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Abstract Motivated by a recent conjecture by Hernandez and Leclerc, we embed a
Fomin-Zelevinsky cluster algebra into the Grothendieck ring R of the category of rep-
resentations of quantum loop algebras Uq(Lg) of a symmetric Kac-Moody Lie algebra,
studied earlier by the author via perverse sheaves on graded quiver varieties. Graded
quiver varieties controlling the image can be identified with varieties which Lusztig used
to define the canonical base. The cluster monomials form a subset of the base given by
the classes of simplemodules inR, or Lusztig’s dual canonical base.The conjectures that
cluster monomials are positive and linearly independent (and probably many other con-
jectures) of Fomin and Zelevinsky follow as consequences when there is a seed with a
bipartite quiver. Simple modules corresponding to cluster monomials factorize into ten-
sor products of “prime” simple ones according to the cluster expansion.

1. Introduction

1.1. Cluster algebras
Cluster algebras were introduced by Fomin and Zelevinsky [21]. A cluster alge-
bra A is a subalgebra of the rational function field Q(x1, . . . , xn) of n indetermi-
nates equipped with a distinguished set of variables (cluster variables) grouped
into overlapping subsets (clusters) consisting of n elements, defined by a recursive
procedure (mutation) on quivers. Let us quote the motivation from the original
text [21, p. 498, second paragraph]:

This structure should serve as an algebraic framework for the study of “dual
canonical bases” in these coordinate rings and their q-deformations. In particular,

we conjecture that all monomials in the variables of any given cluster (the cluster
monomials) belong to this dual canonical basis.

Here dual canonical base means a conjectural analogue of the dual of Lusztig’s
[43] canonical base of U−

q , the − part of the quantized enveloping algebra. One
of the deepest properties of the dual canonical base is positivity: the structure
constants are in Z≥0[q, q−1]. But the existence and positivity are not known for
cluster algebras except some examples.
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The theory of cluster algebras has been developed in various directions differ-
ent from the original motivation (see the list of references in a recent survey [37]).

One of the most active directions is the theory of the cluster category (see [6]).
It is defined as the orbit category of the derived category D(repQ) of finite-
dimensional representations of a quiver Q under the action of an automorphism.
This theory is quite useful to understand combinatorics of the cluster alge-
bra: clusters are identified with tilting objects, and mutations are interpreted
as exchange triangles (see the survey [37] for more detail).

However, the cluster category does not have enough structures, compared
with the cluster algebra. For example, multiplication of the cluster algebra
roughly corresponds to the direct sum of the cluster category, but addition
remains obscure. So the cluster category is called additive categorification of
the cluster algebra. The cluster algebra is recovered from the cluster category by
the so-called cluster character. (Some call it the Caldero-Chapoton map.) But it
is not clear how to obtain all the dual canonical base elements from this method.

Very recently, Hernandez and Leclerc [31] proposed another categorical
approach. They conjecture that there exists a monoidal abelian category M

whose Grothendieck ring is the cluster algebra. All of the structures of the clus-
ter algebra can be conjecturally lifted to the monoidal category. For example, the
dual canonical base is given by simple objects, the combinatorics of mutation is
explained by decomposing tensor products into simple objects, and so on. Here
we give the table of structures:

cluster algebra additive categorification monoidal categorification
+ ? ⊕
× ⊕ ⊗
clusters cluster tilting objects real simple objects
mutation exchange triangle 0 → S → Xi ⊗ X∗

i → S′ → 0
cluster variables rigid indecomposables real prime simple objects
dual canonical base ? simple objects
? ? prime simple objects

In the bottom line, we have a definition of prime simple objects, those that
cannot be factored into smaller simple objects. There is no counterpart in the
theory of the cluster algebra, so it is a completely new notion.

However, the monoidal categorification seems to have a drawback. We do
not have many tools to study the tensor product factorization in an abstract
setting. We need additional input from other sources. Therefore it is natural
to demand functors connecting two categorifications exchanging ⊕ and ⊗, and
hopefully ? and ⊕. We call them tropicalization and detropicalization functors†

†Leclerc himself already had hoped to make a connection between two categorifications (see

[40]). He calls them exponential and log.
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expecting that the top ? in the additive categorification column is something like
min:

cluster algebras

additive categorifications

detropicalization functors

cluster character

monoidal categorifications

tropicalization functors

Grothendieck group

The author believes that this is an interesting idea to pursue, but it is so
far just a slogan; it seems difficult even to make definitions of (de)tropicalization
functors precise. Therefore we set aside categorical approaches, return to the
origin of the cluster algebra, that is, the construction of the canonical base, and
ask why it has many structures.

The answer is simple. Lusztig’s construction of the canonical base is based
on the category of perverse sheaves on the space of representations EW of the
quiver. Therefore

(a) it has the structure of the monoidal abelian category, where the tensor
product is given by the convolution diagram coming from exact sequences of
quiver representations;

(b) it inherits various combinatorial structure from the module category
rep Q and probably also from the cluster category.

In this sense, we already have (de)tropicalization functors!
Thus we are led to ask a naive question sounding much more elementary

compared with categorical approaches:

Is it possible to realize a cluster algebra entirely in Lusztig’s framework, that is,

via a certain category of perverse sheaves on the space EW of representations of
a quiver?

If the answer is affirmative, the positivity conjecture is a direct consequence
of that of the canonical base.

As far as the author has searched the literature on the subject, there is no
explicit mention of this conjecture, although many examples of cluster algebras
arise really as subalgebras of U−

q . Usually Lusztig’s perverse sheaves appear only
as a motivation and are not used in a fundamental way. A closest result is the
work of Geiss, Leclerc, and Schröer [25], [26], where the cluster algebra is realized
as a space of constructible functions on ΛW , the space of nilpotent representations
of the preprojective algebra. This ΛW is a Lagrangian in the cotangent space
T ∗EW of the space EW of representations. The space of constructible functions
was used also by Lusztig [45] to construct the semicanonical base. Constructible
functions are vaguely related to perverse sheaves (or D-modules) via character-
istic cycle construction, although nobody makes the relation precise. And it was
proved that cluster monomials are indeed elements of the dual semicanonical base
(see [25], [26]). But constructible functions have fewer structures than perverse
sheaves; in particular, the positivity of the multiplication is unknown.
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Before explaining our framework for the cluster algebra via perverse sheaves,
we need to explain the author’s earlier work [49]. It is another child of Lusztig’s
work.

1.2. Graded quiver varieties and quantum loop algebras
In [49] we studied the category R of l -integrable representations of the quan-
tum loop algebra Uq(Lg) of a symmetric Kac-Moody Lie algebra g via perverse
sheaves on graded quiver varieties M•

0(W ) (denoted by M0(∞,w)A in [49]). If g

is a simple Lie algebra of type ADE, Uq(Lg) is a subquotient of Drinfeld-Jimbo
quantized enveloping algebra of affine type ADE (usually called the quantum
affine algebra), and R is nothing but the category of finite-dimensional represen-
tations of Uq(Lg). The graded quiver varieties are fixed point sets of the quiver
varieties M0(W ) introduced in [47] and [48] with respect to torus actions. The
main result says that the Grothendieck group R of R has a natural t-deformation
Rt which can be constructed from a category PW of perverse sheaves on M•

0(W )
so that simple (resp., standard) modules correspond to dual of intersection coho-
mology (IC) complexes (resp., constant sheaves) of natural strata of M•

0(W ).
Here, the parameter t comes from the cohomological grading. Furthermore, the
transition matrix of two bases of simple and standard modules (i.e., dimensions
of stalks of IC complexes) is given by analogue of Kazhdan-Lusztig polynomi-
als, which can be computed∗ using purely combinatorial objects χq,t called t-
analogues of q-characters (see [51], [54]). If we set t = 1, we get the q-character
defined in [38] and [24] as the generating function of the dimensions of l -weight
spaces, simultaneous generalized eigenspaces with respect to a commutative sub-
algebra of Uq(Lg). For the simple module corresponding to an IC complex L,
χq,t is the generating function of multiplicities of L in direct images of con-
stant sheaves on various nonsingular graded quiver varieties M•(V,W ) under
morphisms π : M•(V,W ) → M•

0(W ).
We have a noncommutative multiplication on Rt, which is a t-deformation

of a commutative multiplication on R. When g is of type ADE, the commuta-
tive multiplication on R comes from the tensor product ⊗ on the category R

as Uq(Lg) is a Hopf algebra. (It is not known whether the quantum loop alge-
bra Uq(Lg) can be equipped with the structure of a Hopf algebra in general.)
The t-deformed multiplication was originally given in terms of t-analogue of
q-characters, but Varagnolo and Vasserot [59] later introduced a convolution dia-
gram on M•

0(W ) which gives the multiplication in a more direct and geometric way.
These geometric structures are similar to ones used to define the canonical

base of U−
q by Lusztig [43]. We have the following table of analogy:

Rt geometry dual of U−
q

standard modules M(W ) constant sheaves dual PBW base elements
simple modules L(W ) IC complexes dual canonical base

elements
t-deformed ⊗ convolution diagram multiplication

∗The meaning of the word compute is explained in Remark 6.4.
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Note that U−
q is not commutative even at q = 1, while its dual (U−

q )∗ |q=1 is the
coordinate ring C[n−] and thus is commutative. Hence, we should compare Rt

with (U−
q )∗, not with U−

q . Also, the convolution diagram looks similar to one
for comultiplication, not to one for multiplication. The only difference is relevant
varieties: Lusztig used the vector spaces EW of representations of the quiver with
group actions (or the moduli stacks of representations of the quiver), while the
author used graded quiver varieties, which are framed moduli spaces of graded
representations of the preprojective algebra associated with the underlying graph.

The computation of the transition matrix is hard to use in practice, like the
Kazhdan-Lusztig polynomials. On the other hand, many people have been study-
ing special modules (say, tame modules, Kirillov-Reshetikhin modules, minimal
affinization, etc.) by purely algebraic approaches, at least when g is of finite
type (see [11] and the references therein). Their structure is different from that
of general modules. Thus it is natural to look for a special geometric prop-
erty which holds only for graded quiver varieties corresponding to these classes
of modules. In [49, Section 10] the author introduced two candidates for such
properties. We name the corresponding modules special and small, respectively.
These properties are easy to state both in geometric and algebraic terms, but it
is difficult to check whether a given module is special or small. Since [49], we
have gradually understood that smallness is not a right concept, as there are only
a very few examples (see [30]), but the speciality is a useful concept and there
are many special modules, say, Kirillov-Reshetikhin modules.† One of the appli-
cations of this study was a proof of the T -system, which was conjectured in 1994
by Kuniba, Nakanishi, and Suzuki (see [53] and the references therein). Several
steps in the proof of the main result in [53] depended on the geometry, but they
were replaced by purely algebraic arguments and generalized to nonsymmetric
quantum loop algebras cases later by Hernandez [29]. It was a fruitful interplay
between geometric and algebraic approaches.

1.3. Realization of cluster algebras via perverse sheaves
Hernandez and Leclerc [31] give not only an abstract definition of a monoidal cat-
egorification but also its candidate for a certain cluster algebra. It is a monoidal
(i.e., closed under the tensor product) subcategory C1 of R when g is of type
ADE. They indeed show that C1 is a monoidal categorification for types A

and D4. Therefore we have strong evidence that it is a right candidate. From
what we have reviewed just above, if it indeed is a monoidal categorification, the
cluster algebra is a subalgebra of R, constructed via perverse sheaves on graded
quiver varieties! Moreover, from the philosophy explained above, we could expect
that graded quiver varieties corresponding to C1 have very special features com-
pared with general ones.

†Special modules form a special class of modules. Small modules form a small class of mod-

ules. But the name small originally comes from the smallness of a morphism.
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In this article, we show that it turns out to be true. The first main observa-
tion (see Proposition 4.6) is that the graded quiver varieties M•

0(W ) become just
the vector spaces EW of representations of the decorated quiver. Here, the deco-
rated quiver† is constructed from a given finite graph with a bipartite orientation
by adding a new (frozen) vertex i′ and an arrow i′ → i (resp., i → i′) if i is a sink
(resp., source) for each vertex i (see Definition 4.3). Therefore the underlying
variety is nothing but what Lusztig used. Also, the convolution diagram turns
out to be the same as Lusztig’s. Thus the Grothendieck group K(C1) is also
a subquotient of the dual of U−

q , associated with the Kac-Moody Lie algebra
corresponding to the decorated quiver.

To define a cluster algebra with frozen variables (or with coefficients in the
terminology of [21]), we choose a quiver with choices of frozen vertices. We warn
the reader that this quiver for the cluster algebra (we call it the x-quiver; see
Definition 5.4) is slightly different from the decorated quiver: the principal part
has the opposite orientation, while the frozen part is the same.

1.4. Second key observation
Once we get a correct candidate for the class of perverse sheaves, we next study
structures of the dual canonical base and try to pull out the cluster algebra
structure from it. We hope to see a shadow of the structure of a cluster category.

As we mentioned above, our K(C1) is a subquotient of the dual of U−
q .

In particular, we introduce an equivalence relation on the canonical base. The
second key observation is that each equivalence class contains exactly one sky-
scraper sheaf 1{0} of the origin 0 of EW (the simplest perverse sheaf!). This
equivalence relation is built on the theory of graded quiver varieties. From this
observation together with the first observation that the graded quiver varieties
are vector spaces, we can apply the Fourier-Sato-Deligne transform (see [36],
[39]) to make a reduction to a study of constant sheaves 1E∗

W
on the whole

space.
There is a certain natural family of projective morphisms π⊥ : F̃ (ν,W )⊥ →

E∗
W from nonsingular varieties F̃ (ν,W )⊥. This family appears as monomials

in Lusztig’s context and as q-characters in the theory reviewed in Section 1.2.
Using these morphisms, we define a homomorphism from R to the cluster algebra.
Fibers of these morphisms are what are called quiver Grassmannian varieties.
People study their Euler characters and define the cluster character as their
generating function. This is clearly related to the study of the pushforward

π⊥
!

(
1F̃ (ν,W )⊥ [dim F̃ (ν,W )⊥]

)
.

If E∗
W contains an open orbit, then the Euler number of the fiber over a point in

the orbit is nothing but the coefficient of 1E∗
W

[dimEW ] in the above pushforward.
When the dual canonical base element is a cluster monomial, E∗

W indeed contains

†The decorated quiver is different from one in [46], where there are no arrows between i

and i′.
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an open orbit. Therefore we immediately see that all cluster monomials are
dual canonical base elements. This very simple observation between the cluster
character and the pushforward appeared in the work of Caldero and Reineke [9].†

To be more precise, we need to apply reflection functors at all sink vertices
in the decorated quiver with opposite orientations to identify fibers of F̃ (ν,W )⊥

with quiver Grassmannian varieties. The resulting quiver corresponds to the
cluster algebra with principal coefficients (see [23]).

An appearance of the cluster character formula in the category C1 was
already pointed out in [31, Section 12] as it is nothing but a leading part of
the q-character mentioned above. (We call the leading part the truncated q-
character.)

From a result on graded quiver varieties, it also follows that quiver Grass-
mannian varieties have vanishing odd cohomology groups under the above
assumption. The generating function of all Betti numbers is nothing but the
truncated t-analogue of q-character of a simple module. In particular, it was
computed in [54].

We have assumed that E∗
W contains an open orbit. But the only necessary

assumption we need is that perverse sheaves corresponding to canonical base
elements have strictly smaller supports than E∗

W , except 1E∗
W

[dimE∗
W ]. Even if

this condition is not satisfied, we can consider the almost simple module L(W )
corresponding to the sum of perverse sheaves whose supports are the whole E∗

W .
Then the total sum of Betti numbers (the Euler number is not natural in this
wider context) of the quiver Grassmannian give the truncated q-character of the
almost simple module. An almost simple module L(W ) is not necessarily simple
in general.

It is rather simple to study tensor product factorization of L(W ) since we
computed their truncated q-characters. First we observe that Kirillov-Reshetikhin
modules simply factor out. Then we may assume that W has zero entries on
frozen vertices. Thus W is supported on the first given vertices. We next observe
that L(W ) factors as

L(W ) ∼= L(W 1) ⊗ · · · ⊗ L(W s)

according to the canonical decomposition W = W 1 ⊕ · · · ⊕ W s of W . Recall that
the canonical decomposition is the decomposition of a general representation
of EW first introduced by Kac [34], [35] and studied further by Schofield [57]. It
is known that each W k is a Schur root (i.e., a general representation is indecom-
posable) and Ext1 between general representations from two different factors W k,
W l vanishes.

We prove that a simple module L(W ) corresponds to a cluster monomial
if and only if the canonical decomposition contains only real Schur roots. In
this case, E∗

W contains an open orbit. Then we have L(W ) = L(W ), L(W k) =

†There is a gap in the proof of [9, Theorem 1] since Lusztig’s v is identified with q. The

correct identification is v = −√
q. We give a corrected proof in the appendix.
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L(W k), and each L(W k) corresponds to a cluster variable, and the above tensor
factorization corresponds to the cluster expansion.

1.5. To do list
In this article, basically due to laziness of the author, at least four natural topics
are not discussed

(1) Our Grothendieck ring R has a natural noncommutative deformation Rt.
It should contain the quantum cluster algebra in [4]. In fact, we already give our
main formula (in Theorem 6.3) in Poincaré polynomials of quiver Grassmannian
varieties. Therefore the only remaining thing is to prove the quantum version of
the cluster character formula. Any proof in the literature should be modified to
the quantum version naturally, as it is based on the counting of rational points.

After an earlier version of this article was posted on the arXiv, Qin [56]
proved the quantum version of the cluster character formula for an acyclic cluster
algebra. This is the most essential part for this problem, but we still need to
check that the multiplication Rt is the same as that of the quantum cluster
algebra. This will be checked elsewhere.

(2) We treat only the case when the underlying quiver is bipartite. Since
the choice of the quiver orientation is not essential in Lusztig’s construction (in
fact, the Fourier transform provides a technique to change orientations), this
assumption probably can be removed.

(3) We treat only the symmetric cases. Symmetrizable cases can be studied
by considering quiver automorphisms as in Lusztig’s work. Though the corre-
sponding theory was not studied in the author’s theory, it should correspond to
the representations of twisted quantum affine algebras.

(4) In [25] and [26] it was proved that cluster monomials are semicanonical
base elements. It was conjectured that they are also canonical base elements. It
is desirable to study the precise relation of this work to ours.

The author or his colleagues will hopefully come back to these problems in the
near future.

In [31] a further conjecture is proposed for the monoidal subcategory C�,
where C1 is the special case � = 1. Since the graded quiver varieties are no
longer vector spaces for � > 1, the method of this article does not work. But
it is certainly an interesting direction to pursue. We also remark that other
connections between the cluster algebra theory and the representation theory of
quantum affine algebras have been found by Di Francesco and Kedem [18] and
Inoue and colleagues [33]. It is interesting to make a connection to their works.

This article is organized as follows. Sections 2 and 3 are preliminaries for
cluster algebras and graded quiver varieties, respectively. In Section 4 we intro-
duce the category C1 following [31] and study the corresponding graded quiver
varieties. In Section 5 we define a homomorphism from the Grothendieck group
R�=1 of C1 to a rational function field which is endowed with a cluster algebra
structure. In Section 6 we explain the relation between the cluster character
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and the pushforward and derive several consequences on factorizations of sim-
ple modules. In Section 7 we prove that cluster monomials are dual canonical
base elements. In the appendix we prove that the quiver Grassmannian of a
rigid module of an acyclic quiver has no odd cohomology. It implies the positive
conjecture for an acyclic cluster algebra for the special case of an initial seed.

2. Preliminaries, I: Cluster algebras

We review the definition and properties of cluster algebras.

2.1. Definition
Let G = (I,E) be a finite graph, where I is the set of vertices and E is the
set of edges. Let H be the set of pairs consisting of an edge together with its
orientation. For h ∈ H , we denote by i(h) (resp., o(h)) the incoming (resp.,
outgoing) vertex of h. For h ∈ H , we denote by h the same edge as h with the
reverse orientation. A quiver Q = (I,Ω) is the finite graph G together with a
choice of an orientation Ω ⊂ H such that Ω ∩ Ω = ∅, Ω ∪ Ω = H .

We consider a pair of a quiver Q = (I,Ω) and a larger quiver Q̃ = (Ĩ , Ω̃)
containing Q, where I is a subset of Ĩ and Ω is obtained from Ω̃ by removing
arrows incident to a point in Ĩ \ I . Set Ifr = Ĩ \ I . We call i ∈ Ifr (resp., i ∈ I) a
frozen (resp., principal) vertex.

We assume that Q̃ has no loops or 2-cycles and that there are no edges
connecting points in Ifr. We define a matrix B̃ = (bij)i∈Ĩ,j∈I by

bij := (the number of oriented edges from j to i)

or −(the number of oriented edges from i to j).

Since we have assumed that Q̃ contains no 2-cycles, this is well defined. Moreover,
giving B̃ is equivalent to a quiver Q̃ with the decomposition Ĩ = I � Ifr as above.
The principal part B of B̃ is the matrix obtained from B̃ by taking entries for
I × I . From the definition, B is skew-symmetric.

For a vertex k ∈ I , we define the matrix mutation μk(B̃) of B̃ in direction k

as the new matrix (b′
ij) indexed by (i, j) ∈ Ĩ × I given by the formula

(2.1) b′
ij =

{
−bij if i = k or j = k,

bij + sgn(bik)max(bikbkj ,0) otherwise.

If Ω̃∗ denotes the corresponding quiver, it is obtained from Ω̃ by the following
rules.

(1) For each i → k, k → j ∈ Ω̃, create a new arrow i → j if either i or j ∈ I .
(2) Reverse all arrows incident to k.
(3) Remove 2-cycles between i and j of the resulting quiver after (1) and (2).
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Graphically it is given by

Ω̃ : i

s

r
j

k
t

=⇒ Ω̃∗ : i
r+st

j,

t
k

s

where s, t are nonnegative integers and i
l−→ j means that there are l arrows from

i to j if l ≥ 0 and (−l) arrows from j to i if l ≤ 0. The new quiver Ω̃∗ has no
loops or 2-cycles.

Let F = Q(xi)i∈Ĩ be the field of rational functions in commuting indeter-
minates x = (xi)i∈Ĩ indexed by Ĩ . For k ∈ I we define a new variable x∗

k by the
exchange relation:

(2.2) x∗
k =

∏
bik>0 xbik

i +
∏

bik<0 x−bik
i

xk
.

Let μk(x) be the set of variables obtained from x by replacing xk by x∗
k. The

pair (μk(x), μk(B̃)) is called the mutation of (x, B̃) in direction k. We can iterate
this procedure and obtain new pairs by mutating (μk(x), μk(B̃)) in any direction
l ∈ I . We do not make mutations in the direction of a frozen vertex k ∈ Ifr.
Variables xi for i ∈ Ifr are always in μk(x); they are called frozen variables (or
coefficients in [21]).

Now a seed is a pair (y, C̃) of y = (yi)i∈Ĩ ∈ F Ĩ and a matrix C̃ = (cij)i∈Ĩ,j∈I

obtained from the initial seed (x, B̃) by a successive application of mutations
in various directions k ∈ I . The set of seeds is denoted by S . A cluster is
{yi | i ∈ Ĩ} of a seed (y, C̃), considered as a subset of F by forgetting the Ĩ-
index. A cluster variable is an element of the union of all clusters. Note that
clusters may overlap: a cluster variable may belong to another cluster. Also, the
Ĩ-index may be different from the original one. The cluster algebra A (B̃) is the
subalgebra of F generated by all the cluster variables. The integer #I is called
the rank of A (B̃). A cluster monomial is a monomial in the cluster variables of
a single cluster. The exchange relation (2.2) is of the form

(2.3) xkx∗
k = m+ + m−,

where m± =
∏

±bik>0 x±bik
i are cluster monomials.

When we say a cluster algebra, it may mean the subalgebra A (B̃) or all the
above structures.

One of the important results in the cluster algebra theory is the Laurent
phenomenon: every cluster variable z in A (B̃) is a Laurent polynomial in any
given cluster y with coefficients in Z. It is conjectured that the coefficients are
nonnegative. A cluster monomial is a subtraction-free rational expression in x,
but this is not enough to ensure the positivity of its Laurent expansion, as an
example x2 − x + 1 = (x + 1)3/(x + 1) shows.
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2.2. F -polynomial
It is known that cluster variables of A (B̃) are expressed by the g-vectors and F -
polynomials (see [23]), which are constructed from another cluster algebra with
the same principal part but a simpler frozen part. We recall their definition in
this subsection.

We first prepare some notation. We consider the multiplicative group P of
all Laurent monomials in (xi)∈I . We introduce the addition ⊕ by∏

i

xai
i ⊕

∏
i

xbi
i =

∏
i

x
min(ai,bi)
i .

In this operation together with the ordinary multiplication and division, P becomes
a semifield, called the tropical semifield. Let F be a subtraction-free rational
expression with integer coefficients in variables yi. Then we evaluate it in P by
specializing the yi to some elements pi of P. We denote it by F |P(p), where
p = (pi)i∈I .

Let Apr be the cluster algebra with principal coefficients. It is given by the
initial seed ((u, f), B̃pr) with (u, f) = (ui, fi)i∈I , and B̃pr is the matrix indexed
by (I � I) × I with the same principal B as B̃ and the identity matrix in the
frozen part. Here Ifr is a copy of I and Ĩ = I � I . We write a cluster variable α as

α = Xα(u, f),

a subtraction-free rational expression in u, f . We then specialize all the ui to 1:

Fα(f) = Xα(u, f)|ui=1.

It becomes a polynomial in fi and is called the F -polynomial (see [23], Section 3).
It is also known (see [23], Section 6) that Xα is homogeneous with respect to the
ZI -grading given by

degui = i, deg fj = −
∑

i

biji,

where bij is the matrix entry for the principal part B, and the vertex i is identified
with the coordinate vector in ZI . We then define g-vector by

gα
def= degXα ∈ ZI .

We now return back to the original cluster algebra A (B̃) ⊂ Q(xi)i∈Ĩ . We
introduce the following variables:

yj =
∏
i∈Ifr

x
bij

i , ŷj = yj

∏
i∈I

x
bij

i (j ∈ I).

We write y = (yi)i∈I , ŷ = (ŷi)i∈I .
We consider the corresponding cluster variable x[α] in the seed of the original

cluster algebra A (B̃) obtained by the same mutation processes as we obtained α

in the cluster algebra with principal coefficients. We then have [23, Corollary 6.5]:

x[α] =
Fα(ŷ)

Fα|P(y)
xgα ,

where xgα =
∏

i∈I x
(gα)i

i if (gα)i is the ith entry of gα.
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2.3. Hernandez-Leclerc monoidal categorification conjecture
We recall Hernandez and Leclerc’s monoidal categorification conjecture in this
subsection.

Let A be a cluster algebra, and let M be an abelian monoidal category.
A simple object L ∈ M is prime if there exists no nontrivial factorization L ∼=
L1 ⊗ L2. We say that L is real if L ⊗ L is simple.

DEFINITION 2.4 ([31, DEFINITION 2.1])

Let A and M be as above. We say that M is a monoidal categorification of A

if the Grothendieck ring of M is isomorphic to A and if

(1) the cluster monomials m of A are the classes of all the real simple objects
L(m) of M ;

(2) the cluster variables of A (including the frozen ones) are the classes of
all the real prime simple objects of M .

If two cluster variables x, y belong to the common cluster, then xy is a cluster
monomial. Therefore the corresponding simple objects L(x), L(y) satisfy L(x) ⊗
L(y) ∼= L(y) ⊗ L(x) ∼= L(xy).

PROPOSITION 2.5 ([31, SECTION 2])

Suppose that a cluster algebra A has a monoidal categorification M .

(1) Every cluster monomial has a Laurent expansion with positive coeffi-
cients with respect to any cluster y = (yi)i∈Ĩ ∈ S :

m =
Nm(y)∏

i y
di

i

, di ∈ Z≥0, N(yi) ∈ Z≥0[y±
i ].

In fact, the coefficient of
∏

yki
i in Nm(y) is equal to the multiplicity of L(

∏
yki

i ) =⊗
L(yi)⊗ki in L(m) ⊗ L(

∏
i y

di
i ) = L(m) ⊗

⊗
L(yi)⊗di .

(2) The cluster monomials of A are linearly independent.

CONJECTURE 2.6 ([31, CONJECTURE 4.6])

The cluster algebra for the quiver defined in Section 5 has a monoidal categori-
fication when the underlying graph is of type ADE. More precisely, it is given
by a certain explicitly defined monoidal subcategory C1 of the category of finite-
dimensional representations of the quantum affine algebra Uq(Lg).

The monoidal subcategory is defined in Section 4.1 in terms of graded quiver
varieties for arbitrary symmetric Kac-Moody cases. And we prove the conjecture
for type ADE. This is new for Dn for n ≥ 5 and E6, E7, E8 since the conjecture
was already proved in [31] for types A and D4.

However, we cannot control the prime factorization of arbitrary simple mod-
ules except in the ADE cases. We can just prove that cluster monomials are
real simple objects. And there are imaginary simple objects for types other
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than ADE. So it is still not clear that our monoidal subcategory is a monoidal
categorification in the above sense in general (see the paragraph at the end of
Section 6 for a partial result). Nonetheless, the statement that cluster monomials
are classes of simple objects is enough to derive the conclusions (1) and (2) of
Proposition 2.5.

3. Preliminaries, II: Graded quiver varieties

We review the definition of graded quiver varieties and the convolution diagram
for the tensor product in this section. Our notation mainly follows [54]. Some
materials are borrowed from [59].

We do not explain anything about representations of the quantum loop alge-
bra Uq(Lg) except in Theorem 3.17. This is because we can work directly in the
category of perverse sheaves on graded quiver varieties. Another reason is that
it is not known whether the quantum loop algebra Uq(Lg) can be equipped with
the structure of a Hopf algebra in general. Therefore tensor products of modules
do not make sense. On the other hand, the category of perverse sheaves has the
coproduct induced from the convolution diagram.

3.1. Definition of graded quiver varieties
Let q be a nonzero complex number. We assume that it is not a root of unity
later, but it can be at the beginning.

Suppose that a finite graph G = (I,E) is given. We assume that the graph G
contains no edge loops. Let A = (aij) be the adjacency matrix of the graph,
namely,

aij = (the number of edges joining i to j).

Let C = 2I − A = (cij) be the Cartan matrix.
Let H be the set of pairs consisting of an edge together with its orientation

as in Section 2. We choose and fix an orientation Ω of G and define ε(h) = 1 if
h ∈ Ω and −1 otherwise.

Let V , W be (I × C∗)-graded vector spaces such that its (i × a)-component,
denoted by Vi(a), is finite-dimensional and zero for all but finitely many i × a. In
what follows we consider only (I × C∗)-graded vector spaces with this condition.
We say that the pair (V,W ) of (I × C∗)-graded vector spaces is l-dominant if

(3.1) dimWi(a) − dimVi(aq) − dimVi(aq−1) −
∑
j:j �=i

cij dimVj(a) ≥ 0

for any i, a.
Let Cq (q-analogue of the Cartan matrix) be an endomorphism of ZI×C

∗

given by

(3.2)
(
vi(a)

)
�→

(
v′

i(a)
)
, v′

i(a) = vi(aq) + vi(aq−1) +
∑
j:j �=i

cijvj(a).

Considering dimV , dimW as vectors in ZI×C
∗

≥0 , we view the left-hand side of (3.1)
as the (i, a)-component of (dimW − Cq dimV ). This is an analogue of a weight.
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We say that V ≤ V ′ if

dimVi(a) ≥ dimV ′
i (a)

for any i, a. We say that V < V ′ if V ≤ V ′ and V �= V ′. This is analogue of
the dominance order. We say (V,W ) ≤ (V ′,W ′) if there exists v′ ′ ∈ ZI×C

∗

≥0 whose
entries are zero for all but finitely many (i, a) such that

dimW − Cq dimV = dimW ′ − Cq(dimV ′ + v′ ′).

When W = W ′, (V,W ) ≤ (V ′,W ′) if and only if V ≤ V ′.
These conditions originally come from the representation theory of the quan-

tum loop algebra Uq(Lg).
For an integer n, we define vector spaces by

L•(V,W )[n] def=
⊕

i∈I, a∈C∗

Hom
(
Vi(a),Wi(aqn)

)
,

(3.3)
E•(V,W )[n] def=

⊕
h∈H, a∈C∗

Hom
(
Vo(h)(a),Wi(h)(aqn)

)
.

If V and W are (I × C∗)-graded vector spaces as above, we consider the
vector spaces

(3.4) M• ≡ M•(V,W ) def= E•(V,V )[−1] ⊕ L•(W,V )[−1] ⊕ L•(V,W )[−1],

where we use the notation M• unless we want to specify V , W . The above three
components for an element of M• are denoted by B, α, β, respectively. (In [49],
α and β were denoted by i, j, respectively.) The Hom(Vo(h)(a), Vi(h)(aq−1))-
component of B is denoted by Bh,a. Similarly, we denote by αi,a, βi,a the
components of α, β.

We define a map μ : M• → L•(V,V )[−2] by

μi,a(B,α,β) =
∑

i(h)=i

ε(h)Bh,aq−1Bh,a + αi,aq−1βi,a,

where μi,a is the (i, a)-component of μ.

Let GV
def=

∏
i,a GL(Vi(a)). It acts on M• by

(B,α,β) �→ g · (B,α,β) def= (gi(h),aq−1Bh,ag−1
o(h),a, gi,aq−1αi,a, βi,ag−1

i,a ).

The action preserves the subvariety μ−1(0) in M•.

DEFINITION 3.5

A point (B,α,β) ∈ μ−1(0) is said to be stable if the following condition holds:

If an I × C∗-graded subspace V ′ of V is B-invariant and contained in Kerβ,
then V ′ = 0.

Let us denote by μ−1(0)s the set of stable points.

Clearly, the stability condition is invariant under the action of GV . Hence we
may say whether an orbit is stable or not.
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We consider two kinds of quotient spaces of μ−1(0):

M•
0(V,W ) def= μ−1(0)//GV , M•(V,W ) def= μ−1(0)s/GV .

Here // is the affine algebro-geometric quotient; that is, the coordinate ring of
M•

0(V,W ) is the ring of GV -invariant functions on μ−1(0). In particular, it
is an affine variety. It is the set of closed GV -orbits. The second one is the
set-theoretical quotient but coincides with a quotient in the geometric invariant
theory (see [48, Section 3]). The action of GV on μ−1(0)s is free thanks to the
stability condition (see [48, Lemma 3.10]). By the general theory, there exists a
natural projective morphism

π : M•(V,W ) → M•
0(V,W )

(see [48, (3.18)]). The inverse image of zero under π is denoted by L•(V,W ). We
call these varieties cyclic quiver varieties or graded quiver varieties, according as q

is a root of unity or not. In this article we consider only the case when q is not a
root of unity hereafter. When we want to distinguish M•(V,W ) and M•

0(V,W ),
we call the former (resp., latter) the nonsingular (resp., affine) graded quiver
variety. But it does not mean that M•

0(V,W ) is actually singular. As we see
later, it is possible that M•

0(V,W ) happens to be nonsingular.
We have

dimM•(V,W ) = 〈dimV, (q + q−1)dimW − q−1Cq dimV 〉,

where q± · is an automorphism of ZI×C
∗

given by (vi(a)) �→ (v′
i(a)); v′

i(a) =
vi(aq±), and 〈 , 〉 is the natural pairing on ZI×C

∗
(see [54, (4.11)]).

The original quiver varieties (see [47], [48]) are the special case when q = 1
and Vi(a) = Wi(a) = 0 except when a = 1. On the other hand, the above varieties
M•(W ), M•

0(W ) are a fixed point set of the original quiver varieties with respect
to a semisimple element in a product of general linear groups (see [49, Section 4]).
In particular, it follows that M•(V,W ) is nonsingular since the corresponding
original quiver variety is. This can also be checked directly.

It is known that the coordinate ring of M•
0(V,W ) is generated by the follow-

ing type of elements:

(3.6) (B,α,β) �→ 〈χ,βj,aq−n−1Bhn,aq−n . . .Bh1,aq−1αi,a〉,

where χ is a linear form on Hom(Wi(a),Wj(aq−n−2)) (see [44]). Here we do
not need to consider generators of a form tr(BhN ,aqN −1BhN −1,aqN −2 · · · Bh1,a)
corresponding to an oriented cycle h1, . . . , hN as they automatically vanish as q

is not a root of unity. (Our definition of the graded quiver variety is different from
one in [49] when there are multiple edges joining two vertices. See Remark 3.13
for more detail. The above generators may not vanish in the original definition,
but do vanish in our definition.)

Let M
• reg
0 (V,W ) ⊂ M•

0(V,W ) be a possibly empty open subset of M•
0(V,W )

consisting of closed free GV -orbits. It is known that π is an isomorphism on
π−1(M• reg

0 (V,W )) (see [48, Proposition 3.24]). In particular, M
• reg
0 (V,W ) is

nonsingular and pure-dimensional.
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The GV -orbit through (B,α,β), considered as a point of M•(V,W ), is denoted
by [B,α,β].

Suppose that we have two I × C∗-graded vector spaces V , V ′ such that
Vi(a) ⊂ V ′

i (a) for all i, a. Then M•
0(V,W ) can be identified with a closed sub-

variety of M•
0(V

′,W ) by the extension by zero to the complementary subspace
(see [49, Lemma 2.5.3]). We consider the limit

M•
0(W ) def=

⋃
V

M•
0(V,W ).

(It was denoted by M0(∞,w)A in [49] and by M•
0(∞,W ) in [54].)

We have M•
0(V,0) = {0} for W = 0 since generators (3.6) vanish. Then [47,

Lemma 6.5] or [48, Lemma 3.27] implies that

(3.7) M•
0(W ) =

⊔
[V ]

M
• reg
0 (V,W ),

where [V ] denotes the isomorphism class of V . It is known that

M
• reg
0 (V,W ) �= ∅ if and only if M•(V,W ) �= ∅ and (V,W ) is l -dominant

(3.8)
(see [49, Theorem 14.3.2(2)]).

If M
• reg
0 (V,W ) ⊂ M

• reg
0 (V ′,W ), then V ′ ≤ V. (This follows from [49,

(3.9)
Section 3.3].)

It is also easy to show that

(3.10) M
• reg
0 (V,W ) = ∅ if V is sufficiently large

(see the argument in the proof of Proposition 4.6(1)). Thus M•
0(W ) def=

⋃
V M•

0(V,

W ) stabilizes at some V .
On the other hand, we consider the disjoint union for M•(V,W ):

M•(W ) def=
⊔
[V ]

M•(V,W ).

Note that there are no obvious morphisms between M•(V,W ) and M•(V ′,W )
since the stability condition is not preserved under the extension. We have a
morphism M•(W ) → M•

0(W ), still denoted by π.
It is known that M•(V,W ) becomes empty if V is sufficiently large when g

is of type ADE (since the usual quiver variety M(V,W ) is nonempty if and
only if (dimW − CdimV ) is a weight of the irreducible representation with the
highest weight dimW ; see [48, Theorem 10.2]). But it is not true in general, and
dimensions of M•(V,W ) may go to ∞ when V becomes large. In the following,
we use M•(W ) for brevity of notation and consider its geometric structure on
each M•(V,W ) individually. We never consider it as an infinite-dimensional
variety. Furthermore, we only need M•(V,W ) such that M

• reg
0 (V,W ) �= ∅ in

practice. From the above remark, we can stay in finite V ’s.
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The following three-term complex plays an important role:

(3.11) C•
i,a(V,W ) : Vi(aq)

σi,a−−→
⊕

h:i(h)=i

Vo(h)(a) ⊕ Wi(a)
τi,a−−→ Vi(aq−1),

where

σi,a =
⊕

i(h)=i

Bh,aq ⊕ βi,aq, τi,a =
∑

i(h)=i

ε(h)Bh,a + αi,a.

This is a complex thanks to the equation μ(B,α,β) = 0. If (B,α,β) is stable, σi,a

is injective as the (I × C∗)-graded vector space V ′ given by V ′
i (aq) := Kerσi,a,

V ′
j (b) := 0 (otherwise) is B-invariant and contained in Kerβ and hence must be

zero.
We assign the degree zero to the middle term. We define the rank of com-

plex C• by
∑

p(−1)p rankCp. It is exactly the left-hand side of (3.1). Therefore
(V,W ) is l -dominant if and only if

rankC•
i,a(V,W ) ≥ 0

for any i, a. From this observation the “only-if” part of (3.8) is clear. If we
consider the complex at a point M

• reg
0 (V,W ), it is easy to see that τi,a is sur-

jective. Therefore rankC•
i,a(V,W ) is the dimension of the middle cohomology

group. When (V,W ) is l -dominant, we define an I × C∗-graded vector space
C•(V,W ) by

(3.12) dim
(
C•(V,W )

)
i
(a) = rankC•

i,a(V,W ).

REMARK 3.13

Since we treat only graded quiver varieties of type ADE in [54], we explain what
must be modified for general types.

In [49] the graded quiver varieties are the C∗-fixed points of the ordinary
quiver varieties. When there are multiple edges joining two vertices, there are
several choices of the C∗-action. A choice corresponds to a choice of the q-
analogue Cq of the Cartan matrix C which implicitly appears in the defining
relation of the quantum loop algebras (see [49, (1.2.9)] for the defining relation,
and see [49, (2.9.1)] or (3.11) for its relation to the C∗-action). For example,
consider type A

(1)
1 . In [49] the q-analogue of the Cartan matrix was(

[2]q −[2]q
−[2]q [2]q

)
=

(
q + q−1 −(q + q−1)

−(q + q−1) q + q−1

)
,

while it is (
[2]q −2

−2 [2]q

)
=

(
q + q−1 −2

−2 q + q−1

)
in this article. When there is at most one edge joining two vertices, we do not
have this choice as [1]q = 1. The theory developed in [49] works for any choice of
the C∗-action.
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For the results in [54], we need a little care. First of all, [54, Corollary 3.7]
does not make sense since it is not known whether we have tensor products in
general, as we already mentioned. For the choice of the C∗-action in this article,
all other results hold without any essential changes, except assertions when ε is a
root of unity or ±1. (In these cases, we get new types of strata, so the assertion
must be modified. For the affine type, they can be understood from [52].) If we
take the C∗-action in [49], the recursion used to prove Axiom 2 does not work.
So we first take the C∗-action in this article, and then apply the same trick used
to deal with cyclic quiver varieties. In particular, we need to include an analogue
of Axiom 4. Details are left as an exercise for the reader of [54].

3.2. Transversal slice
Take a point x ∈ M

• reg
0 (V 0,W ). Let T be the tangent space of M

• reg
0 (V 0,W )

at x. Since M
• reg
0 (V 0,W ) is nonempty, (V 0,W ) is l -dominant; that is, (3.1)

holds by (3.8). Let W ⊥ = C•(V 0,W ) as in (3.12).
We consider another graded quiver variety M•

0(V,W ) which contains x in
its closure. By (3.9), we have V ≤ V 0. Therefore we can consider V ⊥, an (I ×
C∗)-graded vector space whose (i, a)-component has the dimension dimVi(a) −
dimV 0

i (a). We have dimW − Cq dimV = dimW ⊥ − Cq dimV ⊥, which means
the weight is unchanged under this procedure.

THEOREM 3.14 ([49, SECTION 3.3])

We work in the complex analytic topology. There exist neighborhoods U , UT ,
US of x ∈ M•

0(V,W ), 0 ∈ T , 0 ∈ M•
0(V

⊥,W ⊥), respectively, and biholomorphic
maps U → UT × US, π−1(U) → UT × π−1(US) such that the following diagram
commutes:

M•(V,W ) ⊃ π−1(U) −−−−→∼=
UT × π−1(US) ⊂ T × M•(V ⊥,W ⊥)

π

⏐⏐� ⏐⏐�id × π

M•
0(V,W ) ⊃ U −−−−→∼=

UT × US ⊂ T × M•
0(V

⊥,W ⊥)

Furthermore, a stratum M
• reg
0 (V ′,W ) of M•

0(V,W ) is mapped to a product of UT

and the stratum M
• reg
0 (V ′ ⊥,W ⊥) of M•

0(V
⊥,W ⊥).

Here V ′ ⊥ is defined exactly as V ⊥ replacing V by V ′; that is, dimV ′ ⊥ = dimV ′ −
dimV 0.

Note that V ′ ′ ≤ V ′ ⇔ V ′ ′ ⊥ ≤ V ′ ⊥ if we define V ′ ′ ⊥ for V ′ ′ in the same way.
See also [14] for the same result in the étale topology.

3.3. The additive category QW and the Grothendieck ring
Let X be a complex algebraic variety. Let D(X) be the bounded derived category
of constructible sheaves of C-vector spaces on X . For j ∈ Z, the shift functor
is denoted by L �→ L[j]. The Verdier duality is denoted by D. For a locally
closed subvariety Y ⊂ X , we denote by 1Y the constant sheaf on Y . We denote
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by IC(Y ) the intersection cohomology complex associated with the trivial local
system 1Y on Y . Our degree convention is such that IC(Y )|Y = 1Y [dimY ].

Since π : M•(V,W ) → M•
0(V,W ) is proper and M•(V,W ) is smooth,

π!(1M•(V,W )) is a direct sum of shifts of simple perverse sheaves on M•
0(V,W )

by the decomposition theorem (see [2]). We denote by PW the set of isomor-
phism classes of simple perverse sheaves obtained in this manner, considered as
a complex on M•

0(W ) by extension by zero to the complement of M•
0(V,W ).

By [49, Section 14], PW = {IC(M• reg
0 (V,W )) | M

• reg
0 (V,W ) �= ∅}. By (3.10),

#PW < ∞. Set ICW (V ) def= IC(M• reg
0 (V,W )). Let QW be the full subcategory

of D(M•
0(W )) whose objects are the complexes isomorphic to finite direct sums

of ICW (V )[k] for various ICW (V ) ∈ PW , k ∈ Z. Let πW (V ) def= π!(1M•(V,W ) ×
[dimM•(V,W )]). By the definition, we have πW (V ) ∈ QW . The subcategory
QW is preserved under D, and elements in PW are fixed by D.

Let K(QW ) be the abelian group with one generator (L) for each isomor-
phism class of objects of QW and with relations (L) + (L′) = (L′ ′) whenever
L′ ′ is isomorphic to L ⊕ L′. It is a module over A = Z[t, t−1] by t(L) = (L[1]),
t−1(L) = (L[−1]). It is a free A-module with base {(ICW (V )) | ICW (V ) ∈ PW }.
The duality D defines the bar involution on K(QW ) fixing (ICW (V )) and sat-
isfying t(L) = t−1(L). Since π is proper and M•(V,W ) is smooth, we also have
(πW (V )) = (πW (V )). We do not write ( ) hereafter.

There is another base{
πW (V )

∣∣ (V,W ) is l -dominant, M•(V,W ) �= ∅
}
.

Note that πW (V ) make sense for any V without the l -dominance condition, but
we need to take only l -dominant ones to get a base. Let us define aV,V ′;W (t) ∈ A
by

(3.15) πW (V ) =
∑
V ′

aV,V ′;W (t)ICW (V ′).

Then we have aV,V ′;W (t) ∈ Z≥0[t, t−1], aV,V ;W (t) = 1 and aV,V ′;W = 0 unless
V ′ ≤ V . Since both πW (V ) and ICW (V ′) are fixed by the bar involution, we
have aV,V ′;W (t) = aV,V ′;W (t−1). It also follows that we only need to consider
π!(1M•(V,W )) for which (V,W ) is l-dominant in the definition of PW .

Take V 0 such that M
• reg
0 (V 0,W ) �= ∅. Taking into account the transversal

slice in Section 3.2, we define a surjective homomorphism pW ⊥,W : K(QW ) →
K(QW ⊥ ) by

ICW (V ) �→
{

ICW ⊥ (V ⊥) if M
• reg
0 (V 0,W ) ⊂ M

• reg
0 (V,W ),

0 otherwise.

By Theorem 3.14, this homomorphism is also compatible with πW (V ). Taking
various V ’s, the K(QW )’s form a projective system.

We consider the dual K(QW )∗ = HomA(K(QW ), A). Let {LW (V )}, {χW (V )}
be the bases of K(QW )∗ dual to {ICW (V )}, {πW (V )}, respectively. Here, V

runs over the set of isomorphism classes of (I × C∗)-graded vector spaces such
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that (V,W ) is l -dominant. We consider yet another base {MW (V )} of K(QW )∗

given by

K(QW ) � (L) �→
∑

k

tdimM
• reg
0 (V,W )−k dimHk(i!xV,W

L) ∈ A,

where xV,W is a point in M
• reg
0 (V,W ) and ixV,W

is the inclusion of the point xV,W

in M•
0(W ). By Theorem 3.14, it is independent of the choice of xV,W . Also, it

is compatible with the projective system: if V 0 ≥ V ′ ≥ V , 〈MW (V ′), ICW (V )〉 =
〈MW ⊥ (V ′ ⊥), ICW ⊥ (V ⊥)〉.

By the defining property of perverse sheaves, we have

(3.16) LW (V ) ∈ MW (V ) +
∑

V ′:V ′>V

t−1Z[t−1]MW (V ′).

Since there are only finitely many V ′ with V ′ > V , this is a finite sum. This
shows that {MW (V )}V is a base. Recall also that the canonical base LW (V ) is
characterized by this property together with LW (V ) = LW (V ). It is the analogue
of the characterization of the Kazhdan-Lusztig base. This is not relevant in this
article, but it was important to compute LW (V ) explicitly in [54].

Let

Rt
def=

{
(fW ) ∈

∏
W

HomA
(

K(QW ), A
) ∣∣∣ 〈fW , ICW (V )〉 = 〈fW ⊥ , ICW ⊥ (V ⊥)〉

for any W , W ⊥ as above

}
.

A functional (fW ) ∈ Rt is determined when all values 〈fW ⊥ , ICW ⊥ (0)〉 are
given for any W ⊥. Let L(W ), χ(W ), M(W ) be the functional determined
from LW (0), χW (0), MW (0), respectively. For example, 〈L(W ), ICW ′ (V ′)〉 =
δdimW,dimW ′ −Cq dimV ′ . They form an analogue of canonical, monomial, and PBW
bases of Rt, respectively. From (3.16) the transition matrix between the canoni-
cal and monomial bases are upper triangular with respect to the ordering (0,W ) ≤
(0,W ′).

The following is the main result in [49].

THEOREM 3.17 ([49, THEOREM 14.3.10])

As an abelian group, Rt|t=1 is isomorphic to the Grothendieck group of the cate-
gory R of l-integrable representations of the quantum loop algebra Uq(Lg) of the
symmetric Kac-Moody Lie algebra g given by the Cartan matrix C, so that

(1) L(W ) corresponds to the class of the simple modules whose Drinfeld
polynomial is given by

Pi(u) =
∏

a∈C∗

(1 − au)dimWi(a) (i ∈ I).

(2) M(W ) corresponds to the class of the standard modules whose Drinfeld
polynomial is given by the same formula.
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Since we do not need this result in this article, except for an explanation of our
approach to one in [31], we do not explain terminologies and concepts in the
statement (see [49]).

From a general theory of the convolution algebra (see [12]), K(QW ) is the
Grothendieck group of the category of graded representations of the convolution
algebra H∗(M•(W ) ×M•

0(W )M
•(W )) ∼=

⊕
V 1,V 2 Ext∗

D(M•
0(W ))(πW (V 1), πW (V 2)),

where the grading is for Ext•-group. And {LW (V )} is the base given by classes
of simple modules.

Let us briefly explain how we glue the abelian categories for various W to
get a single abelian category. A family of graded module structures {ρW :
H∗(M•(W ) ×M•

0(W ) M•(W )) → EndC(M)}W on a single vector space M is said
to be compatible if ρW factors through various restrictions to open subsets in
Theorem 3.14 and the restrictions are compatible with the restriction of ρW ⊥

under the local isomorphisms in Theorem 3.14. For example, we fix W 0 and
choose various points xV,W ∈ M

• reg
0 (V,W ) with dimW − Cq dimV = dimW 0.

We identify H∗(π−1(xV,W )) with a single vector space M , say, H∗(π−1(x0,W 0)),
by the local isomorphisms. It is a compatible family of module structures. Com-
patible families form an abelian category. Let us denote it by Rconv. Then
we have K(Rconv) ∼= Rt. In Theorem 3.17, we have families of homomorphisms
Uq(Lg) → H∗(M•(W ) ×M•

0(W ) M
•(W )) compatible with the local isomorphisms.

Therefore we have a functor from Rconv to the category R of l -integrable repre-
sentations of Uq(Lg). It sends a simple object to a simple module. We do not
know whether it is an equivalence (after forgetting the grading on Rconv), but
we can get enough information practically.

3.4. t-Analogue of q-characters
For each (i, a) ∈ I × C∗, we introduce an indeterminate Yi,a. Let

Yt
def= A[Yi,a, Y −1

i,a ]i∈I,a∈C∗ .

We associate polynomials eW , eV ∈ Yt to graded vector spaces V , W by

eW =
∏

i∈I,a∈C∗

Y
dimWi(a)
i,a , eV =

∏
i∈I,a∈C∗

V
dimVi(a)
i,a ,

where Vi,a = Y −1
i,aq−1Y

−1
i,aq

∏
h∈H

o(h)=i

Yi(h),a.

We define the t-analogue of the q-character for M(W ) by

χq,t

(
M(W )

) def=
∑
V

∑
k

t−k dimHk
(
i!0πW (V )

)
eW eV ,

where zero is the unique point of M•
0(0,W ). From the definition in Section 3.3,

this is nothing but the generating function of pairings 〈MW (0), πW (V )〉 for var-
ious V . If g is of type ADE, M•(V,W ) becomes empty for large V , as we
mentioned in Section 3.1. Therefore this is a finite sum. If g is not of type
ADE, this becomes an infinite series, so it lives in a completion of Yt. Since
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the difference is not essential, we keep the notation Yt. Anyway we use only the
truncated q-character, which is in Yt, in this article.

Suppose that (V 0,W ) is l -dominant and we define V ⊥, W ⊥ as in Section 3.2.
Then∑
V

〈MW (V 0), πW (V )〉eW eV =
∑
V

〈MW ⊥ (0), πW ⊥ (V ⊥)〉eW ⊥
eV ⊥

= χq,t

(
M(W ⊥)

)
as eW eV = eW ⊥

eV ⊥
.

Since {M(W )} is a base of Rt, we can extend χq,t to Rt linearly. We have

(3.18) χq,t

(
L(W )

)
=

∑
V

〈LW (0), πW (V )〉eW eV =
∑
V

aV,0;W (t)eW eV ,

where aV,0;W is the coefficient of ICW (0) = 1{0} in πW (V ) (in K(QW )) as
in (3.15).

Since {MW (V )}(V,W ):l-dominant forms a base of Rt, we have the following.

THEOREM 3.19

The q-character homomorphism χq,t : Rt → Yt is injective.

But χq,t also contains terms from πW (V ) with (V,W ) not necessarily l -dominant.
This is redundant information.

REMARK 3.20

By [54, Theorem 3.5], the coefficient of eW eV in the t-analogue of q-characters
for standard modules M(W ) is in tdimM

•(V,W )Z≥0[t−2]. This was a consequence
of vanishing of odd cohomology groups of L•(V,W ). From the proof of [12,
Lemma 8.7.8] together with the above vanishing result, we have

aV,0;W (t) ∈ tdimM
•(V,W )Z≥0[t−2].

3.5. A convolution diagram
Let us take a 2-step flag 0 ⊂ W 2 ⊂ W of (I × C∗)-graded vector spaces. We put
W/W 2 = W 1. Following [50], we introduce closed subvarieties in M•

0(W ) and
M•(W ):

Z•
0(W

1;W 2) =
{
[B,α,β] ∈ M•

0(W )
∣∣ W 2

is invariant under βBkα for any k ∈ Z≥0

}
,

Z•(W 1;W 2) = π−1
(
Z•

0(W
1;W 2)

)
.

This definition is different from the original one but equivalence was proved by
[50, Lemma 3.6, Remark 3.7]. The latter has an α-partition

Z•(W 1;W 2) =
⊔

Z•(V 1,W 1;V 2,W 2)

such that Z•(V 1,W 1;V 2,W 2) is a vector bundle over M•(V 1,W 1) × M•(V 2,W 2)
of rank

〈dimV 1, q−1(dimW 2 − Cq dimV 2)〉 + 〈dimV 2, q dimW 1〉
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(see [50, Proposition 3.8]). Let us denote this rank by

d(V 1,W 1;V 2,W 2).

(It was denoted by d(eV 1
eW 1

, eV 2
eW 2

) in [54].)
Following [59], we consider the diagram

M•
0(W

1) × M•
0(W

2) κ←− Z•
0(W

1;W 2) ι−→ M•
0(W ),

where ι is the inclusion and κ is given by the induced maps from βBkα to
W 1 = W/W 2, W 2. Then we define a functor

R̃esW 1,W 2
def= κ!ι

∗ : D
(
M•

0(W )
)

→ D
(
M•

0(W
1) × M•

0(W
2)
)
.

We have

R̃esW 1,W 2(πW (V ))

=
⊕

V 1+V 2=V

πW 1(V 1) � πW 2(V 2)[d(V 2,W 2;V 1,W 1) − d(V 1,W 1;V 2,W 2)]

(see [59, Lemma 4.1]; a weaker statement was given in [54, Proposition 6.2(3)]).
From this observation, objects in QW are sent to QW 1×W 2 , the full subcat-
egory of D(M•

0(W
1) × M•

0(W
2)) whose objects are complexes isomorphic to

finite direct sums of ICW 1(V 1) � ICW 2(V 2)[k] for various ICW 1(V 1) ∈ PW 1 ,
ICW 2(V 2) ∈ PW 2 , k ∈ Z (see [59, Lemma 4.1]). Therefore this functor induces a
homomorphism K(QW ) → K(QW 1) ⊗A K(QW 2). It is coassociative, as K(QW )
is spanned by classes πW (V ) and they satisfy the coassociativity from the above
formula. We denote it also by R̃esW 1,W 2 .

Let C−1
q be the inverse of Cq . We define it by solving the equation (ui(a)) =

Cq(xi(a)) recursively starting from xi(aqs) = 0 for sufficiently small s. Note that
xi(a) may be nonzero for infinitely many a. We then observe that

d(V 1,W 1;V 2,W 2) − 〈C−1
q dimW 1, q−1 dimW 2〉

is preserved under the replacement M•(V 1,W 1) × M•(V 2,W 2) � M•(V 1⊥,

W 1⊥) × M•(V 2⊥,W 2⊥) by the transversal slice (see 59, Lemma 3.2]). There-
fore we define

ε(W 1,W 2) def= 〈C−1
q dimW 1, q−1 dimW 2〉 − 〈C−1

q dimW 2, q−1 dimW 1〉,

Res def=
∑

W=W 1⊕W 2

R̃es[ε(W 1,W 2)].

Then its transpose defines a multiplication on Rt, which is denoted by ⊗.
We also define the twisted multiplication on Yt given by

(3.21) m1 ∗ m2 = tε(�m1,�m2)m1m2,

where m1, m2 are monomials in Y ±
i,a and �mα = (mα

i (a)) is given by mα =∏
Y

mα
i (a)

i,a .
The following is the main result of [59].
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THEOREM 3.22

(1) The structure constant of the product with respect to the base {L(W )} is
positive:

L(W 1) ⊗ L(W 2) ∈
∑
W

aW
W 1,W 2(t)L(W )

with aW
W 1,W 2(t) ∈ Z≥0[t, t−1].

(2) χq,t : Rt → Yt is an algebra homomorphism with respect to ⊗ and the
twisted product ∗.

The following corollary of the positivity is also due to [59].

COROLLARY 3.23

The following are equivalent:

(1) L(W 1) ⊗ L(W 2) = L(W 1 ⊕ W 2) holds at t = 1;
(2) L(W 1) ⊗ L(W 2) = tε(W

1,W 2)L(W 1 ⊕ W 2).

It is tiresome to keep powers of t when tensor products of simple modules are
simple. From this corollary, there is no loss of information even if we forget
powers. Therefore we do not write tε(W

1,W 2) hereafter.
The restriction functor defines an algebra homomorphism

H∗
(
M•(W ) ×M•

0(W ) M•(W )
)

→ H∗
(
M•(W 1) ×M•

0(W 1) M•(W 1)
)

⊗ H∗
(
M•(W 2) ×M•

0(W 2) M•(W 2)
)
.

It gives us a monoidal structure on the ungraded version of Rconv.

4. Graded quiver varieties for the monoidal subcategory C1

4.1. Graded quiver varieties and the decorated quiver
The monoidal subcategory C1 introduced in [31] is, in fact, the first (or second)
of a series of subcategories C� indexed by � ∈ Z≥0. Let us describe all of them in
terms of the category Rconv.

We suppose that (I,E) contains no odd cycles and take a bipartite partition
I = I0 � I1; that is, every edge connects a vertex in I0 with one in I1. We set

ξi =

{
0 if i ∈ I0,

1 if i ∈ I1.

Fix a nonnegative integer �. We consider the graded quiver varieties M•(V,W ),
M•

0(V,W ) under the condition

(∗�) Wi(a) = 0 unless a = qξi , qξi+2, . . . , qξi+2�.

It is clear that if W satisfies (∗�), both W 1 and W 2 satisfy (∗�) in the convolution
product Res : QW → QW 1 × QW 2 . Also, from the proof of Proposition 4.6(1),
it is clear that M

• reg
0 (V,W ) �= ∅ implies Vi(a) = 0 unless a = qξi+1, . . . , qξi+2�−1.



Quiver varieties and cluster algebras 95

Since W ⊥
i (a) in Section 3.2 is the middle cohomology of the complex (3.11),

W ⊥
i (a) also satisfies (∗�). Therefore the condition (∗�) is also compatible with

the projective system K(QW ) → K(QW ⊥ ). Therefore we have the subring Rt,�

of Rt. We set R� = Rt,�|t=1. It is also clear that the definition in [31] in terms
of roots of Drinfeld polynomials corresponds to our definition when g is of type
ADE from the theory developed in [49].

EXAMPLE 4.1

Consider the simplest case � = 0. By [49, Proposition 4.2.2] or the argument
below we have M•

0(V,W ) = {0} if W satisfies (∗0). Therefore QW consists of
finite direct sums of shifts of a single object 1M•

0(0,W ). We have Res(1M•
0(0,W )) =

1M•
0(0,W 1) � 1M•

0(0,W 2). This corresponds to the fact that any tensor product of
simple modules in C0 remains simple (see [31, Example 3.3]).

We now start to analyze the condition (∗�=1). Let

EW
def=

⊕
i

Hom
(
Wi(qξi+2),Wi(qξi)

)
(4.2)

⊕
⊕

h:o(h)∈I1,i(h)∈I0

Hom
(
Wo(h)(q3),Wi(h)(1)

)
This vector space EW is the space of representations of the decorated quiver.

DEFINITION 4.3

Suppose that a finite graph G = (I,E) together with a bipartite partition I =
I0 � I1 is given. We define the decorated quiver Q̃ = (Ĩ , Ω̃) by the following two
steps.

(1) We put an orientation to each edge in E so that vertices in I0 (resp.,
I1) are sinks (resp., sources). Let Ω be the set of all oriented edges, and let
Q = (I,Ω) be the corresponding quiver.

(2) Let Ifr be a copy of I . For i ∈ I , we denote by i′ the corresponding vertex
in Ifr. Then we add a new vertex i′ and an arrow i′ → i (resp., i → i′) if i ∈ I0

(resp., i ∈ I1) for each i ∈ I . Let Ωdec be the set of these arrows. The decorated
quiver is Q̃ = (Ĩ , Ω̃dec) = (I � Ifr,Ω � Ωdec).

We call Q = (I,Ω) the principal part of the decorated quiver.

For example, for type A3 with I0 = {1,3}, we get the following quiver:

W1(1)
y1,2=β1,qB1,2,q2α2,q3←−−−−−−−−−−−−−− W2(q3)

y3,2=β3,qB3,2,q2α2,q3−−−−−−−−−−−−−−→ W3(1)

x1=β1,qα1,q2

�⏐⏐ ⏐⏐�x2=β2,q2α2,q3

�⏐⏐x3=β3,qα3,q2

W1(q2) W2(q) W3(q2)(4.4)

The maps attached with arrows are explained in the proof of Proposition 4.6.



96 Hiraku Nakajima

The following is a variant of a variety corresponding to a monomial in Fi in
Lusztig’s theory (see [43, Section 9.1.3]).

DEFINITION 4.5

(1) Let ν = (νi) ∈ ZI
≥0. Let F (ν,W ) be the variety parameterizing collec-

tions of vector spaces X = (Xi)i∈I indexed by I such that dimXi = νi and

Xi ⊂ Wi(1) (i ∈ I0), Xi ⊂ Wi(q) ⊕
⊕

h∈Ω:o(h)=i

Xi(h) (i ∈ I1).

It is a kind of partial flag variety and nonsingular projective.
(2) Let F̃ (ν,W ) be the variety of all triples (

⊕
xi,

⊕
yh,X), where (

⊕
xi,⊕

yh) ∈ EW and X ∈ F (ν,W ) such that

Imxi ⊂ Xi (i ∈ I0), Im
(
xi ⊕

⊕
h∈Ω:o(h)=i

yh

)
⊂ Xi (i ∈ I1).

This is a vector bundle over F (ν,W ) and hence is nonsingular. Let πν : F̃ (ν,

W ) → EW be the natural projection. It is a proper morphism.

PROPOSITION 4.6

Suppose that W satisfies (∗�) with � = 1.
(1) If M

• reg
0 (V,W ) �= ∅, we have

(4.7) Vi(a) = 0 unless a = qξi+1.

Moreover, we have an isomorphism M•
0(W ) ∼= EW given by

[B,α,β] �→
(⊕

i∈I

xi,
⊕
h∈Ω

yh

)
, xi = βi,qξi+1αi,qξi+2 , yh = βi(h),qBh,q2αo(h),q3 .

(2) Suppose that V satisfies (4.7). Let us define ν ∈ ZI
≥0 by νi = dimVi(qξi+1).

Then M•(V,W ) is isomorphic to F̃ (ν,W ), and the following diagram is commu-
tative:

M•(V,W )
∼=−−−−→ F̃ (ν,W )

π

⏐⏐� ⏐⏐�πν

M•
0(W )

∼=−−−−→ EW

Proof
(1) Recall that the coordinate ring of M•

0(V,W ) is generated by functions given
by (3.6).

Consider a map

βj,aq−n−1Bhn,q−n · · · Bh1,aq−1αi,a : Wi(a) → Wj(aq−n−2)

with i(ha) = o(ha+1) for a = 1, . . . , n − 1. From the assumption (∗1), this is
nonzero only when i = j, n = 0, a = qξi+2 or n = 1, i ∈ I1, j ∈ I0, a = q3. From
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this observation we have

M•
0(W ) = M•

0(V,W )

for some V with Vi(a) = 0 unless a = qξi+1. Thus we obtain the first assertion.
Moreover, the equation μ(B,α,β) = 0 is automatically satisfied, and the second
assertion follows from the standard fact Hom(W,V ) ⊕ Hom(V,W ′)//GL(V ) ∼=
Hom(W,W ′) for V with dimV ≥ min(dimW,dimW ′).

(2) We first observe the following. �

CLAIM

Under the assumption (B,α,β) is stable if and only if the following linear maps
are all injective:

βi,q : Vi(q) → Wi(1) (i ∈ I0), σi,q : Vi(q2) →
⊕

h:o(h)=i

Vi(h)(q) ⊕ Wi(q) (i ∈ I1)

(see (3.11) and the subsequent formula for the definition of σi,q).

Proof
Consider the (I × C∗)-graded vector space given by V ′

i (q) = Kerβi,q and all
other V ′

j (a) = 0. Then the stability condition implies V ′
i (q) = 0. Therefore

βi,q is injective. The same argument shows the injectivity of σi,q . Conversely,
suppose that all the above maps are injective. Take an (I × C∗)-graded sub-
space V ′ of V as in Definition 3.5. First, consider V ′

i (q) for i ∈ I0. We have
βi,q |V ′

i (q) = 0. Therefore the injectivity of βi,q implies V ′
i (q) = 0. Next, consider

V ′
j (q2) ⊂ Vj(q2) for j ∈ I0. We have βj,q2 |V ′

j (q2) = 0 from the assumption. We
also have Bh,q2(V ′

j (q2)) ⊂ V ′
i (q) = 0 from what we have just proved. Therefore

the injectivity of σj,q implies that V ′
j (q2) = 0. This completes the proof of the

claim.
Suppose that [B,α,β] ∈ M•(V,W ) is given. We set

σ̃i,q :=
( ⊕

h:o(h)=i

βi(h),q ⊕ idWi(q)

)
◦ σi,q : Vi(q2) →

⊕
h:o(h)=i

Wi(h)(1) ⊕ Wi(q),

Xi := Imβi,q (i ∈ I0), Xi := Im σ̃i,q (i ∈ I1).

The spaces Xi are independent of the choice of a representative (B,α,β) of
[B,α,β]. From the above claim, we have dimXi = dimVi(q) (i ∈ I0) and dimXi =
dimVi(q2) (i ∈ I1). The remaining properties are automatically satisfied by the
construction.

Conversely, suppose that (
⊕

xi,
⊕

yh,X) is given. We set Vi(q) := Xi (i ∈
I0), Vi(q2) := Xi (i ∈ I1) and define linear maps (B,α,β) by

βi,q :=
(
the inclusion Xi ⊂ Wi(1)

)
, αi,q2 := xi (i ∈ I0),

βi,q2 ⊕
⊕

h:o(h)=i

Bh,q2 :=
(
the inclusion Xi ⊂ Wi(q) ⊕

⊕
Xi(h)

)
,

αi,q3 := xi (i ∈ I1).
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From the claim, the data (B,α,β) are stable and define a point in M•(V,W ).
These two assignments are inverse to each other; hence, they are isomorphisms.

�

4.2. A contravariant functor σ

For a later application we study further the description in Proposition 4.6(2).
By (2), M•(V,W ) ∼= F̃ (ν,W ) can be considered a vector bundle over F (ν,W ). It
is naturally a subbundle of the trivial bundle F (ν,W ) × EW . Let F̃ (ν,W )⊥ be
its annihilator in the dual trivial bundle F (ν,W ) × E∗

W , and let π⊥ : F̃ (ν,W )⊥ →
E∗

W be the natural projection. We denote the dual variables of xi, yh by x∗
i , y∗

h
,

respectively, that is,

x∗
i ∈ Hom

(
Wi(qξi),Wi(qξi+2)

)
, y∗

h
∈ Hom

(
Wi(h)(1),Wo(h)(q3)

)
.

By (2), ((
⊕

x∗
i ,
⊕

y∗
h
),X) is contained in F̃ (ν,W )⊥ if and only if

(4.8) x∗
i (Xi) = 0 (i ∈ I0),

(
x∗

i +
∑

h:o(h)=i

y∗
h

)
(Xi) = 0 (i ∈ I1).

It is important to understand a fiber of π⊥ on a general point (
⊕

x∗
i ,
⊕

y∗
h
) in

E∗
W . Since considering a subspace Xi in Wi(q) ⊕ Wi(h)(1) looks slightly strange,

let us apply the Bernstein-Gelfand-Ponomarev reflection functors from [5] (see
[1, Section VII.5]) to (

⊕
x∗

i ,
⊕

y∗
h
) at all the vertices i ∈ I1 (where Wi(q3) is

put). First, observe that (π⊥)−1(
⊕

x∗
i ,
⊕

y∗
h
) is unchanged even if we replace

Wi(q3) by the image of the map

(4.9) x∗
i +

∑
h:o(h)=i

y∗
h
: Wi(q) ⊕

⊕
h:o(h)=i

Wi(h)(1) → Wi(q3)

for all i ∈ I1. Then we may assume that x∗
i +

∑
h:o(h)=i y

∗
h

is surjective. Then
we can go back to (

⊕
x∗

i ,
⊕

y∗
h
) by the inverse reflection functor. Hence the

following operation gives an isomorphism between the relevant varieties.
We set

σWi(q3) def= Ker
(
x∗

i +
∑

h:o(h)=i

y∗
h

)
and define linear maps σxi : σWi(q3) → Wi(q) (i ∈ I1), σyh : σWi(q3) → Wi(h)(1)
(h ∈ H with o(h) = i ∈ I1) as the compositions of the inclusion σWi(q3) →
Wi(q) ⊕

⊕
h:o(h)=i Wi(h)(1) and the projections to factors. We have

(4.10) dim σWi(q3) = max
(
dimWi(q) +

∑
h:o(h)=i

dimWi(h)(1) − dimWi(q3),0
)
.

We denote by σW the new (I × C∗)-graded vector space given obtained from W

by replacing Wi(q3) by σWi(q3) for all i ∈ I1. We also set σxi = x∗
i for i ∈ I0.

We do not change Wi(1), Wi(q2) for i ∈ I0, and Wi(q) for i ∈ I1.
We consider Xi (i ∈ I1) as a subspace of σWi(q3) thanks to the second equa-

tion of (4.8). Since Xi was originally a subspace of Wi(q) ⊕
⊕

h:o(h)=i Xi(h), the
above definition implies σyh(Xo(h)) ⊂ Xi(h).
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For convenience we change the notation for a subspace from Xi to Xi(1)
(i ∈ I0) or Xi(q3) (i ∈ I1) to indicate the C∗-grading. We also set Xi(q2) = 0
for i ∈ I0 and Xi(q) = σWi(q) for i ∈ I1. Under these definitions, σxi(Xi(1)) ⊂
Xi(q2) is nothing but the first equation in (4.8), and σxi(Xi(q3)) ⊂ Xi(q) is
automatically true. Thus the conditions can be phrased simply as “X is invariant
under (

⊕
i∈I

σxi,
⊕

h∈Ω
σyh).”

LEMMA 4.11

Let σxi, σyh be as above. Then (π⊥)−1(
⊕

x∗
i ,
⊕

y∗
h
) is isomorphic to the variety

of (I × C∗)-graded subspaces X of σW satisfying

Xi(q2) = 0 (i ∈ I0), Xi(q) = σWi(q) (i ∈ I1),

dimXi(1) = dimVi(q) (i ∈ I0), dimXi(q3) = dimVi(q2) (i ∈ I1),

X is invariant under
(⊕

i∈I

σxi,
⊕
h∈Ω

σyh

)
.

This variety is what people call the quiver Grassmannian associated with the
quiver representation (

⊕
i

σxi,
⊕

h∈Ω
σyh). Its importance in cluster algebra the-

ory was first noticed in [7]. We are interested only in its Poincaré polynomial,
which is independent of the choice of a general point. We denote this variety
simply by GrV (σW ), suppressing the choice (

⊕
i

σxi,
⊕

h∈Ω
σyh). Note also that

the I-grading is only relevant in GrV (σW ). Therefore we use this notation also
for an I-graded vector space V .

Note that the orientation is different from the decorated quiver (4.4). This
corresponds to the cluster algebra with principal coefficients considered in Sec-
tion 2.2. Therefore we call it the quiver with principal decoration. For example,
in type A3 with I0 = {1,3}, we get the following quiver:

(4.12)

W1(1)
σy1,2←−−−− σW2(q3)

σy3,2−−−−→ W3(1)

σx1=x∗
1

⏐⏐� ⏐⏐�σx2

⏐⏐�σx3=x∗
3

W1(q2) W2(q) W3(q2)

REMARK 4.13

The quiver Grassmannian is a fiber of a projective morphism which played a
fundamental role in Lusztig’s construction of the canonical base. It is denoted
by πν : F̃ν → EV in [43, Part II]. But note that Lusztig considered more generally
various spaces of flags, not only subspaces.

Later it is useful to view σ as a functor between categories of representations of
quivers. Let repQ̃ be the category of finite-dimensional representations of the
decorated quiver Q̃. Let σ Q̃ be the quiver with the principal decoration obtained
by reversing the arrows between i and i′ for i ∈ I0 as above. Let repσ Q̃ be the
corresponding category, and let repσ Q̃op be its opposite category. Then σ is the
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functor
σ(•) =

∏
i∈I1

Φ−
i ◦ D(•) : repQ̃ → repσ Q̃op,

where Φ−
i is the reflection functor at the vertex for Wi(q3) and D is the duality

operator

D(•) = HomC(•,C).

To make an identification with the above picture, we fix an isomorphism W ∼= W ∗

of (I � Ifr)-graded vector spaces.
Let rep− Q̃ be the full subcategory of repQ̃ consisting of representations hav-

ing no direct summands isomorphic to simple modules corresponding to vertices
i ∈ I1. Similarly, we define rep−σ Q̃op. Then σ defines an equivalence between
rep− Q̃ and rep−σ Q̃op. We write the quasi-inverse functor σ− = D ◦

∏
i∈I1

Φ+
i .

In fact, it is more elegant to consider σ as a functor between derived cate-
gories of repQ̃ and repσ Q̃op as in [27, IV.4, Example 6] (see also Remark 7.7).

5. From Grothendieck rings to cluster algebras

Since W always satisfies (∗�=1) hereafter, we denote Wi(q3ξi) and Wi(q2−ξi)
by Wi and Wi′ , respectively. This is compatible with the notation in Defini-
tion 4.3 as Wi(q2−ξi) is on the new vertex i′.

We denote the simple modules of the decorated quiver by Si, Si′ correspond-
ing to vertices i ∈ I , i′ ∈ Ifr. We consider modules of two completely different
algebras,

(a) modules in Rconv (or of Uq(Lg)) and
(b) modules of the decorated quiver.

Simple modules for the former are denoted by L(W ), while Si, Si′ denote the
latter. We hope there will be no confusion. We denote the underlying Ĩ =
(I � Ifr)-graded vector space of Si, Si′ also by the same letter.

The Grothendieck ring R� is a polynomial ring in the classes L(W ) with
dimW = 1 satisfying (∗�) (l -fundamental representations in C� when g is of type
ADE). This result was proved as a consequence of the theory of q-characters
in [31, Proposition 3.2] for g of type ADE. Since q-characters make sense for
arbitrary g, the same argument works. The corresponding result for the whole
category R is well known.

For R�=1, we have 2#I variables corresponding to l -fundamental represen-
tations. We denote them by xi and x′

i, exchanging i and i′ from the index of the
decorated quiver (see Definition 4.3):

(5.1) xi = L(W ) ←→ W = Si′ , x′
i = L(W ) ←→ W = Si.

This is confusing, but we cannot avoid it to get a correct statement.
We denote the class of the Kirillov-Reshetikhin module in C1 by fi. It

corresponds to the class L(W ), where W is a 2-dimensional Ĩ-graded vector
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space with dimWi = dimWi′ = 1, and 0 at other gradings. We have

(5.2) fi = xix
′
i −

∏
h∈H:o(h)=i

xi(h).

This is an example of the T -system proved in [53], but in fact, easy to check by
studying the convolution diagram as EW

∼= C has only two strata, the origin and
the complement. It is also a simple consequence of Theorem 6.3 below. It is a
good exercise for the reader.

REMARK 5.3

In [53] a more precise relation at the level of modules, not only in the Grothendieck
group, was shown: for i ∈ I0, there exists a short exact sequence

0 →
⊗

h∈H:o(h)=i

xi(h) → x′
i ⊗ xi → fi → 0,

and we replace the middle term by xi ⊗ x′
i if i ∈ I1.

We have an algebra embedding

R�=1 = Z[xi, x
′
i]i∈I → F = Q(xi, fi)i∈I .

We now put the cluster algebra structure on the right-hand side. It is enough to
specify the initial seed. We take xi, fi as cluster variables of the initial seed. We
make fi a frozen variable. We call the quiver for the initial seed the x-quiver.
It looks almost the same as the decorated quiver in Definition 4.3 but is a little
different and is given as follows.

DEFINITION 5.4

Suppose that a finite graph G = (I,E) together with a bipartite partition
I = I0 � I1 is given. We define the x-quiver Q̃x = (Ĩ , Ω̃x) by the following two
steps.

(1) The underlying graph is the same as one of the decorated quiver: G =
(I � Ifr,E �

⋃
{i − i′ }). The variable xi corresponds to the vertex i in the original

quiver, while fi corresponds to the new vertex i′.
(2) The rule for drawing arrows is

fi → xi (i ∈ I0), xi → fi (i ∈ I1),
(5.5)

xo(h)
h−→ xi(h) (if o(h) ∈ I0, i(h) ∈ I1).

For our favorite example, A3 with I0 = {1,3}, we get the following quiver:

x1 −−−−→ x2 ←−−−− x3�⏐⏐ ⏐⏐� �⏐⏐
f1 f2 f3
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Note that the orientation differs from the decorated quiver (4.4) and the principal
decoration (4.12). Also, the vertex fi corresponds to Wi′ , and xi corresponds
to Wi. This is different from the identification (5.1). If we look at the principal
part, the orientation is reversed.

If we make a mutation in direction xi, the new variable given by the exchange
relation (2.2) is nothing but

x′
i =

fi +
∏

h∈H:o(h)=i xi(h)

xi

from (5.2). Note that the exchange relation is correct for the x-quiver given by
our rule (5.5) but wrong for the decorated quiver. Thus, this confusion cannot
be avoided.

We thus have the following.

PROPOSITION 5.6

The Grothendieck ring R�=1 is a subalgebra of the cluster algebra A (B̃).

The argument in [31, 4.4] (based on 3, 1.21) implies that R�=1
∼= A (B̃), but we

will see that all cluster monomials come from simple modules in R�=1, so we
have a different proof later.

We also need the seed obtained by applying the sequence of mutations∏
i∈I1

μi (see [31, Section 7.1]). Then

(1) xi (i ∈ I1) is replaced by x′
i,

(2) the orientation of arrows are reversed in the principal part and i → i′

(i ∈ I1), and
(3) we add aij arrows from i to j′.

In our A3-example, we obtain

(5.7) x1 x′
2

x3

f1 f2 f3

We set

(5.8) zi
def=

{
xi if i ∈ I0,

x′
i if i ∈ I1.

We call the one above the z-quiver.

6. Cluster character and prime factorizations of simple modules

6.1. An almost simple module
Fix an Ĩ-graded vector space W . Let Ψ be the Fourier-Sato-Deligne functor for
the vector space EW

∼= M•
0(W ) (see [36, 39]). We define a subset LW ⊂ PW
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by

L ∈ LW ⇐⇒ the support of Ψ(L) is the whole space E∗
W .

If L ∈ LW , Ψ(L) is an IC complex associated with a local system defined over
an open set in EW . We denote its rank by rW (L) ∈ Z>0.

Since the Fourier transform of ICW (0) = 1{0} is 1E∗
W

[dimE∗
W ], we always

have ICW (0) ∈ LW . We have rW (ICW (0)) = 1.
We extend this definition for a condition on simple modules L(W ′). Recall

that ICW (V ) is identified with ICW ⊥ (0) such that dimW ⊥ = dimW − Cq dimV .
We say L(W ′) ∈ LW if ICW (V ) ∈ LW with W ′ = W ⊥. We similarly define
rW (L(W ′)).

We define the almost simple module associated with W by

L(W ) =
∑

L(W ′)∈LW

rW

(
L(W ′)

)
L(W ′).

This is an element in Rt.
From the definition of L(W ′) ∈ LW , we have W ′ ≤ W . Therefore almost sim-

ple modules {L(W )} form a basis of Rt such that the transition matrix between
it and {L(W )} is upper triangular with diagonal entries 1.

We will see that an almost simple module is not necessarily simple later.
There will be also a simple sufficient condition guaranteeing that an almost simple
module is simple.

REMARK 6.1

As we will see soon, almost simple modules are given in terms of quiver Grass-
mannians for a general representation of E∗

W . This, at first sight, looks similar
to the set of generic variables considered by Dupont [20] (see also [19]). But
there is a crucial difference. We consider the total sum of Betti numbers of the
quiver Grassmannian, while Dupont considers Euler numbers. There is an exam-
ple with nontrivial odd degree cohomology groups [17, Example 3.5], so this is
really different.

Note that from the representation theory of Uq(Lg), it is natural to specialize
as t = 1 since the t-analogue becomes the ordinary q-character (and the positivity
is preserved). This difference cannot be seen for cluster monomials, thanks to
Remark 3.20.

In fact, we can also consider a specialization at t = −1, but then the positivity
is lost and the proof of the factorization (Proposition 6.12) breaks.

6.2. Truncated q-character
In [31, Section 6] Hernandez and Leclerc introduced the truncated q-character
χq(M)≤2 from the ordinary q-character χq(M) by setting variables Vi,qr = 0 for
r ≥ 3. From the geometric definition of the q-character reviewed in Section 3.4, it
just means that we consider only nonsingular quiver varieties M•(V,W ) satisfy-
ing (4.7), that is, those studied in Proposition 4.6(2). In particular, its t-analogue
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also makes sense:

χq,t

(
M(W )

)
≤2

def=
∑

V satisfies (4.7)

∑
k

t−k dimHk
(
i!0πW (V )

)
eW eV ,

(6.2)
χq,t

(
L(W )

)
≤2

=
∑

V satisfies (4.7)

aV,0;W (t)eW eV ,

where aV,0;W (t) is the coefficient of ICW (0) = 1{0} in πW (V ) in K(QW ). Since V

satisfies (4.7) if (V,W ) is l -dominant, the truncated q-character still embeds R�=1

to Yt (see [31, Proposition 6.1] for an algebraic proof).
The following is one of the main results in this article.

THEOREM 6.3

Suppose that W satisfies (∗�) with � = 1. Then the truncated t-analogue of the
q-character of an almost simple module is given by

χq,t

(
L(W )

)
≤2

=
∑
V

Pt

(
GrV (σW )

)
eW eV ,

where the summation runs over all (I × C∗)-graded vector spaces V with (4.7)
and Pt( ) is the normalized Poincaré polynomial for the Borel-Moore homology
group

Pt

(
GrV (σW )

)
=

∑
i

ti−dimM
•(V,W ) dimHi

(
GrV (σW )

)
.

Since GrV (σW ) is a fiber of π⊥ : F̃ (ν,W )⊥ → E∗
W over a general point in E∗

W

and F̃ (ν,W )⊥ is nonsingular, GrV (σW ) is nonsingular by the generic smooth-
ness theorem. Since π⊥ is projective, it is also projective. Therefore the Poincaré
polynomial is essentially equal to the virtual one defined by Danilov and Kho-
vanskii [15], using a mixed Hodge structure of Deligne [16]:

P vert
t (X) def=

∑
k

(−1)ktp+qhp,q
(
Hk

c (X)
)

(see [15] for the notation hp,q(Hk
c (X))). Since our Poincaré polynomial is nor-

malized, we have

Pt

(
GrV (σW )

)
= t− dimM

• reg
0 (V,W )P vert

−t

(
GrV (σW )

)
.

REMARK 6.4

Recall that χq,t(L(W )) was computed in [54]. More precisely, a purely combi-
natorial algorithm to compute χq,t(L(W )) was given in [54]. If we are inter-
ested in simple modules in C1, the same algorithm works by replacing every
‘χq,t( )’ in [54] by χq,t( )≤2. Thus the computation is drastically simplified. The
algorithm consists of 3 steps. The first step is the computation of χq,t for l -
fundamental representation. The actual computation of χq,t was performed by
a supercomputer (see [55]). But this is certainly unnecessary for χq,t( )≤2. The
second step is the computation of χq,t for the standard modules. This is just a
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twisted multiplication of χq,t’s given in the first step. This step is simple. The
third step is analogue of the definition of Kazhdan-Lusztig polynomials. It is still
a hard computation if we take large W . It is probably interesting to compare
this algorithm with one given by the mutation, for example, for W correspond-
ing to the highest root of E8. In this case we have L(W ) = L(W ) as we see in
Proposition 6.9.

In general, if L(W ) �= L(W ), we need to compute rW (L(W ′)).

EXAMPLE 6.5

For the Kirillov-Reshetikhin module fi, we have dimWi = 1 = dimWi′ . If i ∈ I1,
we have σWi = 0. Therefore GrV (σW ) is a point if V = 0 and ∅ otherwise. If
i ∈ I0, a general σx∗

i : Wi → Wi′ is an isomorphism. Therefore GrV (σW ) is again
a point if V = 0 and ∅ otherwise. Thus we must have L(W ) = L(W ) in this case,
and χq,t(fi)≤2 contains only the first term:

χq,t(fi)≤2 = Yi,qξi Yi,qξi+2 .

This can be shown in many ways, say, using the main result of [53].
Next, consider xi. If i ∈ I0, then σW is 1-dimensional with nonzero entry

at σWi′ . But since we can put only zero-dimensional space Xi′ , we allow only
V = 0. Thus L(W ) = L(W ) and χq,t(xi)≤2 = Yi,q2 .

If i ∈ I1, then σW is 2-dimensional with nonzero entries at σWi and σWi′ .
Therefore we have either V = 0 or 1-dimensional V with nonzero entry at Vi′ .
The corresponding varieties are a single point in both cases. Thus L(W ) = L(W )
and χq,t(xi)≤2 = Yi,q(1 + Vi,q2).

Similarly, we can compute x′
i. We have L(W ) = L(W ) always, and the q-

character is

χq,t=1(x′
i)≤2 =

{
Yi,1

(
1 + Vi,q

∏
j(1 + Vj,q2)aij

)
if i ∈ I0,

Yi,q3 if i ∈ I1.

This gives an answer to the exercise we mentioned after (5.2).

Proof of Theorem 6.3
Since EW is a vector space by Proposition 4.6 and ICW (V )’s are monodromic
(i.e., Hj(ICW (V )) is locally constant on every C∗-orbit of EW ), we can apply
the Fourier-Sato-Deligne functor Ψ (see [36, 39]). For example, we have

Ψ
(
ICW (0)

)
= 1E∗

W
[dimEW ].

Other Ψ(ICW (V )) are simple perverse sheaves on E∗
W .

Recall that F̃ (ν,W ) is a vector subbundle of the trivial bundle F (ν,W ) × EW

by Proposition 4.6. Let Ψ′ be the Fourier-Sato-Deligne functor for this trivial
bundle. We have

Ψ′(1F̃ (ν,W )[dim F̃ (ν,W )]
)

= 1F̃ (ν,W )⊥ [dim F̃ (ν,W )⊥],
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where F̃ (ν,W )⊥ is the annihilator in the dual trivial bundle F (V,W ) × E∗
W as

in Section 4.2. Moreover, we have

π⊥
! ◦ Ψ′ = Ψ ◦ π!.

Therefore if we decompose the pushforward as

π⊥
!

(
1F̃ (ν,W )⊥ [dim F̃ (ν,W )⊥]

) ∼=
⊕
V ′,l

LV ′,l ⊗ Ψ
(
ICW (V ′)

)
[l],

we have
∑

l t
l dimLV ′,l = aV,V ′;W (t).

Take a general point of E∗
W , and consider the Poincaré polynomial of the

stalk of the above. On the left-hand side we get the Poincaré polynomial of
GrV (σW ) by Lemma 4.11. On the other hand, on the right-hand side the factor
Ψ(ICW (V ′)) with ICW (V ′) /∈ LW disappears as its support is smaller than E∗

W .
For ICW (V ′) ∈ LW , we get rW (ICW (V ′)) × aV,V ′;W (t), as Ψ(ICW (V ′)) is the
IC complex associated with a local system of rank rW (ICW (V ′)) defined over an
open subset of E∗

W . Thus we have

(6.6) Pt

(
GrV (σW )

)
=

∑
ICW (V ′)∈LW

rW

(
ICW (V ′)

)
aV,V ′;W (t).

We get the assertion by recalling that aV,V ′;W (t) is the coefficient of eW ⊥
eV ⊥

=
eW eV in the q-character of L(W ⊥), where dimW ⊥ = dimW − Cq dimV ′,
dimV ⊥ = dimV − dimV ′ (Section 3.2). �

6.3. Factorization of KR modules
In the remainder of this section, we give several simple applications of Theo-
rem 6.3.

PROPOSITION 6.7

We have

L(W ) ∼= L(ϕW ) ⊗
⊗
i∈I

f
min(dimWi,dimWi′ )
i ,

where ϕW is given by

dimϕWi = max(dimWi − dimWi′ ,0), dimϕWi′ = max(dimWi′ − dimWi,0).

The right-hand side is independent of the order of the tensor product.

From this proposition it becomes enough to understand L(ϕW ). Notice that
either ϕWi or ϕWi′ is zero for each i ∈ I . If ϕWi = 0, then ϕWi′ is not connected
to any other vertices and is easy to factor out. Thus we eventually reduce to
studying the case when all ϕWi′ = 0; that is, EϕW is the vector space of repre-
sentations of the principal part of the decorated quiver obtained by deleting all
frozen vertices i′.
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Proof
From the definition of σW in the formula (4.10), it is clear that σWi is unchanged
even if we add ±(1,1) to (dimWi,dimWi′ ) for i ∈ I1. And the change of dimσWi′

does not affect the quiver Grassmannian. Therefore we can subtract min(dimWi,

dimWi′ ) from both dimWi and dimWi′ for each i ∈ I1. Let W̃ be the resulting
(I � Ifr)-graded vector space. We have

χq,t

(
L(W )

)
≤2

= χq,t

(
L(W̃ )

)
≤2

∏
i∈I1

(Yi,qYi,q3)min(dimWi,dimWi′ ).

Since the truncated q-character of the Kirillov-Reshetikhin module is equal to
Yi,qYi,q3 by Example 6.5, we have

χq,t

(
L(W )

)
≤2

= χq,t

(
L(W̃ )

)
≤2

∏
i∈I1

f
min(dimWi,dimWi′ )
i .

Next, we study a similar but slightly different reduction for i ∈ I0. We
consider the variety (π⊥)−1(

⊕
x∗

i ,
⊕

y∗
h
) as in the statement of Lemma 4.11.

Here (
⊕

x∗
i ,
⊕

y∗
h
) is the representation considered in the proof of Lemma 4.11

before applying the reflection functors. From the condition Xi ⊂ Kerx∗
i , it is

isomorphic to (π̄⊥)−1(
⊕

x̄∗
i ,
⊕

ȳ∗
h
), where

(1) W̃ is obtained from W by replacing Wi by Kerx∗
i ,

(2) ȳ∗
h

is the restriction of y∗
h

and other maps are obvious ones.

We have

dimW̃i = max(dimWi − dimWi′ ,0).

Therefore we have

χq,t

(
L(W )

)
≤2

= χq,t

(
L(W̃ )

)
≤2

∏
i∈I0

(Yi,1Yi,q2)min(dimWi,dimWi′ ).

Note again that Yi,1Yi,q2 is the truncated q-character of the Kirillov-Reshetikhin
module fi. Therefore the above equality can be written as

χq,t

(
L(W )

)
≤2

= χq,t

(
L(W̃ )

)
≤2

∏
i∈I0

f
min(dimWi,dimWi′ )
i .

Combining these two reductions, we obtain the assertion. �

6.4. Factorization and canonical decomposition
Take a general representation (

⊕
yh) of EϕW . We decompose it into a sum of

indecomposable representations. We have a corresponding decomposition
ϕW = W 1 ⊕ W 2 ⊕ · · · ⊕ W s

of the I-graded graded vector space. It is known (see [34, p. 85]) that W 1, . . . ,
W s are independent of a choice of general representation of EϕW up to permuta-
tion. This is called the canonical decomposition of ϕW (or dimϕW ). It is known
that all dimWα ∈ ZI

≥0 are Schur roots and ext1(W k,W l) = 0 for k �= l (see [35,
Proposition 3]). Here dimW k is a Schur root if a general representation in EW k
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has only trivial endomorphisms, that is, scalars. It is known that this is equiva-
lent to a general representation and is indecomposable (see [35, Proposition 1]).
And ext1(W k,W l) is the dimension of Ext1 between general representations in
EW k and EW l . Basic results on the canonical decomposition were obtained by
Schofield [57], which is used in part below.

Note that the frozen part plays no role in the canonical decomposition, as
ϕWi′ �= 0 implies ϕWi = 0. Therefore we simply have factors Si′ ⊕ · · · ⊕ Si′︸ ︷︷ ︸

dim ϕWi′ factors

in

the canonical decomposition. If ϕW contains a factor S⊕mi
i for i ∈ I1, it is killed

by σ( ). We thus have the following.

PROPOSITION 6.8

Suppose that the canonical decomposition of ϕW contains factors as
ϕW = ψW ⊕

⊕
i∈I

S
⊕ dim ϕWi′
i′ ⊕

⊕
i∈I1

S⊕mi

i .

Then we have a factorization

L(ϕW ) = L(ψW ) ⊗
⊗
i∈I

L(Si′ )⊗ dim ϕWi′ ⊗
⊗
i∈I1

L(Si)⊗mi .

We consider the following condition.

(C) The canonical decomposition of ϕW contains only real Schur roots.

PROPOSITION 6.9

(1) Assume the condition (C). Then LϕW = {ICϕW (0)} and hence L(W ) =
L(W ).

(2) If LϕW = {ICϕW (0)}, GrV (σW ) has no odd cohomology.

Proof
(1) From the definition, EϕW contains the (

∏
i GL(Wi) × GL(Wi′ ))-orbit of

a general representation as a Zariski open subset. The same is true for E∗
ϕW .

Since all Ψ(ICW (V )) are (
∏

i GL(Wi) × GL(Wi′ ))-equivariant, we cannot have
IC complexes associated with nontrivial local systems as stabilizers are always
connected. Therefore we have only LϕW = {ICϕW (0)}.

(2) Since (6.6) is a single sum, the assertion follows from Remark 3.20.
�

PROPOSITION 6.10

We have

(6.11) L(ϕW ) ∼= L(W 1) ⊗ · · · ⊗ L(W s).

Proof
We assume s = 2. Since we do not use the assumption that W 1, W 2 are Schur
roots, the proof also gives the proof for the general case.
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Consider the convolution diagram in Section 3.5. By [43, Section 10.1], the
restriction functor commutes with the Fourier-Sato-Deligne functor up to shift.
Therefore we consider perverse sheaves defined over E∗

W 1 , E∗
W 2 , E∗

W .
We take open subsets U1, U2 in E∗

W 1 , E∗
W 2 so that perverse sheaves not in

LW 1 , LW 2 have support outside of U1, U2. Similarly, we take an open subset
U ⊂ E∗

W consisting of modules isomorphic to the direct sum of modules in U1

and U2, and perverse sheaves not in LW have support outside of U .
We may assume that Ext-groups between modules in U1, U2 vanish. There-

fore any module in κ−1(U1 × U2) is isomorphic to the direct sum of modules
from U1 and U2. Therefore κ−1(U1 × U2) ⊂ U , and κ is an isomorphism. There-
fore for L ∈ PW \ LW , ResL does not have factors in ICW 1(V 1) � ICW 2(V 2)
with ICW α(V α) ∈ LW α (α = 1,2). Therefore the product of L(W ′1) ∈ LW 1 and
L(W ′2) ∈ LW 2 is a linear combination of elements in LW .

If ICW (V ) ∈ LW , the restriction of κ!ι
∗Ψ(ICW (V )) to U1 × U2 is a local

system of rank r(ICW (V )). Thus if we write

Res ICW (V ) =
∑

ICW1 (V 1)∈LW1 ,ICW2 (V 2)∈LW2

aV 1,V 2

V ICW 1(V 1) � ICW 2(V 2)

+ (linear combination of L ∈ PW \ LW ),

then aV 1,V 2

V is an integer (up to shift). And we have

r
(
ICW (V )

)
=

∑
V 1,V 2

aV 1,V 2

V r
(
ICW 1(V 1)

)
r
(
ICW 2(V 2)

)
.

From this we have L(W 1) ⊗ L(W 2) = L(W ). �

Let us show the converse.

PROPOSITION 6.12

(1) Suppose that L(ϕW ) decomposes as

L(ϕW ) ∼= L(W 1) ⊗ L(W 2).

Then we have ext1(W 1,W 2) = 0 = ext1(W 2,W 1).
(2) The same assertion is true even if the almost simple modules L( ) are

replaced by simple modules L( ).
(3) The factorization of an almost simple module L(W ) is exactly given by

the canonical decomposition of ϕW , and we have the bijection{
prime almost simple modules

with (C)

}
\ {xi, fi | i ∈ I}

←→
{

Schur roots of the principal
part Q of the decorated quiver

}
given by L(W ) ↔ dimW .
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Here an almost prime simple module L(W ) means that it does not factor as
L(W 1) ⊗ L(W 2) of almost simple modules.

Proof
(1) Let us first consider the case xi′ = L(W 2) = L(W 2). Taking the truncated
q-character, we have∑

V

Pt

(
GrV (σW )

)
eW eV = Yi,q3 ∗

(∑
V 1

Pt

(
GrV 1(σW 1)

)
eW 1

eV 1
)
,

where ∗ is the twisted multiplication (3.21).
Since i ∈ I1 is a source, we have ext1(W 1, Si) = 0. If we have ext1(Si,W

1) �=
0, then dimσW 1 = dim σW + dimSi. Therefore the right-hand side contains
the term for V 1 with dimV 1 = dim σW + dimSi, as the corresponding quiver
Grassmannian GrσW 1(σW 1) is a single point.

But the left-hand side obviously cannot contain the corresponding term.
Therefore we must have ext1(Si,W

1) = 0.
Now we suppose that general representations of W 1 and W 2 do not contain

the direct summand Si for any i ∈ I1. Then the vanishing of ext1 is equivalent to
the corresponding statement after applying the functor σ. (Since σ starts with
taking the dual, we need to exchange the first and the second entries A, B of
ext1(A,B), but we are studying both ext1(A,B) and ext1(B,A), so it does not
matter.)

We again consider the equality for the truncated q-character:∑
V

Pt

(
GrV (σW )

)
eW eV =

(∑
V 1

Pt

(
GrV 1(σW 1)

)
eW 1

eV 1
)

∗
(∑

V 2

Pt

(
GrV 2(σW 2)

)
eW 2

eV 2
)
.

The right-hand side contains the terms with V 1 = σW 1, V 2 = 0 and V 1 = 0, V 2 =
σW 2, as both GrV 1(σW 1) and GrV 2(σW 2) are points in these cases. These sur-
vive thanks to the positivity Pt(GrV 1(σW 1)), Pt(GrV 2(σW 2)) ∈ Z≥0[t]. There-
fore the corresponding quiver Grassmannian varieties GrV (σW ) (two cases) are
nonempty in the left-hand side also. Therefore a general representation of EW

contains two subrepresentations of dim σW 1, dim σW 2, respectively. By [57,
Theorem 3.3], it implies that we have both ext1(σW 1, σW 2) = 0 and ext1(σW 2,
σW 1) = 0. This proves the first assertion.

(2) We take a closer look at the above argument. Recall that Pt(GrV (σW ))
is the sum of contributions from L(W ) and other perverse sheaves, such as (6.6),
and rW (ICW (V ′)) ∈ Z>0, aV,V ′;W (t) ∈ Z≥0[t].

For the case V 1 = σW 1, V 2 = 0 or V 1 = 0, V 2 = σW 2, the correspond-
ing subspace is uniquely determined, and the projection π⊥ : F̃ (ν,W )⊥ → E∗

W

becomes an isomorphism. Therefore other perverse sheaves do not appear in
π⊥

! (1F̃ (ν,W )⊥ ). Therefore we must have GrV (σW ) �= ∅ in the two cases. The
remaining argument is the same.
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(3) This assertion follows from the first, and the characterization of the
canonical decomposition: α =

∑
βi is the canonical decomposition if and only if

each βi is a Schur root and ext1(βi, βj) = 0 for i �= j (see [35, Proposition 3]). �

COROLLARY 6.13

If L(W ) satisfies (C), it is real, that is, L(W ) ⊗ L(W ) is simple.

At this moment, we do not know whether the converse is true or not.
Next, suppose that G is of type ADE. Then all positive roots are real and

Schur. Let Δ+ be the set of positive roots. Following [22], we introduce the set
Φ≥ −1 of almost positive roots:

Φ≥ −1 = Δ+ � {−αi | i ∈ I},

where αi is the simple root for i.

COROLLARY 6.14

(1) There are only finitely many prime simple modules in R�=1 if and only
if the underlying graph G of the principal part is of type ADE.

(2) Suppose that G is of type ADE. Then all simple modules are real, and
there is a bijection

{prime simple modules} \ {fi | i ∈ I} dim(•)−−−−→
1:1

Φ≥ −1.

Here the bijection is given by Proposition 6.12(3) together with xi �→ (−αi).

The first assertion is a simple consequence of the fact that there are infinitely
many real Schur roots for non-ADE quivers. This can be shown, for example,
by observing that a non-ADE graph always contains an affine graph. Then
for an affine graph, real roots α with the defects χ(δ,α) = dimHom(δ,α) −
dimExt1(δ,α) are nonzero and Schur. Here δ is the generator of positive imagi-
nary roots, and the above is the Euler form for a representation N with dimN = δ

and M with dimM = α, which is independent of the choice of M , N .
This corollary is nothing but [22] after identifying prime simple modules with

cluster variables in Section 7.
Now we consider the affine case.

EXAMPLE 6.15

Suppose that (I,E) is of type A
(1)
1 . The corresponding quiver (I,Ω) is called the

Kronecker quiver. Positive roots are (n ⇒ n+1), (n+1 ⇒ n), (n ⇒ n) (n ∈ Z≥0).
The vector (1 ⇒ 1) is the generator of positive imaginary roots and is denoted
by δ as above.

For n ∈ Z>0, let nW denote an (I � Ifr)-graded vector space with Cn at the
entry i and zero at i′ (i = 0,1): (nW )0 = Cn ⇒ (nW )1 = Cn. Thus dim(nW ) =
nδ. Then nW = W ⊕ · · · ⊕ W is the canonical decomposition of nW , where W

means 1W . It is well known that a general representation in EW corresponds to
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a point in P1(C). And a general representation in EnW corresponds to distinct n

points in P1(C).
For a real positive root (n ⇒ n + 1) or (n + 1 ⇒ n), there is the unique

indecomposable module M . It is known that either Ext1(M,W ) or Ext1(W,M)
is nonvanishing. Therefore M and W cannot appear in a canonical decomposition
simultaneously. It is also known that extensions between (n ⇒ n + 1) and ((n +
1) ⇒ (n + 2)) vanish. It is also true for ((n + 1) ⇒ n) and ((n + 2) ⇒ (n + 1)).
For all other pairs, one of the extensions does not vanish.

From these observations, the canonical decompositions only have real Schur
roots, except in the case nW . We consider the case n = 2. If we consider
π⊥ : F̃ (ν,2W )⊥ → E∗

2W in Section 4.2, the perverse sheaves appearing (up to
shift) in the pushforward π⊥

! (1F̃ (ν,2W )⊥ [dim F̃ (ν,2W )⊥]) were studied in [42]. If
we take ν = (1,1) ∈ ZI

≥0, then π⊥ is the principal {±1}-cover over the open set
E∗reg

2W corresponding to distinct pairs of points in P1(C). Then from [42] we have

L2W =
{
1{0},Ψ−1

(
IC(E∗

2W , ρ)
)}

,

where IC(E∗
2W , ρ) is the IC complex associated with the nontrivial local system ρ

corresponding to the nontrivial representation of {±1}. In particular, the almost
simple module L(2W ) is not the simple module L(2W ). On the other hand,
LW = {1{0} }.

The coefficient of χq(L(2W )) at Y 2
1,1Y

2
2,q3 × V1,qV2,q2 is 1. The coefficients

of χq(L(W )) at Y1,1Y2,q3V1,q , Y1,1Y2,q3V2,q2 are both 1. Therefore L(2W ) �∼=
L(W ) ⊗ L(W ); that is, L(W ) is not real. On the other hand, we have L(2W ) ∼=
L(W ) ⊗ L(W ).

There have been many attempts to construct a base for the cluster algebra
corresponding to this example in cluster algebra literature (see [58], [10], [20],
[19], and [26] in a wider context). The problem is how to understand imaginary
root vectors, and the solution is not unique. Relationships between various bases
are studied by Leclerc [41].

More generally, if W corresponds to an indivisible isotropic imaginary root (i.e.,
in the Weyl group orbit of δ of a subdiagram of affine type in G) in an arbitrary Q,
we have

L(nW ) ∼= L(W )⊗n.

This can be generalized thanks to the results by Schofield [57]. First, we have that
if α is a nonisotropic imaginary Schur root, nα is also a Schur root for n ∈ Z>0

(see [57, Theorem 3.7]). It is also known that an isotropic Schur root must be
indivisible (see [57, Theorem 3.8]). Therefore we introduce the following nota-
tion. For a W as above and n ∈ Z>0, let nW be an I-graded vector space with
dim(nW )i = ndimWi. For a factor L(W k) in (6.11), let (nL)(W k) be L(nW k)
if dimW k is a nonisotropic Schur imaginary root and L(W k)⊗n otherwise; that
is, dimW k is a real or indivisible isotropic Schur root.
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COROLLARY 6.16

Let W be as above. Let ϕW = W 1 ⊕ W 2 ⊕ · · · ⊕ W s be the canonical decomposi-
tion. Then we have

L(nW ) ∼= (nL)(W 1) ⊗ · · · ⊗ (nL)(W s) ⊗
⊗
i∈I

f
nmin(dimWi,dimWi′ )
i .

Mimicking the definition in Section 2.3, we say that L(W ) is real if L(2W ) ∼=
L(W ) ⊗ L(W ). The above implies that L(W ) is real in this sense if and only if
there are no nonisotropic imaginary Schur roots in the canonical decomposition
of ϕW .

If L(2W ) ∼= L(W ) ⊗ L(W ) (i.e., L(W ) is real), we have ext1(W,W ) = 0 by
Proposition 6.12(2). By the result of Schofield [57] used above, this can happen
only when the canonical decomposition does not contain a nonisotropic imaginary
Schur root. This is a step toward proving that C1 is a monoidal categorification.

7. Cluster algebra structure

In this section we prove, after some preparation, that cluster monomials are dual
canonical base elements.

In the previous sections, we use the notation W for an (I � Ifr)-graded rep-
resentation. In this section we also use it for its general representation. Or if we
first take a representation, its underlying (I � Ifr)-graded vector space is denoted
by the same notation.

7.1. Tilting modules
We first review the theory of tilting modules (see [1, Chapter VI], [28]).

Let Q = (I,Ω) be a quiver as in Section 2. Let CQ be its path algebra defined
over C. We consider the category repQ of finite-dimensional representations of Q
over C, which is identified with the category of finite-dimensional CQ-modules.

A module M of the quiver is said to be a tilting module if the following two
conditions are satisfied.

(1) M is rigid, that is, Ext1(M,M) = 0.
(2) There is an exact sequence 0 → CQ → M0 → M1 → 0 with M0, M1 ∈

addM , where addM denotes the additive category generated by the direct sum-
mands of M .

We usually assume that M is multiplicity free.
It is known that the number of indecomposable summands of M equals the

number of vertices #I , that is, the rank of K0(CQ).
A rigid module M always has a module X so that M ⊕ X is a tilting module.
A module M is said to be an almost complete tilting module if it is rigid

and the number of indecomposable summands of M is #I − 1. We say that an
indecomposable module X is the complement of M if M ⊕ X is a tilting module.

We have the following structure theorem.
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THEOREM 7.1 (HAPPEL AND UNGER [28])

Let M be an almost complete tilting module.

(1) If M is sincere, there exist two nonisomorphic complements X, Y which
are related by an exact sequence

0 → X → E → Y → 0

with E ∈ addM . Moreover, we have Ext1(Y,X) ∼= C, Ext1(X,Y ) = 0, Hom(Y,

X) = 0.
(2) If M is not sincere, there exists only one complement X up to isomor-

phism.

Here a module M is said to be sincere if Mi �= 0 for any vertex i.

7.2. Cluster tilting sets
When the quiver Q does not contain an oriented cycle (i.e., acyclic quiver),
combinatorics of the cluster algebra can be understood from cluster category
theory. Since we need only the statement, we explain the theory very briefly
following [32]. We consider only the case when there are no frozen variables.

Let n = #I . A collection L = {W 1, . . . ,Wn} is said to be a cluster-tilting set
if the following conditions are satisfied.

(0) An element W i is either an indecomposable representation of the quiver
Q or a vertex. Let Lmod be the subset of indecomposable representations, Lver =
L \ Lmod.

(1) The indecomposable modules W k ∈ Lmod are pairwise nonisomorphic.
The vertices W i ∈ Lver are pairwise distinct.

(2) Delete all arrows incident to a vertex W i ∈ Lver. Remove the vertex W i.
Let ψ Q be the resulting quiver.

(3) The entry for W k ∈ Lmod is zero for a vertex W j ∈ Lver. Hence W k is a
representation of ψ Q.

(4) The direct sum ψW
def=

⊕
W k ∈Lmod

W k is a tilting module as a represen-
tation of ψ Q.

Note that #Lmod = #(ψI). Therefore ψW is tilting if and only if ext1(W k,

W l) = 0 for any k, l (including the case k = l). Thus this is stronger than the
canonical decomposition and means that dimW k is a real Schur root.

The initial cluster-tilting set is the collection L = I with Lmod = ∅. In this
case ψI = ∅, and the condition is trivially satisfied.

If we identify W i ∈ Lver with PW i [1] the shift of the indecomposable projec-
tive module associated corresponding to the vertex W i, the above definition is
nothing but the definition of a cluster-tilting set for the cluster category (see [6]).

For k ∈ {1, . . . , n}, we define the mutation μk(L) of L in direction k as fol-
lows.
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(1) Suppose that W k is a vertex. We add it again, together with all arrows
incident to it, to the quiver ψ Q. Let +ψ Q be the resulting quiver. Since ψW is
an almost tilting nonsincere module as a representation of +ψ Q, we can add the
unique indecomposable ∗W k to ψW to get a tilting module.

(2) Next, suppose that W k is a module. We consider an almost tilting
module −ψW which is obtained from ψW by subtracting the summand W k.

(a) If it is sincere, there is another indecomposable module ∗W k �= W k such
that ∗W k ⊕ −ψW is a tilting module.

(b) If it is not sincere, there exists the unique simple module Si, not appear-
ing in the composition factors of −ψW . Then we set ∗W k = i.

Let
μk(L) def= L ∪ { ∗W k } \ {W k }.

In all cases, μk(L) is again a cluster-tilting set. We can iterate this procedure
and obtain new clusters starting from the initial cluster L = I .

7.3. Cluster character
We still continue to assume that the quiver Q does not contain an oriented cycle.
It is known that cluster monomials can be expressed in terms of generating
functions of Euler numbers of quiver Grassmannian varieties. This important
result was first proved by Caldero and Chapoton [7] in type ADE. Later it was
generalized to any acyclic quiver by Caldero and Keller [8] who used various
results in the cluster category theory (see [37] for the reference). We recall the
formula in this subsection.

Let (x,B) be the initial seed of the cluster algebra A (B). We assume that
there is no frozen part for simplicity. Let W be a representation of the quiver Q
corresponding to B. Let GrV (W ) be the corresponding quiver Grassmannian
variety, where V is an I-graded vector space. Although we soon assume that W

is a general representation in EW , it is not necessary for the definition. Let
e(GrV (W )) be its Euler number. We define

XW
def=

1
xdimW

∑
V

e
(
GrV (W )

)
xdimV ·Rx(dimW −dimV )R′

,

where
xdimW =

∏
i

xdimWi
i ,

xdimV ·R =
∏
h∈Ω

x
dimVo(h)

i(h) , x(dimW −dimV )R′
=

∏
h∈Ω

x
(dimWi(h)−dimVi(h))

o(h) .

For a vertex i, we set Xi = xi.
Then it is known that the correspondence W → XW gives the following:

• the correspondence W → XW defines a bijection between the set of iso-
morphism classes of rigid indecomposable modules with cluster variables minus
{xi};
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• the correspondence L → {XW 1 , . . . ,XW n } gives a bijection between cluster
tilting sets and clusters;

• the mutation on cluster tilting sets corresponds to the cluster mutation.

7.4. Piecewise-linear involution
We give one more preparation before applying results from the cluster category
theory to our setting. This last preliminary is not necessary for our argument
but helps to make a relation to [31, Section 12.3].

We recall the piecewise-linear involution τ− on the root lattice considered in
[31, Section 7]: for γ =

∑
i γii ∈ ZI , we define τ−(γ) =

∑
i τ−(γ)ii by

(7.2) τ−(γ)i =

{
−γi −

∑
j �=i cij max(0, γj) if i ∈ I1,

γi if i ∈ I0,

where (cij) is the Cartan matrix.
Let

(7.3) γ =
∑

i

(dimWi − dimWi′ )i.

If i ∈ I0, we have

τ−(γ)i = dimWi − dimWi′ = dimϕWi − dimϕWi′ .

If i ∈ I1, we have

τ−(γ)i = dimWi′ − dimWi −
∑
j �=i

cij max(dimWj − dimWj′ ,0)

= dimϕWi′ − dimϕWi −
∑
j �=i

cij dimϕWj .

Therefore we have

dimσϕWi = max
(
τ−(γ)i,0

)
,

where σϕW = σ(ϕW ) is obtained by applying σ to ϕW .

REMARK 7.4

In [31, Section 12.3], the quiver Grassmannian GrV (M [τ−(γ)]) was considered
where M [τ−(γ)] is a general representation with

dimM [τ−(γ)]i = max
(
τ−(γ)i,0

)
.

Here the quiver is the principal part Q of our decorated quiver. From the above
computation, M [τ−(γ)] is nothing but the principal quiver part of σϕW . The
frozen part of σϕW does not play any role in the quiver Grassmannian by Propo-
sition 6.8. Therefore GrV (M [τ−(γ)]) in [31, Section 12.3] is isomorphic to our
GrV (σϕW ) under (7.3).

7.5. Cluster monomials
We start to put the cluster algebra structure on R from this subsection.
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PROPOSITION 7.5

(1) Let W be an I-graded vector space such that dimW is a real Schur root
of the principal part of the decorated quiver. Then L(W ) is a cluster variable.

(2) This correspondence defines a bijection between the set of real Schur roots
and the set of cluster variables except variables in the initial seed, that is, xi, fi

(i ∈ I).

For type ADE, this together with Corollary 6.14 shows the condition (2) in the
monoidal categorification Definition 2.4.

Proof
Roughly this is a consequence of results reviewed in Section 7.3. However, our
quiver Grassmannian is for σW , not for W . Correspondingly we need to replace
the initial seed of A (B̃) by the z-quiver in (5.8). When we mutate from the x-
quiver to the z-quiver, the set of cluster variables does not change by definition,
but variables in the initial seed change. So let us first consider this effect. The
functor σ(•) induces an involution on the set

{real Schur roots} \ {αi | i ∈ I1}.

Therefore we only need to study cluster variables corresponding to αi in either
the x-quiver or the z-quiver.

• In the x-quiver, αi corresponds to W = Si. We have L(Si) = x′
i = zi. This

is a cluster variable of the seed for the z-quiver but not for the original x-quiver.
Note also that σW = 0 in this case.

• In the z-quiver, αi corresponds to the cluster variable obtained as z∗
i . But

this is nothing but xi. The corresponding simple module is L(Si′ ). We do not
consider it since it has support in the frozen part.

We now may assume that dimσW is a real Schur root different from αi (i ∈ I1).
We cannot apply the formula in Section 7.3 directly as the z-quiver contains

an oriented cycle in general (see (5.7)). We thus first consider the quiver with
principal coefficients and write down F -polynomials and g-vectors by using the
formula in Section 7.3. Then we apply the result in Section 2.2 to get the formula
for cluster variables in the original cluster algebra.

We take u, f as cluster variables for the initial seed of Apr and define

XσW (u, f) def=
1∏

i∈I u
σwi
i

∑
V

e
(
GrV (σW )

) ∏
i∈I0

u
∑

j aijvj

i

∏
i∈I1

u
∑

j aij(
σwj −vj)

i

∏
i∈I

fvi
i ,

where vi = dimVi, wi = dimWi, σwi = dim σWi. By Section 7.3, this is a cluster
variable α for Apr, and hence the above gives the Laurent polynomial Xα(u, f)
in Section 2.2.

Hence, the F -polynomial is

FσW (f) =
∑
V

e
(
GrV (σW )

)∏
i∈I

fvi
i .
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And the g-vector is

gσW = −
∑
i∈I0

σwii −
∑
i∈I1

(
σwi −

∑
j

aij
σwj

)
i = −

∑
i

wiεii,

where εi = (−1)ξi .
Now we return to our original cluster algebra. Since our initial seed is given

by the z-quiver, we change the notation in Section 2.2 and use z-variables instead
of x-variables. We denote the cluster variable corresponding to the above XσW

by z[σW ]. We have

z[σW ] =
FσW (ŷ)

FσW |P(y)
zgα ,

where

yj =

{
f −1

j

∏
i∈I f

aij

i if j ∈ I0,

f −1
j if j ∈ I1,

ŷj = yj

∏
i∈I

z
εiaij

i (j ∈ I)

in this situation. A direct calculation shows (see [31, Lemma 7.2])

χq(ŷj) = Vj,qξj+1 .

We note that FσW contains the monomial
∏

i f
σwi
i for V = σW with the

coefficient 1, and all other terms are its factor. If we evaluate it at yj , we have∏
i∈I

f −σwi
i

∏
i∈I1

f
∑

aij
σwj

i =
∏
i∈I0

f −σwi
i

∏
i∈I1

f
−σwi+

∑
aij

σwj

i =
∏
i∈I0

f −wi
i

∏
i∈I1

fwi
i .

We also have the constant term 1 for V = 0. Therefore

FσW |P(y) =
∏
i∈I0

f −wi
i .

Thus combining with the above calculation of gσW , we get (see [31, Lemma 7.3])

zgσW

FσW |P(y)
=

∏
i∈I0

fwi
i

∏
i∈I

z−wiεi
i .

Its q-character is

χq

( zgσW

FσW |P(y)

)
=

∏
i∈I0

Y wi
i,1

∏
i∈I1

Y wi

i,q3 .

We thus get

χq(z[σW ])≤2 =
∑
V

e
(
GrV (σW )

)
eW eV .

Hence we have z[σW ] = L(W ) = L(W ), where the first equality follows from
Theorem 6.3 and the second equality from Proposition 6.9. �

PROPOSITION 7.6

Let L(W 1), . . . , L(W s) be simple modules corresponding to cluster variables
w1, . . . , ws (via either Proposition 7.5 or xi, fi). Then L(W 1) ⊗ · · · ⊗ L(W s) is
simple if and only if all w1, . . . , ws live in a common cluster.
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For type ADE, this shows condition (1) in the monoidal categorification Defini-
tion 2.4.

Proof
The assertion is trivial for the factor fi by Proposition 6.7. So we may assume
that any W 1, . . . ,W s is not fi. Therefore we have W 1 = ϕW 1, . . . ,W s = ϕW s.

By Propositions 6.10 and 6.12, L(W 1) ⊗ · · · ⊗ L(W s) is simple if and only if
ext1(W k,W l) = ext1(W l,W k) = 0 for k �= l. Thus we need to show that this is
equivalent to the condition that the corresponding wk and wl be in a common
cluster. Therefore we may assume k = 1, l = 2.

When W 1 = W 2, then w1 = w2 is in a common cluster. But ext1(W 1,W 2) =
0 is also true since dimW 1 = dimW 2 is a real Schur root.

If neither L(W 1) nor L(W 2) is one of xi and x′
i, then L(W 1) = z[σW 1],

L(W 2) = z[σW 2] as in the proof of Proposition 7.5. We have ext1(W 1,W 2) =
ext1(W 2,W 1) = 0 if and only if ext1(σW 1, σW 2) = ext1(σW 2, σW 1) = 0. This
happens if and only if σW 1 ⊕ σW 2 is rigid, and hence it can be extended to a
tilting module. From Sections 7.2 and 7.3, this is equivalent to the fact that the
corresponding cluster variables live in a common cluster.

If L(W 1) = xi, L(W 2) = x′
i, then L(W 1) ⊗ L(W 2) is not simple by the T -

system (5.2). They are not in any cluster simultaneously. Any other pairs from
xi, x′

j are always in a common cluster. It is also clear that L(W 1) ⊗ L(W 2) is
always simple. Therefore we may assume that L(W 1) is one of xi, x′

i, and L(W 2)
is not.

Consider the case L(W 1) = xi with i ∈ I0. We have W 1 = Si′ . From Propo-
sitions 6.7 and 6.8, L(Si′ ) ⊗ L(W 2) is simple if and only if W 2

i = 0. In this case,
xi = zi is a cluster variable from the seed for the z-quiver. From Section 7.2 the
cluster variable w2 is in a common cluster with zi if and only if σW 2

i = 0. This
is equivalent to W 2

i = 0 since i ∈ I0.
The case L(W 1) = x′

i with i ∈ I0 is not necessary to consider since we have
L(W 1) = L(Si) = z[Si], which has already been studied.

Next, suppose L(W 1) = xi with i ∈ I1. We have W 1 = Si′ . From Propo-
sitions 6.7 and 6.8, L(Si′ ) ⊗ L(W 2) is simple if and only if W 2

i = 0 as above.
Since i is a source, this is equivalent to Hom(W 2, Si) = 0. From the definition
of the reflection functor, it is equivalent to Ext1(Si,

σW 2) = 0. Since we have
xi = z∗

i , the corresponding rigid module for the z-quiver is Si. Therefore xi and
w are in a common cluster if and only Ext1(Si,

σW 2) = 0 = Ext1(σW 2, Si) by
Section 7.2. But the latter equality is trivial since i is the source. Thus we have
checked the assertion in this case.

Finally, suppose L(W 1) = x′
i for i ∈ I1. This is zi and corresponds to a

vertex i in the cluster-tilting set for the z-quiver. Therefore w is in the same
cluster with zi if and only if σW 2

i = 0. By the same argument as above, this is
equivalent to Ext1(Si,W

2) = 0 = Ext1(W 2, Si). Thus we have checked the final
case. �
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REMARK 7.7

As indicated in the proof, it is more natural to define σSi as Si[−1], an object
in the derived category D(repσ Q̃op). This is also compatible with the cluster
category theory, as Si[−1] = Ii[−1] for i ∈ I1, where Ii is the indecomposable
injective module corresponding to the vertex i.

7.6. Exchange relation
Consider an exchange relation (2.3). Thanks to Propositions 7.5 and 7.6, we
have the corresponding equality in R�=1:

L(xk) ⊗ L(x∗
k) = L(m+) + L(m−).

Since L(m±) are simple, this inequality in the Grothendieck group implies
either of the following:

0 → L(m+) → L(xk) ⊗ L(x∗
k) → L(m−) → 0,

or

0 → L(m−) → L(xk) ⊗ L(x∗
k) → L(m+) → 0

in the level of modules. It is natural to conjecture that we always have the above
one. For the T -system, this is true thanks to Remark 5.3.

This conjecture follows from a refinement of the exchange relation:

χq,t

(
L(xk) ⊗ L(x∗

k)
)

= t−l+nχq,t

(
L(m+)

)
+ tnχq,t

(
L(m−)

)
for some l > 0, n ∈ Z. If we write the corresponding perverse sheaves by P (xk),
P (x∗

k), P (m+), P (m−), the above means that

Res
(
P (m+)

)
= P (xk) � P (x∗

k)[l − n] ⊕ · · · ,

Res
(
P (m−)

)
= P (xk) � P (x∗

k)[−n] ⊕ · · · ,

where · · · means the sum of (shifts of) other perverse sheaves. Since Hom(P (xk)�
P (x∗

k)[l], P (xk)�P (x∗
k)) vanishes for l > 0 by a property of perverse sheaves (see

[12, Corollary 8.4.4], we see that L(m+) is a submodule of L(xk) ⊗ L(x∗
k).

This refinement of the exchange relation might be proved directly, but it
should be proved naturally if we make an isomorphism of the quantum cluster
algebra (see [4]) with Rt,�=1.

Appendix: Odd cohomology vanishing of quiver Grassmannians

In this appendix, we generalize our proof of the odd cohomology group vanishing
of the quiver Grassmannian of submodules of a rigid module of a bipartite quiver
(see Proposition 6.9(2)) to an acyclic one. Thus we recover the main result of
Caldero and Reineke [9]. It implies the positivity conjecture for an acyclic cluster
algebra (see Proposition 2.5) for the special case of an initial seed.

After an earlier version of this article was posted on the arXiv, Qin [56]
proved the quantum version of the cluster character formula for an acyclic cluster



Quiver varieties and cluster algebras 121

algebra. As an application, he observed the odd cohomology group vanishing of
quiver Grassmannians. Our proof is different from his.

Let us first fix the notation. Let Q = (I,Ω) be a quiver, and let W be an
I-graded vector space. We define

EW =
⊕
h∈Ω

Hom(Wo(h),Wi(h)).

Its dual space is

E∗
W =

⊕
h∈Ω

Hom(Wi(h),Wo(h)) =
⊕
h∈Ω

Hom(Wo(h),Wi(h)).

Those are acted on by GW =
∏

i GL(Wi).
Let ν ∈ ZI

≥0. Let F (ν,W ) be the product of Grassmanian varieties Gr(νi,Wi)
parameterizing collections of vector subspaces Xi ⊂ Wi such that dimXi = νi.
Let F̃ (ν,W ) be the variety of all pairs (

⊕
yh,X), where

⊕
yh ∈ EW and X ∈

F (ν,W ) such that

yh(Xo(h)) = 0, yh(Wo(h)) ⊂ Xi(h),

for all h ∈ Ω. This is a vector bundle over F (ν,W ). Let π : F̃ (ν,W ) → EW be
the projection.

Note that F̃ (ν,W ) is a subbundle of the trivial bundle F (ν,W ) × EW . Let
F̃ (ν,W )⊥ be its annihilator in the dual trivial bundle F (ν,W ) × E∗

W , and let
π⊥ : F̃ (ν,W )⊥ → E∗

W be the projection. More concretely, F̃ (ν,W )⊥ is the variety
of all pairs (

⊕
y∗

h
,X), where

⊕
y∗

h
∈ E∗

W and X ∈ F (ν,W ) such that

y∗
h
(Xo(h)) ⊂ Xi(h)

for all h ∈ Ω. Therefore (π⊥)−1(
⊕

y∗
h
) is the quiver Grassmannian associated

with the quiver representation
⊕

y∗
h
.

THEOREM A.1

Assume that E∗
W contains an open GW -orbit, and let

⊕
y∗

h
∈ E∗

W be a point in
the orbit. Then the quiver Grassmannian (π⊥)−1(

⊕
y∗

h
) has no odd cohomology.

Proof
Consider the fiber π−1(

⊕
yh) of π : F̃ (ν,W ) → EW . From the definition of

F̃ (ν,W ), it is equal to X ∈ F (ν,W ) such that∑
h:i(h)=i

Imyh ⊂ Xi ⊂
⋂

h:o(h)=i

Keryh.

Thus it is isomorphic to the product of the usual Grassmannian manifolds of sub-
spaces of

⋂
h:o(h)=i Keryh/

∑
h:i(h)=i Imyh of dimension νi − dim

∑
h:i(h)=i Imyh.

Thus π−1
(⊕

yh

)
has no odd homology.

In the main body of the article, the central fiber was denoted by L•(V,W ),
and its odd cohomology vanishing was mentioned in Remark 3.20. The remaining
part of the proof is the same as in Proposition 6.9(2). Let us sketch it for the
sake of the reader.
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We consider the pushforward π⊥
! (1F̃ (ν,W )⊥ [dim F̃ (ν,W )⊥]). By the decom-

position theorem, it is isomorphic to a finite direct sum⊕
P,d

LP,d ⊗ P [d]

of various simple perverse sheaves P and d ∈ Z. Here LP,d is a finite-dimensional
vector space. Since π⊥ is GW -equivariant, all P ’s appearing above are equivari-
ant. Therefore under our assumption, only the constant sheaf 1E∗

W
[dimE∗

W ] is
supported on the whole E∗

W , and all other perverse sheaves P have smaller sup-
ports. Taking a fiber at

⊕
y∗

h
, we find that the cohomology group Hk((π⊥)−1 ×

(
⊕

y∗
h
)) is LP,d with P = 1E∗

W
[dimE∗

W ] and d = k + dimE∗
W − dim F̃ ⊥(ν,W ).

We apply the Fourier-Sato-Deligne functor Ψ for perverse sheaves on EW .
As in the proof of Theorem 6.3, we have

π!

(
1F̃ (ν,W )[dim F̃ (ν,W )]

)
=

⊕
P,d

LP,d ⊗ Ψ(P )[d].

We also have that Ψ(1E∗
W

[dimE∗
W ]) is the skyscraper sheaf 1{0} at the origin

of EW . The fiber of π!(1F̃ (ν,W )[dim F̃ (ν,W )]) at 0 ∈ EW gives the homology
group of π−1(0), which vanishes in odd degree as we have already observed.
Therefore LP,d for P = 1E∗

W
[dimE∗

W ] vanishes if d + dim F̃ (ν,W ) is odd. Thus
we have the assertion. �

The odd homology vanishing of the fiber over
⊕

yh = 0 is enough for the above
argument. We give an analysis of arbitrary cases to show that any fiber is
isomorphic to the fiber of zero for a different choice of ν, W . In the main body
of this article, this is a consequence of Theorem 3.14.

We also remark that we do not assume that the quiver contains no oriented
cycles in the above proof. However, it is implicitly assumed since we consider
only the case when E∗

W contains an open orbit. Thus our result applies only to
acyclic cluster algebras.
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Progr. Math. 210, Birkhäuser, Boston, 2003, 345–365.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,

Japan; nakajima@kurims.kyoto-u.ac.jp


	Introduction
	Cluster algebras
	Graded quiver varieties and quantum loop algebras
	Realization of cluster algebras via perverse sheaves
	Second key observation
	To do list

	Preliminaries, I: Cluster algebras
	Definition
	F-polynomial
	Hernandez-Leclerc monoidal categorification conjecture

	Preliminaries, II: Graded quiver varieties
	Definition of graded quiver varieties
	Transversal slice
	The additive category QW and the Grothendieck ring
	t-Analogue of q-characters
	A convolution diagram

	Graded quiver varieties for the monoidal subcategory C1
	Graded quiver varieties and the decorated quiver
	A contravariant functor sigma

	From Grothendieck rings to cluster algebras
	Cluster character and prime factorizations of simple modules
	An almost simple module
	Truncated q-character
	Factorization of KR modules
	Factorization and canonical decomposition

	Cluster algebra structure
	Tilting modules
	Cluster tilting sets
	Cluster character
	Piecewise-linear involution
	Cluster monomials
	Exchange relation

	Appendix: Odd cohomology vanishing of quiver Grassmannians
	Acknowledgments
	References
	Author's Addresses

