x1x3 − x3x1, x1x4 − 4−1x4x1,

x2x3 − 4x3x2, x2x4 − x4x2, x3x4 − 4x4x3.
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Let A′ = A(E′, σ′) = C〈x1, x2, x3, x4〉 be a 4-dimensional skew polynomial
algebra with defining relations

x1x2 − 2ix2x1, x1x3 − x3x1, x1x4 − x4x1,

x2x3 − x3x2, x2x4 + x4x2, x3x4 − 2ix4x3,

where i =
√

−1, that is,

α′
12 = α′

34 = 2i, α′
13 = α′

14 = α′
23 = 1, α′

24 = −1.

By the definition of B′ = A(E,ν∗σ4) in the proof of Theorem 4.1,

β′
12 = α′

31α
′
12α

′
23α

′
41α

′
12α

′
24 = 4, β′

13 = α′
21α

′
13α

′
32α

′
41α

′
13α

′
34 = 1,

β′
14 = α′

21α
′
14α

′
42α

′
31α

′
14α

′
43 = 4−1, β′

23 = α′
12α

′
23α

′
31α

′
42α

′
23α

′
34 = 4,

β′
24 = α′

12α
′
24α

′
41α

′
32α

′
24α

′
43 = 1, β′

34 = α′
13α

′
34α

′
41α

′
23α

′
34α

′
42 = 4,

so B′ is C〈x1, x2, x3, x4〉 with defining relations

x1x2 − 4x2x1, x1x3 − x3x1, x1x4 − 4−1x4x1,

x2x3 − 4x3x2, x2x4 − x4x2, x3x4 − 4x4x3.

Hence B = B′. However, for any θ ∈ S4,

α′
12α

′
23α

′
31 = 2i �= 2±1 = αθ(1)θ(2)αθ(2)θ(3)αθ(3)θ(1),

so GrModA � GrModA′.

THEOREM 4.3

If A = A(E,σ) is an n-dimensional skew polynomial algebra and ν ∈ Autk A is
the generalized Nakayama automorphism, then B = A(E,ν∗σn) is symmetric.

Proof
Since ν∗ = (−1)n+1ν! ∈ Autk V ∗ by [9, Theorem 9.2], it follows from (4.1) that
the generalized Nakayama automorphism of B is given by

νB(xi)1≤i≤n =
( ∏

1≤s≤n

βisxi

)
1≤i≤n

,

where βij =
∏

1≤t≤n(αtiαijαjt). It follows that

νB(xi) =
∏

1≤s≤n

βisxi

=(α1iαi1α11 · α2iαi1α12 · · · αniαi1α1n

· α1iαi2α21 · α2iαi2α22 · · · αniαi2α2n

...
...

. . .
...

· α1iαinαn1 · α2iαinαn2 · · · αniαinαnn)xi
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for any i. If we define ᾱi
pq = αqiαipαpq , then ᾱi

ss = ᾱi
stᾱ

i
ts = 1 for any 1 ≤ s < t ≤

n, so νB(xi) = xi for any i. Thus we obtain the result. �
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