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Abstract We begin a study of the representation theory of quantum continuous gl,
which we denote by €. This algebra depends on two parameters and is a deformed version
of the enveloping algebra of the Lie algebra of difference operators acting on the space
of Laurent polynomials in one variable. Fundamental representations of £ are labeled
by a continuous parameter u € C. The representation theory of £ has many properties
familiar from the representation theory of gl_,: vector representations, Fock modules,
and semiinfinite constructions of modules. Using tensor products of vector representa-
tions, we construct surjective homomorphisms from £ to spherical double affine Hecke
algebras SHy for all N. A key step in this construction is an identification of a natural
basis of the tensor products of vector representations with Macdonald polynomials. We
also show that one of the Fock representations is isomorphic to the module constructed
earlier by means of the K-theory of Hilbert schemes.

1. Introduction

In this paper we begin to study the representation theory of an algebra £, which
we call the quantum continuous gl . This algebra is a deformation of the uni-
versal enveloping algebra of the Lie algebra of the ¢-difference operators in one
variable. Its representation theory has a lot in common with that of the usual
gl with a central extension: vector representations, fundamental representa-
tions, and semiinfinite constructions of modules. Still there is an important new
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feature of £: fundamental representations of this algebra are labeled by a con-
tinuous parameter u. This makes the representation theory of £ very rich and
interesting. We give some details below.

The algebra £ is defined in terms of generators and relations. The generators
are denoted by e;, f; (i € Z), and ijR Y, (j >0). The elements z/JOi are central
and invertible. The relations between generators depend symmetrically on three
parameters qi, g2, g3 which are assumed to satisfy ¢;¢g2g3 = 1. These relations are
given explicitly in terms of generating series (see Section 2). For example, let
e(z) = ;ez€iz " Then the following relation holds in &:
w1 9(z,w)e(z)e(w) = —g(w, z)e(w)e(z),

g(z,w) = (z — qw)(z — gaw)(z — @zw).
This relation appears in different contexts (see [FO], [Kap], [FT], [SV2]). In
terms of components, (1.1) is equivalent to the set of relations labeled by integers
m,n € Z:

ent3em — (@1 + @2 + @3)ent26mt1 + (192 + 4163 + 243)ent1€m+2 — Enemys
= —em+3en + (@1 + g2+ g3)emt26nt1
— (0142 + 0163 + @2G3)€mt1€nt2 + €men3.

As we have mentioned above, relation (1.1) has different origins. Let us
explain the one important for us. Fix a parameter ¢, and consider the associative
algebra A =C[Z,Z~',D,D~'] with DZ = qZD. The algebra A acts on the
space C[z,271] by Z(f)(2) = zf(2), (Df)(2) = f(gz). Thus A can be identified
with the algebra of g-difference operators and can be thought of as an algebra of
special infinite matrices. The algebra A admits representations with a continuous
parameter u on the space of delta functions @;c;, d(¢u/z) through the same
action on a vector f(z) in this space. Thus A may be called a continuous gl .

Consider the elements &; = Z'D € A. It is easy to check that these elements
satisfy the relations

én+3ém - (1 + q + qil)én+2ém+1 + (1 + q + qil)én+lém+2 - éném+3
= —Cmi3n + (1 +q+q emiatnit — (1 +q+q 1)emi18ni2 + Embnya

Thus the relation (1.1) is a quantization of the relations above. In fact, all other
relations of £ (see Section 2) can be obtained in a similar way. Moreover, there
exists a Poisson structure on A (considered as a Lie algebra) such that the usual
quantization technique, applied to the universal enveloping algebra of A, gives &.
We do not discuss this construction in this paper and will return to it elsewhere.

We recall that in [DI] the authors constructed a class of quantum algebras
generalizing quantum affine algebras. A particular example of their construction
is the algebra &’, which differs from £ only by the absence of the cubic relations
(see (2.6) below)

[e0, [e1,e—1]] =0, [fo, [f1, f-1]] = 0.
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We call these relations Serre relations for £. The algebra £ was also considered
in [FHH+] and [FT] and was called there the Ding-Iohara algebra. We note,
however, that the Serre relations are important from the point of view of the
representation theory of £ and of the structure theory as well. We explain the
reasons below.

We recall that in [SV2] and [F'T] the equivariant localized K-theory of Hilbert
schemes H,, of n points of C? was studied. In particular, it was shown that the
direct sum F =&, -, K(Hy) is isomorphic to the space of symmetric polyno-
mials in infinite numbers of variables and carries the structure of the £’-module.
We note, however, that this action factors through the surjection £ — &, and
therefore F has a natural structure of an £-module. The space F has a natural
basis labeled by fixed points of the action of the torus on H,, and elements of
this basis can be identified with the Macdonald polynomials. In addition the
action of the generators e; and f; is given by Pieri-like formulas. In this paper
we observe that the representation F can be constructed by means of a version
of the semiinfinite wedge construction.

Recall that the main building block of the semiinfinite construction for gl is
its vector representation. We start by considering £-modules V (u) (u € C) which
are spanned by the vectors [u]; (i € Z). They play the role of the vector repre-
sentation. The usual gl has only one vector representation, but £ naturally has
a continuous family of such representations. The algebra £ is endowed with a
structure of “comultiplication” (see [DI]). Strictly speaking, this “comultiplica-
tion” does not define a structure of an £-module on an arbitrary tensor product
V @ W of £-modules because some convergence conditions need to be satisfied
(see Section 2 for details). We show that the tensor product V(u;)®--- @V (un)
is well defined for general values of uy,...,uy. We are mainly interested in the
case when the parameters u; form a geometric progression. We show that the
tensor product

V() @V(ug ") @@ V(ugy M)

has a subrepresentation W (u) spanned by the set of vectors [u];, ® [ugy )i, ®
@ [ugy N )iy with i >idg > -+ >iy. The E-modules W (u) are analogues
of the exterior powers of the vector representation for gl,,. We construct the
structure of an £-module on the limit N — oo of W¥ (u), thus obtaining an
analogue of the space of semiinfinite forms. We denote this representation by
F(u) and call it the Fock representation.

The space W (u) can be identified with the space of symmetric polynomials
in N variables. We recall that the space (C[:Uit17 . ,xﬁl
of faithful representation of the spherical double affine Hecke algebra SHy. We
show that the image of £ coincides with spherical double affine Hecke algebras
(DAHA) and thus obtain a surjective homomorphism € — SHy for any N. We
recall that in [SV1] and [SV2] (see also [BS], [S]) the spherical DAHA of type
GL, was constructed as a projective limit of SHy. Tt is natural to expect that
our £ is isomorphic to limy_,o, SHy. (We plan to discuss this elsewhere.)

]¥~ has anatural structure



340 Feigin, Feigin, Jimbo, Miwa, and Mukhin

Because of the homomorphisms & — SHy, any SHy-module gives us a rep-
resentation of £. Consider now the resonance case q%_’"qg“ =1,k>0,r>1.In
this case, the representation of SHy on (C[zfl, . ,xﬁl]sN has a subrepresenta-
tion WhmN  Claf!, ..., 2% defined by

WHPN = {f(x1,...,an) | f(x) =0 if x satisfies the wheel condition},

where x = (z1,...,zy) is said to satisfy the wheel condition if
xileqé_iqiﬁm%—si_l, i=1,...,k+1,81,...,8641>0,81+ -+ 81 =7—1.

In [FJM1] it is proved that W& has a basis labeled by the so-called (k,r)-
admissible partitions, that is, partitions A satisfying A; — A\jyx > for all ¢ > 1.
Each element of the basis is a Macdonald (Laurent) polynomial. Thus we have an
action of the algebra &£ on the space of polynomials satisfying the wheel condition.
We construct a family of £&-modules W*™N (u), u € C, such that W*"N (1) ~
WkmN - We also construct the inductive limit N — oo of the modules Wk N
and endow it with a structure of the £-module. As a result, we construct a
family of representations W& (u) of € whose bases are labeled by infinite (k,r)-
admissible partitions with a certain stability property at infinity. The parameter
c=(c1,...,c5-1) (1 <1 <---<cp—1 <r) enters in the stability property.

Our paper is organized as follows. In Section 2 we give the definition of £. In
Section 3 the vector representations and their tensor products are constructed.
In Section 4 we work out the semiinfinite construction for general parameters g;.
In Section 5 we establish a link between the tensor products of representations
of £ and representations of SHy. In Section 6 we consider the semiinfinite
construction in the resonance case ¢ "¢5 ™' = 1. In Section 7 we discuss further
properties of the algebra &.

2. Quantum continuous gl__

In this section we introduce the algebra £ which we call the quantum continu-
ous gl.

2.1. Definition
Let ¢1, 42,93 be complex numbers satisfying ¢; # 1 and g1q2q3 = 1. Let

9(z,w) = (z — qw)(z — aw)(z — gzw).
Let £ be an associative algebra over C generated by the elements e;, f; (i € Z),
w;-ﬂ Y—; (7 >0), and (¢$)i1 with defining relations depending on parameters
q1,42,93. (So strictly speaking, we have a family of algebras.) We use generating
series

e(z) = Zeiz*i, flz)= Zfiz’i, wi(z) = Z zpiiz*i,

i€z i€z +i>0
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The defining relations in £ are

g(z,w)e(2)e(w) = —g(w, 2)e(w)e(2),
(2.1)
g(w, 2) f(2) f(w) = —g(z,w) f (w) f(2),
g(z,w) P (2)e(w) = —g(w, 2)e(w)™ (2),
(2.2)
g(w, 2)¥* (2) f(w) = —g(z,w) f(w)p*(2),
(23 (o). S = 2L (0 ) - 07 )
(24) [, 0F1 =0, [F,ef]=
(2.5) Yo (g) = () Mg =1,
(2.6) [607 [617671]] =0, [f()» [flaf*l]] =0.

Here §(z) =), o 2" is the delta function.

REMARK 2.1

The form of relations (2.1), (2.2), and (2.3) is a convenient way of writing alge-
braic relations between generators. Namely, each relation is to be understood as
generating functions for relations for Fourier coefficients of the right- and left-
hand sides. For example, the relation (2.1) for e(z) is equivalent to the following
set of relations labeled by pairs (n,m) € Z:

ent3€m — (@1 + @2 + @3)ent26mt1 + (192 + 4203 + 43¢1)ent1€mi2 — En€mis
= —em+3en + (q1 + @2 + ¢3)emt26n+1

- (Q1Q2 + 4243 + q3q1)6m+16n+2 + E€m€n+3,
and (2.3) simply means that
¢z+7 ifi+j>0,
g(l,l)[ei,fj]: _wi-l—j iti+j<0,
v =y ifitj=0.

REMARK 2.2

The algebra £ can be considered an algebra over one of the fields of rational
functions C(q1,42), C(¢1,93), C(g1,g3). This is equivalent to saying that the
parameters ¢; are “general.” However, £ is defined for arbitrary (except 1 and 0)
values of parameters. Also, in Section 6 we consider the case when g; satisfy an
algebraic relation (different from ¢1¢2g5 =1).

In what follows we call the algebra £ the quantum continuous gl

REMARK 2.3
In [DI] Ding and Iohara defined a class of algebras which are analogues of quan-
tum affine algebras. Apart from the cubic Serre relations (2.6), the algebra &
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is a particular case of their construction. This algebra (without relations (2.6))
was also considered in [FT] and [FHH+].

LEMMA 2.4

The following are obvious:

- the algebra & is invariant under permutations of parameters qi,qz,qs,

. the elements w(jf € & are central,

- there is an antiinvolution of € sending e; to f_;, f; toe_;, and 7,/11jE to 7,

. the algebra & is graded by the lattice Z?; the degrees of generators are
given by

dege; = (1,1), deg f; = (—1,1), degwft = (0,1).

We say that an £-module is of level (I4,1_) if woi act on this representation by
scalars [ .

Let &£’ be the algebra defined in the same way as £ without cubic relations
(2.6) (see Remark 2.3). In [DI] the formal (see the explanations below) structure
of the Hopf algebra on £’ was constructed. In particular, the comultiplication is
given by

(2.7) Ae(z) = e(2) ® 1+ (2) @ e(2),
(2.8) Af(2)= f(2) @ ¥ () + 1@ f(2),
(2.9) AGE () = (2) @ 0(2).

We note that this “definition” does not define a comultiplication in the usual
sense. The right-hand sides are not elements of £ ® £ since they contain infinite
sums. Still for certain classes of modules the formulas (2.7), (2.8), and (2.9) can
be made precise. So in what follows, when talking about the tensor products
V1 ®---®Vy of E-modules, we construct the action of the generators e;, f;, and
¥E explicitly (based on the universal formulas (2.7), (2.8), (2.9)) and check that
they satisfy the relations of quantum continuous gl .
We close this section with the following statement.

LEMMA 2.5

In &' the cubic element [eg, [e1,e—1]] belongs to the kernel of adf(z). Similarly,
[fo, [f1, f=1]] belongs to the kernel of ade(z).

The proof will be given elsewhere. Using this lemma, it is not difficult to prove
the Serre relations in each representation we discuss in this paper.

3. The modules V' (u)

In this section we define vector representations V(u) of £&. We also construct
tensor products of vector representations and certain submodules inside tensor
products.
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3.1. Vector representations

For a parameter u € C we consider the space V(u) spanned by basis vectors
[u]; (i € Z). In the following lemma we define representations of the quantum
continuous gl depending on parameter u. We call V' (u) a vector representation.

PROPOSITION 3.1
The assignment

(1= que(2)[uli = 6(qiu/2)[ulita,
—(L—qy ) f(2)[u)i = 6(qi " u/2)[u)i1,

oy, (L g/ )0 = i)
O )
TRV € S/ 700 [l T PRETAO I
N (e T
defines a structure of a level (1,1) E-module on V (u).

REMARK 3.2
An important feature of the representations V'(u) is that ¢*(2) act on [u]; via
multiplication by the expansions at z = 0o and z =0 of the function

(1—q'q5 " 2/u)(1— gy 'q5 '2/u)
(1—qy'z/u)(1 — g7 " 2/u)

For the proof of Proposition 3.1 we need a simple lemma. We use the following
notation: for a rational function v(z) we denote by v¥(z) the expansions of (z)
at z =oo and z = 0; that is, y*(z) are Taylor series in zF1.

LEMMA 3.3
Let v(z) be a rational function regular at z = 0,00 and with simple poles. Then
we have the formal series identity

7 (=) =y () =)W=/,

t

where the sum runs over all poles =z of v(2) and v =res,_ ) v(z)%.
We now prove Proposition 3.1.

Proof

Since ep[u]; = (1 —q1)~*q™u™[u];41, the relations (2.6) are obviously satisfied.
We show now that (2.1) and (2.3) hold; all other relations are proved similarly.
In what follows we often use the formula

(3.1) V(2)8(z/w) = y(w)d(z/w).
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So let us show that

9(z,w)e(z)e(w) = —g(w, z)e(w)e(2).
In fact, we prove that both sides vanish on V' (u). By definition,

(1—q1)’g(z, w)e(2)e(w)[u]; = g(z,w)5(q; u/2)8 (gt u/w)[uisa
= g(qi™ u, qiu)d (g u/2)0(q) u/w) )it
—0.

Similarly, g(w, z)e(w)e(z) = 0.
Now we show that

(3.2) le(2), f(w)][u]; =
The left-hand side reads as

ﬁ(a(qiﬂu/w)a(q?w/w — 0(gyu/w)d(giu/2)) ul;

- (1_(]7;1)25(2/1“)(5(41_111/2) —8(qiu/2)).

The right-hand side of (3.2) equals

5(z/w)
9(1,1)

(¥ (2) =~ (2)[uls.

(3.3)

d(z/w) (1 —qiqzu/z " 1—qiqou/z

gL\ 1—gu/z = 1—¢ tu/z
(3.4) iu/ ai u/

1—qfiqglz/u y 1 —qfiqglz/uﬁ |
— : . ul;.
1—gqy'z/u 1—q; " 2/u ‘

Since the expression in the round brackets is of the form v (z) — v~ (z) for a
rational function v(z), we can apply Lemma 3.3, which proves (3.2). O
We define the rational functions

(1 —gsqiu/2)(1 — gaqiu/2)
(1—ar 'giu/2)(1 - qju/z)
Then we have ¢*(2)[u]; = 'yljtu(z)[u]Z

'Yi,u(z) =

3.2. Tensor products
Consider the tensor product of vector representations V(u;) ® --- ® V(un). We
define the following generating series of operators on this space:

(1 —q)e(2)([urliy, @+ @ [unliy)

N s—1
(3.5) =" (TT i) ) e/ 2) )i,
s=1 1

=1

K& [us—l]is,l b2y [uS}is-Fl Y [u8+1]’is+1 KR [uN]iN7
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—(1=g ") f (@) ([u)i, ® - @ [unliy)

N ) N )
(3.6) =Y o /) TT Aot ™)) o]
s=1

l=s5+1
Q& [usfl]is,l & [us]isfl ® [u8+1]i5+1 Q- [uN]iN7

(3.7) V() ([ua)iy @ - ® [unliy) =0 (2) )iy ® - @ YT (2)[unliy -

The formulas above are read from the universal formulas (2.7), (2.8), and
(2.9). In fact, formula (2.7) gives (formally) the action of e(z) on the tensor
product V(u1) ® --- @ V(uy):

N
(3.8) e(2) =) ()@ P (2)De(2) ® @ @id.
s=1

s—1

By definition, e(2)[u]; = (1 —q1) " 6(¢}u/2)[u];+1 and T (2) acts on [u]; via mul-
tiplication by certain series. The product of delta functions with these series is
in general not defined. The series in question are expansions of given ratio-
nal functions. It is therefore natural to regularize (3.8) by substituting the
support z = q¢iu of the delta function into rational functions. We thus obtain
formula (3.5). Similar arguments lead to (3.6). Note, however, that the expres-
sion i, u, (¢4 us) is not defined if the argument is a pole of 7;, ., (2). Therefore
formulas (3.5) and (3.6) do not always produce well-defined operators.

For an element a = (ay,...,ay) € ZV, let u, € ®§:1 V(us) denote the vector
®i\;1 [ts]a,- The vectors u, constitute a basis of the tensor product ®i\’=1 V(us).
For a linear operator A on this tensor product we denote by (ua|e(z)|ua) the
matrix element of A in terms of this basis.

LEMMA 3.4
Let ACZY be a subset such that

. for allac€ ZN, a’ € A the matriz coefficients (W |e(2)|ua) and (uar|f(2)] x
U,) are well defined;

- forallac A, b¢ A the matriz coefficients (up|e(2)|ua) and (up|f(z)|ua)
vanish.

Then formulas (3.5), (3.6), and (3.7) define a structure of the £-module on

span{u, baca-

Proof
It suffices to show that the defining relations of £ are satisfied. We check (2.3)
and (2.6). The rest can be checked similarly.

We start with relation (2.3). Let us compute the matrix coefficient

(3.9) (uar[[e(2), f(w)][ua).

We first show that it vanishes unless a’ = a. Introduce the notation a4 1, =
(...,as £1,...). Then clearly (3.9) vanishes unless a’ =a+ 1; — 1 for some
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s,t=1,...,N. If s > ¢, then (3.9) vanishes because formulas (3.5) and (3.6) give
identical expressions for (uy|e(z)f(w)|ua) and for (ua/|f(w)e(z)|ua). Assume
now s < t. Then from formulas (3.5) and (3.6) we obtain that (3.9) is equal to
(up to some constant multiple)

('Yat,ut (qtlls_lusy)/asfl,us (qllltut) — Yas,us (qllltut)'yaﬁrl’ut (qtlls_l“s»

< T var (@) TT Yo (a8 us)d (gl ™ u/w)d(gf ue/2),
s#I<t t#l>s
which vanishes thanks to a simple relation

-1 -1

Varue (@577 Us)Vau—1,u. (61" U) = Vay s (47 We) Vay 41,0, (477 Us)-

So we only have the terms with s =t and, thus a # a’ implies that (3.9) is zero.
Now assume a=a’. Then (3.9) is equal to

Z(S US/w TSilUS/Z)HVaz,uz(Q§571u8)

l#s
N
- Z 6 (qy°us /w)d(qy*us/?) H’Yaz,m (g1 us)
s=1 l#s
(3.10) v
= 3(/w) (D80t /=) T ] vara (a5 0s)
s=1 l#s
N
= > 0(a ue/2) [ arn (6 71)).
s=1 l#s
Assume for a moment that
(3.11) Gu # @uy, unless i=jl=m

Then all poles of the function Hiv 1 Yas.u, (2) are simple, and Lemma 3.3 proves

(3.12) le(2), fw)]ua = (j/ “’)) (67 () — ¥ (=) ua.

We note also that if relation (3.12) holds for parameters satisfying (3.11), then
it holds for all values of parameters.

We now prove relation (2.6). Let E = [eq, [e1,e_1]]. Let ax1; = (a1,...,a; £
1,...,an). From Lemma 2.5 it follows that for all 1 <i<j <N,

N
> (Wagr i1, [ £(2)Uars, 11,11, (Vat1, 41,41, | Elua)
n=1
N
= Z<ua+1i+1j |Elua—1,)(ua—1,]f(2)|ua).
n=1
For generic uq,...,uy, it is easy to see that (ua+1i+1j ) =0 comparing

the coefficients of the delta functions. As far as the actions of e,,, are well defined,
the Serre relations £ =0 is valid in the limiting case, too. ]
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The following lemma is dual to Lemma 3.4.

LEMMA 3.5
Let ACZN be a subset such that

- for all a € A, a' € ZN, the matriz coefficients (uale(z)|ua) and
(uar|f(2)|ua) are well defined;

- forallag¢g A, be A, the matriz coefficients (uple(z)|ua) and (up|f(z)|ua)
vanish.

Then formulas (3.5), (3.6), and (3.7) define a structure of the £-module on

Span{ua}aEA'

Proof
This is similar to the proof of Lemma 3.4. O
In the following lemma we check that for generic values of parameters uy,...,uy,

the tensor product V(u1) ® - ®@ V(uy) is well defined.

LEMMA 3.6

Let uy,...,uny € C be some numbers with the property

(3.13) Yisgk foralll<i<j<NkeZ
Uy

Then the comultiplication rules (2.7), (2.8), and (2.9) define the structure of the
E-module on the tensor product V(u1) ® --- @ V(un).

Proof
The action of ¢*(z) is obviously well defined. They have only simple poles
because of the condition (3.13). We check that the action of e(z) is also well
defined. (The case of f(z) is similar.)

By definition, we have

(1 —q)e(z)([urliy, @ @ [un]iy)

N s—1
314) =" (T aius))alaius/2)uli,

s=1 [=1
Q- ® [Usfl]is,l & [us]iﬁrl ® [u3+1]i5+1 ®---Q [UN]iN‘

After substitution, the denominators take the form 1 — ¢¥u;/us, k € Z, which do
not vanish because of condition (3.13). O

3.3. Submodaules of tensor products
We now consider the tensor product of modules V(u), where the evaluation
parameters form a geometric progression with ratio go.
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Let V¥ (u) be the E-module defined by
VW) =V(u) @ Viug ') @@ V(ugy V).
Set
={A=A,..., AN E€ZY | A > > Ay}
Let W/ (u) < V¥ (u) be the subspace spanned by the vectors
(3.15) Ay = [uln, © fugy ' o1gn, ® - @ [ugy VT Npagag
where A € PV, In what follows, if the value of u is clear from the context, we

abbreviate |\), = [A).

LEMMA 3.7
W (u) is a level (1,1) submodule of VN (u).

Proof
We prove that W (u) is invariant with respect to e;. The case of f; is similar.
Recall the comultiplication rule

Ae(z) =e(z) @ 1+ 97 (2) @e(2).
Since e(z)[u]; is proportional to [u]; 1, it suffices to check that
V7 (2)lul; @ e(2)[ugy ;-1 =0.
By definition,
(L—ar7g5 " 2/w)(1 — gy 745 "2/ u)

(1—a”z/w)(1 =g " 2/u)
which vanishes because of (3.1). The lemma is proved. O

0(al gy u/2),

V7 (2)lul; @ e(2)[ugy -1 =

In the following proposition we write down the action of generators of £ on |\)
explicitly. We introduce the notation

AEL; =M, N L AN).

PROPOSITION 3.8
The action of e(z) is given by the formula
N i—1 Ai—A 1 X=X+l i—jt1
1— Zi—[ — ¢ ]qé - )1 —gq" qé )
(1—q)e = N1 i—j
i=1j=1 (1- 1 (J3 )(1— q1 qs3 )

(3.16) .
X 8(ar g5 tu/2)| A+ 14).
The action of f(z) is given by
s qu_Hl)(l - Q1

(1—61 Z H ,\j—Ai+3)1 j—i
a3 )(

=1 j=i+1 (

—1—1
Q3 )
1—Q1' Q3 Z)

(3.17)
><(5(q1'_1 i 1u/z)|)\ 1;).
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For ) operators, one has

N - i— i—
(1—qghu/2)(1 — g 'qi %u/z)

i (L= u/2) (1= g gy u/2)

(3.18) PF(2)|N) = A,

N N —i —Ai+1 —i42

_ (I—q Mgg'z/u) (1 =gy " a5 "2/u)
3.19 A) = - ' A
(3.19) ¢ (2)N) i[[l(lfql_”q;”lz/u)(l*ql_Ainfﬁ_le/u)‘ >

Proof
The proof follows from the comultiplication rules and the definition of the mod-
ules V(u). O

4. Semiinfinite construction

In this section we construct the Fock modules F(u) by using the inductive limit
of certain subspaces in the finite tensor products of vector representations. To
construct the inductive limit consistently, we need to modify the operators f(z)
and ¥*(z), and this modification results in the nontrivial level (1,q2) in the
inductive limit.

4.1. Modified operators

Recall that for any N > 1 the basis of the space W (u) is labeled by the sequences
A= (A1,...,Ax) € PV, The corresponding vectors |[A\) € W (u) are given by
formula (3.15). Set

PN ={XePV | Ay >0},

and define W™* (u) to be the subspace of W (u) spanned by the vectors |\) for
X € PNF. Our goal in this section is to construct a semiinfinite tensor product
F(u) as an inductive limit of W"*(u) and to endow it with a structure of an
E-module. For this purpose we need to vary N and take the limit N — oco. Our
strategy is as follows. Let 7y : PN+ — PN+L+ be the mapping given by

TN(/\) = (/\1,...,)\]\[,0),

and induce the embedding 7y : W+ (u) — WN+L+(y). Define the inductive
limit

(4.1) F(u)= lim_ W (u).

This space is spanned by the vectors |\)(A € P1), where the sets of infinite
partitions P, PT are defined by

P = {)\:(Ah)\g,...) ’ )\i2>\i+1;)\i GZ},

Pt ={XeP |\ =0 for sufficiently large i}.
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In what follows we refer to F(u) as a Fock module. We define an action of £ on
F(u) in the following way. Consider the operators acting on the space W (u):

— Nu z
(42) M) =e(z),  [N(z) = %ﬂzm

N (2) = M (),

1—qNu/z
(4.3) 1 q‘”’fl/ oy
~N(z) = ST 45 Z/Y Zu_z.
REMARK 4.1

The action of f(z) splits into a sum of delta functions. By definition, the change
caused by the multiplication of the rational function

1 G205 u/z
Bn(z) = 1—ql¥u/z
is that each delta function is multiplied by the value of Sx(z) at its support. The
changes in 17 (z) and 1~ (2) are the multiplication by By(z) as a series in z~*
and in z, respectively. Since Sy (z) has no pole at z = oo or z =0, the regularity
of the series is not violated in either case.

Another point is why we choose Oxn(z) to multiply. This factor has the
following meaning. Consider the eigenvalue of ¢+ (2) on the tensor component
(g5 N u]sy — N1 when Ay = 0. It has four factors, say, of the form (ag\l,)(z) X
ag)(z))/(ag) (z)as\?)(z)). In fact, we have

1
_al(e) _avhi(2)
(2 NE] )
o (2) i (2)
Namely, we have removed part of the factors from the tail (we say the Nth tensor

component is in the tail if Ay =0), those which disappear when we extend the
tail from NV to N + 1.

B (2)

It turns out that the operators z[V] (2), x =e, f,%b" are stable and define an
E-module structure on F(u). Let us give precise definitions.
First we prepare the following.

LEMMA 4.2
Suppose that for X € PN+ the equality Ay = 0 is valid. Then, forx =e, f, 9+, ¢~,
we have xMN1(2)|]\) € WN-F(u) and

™ (@M (2)N) = 2N ) (IA).
Proof

For z = e our lemma is trivial because in the right-hand side the (N 4 1)st term
in the comultiplication of e(z) acts trivially. Let z =1". We need to prove that
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the eigenvalue of the operator
Bn(2)YT(2)  on the vector |Ar,..., An)
coincides with that of the operator
Bn+1(2)¥T(2) on the vector [A1,...,AN,0).

Since
Ut T PR (Gl T PN
— — —N— — 2 — N
(I—a¢ N‘Iz NU/Z)(l -4 N 1‘]2 NU/Z)

the statement follows from the equality

(1 — a5 u/2)(1 — goa3’u/z)
(1= afu/2)(1 — g3 " gou/z)
The case x =¥~ is similar. For x = f the comparison of the ith terms in the
left- and right-hand sides is similar for 1 <¢ < N — 1. It is easy to see that the
rest of the terms, that is, i = N in the left-hand side and i = N, N + 1 in the
right-hand side, are zero. So the equality for x = f follows. O

V() gy V- =

BN (z) = Bn+1(2)

4.2. Fock modules

We now endow each space F(u) with a structure of an £-module. For any
A= (A1, A2,...) €PT we set

(4.4) z(2)|\) = Nninooxm (2)|A1, -5 AN,

where = = e, f,77,%~ and the right-hand side is considered as an element of
F(u) via (4.1).

THEOREM 4.3
Formula (4.4) endows F(u) with the structure of a level (1,q2) £-module.

Proof
We have to check that all relations of £ are satisfied. The only nontrivial check
is the commutation relation

G ke
), f )] = S W)~ 07 (2))

We prove this relation using the structure of the £-module on W (u). For
given |\) € F(u), choose N large enough so that Ay_; = Ay = 0. Set AN =
(A1,..-,AN). Because of Lemma 4.2, it suffices to prove the equality

)
@3) [, A = T ) - o)) A1)

g,
We start with the equality in W (u):

(o), S ]A) = T

(¥F(2) =9~ (2)) AT,
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This is an equality for the coefficients of §(z/w)|A[¥]). The coefficients are Lau-
rent series in z. In the left-hand side the coefficient is a sum of delta functions:

LHS = z:cZ (g qi M/ 2) +Zc§q1 Lt/ z).

The right-hand side is expressed in terms of a rational function ax(z): the oper-
ator ¢+ (2) has an eigenvalue on |V} which is equal to the series expansion of
an(z) in 271, while the eigenvalue of 1~ (z) is the series expansion of the same
rational function ax(z) in z71. The rational function ay(z) is regular at both
z=0 and z = occ. The equality implies that if z € C\{0}, aN( )dz/z has only
simple poles at z = q1 qé Lu with the residue ¢;, and at z = qi '_lqé Lu with the
residue ¢. Moreover, since Ay =0, it has a zero at 2 =g u

Our aim is to prove (4.5). To obtain the right-hand side of this equal-
ity, we expand ay(2)Bn(z) in 27! for ¢+ (2), and in z for ¥~ (z), and then
take the difference. We get a Laurent series as the difference of these two
expansions Note that the only poles of an(z)Bn(z) in CU {oc} are still at
z= q1 s Lw and z = q1 1q§ Yu after the multiplication of Bx(z). Therefore
the nth Fourier coefficient of this series is calculated by taking the sum of the
residues of an(2)Bn(2)2~""1dz at these poles. On the other hand, the same
procedure applied to the partial fraction of ay(2)Bn(2) gives rise to the change
of the coefficients of the delta functions by multiplication of the values of Oy (z)
at their supports. Therefore we have the equality of two Laurent series.

We give a remark on the proof of the Serre relations. For E = [eq, [e1,e_1]],
the proof follows from the case of the finite tensor product. For F' = [fo,[f1, f-1]],
it is the same because the modification of the actions is such that (A\—1, —1; —
1, | F|\) changes by a constant multiple. O

COROLLARY 4.4
The nonzero matrix coefficients of the action of the generators on F(u) are given
by the following formulas. For e(z),

i—1 Ai— i—j—1 Ai—=Aj+1 i—j+1
1-q Vg7 Ha—q a ")
(1 =) A+ Lile(2)|A) = H X is VI y
j=1 (1—q" ™ j)(l—q " d3 j)

x 0(qy gy u/z).

For f(z),
—(L=agi DA =1 f(2)N)
Ait1 =i Xj=XNit+l j—i Njt1—Ai j—i
1! ﬁ (1—q’ A (O AR )
- Xit1—Ai+1 i1 —Xi+1 j—i Ai—Xi j—i
1—g™ a3 2 =g’ & -7 g

(5(q1 -1 Z 1u/z)
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For *(2),
- o 0 P 0 Air1—1 45—
W (2)|N) = L' g5 'u/2 11 (1-giighu/z)(1—q)"" g} 1u/z)|)\>
A i i 1 ,
l—qllu/z Pt (1—(]1 +1Q3U/Z)(1—qi‘ 1q§ 1u/z)
_ 1— q—)\1+1q32/u 00 (1 - q—)\1q—1z/u)(1 o q*)\i+1+1q_i+1z/u)
v ()N = 1 H 113 1 3 A).

— S e "
l—qg™Mz/u 2 (1-q +16]312/“)(1_%)\JrlQ?,ZJrlZ/u)

We define the vacuum vector [A°) with A? =0. Let ;" (z) be the expansions of
a rational function (1 — g22)/(1 — 2) as a series in z*!. Explicitly,

1—qoz _ 1—g;tz?t
+ () — _ 2
Yy (z) = 1—. n (2) = 1_ .1

Then wét (u/z) are the eigenvalues of ¥ (z) on |A?), that is,

Y (2)A%) = v (u/2)|2°).

For a partition A we denote by (A|9*(2);|\) the eigenvalue of the series ¢* (2)
on the vector [ugy ™, _iz1 € V(ugy ), that is,

¢i(z)[uq;i+1]/\i—z‘+1 = </\|1/1i(2’)i|/\> [Uq;i+1]ki—i+1-

The index i in 1*(2); indicates the component V(ugy ™), and the shift \;
A;i —i+1 as well. Similarly, we introduce the matrix coefficients (A + 1;|e(z);|\)
and (A|f(2);|A+1;). Then the formulas from Corollary 4.4 can be rewritten in
the following way:

£ — ot (o TT A (RN
N (2)|A) = i (u/ >g—<kowi(2mw
1—1
(A Lile(2)|A) = (A + Lile(2)sA) [T (2); 10,
j=1

o0 +(2).
AFEIN+ 1) = AF @A+ 1) x ¢ (ghu/2) [] M

j=it+1

COROLLARY 4.5
The module F(1) is isomorphic to the module constructed in [FT, Theorem 8.5].

Proof

We recall that in [F'T] the operators e;, f;, and wii were constructed on the space
F with basis [A] labeled by infinite partitions A. This space is defined as the direct
sum of localized equivariant K groups of Hilbert schemes of points of C2. The
matrix coefficients of these operators are given in [FT, Proposition 3.7]. We prove
that F(1) ~ F. To this end we identify t; = q1, t2 = g3 and do a change of basis
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as follows. Consider constants ¢y defined by cyo =1 and

Ajp1—Ai j—itl i-1 =il i
0 1_q1J+1 qJ i+l 1—gi— N q] i—1

CA+1; 3 4 3
(46) —z(l—q1Q3) N — — .
e H 1— qi\J A1q§—1+1 ]1;[1 Ai—1 j—i

A'.f
j=i L—q’ 43

It is straightforward to check that c) are well defined, that is, that the right-hand
sides dj; of (4.6) satisty

dat1, kA0 i = dag1,,,idx k-

Another straightforward check shows that the linear map F — F(1), [\] — x|\
is the isomorphism of modules of £. |

REMARK 4.6

Strictly speaking, in [FT] the authors proved that the operators e(z), f(z), and
¥ (2) acting on F satisfy the relations of the Ding-Iohara algebra &£’. However,
since Serre relations are satisfied on F(1), the representation F factors through
the surjection & — &.

5. Macdonald polynomials and spherical DAHA

In this section we establish a link between the spherical DAHA and quantum
continuous gl... Throughout the section we consider the algebra £ over the field
of rational functions C(¢1,¢s3)-

5.1. Macdonald polynomials
Our basic reference in this section is Macdonald’s book [M]. However, we use the
Laurent polynomials version of Macdonald polynomials.

The Macdonald operators D}, are mutually commuting g¢-difference opera-
tors acting on the ring of symmetric Laurent polynomials C(g,t) [xlil, e ,x]ivl]GN,
where & denotes the symmetric group of N letters. These operators are given

by the formula

N= ) Asr(a; )Ty,

[ I|=r
where I C {1,..., N} runs over subsets of cardinality r,
tr; —x;
A ) — ¢r(r—=1)/2 [ J
r(@st) =t Al =
i€l j¢l
TI = HT T
iel

and (Tq,mif)(xlw'wa):f(zla"'aqmia"'amN)' Let DN(quat):Z'fV:OD;V X
X7 be their generating function.
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The Macdonald polynomials Py form a basis in the space of symmetric poly-
nomials. They are uniquely characterized by the following defining properties:

N
Dy(X;q,t)Py=[](1+ XtV ™")- Py,
i=1
Py=my+ Z UMy Uy € (C(q’t)a

p<A

where m) denotes the monomial symmetric function and we write p < X if g # A
and pg -+ <M+ XN fori=1,...,N.

We define Py (x;q,t) for partitions A € PV with possibly negative entries by
the formula

N
Pa(iq,t) =] 2  Payoaw,aw - aw0(@i g, 1)
=1

In what comes next, the following Macdonald operators are of special importance
for us:

tr; —x;
Dy (gt) Zl 1 H z_ Tg,:

iy T
Dlzl'l(q’t) = Djlv(qilvtil)'
Set WN =WN(1) (ie., u=1).
PROPOSITION 5.1
Choose q1 = q,q2 = q~'t,q3 =t~ 1. Under the isomorphism of vector spaces
WN Ol 2B, V) Paa),
we have the identification
(1 — q1)eo = multiplication by Z 1 T4y
—(1—q; Y fo = multiplication by Zi:l xi‘ ,
¢f_ = qév_l(l - q2)(1 - q3)D]1V(q7t)a
YIi=a3 N (- g (1 - a5 ) Dy (g, ).

Proof
We first look at the operator ¥} (the 1) ~,-case is similar). Formula (3.18) gives

O = a3 (1= g2)(1 — g3) th NN,

which agrees with the formula for the eigenvalues of the operator D} (see [M]).
To prove that (1 —¢1)eg acts as > x;, we compare the matrix coefficients of
(1 —q1)eo in the basis |\) and of Y x; in the basis Py. The latter is given by the
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Pieri formulas. From (3.16) we obtain

(I—aq1)eo-|A)
(5.1) N i A=A Ai—Aj+1
i—1 j 1 + 1
ZH (1-4¢" q;,] )1 —q; qé J+)_|)\+1‘>
i )\7 7, 7 i )\ +1 4— 7 v
i—1=1 (I—q” )1 —ay 4 ")

The matrix coefficients as above coincide with the Pieri rule formulas (see [M]).
Similarly one proves that —(1 — gy Y fo acts as multiplication by Zl 1z, . 0O

5.2. Spherical DAHA

We first recall the definition of the DAHA of type GLy (see [C]). This is a C(g,v)-
algebra generated by elements Tiil, inl, and inl for 1<t <N—-1,1<j<N,
subject to the following relations:

(T; + v )T —v) =0, T;T41Ti=Ti1T;Tisa,

T,T, =TT, if i — k| >1,
X; X =X X, YY), =YY,
TXiT, = Xip1, T, 'YT ' =Y,

T; Xy = X315, T,V =Y. T; ifk#i,i+1,

YiXy-- Xy=qX1- XnY7,
X W =Yo X112
Denote this algebra by Hy. Let S € Hy be the idempotent given by

1
S:W Y VT, Ty=T,-- T,
TweSy
for a reduced decomposition w =s;, ---s;.. Here s; denotes the transposition
(i,1+ 1), l(w) is the length of w, and

N v¥—1

[N]! ZH[i]v [i] = P

i=1

The algebra SHy S is called the spherical DAHA and is denoted by SHy. In
[SV1] Schiffmann and Vasserot defined the elements Pg\,,, PN € SHy (m € Z)
by the formulas

s

N N
Py =8> Y!S, PRV, ,=¢8> Y's,

=1
N N

P =¢8> X!s, PNy=8> X;'s
=1 i=1

with [ > 0. They proved that these elements generate SHy. We need the follow-
ing modification of their result.
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LEMMA 5.2
Four elements Py, Py, Py, and PY, o generate SHy .

Proof

Consider the degeneration v =1 of Hy. (In fact, one has to be careful with such
a degeneration since Hy is defined over the field of rational functions C(g,v),
which may have a pole at v =1. To make everything precise, one has to pass
to the analogue of Hy, defined over C[g*!,v®!]. We omit the details here and
refer the reader to [SV1, Section 2].) We prove that for v =1, the corresponding
spherical DAHA is generated by our four elements. This would imply the lemma.
If v =1, the idempotent S commutes with Zf\il Xl-il and ZZ]\LI Yiﬂ, and X;Y; =
q %Y, X;. Let

N N
Piy=8) XS, Qu=8) Y*'s.

i=1 i=1

Then we have

N
(adP11)*Q1 =8 (adX;1)*Y;S

i=1

N
— (- Sy XS
i=1
and for an arbitrary m € Z \ {0},
N

(adQy1)™ (Sixfns) =53 (adv;F)" (Xms)

i=1 =1

N

i=1
We thus obtain that all P, and Py, can be obtained as linear combinations
of products of P{| ; and PgY ;. O

Similar results holds for the quantum continuous gl .

LEMMA 5.3
For ¢* € C*, the algebra 5/(1/}3[ — ct) is generated by four elements eo, ¥y, fo,
P,

Proof
The proof follows directly from relations in €. For example, the 21w~ ™-terms
of the relations (2.2) give

3 3
W?_vem] =ct (ZQJ' - qu‘_l)e’m-‘rla
=1 =1
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3 3
(W1 em]=c (Z 45 — ZQJ1)€m71~
j=1 j=1

Therefore all e,,,,m € Z, can be obtained via eg, 1], and 1. Similarly one gets
fmym € Z,b 7, ,n > 0. 0

THEOREM 5.4
For any N there exists a surjective homomorphism of algebras & — SHy, where
the parameters q,v of SHy are related to qi,q3 by q=q1, v> = qgl.

Proof

We recall that the algebra SHy can be faithfully represented on the space
Clg,t)[ar s ey

with t =v? in such a way that PivLo acts as a multiplication by vazl xiﬂ and

Py, acts as Macdonald difference operators D}, and Dy'. Therefore Proposi-
tion 5.1 and Lemmas 5.2 and 5.3 show that the assignment

N N
(I—ag)eo—SY XiS,  —(1—qi)for>SY X',

=1 i=1

N
3 (1= q)(1—ga)pf —S> VS,

=1

N
g Nl-g)(1-g T, -8 YS

i=1

extends to the surjective homomorphism of algebras. O

6. Resonance case

Let k> 1,r > 2 be positive integers. In this section we impose the following
condition on the parameters q1, g2, qs:

(6.1) gt =1

As usual we assume that gigogs = 1. We refer to the condition (6.1) as the
resonance condition. We also assume that ¢'¢y* = 1 if and only if there exists an
integer a such that n= (1 —r)a, m=(k+ 1)a.

In this section we establish a link between the representations of £ and
ideals in polynomial algebra spanned by the Macdonald polynomials (see [FIM2],
[FIM1]).

6.1. Finite tensor products
If the resonance condition holds, the action of & on W (u) becomes ill defined
(since the denominators of the formulas determining e(z)w and f(z)w vanish for
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some vectors w € W (u)). We still find a subspace inside W (u) on which the
action is well defined.
Set

(6.2) SETN = {XePN N = Aipr > 1(1<i< N —k)}.

We call partitions satisfying the condition (6.2) (k,r)-admissible partitions. Let
WkrN () — W (u) be the subspace spanned by the vectors |A) for A € S¥7 V.

Induce the actions of the operators e(2), f(2),9*(z) on W*™N (y) from those
on W¥ (u) for the generic values of the parameters.

REMARK 6.1

In fact, one has to be careful defining the matrix coeflicients (A 4+ 1;|e(2)|A)
and (A — 1;|f(2)|A). Namely, both contain factors of the form 1 — gjq}. If the
condition (6.1) holds and s = «a(1 —r), | = a(k + 1), such a factor vanishes. The
prescription is first to cancel all factors of the form 1 — % " k“ (if they appear
simultaneously in the numerator and in the denominator) and then impose the

resonance condition.

LEMMA 6.2

The comultiplication rule makes the subspace WF™N (u) — W (u) into a level
(1,1) E-module.

Proof
We need to check that matrix coefficients (A + 1;|e(2)|A) ((A — 1;|f(2)|\)) are
well defined provided A +1; € S¥™N (X — 1, € S¥"N). We check this for e(z).
(The case of f(z) is similar.) Formula (3.16) gives

(1= q) A+ Life(2)[A)

(63) — Ajoi—j—1 Ai—=Aj+1 i—j+1
) - q

1—q1 ds 4 3 ) o Aiie1
| | 0(qitqy Tu/z).
N, 1943
o =g V- TV )

The denominator vanishes if for some m satisfying 1 <m <i—1,

-m 1 or qi\ii)\m#?lq%_m =1.

0
In the first case there exists some positive integer a such that
Ai—Am=a(l—r), i—m=a(k+1).
This is impossible since A + 1; is (k,r)-admissible. In fact,
A+ 1< Aok —ar =Apqaq —ar <\, —ar,

and hence \; — A\, < —1—ar < a(l —r). Now assume qf‘“)‘mﬂqg_m =1. Then
there exists a positive integer « such that

AMi—Antl=all—r), i—-m=alk+1).

As above, we have \; + 1 — A\, < —ar < a1l —r), which is a contradiction.
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We show now that the action of £ preserves the linear span of vectors corre-
sponding to the (k,r)-admissible partitions. In fact, let A; — A\;4x =r. Then we
need to show that

(6.4) A+ Ligrle(2)|A) =0

(since A+ 1,4y is not (k,r)-admissible). But this zero comes from the factor
1-— qi""_A"'HqgfjH in the formula (3.16), where ¢ and j are replaced with i+ k

and j, respectively. The check for f(z) is similar. O

REMARK 6.3

We recall that in [FJM1] the vector space spanned by the Macdonald polynomials
P, with (k,r)-admissible partitions A\ was considered (see also [Kas]). It was
proved that this space is S H y-stable. The lemma above gives yet another proof
of this statement by using the representation theory of £.

6.2. Semiinfinite limit
In this subsection we define a semiinfinite representation in the resonance case.
The construction is similar to the construction for F(u), although certain modi-
fications are needed.
Fix a sequence of integers ¢ = (¢1,...,¢ck—1) satisfying 0 =cy <c¢; <--- <

cx—1 <r, and define the tail

Npripr=—vr—c;(r>0,0<i<k—1).
We define the sets of partitions S, S¥™N:* and the mapping 74, n : SE NV —
Sk.rN+k+ as follows:

Skr={xeP | A=Ay >r (1>1), A= /\? for sufficiently large i},
Sk N+ — {)\ € Sk N ‘ Aj > )\9(1 <j< N)},
Tk,r,N()\) = (/\1,.. '7/\N7/\9V+17' . '7>‘9V+k)'

Let WY7(u) be the space spanned by the vectors |A) for A € S¥7. To endow
it with the structure of the £&-module, we introduce the subspaces W™ N+ (y) —
WHmN (y) spanned by the vectors |A) for A € S&™N+ and induce the embeddings

(6.5) Thr Nt WEDNA () — WhrNTR+ ()
by the formula 7, n|A) = |7k, N (A)). These embeddings give the identification
(6.6) Wh (u) ~ Jim WhETNT ().
We define an action of £ on W& (u) in the following way. Let By n(2) be
the rational function defined by
i el k—1 v,

l—q 3 1—q, " g5
B (2) =] . B [] —
§=0 1—¢ o qs I lu/z j=i+1 1-q “ VC]?, V+ju/z

z
’
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where N=vk+i+1(0<i<k—1,v>0). Consider the operators acting on the
space WETNA (y):
(6.7) e Nl(z)=e(z),  fNI(2) = Brn (2) f(2),
(6.8) PN =B v (vt (2),  TNI(R) =60 n ()Y (2),
where 5,11\,(2) is the expansion of fj n(z) as series in z. These operators turn
out to be stable and define the £-module structure on WE" (u).

In the following, that is, Lemma 6.4 and Theorem 6.5, the arguments are

very similar to those for Lemma 4.2 and Theorem 4.3. We omit the proofs for
them.

LEMMA 6.4
Suppose that for A € SE™N* the equality (AN—k+1,-- s AN) = (AN _pi1s-- 5 AX)
is valid. Then, for x =e, f,Jb" 0=, we have z*N(2)|\) € WEmN+(u) and

Tk,r,N( ( )|)‘>) kN+k]( )Tk7r,N(|)‘>)'

For A € SE7 we set

(6.9) (N = Jim o)A, ),

where = = e, f,17,%~ and the right-hand side is considered as an element of
Wk (u) via (6.6).

THEOREM 6.5
Formula (6.9) endows WE™(u) with the structure of a level (1,q%) &-module.

We now write down explicit formulas for the nonzero matrix coefficients of oper-
ators e(z), f(z), and ¥*(z) acting on WE" (u). For e(z),

(1= q){A+Lile(2)[A)

i—1 Xi—=Xj i 1 Xi=XAj+1 i—j+1
B (1—q" JQ3 - )1 —q ds a )5 i i—1
o Ni—Aj _i—j NN+l i—j (a1°q5 u/z).
=1 (=g Ve ')A g 7 7)
For f(z),
—(1—g HA=1L|f(2)N)
i+k Aj—=Ni+1l j—i
_ H 1—q’ e i
o Aj—=Ni+1l j—i
j=it1 1 =@ 7

+k—Ait+l j+k—it1 Aj—=Ai _j—i—1
N a3 A —q” a3

(1—q; ) -1 1 1
X H S WP W o (g u/z).
Jj=i+1 ( q Q§ Z)(l - Q1J+k Q§+ / Z)
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For 4%(2),

k

v =]

1—qighu/z ﬁ (- i u/2) (1 — g g u/z) 0
el qi\iqéilu/z i=1

i
(1-q *"Q?’“ Yu/z)(1— g gy /)

- ¢ q3 ‘z/u
Hl* —>\ —7+1/

) X\
% ﬁ (1- Q1 o gy Pz fu)(1—q st "2/u) )
Xitk 0 z—k+1z/u)( —q )\i+1q3—i+lz/u)

Define series ¢ (u/z) in z:F1 by

df = g — et B

Then the formulas above can be rewritten in the following way:

A + Z)i A
(Alp™(2) Hw@ 4541 C‘U/Z)HM,

i>1

A+ Lle(2) ) = A+ Lle(= ﬁ A (

A+ 1) = e+ 1) T &:;ﬁﬁz by H Gy,

j=it1 =0

7. Quantum continuous gl__: further directions

As we have shown above, there exists a surjective homomorphism from the quan-
tum continuous gl to the spherical DAHA of type GLy. It is therefore natural
to expect that £ is isomorphic to the stable limit SHo = limy_oo SHy con-
structed in [SV1] and [SV2]. The related statement is that the representation
obtained as the direct sum of the modules W (u) is faithful.

There is also a link between £ and the so-called shuffle algebra S (see [FO],
[FT]). The latter is an algebra generated by variables é;, i € Z. Let T be the
subalgebras of £ generated by e;, i € Z. We conjecture that there exists an
isomorphism 7: EY — S, 7 (e;) = ¢&;.

In the paper we have studied tensor products of the vector representations
of £. We have also considered limits of these tensor products, thus constructing
Fock modules F(u). It is a natural question to study the tensor products of
the modules F(u). It turns out that the structure of these tensor products is
very rich. In particular, there exist submodules inside F(u1)®---® F(uy) whose
characters coincide with those of the minimal representations of the Wy-algebras
up to a trivial factor.

We plan to return to all these questions elsewhere.
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