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Abstract There are two types of numerically trivial involutions of an Enriques surface
according to their period lattice. One is of U(2) ⊥ U(2)-type and the other is of (U(2) ⊥
U(2))-type.AnEnriques surfacewith an involution of (U(2) ⊥ U(2))-type is doubly cov-
ered by a Kummer surface of product type, and such involutions are classified again into
two types according to the parity of the corresponding Göpel subgroups. Involutions of
odd (U(2) ⊥ U(2))-type are constructed from the standard Cremona involutions of the
quadric surface and closely related with quartic del Pezzo surfaces.

Introduction

It is known that a nontrivial automorphism of a K3 surface acts nontrivially on
its cohomology group. But this is not true for an Enriques surface. An automor-
phism of an Enriques surface S is said to be numerically trivial (resp., cohomo-
logically trivial) if it acts on the cohomology group H2(S,Q) (resp., H2(S,Z))
trivially. In this article we classify the numerically trivial involutions, while cor-
recting some earlier work [3].

Let S be a (minimal) Enriques surface, that is, a compact complex surface
with H1(OS) = H2(OS) = 0 and 2KS ∼ 0, and let σ be a numerically trivial
(holomorphic) involution of S. We denote the covering K3 surface of S by S̃ and
the covering involution by ε. Then the period lattice NR of (S,σ) is isomorphic
to either U(2) ⊥ U(2) or U ⊥ U(2) as a lattice (see [3, Proposition 2.5]). An
involution σ is called (U(2) ⊥ U(2))-type, or Kummer type, in the former case.

In this article, except in Appendix A, we assume that NR � U(2) ⊥ U(2) and
classify the numerically trivial involutions of Kummer type using their periods,
that is, the Hodge structures on NR (cf. Remark 21). There exist a pair of
elliptic curves E′ and E′ ′ and an isomorphism ϕ between S̃ and the Kummer
surface of the product abelian surface E′ × E′ ′ such that the diagram
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(1)
S̃

ϕ→ Km(E′ × E′ ′)
σR ↓ ↓ μ

S̃
ϕ→ Km(E′ × E′ ′)

is commutative, where σR is the antisymplectic lift of σ (see Section 1) and μ is
the involution induced by (idE′ , −idE′ ′ ) (see Proposition 6).

EXAMPLE 1

Let βev be the involution of Km(E′ × E′ ′) induced by the translation of E′ × E′ ′

by a 2-torsion point a with a /∈ E′ × 0 ∪ 0 × E′ ′. Then εev = μβev has no fixed
points, and the involution σev of the Enriques surface Km(E′ × E′ ′)/εev induced
by μ is numerically trivial (cf. Proposition 4).

The quotient Km(E′ × E′ ′)/μ is the blowup of P1 × P1 at the 16 points (p′
i, p

′ ′
j ),

1 ≤ i, j ≤ 4, where {p′
1, . . . , p

′
4} and {p′ ′

1 , . . . , p′ ′
4 } are the branches of the double

coverings E′ → P1 � E′/(−id) and E′ ′ → P1 � E′ ′/(−id), respectively. In the
course of his classification of Enriques surfaces with finite (full) automorphism
groups, Kondo [2] found a numerically trivial involution of an Enriques surface
which had been overlooked in [3] (cf. Remark 12).

PROPOSITION 2

Assume that
(∗) the ordered 4-tuples (p′

1, . . . , p
′
4) and (p′ ′

1 , . . . , p′ ′
4) ∈ (P1)4 are not projec-

tively equivalent.
Then the standard Cremona involution of P1 × P1 with center the four points
(p′

i, p
′ ′
i ), 1 ≤ i ≤ 4, lifts to a fixed point free involution εodd of Km(E′ × E′ ′)

(see Section 2). Moreover, the involution σodd of the Enriques surface Km(E′ ×
E′ ′)/εodd induced by μ is numerically trivial.

The following is the main result of this article.

THEOREM 3

Every numerically trivial involution of Kummer type of an Enriques surface is
obtained in the way of Example 1 or Proposition 2.

First, we characterize the involutions of Kummer type by their periods in Sec-
tion 1. In Section 2 we construct an Enriques surface by using a Cremona
involution of the smooth quadric or, almost equivalently, from a smooth quar-
tic del Pezzo surface. In Section 3 the main theorem is proved by the global
Torelli theorem for Enriques surfaces and by computation of periods of Enriques
surfaces of Example 1 and Proposition 2. This article has two appendices. In
Appendix 1, we complete the classification of numerically trivial involutions,
while correcting earlier work [3]. In Appendix 2, we exhibit 14 smooth rational
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curves on the Enriques surfaces of Proposition 2 and compute the dual graph of
their arrangement.
Notation. The symbol U denotes the rank 2 lattice given by the symmetric
matrix ( 0 1

1 0 ). The lattice obtained from a lattice L by replacing the bilinear
form ( . ) with r( . ), r being a rational number r, is denoted by L(r).

1. Involutions of Kummer type

Let Km(E′ × E′ ′) and μ be as in the introduction.

PROPOSITION 4

Let ε be a fixed point free involution of Km(E′ × E′ ′) which commutes with the
involution μ. Then the involution of the Enriques surface Km(E′ × E′ ′)/ε induced
by μ is numerically trivial.

Proof
The invariant part of the action of μ on H2(Km(E′ × E′ ′),Z) is of rank 18. On
the other hand, since εμ is symplectic, the antiinvariant part of its cohomological
action is of rank 8. Therefore, μ mod ε acts on H2(Km(E′ × E′ ′)/ε,Q), which
is of rank 10, trivially. �

Let σ be a numerically trivial involution of an Enriques surface S. There are two
involutions of the K3 cover S̃ of S which lift σ since S̃ has no fixed point free
automorphisms of order 4. One is symplectic and the other is antisymplectic.
These involutions of S̃ are denoted by σK and σR, respectively. We denote
the antiinvariant parts of the actions of ε := σKσR, σK , and σR on H2(S̃,Z)
by N , NK , and NR, respectively. N is isomorphic to U ⊥ U(2) ⊥ E8(2) (see [1,
Chapter VIII, Lemma 19.1]), and NK is isomorphic to E8(2) (see [3, Lemma 2.1]).
NR carries a nontrivial polarized Hodge structure of weight 2, which we call the
period of (S,σ).

To compute the period for an involution in Proposition 4, we recall a basic
fact on the cohomology of the Kummer surface Km(T ) of a (2-dimensional)
complex torus T . Km(T ) contains 16 (−2)P1’s {Ea}a∈T2 parameterized by the
2-torsion subgroup T2 � (Z/2Z)4 of T . These generate a sublattice of rank 16 in
the cohomology group H2(Km(T ),Z), which we denote by ΓKm. Let Λ be the
orthogonal complement of ΓKm in H2(Km(T ),Z). Λ is the image of H2(T,Z) by
the quotient morphism from the blowup of T at T2 onto Km(T ). The following
is well known (see [1, Chapter VIII, Section 5]).

LEMMA 5

The image Λ ⊂ H2(Km(T )) is isomorphic to H2(T,Z) as a Hodge structure and
to H2(T,Z)(2) � U(2) ⊥ U(2) ⊥ U(2) as a lattice.

Being of Kummer type is characterized in terms of the period as follows.
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PROPOSITION 6

The following are equivalent for a numerically trivial involution σ:
(1) σ is of Kummer type; that is, the lattice NR is isomorphic to U(2) ⊥ U(2);
(2) σ is obtained in the way of Proposition 4.

Proof
ΓKm is fixed in the cohomological action of μ. In the action of the involution
(idE′ , −idE′ ′ ) on H2(E′ × E′ ′,Z) � U ⊥ U ⊥ U , one U , generated by two elliptic
curves, is invariant and the other two are antiinvariant. Hence the antiinvariant
part N − of the action involution μ on Λ is isomorphic to U(2) ⊥ U(2) as a lattice.
Therefore, NR � U(2) ⊥ U(2) if σ is obtained in the way of Proposition 4.

Conversely, assume that NR is isomorphic to U(2) ⊥ U(2). The lattice U ⊥ U

is isomorphic to M2(Z) = V ′ ⊗ V ′ ′, the group of (2 × 2)-matrices of integral entries
endowed with the bilinear form (A · A) = 2detA, where V ′ and V ′ ′ are free Z-
modules of rank two. The period ω of S̃ corresponds to a complex matrix of
rank one via this isomorphism since (ω2) = 0. Hence, we have ω = α′ ⊗ α′ ′ for
α′ ∈ V ′ ⊗ C and α′ ′ ∈ V ′ ′ ⊗ C. These α′ and α′ ′ determine Hodge structures of
weight one since (ω.ω̄) > 0. Hence, there exists a pair of elliptic curves E′ and
E′ ′ such that NR(1/2) is isomorphic to H1(E′,Z) ⊗ H1(E′ ′,Z) as a polarized
Hodge structure. By Theorem 7 and the uniqueness property of 2-elementary
lattices, there exists an isomorphism ϕ between S̃ and the Kummer surface of
the product E′ × E′ ′ such that the diagram (1) commutes. �

THEOREM 7

Let (X,σ) and (X ′, σ′) be pairs of a K3 surface and its involution. If there exists
a Hodge isometry α : H2(X ′,Z) → H2(X,Z) such that the diagram

H2(X ′,Z) α→ H2(X,Z)
σ∗ ↓ ↓ σ′ ∗

H2(X ′,Z) α→ H2(X,Z)

commutes, then there exists an isomorphism ϕ : X → X ′ such that ϕσ = σ′ϕ.

Proof
If neither σ nor σ′ has a fixed point, this is the global Torelli theorem for Enriques
surfaces. The proof in [1, Chapter VIII, Section 21], especially its key Proposi-
tion 21.1, works in our general case too. �

Assume that (S,σ) is of Kummer type. Since (discNK)(discNR) = 4 · discN ,
the orthogonal sum NK ⊥ NR is of index two in N . Therefore, there exists a
pair of nonzero 2-torsion elements αK ∈ ANK

= ((1/2)NK)/NK and αR ∈ ANR
=

((1/2)NR)/NR such that N = NK + NR + Z(xK , xR), where xK ∈ (1/2)NK and
xR ∈ (1/2)NR are representatives of αK and αR, respectively. This pair (αK , αR)
is uniquely determined from the involution σ. We call it the patching pair of σ.
Since NK and NR are orthogonal in N , we have qNK

(αK) + qNR
(αR) = 0 in

Z/2Z.
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DEFINITION 8

A numerically trivial involution σ of Kummer type, or a patching pair (αK , αR),
is of even type or of odd type according to whether the common quadratic value
qNK

(αK) = qNR
(αR) ∈ Z/2Z of patching elements is 0 or 1.

Since NR � U(2) ⊥ U(2), qNR
is a nondegenerate even quadratic space of dimen-

sion 4 over F2. Hence, the numbers of patching pairs of even and odd type are
six and nine, respectively.

2. Cremona involutions and involutions of odd type

The Enriques surface in Proposition 2 is closely related with a del Pezzo surface
of degree 4 and its small† involution. For our purpose it is most convenient to
describe it as the blowup of P1 × P1. We identify P1 × P1 with a smooth quadric
surface Q in P3 = P(x1:x2:x3:x4).

Let p1 = (p′
1, p

′ ′
1), . . . , p4 = (p′

4, p
′ ′
4) be four points of P1 × P1 which satisfy

(∗∗) p′
1, . . . , p

′
4 are distinct and p′ ′

1 , . . . , p′ ′
4 are distinct.

In terms of a smooth quadric, this is equivalent to
(∗∗′) any line pipj , 1 ≤ i < j ≤ 4, is not contained in Q.

We also assume that the condition (∗) in Proposition 2 or, equivalently,
(∗ ′) p1, . . . , p4 ∈ Q ⊂ P3 is not contained in a plane.

We take a system of homogeneous coordinates of P3 such that p1, . . . , p4 are
the coordinate points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1). Then the defining equation
of Q is of the form

∑
1≤i<j≤4 aijxixj = 0. By the assumption (∗∗′), all coeffi-

cients aij ’s are nonzero. Hence, replacing x1, . . . , x4 by their suitable constant
multiplications, we may and do assume that Q ⊂ P3 is defined by

(2) a1x2x3 + a2x1x3 + a3x1x2 + (x1 + x2 + x3)x4 = 0

for some nonzero constants a1, a2, and a3 ∈ C. Since Q is smooth, we have

(3) a2
1 + a2

2 + a2
3 − 2a1a2 − 2a1a3 − 2a2a3 
= 0.

Now we define a birational involution τ ′ of Q by

(x1 : x2 : x3 : x4) �→
(a1

x1
:

a2

x2
:

a3

x3
:

a1a2a3

x4

)

and call it the standard Cremona involution of Q (or P1 × P1) with center
p1, . . . , p4.

Let B be the blowup of a smooth quadric Q at p1, . . . , p4. By the projec-
tion from p4, B is the blowup of the projective plane also. By (3), the line
l : x1 + x2 + x3 = 0 and the conic C : a1x2x3 + a2x1x3 + a3x1x2 = 0 intersect
transversally in the projective plane P2 = P(x1:x2:x3). Let q4 and q5 be the two

†An automorphism of a surface is small if all fixed points are isolated.
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intersection points. Then B is isomorphic to the blowup of P2 at the three coor-
dinate points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the two points q4 and q5. The
standard Cremona involution τ ′ is induced by the quadratic Cremona transfor-
mation

(4) (x1 : x2 : x3) �→
(a1

x1
:

a2

x2
:

a3

x3

)
,

which interchanges l and C. In particular, it induces an automorphism of B,
which we denote by τ . The following is easily verified.

LEMMA 9

(1) The indeterminacy locus of τ ′ : Q · · · → Q is {p1, . . . , p4}.
(2) For each 1 ≤ i ≤ 4, the conic C ′

i : Q ∩ {xi = 0} is contracted to the point
pi by τ ′.

(3) For each 1 ≤ i ≤ 4, the two lines in Q passing through pi are interchanged
by τ ′.

(4) The fixed points of τ ′ are (ε1
√

a1 : ε2
√

a2 : ε3
√

a3 :
√

a1a2a3), where all
εi’s are ±1 and satisfy ε1ε2ε3 = −1.

For later use we compute the cohomological action of τ . The second cohomology
group H2(B,Z) or, equivalently, the Picard group of B is the free abelian group
with the standard Z-basis {h1, h2, e1, . . . , e4}, where h1 and h2 are the pullbacks
of the two rulings of P1 × P1 and e1, . . . , e4 are the classes of the exceptional
curves over p1, . . . , p4.

LEMMA 10

The action of the standard Cremona involution τ on H2(B,Z) is equal to the
composite of the two reflections with respect to the mutually orthogonal (−2)-
classes h1 − h2 and h1 + h2 − e1 − · · · − e4.

Proof
We take the description of B as the blowup of P2. The cohomology group
H2(B,Z) has {h, e1, e2, e3, f1, f2} as a Z-basis. Here h is the pullback of a line,
and f1 and f2 are the classes of the exceptional curves over q4 and q5. The
cohomological action of the transformation (4) on the blowup of P2 at the three
coordinate points is the reflection r with respect to h − e1 − e2 − e3. Since the
transformation (4) interchanges q4 and q5, the cohomological action of τ is the
composite of r and the reflection with respect to f1 − f2. This proves the lemma
since f1 = h1 − e4, f2 = h2 − e4 and h = h1 + h2 − e4. �

There are 16 smooth rational curves of degree 1 with respect to the anticanonical
divisor −KB = 2h1 + 2h2 − e1 − · · · − e4:

(0) the exceptional divisors e1, . . . , e4 over p1, . . . , p4,
(1) the strict transforms of lines in Q passing through one of p1, . . . , p4, and
(2) the strict transforms Ci of the conics C ′

i in Lemma 9.
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We denote the 8 lines of (1) by Γ1̄ and the 8 lines of (0) and (2) by Γ0̄. The
Kummer surface Km(E′ × E′ ′) is the minimal resolution of the double cover

w2 = (a3x2 + a2x3 + x4)(a3x1 + a1x3 + x4)(a2x1 + a1x2 + x4)(x1 + x2 + x3)

of Q with branch the union of 8 lines in Q passing through one of p1, . . . , p4.
Hence, it is the the minimal resolution of the double cover of B with branch the
union of the 8 lines in Γ1̄.

LEMMA 11

Km(E′ × E′ ′) is the minimal resolution of the double cover of B with branch the
union of the 8 lines Γ0̄ also.

Proof
Put g1 = −KB − h1 = h1 +2h2 − e1 − · · · − e4. The complete linear system |g1| is a
base-point-free pencil, and the morphism (Φ|h1|,Φ|g1|) : B → P1 × P1 is of degree
2. The covering involution acts on H2(B,Z) by α �→ (g1 · α)h1 + (h1 · α)g1 − α

and hence interchanges Γ0̄ and Γ1̄. Hence, we have our assertion. �

Proof of Proposition 2
By Lemma 11, the Kummer surface Km(E′ × E′ ′) is the minimal resolution of
the double cover w2 = x1x2x3x4 of Q. Let βodd be the involution of Km(E′ × E′ ′)
induced from the birational involution

(w,x1, x2, x3, x4) �→ (a1a2a3/w,a1/x1, a2/x2, a3/x3, a1a2a3/x4)

of the double cover. Then βodd lifts τ and τ ′. The involution εodd := μβodd has
no fixed points by (4) of Lemma 9. The involution σodd is numerically trivial by
Proposition 4. �

Horikawa expression
Let P1

(1) and P1
(2) be the projective lines whose inhomogeneous coordinates are

y1 = x1/x3 and y2 = x2/x3. Then the surface B is a blowup of P1
(1) × P1

(2)

with center (0,0), (∞, ∞) and the intersection points of y1 + y2 + 1 = 0 and
a2y1 + a1y2 + a3y1y2 = 0. The involution βodd is induced by the automorphism
(y1, y2) �→

(
a1

a3y1
, a2

a3y2

)
of P1

(1) × P1
(2). By Lemma 11, Km(E′ × E′ ′) is the minimal

resolution of the double cover

w2 = y1y2(a2y1 + a1y2 + a3y1y2)(y1 + y2 + 1)

whose branch locus is

(5)
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REMARK 12

In the special case a1 = a2 = a3 = 1, the two elliptic curves E′ and E′ ′ are both
isomorphic to Eω := C/(Z + Ze2π

√
−1/3). The Enriques surface S = Km(Eω ×

Eω)/εodd is studied in [2, Section 3.5] as an Enriques surface whose automorphism
group is finite. In fact, AutS is the extension of Z/2Z, the group of numerically
trivial automorphisms, by the symmetric group of degree 4.

3. Computation of the periods

Let Km(T ) and Λ = (ΓKm)⊥ be as in Lemma 5. The discriminant group AΛ

is (1/2Λ)/Λ � H2(T,Z/2Z), and the discriminant form qΛ is essentially the cup
product, that is, qΛ(ȳ) = (y ∪ y)/2 mod 2 for y ∈ H2(T,Z).

Let P = {0, a, b, c} ⊂ T2 be a subgroup of order 4 or, equivalently, a 2-
dimensional subspace of T2. We put EP = E0 +Ea +Eb +Ec ∈ ΓKm. We denote
the Plücker coordinate of P ⊥ ⊂ T ∨

2 by πP ∈
∧2

T ∨
2 � H2(T,Z/2Z) and regard

it as an element of Λ/2Λ. The following is easily verified (see [1, Chapter VIII,
Section 5]).

LEMMA 13

We have (EP mod 2) + πP = 0 holds in H2(Km(T ),Z/2Z).

Now we specialize Km(T ) to Km := Km(E′ × E′ ′) of product type. Two rulings
of P1 × P1 give two elliptic fibrations Km −→ P1. We denote the classes of these
fibers by h̃1 and h̃2 ∈ H2(Km,Z). These h̃1 and h̃2 generate a rank 2 sublattice
of Λ which is isomorphic to U(2). Λ is the orthogonal (direct) sum of 〈h̃1, h̃2〉
and N − is the antiinvariant part of the action of μ. As we saw in the proof of
Proposition 6, N − is isomorphic to U(2) ⊥ U(2) as a lattice.

OBSERVATION 14

A subgroup P of order 4 of (E′ × E′ ′)2 is naturally associated with a numerically
trivial involution of Kummer type.

(1) Let a = (a′, a′ ′) ∈ (E′ × E′ ′)2 be a 2-torsion point as in Example 1, and we
set P := {0, a, (a′,0), (0, a′ ′)}. Then P is of order 4, and the Plücker coordinate
πP belongs to N −/2N −.

(2) Let P ⊂ T2 be a subgroup of order 4 such that

P ∩
(
(E′)2 × 0

)
= P ∩

(
0 × (E′ ′)2

)
= 0,

and let πP be the Plücker coordinate. Then πP − h̃1 − h̃2 belongs to N −/2N −.
Let βP be the involution of Km induced by the standard Cremona involution τ ′

of P1 × P1 with center the image of P . All βodd’s of Proposition 2 are obtained
from βP ’s.
In both cases, P ⊂ (E′ × E′ ′)2 is a Göpel subgroup; that is, P is totally isotropic
with respect to the Weil pairing.
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A subgroup P ⊂ T2 of order 4 is Göpel if and only if the Plücker coordinate πP is
perpendicular to h̃1 + h̃2. Hence, either πP or πP − h̃1 − h̃2 belongs to N −/2N −.
There are exactly 15 Göpel subgroups. Nine of them satisfy Observation 14(1)
and six satisfy (2). All nine odd elements and six even nonzero elements of
N −/2N − are obtained in the way of (1) and (2), respectively.

REMARK 15

The number of non-Göpel subgroups of order 4 is 20. By adding h̃1 or h̃2, one
obtains a two-to-one map from the set of non-Göpel subgroups to {x ∈ N −/2N − |
(x2) = 0}.

Now we are ready to compute the patching pair for Example 1 and Proposition 2.

LEMMA 16

Let Π ∈ Λ be a representative of πP ∈ Λ/2Λ.
(1) An Enriques involution εev of Example 1 is of even type, and the patching

pair is (Σ/2,Π/2) with Σ := E0 − Ea + E(a′,0) − E(0,a′ ′).
(2) An Enriques involution εodd of Proposition 2 is of odd type, and the

patching pair is ((h̃1 + h̃2 − EP )/2, (Π − h̃1 − h̃2)/2).

Proof
Since σR = μ, NR coincides with N −. Hence, the discriminant form of NK is
essentially the cup product on H2(T,Z/2Z). Here we use the latter for compu-
tation.

(1) Since βev is induced by the translation of E′ × E′ ′ by a, Σ belongs to
NK . By Lemma 13, Σ+Π is divisible by 2. Hence, the second half of (1) follows.
Since πP is the Plücker coordinate, (1/2)(πP ∪ πP ) = 0 ∈ Z/2Z, and σ is of even
type.

(2) The class h̃1 + h̃2 − EP belongs to NK by virtue of Lemma 10. The
second half of (2) follows from this and Lemma 13. The class εodd is of odd type
since (1/2)(πP − h̃1 − h̃2) ∪ (πP − h̃1 − h̃2) = (1/2)(πP ∪ πP ) + (1/2)(h̃1 + h̃2) ∪
(h̃1 + h̃2) = 1 ∈ Z/2Z. �

Proof of Theorem 3
Let ε be an Enriques involution of the Kummer surface Km = Km(E′ × E′ ′)
which commutes with μ. Let σ be the involution of the Enriques surface S :=
Km/ε induced by μ. Let (αK , αR) ∈ ANK

× ANR
be the patching pair of σ.

NR coincides with N − since σR = μ in our situation. Recall that NR(1/2) is
isomorphic to U ⊥ U as a lattice and isomorphic to H1(E′,Z) ⊗ H1(E′ ′,Z) as
a polarized Hodge structure. In particular, ((1/2)NR)/NR is isomorphic to the
tensor product (E′)2 ⊗ (E′ ′)2. By this isomorphism, 0 
= αR ∈ ((1/2)NR)/NR

corresponds to a′ ⊗ a′ ′ ∈ (E′)2 ⊗ (E′ ′)2 or to an isomorphism ϕ : (E′)2
∼→ (E′ ′)2

according as (αK , αR) is of even type or of odd type. ((E′)2 is identified with
its dual since it is of dimension 2 over F2.) In the even case, S is isomorphic to
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the Enriques surface Km/εev of Example 1 with a = (a′, a′ ′) by Lemma 16 and
the global Torelli theorem for Enriques surfaces since the group of numerically
trivial automorphisms of S is cyclic by [3, Proposition 1.1].

Assume that (αK , αR) is of odd type.

CLAIM

There exists no isomorphism from E′ to E′ ′ whose restriction to the 2-torsion
subgroups is ϕ.

Proof
Assume the contrary, and let Φ ⊂ E′ × E′ ′ be the graph of such an isomorphism.
Then Φ − E′ × 0 − 0 × E′ ′ is a divisor of self-intersection −2, and its class belongs
to H1(E′,Z) ⊗ H1(E′ ′,Z) ⊂ H2(E′ × E′ ′,Z). Hence, NR ⊂ H2(Km,Z) contains
an algebraic cycle c′ of self-intersection number −4 such that c′/2 represents αR.
Since NK � E8(2), αK is represented by a (−4)-element c ∈ NK . Then x :=
(c + c′)/2 belongs to N by the definition of patching pairs and is algebraic since
c is orthogonal to H0(Ω2) ⊂ NR ⊗ C. Since (x2) = −2, either x or −x is effective
by the Riemann-Roch theorem. This is a contradiction since ε(x) = −x. �

Let P ⊂ T2 be the graph of ϕ, and put P = {(p′
i, p

′ ′
i )}1≤i≤4 as in Proposition 2.

Then, by the claim, (p′
1, . . . , p

′
4) and (p′ ′

1 , . . . , p′ ′
4) are not projectively equivalent,

and we obtain an Enriques surface Km/εodd. Again, by Lemma 16 and the global
Torelli theorem, the Enriques surface S is isomorphic to that obtained from the
image of P as in Observation 14(2). By the same argument as the even case, we
have (S,σ) � (Km/εodd, σodd). �

Appendices

A. Kummer type is not cohomologically trivial
Contrary to the erroneous [3, Proposition 4.8], the involution of Example 1 is not
cohomologically trivial.

THEOREM 17

A numerically trivial involution of Kummer type is not cohomologically trivial.

Proof
We prove our assertion by constructing an elliptic fibration.

Let {p′
1, . . . , p

′
4} and {p′ ′

1 , . . . , p′ ′
4 } be the branch of the double coverings E′ →

P1 � E′/(−id) and E′ ′ → P1 � E′ ′/(−id), respectively. The Kummer surface
Km(E′ × E′ ′) is the minimal resolution of the double cover of P1 × P1 with
branch

(p′
1 × P1 ∪ · · · ∪ p′

4 × P1) ∪ (P1 × p′ ′
1 ∪ · · · ∪ P1 × p′ ′

4).
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More precisely, it is the double cover of the blowup of P1 × P1 at the 16 points
(p′

i, p
′ ′
j ), i, j = 1, . . . ,4, with branch the strict transform of these eight rational

curves:

The fixed locus of μ is the inverse images of these strict transforms. We
denote them by

(A1 � · · · � A4) � (B1 � · · · � B4).

The involution ε := μβ of Example 1 acts on this disjoint union. Renumbering
A1, . . . ,A4 and B1, . . . ,B4, we may assume that

ε(Ai) = Ai+1 and ε(Bi) = Bi+1

for i = 1,3. Then ε interchanges two divisors A1 + A3 + B2 + B4 and A2 + A4 +
B1 + B3. Let Λ be the linear pencil spanned by their images

H1 := p′
1 × P1 + p′

3 × P1 + P1 × p′ ′
2 + P1 × p′ ′

4

and

H2 := p′
2 × P1 + p′

4 × P1 + P1 × p′ ′
1 + P1 × p′ ′

3

on P1 × P1. Then Λ induces elliptic fibrations

ΦΛ : Km(E′ × E′ ′)/μ → Λ(� P1)

of the rational surface and

Km(E′ × E′ ′) → Λ̃(� P1)

of the Kummer surface. The latter is the base change of the former by the double
covering Λ̃ → Λ with branches [H1] and [H2] and descends to an elliptic fibration
f of the Enriques surface Km(E′ × E′ ′)/ε.

The action of 〈ε,μ〉 � Z/2Z × Z/2Z on Km(E′ × E′ ′) induces the action
of Z/2Z × Z/2Z on Λ̃ � P1. In our cases this action is effective (and hence
of Heisenberg type). Let ε̄ and μ̄ be the automorphisms of Λ induced by ε

and μ, respectively. Then ε̄ interchanges the points [H1] and [H2] underneath
the singular fibers. The involution μ̄ fixes exactly these two points, but the
corresponding fiber of the elliptic fibration f on the Enriques surface is not
multiple. Since μ̄ is not the identity on Λ̃/ε̄, the involution μmod ε interchanges
two multiple fibers of f . Let G1 and G2 be the reduced part of the two multiple
fibers of f . Since the linear equivalence classes of G1 and G2 differ by the
canonical class, μ mod ε is not cohomologically trivial.
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For ε = εodd in Proposition 2, we have ε(Ai) = Bi for every i = 1, . . . ,4 since
a Cremona involution interchanges p′

i × P1 and P1 × p′ ′
i for every i = 1, . . . ,4. The

above argument works literally in this case too. Now our assertion follows from
Theorem 3. �

Now we are ready to complete the classification of numerically trivial involutions,
correcting [3].

At the 6th line in [3, page 388], it is erroneously stated that the common value
qT (α) = qT ′ (α′) ∈ Z/2Z is nonzero in the case where T ′, or NR, is isomorphic to
U(2) ⊥ U(2). But the value can be both zero and 1mod2. We call a primitive
embedding of T (� E8(2)) into N (� E8(2) ⊥ U(2) ⊥ U ) even or odd accordingly.
Then [3, Proposition 2.6] should be replaced by the following.

PROPOSITION 18

Let T1 and T2 be primitive sublattices of N isomorphic to E8(2). If their orthog-
onal complements T ′

1 and T ′
2 are isomorphic to each other and if in addition they

have the same parity in the case T ′
1 � T ′

2 � U(2) ⊥ U(2), then there exists an
isometry of N which maps T1 and T ′

1 onto T2 and T ′
2, respectively.

Let P be the set of periods of E8(2)-polarized Enriques surfaces as defined in
[3, page 388]. Then P is the disjoint union of P1 and P2 for which the orthog-
onal complements of E8(2) ⊂ N are isomorphic to U ⊥ U(2) and U(2) ⊥ U(2),
respectively. The latter decomposes into two parts, P ev

2 and P odd
2 , according to

the parity. Corollary 2.7 in [3] should be replaced by the following.

COROLLARY 19

P1/Γ, P ev
2 /Γ, and P odd

2 /Γ are irreducible.

Here Γ is the arithmetic group acting on the 10-dimensional Hermitian symmetric
domain Ω− of type IV such that the quotient Ω−/Γ is the moduli space of
Enriques surfaces. In fact, P ev

2 /Γ parameterizes Example 1, and an open subset
of P odd

2 /Γ parameterizes Enriques surfaces in Proposition 2.

THEOREM 20

Every pair of an Enriques surface and a cohomologically trivial involution is
obtained in the way of [3, Example 2]. Moreover, they are parameterized by
P1/Γ.

Proof
Let σ be a cohomologically trivial involution of an Enriques surface S. NR is
isomorphic to U ⊥ U(2) by Theorem 17, and the periods of such involutions
form an irreducible variety by Corollary 19. Hence, (S,σ) is a deformation of [3,
Example 2]. As is shown in [3, Section 5], the fixed locus of the antisymplectic
involution is the disjoint union of an elliptic curve E and eight smooth rational
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curves E1, . . . ,E8 for Example 2. Therefore, the same holds for the antisymplectic
involution σR. Let f : S̃ → P1 be the elliptic fibration defined by the linear
system |E|. Then f descends to an elliptic fibration of the quotient rational
surface S̃/σR. We denote its minimal fibration by fR : R → P1. The rational
surface R is obtained from S̃/σR by blowing down an exceptional curve of the
first kind eight times. For Example 2, it is easily checked that the image of∑8

i=1 Ei is a singular fiber of type I8 of fR and that fR has four sections. The
same holds for (S,σ) as a deformation of Example 2. Hence, as is claimed in
[3, Section 5], the configuration of the elliptic curves E and 20 rational curves
is the same as Example 2, and (S,σ) is obtained in the way of Example 2. The
second assertion follows from the Torelli-type theorem and [3, Proposition 1.1],
the uniqueness of cohomologically trivial involution. �

REMARK 21

The fixed locus of the antisymplectic involution σR is the disjoint union of eight
smooth rational curves E1, . . . ,E8 for numerically trivial involutions of Kummer
type. Our main theorem, Theorem 3, can be also proved using certain elliptic
fibrations containing E1, . . . ,E8 in their fibers, although the existence of such
fibrations is not straightforward as above and they are not unique. Furthermore,
Theorem 20 can be proved using periods also. These alternative proofs will be
discussed elsewhere.

B. Rational curves on an Enriques surface of Proposition 2
Let B, τ , Γ0̄, and Γ1̄ be as in Section 2. The dual graph of the eight smooth
rational curves in Γ0̄ is a cube:

(6)

The automorphism τ sends each vertex of the cube Γ0̄ to its antipodal. The
same holds for Γ1̄. The following is easily verified:

(†) for every curve m in Γ0̄ (resp., Γ1̄), there exists an antipodal pair of
vertices n and n′ in Γ1̄ (resp., Γ0̄) such that (m · n) = (m · n′) = 1 and that m is
disjoint from other curves in Γ1̄ (resp., Γ0̄).
Therefore, the quotient graph (Γ1̄ ∪ Γ0̄)/τ is as follows.

The Kummer surface Km(E′ × E′ ′) is the double cover of B with branch the
union of the eight curves in Γ1̄. The union has 12 nodes corresponding to the
12 edges of Γ1̄. The pullbacks of the curves in Γ0̄ are smooth rational curves on
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Km(E′ × E′ ′) by (†). Hence, Km(E′ × E′ ′) has 28 smooth rational curves, 12 of
which come from the nodes of the double cover and the rest from Γ0̄ ∪ Γ1̄. Since
the involution τ lifts to εodd of Proposition 2, we have the following.

PROPOSITION 22

On the Enriques surface Km(E′ × E′ ′)/εodd of Proposition 2, there are 14 smooth
rational curves whose dual graph is as follows:

(7)

The proposition, together with [3, Figure 4.7], shows the “only if” part of [2,
Theorem 1.7(i)] in the case of Kummer type.
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