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Abstract We construct an enlargement of the classifying space of mixed Hodge struc-
tures with polarized graded quotients by adding mixed Hodge theoretic version of
SL(2)-orbits. This space has a real analytic structure and a log structure with sign. The
SL(2)-orbit theorem in several variables for mixed Hodge structures can be understood
naturally with this space.
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L’impossible voyage auz points a l'infini
N’a pas fait battre en vain le coeur du géomeétre

— translated by Luc Illusie

0. Introduction

This is part II of our series of articles in which we study degeneration of mixed
Hodge structures.

0.1.
We first review the case of pure Hodge structures. Let D be the classifying space
of polarized Hodge structures of given weight and given Hodge numbers, defined
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by Griffiths [G]. Let F; € D be a variation of polarized Hodge structure with
complex analytic parameter t = (¢1,...,t,), t1 - - - t, # 0, which degenerates when
t—0=(0,...,0). It is often asked how F}; and invariants of Fy, like Hodge metric
of F}, and so on, behave when ¢t — 0. Usually, F} diverges in D and invariants of
F; also diverge.

There are two famous theorems concerning the degeneration of F}, which are
roughly reviewed in Section 0.3:

(1) the nilpotent orbit theorem (see [Sc]),
(2) the SL(2)-orbit theorem (see [Sc|, [CKS]).

In [KU2] and [KU3] (an announcement is given in [KU1]), we constructed
enlargements Dgy,2) and Dy of D, respectively. Roughly speaking, these the-
orems (1) and (2) are interpreted as in (1)’ and (2)’ below, respectively (see
[KU3)).

(1)) (Fy modT) eT'\D converges in I'\Dy, and asymptotic behaviors of
invariants of F; are described by coordinate functions around the limit point on
I'\Ds.

(2)" Fy € D converges in Dg,(2), and asymptotic behaviors of invariants of
F; are described by coordinate functions around the limit point on Dgr,2) (see
Section 0.2).

Here in (1)’, T is the monodromy group of F; which acts on D, and ¥ is a
certain cone decomposition which is chosen suitably for F;. The space I'\ Dy; is
a kind of toroidal partial compactification of the quotient space I'\D and has a
kind of complex analytic structure. The space Dgr,(2) has a kind of real analytic
structure. For the study of asymptotic behaviors of real analytic objects such as
Hodge metrics, Dgy,(2) is a nice space in which to work.

0.2.

Now let D be the classifying space of mixed Hodge structures whose graded
quotients for the weight filtrations are polarized, as defined in [U1]. The purpose
of this article is to construct an enlargement Dsgy,2) of D, which is a mixed
Hodge theoretic version of Dgp,9) in [KU2]. A mixed Hodge theoretic version
of the SL(2)-orbit theorem of [CKS] was obtained in [KNU1], and it is also
interpreted in the form (2)" above by using the present Dgy,2) (see Section 4.1
of this article).

In Part I ([KNU2]) of this series of articles, we constructed the Borel-Serre
space Dpg which contains D as a dense open subset and which is a real analytic
manifold with corners like the original Borel-Serre space in [BS]. These spaces
Dg,(2) and Dgg belong to the following fundamental diagram of eight enlarge-
ments of D whose constructions will be given in forthcoming parts of this series
of articles. This fundamental diagram for the pure case (see Section 0.1) was
constructed in [KU3]:
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Dgr2)val =  DBsval
! !
Dy a1 Dﬁz,val —  Dsp) Dgs
! !
Dy «— DL

In the next parts of this series, we will construct the rest of the spaces in this
diagram. Among them, Dy is the space of nilpotent orbits. Degenerations of
mixed Hodge structures of geometric origin also satisfy a nilpotent orbit theorem
(see [SZ], [K], [Sa], [P1], etc.; a review is given in [KNU1, Section 12.10]). In the
next articles in this series, we plan to interpret this in the style (1)’ above by
using Dy in this diagram.

0.3.

We explain the contents of Sections 0.1 and 0.2 more precisely (but still roughly).
The nilpotent orbit theorem (in the pure case, see Section 0.1, and in the

mixed case, see Section 0.2 also) says roughly that when ¢t = (¢1,...,¢,) — 0, we

have

n
(Fy modI') ~ (exp (Z szj)F mod F)
j=1
for some fixed Hodge filtration F' (~ expresses “very near,” but the precise
meaning of it is not explained here), where z; is a branch of (27i)~!log(t;) and
N; is the logarithm of the local monodromy of F; around the divisor ¢; =0. In
[KU3] for the pure case and in the next articles in this series for the mixed case,
this is interpreted as the convergence

(F, mod T') = ((0,Z) mod I') € T'\ D,

where o is the cone Y| R>oN; and Z is the orbit exp(3_7_; CN;)F. (As in
the pure case, as a set, Dy is a set of such pairs (0, 2).)

The SL(2)-orbit theorem in the pure case of Section 0.1, obtained in [CKS],
says roughly that when t — 0, t; € R~, and y;/y;j4+1 — 00, where y; = —(27) ! x
log(t;) for 1 <j <n (yn41 =1), we have

o (08 ) (0 1)) o0

(~ expresses “very near” again) where p is a homomorphism of algebraic groups
SL(2,R)™ — Aut(D), ¢ is a complex analytic map h™ — D from the product h™ of
copies of the upper half-plane b, satisfying ¢(gz) = p(g)@(z) for any g € SL(2,R)"
and z € h™, and where i = (4,...,7) € h”. In [KU3], this is interpreted as the
convergence

Fy — class(p, ¢) € Dsp(2)-

The SL(2)-orbit theorem in the mixed case of Section 0.2 obtained in [KNU1]
says roughly that when ¢t — 0, t; € R~, and y;/y;j4+1 — 00, where y; = —(27) ! x
log(t;) for 1 <j<n (yn4+1 =1), we have
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e (@ () (F )

where (py,¢w) (w € Z) is the SL(2)-orbit of pure weight w associated to the
filtration on gr!¥ induced from F}, r is a certain point of D which induces ¢, (i)
on each gr!V and “lift” is the lifting to Aut(D) by the canonical splitting of the
weight filtration associated to r (see Section 1.2). For details, see [KNU1] and
also Section 2.4 of this article. By using the space Dgp,2) of this article, this is
interpreted as the convergence

F; — class((pw, Pw)wez,T) € Dsp2).-

Since Dgp,(2) has a real analytic structure, we can discuss the differential of the
extended period map t+— F; at t =0. We hope that such a delicate structure of
Dgy,(2) is useful for the study of degeneration.

0.4.

Precisely, there are two natural spaces DéL(Z) and Déi@) which can sit in the
place of Dgp,(z) in the fundamental diagram. They coincide in the pure case
and coincide always as sets but do not coincide in general. What we wrote in
Section 0.3 is valid for both. They both have good properties, so that we do not
choose one of them as a standard one (see Section 3.2.1 for more surveys).

0.5.

The organization of this article is as follows. In Section 1, we give preliminaries
about basic facts on mixed Hodge structures. In Section 2, we define the space
Dg,(2) as a set. In Section 3, we endow this set with topologies and with real
analytic structures. (These spaces DéL(Z) and Déi@) are not necessarily real
analytic spaces, but they have the sheaves of real analytic functions which we call
the real analytic structures.) We study properties of these spaces. In Section 4,
we consider how the degenerations of mixed Hodge structures are related to these
spaces.

NOTATION
Fix a quadruple

Oy = (H()v w, (<7 >w)w€Z7 (hp’q)quEZ)’

where

- Hj is a finitely generated free Z-module;

- W is an increasing filtration on Hy r := R ®z Hy defined over Q;

- (, ) is a nondegenerate R-bilinear form gr’¥ x gr’¥ — R defined over Q
for each w € Z which is symmetric if w is even and antisymmetric if w is odd;
and

- hP? is a nonnegative integer given for p,q € Z such that hP?¢ = h?P,
rankz(Ho) =>_, AP, and dimg (gr’V) =3 hP4 for all w.

ptg=w
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Let D be the set of all decreasing filtrations F' on Hy.c := C ®z Hy satisfying
the following two conditions:

(1) dim(Fp(gr%q)/Fp+1(gr%q)) = hP4 for any p,q € Z;
(2) (, ) kills Fp(grl‘f,‘/) X Fq(gr}jf/) for any p,q,w € Z such that p+ ¢ > w.

Here F(gr!’V) denotes the filtration on grl‘/KC :=C ®r gr!V induced by F.
Let D be the set of all decreasing filtrations F' € D which also satisfy the
following condition:

(3) *~9(x, %), > 0 for any nonzero z € FP(gr’V )N F4(gr!’) and any p,q,w €
Z with p+q=w.

Then D is an open subset of D and, for each F € D and w € Z, F(gr)) is
a Hodge structure on (Ho N W,,)/(Ho N Wy,—1) of weight w with Hodge number
(h?7) p+q=w Wwhich is polarized by (, ),. The space D is the classifying space
of mixed Hodge structures of type ®q introduced in [Ul], which is a natural
generalization to the mixed case of the Griffiths domain in [G]. These two are

related by taking graded quotients by W as follows:

- D(gr¥V): the D for ((Ho N W.y)/(Ho N Wiy—1),{, Yuws (hP*?)pt =) for each
w € Z;

¢ D(ng) = HwEZ ‘D(grwW)a

- D— D(gt"), Frs F(gr") := (F(gr!V))wez, the canonical surjection.

For A=7Z,Q,R, or C,

- G4: the group of all A-automorphisms g of Hy 4 := A ®z Hy compatible
with W such that gr'’¥(g) : gr!¥ — gr!V are compatible with (, ), for all w;

« Gauw:={9€Gal|gr(9)=1 for all w € Z}, the unipotent radical of G 4;

- Ga(grZ): the G4 of (HoyNWy,)/(HoNWy_1),{, )w) for each w € Z;

- Galgr") =TI, Galery).

Then Ga/Ga. = Ga(gr"), and G4 is a semidirect product of G4, and
GA (ng). 3 3

The natural action of G¢ on D is transitive, and D is a complex homogeneous
space under the action of G¢. Hence D is a complex analytic manifold. An open
subset D of D is also a complex analytic manifold. However, the action of Gg
on D is not transitive in general (see the equivalent conditions (4), (5) below).
The subgroup GrGc,., of G¢ acts always transitively on D, and the action of
Gc. on each fiber of D — D(gr'™V') is transitive.

- spl(W): the set of all isomorphisms s : gr'¥ =@, grly = Ho r of R-vector
spaces such that for any w € Z and v € gr’?, s(v) € W, and v = (s(v) mod
Ww—l)-

- We have the action Gr,,, X spl(W) — spl(W), (g,s) — gs.

For a fixed s € spl(W), we have a bijection Gr_., — spl(W), g+ gs. Via this
bijection, we endow spl(I¥) with a structure of a real analytic manifold.
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« Dyp1 :={s(F) | s € spl(W),F € D(gr"')} C D, the subset of R-split ele-
ments.

Here s(F)? :=s(EP,, F(pw)) for F' = (Fy))w € D(gr").
. Dnspl =D~ Dspl«

Then, Dgp is a closed real analytic submanifold of D, and we have a real
analytic isomorphism spl(W) x D(gr"V') = Dgpi, (s, F) — s(F).
The following two conditions are equivalent (see [KNU2], Proposition 8.7):

(4) D is Gr-homogeneous;
(5) D = Dyy.

For example, if there is w € Z such that W,, = Hy g and W,,_5 =0, then the
above equivalent conditions are satisfied. But in general these conditions are not
satisfied (see Examples I, IIT, IV in Section 1.1).
For A=Q,R,C,

g4 := Lie(G 4) which is identified with {X € Ends(Hop,4) | X(Wy) C Wy,
for all w; (gr! (X)(2),y)w + (z,erY (X)(y))w = 0 for all w,z,y};

g4 =Lie(Ga,)={X €ga|grl (X)=0 for all w};

ga(gr!V): the ga of (HoNWy)/(HoNWy_1),{, )w) for each w € Z;

ga(gr") =D ez 9a(ery) )

Then ga/ga,. = ga(gr").

1. Basicfacts

We examine some examples, review some basic facts, and fix further notation
which is used in this article.

1.1. Examples

1.1.1.

We give six simple examples (see Examples 0-V) of D for which the set {w €
Z|gr? #£0} is {—1}, {0,—2}, {0,—1}, {0,-3}, {0,—1,-2}, {0,1}, respectively.
Among these, Examples I, II, and III are already presented in [KNU2, Sec-
tions 1.10-1.12] to illustrate the results in that article on each step. All these
examples are retreated also to illustrate the results in this article on each step.

EXAMPLE 0O

(This example belongs to the pure case, although Examples I-V below do not.)
Let Hy = Z? = Zey + Zes. Let W be the increasing filtration on Hy r defined by

W_o=0CW_; = HO,R-

Let {ea,e1)_1=1. Let h=10 = 1%t =1, and let h?*9 = 0 for all the other (p,q).
For 7 € C, let F(7) be the decreasing filtration on Hy ¢ defined by

F(r)'=0Cc F(1)° =C(rey +e2) CF(1)"' = Hy c.
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Then we have an isomorphism of complex analytic manifolds
D ~,

where b is the upper half-plane {x + iy | 2,y € R,y > 0}, in which 7 € b corre-
sponds to F(7) € D. This isomorphism naturally extends to D ~ P(C).

EXAMPLE |

Let Hy=Z? = Ze; + Ze,, and let W be the increasing filtration on Hy r defined
by

W_s=0CW_os=W_1=Re; CWy= HO,R-

For j =1 (resp., j =2), let €’ be the image of ¢; in g™, (resp., gry’). Let
(eh,eh)o =1, (€}, e})—2=1, and let hO0 =h~171 =1 AP9 =0 for all the other

(p:q).
We have an isomorphism of complex analytic manifolds

D~C.
For z € C, the corresponding F(z) € D is defined as
F(2)' =0C F(2)° =C(ze; +e2) C F(2) "t = Hoc.

The group Gz, is isomorphic to Z and is generated by vy € Gz, which is
defined as

yler)=e1,  yle2) =e1 +ea.
We have
GZ’U\D ~ CX,

where (F(z) mod Gz ) corresponds to exp(2wiz) € C*.

The space Gz, \D is the classifying space of extensions of mixed Hodge
structures of the form 0 — Z(1) — « — Z — 0.

In this case, D(gr'V') is a one-point set.

EXAMPLE Il
Let Hy =173 =Ze; + Zey + Zes, and let

W_o=0CW_1=Re; +Rex CWy=Hyr.

For j=1,2 (resp., 3), let e, be the image of e; in gt (resp., gry’). Let
(eh,eb)o =1, let {eh,e})_1 =1, and let RO =p%~1 =p=10 =1 AP9 =0 for
all the other (p,q).

Then we have isomorphisms of complex analytic manifolds

D~hxC, D(gr"V)~b.
Here (7,2) € h x C corresponds to F = F(7,z) € D given by
F'=0cF’= C(1e; +e2) + C(zey +e3) C F 1= Hyc.
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The induced isomorphism D(gr'V') = D(gr"}) ~ b is identified with the isomor-
phism D ~ b in Example 0.

The group Gz, is isomorphic to Z2, where (a,b) € Z? corresponds to the
element of G’z which sends e; to e; for j = 1,2 and sends e3 to ae; +bea +e3. The
quotient space Gz, \D is the universal elliptic curve over the upper half-plane b.
For 7 € b, the fiber of Gz, \D — D(gr'V) = h over 7 is identified with the elliptic
curve E. := C/(Z1+Z). The Hodge structure on HyNW_; corresponding to 7 is
isomorphic to H!(E,)(1). Here H'(E,) denotes the Hodge structure H'(E,,Z)
of weight 1 endowed with the Hodge filtration and (1) denotes the Tate twist.
The fiber of Gz,\D — bh over 7 is the classifying space of extensions of mixed
Hodge structures of the form

0— HYE,)(1) —»+—Z—0.

EXAMPLE IlI
Let Hy =73 =Ze; + Zey + Zes, and let

W_4=0CW_3=W_1=Re1 +Res C Wy = HO,R-
For j=1,2 (resp., 3), let e, be the image of e; in gt (resp., gry’). Let
(eh,ebho =1, (eh,e})_3=1, and let K90 =h~ 172 =h"2"1 =1, AP =0 for all
the other (p,q).
Then we have isomorphisms of complex analytic manifolds
D~hxC? D(g")~p.
Here (7,21, 29) € h x C? corresponds to F' = F(1,21,22) € D given by
FlZOCFOZC(Z1€1+2262+€3)CF_l=F0+C(T€1+62>CF_2=H0,C.

The induced isomorphism D(gr'V') = D(gr'V;) ~ b is identified with the isomor-
phism D =~ § in Example 0 (F € D(gr'"V') corresponds to the twist F(—1) of F,
which belongs to the D in Example 0).

The group Gz, is the same as in Example II. The Hodge structure on
Ho N W_3 corresponding to 7 € h ~ D(gr"V;) is isomorphic to H*(E,)(2). The
fiber of Gz, \D — D(gr"V') ~ b over 7 € b is the classifying space of extensions
of mixed Hodge structures of the form

0— HYE,)(2)—*—2Z—0.

EXAMPLE IV
Let Hy =Z7Z*=Ze; + Zes + Zes + Zey, and let
W_3=0CW_os=Re; CW_1=W_s+Res + Res C Wy = H07R.
For j =1 (resp., 2,3, resp., 4), let ¢} be the image of ¢; in gr'%, (resp., gr'’},
resp., gryy ). Let (e}, e})o =1, (e],e})_2=1, let (e}, eb) 1 =1, and let h%°0 =

RO~ =h=10 =p=L=1 =1 AP9 = for all the other (p,q).
Then we have isomorphisms of complex analytic manifolds

D=bhxC* D(g")=D(g")=h.
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Here (7, 21, 22, 23) € h x C? corresponds to F' = F(7, 21,22, 23) € D given by F~! =
Hy c, F'=0, and

FO= C(z161 +71es + 63) + C(22€1 + z3e9 + 64).

The induced isomorphism D(gr'V') = D(gr"}) ~ b is identified with the isomor-
phism D ~ 1§ in Example 0.

There is a bijection Gz, ~ Z° (but not a group isomorphism), where
(aj)1<j<5 € Z° corresponds to the element of Gz, which sends e; to e, e
to aje + eq, e3 to ase; + ez, and ey to age; + ages + ases + eq4.

EXAMPLE V
Let Hy=27° =7Ze| + Zey + Zes + Zey + Zes, and let

W_1=0CWy=Re; +Rex +Res CW; = Hyr.

For j =1,2,3 (resp., 4,5), let ¢} be the image of e; in gry’ (resp., gr}"). Let
<€/5,621>1 =1, <€/1,€é>0 =2, <€/2,6,2>0 =—1, and <€9,€;€>0 =0 (.] +k#4, 1<,
k<3), and let hb "1 =00 = p=11 = 1.0 = p01 =1 and hP4 =0 for all the
other (p,q).

Let b* ={x+iy|z,y € R,y #0} =h U (—h). Then we have isomorphisms
of complex analytic manifolds

D~h* xhxC? D(egry)~bh*=, D(gr]")~h.

Here (70,71, 21, 22, 23) € b x b x C3 corresponds to F = F(rg, 71,21, 22,23) € D
given by F? =0, F~! = Hy ¢, and

F'= C(7'0261 + 2719es + e3) + C(z1e1 + 20e9 + T1e4 + €5),
FO = Fl —+ C(Toel + 62) =+ C(del =+ 64).

Let F(7) be the filtration in Example 0 corresponding to 7 € h. The induced
isomorphism D(gr}") =~ b sends 7 € h to the Tate twist F(7)(—1) of F(r). The
induced isomorphism D(gry’) ~ h* sends 7 € h* to Sym?(F(7))(—1) € D(gr)
(see Section 1.1.2).

The group Gz, is isomorphic to Z°®, where (aj)1<j<6 € Z5 corresponds to
the element of Gz which sends e; to e; for j =1,2,3, e4 to areq +asex+azes+ey,
and es to ase; + ases + ages + es.

1.1.2.

REMARK

For the computations of Example V in Section 1.1.1 and in Sections 3.6 and 4.2.4
later, we describe here the classifying space Dy of polarized Hodge structures of
weight 2 underlain by the second symmetric power of the Tate twist (by —1) of
(Ho, (, )-1) in Example 0.

The domain D(gr}) in Example V of Section 1.1.1 is identified with Dy via the
Tate twist.



158 Kato, Nakayama, and Usui

Let Hy = 72 = Zf1 + ZfQ, let Wo=0C Wy = HO,R; and let <f27f1>1 =1.
Then Sym2(H0) =73 =Zey + Zey + Zes, where e1 := f2, eg:= f1f2, €3 := f3,
and the induced polarization on Sym?(Hy), which is defined by

(T122, Y19Y2)2 = (21, Y1)1 (T2, y2)1 + (21,9201 (2,911 (25,95 € Ho,j=1,2),
is given by
(e1,e3)2 = (e3,e1)2 = 2, (e2,€9)2 = —1, (ej,ex)2 =0
otherwise.

For v =wie1 + waes + wzez € Cey + Ceg + Ces to be Hodge type (2,0), the
Riemann-Hodge bilinear relations are

<va>2 = 4W1W3 - W% = Oa
<CU,1_)>2 = i2<v,1‘)>2 = —4Re(w1a)3) + ‘CUQ‘Q >0,

where C' is the Weil operator. Hence the classifying space Dy and its compact
dual D5 of the Hodge structures of weight 2, with Hodge type h?? = hl! = p02 =
1 and hP9 =0 otherwise, and with the polarization (, )2, is as follows:

Dy = {C(w161 + waeg +wsez) C Cey + Cey + Ces | dwywz — ws = O} ~P!(C),
(1) Dy = {C(w1€1 + woeo +LU3€3) eD ‘ —4Re(w1®3) + |w2|2 > 0} o~ f)i.

The isomorphism is given by wie; + waes + wses = w?eq + 2wes + e3 < w.
Assigning g € SL(2,R) to sym?(g) € Aut(Ho R, {, )2), we have an exact se-
quence

(2) 1—{£1} - SL(2,R) — Awt(Hy R, (, )2) = {1} — 1.

The isomorphism (1) is compatible with (2).

1.2. Canonical splittings of weight filtrations for mixed Hodge structures

Let W and D be as in the notation at the end of the introduction. In this section,
we review the canonical splitting s = sply, (F') € spl(W) of the weight filtration
W associated to F' € D, defined by the theory of Cattani, Kaplan, and Schmid
[CKS]. This canonical splitting s appeared naturally in the SL(2)-orbit theorem
for mixed Hodge structures proved in our previous article [KNU1]. The definition
of s was reviewed in detail in [KNU1, Section 1], although the formulation there
is different from the one in this section. The canonical splitting plays important
roles in the present series of our articles.

1.2.1.
Let F = (Fu)w € D(gr'"). Regard F as the filtration @, F(,) on grdl =
D., gruvf/’c, and let Hp? = H?(ZM) C grg‘iqyc. Let

Lyb N (F) = {5 € Endr(gt") [6(HE) ¢ @ HE forallpqe z}.

p'<p,q'<q
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All elements of Lﬁl’fl(F) are nilpotent. Let
L= EndR(ng)S,g
be the set of all R-linear maps ¢ : gr'¥ — gr'V’ such that 6(gr!V) C Du<w2 gr
for any w € Z. Denote
L(F)=Lg"""(F)cL.

L(F) is sometimes denoted simply by L.
In this Section 1.2, we review the isomorphism of real analytic manifolds

D~ {(s,F,8) €spl(W) x D(gt"V) x L |6 € L(F)}
obtained in the work [CKS] (see Section 1.2.5). For F’ € D, the correspond-
ing (s, F,d) consists of F'=F'(gr"), § =§(F') € L(F) defined in Section 1.2.2,

and the canonical splitting s = sply, (F’) of W associated to F’ explained in
Section 1.2.3.

1.2.2.

For F' € D, there is a unique pair (s',d) € spl(W) x L(F’(gr"")) such that
F' =5 (exp(i6) F' (gr"))

(see [CKS]). This is the definition of § = §(F") associated to F”.

1.2.5.
Let F’ € D, and let s’ € spl(W) and § € L(F’(gr'"V)) be as in Section 1.2.2. Then
the canonical splitting s = sply, (F’) of W associated to F’ is defined by

s =5’ exp(C),

where ¢ = ((F’(gr'V), §) is a certain element of £(F’(gr")) determined by F’(gr'")
and ¢ in the following way.

Let 6,.4 (p,q € Z) be the (p, q)-Hodge component of § with respect to F'(gr'V")
defined by

o= Z(Sp,q (51741 € ﬁC(Fl(ng)) =Cer /:(F/(grw)))a

Opq(H gy ) C Hpf B0 for all k,1 € Z.

Then the (p, ¢)-Hodge component ¢, , of ¢ = ((F'(gr™V'), §) with respect to F” (gr"V)
is given as a certain universal Lie polynomial of 8, o (p',¢' € Z, p' < -1, ¢' < —-1)
(see [CKS] and [KNU1, Section 1]). For example,

C—l,—l = 07

7
(—1,—2= —55—1,—27

7

d_o _1.
50-2,-1

(—2,-1=
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1.2.4.
For F € D(gr") and § € L(F), we define a filtration 6(F,§) on grk by

0(F.,6) = exp(—() exp(id) F,

where ( = ((F,0) is the element of L(F') associated to the pair (F,J) as in Sec-
tion 1.2.3.

PROPOSITION 1.2.5
We have an isomorphism of real analytic manifolds

D ~ {(s,F,8) € spl(W) x D(gr") x £ |6eL(F)},
F'— (splyy (F"), F'(gr™), 6(F")),

whose inverse is given by (s, F,0) — s(6(F,0)).

1.2.6.
For g = (gu)w € GR(ng) =1l GR(grl‘ﬁ/), we have

90(F.8) = 0(gF,Ad(g)9),
where Ad(g)d = gdg—!.

1.2.7.
For F € D(gr"V), 6 € L(F), and s € spl(W), the element s(f(F,§)) of D belongs
to Dgp if and only if § = 0.

1.2.8.

REMARK

The results in Section 1.2 are valid for W defined over R, that is, without assum-
ing that W is being defined over Q.

1.2.9.

We consider Examples I-V in Section 1.1.1. For these examples, L(F) =
Lﬁl’_l(F) C L in Section 1.2.1 is independent of the choice of F € D(gr'V),
and we denote it simply by L. By Proposition 1.2.5, we have a real analytic
presentation of D,

(1) D ~spl(W) x D(gr") x L.

The relation with the complex analytic presentation of D given in Section 1.1.1
is as follows. We use the notation in Section 1.1.1.

EXAMPLE |

We have spl(W) ~ R by assigning s € R to the splitting of W defined by e}, —
se1 + ez, D(gr'"V) is one point, and L ~ R, § < d, by &(eh) = de (see Sec-
tion 1.2.3).
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The relation with the complex analytic presentation D ~ C in Example I
in Section 1.1.1 and the real analytic presentation (1) of D is as follows. The
composition

C~D~spl(W)x L~R xR
is given by
z < (s,d), z=s+1id.
Conversely, we have
s =Re(z), d =Im(z).

This is because the ¢ associated to ¢ € L is equal to (_1,_1 = 0 (see Section 1.2.3).

EXAMPLE Il
We have spl(W) ~ R?, s < (s1,52), by s(e3) = s1e1 + saez2 + €3 and s(e}) =¢;
(j=1,2), and we have L =0.

The relation with the complex analytic presentation D ~ h x C in Example 1T
in Section 1.1.1 and the real analytic presentation (1) of D is as follows. The
composition

hx C~D~spl(W)x D(gr"V)~R? x b
is given by
(1,2) < ((s1,82),7) with z=s; — so.

Conversely, we have

s1 =Re(z) —

EXAMPLE 11l
We have spl(W) ~ R?, s < (s1,52), by s(e}) = s1e1 + saez + e3 and s(e;-) =e,
(j=1,2), and we have L ~R2, § < (dy,ds), by 6(e}) = d1€} + daéh.

The relation with the complex analytic presentation D ~ h x C? in Exam-
ple IIT in Section 1.1.1 and the real analytic presentation (1) of D is as follows.
The composition

b x C? ~ D ~spl(W) x D(gr"") x L~R? x h x R?

is given by
(2) (1,21,22) < ((s1,52),7, (d1,d2)),
where
B Re(T) ) Re(7)? 4 Im(7)?
® =514 (i )0~ Sy

1 Re(r) .
= ——d - do.
2=t onm v 2Im(7)+l> 2
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Conversely, we have

dq =Im(z1), do =Im(zs),

e\7 e(T 2 mi7 2
(4) s1=Re(z1) — ;I{nf (T)) Im(z1) + R(Q)I;(IT)() T (2,),
s2 =Re(z2) — ﬂm;(ﬂ Im(z1) + ;}ZEZ;?) m(zz).

We explain that the correspondence (2) is described as in (3) and (4). Write
7=+ iy with 2,y € R, y > 0. We have in gr'¥y o the Hodge decomposition
d(es) =die} + daely = A+ B, where
dy — doT . —di +doT

21i 2y
with respect to the element F € D(gr";) = D(gr"V') corresponding to = € . This
shows that the (p,q)-Hodge component §, , of § is given as follows. We have
dpq =0 for (p,q) # (—1,-2),(—2,—1), and 0_1,_2 sends e5 to A, and d_5 1
sends e5 to B. Since ((F,d) = —(i/2)0_1,—2 + (i/2)0_2.—1 (see Section 1.2.3),
this shows that ((F,d) sends e} to

A= (1€} +¢€b), B (e +¢€5)

o —dix + da(2? + y2)€,1 N —di + dg:z:e,?
2y 2y
Hence (F,d) = exp(—((F,)) exp(id)F is the decreasing filtration of gr@, char-
acterized by the following properties: 0(F,6)! =0, 0(F,8)72 =grd/, 0(F,8)° is
generated over C by —v+id; e} +idaeh+eh, and O(F,5) ! is generated over C by
O(F,6)° and 7€) + e5. The above (3) follows from this, and (4) follows from (3).

EXAMPLE IV
We have spl(W) ~ R, s < (s;)1<j<5, by s(e}) =e1, s(ey) = sie1 + €2, s(e}) =
sge1 + e3, and s(e)) = szeq + ssea + szes + eq, and we have L~ R, § < d, by
d(ey) =def.

The relation with the complex analytic presentation D~ x C? in Exam-
ple IV in Section 1.1.1 and the real analytic presentation (1) of D is as follows.
The composition

hx C3~D~spl(W) x D(gr")x L~R° xh xR

is given by
(1,21,22,23) < ((51, ey 85), T, d),
where
21 = 81T + $2, 29 = 83 — S5(s17 + s92) + id, 23 =84 — S5T.
Conversely, we have
1= III:ln((?))7 52=Re(z1) - 11121((?)) Re(m),
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Im(z3) Im(23)

s3 =Re(z) — () Re(21), s4 =Re(z3) — Tm(7) Re(7),
Im(z3) Im(z1) Im(z3)
S e A A I

This follows from ¢ =¢{_1,_1 =0 (see Section 1.2.3).

EXAMPLE V
We have spl(W) ~ RS, s < (sj)1<j<6, by s(€}) = sie1 + saea + szez + eq, s(eh) =
s4e1 + ssea + sges + es, and s(e;) =e; (j=1,2,3), and L=0.

The relation with the complex analytic presentation D ~ h% x h x C3 in
Example V in Section 1.1.1 and the real analytic presentation (1) of D is as
follows. The composition

bE x b x C3~ D ~spl(W) x D(gr"V) ~RE x h* x p
is given by
(70,71, 21,22, 23) < ((s1,--.,56), 70, T1),
where
21 = 8171 — 337371 + 54 — 56702, Zo = 8oT1 — 283ToT1 + S5 — 25670,
23 = 81 — 89T + 837‘3.

From this we can obtain presentations of s; (1 < j <6) in terms of 79, 71, 21, 22,
z3, but we do not write them down here.

2. Theset Dgy,(3)

2.1. SL(2)-orbits in pure case
We review SL(2)-orbits in the case of pure weight. We also prove some new
results here.

Let w € Z, and assume W,, = Hypr and W,,_; =0.

2.1.1.
Let n >0, and consider a pair (p, @) consisting of a homomorphism

p: SL(2,C)" — Gc¢

of algebraic groups which is defined over R and a holomorphic map ¢ : P}(C)" —
D satisfying the following condition:

©(g2) = p(g)p(z) for any g € SL(2,C)",z € P*(C)".

2.1.2.

Asin [KU3, Section 5] (see also [KU2, Section 3]), we call (p,¢) as in Section 2.1.1
an SL(2)-orbit in n variables if it further satisfies the following two conditions
(1) and (2):

(1) o(h™) C D.
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(2)  ps(A2(s1(2,C)9™)) C ﬁl’;(z)( c) for any z € P1(C)" and any p € Z.

Here in (1), h={z +iy|z,y € R,y >0} C P}(C) as in Section 1.1. In (2), p.
denotes the Lie algebra homomorphism s[(2, C)®" — g¢ induced by p,

fil? (sl(2,C)®"™)

{XGﬁ[? C)or

(@F )c@lF;jp(c?) (VreZ)},

‘7:
where for a € P}(C), F;(C?)=C?if r <0, F;(C?)=C({) ifa€ C, FL(C?) =
C((l))7 Fr(C%) =0 for r > 2, and
fil?.(gc) ={X €gc | XF" C F"*P for all r € Z} forF € D.

PROPOSITION 2.1.3
Let (p,p) be as in Section 2.1.1.

(i) Condition (1) in Section 2.1.2 is satisfied if there exists z € h™ such that
p(z)eD.
(ii) Condition (2) in Section 2.1.2 is satisfied if there exists = € P1(C)™ such

that p, (fi12(sl(2,C)®")) C fil? . (ac) for all p € Z.

Proof
We prove (i). Any element 2’ of h™ is written in the form gz with g € SL(2,R)".

Hence (=') = p(g)p(2) € D.
We prove (ii). Any element 2z’ of P*(C)" is written in the form gz with

g € SL(2,C)™. Hence

po (BIZ,(s1(2,C) ")) = p. (Ad(g) 2 (s1(2, C)°"))
= Ad(p(g)) p« (fil2(s1(2,C)%™))
c Ad(P(Q)) ﬁli(z)( c)= ﬁl;:;(z/)(gC)' U

2.1.4.
We fix notation. Assume that we are given (p, ) as in Section 2.1.1.
Let

N]aifjaN;_EgR (1§]§n)7

01 10 00
Nj:”*(o 0) ’ Yj:p*(o 1) : Nf:p*(1 0) :
J J J

where (); means the embedding s[(2) — s[(2)®™ into the jth factor.

PROPOSITION 2.1.5
Let (p,¢) be as in Section 2.1.1. Fiz F € p(C™). Then condition (2) in Sec-
tion 2.1.2 is satisfied if and only if

(2" NjFpCFp_1 forany 1 <j<n and any p € Z.



Classifying spaces of degenerating mixed Hodge structures, Il 165

Proof

Since F' = ¢((z5);) = exp(z;l:l 2jN;)¢(0) for some (z;); € C", where 0 =0" €
P1(C)", condition (2') for F € p(C") is equivalent to condition (2') for F' = ¢(0).
Note that fil}(s[(2,C)®") =0 if p > 2, that fily(sl(2, C)®") is generated as a C-
vector space by the matrices (2 g)j (1 <j <n), that fild(s[(2,C)®") is generated
as a C-vector space by fily(s[(2,C)®") and the matrices (' ?)j (1<j<n),
and that filf(s((2,C)®") =sl(2,C)®™ if p < —1. Hence, by Proposition 2.1.3(ii),
condition (2) in Section 2.1.2 is equivalent to

N;p(0)? Cp(0)P™,  Y;p(0)” C(0)”,  Nip(0)P Cp(0)P™ for any j, p.

Hence, if condition (2) in Section 2.1.2 is satisfied, then (2') is satisfied for F =
©(0).

Assume that condition (2') is satisfied for F' = ¢(0). We show that con-
dition (2) in Section 2.1.2 is satisfied. For any diagonal matrices ¢1,...,9, in
SL(2,C), we have (g1,...,9,)0 =0 and hence p(g1,...,9n)p(0) = ¢(0). From
this, we have Yj@(0)? C ¢(0)? for all j and all p € Z. It remains to prove
N;_gp(())p C ©(0)P*! for all j and all p € Z. The following argument is given in
[U2, Section 2] in the case n =1. By the theory of representations of s[(2, R)®"
and by the property Y;¢(0)? C ¢(0)? for any j and any p, we have a direct sum
decomposition as an R-vector space

Hor = @ Py
(a,b)es
with S ={(a,b) €Z" X Z" |a>b> —a,a(j) =b(j) mod 2 for 1 < j <n}, having
the following properties (1)—(4). Here, for a,b € Z™, a > b means a(j) > b(j) for
all 1 <j<n. For 1 <j<n,let e; be the element of Z" defined by e;(k) =1 if
k=jandej(k)=0if k#j.

(1) On P,p, Y; acts as the multiplication by b(j).

(2) Let (avb) €S It b(]) 7é _a<.j)’ Nj(Pa,b) C Pa,b—26j7 and the map Nj :
Py — Pap—2¢; is an isomorphism. If b(j) = —a(j), N; annihilates Py .

(3) Let (a,b) € S. If b(j) # a(4), N; (Pap) C Py pyae,, and for some nonzero
rational number ¢, the map Nj+ 2 Pyp — Papyoe; is ¢ times the inverse of the
isomorphism Nj : Py pyoc; 5 Py I 0(5) = a(y), Nj+ annihilates Py 5.

(4) For any p € Z, ¢(0)P =D, p)es »(0)” N Poyp,c. For any (a,b) €S, Pop
with the filtration (p(0)? N Pyp.c)pez is an R-Hodge structure of weight w +

25=100)-

For (a,b) € S such that b(j) # a(j), by (2') with F = ¢(0) and (4), the
bijection Nj : Py pq2e, = P, in the above (2) sends the (p + 1,q + 1)-Hodge
component of Pa’b+2€.j7c with p+¢=w+ 2?21 b(j) bijectively onto the (p,q)-
Hodge component of P, ; ¢ for the Hodge structure in (4). Hence, by (3), N;r
sends the (p,q)-Hodge component of P, , ¢ with p+¢=w + Z?Zl b(j) onto the
(p+1,q+ 1)-Hodge component of Py 1 2.;,c. This proves N;rgo(O)p C p(0)PT!
for any p. O
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2.1.6.
For 1 < j <n, define the increasing filtration W) on Hy r as follows. Note that

Hyr= @ Vin,

mezZn

where Y; acts on V;,, as the multiplication by m(j). Let

wy) = D Vin
meZ™,m(1)+--+m(j)<k—w

= (the part of Hy g on which eigenvalues of Y7 4 --- +Y; are <k —w).

Here w is the integer such that W,, = Hor and W,,_1 =0 as at the beginning
of this section.

Let s9) be the splitting of W) given by the eigenspaces of Y; + -+ + Y.
That is, s\) is the unique splitting of W) for which the image of ngV<j> under
s\ is the part of Hy r on which Y; +---+Y] acts as the multiplication by k& —w
for any k € Z.

PROPOSITION 2.1.7
An SL(2)-orbit in n variables is determined by (W9))1<j<n,p(i)).

This is proved in [KU2, Lemma 3.10].

In Sections 2.1.8 and 2.1.10, we characterize the splitting s\¥) of W) given
in Section 2.1.6 in terms of the canonical splittings and the Borel-Serre splittings,
respectively.

PROPOSITION 2.1.8

Let (p,p) be an SL(2)-orbit in n variables, and take j such that 1 <j <n. Let
yr €ERso (1< k<n), and assume yx, >0 for j <k <n. Then (W) o(iy,...,
iyn)) is a mized Hodge structure, and sY) coincides with the canonical splitting
(see Section 1.2.3; cf. Section 1.2.8) associated to this mized Hodge structure.

Proof

Let F=(iy1,...,iun), F' =¢(0,...,0,iy41,...,1Yn). Then F = exp(iy1 N1 +
iy N;)F', (WU F) is an R-mixed Hodge structure, (W), F’) is an R-split
R-mixed Hodge structure, and the canonical splitting of W) associated to F’
is given by Y1 +--- +7Y;. We have §(F) =y1 N1 +--- 4+ y;N;. Since this ¢ has
only (—1,—1)-Hodge component, ( =0 by Section 1.2.3, and hence Y7 +--- +Y;
is also the canonical splitting of W) associated to F. ]

2.1.9.

Let W’ be an increasing filtration on Hy r such that there exists a group homo-
morphism «: G, r — Gr such that, for k € Z, W, = EBmSkwa(m), where
H(m):={x € Hyr|alt)z=t"z (tc R*)}.
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We define the real analytic map
splhs : D — spl(W)

as follows. Let P = (GY,/)r be the parabolic subgroup of Gr defined by W".
(Here G° is the connected component of G as an algebraic group containing 1.)
Let P, be the unipotent radical of P, and let Sp be the maximal R-split torus
of the center of P/P,. Let G,,r — Sp, t — (t*"% on ngV/)k, be the weight
map induced by a. For F € D, let Kr be the maximal compact subgroup of Gr
consisting of the elements of Gr which preserve the Hodge metric (Cr(e),®),,
where Cr is the Weil operator associated to F'. Let Sp — P be the Borel-Serre
lifting homomorphism at F', which assigns a € Sp to the element ar € P uniquely
determined by the following condition: The class of ar in P/P, coincides with a,
and Ok, (ap) = a;l, where 0, is the Cartan involution at K which coincides
with ad(CF) in the present situation ([KU3, Section 5.1.3], [KNU1, Section 8.1]).
Then the composite G, r — Sp — P defines an action of G, r on Hy r, and we
call the corresponding splitting of W’ the Borel-Serre splitting at F and denote
it by splb (F).

It is easy to see that the map splg,s, :D — spl(W'), F — splsvs, (F), is real
analytic.

PROPOSITION 2.1.10
Let (p, ) be an SL(2)-orbit in n variables, let y; >0 (1<j<n), and let p=
o(iy1, ... iyn) € D. Then

sV =spliis (p) (1<j<n).
See [KU2, Lemma 3.9] for the proof.

2.1.11.
Let E be a finite-dimensional vector space over a field, and let W’ be an increasing
filtration on F such that W/ = E for w >0 and W/ =0 for w < 0.

Recall (see [D, Section 1.6]) that for a nilpotent endomorphism N of (E, W’),
an increasing filtration M on FE is called a relative monodromy filtration of N
with respect to W’ if the following two conditions are satisfied.

(1) N(My) C My_o for any k € Z.
(2) N* induces an isomorphism grfl\j[ k arlV s grﬁ){ k ngJVl for any w € Z and
any k > 0.

If a relative monodromy filtration exists, it is unique and is denoted by
M(N,W'). In the case where W’ is pure, that is, W), = F and W/ _, =0 for
some w, then M(N,W’) exists.

Let (p, ) be as in Section 2.1.1. For the family of filtrations in Section 2.1.6,
we see that, for 0 < j <k <mn, W) is the relative monodromy filtration of
> j<i<k Ni with respect to W@ (WO .=Ww).
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For an increasing filtration W’ on E such that W/ = FE for w > 0 and
W), =0 for w <0, define the mean value of the weights p(W’) € Q of W' and
the variance of the weights o>(W') € Q of W' by

Z dim(gr?¥ Yw/dim(E),

weZ

=) dim(g — w(W"))?/dim(E).
weZ
PROPOSITION 2.1.12

Let N be a nilpotent endomorphism of (E,W') as in Section 2.1.11. Assume
that the relative monodromy filtration M = M(N,W') exists. Then the following
hold:

(1) p(M)=pW),
(i) o*(M) > a*(W') unless M =W'.

Proof
For each k, we have the equality
(1) dim(gri!) Z dim(g wr WoarM) = Z dim(gr! grwW/).

Taking >, (---)k/dim(E) of (1), and using Section 2.1.11(2), we obtain (i). Let
p=pu(M)=p(W’). By taking >, (---)(k — p)?/dim(E) of (1), (ii) is reduced
to the inequality >, di(k — p)? > (3, di)(w — p)? unless dy =0 for any k # w,
where d = dim(grkM grlV ') for each w. This inequality is obtained again by using
Section 2.1.11(2). O

PROPOSITION 2.1.13
Let (p,) be an SL(2)-orbit in n variables, and let W) (1 < j<mn) be as in
Section 2.1.6. Let W) =W,

(i) Let 1<j<mn. Then WU=D =WU) if and only if the jth component
SL(2,C) — G¢ of p is the trivial homomorphism.

(ii) For 0<j <, let 02(j) = c2(WU)) be as in Section 2.1.11 for the
increasing filtration W) on the R-vector space Hymr. Then o2(j) < o?(j') if
0<j<j <n.

(iii) Let 0<j<mn, 0<j <n. Then W& =WU") if and only if 02(j) =
(7).

Statement (i) was proved in [KU2, Section 3]. Statements (ii) and (iii) follow
from Proposition 2.1.12.
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2.1.14.
Let (p,¢) be an SL(2)-orbit in n variables in pure case. Put W =W. We
define rank of (p, ) as the number of the elements of the set {5 | 1 < j <n, W) £
wu-1y,

2.1.15.

EXAMPLE 0

Recall that in this case, D is identified with the upper half-plane §. Let p be the
standard isomorphism SL(2,C) — G¢, and let ¢ : PY(C) — D be the natural
isomorphism in Section 1.1.1. Then (p, ) is an SL(2)-orbit in one variable of
rank 1.

2.2. Nilpotent orbits and SI.(2)-orbits in pure case
We consider the pure case. Let w € Z, and assume W,, = Ho g and W,,_; =0.

2.2.1.

Let F' e D, and let Ni,..., N, be elements of gr such that N;N, = Ny N; for

any 7,k and such that IV; is nilpotent as a linear map Hor — Ho r for any j.
We say that the map

C"— D, (21,...,zn)|—>exp(szNj)F
j=1

is a nilpotent orbit if the following conditions (1) and (2) are satisfied:

(1) exp(Xoj=; 2jN;)F € D if Im(z;) >0 for all j,
(2) N;FP C FP~! for any j and any p.

In this case, we say also that (Ny,...,N,, F) generates a nilpotent orbit.

Assume that (Ni,...,Np, F) generates a nilpotent orbit. By [CK], for y; € R>o,
the filtration M (y1 N1 + -+ + yn N, W) (see Section 2.1.11) depends only on the
set {j|y; #0}. For 1 <j<n,let W) =M(Ny+---+ N;,W).

Assume that (Ni,...,N,,F) generates a nilpotent orbit. Then by Cattani,
Kaplan, and Schmid [CKS]|, an SL(2)-orbit (p, ) is canonically associated to
(N1,...,N,, F). (The homomorphism p is given in [CKS, Theorem 4.20], and
¢ is defined by (g0) = p(g)F (g € SL(2,C)"), where 0 = 0" € P'(C)".) By
[KNU1], this SL(2)-orbit is characterized in the style of the following theorem.

THEOREM 2.2.4
Assume that (Ny,..., Ny, F) generates a nilpotent orbit.
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(i) Let 1<j<n. Then, when yr € Rsg and yr/yr+1 — 0 (1 <k <n,
Ynt1 means 1), the Borel-Serre splitting spl]‘?vs(j)(exp(zzzl iy NK)F) converges
in spl(WW) (see [KNU1, Section 8.7]).

Let s9) € spl(W)) be the limit.

(ii) There is a homomorphism 7 : G}, g — Autr(Hor) of algebraic groups
over R characterized by the following property. For any1<j<n and any k € Z,
we have

S(j)(grkW(j)) ={veEHyr|7(t)v= t*v for any t e R* },

where ;1 G, . — Autr (Ho,r) s the jth component of .

(iii) There exists a unique SL(2)-orbit (p, ) in n variables characterized by
the following properties (1) and (2).

(1) The associated weight filtrations W) (1< j <n) are the same as W)
in Section 2.2.2.

(2) The point p(i) is the limit in D of

Y2 Y +1 .
\/yl e “exp Zzyj ) (y; > 0,y5/yj1 — 00 (1<j<n))

(yn+1 means 1), where T is as in (ii).
(iv) The associated torus action p (see [KU2, Section 3.1(4)]) of (p,¢) and
the homomorphism 7 in (ii) are related as follows:

n

T(ty, ...t (H) p(te,. .. tn).

2.2.5.
EXAMPLE 0
Let (N,F) be as follows: N(ez) =e1, N(e1) =0, F=F(z) with z€i-R in
the notation of Section 1.1.1. Then (N, F') generates a nilpotent orbit, and the
associated SL(2)-orbit is the one in Section 2.1.15.

In fact, exp(iyN)F = F(z 4+ iy), and 7(¢) in Theorem 2.2.4(ii) sends e; to
t~%e; and ey to e;. Hence 7(1/\/y) texp(iyN)F = F((z + iy)/y) — F(i) as
y — 0.

2.2.0.

Assume that (N, F) generates a nilpotent orbit in the pure case in Section 2.2.1
for n=1. Let W) = M(N,W) be as in Section 2.2.2. Then (WM F) is a
mixed Hodge structure, and the splitting s(*) of W) given by the SL(2)-orbit
(see Section 2.1.6) associated to (N, F') coincides with the canonical splitting of
WM associated to F (see Section 1.2).

2.2.7.

More generally, for any mixed Hodge structure, its canonical splitting (see Sec-
tion 1.2) is obtained as in Section 2.2.6 by embedding the mixed Hodge structure
into a pure nilpotent orbit.
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In fact, let (M, F') be a mixed Hodge structure on an R-vector space V. Let
k be an integer such that all the weights of (M, F') are not greater than k. It
is shown in [KNU1] that there exist an R-vector space V', an R-linear injective
map ¢q:V — V', a nilpotent endomorphism N of V', and a decreasing filtration
F’ on V{ such that the pair (N, F’) generates a nilpotent orbit on V' in the pure
case of weight k in Section 2.2.1 for n = 1, which satisfy the following conditions.

Let W’ be the trivial weight filtration on V' of weight k, and let W) =
M(N,W’) be as in Section 2.2.2. Then, 0 — (V,M,F) % (v/,w®, r)y 2 (v,
WM [=2], F'(~1)) is an exact sequence of mixed Hodge structures, where [—2]
is the shift by —2 and (—1) is the Tate twist by —1, and the restriction of the
splitting sV of W), given by the SL(2)-orbit associated to (N, F’) on V', to
Ker(NV : ngm — ng(l)[_Q]) ~ gr™ coincides with the canonical splitting of M
on V associated to F.

For the proof, see [KNU1, Section 3].

2.3. SL(2)-orbits in mixed case
Now we consider the mixed version of Section 2.1. Let W be as in the notation.

2.3.1.
For n >0, let D'SL(2) ,, be the set of pairs ((pw, Pw)wez,T), Where (py, ) is an

SL(2)-orbit in n variables for gr!¥" for each w € Z and r is an element of D such
that r(grlV) = ¢, (i) for each w € Z. Here i= (i,...,i) € C" C P1(C)".

Let Dgr,(2),» be the set of all triples ((puw, Pw)wez,T,J), where ((pw, Pw)wez,T) €
Dg1,(2),, and J is a subset of {1,...,n} satisfying the following conditions (1) and
(2). Let

J = {j ‘ 1 <5 <n,there is w € Z such that the jth component

SL(2) — Gr(grl)) of p, is a nontrivial homomorphism }.

(1) fre Dy, J=J".
(2) If r € Dygpi, either J=J' or J=J U{k} for some k < minJ’.

Let
Dsr(2) = |_| DsL(2),n-
n>0

We call an element of Dgy, (2, an SL(2)-orbit in n variables and call an
element of Dgy,(2) an SL(2)-orbit. Note that, in the pure case, J is determined
uniquely by (py)w since D = Dygp.

We call the cardinality of the set J the rank of the SL(2)-orbit.
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Let Dgr,(2),n,4 C Dsi(2),» be the set of all SL(2)-orbits in n variables of rank n.

For an element ((pw,Pw)w,t,J) of Dsr,2)n4, J =1{1,...,n}. Hence, by for-
getting J, the set Dgp,(2),,4 is identified with the subset of D/SL(Q),n (see Sec-
tion 2.3.1) counsisting of all elements ((puw, Yw)w,r) satisfying the following con-
ditions (1) and (2).

(1) If 2 <j <mn, there exists w € Z such that the jth component of p,, is a
nontrivial homomorphism.

(2) If r € Dgp) and n > 1, there exists w € Z such that the first component
of p,, is a nontrivial homomorphism.

As is seen later in Section 2.5, for the construction of the space Dgr(2), it is
sufficient to consider SL(2)-orbits in n variables of rank r with r =n. We call
this type of SL(2)-orbit a nondegenerate SL(2)-orbit of rank n or, for simplicity,
an SL(2)-orbit of rank n, and we regard it as an element of D/SL(Q),n'

On the other hand, the generality of the definition in Section 2.3.2 with the
auxiliary data J is natural in Section 2.4 when we consider the relations with
nilpotent orbits.

2.9.4.
If ((Pw,Pw)w,T,J) is an SL(2)-orbit in n variables of rank r, we have the asso-
ciated SL(2)-orbit ((pl,, ¢i)w,t) in 1 variables of rank r, defined as follows. Let
J={a(l),...,a(r)} with a(1) <--- <a(r). Then

p;u(ga(l)7 s aga('r')) = pw(g17 s 7911)7 @{w(za(l)? ) za(r)) = @w(zla LN} ZTL)

Note that, for any w € Z, p,, factors through the projection SL(2)" — SL(2)”
to the J-component, and ¢,, factors through the projection P'(C)" — P*(C)”
to the J-component, and hence (py,, ¥w)w is essentially the same as (pl,, ¢l )w-

2.8.5. Associated torus action
Assume that we are given an SL(2)-orbit in n variables ((pw, w)w,TsJ).
We define the associated homomorphism of algebraic groups over R,

7: G, r — Autr (Hor, W),

as follows. Let s, : gr'V' = Hy r be the canonical splitting of W associated to r
(see Section 1.2). Then

T(tly"'vtn)zsro (@(Ht]> pw(gla'-'agn) on gI‘Z‘)/) Os;l

weZ j=1

/Tt 0
with gj = < /H’(;:J k HZ ,tk.) .
=J

For 1<j<n,let 7;: Gy r — Autr (Ho r, W) be the jth component of 7.
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REMARK
The induced action of 7(¢) (t € RZ) on D is described as follows. For s(6(F,d)) €
D with s € spl(W), F € D(gr"), 6 € L(F) (see Proposition 1.2.5), we have

7(t)s(0(F,0)) =s"(0(F", "))
with s' = 7(t)sgr™ (7(¢)) 7, F' =gt (7(t))F, §' = Ad(grV (7(1)))0.

2.8.6. Associated family of weight filtrations
In the situation of Section 2.3.5, for 1 < j < n, we define the associated jth
weight filtration W) on Hy r as follows. For k € Z, W,Ej) is the direct sum of
{re Hor|mi(t)x=t'a (Vt e RX)} over all £ <k.

By definition, we have W,Ej) = ez sr(W,gj)(grl"UV))7 and Wéj)(gry) coin-
cides with the kth filter of the jth weight filtration on gr!V associated to the
SL(2)-orbit (py,, ¢w) in n variables.

PROPOSITION 2.3.7

(i) An SL(2)-orbit in n variables ((pw,Pw)w,T,J) is uniquely determined
by (WD (gr™))1<jzn, 1, J).

(ii) An SL(2)-orbit in n variables ((pw,Pw)w,r,J) is uniquely determined
by (1,x,J).

Proof

(i) In the pure case, this is Proposition 2.1.7. The general case is clearly
reduced to the pure case.

(ii) This follows from (i) since the family of weight filtrations
(W@ (gr™'))1<;<n is determined by 7. O

PROPOSITION 2.3.8
Let ((pw, Pw)w,T,J) be an SL(2)-orbit in n variables, and let W) (1<j<n)
be as in Section 2.3.6. Let W) =W,

(i) Let 1<j<mn. Then WU =WU=Y if and only if for any w € Z, the
jth factor SL(2,C) — Gc(gr!V) of pw is the trivial homomorphism.

(i) For0<j<n,let o*(j) = ez o2 (WD (grh)), where o*(W (gr!V))
is the variance (see Section 2.1.11) of the increasing filtration W) (gr?V') on the
R-vector space gr¥V. Then, o%(j) <o?(j') if 0<j<j' <n.

(iii) Let 0<j<mn, 0<j <n. Then, W) = W) if and only if o%(j) =
(7).

Proof
This is also reduced to the pure case, Proposition 2.1.13. (]
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2.3.9.
We describe the kind of SL(2)-orbits of positive rank which exist in Examples I-V.
We consider only an SL(2)-orbit in r variables of rank r; hence, J ={1,...,7} in

the following (see Section 2.3.3).

EXAMPLE |

Any SL(2)-orbit of rank > 0 is of rank 1. An SL(2)-orbit in one variable of rank 1
is ((Pw, Pw)w,T), where p,, is the trivial homomorphism from SL(2) to Gr(gr!)
and ¢,, is the unique map from P!(C) onto the one-point set D(gr!V), and r is
any element of Dy, = C N~ R. We have W@ = W. Later we refer to the case
r=F(i) €D (ie, r=4i€ C=D) as Section 2.3.9, Example L.

EXAMPLE ||

Any SL(2)-orbit of rank > 0 is of rank 1. An SL(2)-orbit in one variable of rank
118 ((pw,Pw)w,T), where (py,, @) is of rank 0 for w# —1, and (p_1,¢_1) is of
rank 1. An example of such an SL(2)-orbit is that (p_1,¢_1) is the SL(2)-orbit
in Section 2.1.15, and r = F'(4, 2) in the notation of Section 1.1.1, Example II.
For this SL(2)-orbit, W) is given by

wh —ocw =w® =Re; c " = Hy .

EXAMPLE IlI
There are three cases for SL(2)-orbits in r variables of rank r > 0. For any of
them, (puw, pw) is of rank 0 unless w = —3.

Case 1: =1 and (p—3,9—3) is of rank 1. An example of such an SL(2)-orbit
is given as follows: (p_3,¢_3) is (p, (1)) of Section 2.1.15 (we identify D(gr'Vy)
with P!(C) via the Tate twist), and r = F(i, 21,7) for z; € C (see Section 1.1.1).
For this SL(2)-orbit,

W —0cw®=wh=Re; cwW =W =W + Rey c WV = Hyg.

Case 2: =1 and (p_3,p—3) is of rank 0. An example of such an SL(2)-orbit is
given as follows: p_s is the trivial homomorphism onto {1}, ¢_3 is the constant
map with value i € h = D(gr";), and r = F (i, 21, 22) with (21, 22) € C2 \ R2. For
this SL(2)-orbit, WM =W.

Case 3: =2 and (p_3,¢—_3) is of rank 1. The homomorphism p_3 : SL(2,C)? —
Geo(gr's) = SL(2,C) factors through the second projection onto SL(2,C), and
¢_3: PY(C)? = D(gr'%) = P!(C) factors through the second projection onto
P!(C). An example of such an SL(2)-orbit is given as follows: p_3(g1,92) = g2,
©_3(p1,p2) = D2, and r = F(i, 21, 22), where (21,22) € C? . R2. For this SL(2)-
orbit, W) =W and W® is the W) in the example in Case 1.
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EXAMPLE IV
There are three cases for SL(2)-orbits in r variables of rank r > 0. For any of
them, (puw,pw) is of rank 0 unless w = —1.

Case 1: r=1 and (p_1,p—1) is of rank 1. An example of such an SL(2)-orbit is
given as follows: (p_1,¢—1) is the standard one (which is identified with (p,¢)
in Section 2.1.15 by the identification of e}, es here with e, ey there), and r =
F(i,21,22,23) for z1,29,23 € C (see Section 1.1.1). For this SL(2)-orbit,

Wﬁlg) =0C W£12) = WEll) =Re; + Rex C Wo(l) =HoRr.

Case 2: =1 and (p—1,-1) is of rank 0. An example of such an SL(2)-orbit
is given as follows: p_; is the trivial homomorphism onto {1}, ¢_; is the con-
stant map with value i € h = D(gr"%)), and r = F(i, 21, 22,23) with Im(z2) #
Im(z)Im(z3) (the last condition says that F'(i,z1,%2,23) € Dygpi). For this
SL(2)-orbit, W) =W

Case 3: r =2 and (p_1,¢_1) is of rank 1. The homomorphism p_; : SL(2,C)? —
Gc(gr")) factors through the second projection onto SL(2,C), and ¢_; :
P!(C)? — D(gr"}) = P'(C) factors through the second projection onto P*(C).
An example of such an SL(2)-orbit is given as follows: p_1(g1,92) = g2, v—1(p1,
p2) = p2, and r = F(i,21,29,23) with Im(z3) # Im(z1)Im(z3). For this SL(2)-
orbit, W) =W and W® is the W) in the example in Case 1.

EXAMPLE V

There are five cases for SL(2)-orbits in r variables of rank r > 0. For any of them,
(pw, pw) is of rank 0 if w ¢ {0,1}.

Case 1 (resp., Case 2): v =1 and (po, o) is of rank 1 (resp., 0), and (p1,p1)
is of rank O (resp., 1). An example of such an SL(2)-orbit is given as follows:
(pospo) (resp., (p1,¢1)) is (Sym?(p),Sym®()(=1)) (resp., (p,o(—1))) for the
standard (p, ) in Section 2.1.15 via a suitable identification, where (—1) means
the Tate twist, and r = F'(4,1, 21, 29, z3) for 21, 22,23 € C. For this SL(2)-orbit,

wh=0cw® =w =Re; c WV =W 4 Re,
c WiV =W + Rey + Res ¢ Wy = Hyr
(resp., Will) =0C Wél) = Wl(l) =Re; + Res + Resz +Rey C Wz(l) =HyRr).
Case 3: r =1, and both (py, o) and (p1,¢1) are of rank 1. An example of such
an SL(2)-orbit is given as follows: pg = Sym?(p), wo = Sym?(p)(—1), p1 = p,
1 = (—1) for the standard (p, ) in Section 2.1.15 via a suitable identification,
and r = F (4,1, 21, 22, z3) for 21, 29,23 € C. For this SL(2)-orbit,
1

W =0cw =w =Re; c WM =W =W 4 Rey + Rey

c WiV = Hyg.
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Case 4 (resp., Case 5): r =2, both (po,p0) and (p1,¢1) are of rank 1, pg :

SL(2,C)? — Ge(grl) factors through the first (resp., second) projection onto
SL(2,C), ¢o : P(C)? — D(gr¥V) factors through the first (resp., second) projec-
tion onto PY(C), p1: SL(2,C)? — Gg(gr}V) factors through the second (resp.,
first) projection onto SL(2,C), and ¢; : P1(C)? — D(grV) factors through the
second (resp., first) projection onto P1(C). An example of such an SL(2)-orbit
is given as follows. For j =1 (resp., 2), po(g1,92) = Sym>(g;), @o(p1,p2) =p; €
P1(C) =~ D(gr}V) (cf. Section 1.1.2), p1(g1,92) = g3—j, ¥1(p1,p2) =p3—;(—1) €
P(C) ~ D(gr}"), and r = F(i,i,21, 2, 23) with 2y, 20,23 € C. For this SL(2)-
orbit, W) is the W) in the example in Case 1 (resp., Case 2) and W® is the
WO in the example in Case 3.

2.4. Nilpotent orbits and SL(2)-orbits in mixed case

2.4.1.

Let Njegr (1<j<n),andlet F € D. We say that (Ny,...,N,, F) generates
a nilpotent orbit if the following conditions (1)—(4) are satisfied.

(1) The R-linear maps N; : Hy r — Ho r are nilpotent for all j, and N; Nj, =
NiN; for all j,k.

(2) fy; >0 (1<j<n), then exp(z:?:1 iy;N;)F € D.

(3) We have N;F? C FP~! for all j and p (Griffiths transversality).

(4) Let J be any subset of {1,...,n}. Then for y; € Rs¢ (j € J), the rel-
ative monodromy filtration M (. ;y;N;, W) (see Section 2.1.11) exists. Fur-
thermore, this filtration is independent of the choice of y; € R~¢.

In the pure case, by Section 2.2.2, (N,..., N,, F) generates a nilpotent orbit
in this sense if and only if it does in the sense of Section 2.2.1.

Let Dyiip,n be the set of all (Ny,...,N,, F) which generate nilpotent orbits.

For (N1,...,Ny, F) € Dyilp,n, we call the map

(21, .-y 2n) — exp(iszj)F
J=1

a nilpotent orbit in n variables.

In the terminology of Kashiwara [K], Dyilp,r, is the set of all (Ny,...,N,, F)
such that (Ho c;We; F,F;Ni,...,N,), with F the complex conjugate of F, is
an infinitesimal mixed Hodge module.

We prove Theorem 2.4.2, Proposition 2.4.3, and Theorem 2.4.5. Theo-
rem 2.4.2(i) was already proved in Theorem 0.5 of our previous article [KNU1].

THEOREM 2.4.2

Let (N1,...,Ny, F) € Dyitpn. For each w € Z, let (pw, pw) be the SL(2)-orbit in
n wvariables for gr¥V associated to (gr’V (Ny),...,erV (N,), F(gr)V)), which gen-
erates a nilpotent orbit for gr'’V (see Section 2.2.3). Let k=min({j|1<j <
n,N; #0}U{n+1}).
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(1) Ify; €Rso and y;/yj+1 — o0 (1 <j<n, y,y1 means 1), the canonical
splitting splW(eXp(z:?Z1 iy;N;)F) of W associated to exp(zgzl iy; N;)F (see
Section 1.2.83) converges in spl(W).

Let s € spl(W) be the limit.

(i) Let 7: G}, g — Autr(Hor,W) be the homomorphism of algebraic
groups defined by

T(t1,...,tn) =80 (@((ﬁtj)wpw(gl,...,gn) on grg/)) os

weZ j=1

where g; is as in Section 2.3.5. Then, as y; >0, y1 =+ =yi, Y;/Yj+1 — 00
(k<j<mn, Yynt1 means 1),

1 n
7(1/y—2,...,1/yn+1) exp(g iyij)F
Y1 Yn —1
j=
converges i D.

Let r1 € D be the limit.
(iii) Let

J'={j|1<j<n, the jth component of p,, is nontrivial for some w € Z}.
Let J=J" =0 ifk=n+1, and let J=J U{k} otherwise. Then

((pwagpw)unrla J) € DSL(Z),n-

(iv) The family of weight filtrations (see Section 2.3.6) and the torus action
(see Section 2.3.5) associated to ((pw,Pw)w,T1,J) coincide with (M(Ny+ -+ +
N;,W))i<j<n and T in (i), respectively.

We prove this theorem later in Section 2.4.8.
By this theorem, we have a map

l/f : Dnilp,n - DSL(Q),TL? (Nla ce 7Nn>F) = ((Pw,%w)w,rl, J)a

(for the notation, see Sections 2.4.1, 2.3.2). For p € Dhip,n, we call ¢(p) €
Dgr,(2),n the SL(2)-orbit associated to p. Note that this definition is slightly dif-
ferent from that in [KNUI, Section 0.2]. Note also that though in the definition
of a nilpotent orbit in Section 2.4.1, the order of Ny,..., N, in (N1,...,N,, F) is
not important, when we consider the SL(2)-orbit associated to (Ni,..., Ny, F),
the order of Ny,...,NN,, becomes essential.

Even when k=1, the r; in Theorem 2.4.2(ii) is not r but exp(eg)r in the
main theorem [KNU1, Theorem 0.5], although the s in Theorem 2.4.2(i) coincides
with sply, (r1) (see Section 1.2.3).

PROPOSITION 2.4.3

Let (N1,..., Ny, F) € Dyitpn, and let W9 = M(Ny + -+ N;,W) for 1<j<n
(cf. Section 2.2.2 in the pure case). Let k=min({j |1<j<n,N; #0}U{n+
1}). Then the following two conditions (1) and (2) are equivalent.
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(1) Foranyk <j<mn, (I/V(j),exp(z:?:H_1 iNl)F) is an R-split mized Hodge
structure.

(2) For any k<j<n and for any y; € Rso (j <1< n), (W(J),exp(27:j+1
ilel)F) s an R-split mized Hodge structure.

We prove this proposition later in Section 2.4.9.

2.4.4.
Let Dyiip,si(2),n C Dhilp,n be the set of all (Ni,..., Ny, F) € Dyijp,n which satisfy
the equivalent conditions in Proposition 2.4.3.

For example, Dyjip s1,(2),1 18 the set of all (N, F) € Dyjip,1 such that N =0 or
(M(N,W),F) is an R-split mixed Hodge structure.

THEOREM 2.4.5

For p=(N1,...,Nu,F) € Dyiipn, let k=min({j |1 <j<n,N; #0}U{n+1}),
and let ¢(p) = (Nl,...,N;@,N,ﬁ_l,...,NnA,F’), where F' = F if k=n+1 and
F' = F(n) otherwise (NjA €gr (k<j<n) and F(n) €D are as in [KNUI,
Sections 10.1-10.2]; we review these objects in Section 2.4.6, Proposition 2.4.7
below).

(i) For p € Daiipon, we have 6(p) € D and $(6(p)) = 6(p).

(ii) We have Dyiip sL(2),n = {P € Duilp,n | ¢(p) =}

(iii) The map v : Dyip,sL(2),n — Dsv2),n 8 injective. This map is described
via Proposition 2.3.7 as follows. For p= (N1,..., Ny, F) € Dyjip s1(2),n, the fam-
ily of weight filtrations associated to 1(p) is given as in Theorem 2.4.2(iv), r1 =
exp(iNy + -+ iNp)F, and J={j|1<j<n,N; #0}. If J={a(l),...,a(r)}
(a(l) <---<a(r)) and if p' denotes (Noq1y,...,No@y), F), (p') coincides with
the SL(2)-orbit in r variables of rank r associated to 1p(p) (see Section 2.3.4).

(iv) In the pure case, the map 1 : Dyiip sL(2),n — DPsr(2),n 15 bijective. The
converse map is giwen by (p,) — (Ni,...,Nyp,©(0)), where N; is the operator
associated to p in Section 2.1.4.

¢ W
(V) The map w : Dnilp,n - DSL(Q),n factors as Dnilp,n - Dnilp,SL(2),n —

Dsi(2),n-
(vi) Assume p= (Ni,...,Np, F') € Dpjip sr(2),n- Let

Y(p) = ((Pwv w)w,T1, J)

(see Theorem 2.4.2), and let (W) <<, be the family of weight filtrations asso-
ciated to 1 (p). Then (W) ry) is a mized Hodge structure for 1 < j <n, and p
is recovered from ¥ (p) by the following (1) and (2).

(1) Let k=min(JU{n+1}). For 1<j<k, Nj=0. For k<j<n,

‘Z:k Ny = sDSWW r1)(s9) "1, where sY) is the sp,-lift (cf. Section 2.4.6;

see Section 2.3.5 for sy, ) of (s9) of (pu,w))w-

(2) If k=n+1, F=r,. Otherwise, (W™ F) is the R-split mized Hodge
structure associated to the mized Hodge structure (W™ ry).
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We prove this theorem later in Section 2.4.10.

The injection % : Dyjip sr(2),n — Dsr(2),» need not be surjective although
it is bijective in the pure case (see Theorem 2.4.5(iv); see also Section 2.4.11,
Example III).

Some readers may prefer to define an SL(2)-orbit as an element of
L, Dhailp,sL(2),n, Dot using Dgr,(2y,,- The reason we use the set Dgy,(2),, is that
the space Dgy,(2y of the classes of SL(2)-orbits defined by using Dg,(2),,, has nice
properties (e.g., Theorem 3.5.15).

We now give preparations for the proofs of Theorem 2.4.2, Proposition 2.4.3,
and Theorem 2.4.5.

2.4.6.

Let (N1,...,Ny, F) € Dyjip,n. In the following, we review an alternative con-
struction of s,7, and r; by a finite number of algebraic steps, not by a limit. In
particular, we review the definition of F(n).

For 0 < j <n, we denote M ( i:l Ny, W) by W), In particular, W(©) =W,

For 0 < j <n, we define an R-split mixed Hodge structure (W(j)7 F(j)) and
the associated splitting s) of W) inductively starting from j =n and ending
at j =0 (see [KNU1, Section 10.1]; in the pure case, see [CKS]). Note that, in the
definition of mixed Hodge structure, we do not assume that the weight filtration
is rational (cf. Section 1.2.8). First, (W) F) is a mixed Hodge structure, as is
proved by Deligne (see [K, Proposition 5.2.1]). Let (W("),F(n)) be the R-split
mixed Hodge structure associated to the mixed Hodge structure (W) F). Then
(W(”*l),exp(iNn)F(n)) is a mixed Hodge structure. Let (W("’l),ﬁ’(n_l)) be
the R-split mixed Hodge structure associated to (W("_l),exp(iNn)F(n)). Then
(W("_2)7eXp(iNn,l)F(n,l)) is a mixed Hodge structure. This process continues.
In this way we define F(j) inductively as the R-split mixed Hodge structure
associated to the mixed Hodge structure (W(j),exp(iNjH)F(jH)) and define
519 to be the splitting of W) associated to 13'(]-). The splitting s in Theorem
2.4.2(i) is nothing but s (see [KNU1, Section 10.1.2]).

Thus we have sU) = splwm(exp(zN]H)F(j_H)) F(j) = sU) ((exp(iNj41) -
F(j+1))(gr ))) (Npy1:=0, F(n+1) :=F). We also have r; :exp(iNk)F(k),
where k=min({j |1 <j <n,N; #0} U{n +1}) (cf. Section 2.4.8).

These s) (0 < j <n) are compatible in the sense that we have a direct sum
decomposition

Hyr = @ H(g?]R, where Hg?] ﬂsm grg‘{()>
9ezn+1

This compatibility is expressed also in the followmg way. Let
Ty - GnL,R - AutR(HO,Rv W) (O S .7 S n)

be the homomorphism of algebraic groups over R characterized as follows. For
ac€R* and w € Z, 7(a) acts on s(j)(gr}j}vm) as the multiplication by a*. Then
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the compatibility of s(7) (0 < j <n) in question is expressed as the fact that
7j(a)7,(b) = 7 (b)7;(a) for any j,k and any a,b € Rs¢. Let

7(a) = HTj((lj) for a = (a;); € RY,.
j=1

This 7 coincides with the 7 in Theorem 2.4.2(ii). Note also that s(7) is the
s-lift of (5U9) of (pu,@w))w; that is, it coincides with the composite gV
D, ng(j)(ng}V) — @, e > Hyr, where the first arrow is the sum of the
splittings sU) on gr!¥ with respect to (pw,@w). In [KNUIL, Section 10.3], we
denoted 7;(y/a)~! for a € Rxg by t9)(a) and 7((y/a;+1/a;);) for a= (a;); € RZ,
(an+1:=1) by t(a).

Any h € gr is decomposed uniquely in the form

h= Y Wl W egn,  WOmEID) cHIE (vo ezt
oczZn+1

PROPOSITION 2.4.7

Let the notation be as above.

(i) Let1<j<n, andlet = (0(k))o<k<n € Z"" (9(k) € Z). Then N =
0 unless 0(k) =—2 for j <k <n.

(ii) Let 1 <j<mn, and define Nj (resp., NjA,
N]m, where 0 ranges over all elements of Z™" ™ such that 0(k) =0 for0 <k <j—1
(resp., for L <k<j—1, resp., fork=j—1). Then

N, = N,

resp., NJ’) to be the sum of

Consequently,
NJA:NJ for2<j<n, NlA:Nl.

(ili) We have N;Ny = NpN; if 1 <j <k <n.

(iv) We have NjNy = Ny N; and NJ-ANkA :N,CANJ-A for all j, k.

(v) Assume 1<j<k<mn. Then (W(k),F(j)) is a mized Hodge structure.
The R-split mized Hodge structure associated to (W(k),ﬁ(j)) 18 (W(k),ﬁ(k)),
(s")"1Nys® and (s®)~1Nys®) belong to Lﬁl’_l(W(k),F(k)(grw(k))) (which
is a subset of EndR(gr‘iV(k)) defined similarly toALﬁl’_l(F) in Section 1.2.1) for
all £ <k, and S(W®, Fjy) = (s®)) 71, Ly Ne)s™.

REMARK 1
Thus (N£,...,N2) is nothing but (Nl,NQ,...,Nn). In [KNU1]J, Proposition
2.4.7(ii) above was not recognized, so we did not unify the notation N ]-A and IV;.

REMARK 2
In the case j >k, Nij = NkNj in Proposition 2.4.7(iii) need not be true. For
example, in Section 1.1.1, Example I1I, if we take IV in Section 2.4.11, Example ITI
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below as N; for 1 < j <n and take F' in Section 2.4.11, Example III, then Ny
sends e; and e3 to zero and ey to eq, so Nle =0, but Nle is not zero for any j.
(On the other hand, in this example, Nj =0 for j > 2, and hence Nle = Nle
is trivially true for j > 2.)

Proof of Proposition 2.4.7
The assertion (i) is explained in [KNU1, Section 10.3]. We give the proofs of the
remaining statements.

Let 1 <j <n. By [KNUI, Section 10.1.4], F(j) =s(¢o({0} x {i}"~7)). Here
s is the splitting of W associated to ry. From this, we have the following.

(1) The filtration F(j) coincides with s (,, F(j)(grw(k))) if0<k<j.

By (1) and by (s9))~1N;s\9) ¢ Lf_{l’_l(W(j),F(j)(ngm)) for 1<k <j, we
have

(2) The endomorphism (5¢))"'Nys¢) and (s¥))"'N{sU) belong to
L HWO) Fy (erW'?)) for 1<k <.

We prove (ii). By (1), we see that
Fij1) = exp(iN)) Fyj,
and since (W(j),ﬁ(j)) is an R-split mixed Hodge structure, we have by (2),
(3) 5(W(j)7p(j71)) - (S(j))—lz(fj{s(j)_

Note that ¢ =0 since § has only (—1, —1)-Hodge component (see Section 1.2.3).
Next, by [KNU1, Proposition 10.4(1)],

Hence by (1) and (2), we have
(4) SWD, Fy_y)) = (s9) " N;s0),

Comparing (3) and (4), we conclude that N; = NJ’

We prove (iii). Since Nj[e] =0 unless A(k —1) = —2 by (i), and since N}, = N},
by (i), N; Ny, (vesp., N N;) is the sum of (N;Ny)l¥ (resp., (NxN;)1?)), where 6
ranges over all elements of Z"! such that (k — 1) = —2. But N;Nj, = Ny Nj;
(iii) follows.

We prove (iv). We may assume j < k. Then, by (i), N; Ny (vesp., Ny N;)
is the sum of (N;jNy)© (resp., (NxN;)1¥), where 6 ranges over all elements of
Z"+1 such that 0(j — 1) = 0. But N;Ny = Ny N; by (iii). The first assertion of
(iv) follows, and hence the second follows.

The rest is (v). Again by [KNUI1, Proposition 10.4(1)], we have ﬁ'(j) =
exp(_; o< iNg)F(k). This implies (v) by the same argument as in the proof of
(ii). O
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2.4.8. Proof of Theorem 2.4.2
The assertion (i) is contained in [KNU1, Theorem 0.5].
We prove (ii). It is clear in the case when k =n+1. When k < n, the proof of
[KNU1, Proposition 10.4(2)] shows (ii), and furthermore, r = exp(iNj +iN{, | +
We prove (iii). We may assume k < n. By the pure case, r1(gr!V) = ¢, (i).
By the calculation of r; in the above proof of (ii) together with [KNU1, Propo-
sition 10.4(1)] and Proposition 2.4.7(ii), we have the following.

CLAIM
ry in Theorem 2.4.2(ii) coincides with exp(iNk)ﬁ‘(k).

If gr'v (Nk) # 0, then by the pure case, k € J’, and hence there is no problem (see
Section 2.3.2). Assume gr'¥ (N) =0. Then W) =W, and hence (W, F(k)) is an
R-split mixed Hodge structure. Since Nj sends the (p,q)-Hodge component of
(W, F(k)) to the (p—1,q — 1)-Hodge component, we have 6(W, exp(iNk)F(k)) =
571 Nys. This shows that if Ny # 0, then r] = exp(iNk)ﬁ'(k) (see the claim above)
belongs to Dygpl (see Section 1.2.7). Hence ((puw,Pw)w:T1,J) € Dspa),n (see
Section 2.3.2).

We prove Theorem 2.4.2(iv). Since s(® in Section 2.4.6 coincides with
sply, (r1) and also with the s in Theorem 2.4.2(i) (by the claim), it is reduced to
the pure case that 7 in Section 2.4.6 coincides with the torus action associated
to ((pwsPw)w,r1,J) in Section 2.3.5 and also with the 7 in Theorem 2.4.2(ii).
This also shows the statement for the associated weight filtrations. O

2.4.9. Proof of Proposition 2.4.3

We may assume k <n. It is enough to show that (1) implies (2). Assume (1).
By Section 2.4.6, we have F{;) = eXp(Z?:jJrl iN;)F for k < j <mn. This gives
F() = F and also (W™, F{;)) = (s("))_l(zl”:j+1 Ny)s™ for k< j<n. Com-
paring this with 5(W(”),F(j)) = (5(”))’1(27:j+1 N;)s™ (k< j <n) obtained in
Proposition 2.4.7(v), we have N; = N; for k < j <n. This implies (2). O

2.4.10. Proof of Theorem 2.4.5

We prove (i). We may assume k <n. We show ¢(p) € Dyip.n by checking condi-
tions (1)—(4) in Section 2.4.1. Condition (1) is satisfied by Proposition 2.4.7(ii)—
(iv). Section 2.4.1(2) is seen by reduction to the pure case. Section 2.4.1(3)
(Griffiths transversality) for N; follows from [KNU1, Proposition 5.7] and Sec-
tion 2.4.1(3) for N; is deduced from it and from (1) in the proof of Proposi-
tion 2.4.7. We show Section 2.4.1(4) (concerning relative monodromy filtration).
By Kashiwara [K, Theorem 4.4.1] and by Proposition 2.4.7(ii), it is sufficient to
show that the relative monodromy filtration exists for Nj (k<j<mn) and for
Ny. For Ni, this is included in the assumption. For Nj (k <j<mn), this is easy
since Nj is of weight zero with respect to s(°). Once ¢(p) € Dhilp,n is verified, it
is easy to see that ¢ o= ¢.
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The assertion (ii) is essentially proved in Section 2.4.9. The assertion (iii) is
proved later. The assertion (iv) is known as the pure case (see [KU2, Section 6]).
The assertion (v) is easy.

We prove (vi). For k <j <n, wehaver; = exp(E{:k z’Nl)F’(j) in the notation
of Section 2.4.6. In particular, we have r1 =exp(>_;_, iN;)F. The assertion (vi)
is deduced from these relations.

We prove (iii). The injectivity follows from (vi).

To prove J ={j|1<j<n,N;#0}, we first show the following.

CLAIM
Fork<j<n, W@ £LWU=Y if and only if N; #0.

Proof

Since N; is of weight zero with respect to sU=1 the Nj is zero if and only if
rIVUV(]fl)(Nj) is zero for any w. The latter condition is equivalent to W) =
w1, O

By this claim, we have the description of J. The remaining parts of (iii) are easy.
This finishes the proof of Theorem 2.4.5. O

2.4.11.
For some examples in Examples I-III, we describe here the map 1) : Dyjip,1 —
Dsr2),1, (N, F) = ((Pw;Pw)w,T1,J), in Theorem 2.4.2, the torus actions 7; :
G.r — Aut(Hor, W) (j =0,1), and nilpotent endomorphisms N and N& (see
Proposition 2.4.7).

EXAMPLE |
Let N(e1) =0, N(ez) =e1, and let F'= F(i). Then (NN, F') generates a nilpotent
orbit. The canonical splitting of W associated to exp(iy1 N)F (y; > 0) sends e}
to ep. From this we have 7(t)e; =t 2ey, 7(t)ez = ez. For t =1/,/y1, we have
limy_o7(t) " texp(iy1 N)F = F(i). Hence the image ((puw,Puw)w,T1,J) of (N, F)
under 1 consists of Section 2.3.9, Example I with J = {1}.

We have W) =W, and 71 = 79 = 7. Hence N:O, NA=N.

EXAMPLE II
We consider the following example (N, F') which generates a nilpotent orbit. Let
N(ez)=e1, N(ej) =0 (j=1,3), and let F'= F(i,ia) with a € R.

By Section 1.2.9, (s1,s2) € R? corresponding to the canonical splitting
splyy (exp(iy1 N)F) is s1 =0, sa = —a/(1 + y1). When y; — o0, (s1,s2) con-
verges to (0,0) in spl(W)=R2. From this, we have 7(t)e; =t 2eq, 7(t)e; =€,
(j =2,3). For t=1/\/y1, we have lim;_o7(t) ' exp(iy1 N)F =ry € D, where
r}:=0, r) := C(ie; +e3) + Ces, r] ! := Hy c. Hence the image ((puw; Pw)wsT1,J)
of (N, F') under v consists of the example in Section 2.3.9, Example IT with z = ia
and J = {1}.
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The torus actions 79, 71 which induce the splittings of the filtrations W,
W@ in Section 1.1.1, Example II, and Section 2.3.9, Example II, respectively,
are as follows: 7mo(t)e; =t te; (j =1,2), 7o(t)es = e3; 71 =7 above. Hence
N=NA=N.

EXAMPLE Il
We consider the following example (N, F) which generates a nilpotent orbit. Let
N(es)=ea, N(e3) =e1, N(e1) =0, and let F = F(i,2,i) with z € C.

By Section 1.2.9, (s1,s2) € R? corresponding to the canonical splitting
sply (exp(iy1 N)F) is s1 = Re(z) +(1/2), s2 = —Im(z)/2(1+y1). When y; — oo,
(s1,82) converges to (Re(z) + (1/2),0) in spl(W) = R?. From this, we have
T(t)er = t7%e1, T(t)ea =t 2ea, T(t)es = ez + (1 — t~*)(Re(z) + (1/2))e1. For
t=1/\/y1, we have limy_o7(¢t) " 'exp(iy1 N)F =r; € D, where r} :=0, r{ :=
C(Re(2)ey +ieg + e3), 7t :=19 + C(iey + ea), r7 2 := Hy.c. Hence the image
((Pw, Yw)wsT1,J) of (N, F) under ¢ consists of the example in Section 2.3.9,
Example ITI, Case 1 with z; = Re(z) and J ={1}.

There is no nilpotent orbit whose associated SL(2)-orbit is in Case 2 or 3 in
Section 2.3.9, Example IIT (cf. the comment after Theorem 2.4.5). (In Examples
I, II, TV, and V, all SL(2)-orbits come from nilpotent orbits.)

In the following, assume Re(z) = —1/2 for simplicity. The torus actions 79,
71 which induce the splittings of the filtrations W, W) in Section 1.1.1, Exam-
ple IIT and in Case 1 of Section 2.3.9, Example III, respectively, are as follows:
To(t)e; =t 3¢; (j=1,2), 7o(t)es = e3; 71 =7 above. Hence N = NI(©=2) js
given by N(es)=e1, N(e;)=0 (j=1,3); N> =N.

2.5. Definition of the set Dgy, (o)

2.5.1.

Two nondegenerate SL(2)-orbits p = ((pw, Pw)w,r) and p' = ((pl,, ¥l )w,r’) in
n variables of rank n (see Section 2.3.3) are said to be equivalent if there is a
t € RY, such that

Dy = Int(gry(T(t))) O Puws o, =grV (T(t) opw  (Yw € Z), r =7(t)r.

Here 7: G}, g — Autr(Ho,r, W) is the torus action associated to ((pw,Pw)w,T)
defined in Section 2.3.5.

Note that this is actually an equivalence relation. We explain this. For ¢t =
(t;); € R%, we write py(t) = pw(g1,--.,gn) in Section 2.3.5. Since gr’’ ((t)) =
(H?=1 ;)" pw(t) for t € RZ (see Section 2.3.5), we have p), = p,, as homomor-
phisms G, g — Gr(gry)) for any w. On the other hand, the splittings of W
associated to r and to r’ = 7(¢)r coincide by the remark in Section 2.3.5. From
these it follows that 7 of p and 7 of p’ coincide. The axioms of equivalence
relations can be now easily checked.

An SL(2)-orbit ((pw,@w)w,r,J) in n variables of rank r and an SL(2)-orbit

((Phy, o)1, J') in n' variables of rank 7’ are said to be equivalent if r =1’
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and their associated SL(2)-orbits in r variables of rank r (see Section 2.3.4) are
equivalent.

The class determines and is determined by the associated set of weight fil-
trations, the associated torus action, and the associated torus orbit; that is, we
have the following.

PROPOSITION 2.5.2
Let p = ((pw, Pw)w,T) be a nondegenerate SL(2)-orbit of rank n.

(i)  The WU of p, the T and the 7 of p (1 < j<m), the canonical splitting
of W associated to r (see Section 1.2.3), and Z =1(RZ,)r depend only on the
equivalence class of p. Here T is the homomorphism in Section 2.3.5 associated
to p. Z is called the torus orbit associated to p.

(i) The equivalence class of p is determined by (WO (gr"))i<j<n, Z),
where Z s as above.

(iii) The equivalence class of p is determined by (1,Z), where 7 and Z are
as above.

Proof
We prove (i). The statement for W) follows from 7(¢)W W) = W) (t € (R*)"),
the statements for 7 and for the splitting were proved in Section 2.5.1, and the
rest is clear.

The statements (ii) and (iii) follow from (i) and from Proposition 2.3.7. O

2.5.8.
Let Dgp2) be the set of all equivalence classes of SL(2)-orbits satisfying the
following condition (C).

Take an SL(2)-orbit ((pw,¥w)w,T,J) in n variables which is a representative
of the class in question.

(C) For each w € Z and for each 1 < j < n, the weight filtration W) (gr!¥)
is rational.

(This condition is independent of the choice of the representative by Proposi-
tion 2.5.2(i).)
As a set, we have

Dgr2) = |_| Dsr2),n
n>0

where Dgp,(2),, is the set of equivalence classes of SL(2)-orbits of rank n (see
Section 2.3.3) with rational associated weight filtrations. We identify Dgr(2)0
with D in the evident way.

Let Dgp,(2),sp1 be the subset of Dg;, o consisting of the classes of ((pw, Yw)w,T)
with r € Dy, (see the notation in Section 0). (The last condition is independent
of the choice of the representative.) Let Dgp,(2) nspt = Dsr(2) ™ Dsr(2),spl-
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2.5.4.
We have a canonical projection

Dsr(2) = Ds i) (gr™) = [ Dsvizy(erhy),
weZ

ClaSS((pw, @w)wv I‘) = (class(pw, @w))w'

Here Dgy,2)(gryy ) is the Dgy, o) for ((Ho N Wy)/(Ho N Wiy—1),(, )w). Note that
in the pure case, the definition of Dg,(y coincides with that of [KU2].

2.5.5.
As in the notation in Section 0, let spl(T¥) be the set of all splittings of W. We
have a canonical map

Dsy,(2) — spl(W)

as class((pw, Pw)w,T) — S, where s denotes the canonical splitting of W associ-
ated to r (see Proposition 2.5.2(i)).

2.5.6.
For p € Dgy,(2), we denote by 7, and Z,, the corresponding 7 and Z, respectively
(see Proposition 2.5.2(iii)).

2.5.7.
Later, in Section 3.2, we define two topologies on the set Dg,(2). Basic properties
of these topologies are the following (see Section 3.2, Theorem 4.1.1).

(i) If p € Dgp2) is the class of (7,,1), then we have, in Dgr,a),
Tp(t)r —p when t € RY tends to 0.

Here n is the rank of p and 0= (0,...,0) € RY,.

(ii) If (Ny,..., Ny, F) generates a nilpotent orbit and if the monodromy fil-
tration of gr!V (N1) + -+ griy (N;) is rational for any w € Z and any 1< j <n,
then we have, in Dgy,(2),

exp(Ziyij)F —p

j=1
when y; > 0,y;/y;+1 — 00 (1 <j <n, yp41 denotes 1), where p denotes the class
of the SL(2)-orbit associated to (Ni,..., Ny, F') by Theorem 2.4.2.

This (ii) is the basic principle that lies in our construction of the topolo-
gies on Dgp,2). Our SL(2)-orbit theorem [KNU1, Theorem 0.5] says roughly
that, when y;/yj41 — 00 (1 <7< n, ypt1 =1), exp(E:?:1 iy; N;)F' is near to

To(\V/Y2/Y1s - - -y \/Yn+1/Yn)r, Where r € Z,,. Hence (i) is natural in view of (ii).
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3. Real analytic structures of Dg,(5)

3.1. Spaces with real analytic structures and log structures with sign

We discuss a category Br of spaces with real analytic structures and its logarith-
mic version, a category Bgr(log). In Section 3.1.11, Proposition 3.1.12 and Sec-
tion 3.1.13, we consider log modifications in Bg(log) associated to cone decom-
positions.

3.1.1. The categories Br, Bg, and Cr
We define three full subcategories

BRCB%{CCR

of the category of local ringed spaces over R.

We first define Bg. An object of By is a local ringed space (S,0g) over
R such that the following holds locally on S. There are n > 0 and a morphism
t: 8 — R of local ringed spaces over R from S to the real analytic manifold R"™
such that ¢ is injective, the topology of S coincides with the one induced from
the topology of R™ via ¢, and the canonical map ¢=!(Ogrn) — Og is surjective.
Here Or« denotes the sheaf of R-valued real analytic functions on R"™, and + ()
denotes the inverse image of a sheaf. Morphisms of By are those of local ringed
spaces over R.

Let Br be the full subcategory of By consisting of all objects for which,
locally on S, we can take ¢ : S — R™ as above such that the kernel of the surjec-
tion t71(ORr») — Og is a finitely generated ideal.

Of course, a real analytic manifold is an object of Br. An example of an
object of Br which often appears in this article is RZ, with the inverse image
of the sheaf of real analytic functions on R™.

For an object (S,0s) of By, we often call Og the sheaf of real analytic
functions of S, although (S, Og) need not be a real analytic space.

We define another category Cr as follows. An object of Cg is a local ringed
space (5,0g) over R such that for any open set U of S and for any n > 0, the
canonical map Mor(U,R™) — Og(U)™, ¢ — (¢;j)i1<j<n, is bijective, where R"
is regarded as a real analytic manifold as usual, Mor(U,R") is the set of all
morphisms in the category of local ringed spaces over R, and ¢; denotes the
pullback of the jth coordinate function of R™ via ¢. Morphisms of Cr are those
of local ringed spaces over R.

It is easily seen that real analytic manifolds, C'*°-manifolds (with the sheaves
of C*°-functions), and any topological spaces with the sheaves of real-valued
continuous functions belong to Cr.

LEMMA 3.1.2
We have

Bi:{ CCr.
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Proof

Let S be an object of By. Let Morg(—, R™) be the sheaf on S of morphisms into
R"™. We prove that the map Morg(—,R"”) — O% is an isomorphism. We first
prove the surjectivity. A local section of OF comes, locally on S, from an element
of Orm (V)™ for some open set V' of R™ and for some morphism S — V. Since
Orn (V)" =Mor(V,R"), a local section of O% comes from Morg(—,R") locally
on S. It remains to prove the injectivity of Morg(—,R") — O%. We prove the
following.

CLAIM
For any s € S, the local ring Og s is Noetherian.

This is reduced to the fact that the local rings of the real analytic manifold R™
are Noetherian. These local rings are the rings of convergent Taylor series. Hence
they are Noetherian.

Now we return to the proof of Lemma 3.1.2. Assume that two morphisms
f,g: S — R" induce the same element (p;); of Og(S)™. The underlying map
S — R"™ of sets induced by f and g are given by s — (¢,(s));, and hence they
coincide. To prove f =g, it is sufficient to prove that for any s € S with
image s’ = f(s) = g(s) € R™ and for any element h of Orn s, the pullbacks
f*(h),g*(h) € Og s coincide. Let m be the maximal ideal of Og , and let m’ be
the maximal ideal of Ogn s. Let r > 1. Then h mod (m’)" is expressed as a poly-
nomial over R in the coordinate functions ¢;R"™. Hence f*(h) = g*(h) mod m".
Since Og ¢ is Noetherian, the canonical map Og s — @T Og,s/m” is injective.
Hence f*(h) =g*(h) in Og. O

PROPOSITION 3.1.3

The category By, has fiber products, and Br, is stable under taking fiber products.
The underlying topological space of a fiber product in By is the fiber product of
the underlying topological spaces. The fiber product in By is also a fiber product
m CR,

Proof
Let S’ — S and S” — S be morphisms in Bg.

Working locally on S, §’, and S”, we may assume that there are injective
morphisms ¢: S —R", /: 8’ - R, /" : §” — R"" such that the topologies of
S, 8", S" are induced from those of R, R", and R"", respectively, and such that
the homomorphisms ¢} (Ogrn) — Og, (') (Ogw) — Ogr, and (V") (Ognr ) —
Qg are surjective. Let I’ and I be the kernels of the last two homomorphisms,
respectively. Let t; (1 <j <n) be the jth coordinate function of R". Working
locally on S/, we may assume that for an open neighborhood U’ of S in R™
there are elements s’ € O(U’) (1 < j <n) such that the restriction of s to S’
coincides with the pullback of ¢; for each j. Similarly, working locally on S”, we
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may assume that for an open neighborhood U” of §” in R, there are elements
s7 € O(U") (1 <j <n) such that the restriction of s} to S” coincides with the
pullback of t; for each j. Let F:=8" x5 8" CV:=U'x U" c R"*+"". Endow
F with the topology as the fiber product, and endow it with the inverse image of

Ov/J with J = (I/Ov +1"0y + (8/1 — S/ll)OV +--+ (8; — S%)Ov>

Here I'Oy + I" Oy denotes the ideal of Oy generated by the inverse images of
I’ and I”. When we regard the diagram S’ — S + S” as the one in Cr by
Lemma 3.1.2, we can show that F' is the fiber product of it in Cr, and hence F'
is the fiber product also in Bg. If S,5’,5” belong to Br, we can assume that I’
and I" are finitely generated. Then the ideal J is finitely generated. ]

We now begin to discuss log structures.

LEMMA 3.1.4
Let (S,0s) be an object of Cr. Let Og ., be the subsheaf of Og consisting

of all local sections whose values are strictly greater than zero. Then {£1} =
05 /05 oo Furthermore, O3 . coincides with the image of Og — Og, f  f?.

Proof
The isomorphisms R~g x {£1} = R* and R~ — Rsg, 7+ 2, of real analytic
manifolds induce isomorphisms of sheaves

O§,>o x {£1} 2 Morg(—,R>o x {£1}) = Morg(—,R*) 2 O,

~ 2
O§,>0 - O§,>O>f = [

respectively. This proves Lemma 3.1.4. O

DEFINITION 3.1.5

For an object S of Cr, a log structure with sign on S is an integral log structure
Mg on S in the sense of Fontaine and Illusie (see [KU3, Section 2.1]) endowed
with a subgroup sheaf Mg"  of ME" satisfying the following three conditions.
Here ME’ D Mg denotes the sheaf of commutative groups {ab™'|a,b € Mg}
associated to the sheaf Mg of commutative monoids.

(1) We have Mg" ;D Og .-

(2) We have 05 /Og (= Mgp/Mgf;O.

(3) Let Ms ~o:= Mg ﬂMégo C MEP. Then the image of Mg ~o in Og under
the structural map Mg — Og of the log structure has values in R>¢ C R at any

points of S.

(We note that (Ms >0)®” = ME" , and thus Mg"_ is recovered from Mg ~o.)

Let Br(log) (resp., Bg (log), resp., Cr(log)) be the category of objects of Br
(resp., By, resp., Cr) endowed with an fs log structure (see [KU3, Section 2.1])
with sign.
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If S is an object of Cr(log) such that the structural map Mg — Og is injective
and also the canonical map from Og to the sheaf of real-valued functions on S
is injective, then for an object S’ of Cr(log), a morphism f: S — S’ in Cr(log)
is determined by its underlying map f of sets. For such S and an object S’ of
Cr(log), and for amap g: S — S’ of sets, we sometimes say that g is a morphism
of Cr(log) if g = f for some morphism f:S — S of Cr(log).

We introduce some terminologies.

A trivial log structure with sign is the log structure Mg = Og with Mg" ;=
05 >0

The inverse image of a log structure with sign is the following. For a mor-
phism S’ — S in Cr and for a log structure Mg with sign on S, the inverse image
Mg, of Mg on S’, which is a log structure with sign on S’, is defined as follows.
As a log structure, Mg is the inverse image of Mg (see [KU3, Section 2.1.3]).
Mg is the subgroup sheaf of Mg generated by O, _, and the inverse image
of Mg,

A chart of an fs log structure with sign is the following. Let S be an object of
Cr(log). A chart of Mg with sign is a pair of an fs monoid S and a homomorphism
h:S8— Mg~ such that h: S — Mg is a chart of the fs log structure Mg (see
[KU3, Section 2.1.5]) and such that Mg~ is generated by Og ., and h(S) as a
sheaf of monoids. A chart of Mg with sign exists locally on S. This is shown by
the fact that Msy>0/(’)§}>0 — Mg/OZ is an isomorphism.

3.1.6. Real toric varieties, real analytic manifolds with corners
As standard examples of objects of Br (log), we have real toric varieties and also
real analytic manifolds with corners.

Let S be an fs monoid. We regard S = Hom(S, RZJ!) as an object of Br (log)
as follows and call it a real toric variety associated to S: g is the sheaf of
real-valued functions on S which belong to Ox|s. Here X = Hom(S,C™t) =
Spec(CIS])an, and Ox denotes the sheaf of complex analytic functions on X;
Mg is the log structure associated to S — Og; Mgr;o is generated by S&P and
0%

For any object T of Cr(log), we have
Mor(T, Hom(S, Rg’glt)) =Hom(S, Mr >0)-

In the case S =N", we have § = R%,. We usually regard R as an object
of Br(log) in this way. - -

A real analytic manifold with corners S is a local ringed space over R which
has an open covering (Uy)x such that for each A, Uy is isomorphic to an open set
of the object RZO)‘) of Br(log) for some n(A\) > 0. The inverse images on Uy of
the fs log structures with sign of RZ(O/\) glue together to an fs log structure with
sign on S canonically. Thus a real analytic manifold with corners is regarded

canonically as an object of Br(log).
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PROPOSITION 3.1.7

The category Bg (log) has fiber products, and Bgr(log) is stable under taking fiber
products. A fiber product in Br(log) is a fiber product in Cr(log). The underlying
object of By (resp., the underlying topological space) of a fiber product S’ x gS" in
Bg (log) coincides with the fiber product in By (resp., fiber product as topological
spaces) if one of the following conditions (1) and (2) is satisfied.

(1) The log structure of S is trivial.
(2) The log structure of S’ coincides with the inverse image of the log struc-
ture of S.

This is a real analytic version of the complex analytic theory about the category
B(log) in [KU3, Section 2.1.10]. The proof is given by the same arguments there.

We next consider toric geometry in Bg (log) and log modifications in Bg (log)
and in Bg(log). These are real analytic versions of those in B(log) (see [KU3,
Section 3.6]).

3.1.8.

Let N be a finitely generated free abelian group whose group law is denoted
additively. A rational fan in Ng := R®z N is a nonempty set X of sharp rational
finitely generated cones in Ny satisfying the following conditions (1) and (2).

(1) If o0 € &, any face of o belongs to 3.
(2) If 0,7 € 3, then o N7 is a face of 0.

Here a finitely generated cone in Ng is a subset of Ng of the form {22:1 a;N; |
a; € Rzo} with Ny,...,N, € Ngr.

A finitely generated cone in g is said to be rational if we can take Ny,...,
N, € Nq :=Q®z N in the above.

A finitely generated cone o in Ng is said to be sharp if o N (—o) ={0}.

For a finitely generated cone o in NR, a face of o is a nonempty subset 7 of
o satisfying the following conditions (3) and (4).

(3) If z,y e 7 and a,b € R>p, then ax +by € 7.
(4) f z,y€o and z+y e, then z,y €.

A face of a finitely generated cone ¢ in Ng is a finitely generated cone in
Ngr. It is rational if ¢ is rational.

3.1.9.
Let N be as in Section 3.1.8, and let X be a rational fan in Ng. Recalling the
definition of the (complex analytic) toric variety toric(X) corresponding to X
(see [0, Section 1.2]; see also [KU3, Section 3.3]), we define a subset [toric|(X)
of toric(X) and a structure of an object of Br(log) on [toric|(X).

Let M = Hom(N,Z), and denote the group law of M multiplicatively.



192 Kato, Nakayama, and Usui

For o € X, let
S(o)={xeM|x: Nr — R sends ¢ to R>¢}.
Then
o={r € Nr|x: Nr — R sends z into R>( for any x € S(0)}.

We have S(0)8P = M, where S(0)8P = {ab™! | a,b € S(0)}.
For o € X, let toric(o) = Spec(C[S(0)])an = Hom(S (o), C™), where C™ult
denotes C regarded as a multiplicative monoid. Then we have an open covering

toric(X) = U toric(o).
ceX
Let

[toric|(X) = U [toric|(o) C toric(X) = U toric(o)
ocy oeD

with [toric|(o) := HOHI(S(O’),RIZHBM)_

Then |toric|(X) has the unique structure of an object of Br (log) whose restriction
to each open subsets |toric|(o) coincides with the one given in Section 3.1.6.

Note that |toric|(2) D Hom(M,R<o) = N ® R~q, which is the restriction of
toric(X) D Hom(M,C*) =N ® C*. As a subset of toric(X), |toric|(X) coincides
with the closure of N ® R+ in toric(X).

There is a canonical bijection between toric(X) (resp., |toric|(X)) and the
set of all pairs (o,h), where 0 € ¥ and h is a homomorphism S(o)* — C*
(resp., S(6)* — Rsg). Here S(0)* denotes the group of invertible elements of
S(0). Indeed, for such a pair (o,h), the corresponding element of toric(o) =
Hom(S(), C™1) (resp., |toric|(c) = Hom(S(o), R24!)) is defined to be the
homomorphism sending 2 € S(0) to h(z) if z € S(¢)* and to zero if x ¢ S(0)*.

3.1.10.
Let ¥ and ¥’ be rational fans in Nr, and assume that the following condition
(1) is satisfied.

(1) For each 7 €X', there is o € X such that 7 C 0.

Then we have a morphism toric(X’) — toric(X) of complex analytic spaces
(resp., a morphism |toric|(X') — |toric|(X) in Br(log)) which induces the mor-
phisms toric(7) — toric(o) (resp., |toric|(T) — |toric|(0)) (1€ X 0 € X, 7 Co)
induced by the inclusion maps 7 C o.

Under condition (1), let ¥’ — X be the map which sends 7 € ¥’ to the small-
est 0 € ¥ with 7 C 0. Then the map toric(X’) — toric(X) (resp., |toric|(X') —
[toric|(2)) sends the point of toric(X’) (resp., |toric|(X)) corresponding to the
pair (1,h') (T € ¥’, h/ is a homomorphism S(7)* — C* (resp., S(7)* — Rsg) to
the point of toric(X) (resp., |toric|(X)) corresponding to the pair (o, h), where o is
the image of 7 under the map ¥’ — 3, and h is the composite of S(o)* — S(7)*
with A'.
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3.1.11.
Let ¥ be a finite rational fan in Ng.

A finite rational subdivision of ¥ is a finite rational fan ¥’ in Ng satisfying
condition 3.1.10(1) and also the following condition (1):

(1) UT:UJ.

For a finite rational subdivision ¥’ of 3, the maps toric(X') — toric(X) and
[toric|(X') — |toric|(X) are proper.

PROPOSITION 3.1.12

Let S be an object of Br(log) (resp., Bg(log)). Let S be an fs monoid, and let
S— MS/(’)§ be a homomorphism which lifts locally on S to a chart S — Mg o
of fs log structure with sign (see Definition 3.1.5). Let ¥ be a finite rational
subdivision of the cone Hom (S, R24). Then we have an object S(X) of Br(log)
(resp., Bg(log)) having the following universal property.

(1) If T is an object of Cr(log) over S, then there is at most one mor-
phism T — S(X) over S. We have a criterion for the existence of such a
morphism: such a morphism exists if and only if, for any t € T and for any
homomorphism h: (Mp/OF)s — N, there exists o € ¥ such that the composite
§— (Mg/OF)s — (Mr/OF); — N (s is the image of t in S) belongs to o.

The map S(X) — S is proper and surjective.

Proof

This S(X) is obtained as follows. By taking N = Hom(S%P,Z) and M = S*P,
define |toric|(X) as in Section 3.1.9. Locally on S, take a lift S — Mg ¢ of
S — Mg /0%, and consider the corresponding morphism S — Hom(S, R2U!) (see
Section 3.1.6). Then S(X) is obtained as the fiber product (see Proposition 3.1.7)
of S — Hom(S,RUU) « |toric|(¥). The universal property is proved similarly
to the complex analytic case (see [KU3, Proposition 3.6.1, Section 3.6.11]). O

The object S(X) is called the log modification of S associated to the subdivision ¥
of the cone Hom(S, R‘"édod). It is the real analytic version of the complex analytic
log modification in the category B(log) in [KU3, Definition 3.6.12].

3.1.15.

We use the notation in Proposition 3.1.12. As a set, the log modification S(X)
is identified with the set of all triples (s,o,h), where s € S, o0 € ¥, and if P(0)
denotes the image of S(o) (see Section 3.1.9 for N = Hom(S8P,Z) and M = S8P)
in (Ms/Og )8 and P'(0) denotes the inverse image of P(o) in Mg" ., then h
is a homomorphism P’(c)* — R, satisfying the following conditions (1) and

(2)-
(1) We have P(0)* N (Mg/O5)s ={1}.
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(2) The restriction of h to Og ., (C P'(0)*) is the evaluation map at s.

This is the real analytic version of the complex analytic theory (see [KU3,
Lemma 3.6.15)).

3.2. Real analytic structures of Dgp ()

3.2.1.

We define two structures on the set Dgr,(2) as an object of Br(log). We denote
Dgy,(2) with these structures by DéL@) and Dé£(2). There is a morphism DéL(2) —
D§£(2) whose underlying map is the identity map of Dgy,2). The log structure
with sign of DéL(Q) coincides with the inverse image (see Definition 3.1.5) of that
of Déi(z)-

In the pure case, these two structures coincide, and the topology of Dgp,(2)
given by these structures coincides with the one defined in [KU2].

DéIL(Q) is proper over spl(W) x Dgp,2)(gr"") (see Theorem 3.5.16). This
shows that our definition of Dgy,(2) in the mixed case provides sufficiently many
points at infinity. This properness is a good property of Déi(z) which DéL(Q)
need not have. On the other hand, DéL(2) is nice for norm estimates (see Propo-
sition 4.2.2), but D] ) need not be.

The sheaf of rings on DéL(Q) is called the sheaf of real analytic functions
(or the real analytic structure) on Dgy, 2y in the first sense, and that on Déi(Q)
is called the sheaf of real analytic functions (or the real analytic structure) on
Dgy,(2) in the second sense. The topology of DéL@) is called the stronger topology
of Ds,(2), and that of Déi(z) is called the weaker topology of Dsy,2). These two
topologies often differ.

In Section 3.2, we characterize the structures of DéL(Z) and Déi(z) as objects
of Br(log) by certain nice properties of them (see Theorem 3.2.10). The exis-
tences of such structures are proved in Sections 3.3 and 3.4.

We define sets W, W, a subset DéL(Q)(\IJ) of Dgp2) for ¥ €W, and a subset
Déi(z)(CD) of Dgp,(9) for ® € W, as follows.

For p € Dgp,(2), let W(p) be the set of weight filtrations associated to p.

By an admissible set of weight filtrations on Hyr we mean a finite set ¥ of
increasing filtrations on Ho r such that ¥ =W(p) for some element p of Dgy,ca).
We denote by W the set of all admissible sets of weight filtrations on Hg gr.

For ¥ € W, we define a subset DéL(z)(\I') of Dgy(2) by

Diy0y(¥) = {p € Dsr2) | W(p) C ¥}.

Note that Dgr,(2) is covered by the subsets DéL(Q)(‘II) for ¥ € W. Furthermore,

Dgr,(2) is covered by the subsets DéL@)(\I/) for U € W with W ¢ ¥ and the
subsets DéL(Q)(\I/)nspl = DéL@)(\II) N Dgp(2),uspt for ¥ € W with W e . As is
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stated in Theorem 3.2.10, these are open coverings of Dgy,(2) for the topology of

DéL(Q)'
For p € Dgr,(2), let

Wi(p) = {W'(e") | W e W(p), W' #W},

where W'(gr'V') is the filtration on gr'V' = @, gr!induced by W'; that is,
W' (gt ) =D, Wi(ery) C D, g -

By an admissible set of weight filtrations on gr'' we mean a finite set ® of
increasing filtrations on gr'¥’ such that ® =)V(p) for some element p of Dgr(2)-
We denote by W the set of all admissible sets of weight filtrations on gr'V.

For ® € W, we define a subset Déi(m((b) of Dgr,2y by

D, 2)(®) = {p € Dsr(2) | W(p) C ®}.
As aset, Dgr,(2) is covered by Dé£(2) (®) (® € W). Asis stated in Theorem 3.2.10,

this is an open covering for the topology of Dé£(2)'
We have a canonical map
wW—W
which sends ¥ € W to W := {W'(gr"V) | W' € U, W' £ W} € W. For ¥ € W, we

have DéL(Q)(‘l/) C Déi(Q)(\I/).

Let ¥ € W. A homomorphism « : Gf’an — Autgr (Hor, W) of algebraic groups
over R is called a splitting of W if it satisfies the following conditions (1) and (2).

(1) The corresponding direct sum decomposition

Hyr=EP s, (X:=2")

HeEX

into eigen R-subspaces S, satisfies

Wi= > S,
neX,u(W’)<w’
for all W' € ¥ and for all w’ € Z.
(2) Forall we Z and all t € Gg’%R, ()", (t) is contained in Ggr(gr!),
where a,, : Gg’%R — Autr (gr!?) is the homomorphism induced by a, and ¢ is the
composite of the multiplication G%’R — G,,,r and the canonical map G, r —

Autgr(gr’V), a — (multiplication by a).

A splitting of ¥ exists: If ¥ is associated to p € Dgy,(2), the torus action 7,
associated to p (see Sections 2.5.6, 2.3.5) is a splitting of ¥. Here and hereafter,
we identify {1,...,n} (n is the rank of p) with ¥ via the bijection j — W),
which is independent of the choice of p by Proposition 2.3.8.

Let ® € W. A homomorphism a: Gy, g — [],, Autr(gr))) of algebraic
groups over R is called a splitting of ® if it satisfies the following conditions
(1) and (2).
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(1) The corresponding direct sum decomposition
gr'V = @ S, (X:=2%
pneX
into eigen R-subspaces S,, satisfies
W{UI - Z S,u
HEX, (W) <w’

for all W’ € ® and for all w’ € Z.

(2) For all w e Z and all t € G}, g, 1(t) “ay(t) is contained in Gr(gr})),

w

where a,, : Gg’l,R — Autgr(gr,, ) is the w-component of «, and ¢ is the composite

of the multiplication G;};%R — Gy, r and the canonical map G, r — Autg (gr!V).
A splitting of @ exists. For p € Dgy2), let 7, be gr'V'(7,) in the case W ¢
W(p), and in the case W € W(p), let 7, be the restriction of gr'V'(r,) to Gg(ﬁ)

which we identify with the part of Gnvx(ﬁ) with the W-component removed. Then
if ® =W(p), 7, is a splitting of ®.

REMARK
Under condition (1), condition (2) is equivalent to the following condition: for
all w € Z, the direct sum decomposition

w
gry = @ Sw,p
nex
corresponding to «,, satisfies

<Sw,uvsw7u’> =0
unless p+ ' = (2w, ..., 2w).

3.2.4.

Let U € W. Assume W ¢ W (resp., W € ¥). If a real analytic map 3: D — RY,
(resp., Dpspi — RY)) satisfies the following (1) for any splitting « of W, then we
call G a distance to V-boundary:

(1) Bla(t)p) =tA(p) (t€RZy, p€ D (resp., Dusp)-

Let ® € W. If a real analytic map 3: D(gr"V') — R2 satisfies the following
(1) for any splitting o of @, then we call 3 a distance to ®-boundary:
(1) Bla(t)p) =tB(p) (teRZy, pe D(gr™)).

The proofs of Propositions 3.2.5-3.2.7 and 3.2.9 are given in Section 3.3.
PROPOSITION 3.2.5

(1) Let ¥ e W. Then a distance to ¥-boundary exists.
(ii) Let ® € W. Then a distance to ®-boundary exists.
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PROPOSITION 3.2.6
(i) Let U € W, let « be a splitting of ¥, and let 8 be a distance to V-boundary.
Assume W ¢ U (resp., W € V), and consider the map

Va,g i D (resp., Dnspl) — RYy x D x spl(W) x H spl(W'(gr™)),

p— (ﬂ(p)7 aB(p) ™ p,sply (p), (Spll‘?[/s’(grw) (p(grw)))W'eIf)-

Here sply,(p) is the canonical splitting of W associated to p in Section 1.2,
and spll‘?vs,(grw)(p(grw)) is the Borel-Serre splitting of W' (gr"V') associated to
p(grt") in Section 2.1.9. Let p € DéL(Q)(\I/) (resp., DéL(z)(\I/)nspl), let J be
the set of weight filtrations associated to p (see Section 2.8.6), let T, : G;;’R —
Autg (Ho,r, W) be the associated torus action (see Sections 2.5.6, 2.3.5), and let
r € D be a point on the torus orbit (see Proposition 2.5.2) associated to p. Then,
when t € RL, tends to 07 in RL,, va (1, (t)r) converges in RY( x D x spl(W) x
Hw,eq,spl(W’(ng)). This limit depends only on p and is independent of the
choice of r.

(i) Let ® € W, let « be a splitting of ®, and let 3 be a distance to ®-boundary.
Consider the map

Vag: D—R2yx D(gr™) x L x spl(W) x H spl(W'),
Wied

p= (Blp(er™ ), aBp(er™ )~ p(er™), Ad(aB(p(er™))) ™ d(p),
splyy (p), (spLiy (p(gr™))wea).-
Here L is in Section 1.2.1 and 0(p) denotes 6 of p. Let p € Déi(Q)(CI)), let J be
the set of weight filtrations associated to p, let 7, : G;), g — Autr(Hor, W) be
the assoctated torus action, and let r € D be a point on the torus orbit associated
to p. Then, when t € R, tends to 07 in RLy, va,p(7p(t)r) converges in RZ x
D(gr"') x L x spl(W) x [TyyrcqsPUW'). This limit depends only on p and is
independent of the choice of r.

We recall the compactified vector space V associated to a weightened finite-
dimensional R-vector space V = @wEZ V. such that V,, =0 unless w < —1.
It is a compact real analytic manifold with boundary. For ¢t € Ry and v =
Y owezVw 0 (v € Vi), let tov =73 t"v,. Then as a set, V is the disjoint
union of V' and the points Oov (v €V \ {0}), where 0o v is the limit point in
V of tov with t € Ryg, t — 0. We have 0ov =007 if and only if v/ =t ow for
some t € Ryy.

Since V is a real analytic manifold with boundary (a special case of a real
analytic manifold with corners), V is regarded as an object of B(log) (see Sec-
tion 3.1.6).

Since L is a finite-dimensional weightened R-vector space of weights < —2,
we have the associated compactified vector space £ D L.
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In Proposition 3.2.6, in both (i) and (ii), we denote the limit of vq g(7,(t)r)
by va,5(p)- )

As we see in Section 3.3.10, in Proposition 3.2.6(ii), the L-component of
Va5(p) belongs to £ (resp., LN\ L) if and only if W & W(p) (resp., W € W(p)).

PROPOSITION 3.2.7
(i) Let ¥ €W, let a be a splitting of ¥, and let 8 be a distance to V-
boundary. Then, in the case W ¢ U (resp., W € ), the map

Va3 : DéL(Q)(\II) (resp.,DéL(Q)(\I!)nspl)

—RY; x D x spl(W) x H spl(W'(gr™))

1S 1njective.
(ii) Let ® € W, let a be a splitting of ®, and let 3 be a distance to ®-
boundary. Then the map

Va3 @ D&, 2)(®) = REy x D(gr"™) x L x spl(W) x H spl(W”)
Wed

18 injective.

3.2.8.

Here, for ¥ € W, we define a structure of an object of Bg(log) on the set
DéL(z)(\I/) (resp., DéL(Q)(\IJ)nSpl) in the case W ¢ W (resp., W € ¥), depending on
choices of a splitting « of ¥ and a distance to ¥-boundary 3. Also, for ® € W,
we define a structure of an object of By (log) on the set Déi(z)(q)) depending on
choices of a splitting « of ® and a distance to ®-boundary S.

Let ¥ € W. Assume W ¢ ¥ (resp., W € ¥). Let A= DéL(z)(\Il) (resp., A=
DéL(z)(\I/)nspl), let B= R‘;O x D x spl(W) x [y cq spl(W'(gr"V)), and regard
B as an object of Bg(log). Define the topology of A to be the one as a subspace
of B in which A is embedded by v, 3 in Proposition 3.2.7(i). We define the sheaf
of real analytic functions on A as follows. For an open set U of A and a function
f:U— R, wesay that f is a real analytic function if and only if, for each p € U,
there are an open neighborhood U’ of p in U, an open neighborhood U" of U’
in B, and a real analytic function g : U” — R such that the restrictions to U’ of
f and g coincide. Then A belongs to Bg. Define the log structure with sign on
A as the inverse image (see Definition 3.1.5) of the log structure with sign of B.

Let ® € W. Let A= D, (®), let B=RZ; x D(gr") x L x spl(W) x
[T cospl(W’'), and regard B as an object of Br(log). Define the topology
of A to be the one as a subspace of B in which A is embedded by v, in
Proposition 3.2.7(ii). We define the sheaf of real analytic functions on A as
follows. For an open set U of A and a function f: U — R, we say that f is a real
analytic function if and only if, for each p € U, there are an open neighborhood
U’ of p in U, an open neighborhood U” of U’ in B, and a real analytic function
g : U” — R such that the restrictions to U’ of f and g coincide. Then A belongs
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to Bg. Define the log structure with sign on A as the inverse image of the log
structure with sign of B.

PROPOSITION 3.2.9

(i) Let ¥ e W. Assume W ¢ U (resp., W € W). Then the structure of
an object of Bg(log) on DéL(2)(\I/) (resp., DéL@)(\I!)nspl) in Section 3.2.8 is
independent of the choices of o and 3.

(ii) Let ® € W. Then the structure of an object of By (log) on Déi(g)(fl)) in
Section 3.2.8 is independent of the choices of o and 3.

The following theorem is proved in Section 3.4.

THEOREM 3.2.10

(i)  There exists a unique structure DéL(Z) of an object of Br (log) on the set
Dgy,(2) having the following property: For any ¥ € W, DéL(Q) (V) and DéL(Q) (¥)nspl
are open in DéL(2)’ and if W ¢ U (resp., W € U), the induced structure on
DéL(Q) (U) (resp., DéL(z)(\I/)nspl) coincides with the structure in Proposition 3.2.9
as objects of By (log).

(ii) There exists a unique structure Déi@) of anibject of Br(log) on the
set Dgr,2) having the following property: for any ® € W, Déi(Q)(q)) 18 open in
Déi(Q), and the induced structure on Dgr(2)(®) coincides with the structure in
Proposition 3.2.9 as objects of By (log).

(iii) The topology of Déi@) s coarser than or equal to that of DéL(Q)’ and
the sheaf of real analytic functions on D§£(2) is contained in the sheaf of real
analytic functions on DéL@). Thus we have a morphism DéL(2) — Déi(z) of
local ringed spaces over R. The log structure with sign on DéL(Z) coincides with
the inverse image of that of Déi@)' Thus we have a morphism DéL@) — Déi(z)
in Br(log) whose underlying map of sets is the identity map of Dsy2y. In the
pure case (i.e., in the case where Wy, = Hyr and Wy,_1 =0 for some w € Z),
the last morphism is an isomorphism, and the topology of Dsy,(2) given by these
structures coincides with the one defined in [KU2].

3.2.11.
In Proposition 3.2.12 below, we give characterizations of the topologies of DéL@)
and Déi(z)' Recall (see [Bn, chapitre 1, section 8, no. 4]) that a topological
space X is said to be regular if it is Hausdorff and if for any point = of X and
any neighborhood U of z there is a closed neighborhood of = contained in U.
Recall (see [Bn, chapitre 1, section 8, no. 5]) that the topology of a regular
topological space X is determined by the restrictions of neighborhoods of each
point to a dense subset X’ of X. Precisely speaking, if T7; and T are topologies
on a set X and if X’ is a subset of X, then T7 and T3 coincide if the following
conditions (1) and (2) are satisfied.
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(1) The space X is regular for T; and also for T, and the subset X’ is dense
in X for T} and also for T5.

(2) Let z € X, and for j =1, 2, let S; be the set {X'NU | U is a neighborhood
of z in X for T;} of subsets of X’. Then S; =Ss.

This condition (2) is equivalent to the following condition (2).

(2") For any = € X and for any directed family (xzx)x of elements of X',
(zx)x converges to x for T if and only if it converges to x for T5.

The topologies of DéL(Q) and that of Déi(z) have the following characteriza-
tions.

PROPOSITION 3.2.12
(i) The topology of DéL@) 1s the unique topology which satisfies the following
conditions (1) and (2).

(1) For any admissible set U of weight filtrations on Ho R, DéL(z)(\Il) (see
Section 3.2.2) is open and regular, and D is dense in it.

(2) For any p € Dsy2y and for any family (px)xen of points of D with a
directed ordered set A, (py)) converges to p in DéL(Z) if and only if the following
(a), (b), and (c.I) are satisfied. Let n be the rank of p (see Sections 2.5.1, 2.3.2—
2.8.8), let ((pw, Pw)w,T) be an SL(2)-orbit in n variables which represents p, let
U =W(p), and let 7: GY, — Autg (Hor,W) be the homomorphism of algebraic
groups associated to p (see Section 2.5.5).

(a)  The canonical splitting of W associated to px converges to the canonical
splitting of W associated to r.

(b) For each 1 < j <n and w € Z, the Borel-Serre splitting
splg,sw(gry)(p,\(gry)) of WO (gx™) at px(gr?’) (see Section 2.1.9) converges
to the Borel-Serre splitting of W) (gr¥V) at r(gr!V).

(cI) Thereis a family (tx)xea of elements of RY such that ty — 0 in RY
and such that 7(ty) " tpy —r. -

(ii) The topology of Déi@) is the unique topology which satisfies the following
conditions (1) and (2).

(1) For any admissible set ® of weight filtrations on gr'V, Déi(g)(fb) (see
Section 8.2.2) is open and reqular, and D is dense in it.

(2) For any p € Dsy,2y and for any family (px)xen of points of D with a
directed ordered set A, (px) converges to p in Dﬁ@) if and only if (a) and (b)
in (i) and the following (c.II) are satisfied. Let n, ((pw,Pw)w,t), ¥, and 7 be as
in (2) of (i). Let ®=W(p)=U.

(c.I) There is a family (tx)rea of elements of R, C RY such that ty — 0
in RZ) C RY, and such that (7(tx)""pa)(gr") — r(gr™) and §((tx)""pa) —

o(r).

The proof of Proposition 3.2.12 is given in Section 3.4.
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3.2.13.

EXAMPLE 0

Consider the pure case Example 0 in Section 1.1.1. Let ¥ = {W'}, where W’ ; =
0CW. ,=W", =Re; C Wy=Hyr. Then we have a splitting o of ¥ defined
by a(t)e; =t 2ey, a(t)es = ez, and we have a distance 3 to ¥-boundary defined
by Bz +iy) =y~ '/? (x+iy€h=D,z,y € R,y >0). Then the map

Va,g: D =R x Dxspl(W),  p— (B(p),aB(p)” "p.sply (p))
is described as

T+ iy — (3/_1/2,E +i,:c) (x,y e R,y >0),
Yy

where we identify spl(W’) with R in the standard way. We can identify DéL(Q) ()
with {x +iy|z,y € R,0 <y < oo} (see Section 3.6.1). The extended map v, g :
DéL(Q)(\II) — R x D x spl(W’') sends x + ico to (0,1, z).

3.3. Proofs of Propositions 3.2.5-3.2.7 and 3.2.9

3.3.1.

Let W be as in Section 3.2.2. For each w € Z, let W(gr!V) be the set of all
admissible sets of weight filtrations on gr!¥. We have a canonical map

W—W(gry),  @—{W(gr))|W e® W (gry)#Wery)}.

This map sends W(p) for p € Dgy,(2) to W(p(grly )).

For ® € W and w € Z, let ®(w) € W(gr!V) be the image of ® under the
above map.

We sometimes denote elements of ® and elements of ®(w) by the small letters
J,k, and so on.

Note that ® is a totally ordered set by Proposition 2.3.8 (for j, k€ ®, j <
k means o%(j) < o2(k)), and {W(gr’¥)} U ®(w) is also a totally ordered set
by Proposition 2.1.13 with respect to o2. (Note that W (gr!V) < j for any j €
®(w).) The canonical map ® — {W(gr!V)} U ®(w), W’ s W'(gr!V), preserves
the ordering.

LEMMA 3.3.2
We use the notation in Section 3.3.1.

(i) For ® € W and w € Z, the map ® — []
(W'(gr™ V) wez, is injective.

By this injection, we identify ® and its image and denote the latter also by P.

(ii) We have the bijection from W onto the set of pairs (®,(®'(w))wez),
where ®(w) is an element of W(grV) for each w € Z and ®' is a subset of
[Toez({W(grll )} U@ (w)) satisfying conditions (1)-(3) below. The bijection
sends ® €W to (P, (®(w))wez)-

wez({(W(egrl )} U e(w)), W —

(1) For each w € Z, the image of the projection ® — {W(gr!V)} U ®'(w),
which we denote by j — j(w), contains &' (w).
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(2) For each j € ®', there is w € Z such that j(w) € {W(gr?)} U &' (w)
belongs to @' (w).

(3) For any j,k € @', one of the following (a), (b) holds.

(a) j(w) < k(w) for all w e Z.

(b) j(w) > k(w) for all we Z.

Proof
The assertion (i) is clear.

We prove (ii). The injectivity of the map ® — (P, (®(w)),,) follows from (i).
We prove the surjectivity. Let (@', (®'(w)),,) be a pair satisfying (1)—(3). For
w € Z, let n(w) be the cardinality of ®'(w), let (pl,,¢l,) be an SL(2)-orbit on
gr’V in n(w) variables of rank n(w) whose associated set of weight filtrations is
@’ (w), and let r(w) € D(gr)’) be a point on the torus orbit associated to (., ¢,).
Take a point r of Dgr,2) such that r(gr") = (r(w))y. Let n be the cardinality
of &', write &' = {¢1,...,¢n} (P1(w) <--- < @y (w) for all w € Z), write &' (w) =
{Pw,1,--- (bw’n(w)} (Pwa << ¢w,n(w))7 and let e, : {1,...,n(w)} = {1,...,n}
be the injection defined by e, (k) = min{j | ¢;(w) = ¢w r}. Let p € Dgy,2y be the
class of the SL(2)-orbit ((puw,¥w)w,r) in n variables of rank n, where

pw(gla s ;gn) = pzu(gew(l)vu : 7gew(n(w)))7

(pU)(Zh B Zn) = w;u(zew(l)v EERE) Zew(n(w)))'
Then the pair (®/,(®’(w)),,) is the image of W(p) € W. O

LEMMA 3.3.3

Let ® €W, and let (®(w))y be the image of ® in [[, W(grlV). Then there
is a bijection between the set of all splittings of ® and the set of all families
(w)wez, where ay, is a splitting of ®(w) for each w. This bijection sends a
splitting o of @ to the following family (y)w. For w € Z, let e, : P(w) — P be
the map defined by e, (k) =min{j € ®|j(gr!V)=k}. Then o, is the composite
Gi(’%) — Gfﬁb’R — Aut(grl), where the first arrow is induced from e, and the
second arrow s given by .

Proof

From a family (cy), of splittings a,, of ®(w), the corresponding splitting «
of ® is recovered as follows. For w € Z, let R(w) = {W(gr?¥)} U ®(w). Let
G%R — Gfl(’;‘i) =G, Rr X Gi(fﬁ) be the homomorphism induced by the map
® — R(w), W'+ W'(gr!V). Then the action of G on gr!¥ by « is defined to
be the composite G;{:L’R — G R X Gi(jfg — Aut(gr!V), where the last arrow is
(£, ) =t oy (). O

LEMMA 3.3.4

Let ® € W. For each w € Z, let B, : D(gr}V) — Rigw) be a distance to ®(w)-
boundary. Let h:Z% — | Z®™W) be an injective homomorphism induced
by the map ® — [],cz({W(grll)} U ®(w)). Then there is a homomorphism
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B :[lyez Z2™) — Z% such that the composite Z® 2, [Tz Z®™ 2,72 is the
identity map, and, for such an h', the composite D(gr"V') — [locz Ri%w) —R2,,
where the first arrow is (By)w and the second arrow is induced by I, is a distance

to ®-boundary.

Proof

Since the cokernel of h is torsion free, there is such an h’. The rest follows from
Lemma 3.3.3. (I
LEMMA 3.3.5

Let W € W, and let ® € W be the image of ¥ under the canonical map W — W
(see Section 3.2.2). Let 3: D(gr") — Rgo be a distance to ®-boundary.

(i) Assume W ¢ U. Then the map
B
D— D(g")5RE ~RY,, z— B(z(e")),

is a distance to W-boundary, where the last isomorphism is induced from the
canonical bijection ¥ — & W' s W' (gr").

(ii) Assume W € W. Let v : Dysp1 — R be a real analytic map such that
Y(a(t)x) = twy(x) for any t € RY and x € Dygp1, where ty denotes the W -
component of t. Then the map

Dyspl = Rag x RE ~RY ) 2 (v(2), Bla(gr™)))

s a distance to V-boundary.
This is proved easily.

3.3.6.
We prove Proposition 3.2.5 (the existence of ()

Proof
Assume first that we are in the pure case. In this case, the existence of 3 is
proved in [KU2, Proposition 4.12].

In fact, there is a mistake in [KU2], for [KU2, Proposition 4.12] does not
hold for a general compatible family of Q-rational increasing filtrations in the
sense of [KU2]. The proof for Proposition 4.12 there assumed the injectivity of
the splitting (denoted v there), but, for a general compatible family, a splitting
is not necessarily injective. On the other hand, for an admissible set of weight
filtrations, any splitting is injective, and for such a family, the proof there is
correct, and hence the conclusion of [KU2], Proposition 4.12 holds.

The existence of a distance to ®-boundary 3 for ® € W follows from the pure
case by Lemma 3.3.4.

We prove the existence of a distance to U-boundary g for ¥ € W. Let ® be
the image ¥ of ¥ in W as in Section 3.2.2.
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If W ¢ ¥, the existence of 3 follows from Lemma 3.3.5(1). Assume W € ¥. It
is sufficient to construct a real analytic map v : Dygp1 — R having the property
stated in Lemma 3.3.5(ii). Fix ¥ = (¥4,)w € D(gr"’) and, for each w < —1, fix a
Kl
nent L, of L:=L(r) (see Section 1.2.1) of weight w. Here K is the isotropy
subgroup of Gr(gr!) at ¥,, which is compact so that there is such a form.
Let f: L—{0} = Rso, f(v):= (Zw<_1(vw,vw);l/w)*l/z, where v,, denotes the
component of v of weight w. For Fe D(gr"V), if g is an element of Ggr(gr")
such that F = gr, then we have an isomorphism Ad(g)~!: £(F) = L. The map
fr: L(F)—{0} — Rsg,v+ f(Ad(g)~'v), is independent of the choice of g. This
is because (¢')"tg € [, K& if g,¢' € Gr(gr"') and gF = ¢g't. Define 7' : Dygpl —
R0 by 7/ (s(8(F,6))) = fr(6). Let a be any splitting of ¥. Then +/(a(t)z) =
(ITyweq tw)y (z) for t € RY and @ € Dygp1, where tyy € R denotes the W'-
component of t. For € Dygp1, define y(z) =v'(z) - [[ e B(z(gr"))y", where
B(x(gr"))w- denotes the W’-component of 3(z(gr'")). Then ~ has the property
stated in Lemma 3.3.5(ii). O

-invariant positive definite symmetric R-bilinear form (, ),, on the compo-

3.8.7.

We start to prove Proposition 3.2.6. The last assertions of (i) and (ii) are clear
once the preceding convergences are shown. We then prove the convergences in
Sections 3.3.7-3.3.12.

Here we prove the following part of Proposition 3.2.6(i).

Let U € W, and assume W ¢ U (resp., W € ), let 5 be a distance to V-
boundary, let p € DéL(z)(\Il) (resp., DéL@)(\II)nspl), and let v € D be a point on
the torus orbit associated to p. Let J be the set of weight filtrations associated
to p. Then B(1,(t)r) (t € RL,) converges in RY, when t tends to 07.

Proof

Take a splitting o of ¥, and let a; : G;]mR — Aut(Ho r) be the restriction of a to
the J-component G;;,R of G%,R' Let Hyor = €D,,,czs S(J,m) be the decompo-
sition associated to o ;. Since both 7, and a7 split J, there is a unique element u
of Gr such that 7, = Int(u)(as) and such that (1—-u)S(J,m) Cc P, ., S(J,m’)
for any m € Z7. We have

B(p(t)r) = B(uas (t)u~"r) = oy (ueu'r) = 1y () B(ugu'r),

where u; = Int(as(t)) "' (u), and ¢ : Ry, — RY is the canonical injective homo-
morphism from the J-component. When ¢ — 07, u; converges to 1, as is easily
seen. Hence ((7,(t)r) converges to 0/B(u"'r) in RY,, where 07 denotes the
element of RY, whose jth component for j € ¥ is 0 if} eJandislifj¢J. O

REMARK

In [KU2, Proposition 4.12], the corresponding statement in the pure case was
treated, but on the second line after the proof of it, the factor corresponding to
07 here is missing.
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3.8.8.
We prove the following part of Proposition 3.2.6(ii).

Let & €W, let 8 be a distance to ®-boundary, let p € Déi(z (®), and let r
be a point on the torus orbit associated to p. Let J be the set of weight filtrations
associated to p. Then B(1,(t)r(gr")) (t € RL,) converges in R>0 when t tends
to 07.

Proof

Let J € W be the image of J, and let Tp be as in Section 3.2.3. Take a splitting
aof @, let ay: G;’:%R — Autr(gr'"V) be the restriction of a to the J-component
G} g of G2 p, and let g™ = @,, .27 S(J,m) be the decomposition associated
to a7. Since both 7, and a7 split J, there is a unique element u of Ggr(gr'V)
such that 7, = Int(u)(a ;) and such that (1 —u)S(J,m)C P S(J,m') for
any m € Z7. We have

B(rp)r(gr™)) = B(uay(ty)u'r(gr™))
= B(az(t)uu " r(gr™)) =17t (uu r(gr')),

where u; = Int(az(t7)) " (u), t7: RL, — R2 is the canonical injective homo-
morphism from the J-component, and t; is the J-component of t. Here we
identify J with J (resp., J~{W?})if W ¢ J (resp., W € J). When t — 07, u; con-
verges to 1 as is easily seen. Hence (3(7,(t)r(gr"")) converges to 07 B(utr(gr')),
where 07 denotes the element of R‘io whose jth component for j € ® is 0 if j € J
and is 1 if j ¢ J. - 0

m/<m

3.8.9.
We prove the following part of Proposition 3.2.6(3).

Let the notation be as in Section 3.3.7, let a be a splitting of ¥V, and let
w: D — D be the map x — af(x) 'z. Then u(ry(t)r) converges in D when
te RZ, tends to 07 in RZ,.

Proof
We have

1(p(t)r) = plucy ()u'r) = p(as(t)ueu™"r) = p(upu™'r) = p(u'r)
when ¢ — 07. O

3.5.10.
We prove the following part of Proposition 3.2.6(ii).

Let the notation be as in Section 3.3.8, let a be a splitting of ©, and let p=
(wisp2) = D — D(ge™) x L be the map =z — (af(x(er™))  z(gr'),
Ad(aB(z(gr™)))~16(x)). Then, u(ry(t)r) converges in D(gr'') x L when t €
RZ, tends to 07 in RZ,,.
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Proof
This p1 factors through the projection D — D(gr'') and

p1 (mp(t)r) = g (ua s (¢ )™ e(gr™)) = p (s (t)ueu™ r(gr™))
= i (we(™)) — (e (@™))
when t — 07. Assume W ¢ J, and identify J and J via the canonical bijection.
Then
pa (p(t)r) = (AdaB(7(Hr(zr™))) ™ Ad(7,(1))d(r)
= Ad(af(uur(gr™))) ™ Ad(uu)é(r)
— Ad(aﬁ(u‘lr(grw)))_l Ad(u1)d(r)

when ¢ — 07. Next, assume W € J and identify J ~ {W} with J via the canon-
ical bijection. For t € R, write t = (¢,t;), where ¢ € R~( denotes the W-
component of ¢ and ¢; denotes the J-component of ¢. Then

p2 (mp(B)r) = Ad(af(7,(Dr(er™)) ™ (¢ 0 Ad(7,(1))d(r))
= ¢ o Ad(aB(uu " r(gr™ ) T Ad(ugu)d(r)
— 00 Ad(aB(u'r(gr"))) P Ad(uHd(r)

when t — 07. Here, for t € R+ and 6 = Zw§72 0w € L, we write tod = t"d,,
and 0o ¢ =lim;_,gtod in L. (|

3.8.11.

Since the convergences of the canonical splittings are trivial (cf. Sections 2.4.6,
2.5.5), to prove Proposition 3.2.6, the rest is the convergences of Borel-Serre
splittings. To see the latter, we may and do assume that we are in the pure case.

Let ¥ be an admissible set of weight filtrations, and let W’ € ¥. Fix an
SL(2)-orbit g whose associated set of weight filtrations is ¥. Let X =ZY, and
let gr = B,,c x 9r,m be the direct sum decomposition, where ¢t € (R*)¥ acts
via 7, on gr,m as the multiplication by ¢™.

In this paragraph, we prove the following.

Let r be a point on the torus orbit associated to q. Let J be a subset of ¥,
and let 75 be the restriction of T4 to the J-component G;{%R of G%,R. Let h € gr
be an element whose m-component is zero (m € X ) unless m(j) <0 for all j € J.
Then there are an open neighborhood U of 07 in Rio and real analytic maps
fi:U—Gwr and fa: U— K, such that Int(7;(t)) " (exp(h)) = f1(t) fa(t) for
any t e UNRL,, and, furthermore, Int(7;(t))(f1(t)) extends to a real analytic
map on U.

To prove this, first, we take an R-subspace V of ggr satisfying the following

(1)-(3).

(1) We have gr =V @ Lie(K,).
(2) The vector space V is the sum of Vi, :=V N (gr,m +9R,—m) for m € X.
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(3) We have Lie(Gw' r) CV C Lie(Gw' Rr).

Then there exist an open neighborhood O of zero in gr and a real analytic
function a = (a1, az2) : O — V @ Lie(K,) having the following properties (4)—(7).

(4) For any x € O, exp(z) = exp(a1(z)) exp(az(x)).

(5) We have a(0) = (0,0).

(6) The map exp: O — GRr is an injective open map.

(7) For kK =1,2, a; has the form of absolutely convergent series ay =
Z:io ay,r, where ay, is the part of degree r in the Taylor expansion of aj
at zero, such that ay ,(v) =g, (z®--- @ x) for some linear map I, : g%’” — gR
having the following property: If my,...,m, € X and z; € gr,m, for 1 <j <r,
then lp, (21 ®@ - - @) € Zm OR,m, Where m ranges over all elements of X sat-
isfying |m| < |mq|+---+|m,|. Here | |:ZY —NY is the map sending (m(j)),
to (Im(j));-

This is proved similarly as [KU3, Lemma 10.3.4]. Or, if we choose V such
that V = Lie(p(R%)) @ L for some L as in [KU3, Section 10.1.2] (such a choice
is always possible), this is seen by [KU3, Lemma 10.3.4] just by taking a;(z) =
H(f1(x), f2(x)), az(x) = f3(x), where H(z,y) =x+y+(1/2)[z,y]+--- is a Haus-
dorff series.

Now consider the decomposition h =73 hy (hm € gr,m). By assump-
tion, Ay, = Ounlessm(j) < Oforanyj € J. Then Ad(7;(t)) " (k) =3, cx t ™™ hm,
(t e Rio) extends to a real analytic map g: RZ, — gr sending 0/ to zero,
where my € Z” is the J-component of m. Let U = g 40), f; =expoajoyg
(j=1,2). It is enough to show that Ad(7,(t))(a1(g(t))) extends to a real ana-
lytic map around zero. This is a consequence of the property (7) of a;. In fact,
in the notation in (7), a1(g(¢)) = a1 (3.t~ h,,) is the infinite formal sum of
t=(m)att )DL (B, @ @ By, ) (M € X, iy, € gRm, (1< j <7)). Since
the weights m of I3 (R, ® -+ @ huy,.) satisfy |m| < |mq|+---+|m,|, we conclude
that Ad(7,(t))(a1(g(t))) extends to a real analytic map over 0/, as desired.

3.3.12.
We continue to assume that we are in the pure situation.

Let ¥ be an admissible set of weight filtrations, and let W/ € ¥. We prove
the following, which completes the proof of Proposition 3.2.6.

Let p € Dgr,2)(V), and let v be a point on the torus orbit associated to p. Let
J be the set of weight filtrations associated to p. Then splhy (1,(t)r) (t € RZ,)
converges in spl(W’) when t tends to 07.

REMARK 1

The proof is easy when W' € J (Borel-Serre splitting is then constant on the
torus orbit) but is not when W’ ¢ J (see Remark 3 after the proof).
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Proof
Since ¥ is admissible, ¥ is the set of weight filtrations associated to some
q € Dg(2)- Let ry be a point on the torus orbit associated to g. Then, by
[KU3, Section 6.4.4, Claim 1], there exist v € G;r and k € K,  such that
Tp = Int(v)(74,y) and r = vkr,. Here Gyr ={g € Gr | gW" =W" for any
W" e J}, and 74, denotes the restriction of 7, to the J-component G;, g of
G} R

Let Gr(J) be the R-algebraic subgroup of G ;g consisting of all elements
of Gr which commute with any element of 7, ;(G;, g). Then we have the
projection Gyr — Gr(J),a— a(J), where a(J) on S(J,m) (m € Z”) (see Sec-
tion 3.3.7) is defined to be the (S(J,m) — S(J,m))-component of a: S(J,m) —
D, <., S(J,m'). The composite Gr(J) — G sr — Gr(J) is the identity map.
Since Gr(.J) is reductive, any element of Gr(.J) is expressed in the form be, where
be Gr(J)NGw r and c € Gr(J)N K, . Write the image of v in Gr(J) as bc by
using such b and ¢. Then v = buv,c with v, € Gy g satisfying (v, — 1)S(J,m) C
@D, <m S(J,;m) for any m € Z7. We have Int(ry, ;(t))""(v,) — 1 when ¢t — 07/
in Rio. Hence, by Section 3.3.11, there are an open neighborhood U of 07
in RZO and real analytic maps b, : U — Gy r and ¢, : U — K., such that
Int (7, () (vy) = Int(7q. s (£)) " (by(t))eu(t) for any t € U N RZ,. We have, for
teUNRI,,

7o ()T = 07y s (£)krg = bby (£)74 5 (t) .y (t)chiry,
and hence
spliy (7,(t)r) = Int (b, (t)) It (74,7 () (splip (cu () ckry))
= Int (b, (t)) Int (74,7()) (splip (rq)) = Int (bby (1)) (spliy ()
— Int (b, (07)) (spliy (rq))- O

REMARK 2
In the above proof, spl%,s,(rq) coincides with the splitting of W’ associated to g.

REMARK 3
In the case W' € .J, splh (7, (t)r) constantly coincides with Int(v)splh (r,) with
v as in the above proof.

3.3.13. Proof of Proposition 8.2.7 (injectivity of Va,s)
Recall that a point of Dgy,(2) is determined by the associated weight filtrations
and the associated torus orbit (see Proposition 2.5.2(ii)).

First, let ¥ € W. Assume W ¢ U (resp., W € ¥). We prove that the map

Va,p DéL(z)(‘I’) (reSPwDéL(z)(‘I’)nSpl)

—RYy x D x spl(W) x H spl(W'(gr™))
W' ew



Classifying spaces of degenerating mixed Hodge structures, Il 209

is injective. Denote v, g(p) by (ﬂ(p),u(p),splw(p), (SplBWS/(ng)(p(grw)))wfe\l/).
(Note that the symbol p was introduced in Section 3.3.9.)

Let p € DSL(Q)( ) (resp., DéL(z)(\Il)nspl). Then the set J C ¥ of weight
filtrations associated to p is recovered from ((p) as

J={je¥|B);=0}
Let a; be the restriction of a to the J-component G;) g of G} g. Since both
gtV (7,) and gr'(avy) split W' (gr"') for all W’ € J, there is a unique element u of
Gr(gr'") such that gr'V'(7,) = Int(u)(gr'V (as)) and such that (1 —u)S(J,m) C
@D, <m S(J,m’) for any m € Z7 (cf. Section 3.3.8). This u is characterized by
the following property (1).

(1) For any W' e J, u™? splg/s/(ng)(p(ng)) coincides with the splitting of
W' (gr") defined by the W’'-component of a.

The torus orbit associated to p is recovered as

{sply ()8 (wer™ (a(t)) (u(p)(er™), Ad(ua(t))(8(u(p)))) | t € Ry, B(p) = 071}
Next, let ® € W. We prove that the map
Va5 : D&lay(®) = REg x D(gr™) x Lxspl(W) x ] spl(W’
Wed

is injective. Denote v, g(p) by

(B(p(er™)), u(p(er™ ), sply (p), (spIi (™)) wres)-
Let p € Déim)((l)). Let J be the set of weight filtrations associated to p. Let
J={W'(gt") | W' e J W' £ W} C ®. Then J is recovered from 3(p(gr'V)) as

J= {je@ | ﬁ(p(grw))j :O}.

Let u(p(gr™)) = (x,y) with z € D(gr"') and y € £ (see Section 3.3.10). If y € L,
J is the lifting of J on Hor by sply, (p). If y € L~ L, J is the union of {W}
and the lifting of J on Howr by sply (p).

Let a be the restriction of « to the J-component GZ%R of GS;,R' Since
both %p and o split all W’ € J, there is a unique element u of GR(gr ) such
that gr'V(7,) = Int(u)(cs) and such that (1 —u)S(J,m) C P S(J,m’) for
any m € Z7. This u is characterized by the following property (1).

m’/<m

(1) For any W’ e J, u'splbs (p(gr'’)) coincides with the splitting of W’
defined by the W’-component of a.

If W ¢ J (note that y € L in this case), the torus orbit associated to p is
recovered as
{5l ()0 (uar(t)(2), Ad(ua(t))(y)) | t € RZ,, B(p) = 07t}

If W e J, y has the shape 0o z with z € £ \ {0} (see Section 3.3.10), and the
torus orbit associated to p is recovered as

{sply ()0 (uar(t)(z), ' o Ad(ua(t))(2)) | t € RZ, B(p) = 07t,t' € Rso}.
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Proposition 3.2.7 is proved. ]

3.83.14. Proof of Proposition 3.2.9
The proofs of (i) and (ii) are similar. We give here the proof of (ii).

To prove that another choice (¢, 3") gives the same structure as («, 3), we
may assume either a =ao’ or = ".

Assume first @« = o’. Then we have a commutative diagram in which the
right vertical arrow is a morphism of Bg (log):

by va, =
Déi(g)(q’) = Rio x D(gr") x L (t,y,0)
[ ) l l
DI (@) =2 RE < D(ee) x £ (¢8'(y), o' (y) "'y, Ad(aB' () 13)

Assume 3= (#’. Then o =Int(u)a for some v € Gg such that (u—1)W, C W/ _,
for any W’ € ® and for any w € Z. For t € R?, let u; = a(t) ‘ua(t). Then
as is easily seen, the map R‘EO — GR,t— u, extends to a real analytic map
Rgo — G, which we still denote by ¢+ u;. We have a commutative diagram
in which the right vertical arrow is a morphism in Br(log):

by va, r
Dé{,@) ((I)) TNN RgO X D(gI'W) x L (tay76)
[ ! X
Déi(z) (@) Llete, RE, x D(gr") x L (t, uuy My, Ad(uuy )0)

These commutative diagrams prove Proposition 3.2.9(ii). ]

3.4. Local properties of Dgy,(7)
In this subsection, we prove Theorem 3.2.10 and Proposition 3.2.12; give local
descriptions of DéL(Z) and Déi(Q) (Theorems 3.4.4, 3.4.6), and prove a criterion

(Proposition 3.4.29) for the coincidence of DéL(Z) and Dé£(2).

9.4.1.
Let p € Dgp(2), let @ =W(p) (see Section 3.2.2), let r be a point on the torus
orbit associated to p, and let ¥ =r(gr'V). Fix R-subspaces

RC gR(ng), S C Lie(K%)

satisfying the following conditions (a), (b), and (c). Here Ky =]][,, K&, with
K3, the maximal compact subgroup of Gr(gr!) corresponding to T,, (see [KU3,
Section 5.1.2]), where we write T = (T, ). as in Section 3.3.6. Note that Kz, D
K for all w.

(a) We have gr(gr'V') = R @ Lie(p(R2,)) & Lie(Kz).
Here p is the homomorphism G i — Gr(gr") defined by

_ , 1/ 1Tzt 0
p(tl,...,tn):@(pw(gl,...,gn) on grz}v) with g; = ( /iyt ),

n
weZ 0 Hk:j b
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where n is the number of the elements of ® and ((puw, Pw)w,r) is the SL(2)-orbit
in n variables of rank n with class p (cf. Section 2.3.5).
(b) We have Lie(Ky) = S @ Lie(K}), where Ki =[], Ki  (cf. Section 3.3.6).
We introduce the notation to state condition (c). Let

= @ gR(ng)m

mezZ®

be the direct decomposition associated to the adjoint action of G2 mR Vvia p.
Note that this action coincides with the adjoint action of G%R via 7T, (see
Section 3.2.3). Thus

or(gr" ) = {z € gr(g ‘ Ad(7,(t))z =t"z for all t € (R*)®}.
Condition (c) is the following.

(c) We have R=3" 7s RN (gr(gr")m + gr (g™ )—m).

Such R and S exist. The proof of the existence for the pure case is in [KU3,
Section 10.1.2], and the general case is similar to it. We remark that when we
are given a parabolic subgroup P of Ggr(gr'V), we can take R C Lie(P).

3.4.2.
Let the notation be as in Section 3.4.1. We define objects Y!/(p,r,S) and
Y (p,r,R,S) of Br(log).

Let L= L(T) (see Section 1.2.1).

We define sets Z(p) and Z(p, R). Let

Z(p) CREy x gr(gr") x gr(gr") x gr(gr")

be the set of all (¢, f,g,h) satisfying the following conditions (1) and (2). Let
J=J({t)={je®|t; =0}.

(1) For m € Z®, g,, = 0 unless m(j) =0 for all j € J, f,, =0 unless m(j) <0
for all j € J, and h,, =0 unless m(j) >0 for all j € J.

Here ()., for m € Z® denotes the m-component for the adjoint action of
G;{;’R under 7.

(2) Let ¢’ be any element of RZ, such that tj =t; for any j e ®~ J. If
m € Z® and m(j) =0 for any j € J, then g, = Ad(7,(¢')) " (fmn) and g, =
Ad(7(#)) (o)

Let

Z(p,R) C Z(p)

be the subset consisting of all elements (¢, f, g, h) satisfying the following condi-
tion (3).
(3) We have g € R and f,, +h_,, € R for all m € Z%.
Let
Y (p,x,8) C Z(p) x S x L X gr.u

(vesp., Y (p,v,R,S) C Z(p,R) x S x L X gRr.u)
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be the set consisting of all elements (¢, f,g,h,k,0,u) ((¢, f,g,h) € Z(p) (resp.,
Z(p,R)), k€ 5,6 € L,u € gr..,) satisfying the following condition (4).

(4) We have exp(k)f € (Kz N Gr(gr"),) - T with J = J(¢), where
Gr(gr")s={9€ Gr(egr") | gW' =W’ for any W' € J}.

We endow Y (p,r,S) (resp., Y (p,r,R,S)) with the following structure as
an object of Br(log).

Let E=R2, x gr(gr") x gr(gr') x gr(gr') x S x L x gry. Let A=
Y (p,r,S) (resp., A=Y (p,r,R,S)).

We endow A with the topology as a subspace of E.

We define the sheaf of real analytic functions on A as follows. For an open set
U of A and for a map f:U — R, we say that f is real analytic if and only if, for
any p € U, there are an open neighborhood U’ of p in U, an open neighborhood
U” of U’ in E, and a real analytic function g on U”, such that the restrictions
to U’ of f and g coincide.

We show that with this sheaf of rings over R, A is an object of Br. Let Op
be the sheaf of real analytic functions on E. Let I be the ideal of O generated by
the following sections a,,; and by, ; given for elements m of Z® and for R-linear
maps [ : gr(gr’) — R:

amatt frg ks = (T "N - TT 69 )om),

JEL,m(5)<0 JEL,m(4)20
bualt S hksw) =TT 6" Nga) = (- TT 49 )itm).
JjEP,m(5)<0 JjEP,m(j)20

Here (), denotes the mth component with respect to the adjoint action of G%R
by 7p, [1;e®,m(j)<o means the product over all j € ® such that m(j) <0, and
Hjeb,m(j)zo is defined in a similar way. Then I is a finitely generated ideal.
Indeed, if [,...,1, form a basis of the dual R-vector space of ggr (gr""), am,1; and
bm,, (1<j<r) such that gr(gr'"), #0 (there are only finitely many such m)
generate I. Furthermore, the inverse image of O /I on Y (p,r, S) coincides with
the sheaf of real analytic functions on Y (p,r,S). Hence Y/ (p,r,S) is an object
of Br. Let I’ be the ideal of O generated by I and by the following sections ¢;
and d,,,; given for elements m of Z® and R-linear maps [ : gr(gr'”) — R which
kill R:

Cl(t,f,g7h,]€,(5,u) - l(g)7
dm;l(t7fagahak76?u> = l(f’m + h,m)

As is easily seen, I’ is a finitely generated ideal. Furthermore, the inverse image
of Og/I' on Y (p,r, R, S) coincides with the sheaf of real analytic functions on
Y™ (p,r,R,S). Hence Y (p,r,R,S) is also an object of Br.

We define the log structures with sign of Y (p,r,S) and of Y/ (p,r, R, S)
to be the inverse images of the log structure with sign of R2,. This endows
Y (p,r,S) and Y (p,r, R, S) with structures of objects of BRi(log).
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3.4.3.
Define an open subset Y (p,r, ) of Y (p,r,S) by

YOH(p,r,S) = {(t,f,g,h,k,é,u) e YH(p,r,S) | te Rio,é € L}.
We define an open subset Y (p,r, R, S) of Y!I(p,r,R,S) by
Y (p,r,R,S) =Y (p,r,R,S)NY{ (p,r,8S).
We have isomorphisms of real analytic manifolds
i (p,r,8) = Ry x gr(gt") x 8 % L X gr.u,
YOH(p,r,R,S) :’Rio XRxSXLXgRru,
given by
(t, fyg,h,k,6,u)— (t,g,k,0,u),
whose inverse maps are given by
f=Ad(FHM) ). h=Ad(0) (9).
We have a morphism of real analytic manifolds
ng,lr,s : YOH (p,r,S)— D, (t, f,g,h,k,6,u)— exp(u)srﬁ(df,Ad(d)é)

with s, =sply,(r), d =7, (t) exp(g) exp(k) = exp(f)7Tp(t) exp(k).
Let

”zl;{r,R,s : Yy (p,r,R,S) — D

be the induced morphism.

THEOREM 3.4.4

Let the notation be as above. If U is a sufficiently small open neighborhood of
0:=(0,0,0,0) in gr(gr™") x gr(gr") x gr(gr") x S and if Y (p,r,S,U) (resp.,
Y (p,x,R,S,U)) denotes the open set of Y (p,r,S) (resp., Y (p,r,R,S)) con-
sisting of all elements (t, f,g,h,k,0,u) such that (f,g,h,k) € U, we have the
following.

(i) There is a unique morphism Y (p,r,S,U) — Déi@)((b) in the category
Bi (log) whose restriction to Y{! (p,r,S,U) =Y{! (p,r,S) N Y (p,x,S,U) coin-
cides with the restriction of ”;{r,s (Section 3.4.3).

(ii) The restriction of the morphism in (i) induces an open immersion

Y (p,r,R,S,U)— Déim)((l)) in the category Bg (log) which sends (0%,0,0,0,0,
§(r),0) e Y (p,x,R,S,U) to p.

The proof of this theorem is given later in Sections 3.4.18-3.4.19.

REMARK

From the proof of Theorem 3.4.4 given below, we see that if ¢ is the image of
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(t, f,9,h,k,6,u) € Y (p,r,S,U) in Dgr,2)(®), then g € Dgr,(2)sp1 if and only if
§=0,and W € W(q) if and only if § € L\ L.

9.4.5.
Next, we consider DéL(Q)'

Let U =W(p). Let ®,r, R, S be as before in Section 3.4.1.

We define an object Y (p,r,R,S) of Br(log) first in the case W ¢ W(p).
Let

(%) Yi(p,r,R,S)cY"(p,r,R,S) % gr,u

be the set consisting of all elements (t,f,g,h,k,d,u,v) ((t, f,g,hk,6,u) €
Y (p,r,R,S), v € gr.u) satisfying the following conditions (5)—(7). Via the
bijection ¥ — ®, we regard 7, as a homomorphism Gy, g — Aut(Hor,W). Let
0R.u = P,,cze 9R,um be the corresponding direct sum decomposition. Denote
by u,, the m-component of u € ggr .

(5) For m € Z%, u,, =0 unless m(j) <0 for all j € J = J(t), and v,, = 0
unless m(j) =0 for all j € J.

(6) Let ¢’ be any element of R, such that th=t; for any je€ &~ J. If
m € Z* and m(j) =0 for any j € J, then v, = Ad(7,(t')) ™! ().

(7) We have 6 € L in L.

We endow Y!(p,r,R,S) with a structure of an object of Br(log) via the
injection Y!(p,r,R,S) — E X gr.u, just as we endowed Y (p,r, R,S) with it
via the injection Y (p,r, R, S) < E in Section 3.4.2.

Next, in the case W € W(p), we define an object Y (p,r, R, S) of Bgr(log)
by fixing a closed real analytic subspace L") of L~ {0} such that R~ x L —
L~ {0}, (a,z) — aox, is an isomorphism of real analytic manifolds. Via the
evident bijection between ¥ and the disjoint union of {W} and ®, we regard 7,
as a homomorphism G, r X Gy, g — Aut(Hor, W). Let

(*) Yl(pa I',R,S) C RZO X YH(p»I'»R, S) X gR,u

be the set consisting of all elements (to,t, f,g,h, k,d,u,v) (to € R>o, (¢, f,9,h, k,
S,u) €Y (p,r,R,S), v € gr.) satisfying the following conditions (5')—(7').

(5') Condition (5) holds, and furthermore, in the case ty = 0, we have
exp(v)sy = Sp.

(6") Let t’ be any element of R? ) such that th=t;forany j€ ®~J. Let m €
Z%, and assume m(j) = 0 for any j € J. If tg # 0, then vy, = Ad(7,(to, ")) ™ ().
If to =0, then vy, = Ad(7,(1,¢)) ™ (um).

(7") We have 6 € L),

We endow Y(p,r,R,S) with a structure of an object in Bgr(log) via the
injection Y/ (p,r,R,S) — R>q X B X gR u-

We define a canonical morphism Y/ (p,r, R,S) — Y (p,r,R,S). In the case
W ¢ W(p), it is just the canonical projection. In the case W € W(p), it is
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the morphism (to,t', f,g,h, k,d,u,v) — (', f,g,h,k,tg 0 6,u). In both cases, this
morphism is injective.

Define an open subset Yy (p,r, R,S) of YI(p,r, R, S) by the inverse image of
Y{!(p,r,R,S) (see Section 3.4.3). Then we have an isomorphism of real analytic
manifolds Y{ (p,r, R, S) = Y{!(p,r, R, S).

Combining this with 7’1[1,11*, r.s (see Section 3.4.3), we have a morphism of real
analytic manifolds

n;IJ,r,R,S : YOI(p,r, R,S)— D.

THEOREM 3.4.6

Let the notation be as above. Assume W ¢ U (resp., W € W). Then if U is a suf-
ficiently small open neighborhood of 0 := (0,0,0,0) in gr(gr’’) x R x gr(grV) x S
and if Y (p,r, R, S,U) denotes the open set of Y!(p,r, R, S) defined as the inverse
image of U by the canonical map Y (p,r,R,S) — gr(gr™") x R x gr(gr') x S,
then there is an open immersion Y!(p,r,R,S,U) — DéL(z)(\Il) in the category
B (log) which sends (0%,0,0,0,0,5(r),0,0) (resp., (0%,0,0,0,0,5(r)"),0,0),
where 5(r)() € LY (see Section 3.4.5) such that §(r) =00 6(r)P) to p and
whose restriction to Y!(p,r,R,S,U)NY{(p,r,R,S) coincides with the restric-
tion of ), . p.s (see Section 3.4.5).

The proof is given in Section 3.4.20.

3.4.7.

Before we start to prove Theorems 3.4.4 and 3.4.6, we make some preparations.
Let the notation be as in Section 3.4.1. Then there exist an open neigh-

borhood O of zero in gr(gr'V) and a real analytic function ¢ = (cy,ca,¢3): O —

R2, x R x S having the following properties (1)—(4).

(1) For any z € O, exp(z)r = Tp(c1(x)) exp(cz(x)) exp(cs(z))T.

(2) We have ¢(0) =(1,0,0).

(3) The map exp : O — Ggr(gr'') is an injective open map.

(4) For k = 2,3, ¢ has the form of absolutely convergent series ¢, = Z:io Ch,r
where cy, - is the part of degree r in the Taylor expansion of ¢, at zero, such that
ckr(2) =l (z® - @) for some linear map Iy, : gr(gr’")®" — gr(gr’"') hav-
ing the following property: if m1,...,m, € Z® and z; € gR(ng)mj for1<j<r,
then I, (z1®---@x,) €Y, gr(gr" )m, where m ranges over all elements of Z®
of the form }, . e;m; with e; € {1, -1} for each j.

This is proved similarly as [KU3, Lemma 10.3.4] (cf. also Section 3.3.11). It
is clear that there is a real analytic ¢ satisfying (1)—(3) unique up to restrictions
of domains of definitions. The property (4) of Taylor expansion can be checked
formally as follows.

Consider the following formal calculation:

exp(z) = exp(t® + b + kW) = exp(t™) exp(b™® + 21 exp (kD)
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= exp(tM) exp(b®) 4 t@ + @ + k@) exp(kM)
= exp(tM) exp(t@) exp(b™ + @ 4 2 exp (k@) exp (k) =

Here x € O, tV) € Lie(p(R%,)) with p being as in Section 3.4.1 (note that the
actions of f(t) and 7,(t) for t € RZ; on D(gr'"V') coincide), and b € R, k1) € S,
1) € gr(gr'') for any j. Then we have p(ci(z)) = exp(tM) exp(t) .-, co(z) =
b 453 ... and exp(cz(x)) = - - -exp(k?)) exp(k(V)) formally. From these, we
can prove property (4) formally.

3.4.8.

We prove Theorem 3.4.4 up to Section 3.4.19. After that, we prove Theorem 3.4.6.
Let p,®, and r be as in Section 3.4.1. In the notation in Section 3.4.7, let
U = exp(O)r which is an open neighborhood of ¥ in D(gr'V'). By Section 3.4.7,
there is a real analytic map

a=(ay,as,a3): U—REyx Rx S

such that for any y € U, we have y =7,(a1(y)) exp(az2(y)) exp(as(y))r. (Just put
aj(exp(x)r) = c¢;(z) for x € 0.)

3.4.9.
Fix a distance § to ®-boundary such that 3(F) =1. Here we denote B(x) =
B(xz(gr")) (z € D) by abuse of notation. Let u: D(gr"V) — D(gr") be the
real analytic map defined by u(x) =7,(3(z)) " 'z. Denote the composite D —
D(gr') £ D(gr') also by p by abuse of notation. Let D(U) C D be the inverse
image of U by p.

Let

b=brs: DU)—Y{ (p,r,R,S)

be the real analytic map = +— (¢, f,g,h,k,d,u), where t = ﬁ( Yai(u(x)), f=
Ad(7(1))(a2(u(2))), g = az(u(z)), h=Ad(7(t)) " (az(u())), k = as(u(x)), 6=
Ad(7,(t) exp(g) exp(k))~1(6(z)), and u is characterized by sply, (z) = exp(u) -
splyy (r).

Recall that, in Theorem 3.4.4, for an open neighborhood U’ of zero in
gr(gr’) x gr(gr') x gr(gr'’V) x S, we denote by Y/ (p,r,S,U’) the subset of
Y™ (p,r,S) consisting of all elements (¢, f,g,h,k,d,u) such that (f,g,h,k)cU’.
We also defined Y{!(p,r,S,U’) and Y (p,r,R,S,U’) there. Now, we define
Y (p,r,R,8,U") =Y (p,r, R, S,U") N Y (p,r, S).

The next two lemmas are easily seen.

LEMMA 3.4.10
The composite D(U) b, Y (p,r,R,S) — D is the canonical inclusion.

LEMMA 3.4.11
If U’ is sufficiently small, the image of Y{! (p,r,S,U’) in D is contained in D(U)



Classifying spaces of degenerating mixed Hodge structures, Il 217

and the map Yi! (p,v,R,S,U’) — D(U) — Y (p,r, R, S) is the canonical inclu-
siomn.

3.4.12.
We define

p(J,r,z,0,u) € Déi(z)(fb)

as follows for a subset J of ®, a point r on the torus orbit associated to p (see
Proposition 2.5.2), an element z of Gr(gr'") which satisfies

(1) z€Gr(gr™),

an element § of L, and an element u of OR,u-
This p(J,r, 2,6, u) is the unique element of Dgy, 2y which satisfies the following

(2)-(5).

(2) The set of weight filtrations on gr'V' associated to p(J,r, 2,8, u) is J.

(3) The torus action 7 associated to p(J,r,z,d,u) is Int(2)(7,,7) : G, g —
Autr(gr'), where 7, ; denotes the restriction of 7, : G;I:%R — Autr(gr'V) (see
Sections 2.5.6, 2.3.5) to the J-component of G%R.

(4) We have 6 € L in L if and only if W does not belong to the set of weight
filtrations associated to p(J,r, z,d,u).

(5) The torus orbit associated to p(J,r,z,0,u) (see Proposition 2.5.2) con-
tains exp(u)s:0(z(r(gr')), Ad(2)(9)) if § € L, and contains exp(u)s:0 (z(r(gr™)),
Ad(2)(¢")) if 6€ LN L and § =006 with 6’ € L~ {0}.

This p(J,r,z,0,u) is constructed as follows. Let n be the cardinality of
U =W(p), and identify ¥ with {1,...,n} as a totally ordered set for the ordering
in Proposition 2.3.8. In the case W ¢ ¥, consider the bijection ¥ — ®. In the case
W € ¥, consider the bijection ¥\ {W} — ®. Via these bijections, embed J C ®
into W. In the case § € L (resp., 6 € L~ L), let m = #(J) (resp., m =#(J) + 1),
and write J = {j1,...,jm} C ¥ with j; < -+ <jp (vesp., J ={jo,...,jm} C ¥
with jo <+ <jm). Let ((pw,Pw)w,r) be an SL(2)-orbit in n variables of rank
n whose class in Dgp,2y is p. Then, in the case § € L (resp., 0 € L~ L), the
p(J,r,z,0,u) is the class of the following SL(2)-orbit ((p’, ¢’) = (pl,, ¥l )w,r’) in
m variables of rank m:

P (g1, gm) = Int(2) (p(gl,- -, 90)),

O (215w ey zm) = 20(21, ..., 20),
r’i=ex p(u)8r9(z(r(gl" )), Ad(2)(3))
(resp., v’ :=exp(u ( )),Ad(z)(8")) with ¢’ € L~ {0},6 =00¢"), where

g; and z; (1< S n) are as follows. If j < jj for some k, define g} := gy and

2} := zj, for the smallest integer k with j < ji. Otherwise, g; :=1 and 2} :=1.
Let Yy := Y{(p,r,S) be the subset of Y (p,r,S) consisting of all elements

(t,f,9,h,k,6,u) such that h,, =0 unless m(j) =0 for all j € J(¢t). We have

Y; DYy =Y (p,r,S). We have the following.
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(6) A point (¢, f,g,h, k,6,u) € Vi (p,r,9) is the limit of y(¥', ") € Y (p,r, S)
defined by y(t',8") = (¢, f,Ad(r,(¢t")) 1 (f), Ad(7,(t')) "2(f), k, &', u), where t' €
R?,, ' € L, and t' tends to ¢t and ' tends to . Write exp(k) -T=4k -T
with k¥ € Kz N Gr(gr");. Note that k' commutes with 7,(¢'). The image of
y(t',d") in D is exp(u)sy8(z(F), Ad(2)(¢")), where z = exp(f)k'7,(t') and ¢ =
Ad((K) " exp(k)) (5.

.
p,r,S °

Urll,lr,s - Déi(z)(‘b)v

We extend the map n Yy — D in Section 3.4.3 to a map

n]g,[r,S(tafagvhakaéa u) :p(Ja I‘,Z75/,U),

where J, z, and ¢’ are defined as follows. Let J={j € ®|t; =0}. Let ¢
be an element of R2, such that th =t; for any j€ ®\ J, and let k' be an
element of Kz N Gr(gr'V); such that exp(k)-F=k-F. Let z = exp(f)k'7,(t')
and ¢’ = Ad((k")~texp(k))d.

We use the following fact (7) which is deduced from [KU3, Section 10.2.16].

(7) Let p: Déi(Q)(q)) — D(gr'"V) be the extension of aB(x(gr'V))~lz(gr'")
(x € D) given in Proposition 3.2.6(ii). Then, if p’ € D§£(2)(<I>) and if u(p’) is
sufficiently near to u(p), p’ is expressed as p(J,r,z,0’,u) as above.

LEMMA 3.4.13

There are an open neighborhood U’ of zero in gr(gr') x gr(gr™) x gr(gr"V) x S
and a morphism &: Y (p,r,S,U") — Y (p,r,R,S) which satisfy the follow-
ing conditions: n{)’]rys sends Y (p,x,S,U’) into D(U), and the restriction of

17
¢ to Y (p,r,S,U") coincides with the composite Yi! (p,r,S,U’) SULEN D(U) LA

Y{!(p,r,R,S), where b is as in Section 3.4.9.

Proof
Let x:ngns(t,f,g,h,k,é, u), and write b(x) as (¢, f', g,/ k', 8" ,u').
First, we show that each component t', f’,¢’,... extends real analytically

over the boundary of Y/ (p,r, S,U’) for some U’. Since u(z) = ﬂ,(ﬁ(exp(g)
exp(k)r)) ! exp(g) exp(k)T, this extends over the boundary. Hence so does a;u(x)
for each j =1,2,3 (see Section 3.4.8). On the other hand, §(z) = tS(exp(g) -
exp(k)T), and this is also real analytic over the boundary because (3 is so. Thus
t',¢', k" extend. Further, u' = u trivially extends. We have ¢’ = Ad(7,(t') exp(g’) -
exp(k’)) ™1 Ad(7,(t) exp(g) exp(k)) (). Since ¢’ and k" already extend and since
t't=! = B(exp(g) exp(k)F)aiu(z) also extends, so does &'

The rest are f’ and b/, that is, to see that Ad(7,(t'))* azu(z) extend real
analytically. We can replace ¢’ in the last formula with ¢ because t' = tS(exp(g) -
exp(k)T)ay(p(z)). Further, by Section 3.4.7 with the formal construction there,
az(p(z)) = ca(g). Hence, it is enough to show that Ad(7,(t))* e2(g) extend.

Consider the decomposition g =3 zs gm (9m € ogr(gr")m). Then, by
property (4) of ¢g in Section 3.4.7, c2(g) = c2(D_ gm ) is the infinite formal sum of
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oy (Gmy @+ @ gm,.) (M €Z*, g, € gr(8" )i, (1< <r)). Now the weights
m of I2r(gm, @ -+ ® gm,.) satisfy m =) e;jm; with e; € {1,—1}. Decompose
o (Gmy @+ @ gm,.) It0 D° 12 1 m(gm, @ -+ @ gm,) according to the weights,
where m ranges over such ) e;m;. We see that, for each m and j € {1,—1},
To(t) 12,0 m (Gmy ® -+ @ gm,.) extends over the boundary. We explain the proof
for j = 1. The other case is similar. In this case, we observe that 7, (¢)l2 r.m (gm, @
© ® gm,) I8 (TIE™) )l m(gmy @ -+ ® gm,) = lpm (™) gm, ® -+ @
(t™ )" gpm,.). Since t" gy = frm and t7™ gy, = iy, the last function extends to a
real analytic map over the boundary. Shrinking U’ if necessary, we may assume
that f and h are sufficiently near to zero, and the above infinite sum converges,
as desired.

Next, we show that in the ambient product space containing Y/ (p,r, R, S),
the image of each element y = (¢, f, g, h, k,d,u) of Y (p,r,S,U’) by the extended
coordinate functions in fact belongs to Y/ (p,r, R, S), which completes the proof.
For ¢ € RZ; such that t}j =t; for any j € ® \ J with J = J(t) and for &' €
L, let y(t',8") = (', f,q Ik, & u) € Y{(p,r,S), where f',g' 0/ € gr(gr") are
defined as follows. Let m € Z®. Then f! = (t)2"hpm, ¢\, = ()™ by, hl, = hm
it m(j) > 0 for any j € J, o = fons G = (E)" fins By = (#)72" i if m(j) <0
for any j € J and m(j) <0 for some j € J, and f/ =g, =hl, =0 otherwise.
Here (¢')™ := I_Ijecb(t})m(j)7 and so on. Then y(t',0') — y in Y (p,r,S) when
t' —tand &' — 4.

We have to prove that the limit (¢, fo,490,...) of the image (¢, f”,g¢",...)
of y(¢',0") in the ambient product space satisfies Section 3.4.2(1)—(4). First,
it is easy to see J:= J(tg) = J(t). Conditions (2) and (3) are deduced from
the corresponding conditions on (¢, f”,¢”,...). Condition (1) is also seen from
condition (2) on (¢”,f",¢",...). For example, we show that (fy), =0 unless
m(j) <0 for any j € J. We have f/ = (t")™g" for any m € Z®. Since t" =
t'B(exp(g’) exp(k)T)aip(y(t',6")), if there is some j € J such that m(j) > 0,
the above equality implies f/! — 0- (limg/’) = 0. Hence we have (fo)m = 0.
Finally, (4) is seen as follows. Let k' be the element of Lie(KF) such that
exp(g) = exp(go) exp(k’) and k!, = 0 unless m(j) =0 for any j € J. Then we
have exp(kg) = exp(k’) exp(k). Hence kg satisfies (4). O

LEMMA 3.4.14

There are an open neighborhood U’ of zero in gr(gr"V) x gr (gr") x gr(gr™) x S
and a morphism Y (p,r,S,U") — B := R2, x D(gt"') x L x spl(W) x
[Ivw/co sPUW') whose restriction to Y{!(p,r, STU’) coincides with the composite
Vr, 30N g (see Proposition 3.2.6, Section 3.4.3).

Proof

It is enough to show that the composite map from Y (p,r,S,U’) extends com-
ponentwise over the boundary. The components except the last ones (Borel-Serre
splittings) are easily treated. For example, the first two were already treated in
the proof of Lemma 3.4.13. The extendability of Borel-Serre splittings is reduced
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to Lemma 3.4.13. In fact, let W’ € ®. Then, by Lemmas 3.4.10 and 3.4.13, it
is sufficient to prove that the composite Y{!(p,r,R,S,U") — Y{!(p,r,S,U") —
spl(W’) extends to a real analytic map on Y (p,r, R, S,U’) under the assump-
tion R C Lie(Gr(gr')w~). Assuming this, we prove f,, € Lie(Gr(gr")w)
for any (t,f,g,h,k,6,u) € Y (p,r,R,S,U’") and any m € Z*®. This is clear if
m(W’) <0. If m(W’) >0, since f,, + h_m € R C Lie(Gr(gr")w/) and h_,, €
Lie(Gr(gr")w:), we have f,, € Lie(Gr(gr")w). Thus exp(f) belongs to
Gr(gr™)w, so that the concerned component is spliy (exp(f)7,(t) exp(k)F) =
exp(f )splBS/(f') gV’ exp(f)~!, which real analytically extends over the bound-
ary. |

LEMMA 3.4.15

There exist open neighborhoods U" C U' of zero in gr(gr™) x gr(gr’) x
gr(gr") x S such that, for anyy € Y (p,r,S,U"), there exists y; € Y (p,r, )N
Y (p,r,S,U’) suchthat (y1,y) belongs to the closure of Y{! (p,r,S) x p Y{!(p,r,S)
in Y (p,r,8) x Y (p,r,S).

Proof

For any subset .J of @, take R = R asin Section 3.4.1 such that Lie(Gr(gr"V) j..) C
R;. Here Gr(gr'"V) ;. denotes the unipotent part of Gg (gr'V) ;. For this R = Ry,
let U be the neighborhood U in Section 3.4.8, and let U’ be a neighborhood of
zero in gr(gr'V) x gr(gr'’) x gr(gr'’) x S such that Y (p,r,S,U’) is contained
in (1p,r,s) " (ﬂJ D(UJ)) :

Let y=(t, f,g,h,k,0,u) € Y (p,r,S,U"). For t' € RZ such that th =t; for
any j € &~ J with J = J(¢) and for § € L, consider y(¢',d’) in the proof of
Lemma 3.4.13.

Let R= Rj(;. Then, for any (¢',6") which is sufficiently near to (¢,6), the
point y1(t',0") == br s (ny s(y(t',0))) is well defined and (y.(t',8"),y(t',0")) €
Yi(p,r,S) xp Y (p,r,S). Furthermore, y;(¢',d') converges to an element y;
of Y¥(p,r,S) when t' —t and & — 6 by Lemma 3.4.13. We show that the
limit y; = (to, fo, 90, ho, - . .) belongs to Y{ (p,r,S); that is, (hg), =0 if m(j) >0
for any j € J(t) = J(to) and if m(j) > 0 for some j € J(tp). Fix such an m.
Then we have gr(gr'V)_,,, C Ry and gr(gr'),, N Ry = {0}. Hence the property
(fo)—m + (hg)m € Ry implies (hg)m, = 0.

Finally, for a sufficiently small U” C U’, the above correspondence y — 11
sends Y (p,r,S,U") into Y (p,r,S,U"). a

LEMMA 3.4.16

(i)  On the intersection of Y1 =Y (p,r,S) and Y (U') := Y (p,r,S,U’), the
map Y (U') — B in Lemma 3.4.14 coincides with the restriction of the composite
Y1 — Déim)(fb) — B.

(ii) For a sufficiently small U’, the image of Y(U') — B in Lemma 3.4.1/
is contained in the image of Déi(Z)(fb).
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Proof

(i) This follows from Section 3.4.12(6). (ii) This follows from (i) and Lemma 3.4.15.
|

LEMMA 3.4.17

Let U be a sufficiently small open neighborhood of ¥ in D(gr™V'), and let Déi@)(U)
be the inverse image of U under Déi(m((b) L D(gtW). Letqe Déi(2)(U)7 and let
ry be a point on the torus orbit associated to q. Then the limit im, _ gwa) b(74(t)ry)
exists in Y (p,r, R, S) and is independent of the choice of r,.

Proof

We reduce this to Lemma 3.4.13. First, by Section 3.4.12(7), we may assume that
¢ has the form p(J,r, z,d,u) such that r, is the point in Section 3.4.12(5). Hence
it is the image of some y; = (s, f,9,h,k,0,u) € Y1 by ngr,s in Section 3.4.12.
Then 74(t)r, is the image of y (¢) := (¢/, f, Ad(7,(t')) "1 £, Ad(7,(¢')) 2 f, k, 0" ,u),
where ¢ € R%,, such that th=t; for any j € J and t; = s; for any j €  \ J and
§0"=6if 6 €L and 6" =ty o0’ for ¢’ € L in Section 3.4.12(5) if 6 € L ~ L. Since
y1(t) converges to yi1, the sequence b(7,(t)ry) converges to the image of y; by ¢
in Lemma 3.4.13. The last independency is clear. (I

Denote this limit by b(g). Thus b in Section 3.4.9 is extended to a map D§£(2) (U)—
YII (p7 r7 R7 S)'

8.4.18. Proof of Theorem 3.4.4
Theorem 3.4.4(i) follows from Lemma 3.4.16(ii). We prove Theorem 3.4.4(ii).
We first describe the idea of the proof.

Locally on Y(R,S) := Y (p,r, R, S), we define an object X of Bgr (log) which
contains Y'(R, S) having the following properties.

(1) The morphism Y (R,S) — B (defined locally) extends to some explicit
morphism X — B (locally). (It is explained in Section 3.4.19.)

(2) As an object of Br(log), X is isomorphic to the product R‘Igox (a real
analytic manifold) xL. Hence, for any = € X, the local ring Ox , is isomorphic
to the ring of convergent power series in n variables over R for some n. Note that
Y (R, S) need not have this last property (because Y (R,S) can have a singularity
of the style t2x = t»y), and this is the reason why we use X here.

(3) The homomorphism Ox |y (r,s) — Oy (r,s) is surjective. Here Ox |y (g,s)
is the inverse image of Ox on Y(R,S).

(4) The homomorphism Opg|x — Ox is surjective. Here Op|x denotes the
inverse image of Op on X.

Although (3) is shown easily, (4) is not. But by the property of the local rings
explained in (2), the property (4) is reduced to the surjectivity of mB,y/mQBhy —
mX7r/m§(7x, where z € X and y is the image of z in B. This is the injectivity
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of the map of tangent spaces T,,(X) — T, (B), where T,(X) and T,,(B) are R-
linear duals of mx ,/m% , and mp,/m% ,, respectively, and this injectivity is
explained in Section 3.4.19.

By (3) and (4), we have the surjectivity of Oply(r,s) — Oy(r,s).- Since
Y (R,S) — B factors (locally) as Y(R,S) — A— B by Lemma 3.4.16(ii), where
A= Déi(g)(q)), we see that the map Oaly(r,s) — Oy (r,s) is surjective.

Since the map Y (R,S) — A has the inverse map A — Y (R, S) (locally) by
Lemma 3.4.17, Y(R, S) — A is bijective locally.

Since Oaly(r,s) — Oy (r,s) is injective (they are subsheaves of the sheaves
of functions), we have (Y (R, S), Oy (g,s)) =~ (4,04) locally. It is easy to see that
this isomorphism preserves the log structures with sign.

9.4.19.
We give the definition of X and the proof of the property 3.4.18(4).

Actually X is constructed at each point of Y(R,.S). We give the construction
at p=(0%,0,0,0,0,5(r),0) € Y(R,S) and the proof of the property 3.4.18(4) for
the tangent space at p. The general case is similar.

We define the set X to be the subset of E:=R2 x gr(gr"V) x gr(gr') x
gr(gr") x S x L X gr ., consisting of all elements (t,_f,g, h,k,d,u) satisfying the
following conditions (1)—(3).

(1) If m € Z® and m(j) >0 for any j € ®, then f,, =t™g,, and g, = t™h,,.
Here t™ :=[];cq t;-n(J).

(2) If m € Z® and m(j) <0 for any j € ®, then h,, =t ™g,, and g,, =
™ fon-

(3) We have g € R and f,, +h_,, € R for all m € Z®.

Define the structure on X as an object of Br(log) by using the embedding
X C E just as we defined the structure of Y(R,S) as an object of Bgr(log) by
using the embedding Y (R,S) C E in Section 3.4.2. Then it is clear that X is
isomorphic to a product R2,x (a real analytic manifold) xL as an object of
Br(log).

We give a morphism X — B which extends Y (R,S) — B and prove prop-
erty 3.4.18(4) for it. We define the morphism componentwise. Let X, be the
inverse image of R®, x L by the natural map X — R%, x L. First, we define
Xo— B :=R2, x D(gr'") x L x spl(W) as the projection after vz, 801, where
n sends (¢, f,g,h,k,0,u) to exp(u)s,0(dr,Ad(d)d) with d = 7,(t)exp(g) exp(k).
Then this map Xy — B’ extends to X — B’, as is seen easily in the same way as
in Lemma 3.4.14. Next, for each j =W’ € ®, we give an extension to spl(W’).
Define Xy — spl(W’) as follows. Consider the decomposition gr(gr'V) = g< &
9>0, where g< = Zm(j)go gr(gr" ), and g = Zm(j)>0 gr(gr" ). Then there
are a neighborhood V; of zero in gr (gr'') and a real analytic map (c<,cs) : V4 —
g< X g> such that for any g € V1, we have exp(g) = exp(c<(g))exp(cs(g)). Fur-
ther, let M be an R-subspace of Zm(j)ZO gr(gr"),, containing g- such that
gr(gr'’) = M @ Lie(K;). Then there are a neighborhood Vs of zero in gr(gr™")
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and a real analytic map (¢}, c}) : Vo — M x Lie(K3) such that for any ¢’ € V5, we
have exp(g') = exp(—C¢ci(¢")) exp(c4(g’)), where C is the Cartan involution at
. We define Xy — spl(W’) (locally) as splis (exp(c<(f)) exp(—=C(c}(cs(h))))T).
This extends to X — spl(W’) and gives an extension of Y(R,S) — spl(W’) since
Int(7,(t)) exp(g) = exp(f), and so on, on Y (R, S).

We prove the surjectivity of Og|x — Ox. We write the proof of the surjec-
tivity for the stalk at p. (The general case is similar.) It is sufficient to prove the
injectivity of T;5(X) — T4(B), where g denotes the image of p in B.

The first tangent space is identified with the vector subspace V of R® x
or(gr") x gr(gr") x gr(gr™"') x S x L X gr.,, consisting of all elements (¢, f, g, h,
k,d,u) satisfying the following conditions (1) and (2).

(1) frn=9m =01if m(j) >0 for any j € ®, and g,, = hy, =0 if m(j) <0 for
any j € .
(2) We have g € R and f, +h_p, € R for all m € Z2.

The injectivity of the map of tangent spaces in problem is reduced to the
injectivity of the following map:

vV —-R® X RxSxLXgRrqy X (HgR(ng)),
je®

(t7f7gahak757u)H(t7gak765u7(vj)j€‘1))a
where v; = Z (fim = C(h_m)).

m(4)<0

Assume that the image of (¢, f, g, h, k,d,u) € V under this map is zero. Then
clearly we have t =g=k =6 =u=0. We have also the following.

(i) If m(j) <O for some j € ®, then f,, =h_,,, =0.

Indeed, if m(j) <0 for some j € ®, then f,, — C(h_,) =0. Since h_,, +
C(h—m) € Lie(Kg), fm +h—m € RNLie(Kz) =0, and consequently we have (i).

This shows that if m(j) <0 and m(j’) > 0 for some j,j’ € ®, then f,, =
fem=hm=h_p=0. f m(j) <0 for any j € ® and if m(j) <0 for some j € D,
then f,, =h_,, =0 by (i) and f_,, = h,, =0 by the definition of V. If m(j) >0
for any j € ®, we have similarly f,, =h,, = f-m =h_,, =0.

Theorem 3.4.4 is proved. (]

8.4.20. Proof of Theorem 3.4.6
We deduce it from Theorem 3.4.4(ii) as follows.

Let ¥ € W, and let ® be the image of ¥ in W (see Section 3.2.2). Take a
distance to ®-boundary [.

Let E be the subset of RY X gr . X gr.« consisting of all elements (¢, u,v)
satisfying conditions (5) and (6) (resp., (5') and (6")) in Section 3.4.5 in the case
where W ¢ U (resp., W € ¥). We regard E as an object of Bgr(log), similarly to
the case of Y (p,r, R, S) (see Section 3.4.2).
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Assume first W ¢ U. Let Dé£(2)(q))/ be the open set of Déi(z)(q)) consisting
of all elements ¢ such that W ¢ W(q). (This condition is equivalent to the con-

dition that the L-component of vz 5(q) (see Proposition 3.2.6(ii)) be contained
in £.) Then DéL(Q)(\II) is the fiber product of

Déi(z)(‘b)/ —RE) xgru— F

in Bg(log), where the first arrow is given by z — (8(z),u) with sply (z) =
exp(u)sy, the second arrow sends (¢, u, v) to (¢,w), and the morphism DéL(Q)(\I/) —
E is given by z +— (8(z),u,v) with sply (z) = exp(u)sy and sply,(y) = exp(v)sy
for the D-component y of v, 5 (see Proposition 3.2.6(i)). Since Yi(p,r,R,S) is
the fiber product of Y (p,r, R, S) — R x gr, <+ F, Theorem 3.4.6 is reduced
to Theorem 3.4.4. -

Next, assume W € W. Let §y: £~ {0} — Rso be a real analytic func-
tion such that By(a o d) = afBy(8) for any a € Rg and & € £~ {0}. Denote the
composite Déi(z)(fb)nspl — £~ {0} — Rx¢ also by 3y, where the first arrow is
the £-component of v;, g (see Proposition 3.2.6(ii)). Then (3y,8) : D — RY, =
R.o x R? is a distance to U-boundary. As an object of By (log), DéL(Z),nspl(\Il)
is the fiber product of

Déi(Q),nspl((I)) - Rgo X gR,u < K,
where the first arrow is given by z — ((6o, 8)(z),u) with sply, () = exp(u)sy.
On the other hand, if we denote by Y*(p,r, R, S)nsp1 (* =1I,1I) the open set of

Y*(p,r, R, S) consisting of all elements satisfying 6 # 0, Y!(p,r, R, S)uspl is the
fiber product of

YII (p, r, R, S)nspl — Rgo X gR,u — F

in Bg(log), where the first arrow is given by (¢, f,g,h,k,6,u) — ((a,t),u) for
§=aodW with §®) € LM (see Section 3.4.5). From these facts, Theorem 3.4.6
is reduced to Theorem 3.4.4 also in the case W € W.

Theorem 3.4.6 is proved. ]

8.4.21. Proof of Theorem 3.2.10
We first prove Theorem 3.2.10(ii). Let ® € W. We prove the following.

CLAIM1
For ® C @, the inclusion map Déi(m((b’) — Déi(Q)(q)) is an open immersion in
Br (log).

Let « be a splitting of &, and let 3 be a distance to ®-boundary. Since Déim) (@)
is the inverse image of {t € R‘;O |t; #0if j € ® \ @'} under the map :
Déi(z)(q)) — R‘;O, it is an open subset of Déi(Q)(q)). Let o : G%R — Aut(gr™")
be the ®’-component of a, and let 3’ : D(gr"V) — Rfo be the ®’-component of
B: D(gr"") — R2,. Then we have a commutative diagram
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DY (@) — RE,x D(@") x £
n
DélL(z)(‘b) - Ré’oxD(ngME

where D(gr"V) = {z € D(gr"V) | B/(x) = 1}, the upper horizontal arrow is induced
by («/,3') as in Proposition 3.2.6, the lower horizontal arrow is induced by
(a, B) as in Proposition 3.2.6, and the right vertical arrow sends (¢,z,d) € Rfo X
D(gt™Y x L to ((t,8(z)),af(z) tz,Ad(af(x))6). Here by the fact that
B(x); =1 for any j € &, we regard (t,3(x)) as an element of REZ[ x ng‘bl C
R2,. From this, we obtain the following. -

CLAIM 2

Let Déi’g)(é’) be the set Déi(z)(q)’) endowed with the structure of an object
of Bg(log) as an open set of Déi(Q)(CP), Then the canonical inclusion map
Déﬁ’g) (®') — Déim((b’) is a morphism in Bg(log). This morphism is an iso-
morphism if and only if, for any W' € ®, the composite Déi(Z)(CI)’) — D§£(2) (@) —

spl(W’), where the last arrow is induced by splla,s,, is a morphism in Bg (log).

By Claim 2 and Theorem 3.4.4, for the proof of Claim 1, it is sufficient to prove
the following.

CLAIM 3

Let p' € Déi(Q)(q)), and let ® =W(p') C ®. Let v’ be a point on the torus
orbit associated to p'. Then, for a sufficiently small open neighborhood U of
(O‘I’/,O,O,O,Oﬁ(r’),()) in Y (p',x',S) (S is taken for r'), the composite U —
Déi(z) (®') — Déi(z)(@) — spl(W') is a morphism of Bg (log).

We prove Claim 3. Take p € Déi@) (@) such that ® =W(p). Let a = 7,, and take
a distance to ®-boundary § such that 3(K: -T) = 1. Note that such a § exists
(cf. [KU2, Proposition 4.12]). For each w € Z, let Q(w) € W(gr!V) be the image
of @, and let Q= (Q))w Let Dsreoy(ar™)(Q) = L, Dsr (¥ )(Q(uw)).
Let fi: Dsp2)(gr™)(Q) — D(gr") be the extension of D(gr'V') — D(gr"), z—
afB(z)~ 'z, induced by Proposition 3.2.6(ii). Let o/ =7,. We first prove the
following.

CLAIM 4

There exists y € Gr(gr™ )w+ such that ji(y~1p') € Kz - ¥, where p’ = p'(grV).

In fact, by Claim 1 in [KU3, Section 6.4.4], there are z € Gr(gr'')e and k € K5
such that o/ =Int(z)(ae) and ¥ = zkT, where ag is the restriction of « to
®’'. Write z = 29z,, where zy commutes with ag (t) (t € (R*)®) and z, €
Gr(gr")er . We can write 29 = yko, where y and ko commute with g (t) (t €
(R)®), y e Gr(gr")w, and ko € Kz. We have fi(y~'p') = kokT. In fact, since
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P =lima/(t)¥ = limza(t)k¥, a(y~'p') is the limit of u(y~'za(t)k?) = f(a(t) -
Yy lzkr) = ﬂ( 124kt), where 2 = 7,(t)"'27,(t), which converges to
[L(y_ Zokr) (/ﬂ()kl‘) kokr € Kg - .

Let y be as in Claim 4. Then, for ¢ € D near p’ in DSL(Q)(CIJ’)7 splBs (q) =
ysplBS (y1q)y(gr™' )1, where ¢ = ¢(gr'V). We denote the right-hand side of
the last equation by Int(y)splhs (y~1¢). From this, we may replace §’ by y =17/,
and hence we may assume fi(p’) € K5 - T.

Take an R-subspace V of Lie(Ggr (gr'V )w) such that gr (gr'V) = V@ Lie(K5).
For g € D near p' in DSL(2)(q) ), write i(7) € exp(v(g)) - K& - T with v(g) € V, and

write f(g) = Int(a3(q))(exp(v(q))) € Gr(gr™ )w+. Then, since §= af(q)i(q),
we have

spliyy (@) = Int(f(q)) (spliy (@B(@)F)) =Int(£(q)) (sl (F)).

Here the last equality follows from Int(a(t))splhs (F) = splhs (F) for any ¢. By

Theorem 3.4.4 and the real analycity of a; in Section 3.3.11, v(q) extends over
the boundary, and hence so does f(g); that is, for a sufficiently small open
neighborhood U of (0%°,0,0,0,0,8(xr"),0) in Y (p/,x',S), there is a morphism
U — Gr(gr" ) which is compatible with the map Y (p/,1’, 5) — Gr(gr")w
induced by f. Hence spl]a/s/ extends over the boundary. This completes the proof
of Claim 3 and hence the proof of Claim 1.

By Claim 1, on Dgy,(2), there is a unique structure as an object of Bg (log) for
which each Déi@)(@) (® € W) is open and whose restriction to Déi(z)(fb) coin-
cides with the structure of Déi@) (®) as an object of B (log). By Theorem 3.4.4,
this object DSL(2 of Bg (log) belongs to Bg(log).

Next, Theorem 3.2.10(i) follows from Theorem 3.2.10(ii) and Theorem 3.4.6.

We prove Theorem 3.2.10(iii). It is clear that the identity map of Dgy, (o) is
a morphism DéL(Z) — Déi(z in Br(log) and that the log structure with sign on
D

this morphism DSL@) — DSL(Z) is an isomorphism.

It remains to prove that in the pure case, the topology of Dgy,2) defined in
[KU2] coincides with the topology defined in this article.

Assume that we are in the pure case.

The topology of Dgp,(2) defined in [KU2] is characterized by the following
properties (1) and (2) (see [KU3]).

éL(2) is the pullback of that of DSL(2) It is also clear that, in the pure case,

(1) For any ¥ € W, DéL(Q)(\I/) is open and is a regular space.

(2) Let p € Dgp,(2), let r be a point on the torus orbit associated to p, and let
U =W(p). Then, for a directed family (px)x of points of D, (py)x converges to p
in Dgp,2)(¥) if and only if there exist ¢y € RY, gx € gr, ki € Lie(K;) such that
pa = Tp(tr) exp(gr) exp(ka)r, ty — 0¥ in RY,, Ad(7,(2))7 (gr) — 0 for j = =£1,0,
and k) — 0. -
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It is sufficient to prove that the topology of Déi(z) (i.e., the topology of
DéL(z)) in this article satisfies this (1) and (2). Property (1) is clearly satisfied.
We prove (2).

Assume py — p for the topology of this article. By Theorem 3.4.4(ii), for
some Py = (tx, fr, 9x, ha. kr) € Yo(p, 1, R, S) C RY( X gr X gr X gr x Lie(K,) such
that py = 7,(t\) exp(gy) exp(ky)r, we have py — (0%,0,0,0,0) in Y(p,r,R,S).
Since fx = Ad(7p(tx))(gx) and hy = Ad(7,(tx))"'(gr), we have ty — 0¥,
Ad(7,(t2))?(gx) — 0 for j = £1,0, and ky — 0. Conversely, assume py = 7, (t) -
exp(gy) exp(ky)r for some t) € RY), g\ € gr, k»x € Lie(K,) such that ¢, — 07,
Ad(7,(t))? (ga) — Ofor j = £1,0, and ky — 0. Then if we put fx = Ad(7,(£x))(ga)
and hy) = Ad(Tp(t)\))fl(gA% (t)\,f)\,g)\,h)\,k)\) converges to (OW,O,O,O,O) in
Y(p,r,S). By Theorem 3.4.4(i), this shows that 7,(¢\)exp(gx)exp(kx)r con-
verges to p for the topology of this article.

Theorem 3.2.10 is proved. O

3.4.22.
In Propositions 3.4.23 and 3.4.27, we give local descriptions of Déi(z) and DéL(Q)
as topological spaces, respectively. Compared with the real analytic local descrip-
tions in Theorems 3.4.4 and 3.4.6, we have simpler descriptions here.

We define a topological space Z{L (p, R) as the subspace of RZ X R consist-
ing of all elements (t,a) satisfying the following condition (1).

(1) Let m € Z®. Then a,, = 0 unless either m(j) >0 for all j € J or m(j) <0
for all j € J.

We define a topological space Yt{fp (p,r,R,S) as the subspace of Z{C{p(p, R) x
S x L x gr.u consisting of all elements (t,a,k,d,u) ((t,a) € ZL (p,R), k€ S,
§ € L, u € gr.y) such that (¢, k) satisfies condition (4) in Section 3.4.2. Let
YO{{OP(p,r,R, S) be the open set R®; x R x S x L X gr.4, of Y;{)Ip(p,r,R, S), and

let
I LI
np,r,R,S,top . YvO,top (p7 r, R7 S) — D
be the continuous map

(t,a,k,0,u) — exp(u)srﬂ(df', Ad(d)é)

with d = 7,(¢) exp( Z gm /(™ + tfm)) exp(k).
meZ®

Here t" =[[,cq t;n(j).

PROPOSITION 3.4.23

Let the notation be as in Theorem 3.4.4. Then there are an open neighborhood V
of (0%,0,0,4(r),0) in Y (p,x,R,S) and an open immersion V — Déi(z)(@) of
topological spaces which sends (0%,0,0, d(r),0) to p and whose restriction to V N

Yi'top(p,1, R, S) coincides with the restriction of nl'. p g op (see Section 3.4.22).
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3.4.24.
This Proposition 3.4.23 follows from Theorem 3.4.4, because we have a homeo-
morphism

YII(p7r7R7 S) g K{)Ip(pvr7R7 S)7 (t7 f7g’ h7 k757u) — (t7a7 k’ 5’”)
with a = f + h,
f= Z(l +t72™) ", g= Z(tm +t7™) tay,, h= Z:(t2m + 1) an,

where, in ), , m ranges over all elements of Z® such that either m(j) >
for any j € J(t) or m(j) <0 for any j € J(t). (Note that (1 +¢=2m)=1 (¢m
t=™)~1 (t*™ +1)~! € R are naturally defined for such m.)

3.4.25.
REMARK

In the pure case, at the beginning of [KU3, Section 10], it is suggested that

the local homeomorphism with Ytgp(p,r,R7 S) in Proposition 3.4.23 may be

used to define a real analytic structure of Dgp ). If we do so, we regard
Ytgp(p, r,R,S) as an obJe?ct of Br(log) by using tbe embedding Yt{fp (p,r, R, S)'%
RZy x R xS x L X gRr,y in the same way as we did so for Y™ (p,r,R,S) by using
the injection Y/ (p,r,R,S) < E (see Section 3.4.2). However, the definition of
the real analytic structure of Dgr(oy in this article, which is given by the local
homeomorphism with Y (p,r, R, S), is slightly different from the suggested one
in [KU3, Section 10]. The above map Y (p,r,R,S) — YL (p,r,R,S) is real
analytic and is a homeomorphism, but the inverse map need not be real analytic

at (0%,0,0,5(r),0).

3.4.26.
We define the topological space Yt{)p(p,r,R7 S) as follows.

In the case W ¢ ¥, let Yt{)p (p,r,R,S) be the subset of Yt{)]p(p,r,R, S) X gR.u
consisting of all elements (¢,a, k,d,u,v) ((t,a,k,d,u) € Yt{fp(p, r,R,S), vEgru)
such that (¢,0,u,v) satisfies conditions (5)—(7) in Section 3.4.5.

Similarly, in the case W € ¥, let Yt{)p(p,r,R, S) be the subset of R>¢ X
Ytgp(p, r,R,S) X gr,, consisting of all elements (to,t,a,k,d,u,v) (to € R>o, (t,a,
k,6,u) € ;I (p,r, R, S), v € gr.u) such that (to,t,d,u,v) satisfies conditions (5')-
(7') in Section 3.4.5.

We define a canonical map Y, (p,r,R,S) — YL (p,r,R,S). If W ¢V,
it is the canonical projection. Otherwise, it is (¢o,t’,a,k,d,u,v) — (t',a,k,tp o
d,u). Let Yy, (p,r,R,S) be the open set of Y[ (p,r,R,S) defined by the
inverse image of Y/{, (p,r, R, S) by this canonical map. Then Yy, (p,r, R, S) —
Yiiop(pr, R, S) is a homeomorphism. Let némR’S’mp Y iop(pr, R, S) — D be

the continuous map obtained from né{n RS top and the last homeomorphism.
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PROPOSITION 3.4.27

Let the notation be as in Theorem 3.4.6. Assume W ¢ ¥ (resp., W € ). Then
there is an open neighborhood V of v:= (0Y,0,0,46(r),0,0) (resp., (0%,0,0,5(r)™),
0,0), where 5(r)) € LM (see Section 3.4.5) such that §(r) =00 6(r)™) in
YL (p,r, R, S) and an open immersion V — DéL(Z) (V) of topological spaces which
sendsv top and whose restriction to VOYO{tOp (p,r,R,S) coincides with the restric-

tion of ) . g siop (s€€ Section 3.4.26).

This follows from Theorem 3.4.6, just as Proposition 3.4.23 follows from Theo-
rem 3.4.4 in Section 3.4.24.

3.4.28. Proof of Proposition 3.2.12

We prove (i). It is sufficient to prove that the topology of DéL(2) has property
(2). Let p € Dg,(2), and let W be the set of weight filtrations associated to p. In
the following, we assume W ¢ W. The case where W € U is similar. Assume first
that (pa)a (px € D) converges to p. Then clearly (a) and (b) are satisfied. Take
a distance to ¥-boundary § such that 3(r) =1, and let p: DéL(Q)(\I/) — D be
the extension of  +— 7,3(x) 'z given in Proposition 3.2.6(i). We show that (c.I)
is satisfied for t) := B(py). We have t) = B(pr) — B(p) = 0¥ and 7,(t,) " !pr =
w(px) — p(p) =r. Next, assume that (a), (b), and (c.I) are satisfied. Take

a =T,, and take § such that 5(r) =1. We prove py — p. It is sufficient to prove
that v, g(pa) converges to vq g(p) = (0%, r,sply (), (spl]{?’vs,(ng)(r(ng)))W/e\I,)
in RY) x D x spl(W) x [Tyeq spl(W/(gr*)). The spl(W)-component and the
spl(W'(gr™'))-component  of Vo g(pr) converge to sply(r) and to
splEVi/S,(ng)(r(ng)) by (a) and (b), respectively. Let ay =t,'8(ps) € RY,. By
taking 3 of 7,(ty)"'px —r, we have a) — 1. Since ty — 0%, B(py) = tray con-
verges to 0Y. Finally, af(px) " pa = mp(ax) 17, (tA) 1oy — 1.

The proof of (ii) is similar to that of (i).

Proposition 3.2.12 is proved. (]

PROPOSITION 3.4.29
The following conditions (1)—(3) are equivalent.

(1) The topology of DéL@) coincides with that of Dé£(2).

(2) DéL(Q) and Déi(Q) coincide in Br(log).

(3) For any p € D2y, for any w,w’" € Z such that w > w', for any member
W' of the set of weight filtrations associated to p, and for any a,b € Z such that
gtV (gr¥) #£0 and grgvl (grW) #0, we have a > b.

REMARKS

(i) Assume that the equivalent conditions of Proposition 3.4.29 are satis-
fied. Then, for any ¥ € W and for ¥ = {W/(gt"W) | W' € U, W' AW} e W,
DéL(Q) (0) = DéIL(Q)(\i/) in Br(log) if W € ¥, and DéL(Q)(\II) is an open subob-
ject of Déi(z)(\ll) in general.
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(ii) As is easily seen from Section 2.3.9, Examples I-IV in Section 1.1.1
satisfy the above condition (3), but Example V does not (see Section 3.6.2).

3.4.30. Proof of Proposition 3.4.29
We first prove that (1) implies (3). Assume that (3) is not satisfied. Then for
some p € Dgr,(2), there exists W’ € W(p) having the following property. There
are w,w’,a,b € Z such that gr’¥’ (gr’V) and gr}¥’ (gr') are not zero, and w > w’
and a < b. There is a nonzero element u of gr, such that the W’-component
mpw satisfies Ad(7,w(t))u = t*"% for all t € RX. Take any real number c¢
such that 0 <c<b—a. We have W/ #W. For t >0, let €(t) be the element
of RY, whose W’'-component is ¢ and whose other components are all 1. Let ®
be the image of ¥ in W (see Section 3.2.2). Take a point r € D on the torus
orbit associated to p, consider an element p’ of Y!(p,r,R,S) of the form p’ =
(¢(0),0,0,0,0,4,0,0) € Y!(p,r, R, S), let &(t) be the image of €(¢) in R2,, and let
p" = (€(0),0,0,0,0,6,0) € Y (p,r, R, S) be the image of p’. When t € R tends
to 0, (€(¢),0,0,0,0,8,t°u) € Y (p,r, R, S) converges to p”. But this element of
Y (p,r,R,S) is the image of (¢(t),0,0,0,0,6,tu, t**~%y) € Y (p,r, R, S) which
does not converge to p’ when ¢ — 0 because ¢+ a—b < 0. By Theorems 3.4.4 and
3.4.6, this proves that the topology of DéL(2) and that of Déi@) are different.

It is clear that (2) implies (1).

It remains to prove that (3) implies (2). Assume that (3) is satisfied. As in
Remark (i) after Proposition 3.4.29, DéL(z)(\I') is an open set of D§£(2)((I)).

By Theorems 3.4.4 and 3.4.6, it is sufficient to prove the following.

CLAIM
For a splitting o of U, the map R¥y X gr.u — OR.u, (t,u) — Ad(a(t)) "1 (u)
extends to a real analytic map Rgo X gR,u — IR, u-

By (3), for the adjoint action of G’:’IIYL,R by o, gr,. is the sum of the eigenspaces
(gR,u)m for all m e Z% such that m < 0. This proves the claim and completes
the proof of Proposition 3.4.29. a

3.5. Global properties of Dgp,(7)
In Section 3.5, we prove that the projection Déi(z) — spl(W) x Dgr,2) (gr™) is
proper (see Theorem 3.5.16). We also prove results on the actions of a subgroup
I' of Gz on DéL(2) and on Déi(Q) (see Theorem 3.5.17).

Concerning the properness of D§£(2) over spl(W) x Dgp,2) (gr"), we prove
a more precise result. We define a log modification (see Proposition 3.1.12)
Dg,2) (gr™)~ of DSL(Q)(ng), which is an object of Bg(log) and is proper over
Dgy,(2) (gr™), such that the canonical projection Dgr,2) — DSL(Q)(ng) factors as
Dsy,(2) — DSL(Q)(ng)N — DSL(Q)(ng). We prove that as an object of Bgr(log),
D§£(2) is an L-bundle over spl(W) x Dgp2)(gr'")™ (see Theorem 3.5.15). Here
L= L(F) for any fixed F € D(gr'V), and L is the compactified vector space
associated to L (see Proposition 3.2.6). This is an SL(2)-analogue of the fact
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(see [KNU2, Theorem 8.5]) that Dpg is an L-bundle over spl(W) x Dpg(gr'V).
The properness of D§£(2) over spl(W) x DSL(Q)(ng) follows from this.

3.5.1.
We define the set Dgy o) (gr™)™.

By an SL(2)-orbit on gr'V' we mean a family (puw,¢w)wez, Where, for some
>0, (pw,Pw) is an SL(2)-orbit for gr!¥ in n variables for any w € Z satisfying
the following condition (1).

(1) For 1 <j <n, there is w € Z such that the jth component of p,, is
nontrivial.

This n is called the rank of (pw, Pw)w-

We say two SL(2)-orbits (pu,0w)w and (pl,, ¢l )w on gV are equivalent if
their ranks coincide, say, n, and furthermore, there is t = (¢1,...,t,) € RZ, such
that

Py = Int (P~w (t))pwv P = Pu(t)Pw
for any w € Z, where p,,(t) is as in Section 2.5.1.
Let Dgr,(2) (gr™)™ be the set of all equivalence classes of SL(2)-orbits on gr'V'.
Note that the SL(2)-orbits on gr'V just defined are in fact what should be
called nondegenerate SL(2)-orbits on gr’. We omitted this adjective in the above
definition since we use only nondegenerate ones for the study of DSL(Q)(ng)N.

3.5.2.
The canonical map Dgrp,2) — Dsr2)(gr") = [T,,ez Dsiz)(grly ) factors as
W)N

Dgr,(2) = Ds,2)(gr — Dsr2)(gr"),

where the second arrow is

DSL(2) (ng)N - DSL(2) (ng)7 (class of (pwv @w)w) = (class of (pw7 @w))wa

and the first arrow is defined as follows. Let p € Dgy,(2) be the class of an SL(2)-
orbit ((pw,Yw)w,r) in n variables of rank n, and let ¥ be the associated set of
weight filtrations. Then the image p of p in Dgp,a) (gr™)™ is the class of the
following SL(2)-orbit (pl,, @ )w on gtV If W & U, (p., 0')w = (Pw; Pw)w, and
hence p is of rank n. If W € ¥, then (p!,, ¢!, ). is an SL(2)-orbit on gr'’" of rank
n — 1 defined by

p{w(gla cee ’gnfl) :pw(lvglv' . 7gn71)7 SO{LU(Zl; v ,anl) = @w(ivzlv" '7Zn71),

for w € Z.

The map Dgy,(2) — Dsi(2) (gr™)~ is surjective.

The map Dgr,(2) — W, p — W(p) (see Section 3.2.2) factors through Dgy,(2) —
Dg,2) (gr™)~. For q € Dsy,(2) (gr™)~, we denote by W(q) € W the element W(p)
for p an element of Dgy (o) with image ¢ in DSL(Q)(ng)N, which is independent
of the choice of p.



232 Kato, Nakayama, and Usui

The map DSL(Q)(ng)N — DSL(Z)(ng) is also surjective. This is shown as
follows. For each w € Z, let (pu,¢w) be an SL(2)-orbit on gr!¥ in n(w) vari-
ables of rank n(w). Let n = max{n(w) | w € Z}, and let (pl,,¥.,) be the SL(2)-
orbit on gr!¥ in n variables defined by p! (g1,...,9n) = Puw(g1s-- - In(w)) and
(215, 20) = @u(21,- -+, Zn(w))- Then (class of (pu, Yw))w € [1, Dsr(2)(griy )
is the image of the element (class of (p,,¢},)w) in Dgp2)(gr'’)™ (cf. Section
3.5.1).

The map Dsp,2)(gr'’")™~ — Dsp2)(gr'’") need not be injective (see Corol-
lary 3.5.12, Example V in Section 3.5.13). There are two reasons for this. The
first reason is as follows. For SL(2)-orbits (puw, Puw)w and (o, @’ )w on gr'V, their
images in Dgy,(2)(gr"”) coincide if and only if (puw, ¢w) and (pl,, ¢},) are equiva-

w) which can

lent for all w, and the last equivalences are given by elements of R
depend on w € Z (here n(w) = rank(py,, ¢ ) = rank(pl,, ¢},)) not hke the equiv-
alence between (pu, 0w )w and (pl,, ¢, )w defined as in Section 3.5.1. The second
reason is as follows. For p € Dgy, (2, the image of p in DSL(Q)(ng)N still remem-
bers W(p) € W, but the image of p in Dgy,2)(gr""’) remembers only the image
of this element of W in [], W(grly) (see Section 3.3.1). As in Lemma 3.3.2,
the map W — [T, W(grly) is described as (®,(®(w))w) — (®(w)), and is not
necessarily injective.

3.5.8.

For Q = (Q(w))wez € [ yez W(gr!V) (see Section 3.3.1), let Dgr,2) (gr"™)(Q) be
the open set of DSL(Q)(ng) defined by

Dsp2)(gr"” H Dsp2)(griy )(Q(w)) C Dsp2)(gr™),
weEZ
as in Section 3.4.21.
Define

Dsp2)(gr”)™(Q) C Dgp 2y (gr™)™

as the inverse image of Dgr,(2)(gr" )(Q) in Dgy(2)(gr"")™. For p € Dgr,2)(gr™)™,
p belongs to Dsp2)(gr™)™~(Q) if and only if ® :=W(p) satisfies ®(w) C Q(w)
for all w € Z.

3.5.4.
Let Q = (Qw))w € [T,ezWlery), let S = D o)(gr')(Q), and let S =
@D,z NP, Then we have a canonical surjective homomorphism S — Mg /O3
characterized as follows. For any distance to Q(w)-boundary 8., = (Bw,j)jeq(w) :
D(gr?) — Rgéw) given for each w € Z, this homomorphism sends m =
((m(w,5))jequ)), €S (m(w,j) €N) to (Iuezjcoww Fuy?) mod 0. This
homomorphism lifts locally on S to a chart & — Mg ~¢.

In Sections 3.5.5 and 3.5.6 and Proposition 3.5.7, we define and study a
finite rational subdivision ¢ of the cone Hom(S, R‘*dd) =[lvez Rgéw)7 and in
Theorem 3.5.9 we identify Dgp,(2)(gr"")~(Q) with the associated log modification
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S(X¢q) (see Proposition 3.1.12) of S. We see in Section 3.5.10 that there is
a unique structure on Dgp2)(gr’)™ as an object of Bg(log) for which each

Dg,(2) (gr"™)™(Q) (Q €llpez W(grgjv)) is open in DSL(Q)(ng)N and the induced
structure on it coincides with the structure as the log modification.

3.5.5.
For Q = (Q(w))wez € [[,ez W(grl ), we define a finite rational subdivision ¢

of the cone [],cz RQéw)

First, we recall that, for a finite set A, the barycentric subdivision Sd(A) of
the cone R4, is defined as follows (cf. [I, Section 2.8]). Let J(A) be the set of all
pairs (n, g) , where n is a nonnegative integer and g is a function A = {j € Z |0 <
Jj <n} such that the image of g contains {j € Z|1<j <n}. For (n,g) € J(A),
define the subcone C(n,g) of R4, by

C(n,g) = {(ax)rea | ax <ay if g(A) < g(p),axr =0 if g(A) =0}.

Then the set of cones SA(A) :={C(n,g) | (n,g) € J(A)} is a finite rational subdi-
vision of Rgo and is called the barycentric subdivision of Réo. The map

J(A) —=8d(A),  (n,9) = C(n,g)

is bijective. For (n,g) € J(A), the dimension of C(n,g) is equal to n.

Let Q = (Q(w))w € [Tpez W(grly). For each w € Z, we regard Q(w) as a
totally ordered set by Proposition 2.1.13.

Let A =|,cz @Q(w). Define a subcone C' of R/;O =[loez Rgéw) by

C = {((aw,] JEQ(U) 6 H RQ w) Clwhj S a’w,j/
weZ

if weZ,j,j € Qw), andjzj’}.

as follows.

Let
Sd'(A) = {o €Sd(A) | o c C} CSd(A),

J'(8) ={(n,9) € J(A) [ g(w,j) < g(w,j") it we Z,j,j € Q(w) and j > j'}
C J(A).

Here and hereafter, g(w,—) denotes the restriction of the map ¢g on Q(w) C A
for any w. Then

Sd'(A {C (n,9) | (n,g) € J’(A)},
and Sd’(A) is a subdivision of C.
We have an isomorphism of cones
(1) >0— HRQ S b,
weZ

where ¢, ; 1= ZkeQ(w)’ij by i for w € Z and j € Q(w).
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Let X be the subdivision of the cone Rgo =[luez Rgéw) corresponding to
the subdivision Sd’(A) of the cone C' via the above isomorphism (1).

3.5.0.
Let W — [],,ez W(grly) be the map defined in Section 3.3.1.

For Q = (Q(w))w € [[,ez Wierl), let W(Q) C W be the set of all ® € W
such that ®(w) C Q(w) for any w € Z.

PROPOSITION 3.5.7
Let Q = (Q(w))w € [[ez W(gry ). Then we have a bijection

WQ) =g, P+ os,

where og is the set of all elements ((bw,j)jeq(w))wez Of [Luez Rgéw) satisfying
the following condition (1).

(1) Let w,w' €Z, j € Q(w), 7 € Q(w'). Assume that, for any M € ® such
that j < M(gr!V), we have j' < M(gr!V) (see Proposition 2.1.13). Then

Z bw,k < Z bw’,k~

keQ(w), k2] keQ(w’),k>j

REMARK
Condition (1) is equivalent to the following conditions (1a) and (1b):

(1a) by, ; =0 unless there is an M € ® such that j = M (gr!V);
(1b) by j = by if there is an M € ® such that j = M(grl)) and j' =
M (gry)).

Proof

By the construction in Section 3.5.5, we have bijections J’(A) ~ Sd'(A) ~ Xq.
Under these bijections, the above o is equal to the element of ¥ correspond-
ing to the element C(n,g) € Sd'(A), where (n,g) is the element of J'(A) (A=
||ycz @(w)) defined as follows. Let n be the cardinality of ®, that is, n = dim og.
Let MM = (MM (w))y, ..., M™ = (M (w)),, be all the members of & such
that MW (w) <--- < M (w) for any w € Z with respect to the ordering in
Proposition 2.1.13. Then, for w € Z and j € Q(w), define

g(w,j) =8{k |1 <k <n,M®(w) > j}.
By Lemma 3.3.2, this map W(Q) — J'(A), ® — (n, g), is bijective. 0

LEMMA 3.5.8

Let Q € HwEZW(gry), let pe S = DSL(Q)(ng)(Q), let ¢ be a point of
D12y (gr"V)~(Q) lying over p, let ® =W(q) (see Section 3.2.2), and let o4 =
op €Xq (see Proposition 3.5.7). Let P'(aq) C M§", , be as in Section 3.1.13.
That is, for S and S in Section 3.5.4, let S(oy) be the subset of S8 consisting

of all elements m of S8P such that the homomorphism S8 — R defined by any
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element of o4 sends m into R>g, let P(oy) be the image of S(oq) in (ME’/OF),,
and let P'(a,) be the inverse image of P(aq) in Mg, . Then we have

(1) P'(og) ={fe Mg, | f(74(t)ry) converges in Rxo},
(2) P(og)*={f¢€ Mg, , | f(7q(t)rq) converges to an element of R}

Here rq is a point on the torus orbit associated to q, T4 : Rgo — Aut(gr'V) s Ty
in Section 3.2.8 for a point ¢’ € Dgy,2y lying over q, and t tends to 0%.

Proof
In the notation of Section 3.5.4, P'(0,) C Mg, , is written as

Plo)= U 03, [I 8057
meS(oq) weZ,jEQ(w)
where m = ((m(w,j))ng(w))wez. This coincides with the right-hand side of (1)
by Proposition 3.2.6(ii). Since P'(0,)* = P'(c4) N P'(04)~", (2) follows. d

THEOREM 3.5.9
Let Q € [T,ez W(grl)).
(i) Let Dsp2)(gr")(Sq) be the log modification (see Proposition 3.1.12) of

Dgy,2) (gr)(Q) corresponding to the subdivision $¢ of the cone [loez Rgéw) n
Section 3.5.5. Then we have a bijection

Dsr2) (er'")~(Q) — Dgr,2) (er™)(Zg)

which sends a point q of Dsy(2) (gr"™)™(Q) lying over p € Dgr,(2) (gr™)(Q) to the
point (p,oq,hy) (see Section 3.1.13) of DSL(Q)(ng)(EQ) lying over p, where oy
is as in Lemma 5.5.8 and hq is the homomorphism defined by

hq: P'(0q)* — R, f— thr(?@ f(Tq(t)rq),

where rq, T, and ® =W(q) are as in Lemma 3.5.8.

(i) Let ® € W(Q), and let Dsy,2)(gr™ )~ (®) C Dsp(a)(gr™)™ be the image
ofDéim((I)). Then Déi(m(@) coincides with the inverse image of Dsy,(2) (gr™ )™~ (®)
in Dsy).  Furthermore, let o € ¥g be as in Proposition 3.5.7; then
Dgr,(2) (gr™)~(®) coincides with the part of DSL(g)(grw)N(Q) which corresponds
to the part Dsy o) (gt )(ce) of Dsi2)(gr" )(Eq) under the bijection in (i).

Proof

Let p€ DSL(Q)(ng), let A be the fiber of DSL(g)(ng)N — DSL(z)(ng) on p,
and let B be the set of all pairs (®, Z), where ® is an element of YW whose image
in TT, W(grly) is W(p(grly))), and Z is an R2j-orbit in D(gr') contained
in [[,, Zw, where Z,, is the torus orbit associated to p(gr’”). Then we have a
bijection from A to B given by ¢ (®,Z), where ® =)W(q) and Z is the torus

orbit associated to g.
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Assume that Q(w) =W (p(gr!V)) for all w. Then, once ® € W(Q) is fixed,
the set Bg of all Z such that (®,2) € Bis a (([I,cz RQ w))/R o)-torsor. On
the other hand, let ¢ be the cone corresponding to @, and let Cg be the set of
all homomorphisms P’(c)* — R~ which extend the evaluation OZ, — Rsg at
p. Then Cg is also a ([T, ez

action. By the canonical isomorphism M8

>0,p
RQ(w ) / R>0) -torsor with respect to the following

/0% = [Twez ZO™), we have an

>0,p >0,p —

isomorphism

Hom(ME} ,/O%, ,, Ro) =~ H Rg(()w)
weEZ

which induces an isomorphism between quotient groups
Hom(P’( ) /0%, p,R>0 (H RQ(w))
weZ

Since Cg is a Hom(P'(0)* /0%, ,,Rxo)-torsor in the evident way, it is a

((IMyez Rggw))/Rgo)—torsor. Let Ag be the subset of A consisting of all g € A
such that W(q) = ®. Then the bijection A — B induces a bijection A —
Bg. The map Ag — Cg which sends g € Ag to the homomorphism P’(0)* —
R.o, f—lim; g f(74(t)ry) (see Lemma 3.5.8) induces a map Bs — Cg which
wez RE) /R, Since Bg and Cp are
((HwEZ Rg(()w))/Rgo)—torsors7 this map Bg — Cg is bijective. Hence the map
Ag — Cg is bijective.

Theorem 3.5.9 follows from this. |

is compatible with the action of (I]

3.5.10.

Weregard Dgy2) (gr'")™ asan object of Br (log) as follows. For Q € [T, oz W(erly ),
Dst,(2)(gr")~(Q) is regarded as an object of Bg(log) via the bijection in Theorem
3.5.9. If Q' € [[,ez Wierl) and Q' (w) C Q(w) for all w € Z, Dgy,2)(gr" )~ (Q")
is open in Dg,(2) (gr)~(Q) and the structure of Dgr,(2) (gr")~(Q") as an object
of Br(log) coincides with the one induced from that of DSL(Q)(ng)N(Q), as is

~

easily seen. Hence there is a unique structure on DSL(Q)(ng) as an object
of Br(log) for which Dgy)(gr')~(Q) are open and which induces on each

Ds1,(2)(gr")~(Q) the above structure as an object of Bg (log).

PROPOSITION 3.5.11
Let p € Dgr,(2) (grv). Then the following two conditions are equivalent.

(1) The fiber of the surjection Dgy ) (gr™ )™~ — Dg,2)(gr") over p consists
of one element.

(2) There are at most one w € Z such that the element p(w) of Dgr(2) (gr)
does not belong to D(gr!V).

Proof
This is seen easily by the proof of Theorem 3.5.9. O
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From this the next corollary follows.

COROLLARY 3.5.12
The following three conditions are equivalent.
(1) The map Dgy2)(gr")™ — Dgy,2)(gr™V) is bijective.
(2) The morphism DSL(Q)(ng)N — Dsp,(2) (gr™) is an isomorphism of local

ringed spaces over R.
(3) There are at most one w € Z such that Dsy,2)(griy ) # D(grly ).

3.5.13.
Consider Dgr,(2) (gr™)~ for the five Examples I-V in Section 1.1.1.
For Examples I-1V, we have Dgp,(2) (gr"™)~ = Dg,2) (gr™) by Corollary 3.5.12.

EXAMPLE V
Let M be the increasing filtration on gr}’" defined by

M 3=0CM y=M_=Rej C My=M,=M_; +Rey, C My=gry’ .
Let M’ be the increasing filtration on gr}” defined by
M, =0C My=M,=Re, C M)=gr}".

Let Q = {Q(w)}wez be the following: Q(0) :={M}, Q(1):={M'}, and Q(w) is
the empty set for we Z ~ {0,1}. Let A:={M,M'}.

Then the subdivision g of R4, =], cz Rg(()w) in Section 3.5.5 is just the
barycentric subdivision of R%,. In the notation in Section 3.5.5,0<n<2andg
is a function A — {0,...,n}, and hence the fan ¥ consists of the vertex {(0,0)}
and the following cones according to Cases m =1,2,3,4,5 in Section 2.3.9:

(0) n=0, g(M) =g(M’) =0, and C(0,9) ={(0,0)},

(1) n=1,g(M)=1, g(M') =0, and C(1,9) =R x {0},

(2) n=1, g(M)=0, g(M") =1, and C(1,9) = {0} x Rxo,

(3) n=1, g(M) =g(M') =1, and C(1,9) = {(ax)r € R%, | arr = anr'},
(4) n=2, g(M)=2, g(M') =1, and C(2,9) = {(ax)» € RE, | anr > anr'},
(5) n=2, g(M) =1, g(M') =2, and C(2,9) = {(ax)r € RZ, | ans < anr}.

Let B be the closure of R% ) in the corresponding blowing up of C? at (0,0).

Let S = Dgp,2)(gr")(Q). Then the inverse image Dg2)(gr”)™~(Q) of S
via the projection Dgr 2)(gr™)™~ — Dgp,2)(gr"’) (see Section 3.5.3) is the log
modification S(X¢) in Proposition 3.1.12 (see Theorem 3.5.9(i)), and we have
the following commutative diagram:

S(2q) = Dsrz (gr")~(Q) B x R? x {*1}
! !
8= Dsr2)(gr")(Q) ~ R, xR x {&1}.

12

In the above isomorphism for Dgp, o) (gr"™)~(Q), the class p,, in
D, 2)(gr")~(Q) of the SL(2)-orbit in Case m in Section 2.3.9 corresponds to
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the point (b, (0,0),1) of B x R? x {£1}, where b, is the following point of B:
by is the limit of (¢,1) € R2, for t — 0, by is the limit of (1,¢) for t — 0, b is
the limit of (¢,¢) for ¢t — 0, by is the limit of (tgt1,t1) for to,t; — 0, and by is the
limit of (¢, tot1) for tg,t1 — 0.

PROPOSITION 3.5.14

The map Déiu) — Dgr,(2)(gr™)™ is a morphism of Br (log).

The proof is given together with that of Theorem 3.5.15 below.

THEOREM 3.5.15

Fiz any F € D(gx™), let L= L(F), and let L be the compactified vector space
associated to the graded vector space L of weights < —2. Then Déi@) s an
L-bundle over spl(W) x Dgy o) (gr™)™ in Br(log).

For the definition of the compactified vector space L, see the explanation after
Proposition 3.2.6 (see [KNU2, Section 7] for details).

Proof of Proposition 3.5.14 and Theorem 3.5.15
We deduce Proposition 3.5.14 and Theorem 3.5.15 from Theorem 3.4.4.

Let pe D§£(2), and let p’ be the image of p in Dgp,(z) (gr")~. Let re D
be a point on the torus orbit associated to p, and let ¥ be the image of r in
D(gr"V). Tt is sufficient to show that for some open neighborhood U of p’ in
Dgy,2) (gr™)~, if we denote the inverse image of U in DSL(Q) by U, then U
is open in DSL(Q)’ the projection U—Uisa morphism of Bgr(log), and U is
isomorphic to U x spl(W) x L as an object of Br(log) over U x spl(W).

For w € Z, let p, = p(gr!¥) and r,, = r(gr’’). Take (Ry,Sw) for (pu,rw)
as a pair in Section 3.4.1. Let ® = W(p) and Q(w) = W(py). Let R’ be an R-
subspace of [],, Lie(ﬁw(Rgéw))) such that ], Lie(ﬁw(Rgéw))) = Lie(p(R%,)) &
R'. Let R= (Hw Rw) ® R and S=1]], Sw. Then (R,S) is a pair for (p,r) as in
Section 3.4.1.

Let Y(p,r,S) (resp., Y (p,r, R, S)) be the subset of Z(p) x S (resp., Z(p, R) x
S) consisting of all elements (¢, f,g,h, k) ((¢, f,9,h) € Z(p) (resp., € Z(p,R)),
k € S) which satisfy condition (4) in Section 3.4.2. We define the structure of
Y(p,r,S) (resp., Y(p,r, R, S)) as an object of Br(log) just in the same way as in
the definition for Y/ (p,r,S) (resp., Y (p,r,R,S)) in Section 3.4.2. Note that
we have evident isomorphisms in Bg(log),

YH(par S) (p,I‘ S)XLXgRua YH(perS) (parRS)XLXgRu

Let Yy(p,r,S) (resp., Yo(p,r, R, S)) be the open set of Y (p,r,S) (resp., Y(p,r,
R, S)) consisting of all elements (¢, f,g,h, k) such that t € R,

For an open neighborhood U of zero in gr(gr'") x gr(gr'’) x gr(gr'’) x S
(resp., gr(gr") x R x gr(gr') x ), we define Y(p,r,S,U) (resp., Y(p,r, R,
S,U)) as the open set of Y (p,r,S) (resp., Y (p,r, R,S)) consisting of all elements
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(t7f’g7h’ k) SuChthat (f?g’h7k) E U' Let Yo(p7r7S7U) :%(p’r7 S)ﬁY(p,r,S’ U)
(resp'7 Yo(p7r7R7 S7 U) = Yo(p’r’R7 S) mY(p,I‘, R7 S7 U))'

CLAIM 1

For a sufficiently small open neighborhood U of zero in gr(gr'’) x R x gr(gr') x
S, there is an open immersion Y (p,r, R, S,U) — Dgy,2) (gr™)~ in Br(log) whose
restriction to Yo(p,r,R,S,U) is given as (¢, f,g,h,k) — 7,(t)exp(g) exp(k)T €
D(gr"V') and which sends (0%,0,0,0,0) € Y (p,r,R,S,U) to p'.

We give the proof of Claim 1 later. We need one more claim.

CLAIM 2

Let q € Dsy,(2), and let (¢',s) € Dgy2) (gr™)™ x spl(W) be the image of q. Then
the fiber on (q',s) in Dgy(2) regarded as a topological subspace of DéL(Q) (resp.,
Déi(z)) is homeomorphic to L.

Claim 2 is shown easily.

We show that Proposition 3.5.14 and Theorem 3.5.15 follow from Claims 1
and 2. Let U be a sufficiently small open neighborhood of zero in gr(gr'V) x
R x gr(gr"V) x S, let U’ be the image of the open immersion Y (p,r, R, S,U) —
Déi(z) (see Theorem 3.4.4), and let U” be the image of the open immersion
Y(p,r,R,S,U) — DSL(z)(ng)N (see Claim 1). Then U’ — U” is a morphism
of Br(log) since Y (p,r,R,S,U) — Y (p,r, R, S,U), which is identified with the
projection Y (p,r, R, S,U)x LX gr o — Y (p, 1, R, S,U), is a morphism of Bg (log).
The map U’ — U” x spl(W) is a trivial L-bundle since Y (p,r,R,S,U) —
Y(p,r,R,S,U) x spl(W) is identified with the projection Y (p,r,R,S,U) x L x
spl(W) — Y (p,r, R, S,U) x spl(W). Hence this morphism is proper. Let V be the
inverse image of U” x spl(W) under the canonical map Déi(m — Dgp,(2)(gr™)™ x
spl(W). We prove V =U’. Indeed, since U’ is proper over U” x spl(W), U’ is
open and closed in V. Since all fibers of V' — U” x spl(W) are connected by
Claim 2, and since U’ — U" x spl(W) is surjective, we have V =U’. Hence V is
open in D§£(2), V — U” is a morphism of Bg(log), and V — U” x spl(W) is a
trivial L-bundle.

We prove Claim 1.

For each w € Z, let Q(w) € W(gr)V) be the image of ®. For each w €
Z, by Theorem 3.4.4 for the pure case, there is an open neighborhood U,, of
zero in gr(gr!’) x gr(gr’) x gr(gr’’) x S, such that we have a morphism
Y (Do, T, Sy Uy) — Dgr,(2) (gr”) which sends (t,f,g,h, k) € Y (puw,Tw, Sws
Uw) to 7, (t) exp(g) exp(k)ry,, which induces an open immersion Y (py,, T, R,
Sw,Ul) = Dsp2)(gry) (UL, := Uy (gr(grl) ) x Ry x gr(grly ) X Sw)) and which
sends (09(*),0,0,0,0) € Y (py,, T, Ru, Sww, UL,) t0 py. By Lemma 3.4.13 for the
pure case, for some open neighborhood U/ C U,, of zero in gr(gr?) x gr (gr!V) x
gr(gr?) x Sy, we have a morphism Y (py, vy, Sw,U") — Y (py, tw, R, Sw,
U,,) which commutes with the morphisms to Dgy(grly ). Let Y(p,r,5) —
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Y (pay Tas, Su) be the morphism (£, £, g, b, k) — (¢(r ), £(er!¥), g(gr!¥), h(z?),
k(grl)), where t(gr!?) denotes the image of ¢ under the homomorphism R, —
R‘ff{“) of multiplicative monoids induced by the map ® — Q(w). Then if U is a
su%ﬁciently small open neighborhood of zero in gr(gr'V) x R x gr(gr'V) x S, the
image of Y (p,r,S,U) under this morphism is contained in Y (py,, 1y, Sy, U!)
for any w. Hence we have a composite morphism

S : Y(p7r757 U) - HYH(pw7rw7Sw7UqZ) - HYII(pw7r’(U7R’LU75w7U1/U)'
w w

Let P be the fiber product of

HYH pwarw7Rw75waU/ HHRQ(w ‘—R X >O (HRQ(w)

in Br(log). Here RE x RZ (IT., RQ w)) is the quotient of RZ, x (T, Rg((;u))
under the action of R®, given by (Jc y) — (az,a”y) (a € R%)). Then P is
identified with the fiber product of

H Y (pyy, s, Rupy S, Uyy) — H Dgr2) (g ) (Q(w)) « Dsr2)(gr™ )™ (@).

Hence we have an open immersion P — Dgy,2) (gr™")™.
We have a unique morphism

& :Y(p,r,S,U)— P

in Bgr(log) which is compatible with &, Tt is induced from ¢ and from the
morphism Y (p,r, S,U) — RZ, x RZ, (T, RQ w)) which sends (¢, f, g, h, k) to tt/,
where ¢’ €[], Rgéw) is the ([T, Rgéw))—component of £(1,9,9,9,k).

CLAIM 3

If U is a sufficiently small open neighborhood of zero in T := gr(gr') x R x
gr(gr") x S, the morphism Y (p,r, R, S,U) — P induced by £~ is an open immer-
ston.

By Claim 3, the open immersion stated in Claim 1 is obtained as the composite
Y(p,r,R,S,U) — P — DSL(Q)(ng)N. It remains to prove Claim 3.

For an open neighborhood U of zero in T', let P(U) be the open set of P con-
sisting of all elements (¢, f, g, h, k) (t cR? S0 xR0 (Hw Rg(()w)), f,h€gr(gr™),
9 €1, Rus k€1, Sw) such that ¢ = exp(a) for some # € RE, and for some
a € R’ satisfying (f,a+ g,h,k) € U. Then, for a given open neighborhood U of
zero in T, there is an open neighborhood U’ of zero in T such that the map
€~ induces a morphism Y (p,r,R,S,U’) — P(U). On the other hand, if U is
an open neighborhood of zero in T, then for a sufficiently small open neighbor-
hood U’ of zero in T, we have a morphism P(U’) — Y (p,r,R,S,U). This mor-
phism is obtained as the composite P(U’) — Y (p,r,S,U") — Y (p,r,R,S,U).
Here U” is a suitable open neighborhood of zero in T. The first arrow is
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(t'exp(a), f,g,h, k) — (', f',¢', W, k), where f', ¢, h' are near to f,g,h, respec-
tively, and defined by exp(g’) = exp(a) exp(g), exp(f’) = exp(f) exp(a), exp(h') =
exp(2a) exp(g) exp(—a). The second arrow is a morphism constructed in the same
way as in the proof of Lemma 3.4.13. For an open neighborhood U of zero in
T, the composite Y (p,r,R,S,U") — P(U’) — Y (p,r,R,S,U) and the compos-
ite P(U") — Y(p,r,R,S,U’) — P(U) are inclusion maps. Here U’ and U” are
open neighborhoods of zero in T', U’ is sufficiently small relative to U, and U”
is sufficiently small relative to U’. This proves Claim 3. ]

THEOREM 3.5.16
The canonical map

D{{ (2 — spL(W) x Dsp(2) (gr™)

1S proper.

Proof
The map D§£(2) — spl(W) x DSL(Q)(ng)N is proper by Theorem 3.5.15. The

map DSL(Q)(ng)N — DSL(Q)(ng) is proper (see Theorem 3.5.9, Section 3.5.10).
O

THEOREM 3.5.17
Let T be a subgroup of Gz. For x =1 11, we have the following.

(i)  The action of T on DgL@) s proper, and the quotient space F\D;L(Q)
1s Hausdorff.

(i) Assume that T' is neat. Lety €T, p € Dgra), and assume yp =p. Then
v=1.

(ili) Assume that I' is neat. Then the quotient I'\Dg; ., belongs to Br (log),
and the projection D§L(2) — F\DgL@) is a local isomorphism of objects of Br(log).

Here in (iii), we define the sheaf of real analytic functions on I'\ Dg; ) and the log
structure with sign on I‘\D;L(Q) in the natural way. That is, for an open set U of
F\D;L(Q), a real-valued function f on U is said to be real analytic if the pullback
of f on the inverse image of U in DgL(z) is real analytic. The log structure M of
T \DgL(z) is defined to be the sheaf of real analytic functions whose pullbacks on
D§L(2) belong to the log structure of D;L(Q). The subgroup sheaf MEY of MeP
is defined to be the part of M®P consisting of the local sections whose pullbacks
to Dy (o) belong to the MEQ of D .

Recall that a subgroup I' of Gz is said to be neat if, for any v € I, the
subgroup of C* generated by all eigenvalues of the action of v on Hy ¢ is torsion
free. If T" is neat, then I is torsion free. There exists a neat subgroup of Gz of
finite index (see [Bo).

Proof of Theorem 3.5.17
The proof is similar to [KNU2, Section 9], where we considered Dgs.
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(1) Déi(z) is Hausdorff because Dgr,(2)(gr'") is Hausdorff (see [KU2]), and the
map Dé£(2) — spl(W) x Dgp,2)(gr"") is proper (see Theorem 3.5.16). It follows
that DéL@) is also Hausdorff.

Let ', be the kernel of I' — Aut(gr""). The properness of the action of I' on
D§£(2) is reduced to the properness of the action of I'/T",, on DSL(Q)(ng), which
is proved in [KU2], and to the properness of the action of I, on spl(W). The
properness of that on DéL(Q) follows from this because DéL(Q) is Hausdorff.

Since the action of I" on D;L(Q) for x = 1,11 is proper, the quotient space
I\Dg;, (5 is Hausdorf.

(ii) The pure case is proved in [KU2]. The general case is reduced to the
pure case since the action of I';, on spl(W) is fixed point free.

(i) By (i) and (i), the map Dg; o) — I'\Dg; ) is a local homeomorphism.
The assertion (iii) follows from this. O

3.6. Examples
We consider DéL@) and Déi(z) for Examples I-V in Section 1.1.1.

3.6.1.
We consider D o).

We use the notation in Section 1.1.1. As in Section 1.2.9, we denote by L
the graded vector space L(F) = Ly~ ' (F) C £ with F € D(gr"'), which is inde-
pendent of the choice of F' for Examples I-V. Recall that Déi(Q) is an L-bundle
over spl(W) x Dgp,2)(gr’)™ (see Theorem 3.5.15) and that for Examples -1V,
Dgr,2)(gr")™ = Dsp2)(gr") (see Corollary 3.5.12). We describe the structure
of the open set Déi@)(@) of Déi@) for some ® € W. )

Let h={z+iy|z,y e R,0<y < oo} Dh. We regard h as an object of
Br(log) via h ~Rso x R,z + iy — (1//y,z) (cf. Section 3.2.13).

EXAMPLE |
We have a commutative diagram in Bg(log),

D ~ spl(W)x L
N N
Dij oy =~ spl(W)xL

where the upper isomorphism is that of Section 1.2.9. Here spl(W) ~ R,
Dgr,2) (gr"') = D(gr"V') which is just a one-point set, L ~ R with weight —2,
and L is isomorphic to the interval [—oo,00] endowed with the real analytic
structure as in [KNU2, Example 7.5], with w = —2 which contains R =L in the

natural way (see Section 1.2.9).

EXAMPLE Il
Let Q= {W'} e W(gt™}) =1, W(er?), where

W ,=0CW =W =Rej cW,=g™,.
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The isomorphism D(gr"') = D(gr"}) ~ h extends to Dg o) (gr"V)(Q) ~b.
Let ® be the unique nonempty element of W(Q). We have a commutative
diagram in Bg(log),

D ~ spl(W) x b
N N
Dl )(®) =~ spl(W)xb

Recall that spl(W) ~R? (see Section 1.2.9). In this diagram, the upper isomor-
phism is that of Section 1.2.9. The lower isomorphism is induced by the canonical
morphisms Déi(z) — spl(W) and Déi(g)(tl)) — Dgr,2)(gr"™)(Q) ~ b.

The specific examples of SL(2)-orbits of rank 1 in Section 2.3.9, Example II
have classes in Déi@)(@) whose images in b are ioco.

EXAMPLE I
Let Q@ = {W'} e W(gr";) =1, W(er), where

WI,5:0CW,,4:WL3:R€/1CW’,QZgr%

The isomorphism D(gr"V) = D(gr";) ~ h extends to Dg o) (gr"V)(Q) ~b.
Let ® be the unique nonempty element of W(Q). We have a commutative
diagram in Bgr (log),

D spl(W) x b x L (5.2 + iy, (dv, d2))
N Lo i)
Déi(Q)(é) ~ spl(W)xbhxL (s,x—I—iy, (y_le,y_ldg))

Here spl(W) ~ R?, L~ R? with weight —3, and (d;,d2) € R? = L (see Sec-
tion 1.2.9). In this diagram, the upper isomorphism is that of Section 1.2.9. The
lower isomorphism is induced by the canonical morphisms Déi(z) — spl(W) and
Déi(z)((l)) — Dgr,(2) (gr")(Q) ~ b, and the following morphism Déi(Q)((I)) — L.
It is induced by v, g, where a_3: G, r — Aut(gr';) is defined by a_3(t)e} =
t=4e], a_3(t)eh =t 2eh, and B: D(gr';) = h — R is the distance to ®-boundary
defined by x4 iy — 1/,/y (see Section 3.2.13). Note that the right vertical arrow
is not the evident map, as indicated.

The SL(2)-orbits in Section 2.3.9, Example III, Case 1 (resp., Case 2, resp.,
Case 3) have classes in Déi(g)(tl)) whose images in h x L belong to {icc} x L
(resp., {i} x (L ~\ L), resp., {ico} x (L \ L)).

1

EXAMPLE IV
Let Q@ ={W'} e W(gr™}) =1, W(er), where

Wi3=0CWL2=WL1=R6/2CW6:grE/1
The isomorphism D(gr"V) = D(gr"}) ~ h extends to Dg,2)(gr"")(Q) ~b.
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Let ® be the unique nonempty element of YW(Q). We have a commutative
diagram in Bg (log),

D spl(W) xhx L (s,x +iy,d)

N ! !
Dl oy(®) = spl(W)xbhxL  (s,z+iy,y 'd)

R

Here spl(W) ~ R5, L ~ R with weight —2, and d € R = L (see Section 1.2.9). In
this diagram, the upper isomorphism is that of Section 1.2.9. The lower isomor-
phism is induced from the canonical morphisms Déi(Q) — spl(W), Déi(m((l)) —
Der,(2)(gr")(Q) ~ b and the following morphism D (5y(®) — L. It is induced
by va,3 (see Propositions 3.2.6, 3.2.7, Section 3.2.8, Proposition 3.2.9, Theo-
rem 3.2.10), where a_; : G, r — Aut(gr")) is defined by

a_q(t)ey =t"2eh a1 (t)ey =ef

and B : D(gr"]) =bh — R is the distance to ®-boundary defined by z + iy
1/\/y (see Section 3.2.13). Note that the right vertical arrow is not the inclusion
map, as indicated.

The SL(2)-orbits in Section 2.3.9, Example IV, Case 1 (resp., Case 2, resp.,
Case 3) have classes in Déi(z)(d)) whose images in h x L belong to {ico} x L
(resp., {i} x (L~ L), resp., {ico} x (L \ L)).

EXAMPLE V
Let @ € [[, W(gr?), and let the log modification B of R, be as in Sec-
tion 3.5.13. The isomorphism D(gr') ~ h* x b (see Section 1.2.9) extends to
an isomorphism Dagr,(2)(gr'")(Q) ~ bt x b (h* is the disjoint union of b+ =h
and b~ ={z+iy|z€R,0>y > —oo} (h" ~h~,z +iy+— —x —iy)), and this
composite isomorphism is extended to an isomorphism DSL(Q)(ng)N(Q) ~ B x
R? x {£1} (see Section 3.5.13).

Let ® be the maximal element of W(Q). We have a commutative diagram
in Bgr(log),

D = spl(W) x b= x b (5,2 + iy, " +iy')
n ! !
D§i)(®) = splW) x BxR?x {#1}  (s,1/V/Iyl,1/ V¥, 2,2 sign(y))

Here spl(W) ~ RS (see Section 1.2.9). In this diagram, the upper isomorphism is
that of Section 1.2.9. The lower isomorphism is induced from the canonical mor-
phisms D&p o) — spl(W) and D (@) — Dspz)(gr")~(Q) = B x R? x {£1}.

The SL(2)-orbits in Section 2.3.9, Example V have classes in D{ , (®) whose
images in B are described in Section 3.5.13.

3.6.2.

We consider DéL . For Examples -1V, DéL(Z) = Déi@) by Proposition 3.4.29.

(2)
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EXAMPLE V
Let U ={W'} € W, where

WL3ZOCWL2:WL1:R€1 CW(S:WL1+R€2
C W] =W;s+Res+Res C Wy = Hor.

(This W’ is W) in Section 2.3.9, Example V, Case 1.) Let ¥ = {W'(gr"V)} €
W. Then Déi(z)(\f/) is the open set of Déi(Q)(CI)) in Section 3.6.1, Example V
corresponding to the subcone R x {0} of RZ,.
We compare DéL(z)(\I/) and Déi(z)(\i/). For j=1,2,3, let
A; =Homg (gr}", Re;).
We have an isomorphism of real analytic manifolds

3
spl(W) = [T 45 s (a5)1<5<s,
j=1

3
where s(v) = Zaj(v) mod Rey + Rej for v € gr!V .
j=1

Let
(A3 x b%) :={(v,z +1iy) € A3 x b | v =0if y = £oo} C A3 x h*.
Then we have a commutative diagram in Bg (log),
3
(H Aj) x bt xp
j=1
n N

3
Dj ) (¥) = (H Aj) x b x b
j=1

D

1

In this diagram, the upper isomorphism is induced by the isomorphism in Sec-
tion 1.2.9 and the above isomorphism spl(W') ~ Hj‘:1 Aj. On the other hand, we
have a commutative diagram in Bg(log),

D

12

3
(H AJ) X hi X b (a17a27a37x+iy77—)
j=1

N T !
DéL@)(\I!) ~ Ay x Ay x (A3 x hT) x b (a1, az, ly|*?as, x + iy, 7)

In this diagram, the upper isomorphism is the same as in the first diagram. The
lower isomorphism is induced from the canonical morphisms DéL(Z) —spl(W) —

A1 x Ag and DéL@)(\II) — Dgp,2)(gr")~(¥) ~ h* x b, and the following mor-
phism DéL(z)(\Il) — As. It is the composite

3
by va, spl
Dip()(¥) =225 D 2 Spl(W)QHAj—’As,
j=1



246 Kato, Nakayama, and Usui

where v, g is the morphism described in Propositions 3.2.6, 3.2.7, Section 3.2.8,
Proposition 3.2.9, and Theorem 3.2.10. Here o : Gy, r — Autr(Ho,r, W) is the
splitting of ¥ defined by a(t)e; =t 2e;, a(t)es = eq, a(t)es = t2e3, a(t)es = tey,
a(t)es =tes, and f: D — Rsq is the distance to W-boundary defined as the
composite D — D(gr§) ~ h* — R, where the last arrow is = + iy — 1/\/@

Note that the right vertical arrow of the above commutative diagram is not
the inclusion map, as indicated.

The lower isomorphisms in the above two commutative diagrams form a
commutative diagram in Bg(log),

DéL(Z)(\P) =~ Al X A2 X (Ad X Ei)/ X h > (a17a27a37$+iy77-)
| 1 !

3
Dl )(¥) = (IL@)inxb > (a1,a9, |yl az, @ + iy, 7)
j=1

Here the left vertical arrow is the inclusion map. The right vertical arrow is not
the evident map, as indicated.
The SL(2)-orbits in Section 2.3.9, Example V, Case 1 have classes in DéL(2) (D)

whose images in b x b are (ico,i).

3.7. Dgs a1 and Dgy, () val

We outline the definitions of Dg,(2)va1 and Dps val in the fundamental diagram
in Section 0.2, which connect Dgp,) and Dps. The detailed studies of these
spaces will be given later in this series of articles.

3.7.1.
Let S be an object of Br(log) (see Section 3.1). Then we have a local ringed
space Sya1 over S with a log structure with sign. This is the real analytic analogue
of the complex analytic theory considered in [KU3, Section 3.6]. In the case when
we have a chart S — Mg~ with S an fs monoid,
Svar = lim (),
)

where ¥ ranges over all finite rational subdivisions of the cone Hom(S,Rad)

(see Proposition 3.1.12). The general case is reduced to this case by gluing (cf.
[KU3, Section 3.6]).

3.7.2.
For x = I,1II, define DgL(Z),val = (D;L(Q))val. In the pure case, as topological
spaces they coincide with the topological space Dgr,(2)val in [KU2].

3.7.8.

Dgs va1 is defined similarly; that is, Dgs val = (DBs)val. Here we use the log
structure with sign of Dgg induced by Ap ~ R, and Bp~ Rg”gl in the notation
in [KNU2, 5.1].
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3.7.4.
A canonical injection D§L(2) — Dgg . val is defined but not necessarily continu-
ous (for both * =TI and II'). This is a difference from the pure case, and we try

to explain it a little more in the next subsection.

val

3.8. Dgg and DSL(Q)
Here in the end of this section, we review some points of our constructions and
compare them with the construction of Dpg in [KNU2].

3.8.1.

First, see Proposition 1.2.5, which shows that there are three kinds of coordinate
functions on D, that is, s, F', and §. Among these, what is new in the mixed
case is s and §. Thus when we want to endow a partial compactification such as
Dgy,(2) and Dggs with a real analytic structure by extending coordinate functions,
we have to treat s and §. Among these two, s is more important in applications,
and the methods to treat s are common to the cases of Dgr(2) and Dgs.

3.8.2.

On the other hand, the treatment of the d-coordinate for Dgy,(2) and that for Dpg
are considerably different (see Section 3.6.1, Examples III, TV, which illustrate
the situation of Dgp,)). In there, the third components (d-coordinates) of the
vertical arrows in the diagrams are not the inclusion maps but the twisted ones.
In general, the L-component of the function which gives the real analytic struc-
tures on Dgp,(2) is not the evident one but the one twisted back by torus actions
(cf. Proposition 3.2.6). This twisting is natural in view of the relationship with
nilpotent orbits and crucial in the applications (cf. Section 2.5.7).

3.8.3.
In the case of Dgg, the d-coordinate was also naturally twisted, but there is
a difference between these two twistings, which explains the discontinuity of
Dsy,(2),val = DBs,val in Section 3.7.4.

More precisely, for example, consider Example III in Section 3.6.1. Let p be
a point of Dg,(2) va1- Then the L-component of the image of p in Déi@) is in the
boundary (i.e., belongs to L ~. L) if and only if W € W(p), but the L-component
of its image in Dgg is in the boundary if and only if p is not split. Hence some arc
joining a split point and a nonsplit point in Dgp,(2),va1 can have a disconnected
image on Dgg. These equivalences hold for any Hodge types, and we can even
prove that for some Hodge types, there are no choices of topologies of Dgr,(2)
satisfying both the crucial property Section 2.5.7(ii) and the continuities of the
maps Dsy,(2),val = DBs,val, and so on, in the fundamental diagram in Section 0.2.
These topics will be treated later in this series.
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4. Applications

4.1. Nilpotent orbits, SL(2)-orbits, and period maps

In [KNU1], we generalized the SL(2)-orbit theorem in several variables of Cattani,
Kaplan, and Schmid [CKS] for degenerations of polarized Hodge structures to
an SL(2)-orbit theorem in several variables for degenerations of mixed Hodge
structures with polarized graded quotients. Here we interpret it in the style of a
result on the extension of a period map into Dgy,(2) defined by a nilpotent orbit.

THEOREM 4.1.1

Assume that (N1, ..., Ny, F) generates a nilpotent orbit (see Section 2.4.1) and
the associated W) (gr™') is rational (see Section 2.2.2) for any j=1,...,n
Then there is a sufficiently small open neighborhood U of 0:=(0,...,0) in R,
satisfying the following (i) and (ii). -

(i) The real analytic map
n
p: UNRY, — D, t:(tl,...,tn)Hexp(Ziyij)F
j=1

where y; = HZ:j t,;z, is defined and extends to a real analytic map
p: U— DéL(Z)
(ii) For ce U, p(c) € Dsy(a) is described as follows. Let K ={j|1<j<
n,c; =0}, and write K = {b(1),...,b(m)} with b(1) <--- <b(m). Let b(0) =0.
: 2 -2
Forl1<j<m, let N =3 1) <r<p()) (Hk§€<b(j) ¢, *) N, where [Toi)<e<vi) e
is considered as 1. Let F' = exp/(i Zb(m)<k}§n(nk§€§n ¢, )Ny)F. Then (N{,...,
N/.,F') generates a nilpotent orbit (see Section 2.4.1), and p(c) is the class of

the SL(2)-orbit associated to (N1,...,N} ,F') (see Theorem 2.4.2). Hence, when
teU and t — c, we have the convergence

exp(z iy, N. )F—> (class of the SL(2)-orbit associated to (N7,..., N}, ,F"))

in DSL(2) and hence in Déi(z)' In particular, p(0) is the class of the SL(2)-orbit
associated to (N1,...,Np, F).

Proof
For (N1,..., Ny, F) € Dyilp,n, let 7 and ((pw,gow),rl,J) € Dsr,(2),n be as in The-
orem 2.4.2. Write J = {a(1),...,a(r)} with a(1) < --- < a(r). Let W) =

M(Ny+ -+ Nj,W) (0<j <n), where W :=W. Let ¥ = {WO)}, ..
Let 7; be the J-component of 7. Take o= 7; as a splitting of ¥ (see Sec-
tion 3.2.3), and take a distance to W-boundary [ (see Section 3.2.4).

For t = (tj)i<j<n € RZ, let t/; = (Ha(j)gtz<a(j+1)tf)jep where a(r + 1)
means n + 1. Let q(t) =[], )<, 7e(te)” 'p(t). Then q(t) =7,(t;) " p(t).

First, we show that ¢(¢) extends to a real analytic map on some open neigh-
borhood U of 0 in RZ,. To see this, we may assume that a(1) =1. Since 7(t)
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here coincides with ¢(y) in [KNU1, Theorem 0.5], in the notation there, we have

q(t) =7(t)"'p(t) =g(y) exp(e(y))r.

Hence, by [KNU1, Theorem 0.5], the assertion follows. The extended map, also
denoted by ¢, sends 0 to r1 € D in Theorem 2.4.2(ii); that is, ¢(0) =r;.

In case where W € U, since ry € Dy, shrinking U if necessary, we may
assume that p(t) € Dygp for any t € UNRY,,.

CLAIM1
After further replacing U, the map

UNRL, — B:=R%, x Dxspl(W) x [] spl(W'(er™)),
Wrew

t (B(p(t)), s B(p(t) " p(t), sPly (P(£)), (SPIs (e (p() (r™)) ) )

extends to a real analytic map p': U — B sending 0 to (0,7;3(r1) 'ry,s,
(sWNYwi). Here s is the limiting splitting of W in [KNU1, Theorem 0.5(1)],
which coincides with sply, (r1) (see Theorem 2.4.2), and sV is the splitting of
W'(gr™) given by (pw,Pw)w (cf Proposition 3.2.6(i)).

Since B(p(t)) = B(1s(t))q(t)) =t/,8(q(t)) (see Section 3.2.4), this extends to a
real analytic map on some open neighborhood of 0 in RZ; which sends 0 to 0.

Since 7 8(p(t))~'p(t) = 77 6(q(t))"q(t), this extends to a real analytic map
on some open neighborhood of 0 in R%, which sends 0 to TJB(rl)_lrl.

By [KNU1, Theorem 0.5(2)], sply (p(t)) extends to a real analytic map on
some open neighborhood of 0 in R%, which sends O to s.

Finally, by [KNU1, Proposition 8.5], splBS/(ng)(p(t) (gr™)) extends to a real
analytic map on some open neighborhood of 0 in R%; which sends 0 to (s(Wl))W/.

Next, it is easy to see that (N7,..., N/ ,F') generates a nilpotent orbit (see
Section 2.4.1) for any ¢ in a sufficiently small U. Since its associated SL(2)-
orbits belong to DéL(Q)(\II), once we prove the following claim the real analytic
map p’ : U — B in Claim 1 factors through the image in B of the map v, g in
Proposition 3.2.7(i).

CLAIM 2
The point exp(Z?zl iyij)F converges to the class of the SL(2)-orbit associated
to (N7,...,N} ,F') in DéL(Q) whente U and t — c.

Thus we reduce both Theorem 4.1.1(i) and (ii) to this claim.

To prove Claim 2, we first consider the case ¢ = 0: In this case, the image
by va,p of the class of the SL(2)-orbit ((pw,¥w)w,r1,J) € DsL(2),n associated
to (Ny,..., Ny, F) is limg, .o, (t;8(r1),778(r1) " 'r1,s,(sW))y) by definition
of v4 5. On the other hand, p/(0) is (0,773(r1) 'r1,s, (s"))w) by Claim 1.
Since v, g is injective (see Proposition 3.2.7(1)), the case where ¢ =0 of Claim 2
follows.



250 Kato, Nakayama, and Usui

Now we are in the general case. Let c € U, K be as in (ii). Let ¢’ € U be the
element defined by t; =t; if j € K and by t; =c¢; if j ¢ K. Then, by the case
where ¢ = 0, we have the convergence

exp (Z zyéN})F’ — (class of the SL(2)-orbit associated to (Ny,...,N,,F")).
jeJ
Together with
Vo B (%Lrgp(t)) =p'(c) = lim p/(t')

t'—c
=Vq,g (tl/iinc exp (26;] zyéNj) F’) ,
7

we have the general case of Claim 2. O

4.2. Hodge metrics at the boundary of DéL(2)

We expect that Dgp,(2) plays a role as a natural space in which real analytic
asymptotic behaviors of degenerating objects are well described. In this sub-
section we illustrate this by taking the degeneration of the Hodge metric as an
example, and we explain our previous result on the norm estimate in [KNU1] via

DéL(Z)'

4.2.1.
Let FF e D. For ¢ > 0, we define a Hermitian form

(,)Fc: Hocx Hyc—C

as follows.
For each w € Z, let

(7 )F(gr&v) : ng;V,C X grrj/,c —C
be the Hodge metric (Cp(gw)(®),®).,, where Cpgw is the Weil operator. For
v € Hy ¢ and for w € Z, let v, r be the image in ngc of the w-component of v
with respect to the canonical splitting of W associated to F'. Define

(v’v,)F,C = Z " (Uw,Fvvlw,F)F(grY‘“/) (va/ € HO,C)'
weZ

PROPOSITION 4.2.2
Let ¥ be an admissible set of weight filtrations on Howr (see Section 3.2.2). Let
B be a distance to V-boundary (see Section 3.2.4, Proposition 3.2.5). Assume
W ¢&U (resp., WeW¥). For each W €U, let Bw: D — Rsg (resp., Dpspl —
R.o) be the W’ -component of 3. For p€ D, let
(7 )P,ﬁ = (’ )P,C with ¢ = H Bw (p)—Z.
W'ew
Let m: U — 7 be a map, let V ="V =Nycq Wy, wr),o- and let Her(V) be

the space of all Hermitian forms on V.
Let (, )p,a,m € Her(V') be the restriction of [ [y cq Bw (p)>™ W (), 5 to V.
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(i) The real analytic map f: D (resp., Dnsp) — Her(V), p— (, )p.g,m;
extends to a real analytic map f DéL(Q)(\If) (resp., DéL(Q)(\If)nspl) — Her(V).

(ii) For a point p € DéL(Q)(\I/) (resp., p € DéL@)(\P)nSp]) such that ¥ is the
set of weight filtrations associated to p, the limit of (, )p.3.m at p induces a positive
definite Hermitian form on the quotient space

vI(X N Wiwne):
m/'<mW’'e¥
where m’ <m means m'(W') <m(W') for all W € U and m’ #m.

Proof

We prove (i). Assume W ¢ . Fix a splitting o : (R*)Y — Autr(Hor, W) of
V. Let pe D. Let v,v’ € V. Then we have the weight decompositions v =
D mi<m Vmrs V=< Uy With Tespect to a. Since

(v, U/)Pﬁ = (O‘B(p) (Ozﬁ(p))_lv, aB(p) (aﬁ(p))_lv/>aﬁ(p)(aﬁ(p))fmﬁ

= (O‘ﬂ(p)ilvaaﬁ(p)ilvl)aﬁ(p)flp,la

we have
(vv vl)P,ﬂ,m

(1) =TI Bw > ™ (aBp) 0.aB(p) ) L5191

W’rew

= > I sw @™ w0 ape) -

m/,;m'"" <mW'’'e¥

This extends to a real analytic function on DéL(Q)(\I/) because (2m — m' —
m”)(W') >0 for all W/ € ¥, and D — D, p+— af(p)~p, extends to a real ana-
lytic map DéL(Q)(\II) — D (see Theorem 3.2.10(i)).

In the case W € U, the argument is analogous.

We prove (ii). Let v,v" € V be as above. Let {py} be a sequence in D which
converges to p, and let ¢ = limy aB(py)~1(px) € D. Then, by the result of (i), we
have from (1),

@ lgn(0, o) 1 = (0 V).

The right-hand side of (2) is nothing but the restriction of the Hermitian metric
at ¢ € D to the m-component with respect to «, which is therefore positive
definite. (]

4.2.3.

As will be shown in a later part of our series, the norm estimate in [KNU1] for
a given variation of mixed Hodge structure S — D (cf. [KNUI, Section 12]) is
incorporated in the diagram

f
U— DéL(2)(‘I’) (reSvaéL(z)(‘I’)nspl) = Her (V).
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Here U is an open neighborhood of a point of Si';%, the first arrow is induced
by an extension of the period map Sic;% — I‘\DéL(Q), where I' is an appropriate

group (cf. Section 4.4.9), and f is as in Proposition 4.2.2.

4.2.4.
EXAMPLE V
We consider Example V. Here the norm estimate is not continuous on D§£(2)'
Let ¥ and ¥ be as in Section 3.6.2. Fix u,v € Cey + Ces C W/, and let
u’, v’ be their respective images in gr!V. Let 3: D — R be the distance to
W-boundary which appears in Section 3.6.2.
As in Proposition 4.2.2, the map

f:D=C,  p=pD)*(w,0)ps
extends to a real analytic function f : DéL(z)(\I/) — C. We show, however, that
for some choices of v and v, this map f : DéL(Q)(\I/) — C is not continuous with
respect to the topology of Déi(z)' These can be explained by the following
commutative diagram at the end of Section 3.6.2.
(a1,a2, (as,x+1iy),7) € Ay x Ay x (A3 x h%)' xbh ~ DéL(Q)(\IJ) L c
l l |

A7) xbExh = DY (D).

=.

(a17a25|y‘71/2a3ax+2‘y77) € (
1

J
Recall that A; = Homg (gr]”, Re;) (j =1,2,3). The composite

Ay x Ay x (A3 x 55) x b~ Dl o (1) L ©
sends (a1,a2, (as,z +1y),7) to
(917 2ar (') + ly| 2 as () + ag(u),

ly| 7 2a1 (') + [y 2as(v') + az(v')) u' )1,

oy(a+ig)/lyl T

Here (, )o,(z-+iy)/|y| is the Hodge metric on grgffc associated to (z +iy)/|y| € b =
D(grV), and (, )1, is the Hodge metric on gr‘ﬂ’c associated to 7 € h = D(gr}").
On the other hand, the composition

3
Hijhixh:DLC,
j=1

where the first arrow is induced by the lower (not upper) horizontal isomorphism
of the above diagram, sends (a1,as,as, + iy, ) to

(lyl=* a1 (') + ly| " as (') + |y *as (),
|y|73/2a1(vl) + |y|71/2a2(vl) + ‘y|1/2a3(vl))0)($+iy)/|y| + (u/av/)lﬂ"

For some choices of u and v, as is precisely explained below, the last map is not
extended continuously to the point (0,0,0,i00,%) of H?=1 Aj x b% x b, for this
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map has the term |y|*/? which diverges at ico. Since (0,0,0,i00,1) is the image

of (0,0,(0,i00),i) € A} x Ay x (A3 x hT)" x b under the left vertical arrow, this
shows that for some choices of u and v, f: DéL(Q)(\II) — C is not continuous for
the topology of DéIL(Q).

More precisely, take v and v such that there exists b € A3 for which (b(u'),
b(v'))o,i #0. Let ¢ be a real number such that 0 < ¢ <1/2. Then, as y — oo,
(0,0, /20, iy, 1) € H?zl Aj x b x b converges to (0,0,0,i00,7) € H?zlAj X
h* x h. However, f sends the image of (0,0,y°"'/2b,iy,i) in D under the lower
isomorphism of the diagram to (yb(u’),y°b(v'))o: + (v/,v")1,;, which diverges.

4.3. Hodge filtrations at the boundary
4.8.1.
In Section 4.3, let X = DéL(Q) or Déi@)'

Let Ox be the sheaf of real analytic functions on X, and let a: Mx — Ox
be the log structure with sign on X. We define a sheaf of rings O% on X by
O% :==0xlg " | g€ a(Mx)] D Ox. Let O o = C®gr O. The following theo-
rem shows that the Hodge filtration over O’ o extends to the boundary of X.

THEOREM 4.3.2
Let X be one of DéL@), Déi(z); and let O% be as in Section 4.3.1.
Then, for each p € Z, there is a unique O'y g-submodule F? of O o ®z Hy

which is locally a direct summand and whose restriction to D coincides with the
ﬁlter FP Of OX,C Xz HQ.

Proof
It is sufficient to prove the case X = Déi(z) because the assertion for X = DéL@)
follows from that for X = Déi(z) by pulling back.

Assume X = Déi(z)- Let F be the universal Hodge filtration on D, and write
F=s(0(F',6)) (secspl(W), F' € D(gr"V'), 6 € L(F")) as in Proposition 1.2.5. Let
® be an admissible set of weight filtrations on gr'¥' (see Section 3.2.2), let a be a
splitting of @, and let 5 be a distance to ®-boundary as in Proposition 3.2.5(ii).
We observe

(1) s(8(F",6)) = s(6(aB(F')(@B(F") " F', Ad(aB(F')) Ad(aB(F'))~'5)).

By Proposition 3.2.6(ii), (aB3(F")"*F’,Ad(aB(F’))~16), and s extend real ana-
lytically over the ®-boundary. Let G’ =[], Aut(grl)), and consider the splitting
a:G® — G’. Then the section 3(F') of G2 (0%) on D§£(2)(<I>) is sent to a sec-
tion aB(F’) of G'(O) over Dé£(2)(fl>). Thus F = s(0(F’,0)) extends uniquely
to a filtration of O o ® Hp consisting of O’ g-submodules which are locally
direct summands. d
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4.3.3.
REMARKS

(i) For Dsp,(2),val, DBs; DBs val, theorems similar to Theorem 4.3.2 are anal-
ogously proved.

(ii) The Hodge decomposition and the Hodge metric also extend over the
boundary after tensoring with le,o In the pure case, this together with the
period map S\l,(;ff — I\ Dgy,(2) (see Section 4.2.3) explains the existence of the log
C'* Hodge decomposition in [KMN].

4.4. Example IV and height pairing
We consider Example IV. The space Dgy,2) = DéL@) = Déi(z) in this example is
related to the asymptotic behavior of the Archimedean height pairing for elliptic
curves in degeneration (see [P2], [C], [Si]). We describe which kind of SL(2)-orbits
appear in such a geometric situation of degeneration.

The following observations were obtained in discussions with Spencer Bloch.

441,

Recall (see [A]) that the Archimedean height pairing for an elliptic curve E
over C is (Z, W) € R defined for divisors Z, W on E of degree zero such that
|Z|N|W| =0 (|Z| here denotes the support of Z), characterized by the following
properties (1)—(4).

(1) X ZIn|W|=|Z'|N|W|=0, then (Z+ Z' W) =(Z,W) + (Z',W).

(2) We have (Z, W) = (W, Z).

(3) If f is a meromorphic function on E such that |(f)| N |[W|=0 and if
W =3 ey e (1), then {(£), W) = —(27)" 3 ey 7o oL ().

(4) The map (E(C) \ [W]) x (E(C) ~ [W]) = R, (a,b) — ((a) — (b),W), is
continuous.

442
Consider Example IV.

Let 7 € b, and let E. be the elliptic curve C/(Zt + Z).

For divisors Z, W on E. of degree zero such that |Z| N |[W| =0, we define
an element

p(T, Z, W) S GZ,U\D

as follows.
For 7€ h and z € C, let

(oo} [ee]
0(r,2) = H 1—-¢"t H ¢"t™Y), where ¢ = €™t = €272,
n=0 n=1

We have
(1) O(t,24+1)=0(,2), O(r,2z+7)=—e 2"%0(1, 2).
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Write

T S

Z=Y mi). W=Y i)

j=1 j=1
(pj,q; € Ex, mj,n; €Z, 25:1 m; =0, 22:1 nj =0), and write
pj = (z; mod (Z7 + Z)), ¢j = (w; mod (Z7 + 7))
with z;,w; € C. Define
(2) p(7, Z,W) =class of F(r,w,\,z) € Gz, \D

with z:ijZj, w:anwj, /\:(2m‘)7110g<H0(7’,zj—wk)mj”’“>,
j=1 Jj=1 Jsk

and with F'(7,w, \, z) € D asin Section 1.1.1, Example IV. This element p(7, Z, W)
of Gz, \D is well defined: as is easily seen using (1), the right-hand side of
(2) does not change when we replace ((z;);,(w;);) by ((2});,(w});) such that
zé = zj mod Z7 +7Z and w; = w; mod Z7 + Z for any j. For example, in the
case where z; = z; + 7 for some ¢, 2/ = z; for the other j # ¢, and wj = w; for
any j, by (1), the right-hand side of (2) given by (z});, (w}); is the class of
F(r,w,A\+mpw,z+m7) =vF(1,w, \, 2), where v is the element of Gz, which
sends e; (j=1,2,3) to e; and ey to eq — myes.

4.4.3.
Let L= L(F) with F € D(gr'V'), which is independent of F, and let 6 : D — L =
R be the d-component (see Proposition 1.2.5). Note that

§(F(r,w, A\, 2)) =Im(\) — Im(z) Im(w) / Im(7)
(see Section 1.2.9, Example IV).

LEMMA 4.4.4
The map 0 : D — R factors through the projection D — Gz, \D, and we have

§(p(r, Z, W)) =(Z,W),
where (Z,W) € R is the Archimedean height pairing (see Section 4.4.1).

4.4.5.
The equality in Lemma 4.4.4 is well known. It has also the following geometric
(cohomological) interpretation.

Let E be an elliptic curve over C, and let Z and W be divisors of degree
zero on E such that |Z|N|W|=0. We assume Z #0, W #0.

Let U=EN|Z|, V=EXN(|Z|U|W]), and let j: V — U be the inclusion
map. Write Z =3 ., 7 m:(2), W =3, cjwnw(w). We have exact sequences
of mixed Hodge structures

0— HYE,Z)(1) —» HY(U,Z)(1) — Z%| — H*(E,Z)(1) — 0,
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0— HO(U,Z)(1) — Z()"! — H'(U,j1Z)(1) — H' (U, Z)(1) = 0.

Note that the map Z!?! — H?(E,Z)(1) = Z is identified with the degree map. Let
AC BC HYU,5Z)(1) be sub mixed Hodge structures defined as follows. A is the
image of {z = (2y)w € Z(1)WI| Y nyry =0} under Z(1)WI — HY(U,5Z)(1).
B is the inverse image of {(m,z), | € Z} under the composition H* (U, 51Z)(1) —
HY(U,Z)(1) - Z/?!. Let H= B/A. Then we have the induced injective homo-
morphism a : Z(1) — H, the induced surjective homomorphism b: H — Z, and
Ker(b)/Im(a) = H'(E,Z)(1). A well-known cohomological interpretation of the
height pairing (Z, W) is

(Z,W)=45(H).
On the other hand, in the case E = E, as is well known,
(1, Z,W) = class(H).

This explains Lemma 4.4.4.

4.4.6.
We consider degeneration.

Let A={ge C|lq| <1}, and let A* =A~\ {0}. Fix an integer ¢ > 1, and
consider the family of elliptic curves over A* whose fiber over e2™7/¢ (Im(7) > 0)
is C/(Z7 +Z). This family has a Néron model E. over A whose fiber over 0 € A
is canonically isomorphic to C* x Z/cZ as a Lie group. If a € Q and ca € Z,
and if u is a holomorphic function A — C*, there is a section of E. over A
whose restriction to A* is given by €2™7/¢ — (a1 + f(e2™7/¢)mod Z7 + Z) with
f = (2mi)"tlog(u) and whose value at 0 € A is (u(0),camodcZ) € C* x Z/cZ.
Any section of E. over A is obtained in this way.

Let I' C Gz be the subgroup consisting of all elements v which satisfy v(e;) —
e; € ®1Sk<j Zey for j=1,2,3,4. Note that I' D Gz ,. Note also that 6: D —
L =R factors through the projection D — I'\ D.

Fix mj,nty € Z, a;,b, € Q (1 <j<r, 1<k <s) such that ijj =0 and
> xnke =0, caj,cb, € Z for any j, k, and take holomorphic functions uj, v, : A —
C* (1<j<r1<k<s). Assume that, for any j, k, the section p; of E, defined
by (aj,u;) and the section ¢ of E. defined by (bg,v) do not meet over A.
Consider the morphism

p: A*—=T\D, e2mit/e (p(T, ij (pj)s an(qk)) mod F)
j k

with
pj = (a;7+ f; (e*™7/Ymod Z7 + Z),
ar = (bkT + gi (e*™/Ymod Z7 + Z),
where

[ = (2mi) "t log(u;), agr = (2mi) " log(vg).
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447,

Let Al = |A| x S, where |A|:={reR|0<r <1}, St:={uec C*||ul=1}.
We have a projection Al°® — A (r,u) — ru (r € |A|, u € S') and an embedding
A* — A8 ry s (r,u) (r €Al 7 #0, ueSh).

We define the sheaf of C°-functions on A'°® as follows. For an open set U
of Al°¢ and a real-valued function h on U, h is C* if and only if the following
(1) holds. Let U’ be the inverse image of U in R>g x R under the surjective
map Rxo x R — A8 (£, z) — (e7 /1" e2mi),

(1) The pullback of h on U’ extends, locally on U’, to a C°°-function on
some open neighborhood of U’ in R2.

Roughly speaking, a function h on A8 is C if h(e2™(@+W)) (z € R,0 <
y < o00) is a C*°-function in 2 and 1/,/y.
The restriction of this sheaf of C*-functions on A!°® to the open set A*

coincides with the usual sheaf of C°°-functions on A*.

PROPOSITION 4.4.8
Let ® € W be as in Section 3.6.1, Example IV.

(i)  The map p: A* —T\D in Section 4.4.6 extends to a C™ map Al° —
F\Déi(2 (®). That is, we have a commutative diagram of local ringed spaces
over R

A B r\D
N N
Alog - — F\DSL(z ().

(ii) Let Ba(z) be the second Bernoulli polynomial x®> —x +1/6. For z € R,
{z} denotes the unique real number such that 0 <{z} <1 and {z} =2 mod Z.

Then the composite A* 2> D 2 L =R has the form

e?rileti)/e 5 (Z m ngBz({a; — bk}))y + h(e2mitiv)/ey
7.k

for some C™®-function h on A8,
(iii) Let
D9y (®) > spl(W) x b x L

be the lower isomorphism in the commutative diagram in Section 3.6.1, Example I'V.
Then the projection Déi(Q)( ) — L factors through Déi( )( ) — F\DSL(Q)(Q))

and the composite Ao 2 F\DSL(Q) (®) — L sends any point of Al°2 L A* to

(Z mniBa({a; — bk})) eR=LcCL.

gk

In (ii) and (iii), Bo(z) can be replaced by the polynomial 22 — z. The constant
term of By(xz) does not play a role, for } ., m;ny =0.
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Note that the restriction of the map D{f ,\(®) — L in (iii) to D is not

0: D— L but is p+— Ad(aﬂ(p(grw)))_lé(p), where o and 3 are as in Sec-
tion 3.6.1, Example IV.

Proof of Proposition 4.4.8
We may and do assume 0 <a; <land 0<by <1. Let J={(j,k)|1<j<r 1<
k <s, aj <bg}. Then, for each j and k, the function

62771’7'/0 — 9(7_’ (aj 7 bk)’r + fj(e27ri‘r/c) _ gk(e%rir/c))

on A is meromorphic and its order of zero at 0 € A is (a; —by)c if (j, k) € J and is
zero otherwise. By using this and by using the description of sply, : D — spl(W)
in Section 1.2.9, Example IV, we see that the composite

A* BT\D 2291\ (spl(W) x b) x L

has the property that the part A* — F\(spl(W) x B) extends to a C*°-function
A2 — T\ (spl(W) x ) and that the part A* — L =R has the form e*™7/¢ —
(_(Zj mja;) (3, nkbe) + Z(j,k)eJ mjni(a; — b)) Im(7) + h(e*™7/¢), where h
is a C>°-function on A'°&. Note that

(ija])<2nkbk)+ Z mjnk(a; — br)

(5,k)eJ
= (i Baia; - bib).
J.k

Hence, for the lower isomorphism Déi(Q)(fﬁ) ~spl(W) x b x L in the diagram

in Section 3.6.1, Example IV, the composite A* — L is written as €277/¢ —

(1/2)(32, o mymBa({a — b)) + (Im(r) " h(e377/%), where (Im(r))"'h is a
C*-function on A!®® which has value zero on Al°8 \ A*. These imply the asser-
tions. ]

4.4.9.
The above Proposition 4.4.8 implies a special case of the height estimate by
Pearlstein [P2].

The lower map in the diagram in Proposition 4.4.8(i) is an example of the
extended period map (cf. Section 4.2.3). In a forthcoming part of this series
of articles, the existence of the extended period map X\I,(;% — I\ Dgr2) (X is
a log smooth fs log analytic space) will be proved generally for a variation of
mixed Hodge structure on U = X4, with polarized graded quotients with global
monodromy in an appropriate group I' which has unipotent local monodromy
along D = X \ U and is admissible at the boundary. This will be accomplished
by the CKS map D%’val — Dgp(2) in the fundamental diagram in Section 0.2
(see [KU3, Section 8.4.1], for the pure case), and imply the height estimate of
Pearlstein for more general cases.
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Correction to Part I. There are some mistakes in calculating examples
in Part I (see [KNU2, Section 10]). First, the r=2’s in Section 10.2.1 should be
r~1. (Note that we gave the real analytic structure on Ap in the notation in
[KNU2, Section 2.6] by using the fundamental roots.) There are similar mistakes
also in Section 10.3; that is, r should be replaced by /2 in the third last line
in p. 219 of [KNU2], which should be (z +ir~!,...), in the second line in p. 220:
(1,82, x,7,d) — x+ir~', and in the second last line in p. 220: t(r)(e1) = r~1/%ey,
t(r)(es) = r'/2e,.
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