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Abstract This article studies a map from a global Galois cohomology group to a direct
sum of quotients of local Galois cohomology groups. The kernel of such a global-to-local

map is often called a Selmer group. The objective of this article is to study the cokernel
of such a map. We do so in a very general context. In particular, we find various sets of
assumptions which imply that a global-to-local map is surjective.

1. Introduction

The term Selmer group was first used in the 1960s to refer to a certain group
that proved to be useful in studying the arithmetic properties of an elliptic curve
defined over a number field. The classical definition is easily extended to abelian
varieties defined over number fields. We will recall that definition later. Over the
years, it was found that one could define such objects in a much more general
context. Such definitions occur in the formulation of the Bloch-Kato conjecture
in [BK] as well as in generalizations of a conjecture of Iwasawa in [Gr1] and [Gr2].
Roughly speaking, a Selmer group is a subgroup of a global Galois cohomology
group defined by imposing local restrictions of some kind on the cocycle classes.
These local conditions take a rather specific form in the examples cited above.
However, in this article, a Selmer group is defined simply as the kernel of a very
general type of map which we call global-to-local.

Our objective is to study the cokernel of such a global-to-local map in a
very general setting. Suppose that K is a finite extension of Q and that Σ is
a finite set of primes of K. Let KΣ denote the maximal algebraic extension of
K unramified outside of Σ. We always assume that Σ contains all archimedean
primes and all primes lying over some fixed rational prime p. The Selmer groups
that we consider are associated to a continuous representation

ρ : Gal(KΣ/K) −→ GLn(R),
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where R is a complete Noetherian local ring. Let M denote the maximal ideal
of R. We assume that the residue field R/M is finite and has characteristic p.
Hence, R is compact in its M-adic topology. Let T be the underlying free R-
module on which Gal(KΣ/K) acts via ρ. We define D = T ⊗R R̂, where R̂ =
Hom(R,Qp/Zp) is the Pontryagin dual of R with a trivial action of Gal(KΣ/K).
That Galois group acts on D through its action on the first factor T . Thus, D
is a discrete abelian group which is isomorphic to R̂n as an R-module and has a
continuous R-linear action of Gal(KΣ/K).

The Galois cohomology group H1(KΣ/K, D) can be considered as a discrete
R-module too. It is a cofinitely generated R-module in the sense that its Pon-
tryagin dual is finitely generated as an R-module (see [Gr3, Proposition 3.2]).
For each prime v of K, let Kv denote the completion of K at v. Suppose that
one specifies an R-submodule L(Kv, D) of H1(Kv, D) for each v ∈ Σ. We denote
such a specification simply by L. Let

P (K, D) =
∏
v∈Σ

H1(Kv, D) and L(K, D) =
∏
v∈Σ

L(Kv, D).

Now L(K, D) is an R-submodule of P (K, D), and the corresponding quotient
module is

QL(K, D) =
∏
v∈Σ

QL(Kv, D), where QL(Kv, D) = H1(Kv, D)/L(Kv, D).

The natural global-to-local restriction maps for H1(·, D) induce a map

(1) φL : H1(KΣ/K, D) −→ QL(K, D).

The Selmer group for D over K corresponding to the specification L is defined to
be ker(φL) and will be denoted by SL(K, D). We refer to φL as the global-to-local
map defining SL(K, D).

In the definition given above, one fixes an embedding of K into Kv for every
prime v of K. Here K denotes an algebraic closure of K, and Kv denotes an
algebraic closure of Kv . Thus, one has an embedding of KΣ into Kv . The
restriction maps GKv → Gal(KΣ/K) for v ∈ Σ then induce the restriction maps
for the cohomology groups occurring in the definition of φL. However, the Selmer
group does not depend on the choice of embeddings.

It is clear that SL(K, D) is an R-submodule of H1(KΣ/K, D) and so is also a
discrete, cofinitely generated R-module. For a fixed set Σ, the smallest possible
Selmer group occurs when we take L(Kv, D) = 0 for all v ∈ Σ. Following the
notation in [Gr3], we denote that Selmer group by X1(K,Σ, D). In general, for
any i ≥ 0, we define

Xi(K,Σ, D) = ker
(
Hi(KΣ/K, D) −→

∏
v∈Σ

H1(Kv, D)
)
.

Obviously, we have X1(K,Σ, D) ⊆ SL(K, D) for any choice of the specification L.
We do not want to assume necessarily that R is a domain. But we will

assume that R contains a subring Λ of the following type: Λ is isomorphic to
one of the formal power series rings Zp[[x1, . . . , xm]] or Fp[[x1, . . . , xm+1]], where
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m ≥ 0. Furthermore, we assume that R is finitely generated and torsion free
as a Λ-module. Such a subring Λ is known to exist if R is a domain. This is
a special case of a classical theorem of Cohen (see [Coh, Theorem 16]). The
Krull dimension of R is the same as that for Λ and is equal to m + 1. Both R

and Λ have the same characteristic. In general, even if R is not a domain, the
assumptions about R imply that R̂ is a divisible Λ-module. Consequently, D is
a divisible Λ-module. In most of the results of this article, it is this last property
of D that is important.

The results that we prove in this article assert that φL is surjective under
various sets of hypotheses. In a subsequent article [Gr4], and under additional
hypotheses, we apply such results to prove that SL(K, D) has the following prop-
erty as a Λ-module: There exists a nonzero element θ ∈ Λ such that αSL(K, D) =
SL(K, D) for all nonzero α ∈ Λ which are relatively prime to θ. We then say
that SL(K, D) is an almost-divisible Λ-module. Equivalently, the assertion that
SL(K, D) is almost divisible as a Λ-module means that the Pontryagin dual of
SL(K, D) has no nonzero, pseudonull Λ-submodules. The hypotheses that we
need for this to be so are more stringent than the ones needed to prove the
surjectivity of φL. This is partly because we apply the results concerning sur-
jectivity not just to D but also to the (Λ/Π)-module D[Π], where Π varies over
Specht=1(Λ), the set of prime ideals of Λ of height 1. It is useful for that reason
to keep the assumptions about D and L to a minimum.

One of the hypotheses that we will need in [Gr4] is purely ring-theoretic in
nature. It is a condition which guarantees that D[Π] is divisible as a (Λ/Π)-
module for the prime ideals Π in Specht=1(Λ) and has already played a role in
our previous article [Gr3]. The hypothesis is that R is reflexive as a Λ-module.
We then say that R is a reflexive ring. In the case where R is also assumed to
be a domain, one can equivalently require that R be the intersection of all its
localizations at the prime ideals in Specht=1(R). (One can find an explanation of
this equivalence in [Gr3, Section 2, Part D].) That condition also occurs as part
of the definition of a Krull domain. For example, it is stated as condition (2.b)
on page 116 of Nagata’s book [Nag2]. In the literature, one sometimes finds the
term weakly Krull domain for a domain R satisfying that condition together with
a certain finiteness condition (automatically satisfied if R is Noetherian). The
class of reflexive domains is rather large. For example, if R is integrally closed
or Cohen-Macaulay, then it turns out that R is reflexive. There are important
examples (from Hida theory) where R is not necessarily a domain but is still a
free (and hence reflexive) module over a suitable subring Λ.

The map φL can certainly fail to be surjective. We can regard QL(K, D)
as a discrete Λ-module. We have already mentioned that the Pontryagin dual
of H1(KΣ/K, D) is a finitely generated Λ-module. The same is true for the
local cohomology groups H1(Kv, D) and hence for QL(K, D). For any dis-
crete, cofinitely generated Λ-module A, we define corankΛ(A) to be rankΛ(Â),
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where Â denotes the Pontryagin dual of A. Let sL(K, D), h1(K, D), qL(K, D),
and cL(K, D) denote the Λ-coranks of SL(K, D),H1(KΣ/K, D),QL(K, D), and
coker(φL), respectively. Although the definitions of these objects all involve the
set Σ, we omit it from the notation. In fact, Σ is fixed throughout, except in Sec-
tions 3.3 and 4.5. The following equation relating these coranks is an immediate
consequence of the definitions:

(2) sL(K, D) = h1(K, D) − qL(K, D) + cL(K, D).

In particular, if h1(K, D) < qL(K, D), then cL(K, D) > 0 and φL is far from
surjective. However, φL can fail to be surjective even if cL(K, D) = 0. A classical
theorem of Cassels provides one important illustration of this behavior, which
we discuss briefly now and also in Section 4 with more details.

Suppose that A is an abelian variety defined over K. Let g = dim(A). We
denote the dual abelian variety by B. The classical Selmer group SelA(K) for A

over K is a torsion group. For any prime p, its p-primary subgroup SelA(K)p is
a subgroup of H1(K, D), where D = A[p∞], the group of p-power torsion points
on A. As we explain in Section 4.5, it turns out that SelA(K)p is isomorphic to
SL(K, D), where we take Σ to be a finite set of primes containing the primes over
p and ∞ and the primes of K where A has bad reduction, and the specification
L is defined in the following way. For every prime v ∈ Σ, let

(3) L(Kv, D) = im(κv), where κv : A(Kv) ⊗ (Qp/Zp) −→ H1(Kv,A[p∞])

is the p-power Kummer map for A over Kv . Now A(Kv) ⊗ (Qp/Zp) = 0 if v�p.
Thus, if v ∈ Σ and v�p, then L(Kv, D) = 0. There is also a relatively simple
description of L(Kv, D) for a prime v lying over p in the case where A has good,
ordinary reduction at v. This can be found in [CG, Proposition 4.5] and does
not play a role here. It is the inflation map H1(KΣ/K, D) → H1(K, D) which
identifies SL(K, D) with SelA(K)p.

In terms of our general notation, we are taking R = Λ = Zp and T = Tp(A),
the p-adic Tate module for A. Thus, T is a free Zp-module of rank n = 2g, and
Gal(KΣ/K) acts Zp-linearly on T . The definition of SL(K, D) is the kernel of the
global-to-local map φL. The theorem of Cassels mentioned above is equivalent
to the following assertion about the cokernel of φL. If SelA(K)p is finite, then
coker(φL) is isomorphic to the Pontryagin dual of H0(K,B[p∞]), the p-primary
subgroup of B(K). Thus, if SelA(K)p is finite, then coker(φL) is finite. If we
assume in addition that B(K) has no elements of order p, then φL is surjective.

Returning to the general setting, [Gr3, Proposition 4.3] gives an explicit lower
bound b1(K, D) for h1(K, D), where b1(K, D) is defined in terms of the Λ-ranks
or coranks of various global and local H0’s. This lower bound is derived directly
from the Poitou-Tate duality theorems. One has

h1(K, D) = b1(K, D) + corankΛ

(
X2(K,Σ, D)

)
,
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where X2(K,Σ, D) is as defined earlier. One therefore has an inequality

(4) sL(K, D) ≥ b1(K, D) − qL(K, D).

The main results of this article are based on the assumption that equality holds in
(4). By (2), equality means that h1(K, D) = b1(K, D) and cL(K, D) = 0. We do
not need to recall the precise definition of b1(K, D) here because the assumption
of equality in (4) is equivalent to the assumption that both of the Λ-modules
X2(K,Σ, D) and coker(φL) have corank zero. That assumption is part of the
hypothesis in many of our results.

In general, additional assumptions may be needed to conclude that φL is
surjective. For example, returning to the theorem of Cassels, where Λ = Zp and
D = A[p∞] for an abelian variety A of dimension g, it turns out that b1(K, D)
and qL(K, D) are both equal to [K : Q]g, and so equality holds in (4) if and only
if SelA(K)p is finite. In that case, the surjectivity of φL requires the additional
assumption that H0(K,B[p∞]) = 0. There are some situations where no extra
assumption is needed. Proposition 5.3.1 is an example.

It will become evident that this article relies very much on results proved in
our previous article [Gr3]. The results that we prove here together with results
in [Gr3] in turn play an important role in [Gr4] and [Gr5]. Our objective in all
of these articles is to study basic questions that have arisen naturally in Iwasawa
theory over the years. Our approach is to study these questions from a very
general point of view.

It is a privilege to dedicate this article to Masayoshi Nagata. We want to
mention one specific theorem of Nagata which has already played a role in [Gr2]
and promises to be useful in the future. Suppose that R is a domain and that R

is the integral closure of R in its field of fractions. Theorem 7 in [Nag1] asserts
that if R is a complete Noetherian local ring, then R is finitely generated as an
R-module. Combining this with [Coh, Theorem 7], it follows that R is also a
complete Noetherian local ring. We will have reason to cite these theorems again
in Section 3.4.

The result just described was needed in [Gr2] to formulate a generalization
of the so-called main conjectures of Iwasawa and of Mazur. It provided a way
to associate a characteristic divisor to a Selmer group. This result of Nagata
may also provide a way of gaining additional insight into the kinds of divisors
that can arise from the Selmer groups introduced in [Gr2]. Very little is known
about this. If one has a representation ρ of Gal(KΣ/K) over R, as discussed
above, then one can define a representation σ : Gal(KΣ/K) → GLn(R) simply
be extending scalars. A Selmer group associated to ρ will be an R-module. But
there is then a natural way to associate a Selmer group to σ, and that will be
an R-module. The relationship between those Selmer groups is not understood
at present. We hope that studying this relationship is one step in learning more
about the characteristic divisors of Selmer groups.
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The organization of this article is as follows. Section 3 contains the main
general results concerning the cokernel of φL as well as sufficient conditions for
surjectivity. Those results are based on Section 2, which discusses the structure of
various relevant Λ-modules. Sections 4 and 5 discuss special situations where the
results become more precise. The Tate module of an abelian variety is discussed
in Section 4. One then has R = Λ = Zp, and the Krull dimension of R is 1.
Section 5 concerns what we call a twist deformation associated to an infinite
Galois extension K∞/K such that Gal(K∞/K) ∼= Zm

p for some m ≥ 1. In that
case, R = Λ is the completed group algebra for Gal(K∞/K) over Zp and the
Krull dimension of R is m + 1. The results discussed in Section 5 will be useful
in [Gr5].

2. The structure of certain Λ-modules

Suppose that D is a discrete, cofinitely generated Λ-module and that Gal(KΣ/K)
acts continuously on D. We assume that this action is Λ-linear. Let T ∗ =
Hom(D, μp∞ ), a compact, finitely generated Λ-module. The Λ-modules to be
considered in this section include H1(KΣ/K, T ∗) and its maximal torsion Λ-
submodule H1(KΣ/K, T ∗)Λ-tors. Cohomology groups with values in T ∗ will
always be the continuous cohomology groups, which are defined by requiring
continuity of cocycles. We refer the reader to Chapter 2, [NSW, Section 3] for
the basic properties. For any i ≥ 0, define

Xi(K,Σ, T ∗) = ker
(
Hi(KΣ/K, T ∗) −→

⊕
v∈Σ

Hi(Kv, T ∗)
)
.

Of course, X1(K,Σ, T ∗) is a Λ-submodule of H1(KΣ/K, T ∗).
We will use the global and local duality theorems of Tate and Poitou, extended

from the case of finite Galois modules to direct and inverse limits of finite Galois
modules. Assume that we have fixed a choice of the specification L for D and
Σ, that is, a choice of Λ-submodules L(Kv, D) of H1(Kv, D) for all v ∈ Σ. By
definition, we have a perfect pairing D × T ∗ → μp∞ . Thus, for each prime v of
K, there is a nondegenerate pairing:

(5) H1(Kv, D) × H1(Kv, T ∗) −→ Qp/Zp.

The pairing behaves well with respect to the Λ-module structure on the two
groups. Denoting the pairing by 〈·, · 〉v , it has the property that 〈λα,β〉v =
〈α,λβ〉v for λ ∈ Λ, α ∈ H1(Kv, D), and β ∈ H1(Kv, T ∗). We accordingly say
that the pairing is a Λ-pairing.

To define a useful Selmer group for T ∗, we choose the following specifi-
cation, which we denote by L ∗: For all v ∈ Σ, define L(Kv, T ∗) to be the
orthogonal complement of L(Kv, D) under the pairing (5). Thus, L(Kv, T ∗) and
the quotient QL ∗ (Kv, T ∗) = H1(Kv, T ∗)/L(Kv, T ∗) are compact Λ-modules and
are isomorphic to the Pontryagin duals of the discrete Λ-modules QL(Kv, D) =
H1(Kv, D)/L(Kv, D) and L(Kv, D), respectively. Let P (K, T ∗), L(K, T ∗), and
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QL ∗ (K, T ∗) be defined as the direct sums over all v ∈ Σ of the Λ-modules
H1(Kv, T ∗), L(Kv, T ∗), and QL ∗ (Kv, T ∗), respectively. Thus, we have QL ∗ (K,

T ∗) ∼= P (K, T ∗)/L(K, T ∗). The Selmer group SL(K, D) is the kernel of φL, as
discussed in the introduction. We now define a Selmer group SL ∗ (K, T ∗) to
be the kernel of the following map (which is induced from the restriction maps
GKv → Gal(KΣ/K) for v ∈ Σ):

φL ∗ : H1(KΣ/K, T ∗) −→ QL ∗ (K, T ∗).

This map again is induced by the restriction maps GKv → Gal(KΣ/K) for v ∈ Σ.
All of the cohomology groups and the subgroups mentioned above are Λ-

modules (either finitely or cofinitely generated), and the maps are Λ-module
homomorphisms. In particular, SL ∗ (K, T ∗) is a Λ-submodule of H1(KΣ/K, T ∗).

Section 2.1 below concerns X1(K,Σ, T ∗). In Section 2.2, we study the max-
imal torsion Λ-submodule of H1(KΣ/K, T ∗), especially when it vanishes. Sec-
tion 2.3 concerns the maximal torsion Λ-submodule of SL(K, T ∗). We use the
following notation. For any compact Λ-module X , we let XΛ-tors denote the
maximal Λ-torsion submodule of X . For a discrete Λ-module A, we let AΛ-div

denote the maximal Λ-divisible submodule of A. If θ ∈ Λ, or if I is an ideal
in Λ, then X[θ] denotes the kernel of multiplication by θ and X[I] denotes the
intersection of those kernels over all θ ∈ I . The Λ-submodules A[θ] and A[I] of
A are defined similarly. We say that A is a cotorsion Λ-module if A[θ] = 0 for
some nonzero θ ∈ Λ. Assuming that A is cofinitely generated, A is cotorsion as
a Λ-module if and only if corankΛ(A) = 0.

2.1. The Λ-rank of X1(K,Σ, T ∗)
The Poitou-Tate duality theorems include the following result. There is a perfect
pairing

(6) X1(K,Σ, T ∗) × X2(K,Σ, D) −→ Qp/Zp,

and therefore, the Λ-rank of X1(K,Σ, T ∗) is equal to the Λ-corank of its dual
X2(K,Σ, D). In particular, X1(K,Σ, T ∗) is a torsion Λ-module if and only if
X2(K,Σ, D) is cotorsion as a Λ-module. It is often useful to assume that these
equivalent properties are satisfied. We formulate such a hypothesis in terms of D.

LEO(D)

The Λ-module X2(K,Σ, D) is cotorsion.

LEO(D) is referred to as Hypothesis L in [Gr3, p. 361]. An equivalent statement
is that the Λ-rank of X1(K,Σ, T ∗) is zero.

Under rather mild hypotheses, we now show that X1(K,Σ, T ∗) is a torsion-
free Λ-module. Equivalently, such an assertion means that X2(K,Σ, D) is a
divisible Λ-module. Consequently, LEO(D) then means that X2(K,Σ, D) = 0
and that X1(K,Σ, T ∗) = 0 too.
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PROPOSITION 2.1.1

Assume that D is a divisible Λ-module. Assume also that there is at least one
prime η ∈ Σ such that H0(Kη, T ∗) = 0. Then X1(K,Σ, T ∗) is a torsion-free
Λ-module and X2(K,Σ, D) is a divisible Λ-module.

Proof
The first assumption means that T ∗ is a torsion-free Λ-module. Thus, if θ is a
nonzero element of Λ, then multiplication by θ gives an exact sequence

0 −→ T ∗ θ−→ T ∗ −→ T ∗/θT ∗ −→ 0

from which we obtain the following exact sequence of cohomology groups:

(7) H0(K, T ∗) −→ H0(K, T ∗/θT ∗) −→ H1(KΣ/K, T ∗)[θ] −→ 0.

We have a similar exact sequence for the cohomology groups over Kη . However,
since we are assuming that H0(Kη, T ∗) = 0, it follows that H0(K, T ∗) = 0 too.
Thus, for any nonzero element θ in Λ, the horizontal maps in the following
commutative diagram are isomorphisms:

H0(K, T ∗/θT ∗) H1(K, T ∗)[θ]

H0(Kη, T ∗/θT ∗) H1(Kη, T ∗)[θ]

The first vertical map is injective. Hence, so is the second. As a consequence,
the map

(8) H1(K, T ∗)Λ-tors −→ H1(Kη, T ∗)Λ-tors

is injective. By definition, X1(K,Σ, T ∗)Λ-tors is contained in the kernel of the
above map, and hence must vanish. This shows that X1(K,Σ, T ∗) is indeed a
torsion-free Λ-module. �

REMARK 2.1.2

Theorem 1 in [Gr3] includes a result which is analogous to the above proposition,
although somewhat different. The hypotheses in that theorem are more stringent,
but the conclusion is the stronger statement that X1(K,Σ, T ∗) is reflexive as a
Λ-module. It is possible for X1(K,Σ, T ∗) to have positive Λ-rank. One finds
several examples illustrating this possibility in [Gr3, Section 6, Part D].

It is also possible for X1(K,Σ, T ∗)Λ-tors to be nontrivial. According to
Proposition 2.1.1, this could happen only if H0(Kv, T ∗) has positive Λ-rank for
all v ∈ Σ. As an example when Λ = Z3 and p = 3, one could take T = T3(E)(1)
and Σ = {∞,3,7,31}, where E is the elliptic curve 651E3 in Cremona’s tables.
One has T ∗ = T3(E)(−1). The curve E has split multiplicative reduction at
v = 3,7, and 31. As a consequence, one finds that H0(Qv, T ∗) ∼= Z3 for all v ∈ Σ
and that X1(Q,Σ, T ∗) ∼= Z/3Z. We hope to discuss such examples in the future.
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There are situations where one does expect to have X2(K,Σ, D) = 0. This
statement is equivalent to LEO(D) under the assumptions of Proposition 2.1.1.
One very general conjecture in this direction is stated later, namely, Conjec-
ture 5.2.1. If one makes the additional assumption that p is odd and that
H0(Kv, T ∗) = 0 for all nonarchimedean v ∈ Σ, then one has H2(Kv, D) = 0 for
all v ∈ Σ. One would then have X2(K,Σ, D) = H2(KΣ/K, D), and so LEO(D)
would then mean that H2(KΣ/K, D) = 0. Consider the special case where
Λ = Zp, D = Qp/Zp, and the Galois action on Qp/Zp is trivial. One then
has H2(Kv,Qp/Zp) = 0 for all v, even when p = 2. In fact, LEO(Qp/Zp), or
the equivalent statement that H2(KΣ/K,Qp/Zp) = 0, is a reformulation of the
famous Leopoldt conjecture for K and p. Thus, the more general formulations
(such as Conjecture 5.2.1) are extensions of Leopoldt’s conjecture in a sense and
have often been referred to by the phrase weak Leopoldt conjecture. We refer the
reader to [Per, appendice B] for a discussion of some important special cases.

REMARK 2.1.3

The prime η in Proposition 2.1.1 could be archimedean. Assume that D is a
divisible Λ-module and hence that T ∗ is torsion free. Assume that T ∗ �= 0. Let
F be the field of fractions of Λ. We may suppose that η is a real prime, and
so GKη has order 2. Let ση be a generator. Of course, ση acts on the F -vector
space V ∗ = T ∗ ⊗Λ F . Then H0(Kη, T ∗) = 0 means that 1 is not an eigenvalue of
ση . It follows that H0(Kη, T ∗) = 0 if and only if the characteristic of Λ is not 2
and ση acts on V ∗ as the scalar −1.

If Π is in Specht=1(Λ), then LEO(D[Π]) should be interpreted to mean that
X2(K,Σ, D[Π]) is cotorsion as a (Λ/Π)-module. The following proposition is
sometimes useful because the Krull dimension of the underlying ring is reduced
by 1. The proof uses the following general observation from [Gr3, Remark
2.1.3]. If A is a discrete, cofinitely generated Λ-module and r = corankΛ(A),
then corankΛ/Π(A[Π]) ≥ r for all prime ideals Π of Λ. Furthermore, equality
holds for almost all Π ∈ Specht=1(Λ). The phrase almost all means all but a
finite number.

PROPOSITION 2.1.4

Assume that Λ has Krull dimension ≥ 2. Then LEO(D) is satisfied if and only
if LEO(D[Π]) is satisfied for almost all Π ∈ Specht=1(Λ). Furthermore, if D is
Λ-divisible and H2(KΣ/K, D[Π]) is a cotorsion (Λ/Π)-module for at least one Π
in Specht=1(Λ), then H2(KΣ/K, D) is a cotorsion Λ-module, and hence LEO(D)
is then satisfied.

Proof
Lemma 4.4.1 in [Gr3] states that X2(K,Σ, D[Π]) and X2(K,Σ, D)[Π] have the
same (Λ/Π)-corank for almost all Π ∈ Specht=1(Λ). The general observation
from [Gr3] cited above implies that the (Λ/Π)-corank of X2(K,Σ, D)[Π] is equal
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to the Λ-corank of X2(K,Σ, D) for almost all Π ∈ Specht=1(Λ). The first part
of the proposition follows immediately.

For the second part, let π be a generator of Π. Since D is divisible by π, the
natural map from H2(KΣ/K, D[Π]) to H2(KΣ/K, D)[Π] is surjective. Combining
that fact with the above observation from [Gr3] gives the inequalities

corankΛ

(
H2(KΣ/K, D)

)
≤ corankΛ/Π

(
H2(KΣ/K, D)[Π]

)
≤ corankΛ/Π

(
H2(KΣ/K, D[Π])

)
.

If the last corank is zero, then so is the first, and hence, H2(KΣ/K, D) is indeed
Λ-cotorsion. �

2.2. The torsion Λ-submodule of H1(KΣ/K, T ∗)
We first prove a result concerning the vanishing of the maximal torsion Λ-
submodule of H1(KΣ/K, T ∗). Let m denote the maximal ideal of Λ. Note
that Λ/m ∼= Fp. Thus, D[m] is a finite-dimensional representation space for
Gal(KΣ/K) over Fp.

PROPOSITION 2.2.1

Assume that D is divisible as a Λ-module and that D[m] has no subquotient
isomorphic to μp for the action of GK . Then H1(KΣ/K, T ∗) is torsion free as
a Λ-module.

Proof
Using the exact sequence (7), it suffices to show that H0(K, T ∗/θT ∗) = 0 for
all nonzero θ ∈ Λ. Suppose that j ≥ 1. Proposition 3.1 in [Gr3] implies that
the composition factors in the GK -module D[mj ] are the same as those in the
GK -module D[m], and hence, the second hypothesis implies that μp is not one
of those composition factors. Consequently, none of the composition factors in
T ∗/mj T ∗ is isomorphic to the trivial Galois module Z/pZ. Now T ∗/θT ∗ is
a projective limit of a sequence of finite GK -modules An, each of which is a
quotient of T ∗/mj T ∗ for some value of j. If H0(K, T ∗/θT ∗) �= 0, then we have
H0(K,An) �= 0 for some value of n. Thus, for such n, An has a submodule
isomorphic to the trivial module Z/pZ. This cannot happen, and so we must
indeed have H0(K, T ∗/θT ∗) = 0. �

The torsion Λ-submodule of H1(KΣ/K, T ∗) can vanish even if D[m] has a sub-
quotient isomorphic to μp. Propositions 2.2.5 and 2.2.7 below give some situa-
tions where that is so. They are based on the next proposition, which is itself
a straightforward consequence of (7). For the first part, one just chooses θ to
be a nonzero element in the annihilator of H1(KΣ/K, T ∗)Λ-tors. For the second
part, if H1(KΣ/K, T ∗)Λ-tors �= 0, then at least one irreducible factor π of θ has
the stated property. Note that (7) is valid only under the assumption that D is
a divisible Λ-module.
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PROPOSITION 2.2.2

Suppose that D is divisible as a Λ-module and that H0(K, T ∗) = 0. We have

H1(KΣ/K, T ∗)Λ-tors ∼= H0(K, T ∗/θT ∗)

for some nonzero element θ in Λ. Furthermore, H1(KΣ/K, T ∗)Λ-tors �= 0 if and
only if there exists an irreducible element π in Λ such that H0(K, T ∗/πT ∗) �= 0.

REMARK 2.2.3

By definition, we have T ∗/πT ∗ ∼= Hom(D[π], μp∞ ). Hence, H0(K, T ∗/πT ∗) �= 0
means that there exists a nontrivial GK -homomorphism from D[π] to μp∞ .

We assume now that the discrete, cofinitely generated Λ-module D is actually
cofree. This means that T ∗ is a free Λ-module of finite rank. This assumption
is satisfied in a number of interesting cases. For example, it holds if T is a free
R-module, as in the introduction, and R is a free Λ-module. If R is a domain,
then R is free as a Λ-module if and only if R is a Cohen-Macaulay ring (see
[BH, Proposition 2.2.11]). However, if R is reflexive and its Krull dimension is
at least 3, then R may conceivably fail to be free as a Λ-module. Cofreeness of
D has some useful implications, as we now discuss. The first is contained in the
following result.

PROPOSITION 2.2.4

Suppose that D is cofree as a Λ-module and that H0(K, T ∗) = 0. Then the Λ-module
H1(KΣ/K, T ∗) has no nonzero, pseudonull Λ-submodules.

The conclusion means that the associated prime ideals for the torsion Λ-module
H1(KΣ/K, T ∗)Λ-tors are of height 1. That is, its support is pure of codimension 1.

Proof
Suppose to the contrary that there exists a nonzero pseudonull Λ-submodule Z of
H1(KΣ/K, T ∗). It is clear that Λ must have Krull dimension at least 2. Accord-
ing to [Gr3, Corollary 2.5.1], the annihilator of Z contains infinitely many prime
ideals Π ∈ Specht=1(Λ). Choose any such Π. Since Λ is a unique factorization
domain, Π must be principal. Let π be a generator. As in Proposition 2.2.2, Z is
isomorphic to a Λ-submodule of H0(K, T ∗/πT ∗). Now Λ/Π has no nonzero,
pseudonull Λ-submodules. Hence, the same is true for the free (Λ/Π)-module
T ∗/πT ∗ and therefore also for the submodule H0(K, T ∗/πT ∗). �

PROPOSITION 2.2.5

Suppose that D is cofree as a Λ-module and that D[m] has no quotient isomorphic
to μp for the action of GK . Then H1(KΣ/K, T ∗) is torsion free as a Λ-module.
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Proof
By definition, we have T ∗/mT ∗ ∼= Hom(D[m], μp). The assumption about μp

means that H0(K, T ∗/mT ∗) = 0. The stated result follows from Proposition 2.2.2
and the following lemma. One applies the lemma to first see that H0(K, T ∗) = 0
and then to see that H0(K, T ∗/πT ∗) = 0 for all irreducible elements π in Λ. �

LEMMA 2.2.6

Suppose that T ∗ is free as a Λ-module. Suppose that Π1 and Π2 are prime ideals
in Λ such that Π1 ⊆ Π2. If H0(K, T ∗/Π2T ∗) = 0, then H0(K, T ∗/Π1T ∗) = 0.

Proof
The action of Gal(KΣ/K) on T ∗ factors through a quotient group which is
topologically finitely generated. To see this, note that T ∗ is a free Λ-module
since D is assumed to be cofree. After choosing a basis, the Galois action on T ∗

is given by a continuous homomorphism

σ : Gal(KΣ/K) −→ GLd(Λ),

where d = rankΛ(T ∗). The Galois action on T ∗/mT ∗ is given by the reduction
of σ modulo m, which factors through Gal(L/K) for some finite Galois extension
L of K. One can verify that the kernel of the map GLd(Λ) → GLd(Fp) is a pro-p
group. Hence, σ factors through Gal(M/K), where M is the maximal pro-p
extension of L contained in KΣ. However, the Burnside basis theorem shows
that Gal(M/L) is topologically finitely generated and hence so is Gal(M/K).

Thus, we can find a set {g1, . . . , gt} in GK such that, if X is any quotient of
the GK -module T ∗, then H0(K,X) coincides with the kernel of the map

βX : X −→ Xt, defined by βX(x) =
(
(g1 − 1)x, . . . , (gt − 1)x

)
for all x ∈ X . The map βT ∗ is given by a (td × d)-matrix B with entries in Λ. The
kernel of βT ∗ has Λ-rank equal to d − rank(B). More generally, for any prime
ideal Π of Λ, let BΠ denote the (td × d)-matrix with entries in Λ/Π obtained by
reducing B modulo Π. If X = T ∗/ΠT ∗, then the kernel of βX has (Λ/Π)-rank
equal to d − rank(BΠ). The rank r of a matrix over a domain is the largest
integer for which at least one (r × r)-minor has a nonzero determinant. That
description implies that

rank(BΠ2) ≤ rank(BΠ1).

Now T ∗/Π1T ∗ is free of rank n as a (Λ/Π1)-module. If H0(K, T ∗/Π1T ∗) �= 0,
then BΠ1 has rank ≤ n − 1. Hence, the same inequality is true for the rank
of BΠ2 , and therefore we have H0(K, T ∗/Π2T ∗) �= 0. �

The following is a more refined result which is useful if D[m] does have a quotient
isomorphic to μp. As in the introduction, we denote the Krull dimension of Λ
by m + 1. We let Specht=m(Λ) denote the set of prime ideals of Λ of height
m. Note that if p is in Specht=m(Λ), then Λ/p is a ring of Krull dimension 1
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and hence is either a finite integral extension of Zp if Λ/p has characteristic
zero, or a finite integral extension of a formal power series ring Fp[[x]] in one
variable if Λ/p has characteristic p. If D is cofree as a Λ-module, then T ∗

is free. Thus, for any prime ideal Π of Λ, T ∗/ΠT ∗ is a free (Λ/Π)-module.
Therefore, the (Λ/Π)-submodule H0(K, T ∗/ΠT ∗) either vanishes or has positive
rank.

PROPOSITION 2.2.7

Suppose that T ∗ is free as a Λ-module. Assume that the Krull dimension of Λ is
m+1, where m ≥ 1. If m = 1, assume that H0(K, T ∗/pT ∗) vanishes for all p in
Specht=1(Λ). If m ≥ 2, assume that H0(K, T ∗/pT ∗) vanishes for all but finitely
many p in Specht=m(Λ). Then H1(KΣ/K, T ∗) is torsion free as a Λ-module.

Proof
The first assumption implies that D is Λ-cofree and hence certainly Λ-divisible.
By Lemma 2.2.6, the other assumptions imply that H0(K, T ∗) = 0. Therefore,
according to Proposition 2.2.2, it suffices to show that H0(K, T ∗/ΠT ∗) = 0 for
all Π in Specht=1(Λ). If m = 1, this vanishing statement is true by assumption.
If m ≥ 2, then every prime ideal Π of Λ of height 1 is contained in infinitely many
prime ideals p of height m, as follows from the lemma below. Therefore, in that
case, the assumption implies that H0(K, T ∗/pT ∗) = 0 for at least one such p,
and Lemma 2.2.6 then implies the vanishing of H0(K, T ∗/ΠT ∗). �

LEMMA 2.2.8

Suppose that Λ has Krull dimension m+1, where m ≥ 2. If Π is a prime ideal of
height less than m, then there exist infinitely many prime ideals p ∈ Specht=m(Λ)
such that Π ⊂ p.

Proof
There exists a prime ideal containing Π of height m − 1. Thus, we can assume
that Π itself has height m − 1. Consider Λ/Π, a complete Noetherian local
domain of dimension 2. It is a finite integral extension of a subring Λ′ which
is a formal power series ring over Zp or Fp of Krull dimension 2. Thus, Λ′ has
infinitely many prime ideals of height 1. It follows that the same is true for Λ/Π.
The assertion in the lemma follows immediately. �

The next two propositions concern the case m = 1. The first concerns a global
cohomology group. The second result is local, and its proof is virtually identical.

PROPOSITION 2.2.9

Suppose that Λ has Krull dimension 2, that T ∗ is free as a Λ-module, and that
H0(K, T ∗) = 0. Then H1(KΣ/K, T ∗)Λ-tors �= 0 if and only if there exists at least
one Π ∈ Specht=1(Λ) with the following property: either D[Π] has a quotient



866 Ralph Greenberg

isomorphic to μp∞ as a GK -module or D[Π] has infinitely many distinct quotients
isomorphic to μp.

Proof
According to Proposition 2.2.2 and Remark 2.2.3, H1(KΣ/K, T ∗)Λ-tors �= 0 if
and only if HomGK

(D[Π], μp∞ ) �= 0 for some Π ∈ Specht=1(Λ). It is clear that
H0(K, T ∗/ΠT ∗) is a torsion-free module over Λ/Π, a domain of Krull dimen-
sion 1. If Λ/Π has characteristic zero, then it follows that H0(K, T ∗/ΠT ∗) is
a torsion-free Zp-module, and hence is either trivial or has positive Zp-rank. If
Λ/Π has characteristic p, then it follows that H0(K, T ∗/ΠT ∗) is trivial or has
infinite Fp-dimension. Thus, HomGK

(D[Π], μp∞ ) �= 0 means that D[Π] has one
of the two stated properties. �

PROPOSITION 2.2.10

Suppose that Λ has Krull dimension 2, that T ∗ is free as a Λ-module, that v ∈ Σ,
and that H0(Kv, T ∗) = 0. Then H1(Kv, T ∗)Λ-tors �= 0 if and only if there exists
at least one Π ∈ Specht=1(Λ) with the following property: either D[Π] has a
quotient isomorphic to μp∞ as a GKv -module or D[Π] has infinitely many distinct
quotients isomorphic to μp.

2.3. The vanishing of SL ∗ (K, T ∗)Λ-tors
We first show that the vanishing of SL ∗ (K, T ∗)Λ-tors and of H1(KΣ/K, T ∗)Λ-tors
are equivalent under a certain assumption.

PROPOSITION 2.3.1

Assume that L(Kv, D) ⊆ H1(Kv, D)Λ-div for all v ∈ Σ. Then

SL ∗ (K, T ∗)Λ-tors = H1(KΣ/K, T ∗)Λ-tors.

In particular, this equality is true if L(Kv, D) is a divisible Λ-module for all
v ∈ Σ.

Proof
The assumption means that H1(Kv, T ∗)Λ-tors ⊆ L(Kv, T ∗) for all v ∈ Σ. Obvi-
ously, we have SL ∗ (K, T ∗)Λ-tors ⊆ H1(KΣ/K, T ∗)Λ-tors. The opposite inclu-
sion follows by noting that the image of any element of H1(KΣ/K, T ∗)Λ-tors
in H1(Kv, T ∗) must be in H1(Kv, T ∗)Λ-tors and hence in L(Kv, T ∗). �

PROPOSITION 2.3.2

Assume that D is divisible as a Λ-module. Assume also that there exists a prime
η ∈ Σ with the following two properties:

(i) H0(Kη, T ∗) = 0, and
(ii) QL(Kη, D) is divisible as a Λ-module.

Then SL ∗ (K, T ∗)Λ-tors = 0.
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Proof
Only the local condition at η occurring in the definition of SL ∗ (K, T ∗) is needed.
Consider the maps

H1(K, T ∗)Λ-tors −→ H1(Kη, T ∗)Λ-tors −→ H1(Kη, T ∗)/L(Kη, T ∗).

Just as in the proof of Proposition 2.1.1, assumption (i) implies that the first
map is injective. It is the map (8). Now L(Kη, T ∗) is the Pontryagin dual of
the divisible Λ-module QL(Kη, D) and is therefore a torsion-free Λ-submodule
of H1(Kη, T ∗). It follows that the second map is also injective. By definition,
any element of SL ∗ (K, T ∗)Λ-tors has trivial image under the composite of those
maps and therefore must be trivial. �

REMARK 2.3.3

Assumption (ii) in Proposition 2.3.2 is obviously satisfied if H1(Kη, D) is a divis-
ible Λ-module, but is a significantly less restrictive property in general. However,
the two properties are actually equivalent if one makes the first assumption in
Proposition 2.3.1 for v = η. To explain this, suppose that v is any prime of K.
Then H1(Kv, D)/H1(Kv, D)Λ-div is a cotorsion Λ-module. It follows that the
image of H1(Kv, D)Λ-div in QL(Kv, D) is precisely QL(Kv, D)Λ-div. Therefore,
QL(Kv, D) is a divisible Λ-module if and only if

L(Kv, D)H1(Kv, D)Λ-div = H1(Kv, D).

It follows that if QL(Kv, D) is a divisible Λ-module and if we assume the inclu-
sion L(Kv, D) ⊆ H1(Kv, D)Λ-div, then H1(Kv, D) is a divisible Λ-module. The
converse is clearly true too.

3. The cokernel of φL

Section 3.1 describes coker(φL) in terms of SL ∗ (K, T ∗) and X1(K,Σ, T ∗). This
is a direct consequence of the Poitou-Tate duality theorems and the basis for our
results concerning coker(φL). We apply this description together with results
from Section 2 to obtain some rather general sufficient conditions for φL to be
surjective. In Section 3.3, under rather restrictive assumptions, we discuss what
happens if Σ is allowed to vary.

3.1. Expressing coker(φL) in terms of Selmer groups for T ∗

For a given specification L, we have defined Λ-submodules L(K, D) and L(K, T ∗)
of P (K, D) and P (K, T ∗), respectively. Furthermore, they are orthogonal com-
plements of each other under the pairing

(9) P (K, D) × P (K, T ∗) −→ Qp/Zp

which is defined by the local pairings (5). It is a nondegenerate Λ-pairing. We
define

G(K, D) = im
(
H1(KΣ/K, D) → P (K, D)

)
,

(10)
G(K, T ∗) = im

(
H1(KΣ/K, T ∗) → P (K, T ∗)

)
.
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For brevity, we denote G(K, D), P (K, D), and L(K, D) by G,P , and L, respec-
tively. Similarly, G(K, T ∗), P (K, T ∗), and L(K, T ∗) are denoted by G∗, P ∗,
and L∗. Thus, G and L are Λ-submodules of the discrete Λ-module P , while G∗

and L∗ are Λ-submodules of the compact Λ-module P ∗. Under the pairing (9),
the submodules G and G∗ are orthogonal complements of each other, as are L

and L∗.
By definition, the cokernel of φL is isomorphic to P/GL. The pairing (9)

shows that its Pontryagin dual is isomorphic to G∗ ∩ L∗. It is clear from the
definition that G∗ ∩ L∗ is the image of SL ∗ (K, T ∗) under the second map in (10).
Denoting the kernel of that map by X1(K,Σ, T ∗), we obtain the following result
concerning the cokernel of φL.

PROPOSITION 3.1.1

With the above notation and assumptions, we have the following Λ-module iso-
morphism for the Pontryagin dual of coker(φL):

̂coker(φL) ∼= SL ∗ (K, T ∗)/X1(K,Σ, T ∗).

In particular, if SL ∗ (K, T ∗) = 0, then φL is surjective.

The argument gives an isomorphism of Zp-modules if one just assumes that D
is a discrete, p-primary abelian group with a continuous action of Gal(KΣ/K).

REMARK 3.1.2

It follows that coker(φL) is a cotorsion Λ-module if and only if SL ∗ (K, T ∗) and
X1(K,Σ, T ∗) have the same ranks as Λ-modules. If LEO(D) is satisfied, then
coker(φL) is cotorsion as a Λ-module if and only if SL ∗ (K, T ∗) is a torsion Λ-
module.

REMARK 3.1.3

Propositions 2.2.4 and 3.1.1 have the following consequence concerning coker(φL).
Suppose that D is Λ-cofree, that H0(K, T ∗) = 0, and that X1(K,Σ, T ∗) = 0.
Then ̂coker(φL)Λ-tors is isomorphic to a submodule of H1(KΣ/K, T ∗)Λ-tors. There-
fore, ̂coker(φL) has no nonzero, pseudonull Λ-submodules. That is, coker(φL) is
an almost-divisible Λ-module.

3.2. Surjectivity of φL
We can now give sufficient conditions for the surjectivity of φL. However, we first
point out that Proposition 3.1.1 itself gives such a sufficient condition. If one
assumes that D is a cofinitely generated Λ-module, that LEO(D) is satisfied, that
coker(φL) is a cotorsion Λ-module, and that H1(KΣ/K, T ∗) is torsion free as a
Λ-module, then it clearly follows that coker(φL) = 0. Nevertheless, the following
results often turn out to be useful.

PROPOSITION 3.2.1

Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that
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coker(φL) is a cotorsion Λ-module. Then φL is surjective if at least one of the
following assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to μp for the action of GK .
(b) D is a cofree Λ-module, and D[m] has no quotient isomorphic to μp for

the action of GK .
(c) There is a prime η ∈ Σ satisfying properties (i) and (ii) in Proposi-

tion 2.3.2.

Proof
As discussed in Section 2.1, LEO(D) implies that X1(K,Σ, T ∗) is a torsion Λ-
module. By Proposition 3.1.1 and the assumption about the cokernel of φL, it
follows that SL ∗ (K, T ∗) is a torsion Λ-module. One can use Proposition 2.2.1 if
assumption (a) is satisfied to conclude that SL ∗ (K, T ∗) = 0. If (b) is satisfied,
then Proposition 2.2.5 gives that conclusion. On the other hand, if assumption
(c) is satisfied, then Proposition 2.3.2 implies that SL ∗ (K, T ∗) vanishes. In all
three cases, Proposition 3.1.1 implies that coker(φL) = 0. �

REMARK 3.2.2

Assumption (a) in Proposition 3.2.1 is satisfied in many interesting situations.
As an example, suppose that ρ is a Galois representation of degree n over R as
in the introduction, that n ≥ 2, and that the residual representation ρ̃ giving the
action of GK on T /MT is irreducible over the finite field R/M. Regarding ρ̃ as
a representation space for GK over Λ/m = Fp, all of the irreducible constituents
are conjugate over Fp and of dimension divisible by n. Hence, the Galois module
μp cannot be a subquotient. Now ρ̃ also gives the action of GK on D[M]. Thus,
no subquotient of D[M] is isomorphic to μp. According to [Gr3, Proposition 3.8],
the irreducible constituents of the (Λ/m)-representation spaces D[m] and D[M]
for GK are the same (although with possibly different multiplicities). It therefore
follows that no subquotient of D[m] is isomorphic to μp.

Concerning assumption (b), one useful remark is that D[m] has a quotient
isomorphic to μp if and only if D[M] has such a quotient. To see this, note
first that the intersection of the kernels of all GK -equivariant homomorphisms
from D[m] to μp is an R-submodule of D[m]. Thus, HomGK

(D[m], μp) �= 0 if
and only if HomGK

(D[m]/MD[m], μp) �= 0. Now one can regard both D[M] and
D[m]/MD[m] as representation spaces for GK over R/M. The first is isomor-
phic to ρ̃. As we explain below, the second is isomorphic to ρ̃ t, where t is
the dimension of R̂[m]/MR̂[m] as an R/M-vector space. Equivalently, we have
t = dimR/M((R/mR)[M]). Regarding D[M] and D[m]/MD[m] as representation
spaces for GK over Λ/m = Fp, the second is isomorphic to a direct sum of t

copies of the first, and so the above remark then follows.
Now, note that if a ∈ R, then multiplication by a gives an R-endomorphism

of R̂ and the induced action on R̂[M] is simply multiplication by the reduction
of a modulo M. The induced action of a on R̂[m]/MR̂[m] is also multiplication
by the reduction of a modulo M on that t-dimensional vector space over RM.
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Now if g ∈ GK , then ρ(g) is an (n × n)-matrix Ag over R. The action of ρ(g) on
D = R̂n is multiplication by Ag . The action of ρ(g) on D[M] = R̂n is given by the
reduction of Ag modulo M. The action of ρ(g) on D[m] = R̂[m]n is given by the
reduction of that matrix modulo mR. The action of ρ(g) on D[m]/MD[m] is given
by t copies of the reduction of Ag modulo M. Thus, we do have D[m]/MD[m]
isomorphic to ρ̃ t.

COROLLARY 3.2.3

Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that
coker(φL) is a cotorsion Λ-module. Suppose that Σ0 ⊂ Σ and that there exists a
nonarchimedean prime η ∈ Σ0 such that H0(Kη, T ∗) = 0. Then the map

φL,Σ0 : H1(KΣ/K, D) −→
∏

v∈Σ−Σ0

QL(Kv, D)

is surjective.

Proof
Denoting φL by φ and φL,Σ0 by φ′, it is clear that coker(φ′) is a quotient of
coker(φ) and hence is a cotorsion Λ-module. That is the assumption we actually
need in this proof. If one defines a local specification L ′ by letting

L′(Kv, D) = H1(Kv, D) for v ∈ Σ0, L′(Kv, D) = L(Kv, D) for v ∈ Σ − Σ0,

then φ′ is just the map φL ′ . Note that QL ′ (Kη, D) = 0. The assumptions in
Proposition 3.2.1(c) are satisfied for the specification L ′. It therefore follows
that φ′ is indeed surjective. �

REMARK 3.2.4

The kernel of φL,Σ0 = φL ′ is SL ′ (K, D), which one can think of as a nonprimitive
Selmer group SΣ0

L (K, D). It is defined just as SL(K, D), but one omits the local
conditions for the specification L corresponding to the primes v ∈ Σ0. Of course,
we have the obvious inclusion SL(K, D) ⊆ SΣ0(K, D), and the corresponding quo-
tient SΣ0

L (K, D)/SL(K, D) is isomorphic to a Λ-submodule of
∏

v∈Σ0
QL(Kv, D).

If φL is itself surjective, then one has an isomorphism

SΣ0
L (K, D)/SL(K, D) ∼=

∏
v∈Σ0

QL(Kv, D).

This provides a useful way to study the structure of SΣ0
L (K, D)/SL(K, D).

The following results follow immediately from Corollary 3.2.3. One just takes
Σ0 = {η}.

COROLLARY 3.2.5

Under the assumptions of Corollary 3.2.3, the natural map from QL(Kη, D) to
coker(φL) is surjective.
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COROLLARY 3.2.6

Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that η

is a nonarchimedean prime in Σ such that H0(Kη, T ∗) = 0. Then the map

H1(KΣ/K, D) −→
∏

v∈Σ− {η}
H1(Kv, D)/H1(Kv, D)Λ-div

is surjective. The kernel of that map contains H1(KΣ/K, D)Λ-div.

This last corollary is an improved version of [Gr3, Proposition 6.11]. It follows
that

(11) H1(KΣ/K, D)/H1(KΣ/K, D)Λ-div

has a certain quotient Λ-module involving only local cohomology groups. Propo-
sition 2.2.10 describes when H1(Kv, T ∗)Λ-tors is nontrivial. One can often deter-
mine that Λ-module precisely. By (5), one then obtains equivalent statements
about its Pontryagin dual H1(Kv, D)/H1(Kv, D)Λ-div. One then obtains suffi-
cient conditions for (11) to be nontrivial and some information about its structure
as a Λ-module.

REMARK 3.2.7

Suppose that L1 and L2 are specifications for D and Σ. For i ∈ {1,2}, let
Li(Kv, D) be the Λ-submodule of H1(Kv, D) for the specification Li. We will
write L1 ⊆ L2 if we have L1(Kv, D) ⊆ L2(Kv, D) for all v ∈ Σ. It is then obvious
that coker(φL2) is a quotient of coker(φL1) as a Λ-module. Thus, if coker(φL1)
is Λ-cotorsion, then so is coker(φL2). The converse is clearly true if the quotient
L2(Kv, D)/L1(Kv, D) is Λ-cotorsion for all v ∈ Σ. In particular, if L is a given
specification for D and Σ, we can define a new specification Ldiv by replacing
L(Kv, D) by L(Kv, D)Λ-div for all v ∈ Σ. With this notation, coker(φL) is Λ-
cotorsion if and only if coker(φLdiv) is Λ-cotorsion. Also, if coker(φLdiv) = 0,
then coker(φL) = 0 too. The converse of that statement is not true in general.

3.3. Varying Σ
We now discuss the dependence of the kernel and cokernel of φL on the choice of
Σ under certain restrictive assumptions. We let Σmin denote the set consisting of
primes v of K such that either v|p or v is archimedean or the inertia subgroup of
GKv acts nontrivially on T . We assume that L(Kv, D) has been defined in some
way for all v ∈ Σmin, and call the corresponding specification Lmin. For v /∈ Σmin,
we assume that L(Kv, D) = 0. Furthermore, we make the following assumption.

HYPOTHESIS 3.3.1

H0(Kv, D) is a cotorsion Λ-module for all v /∈ Σmin.

Assume that v /∈ Σmin. By definition, the action of GKv on D is unrami-
fied. Let H1

unr(Kv, D) denote H1(Kunr
v /Kv, D), the kernel of the restriction

map H1(Kv, D) → H1(Kunr
v , D)). It is straightforward to show that H0(Kv, D)



872 Ralph Greenberg

and H1
unr(Kv, D) have the same Λ-corank. If one assumes that D is a divis-

ible Λ-module, then one finds that H1
unr(Kv, D) vanishes if H0(Kv, D) is Λ-

cotorsion. Thus, assuming that D is Λ-divisible, Hypothesis 3.3.1 means that
H1

unr(Kv, D) = 0 for all v /∈ Σmin.
Suppose that Σ1 and Σ2 are finite sets of primes of K, both containing

Σmin. Assume also that Σ1 ⊆ Σ2. The definition of L(Kv, D) described above
gives specifications L1 and L2 for the sets Σ1 and Σ2. Note that since the action
of GK on D factors through Gal(KΣ1/K), we have

H1(KΣ2/KΣ1 , D) = Hom
(
Gal(KΣ2/KΣ1), D

)
.

We assume that Hypothesis 3.3.1 is satisfied. Since the inertia subgroups of
Gal(KΣ2/KΣ1) generate a dense subgroup, it follows that we have an exact
sequence

(12) 0 −→ H1(KΣ1/K, D) −→ H1(KΣ2/K, D)
β−→

⊕
v∈Σ2−Σ1

H1(Kv, D).

We then obtain the following commutative diagram:

0 H1(KΣ1/K, D) H1(KΣ2/K, D) H1(KΣ2/K, D)/H1(KΣ1/K, D) 0

0 QL1 (K, D) QL2 (K, D) QL2(K, D)/QL1 (K, D) 0

where the rows are exact, the first two vertical maps are φL1 and φL2 , respec-
tively, and the third map is induced by the global-to-local map β.

The exactness of (12) implies the injectivity of the third vertical map. Apply-
ing the snake lemma to the above commutative diagram gives us the following
proposition.

PROPOSITION 3.3.2

Assume that D is a divisible Λ-module, that Hypothesis 3.3.1 is satisfied, that
L(Kv, D) = 0 for all v /∈ Σmin, and that Σ1 ⊆ Σ2 are finite sets of primes of K

containing Σmin. Then the maps

ker(φL1) −→ ker(φL2), coker(φL1) −→ coker(φL2)

are both injective. Furthermore, the first map is also surjective, and the cokernel
of the second map is isomorphic to coker(β).

One can weaken the hypotheses somewhat. It suffices to make the assumption
that L(Kv, D) = 0 and that H0(Kv, D) is Λ-cotorsion just for the primes v in
Σ2 − Σ1.

One can regard the map β as the map φM2 , where M2 is the following
specification for Σ2:

M2(Kv, D) = H1(Kv, D) for v ∈ Σ1, M2(Kv, D) = 0 for v ∈ Σ2 − Σ1.
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Since ker(φM2) = H1(KΣ1/K, D), the third vertical map in the above diagram
is injective. Its cokernel is precisely the cokernel of φM2 . We can examine
coker(φM2) by using Proposition 3.1.1. Note that M2(Kv, D) = H1

unr(Kv, D) for
v ∈ Σ2 − Σ1. Its orthogonal complement M ∗

2 (Kv, T ∗) is H1
unr(Kv, T ∗). Therefore,

just as for (12), we have an exact sequence

(13) 0 −→ H1(KΣ1/K, T ∗) −→ H1(KΣ2/K, T ∗) −→
⊕

v∈Σ2−Σ1

H1(Kv, T ∗).

For v ∈ Σ1, we have M ∗
2 (Kv, T ∗) = 0. It follows that the corresponding Selmer

group SM2(K, T ∗) is isomorphic to the image of X1(K,Σ1, T ∗) under the infla-
tion map in (13) and that

̂coker(β) = ̂coker(φM2) ∼=X1(K,Σ1, T ∗)/X1(K,Σ2, T ∗).

In particular, if we are in a situation where X1(K,Σ1, T ∗) = 0, then it follows
that coker(β) = 0.

The above observations and Proposition 3.3.2 have the following useful con-
sequence.

PROPOSITION 3.3.3

Assume that D is a divisible Λ-module and that hypothesis 3.3.1 is satisfied.
Consider the following global-to-local map:

ψ : H1(K, D) −→
( ⊕

v∈Σmin

QL(Kv, D)
)

⊕
( ⊕

v/∈Σmin

H1(Kv, D)
)
.

Let Σ be a finite set of primes of K containing Σmin, and let L be the correspond-
ing specification, as defined above. Then ker(ψ) ∼= ker(φL). Furthermore, if one
assumes in addition that X1(K,Σmin, T ∗) vanishes, then coker(ψ) ∼= coker(φL).

Note that any element of H1(K, D) is unramified at all but finitely many primes
v of K. Since we are assuming Hypothesis 3.3.1, it follows that the image of ψ

is indeed contained in the direct sum.

Proof
The assumption that X1(K,Σmin, T ∗) vanishes implies that X1(K,Σ′, T ∗) also
vanishes for any finite set Σ′ containing Σmin. If Σ1 ⊆ Σ2 are two such sets,
then the fact that coker(β) = 0 and Proposition 3.3.2 imply that the second
map in Proposition 3.3.2 is an isomorphism. Let Σ′ vary over all finite sets
of primes of K containing Σ, ordered by inclusion. It follows that coker(φL) is
isomorphic to the direct limit of these cokernels. But that direct limit is precisely
coker(ψ), and so the stated isomorphism for the cokernels follows. Similarly, the
stated isomorphism for the kernels follows from the fact that the first map in
Proposition 3.3.2 is an isomorphism. �
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Although we do not pursue this topic further, one can study what happens
if X1(K,Σmin, T ∗) is nontrivial. A useful tool would be the analogue of Propo-
sition 3.1.1 when the roles of D and T ∗ are reversed. However, in situations
that come up naturally in Iwasawa theory, if the Krull dimension of Λ is at
least 2, then one generally expects X1(K,Σmin, T ∗) to vanish (although excep-
tions can be constructed). When Λ has Krull dimension 1, it is not so uncommon
for X1(K,Σmin, T ∗) to be nontrivial and even to have positive Λ-rank. This issue
is discussed in some detail in [Gr3, Section 6, Part D]. We have some additional
comments when Λ = Zp in the next section, where we discuss the p-adic Tate
module for an abelian variety.

3.4. Examples from Hida theory
Hida’s theory of families of ordinary modular forms provides examples of Galois
representations ρ of rank n = 2 over various complete Noetherian local rings R.
We refer the reader to [Hid], [EPW], and [Och] for a discussion of these repre-
sentations. In these examples, there is a canonical subring Λ of R. Its Krull
dimension is either 2 (the one-variable case) or 3 (the two-variable case). All
of these rings R are constructed somehow from Hida’s universal ordinary Hecke
algebra for a fixed level (or levels, as in [EPW]). These rings are not necessarily
domains. However, one may replace R by R/a, where a is a minimal prime ideal
of R, obtaining a domain, and ρ by its reduction modulo a. Even if R is already a
domain, one can replace R by various possibly larger rings in its field of fractions
K, for example, its reflexive hull as a Λ-module or its integral closure in K. Both
of those domains are also finitely generated as Λ-modules. This is clear for the
reflexive hull. For the integral closure, this assertion follows from the theorem
of Nagata mentioned in the introduction. In either case, [Coh, Theorem 7] then
implies that the new ring is again a complete Noetherian local ring. Also, the
residue field is still finite. One obtains a representation over the new ring from
ρ by extending scalars.

The residual representation ρ̃ is 2-dimensional over the residue field of R.
We assume that ρ̃ is irreducible. Proposition 2.2.1 and Remark 3.2.2 then imply
that H1(KΣ/K, T ∗)Λ-tors vanishes. Suppose that L is a specification for ρ and Σ.
Proposition 3.2.1(a) implies that φL is surjective if one makes the assumption
that LEO(D) is satisfied and that coker(φL) is Λ-cotorsion.

Let r = rankΛ(R). The discrete Galois module D has Λ-corank 2r. There is a
natural specification L in this situation. One can find a description of L in [Gr2]
and also in [Och] with more detail. Theorem 3.10 in [Och] gives the surjectivity
of φL, except for one case where the Selmer group SL(K, D) may fail to be Λ-
cotorsion. Ochiai refers to this as the diagonal case. Roughly speaking, in the
diagonal case, SL(K, D) may turn out to have positive Λ-corank if a certain root
number is −1. In that situation, coker(φL) would also turn out to have positive
Λ-corank. We exclude this case in the rest of this discussion.

For all the examples mentioned above, apart from the diagonal case, one finds
that qL(K, D) = r. For the quantity b1(K, D) mentioned in the introduction, one
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also finds that b1(K, D) = r. One verifies both of those assertions by a nontrivial
specialization argument, reducing to a study of the 2-dimensional representations
associated to modular forms of varying weight. Furthermore, by using theorems
of Kato and Rohrlich, one shows that SL(K, D) is a cotorsion Λ-module. This
assertion is contained in [Och, Theorem 3, Proposition 3.4]. One therefore has
equality in (4). It follows that LEO(D) is satisfied and that coker(φL) is Λ-
cotorsion. Consequently, under the assumption that ρ̃ is irreducible, we can
conclude that φL is surjective.

4. The Tate module of an abelian variety

Assume that A is an abelian variety of dimension g defined over K. Let p be any
prime. We illustrate the results of Sections 2 and 3 in the case where R = Λ = Zp

and T = Tp(A). Thus, D = A[p∞], the group of p-power torsion points on A.
We can take Σ to be any finite set of primes of K containing the primes lying
over p and ∞ and the primes where A has bad reduction. The minimal such
set is denoted by Σmin, just as in Section 3.3. If we choose a Zp-module basis
for T , then we can take ρ : Gal(KΣ/K) → GL2g(Zp) to be the homomorphism
giving the natural action of Gal(KΣ/K) on T . Note also that the Weil pairing
shows that T ∗ ∼= Tp(B), where B is the dual abelian variety for A. The results
in Section 3 provide a proof of a well-known theorem of Cassels, as we discuss in
Section 4.5.

4.1. Various ranks and coranks
We first determine the Zp-corank of QL(K, D). As in the introduction, the local
specification L is defined as follows. For each v ∈ Σ, let L(Kv,D) be the image
of the local Kummer map κv . Thus, L(Kv,D) is a divisible Zp-module for all
v ∈ Σ. In fact, for v�p, H1(Kv,D) is a finite group and we have L(Kv,D) = 0.
This is true even if v is archimedean. On the other hand, if v|p, then it is
known that A(Qv) contains a subgroup of finite index which is a free Zp-module
of rank g[Kv : Qp]. Therefore, A(Qv) ⊗ (Qp/Zp) is a cofree Zp-module with
corank g[Kv : Qp]. Since κv is injective, it follows that L(Kv,D) has the same
Zp-corank.

Now H1(Kv, D) is finite if v�p and has Zp-corank equal to 2[Kv : Qp]g if v|p.
These facts are consequences of the formula for the local Euler-Poincaré char-
acteristic for the GQv -module D (which involves the Zp-coranks of Hi(Kv, D),
where 0 ≤ i ≤ 2). It then follows that the Zp-corank of QL(Kv, D) is zero for
v�p and is equal to g[Kv : Qp] for v|p. Summing over all v ∈ Σ, we see that the
Zp-corank of QL(K,D) is [K : Q]g, as stated in the introduction. It was denoted
there by qL(K, D).

If v is a nonarchimedean prime, then the torsion subgroup of B(Kv) is finite.
In particular, H0(Kv,B[p∞]) is finite. It follows that H0(Kv, T ∗) = 0 for all
nonarchimedean primes v in Σ. This has the following consequences. By Propo-
sition 2.1.1, X1(K,Σ, T ∗) is torsion free and X2(K,Σ, D) is divisible. Also,
H2(Kv, D) = 0 for all nonarchimedean primes in Σ and for all primes in Σ if p is
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odd. Therefore, we have H2(KΣ/K, D) =X2(K,Σ, D) when p is odd. For p = 2,
H2(KΣ/K, D)/X2(K,Σ, D) is a finite group of exponent 2.

We now discuss the Zp-corank of H1(KΣ/K, D). The Euler-Poincaré char-
acteristic for the Gal(KΣ/K)-module D is known to be −[K : Q]g. Also, the
torsion subgroup of A(K) is finite, and so H0(KΣ/K, D) is certainly finite. Now
H2(KΣ/K, D) and X2(K,Σ, D) have the same Zp-corank for any prime p. This
gives the formula

(14) corankZp

(
H1(KΣ/K, D)

)
= [K : Q]g + corankZp

(
X2(K,Σ, D)

)
,

and so the quantity denoted by b1(K, D) in the introduction is equal to [K : Q]g.
Note that b1(K, D) = qL(K, D). Also, it follows from (2) that

(15) corankZp

(
SL(K, D)

)
= corankZp

(
X2(K,Σ, D)

)
+ corankZp

(
coker(φL)

)
.

4.2. The torsion subgroup of H1(KΣ/K, T ∗) and SL ∗ (K, T ∗)
Since Λ = Zp, if X is a Λ-module, then XΛ-tors is just the torsion subgroup Xtors

of X . We have the following result.

PROPOSITION 4.2.1

With the above notation, we have the following equalities and isomorphism:

SL ∗ (K, T ∗)tors = H1(KΣ/K, T ∗)tors ∼= H0(K,B[p∞]) = B(K)p.

In particular, H1(KΣ/K, T ∗) and SL ∗ (K, T ∗) are torsion free if and only if
B(K)p = 0.

Proof
The fact that L(Kv, D) is divisible for all v ∈ Σ together with Proposition 2.3.1
implies the first equality. One can apply Proposition 2.2.2 to T ∗ = Tp(B) and
θ = pt for t sufficiently large to obtain the isomorphism. Alternatively, one can
also derive this directly from the following exact sequence. It involves the Qp-
representation space Vp(B) = Tp(B) ⊗Zp Qp for Gal(KΣ/K).

(16) 0 −→ Tp(B) −→ Vp(B) −→ B[p∞] −→ 0.

The corresponding cohomology sequence proves that isomorphism since we have
H0(K,Vp(B)) = 0 and H1(KΣ/K,Vp(B)) is torsion free. By definition, we have
H0(K,B[p∞]) = B(K)p. �

4.3. Hypothesis LEO(D)
Proposition 2.2.1 implies that X2(K,Σ, D) is a divisible group. Therefore,
LEO(D) means that X2(K,Σ, D) = 0. Equivalently, H2(KΣ/K, D) has Zp-
corank zero. This means that H2(KΣ/K, D) vanishes if p is odd and is ele-
mentary abelian if p = 2. The following result gives other equivalent versions of
LEO(D). We let D ∗ = T ∗ ⊗Zp (Qp/Zp). One can identify D ∗ with B[p∞].
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PROPOSITION 4.3.1

Let D = A[p∞], D ∗ = B[p∞], and T ∗ = Tp(B). The Zp-coranks of

X1(K,Σ, D), X1(K,Σ, D ∗), X2(K,Σ, D), and X2(K,Σ, D ∗)

are all equal to the Zp-rank of X1(K,Σ, T ∗). In particular, LEO(D) is satisfied
if and only if any of the above groups is finite.

We remark that X1(K,Σ, D) can be finite and still nontrivial, in contrast to
X2(K,Σ, D) and X1(K,Σ, T ∗).

Proof
The fact that B is isogenous to A over K implies that the groups Xi(K,Σ, D)
and Xi(K,Σ, D ∗) have the same Zp-corank for any i ≥ 0. This is of interest
only for i ∈ {1,2} since those groups are trivial otherwise. By the pairing (6), we
have corankZp(X2(K,Σ, D)) = rankZp(X1(K,Σ, T ∗)). It suffices then to show
that rankZp(X1(K,Σ, T ∗)) = corankZp(X1(K,Σ, D ∗)). However, both of these
quantities are equal to the Qp-dimension of X1(K,Σ, Vp(B)). �

It is difficult to state a precise conjecture predicting when LEO(D) is satisfied.
Of course, one sufficient condition is that SL(K, D) be finite, as pointed out in
the introduction. To state a more general criterion, we assume that XA(K)p,
the p-primary subgroup of the Tate-Shafarevich group for A over K, is finite.
Consider the Kummer homomorphism

κ : A(K) ⊗Z (Qp/Zp) −→ H1(KΣ/K, D).

Obviously, we have X1(K,Σ, D) ⊆ SL(K, D). Our assumption about XA(K)p

means that [SL(K, D) : im(κ)] is finite. Hence, X1(K,Σ, D) and the intersection
X1(K,Σ, D) ∩ im(κ) have the same Zp-corank. Since κ is injective, it follows
that X1(K,Σ, D) ∩ im(κ) is isomorphic to the kernel of the map

ε : A(K) ⊗Z (Qp/Zp) −→
⊕
v|p

A(Kv) ⊗Z (Qp/Zp).

Therefore, under the assumption that XA(K)p is finite, we have

corankZp

(
ker(ε)

)
= corankZp

(
X1(K,Σ, D)

)
.

In particular, LEO(D) is satisfied if and only if ε has finite kernel. One can view
A(K) as a subgroup of

⊕
v|p A(Kv) by the diagonal embedding. The latter group

contains a subgroup of finite index isomorphic to Z[K:Q]g
p . If r = rank(A(K)),

then one can choose independent points P1, . . . , Pr in A(K) which are in that
subgroup. One then sees easily that ker(ε) is finite if and only if P1, . . . , Pr are
Zp-independent.

Suppose now that A is defined over Q and that K is an abelian exten-
sion of Q. One can regard A(K) ⊗Z Qp as a representation space over Qp for
Gal(K/Q). For any character χ of Gal(K/Q), let rχ(A) denote the multiplicity
of χ in A(K) ⊗Z Qp. As above, we continue to assume that XA(K)p is finite.
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The map ε is Gal(K/Q)-equivariant. Suppose that A = A(K) ⊗Z (Qp/Zp) and
B =

⊕
v|p A(Kv) ⊗Z (Qp/Zp). If ε has finite kernel, then the adjoint map B̂ → Â

has finite cokernel. Hence, we have a surjective map B̂ ⊗Zp Qp → Â ⊗Zp Qp of
representation spaces for Gal(K/Q). If g = 1, then B̂ ⊗Zp Qp is isomorphic to
the regular representation of Gal(K/Q) over Qp. It follows that if LEO(D) is
satisfied for A and K, then we have rχ(A) ≤ 1 for all χ. The following conjecture
is the converse.

CONJECTURE 4.3.2

Suppose that A is an elliptic curve defined over Q and that K is an abelian
extension of Q. Then LEO(D) is satisfied if rχ(A) ≤ 1 for all characters χ of
Gal(K/Q).

If K = Q, then Conjecture 4.3.2 is easily proven. One may assume that we
have r = rank(A(Q)) = 1. As we explain in Remark 4.4.3, the image of ε is
then infinite. It follows that the kernel of ε is indeed finite. This argument can
be extended to the case where Gal(K/Q) has exponent 2 or, more generally,
where we have [Q(χ) : Q] = [Qp(χ) : Qp] for all the characters χ of Gal(K/Q).
Furthermore, Conjecture 4.3.2 can be proven if E is an elliptic curve with complex
multiplication. This case follows from a result in transcendental number theory,
a theorem of Bertrand [Ber, théorème 3] giving the analogue of the Baker-Brumer
theorem for the formal group logarithm for E.

4.4. The cokernel of φL
We prove the following partial result.

PROPOSITION 4.4.1

The order of coker(φL)/ coker(φL)div is divisible by the order of B(K)p. If
SL(K, D) is finite, then coker(φL) is finite and is isomorphic to the Pontrya-
gin dual of B(K)p.

Proof
The fact that X1(K,Σ, T ∗) is torsion free and Proposition 3.1.1 imply that

̂coker(φL) has a subgroup isomorphic to SL ∗ (K, T ∗)tors. This group is isomorphic
to B(K)p according to Proposition 4.2.1. The first assertion follows.

As explained in the introduction, if we assume that SL(K, D) is finite, then
X2(K,Σ, D) and coker(φL) are both finite. Therefore, it follows that SL ∗ (K, T ∗)
is finite and that X1(K,Σ, T ∗) = 0. The stated isomorphism then follows from
Proposition 3.1.1. �

COROLLARY 4.4.2

If B(K)p �= 0, then φL is not surjective.
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REMARK 4.4.3

If SL(K, D) is infinite, then it should also be true that coker(φL) is infinite. One
can at least show this if A(K) is infinite. First of all, note that if P ∈ A(K) has
infinite order, then 〈P 〉 ⊗Z (Qp/Zp) is an infinite subgroup of A(Kv) ⊗Z (Qp/Zp)
for any v|p. It follows that

corankZp

(
X1(K,Σ, D)

)
< corankZp

(
SL(K, D)

)
.

Therefore, using Proposition 4.3.1 together with (15), one then indeed has
corankZp(coker(φL)) > 0. One also has the trivial upper bound [K : Q]g on
the Zp-corank of coker(φL), which is just qL(K, D). In particular, suppose that
K = Q and g = 1. Then coker(φL) has Zp-corank ≤ 1.

4.5. The classical definition of the Selmer group
One usually defines SelA(K) to be the kernel of the map

(17) φK,A : H1
(
K,A(K)tors

)
−→

⊕
v

H1
(
Kv,A(Kv)

)
,

where v varies over all primes of K. The p-primary subgroup of A(K)tors is
D = A[p∞], and SelA(K)p is a subgroup of H1(K, D). We now explain why
the inflation map from H1(KΣ/K, D) to H1(K, D) induces an isomorphism from
SL(K, D) to SelA(K)p. This turns out to follow from Proposition 3.3.3. First of
all, note that Hypothesis 3.3.1 is satisfied because A(Kv)tors is finite for every
nonarchimedean prime v of K. Furthermore, L(Kv, D) = 0 for all v�p. Finally,
note that for all primes v, we have an exact sequence

0 −→ im(κv) −→ H1(Kv, D) −→ H1
(
Kv,A(Kv)

)
p

−→ 0

and therefore we have ker(φK,A)p = ker(ψ), where ψ is the map occurring in
Proposition 3.3.3 for D = D. We also obtain an isomorphism from coker(φK,A)p

to coker(ψ).
Proposition 3.3.3 implies that the map from ker(φL) to ker(ψ)p is always

an isomorphism. This gives the identification of SL(K, D) to SelA(K)p, as men-
tioned above. Proposition 3.3.3 implies that the injective map from coker(φL) to
coker(ψ)p is an isomorphism if we assume that X2(K,Σ, D) = 0. In particular,
this is so if SelA(K)p = SL(K, D) is finite.

The theorem of Cassels alluded to previously states that if SelA(K) is finite,
then the cokernel of φK,A is isomorphic to the Pontryagin dual of B(K)tors. To
prove this, it is enough to prove that the p-primary subgroups of those groups
are isomorphic for every prime p, and that assertion follows from the second part
of Proposition 4.4.1.

Cassels also proved a theorem including the case where SelA(K)p is infinite,
at least under the assumption that XA(K)p is finite. This theorem asserts that
the Pontryagin dual of coker(φK,A)p is isomorphic to B(K) ⊗Z Zp. It follows
that the Zp-corank of coker(φK,A)p is equal to rank(B(K)) = rank(A(K)). One
finds a discussion and proof of this result in [Bas].
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As a consequence, it is possible for coker(φK,A)p and coker(φL) to have
different Zp-coranks. For example, consider the special case where K = Q, g = 1,
and r = rank(A(Q)) ≥ 2. Assume that XA(K)p is finite. Thus, by Remark 4.4.3,
coker(φL) has Zp-corank 1. That is, we have coker(φL)div

∼= Qp/Zp. This is true
for any finite set Σ containing Σmin. However, coker(φK,A)p is the direct limit of
the groups coker(φL) as Σ varies over all those finite sets. Thus, if one assumes
that XA(K)p is finite, then that direct limit turns out to have Zp-corank r.
Evidently, the finite groups coker(φL)/ coker(φL)div have unbounded exponent
as Σ varies if r ≥ 2.

5. Twist deformations

Suppose that K∞/K is a Galois extension and that Γ = Gal(K∞/K) ∼= Zm
p for

some m ≥ 1. Let Λ = Zp[[Γ]], the completed group algebra for Γ over Zp. If
{γ1, . . . , γm} is a set of topological generators for Γ, then one can define an
isomorphism from the formal power series ring Zp[[x1, . . . , xm]] to Λ by sending
xi to γi − 1 for 1 ≤ i ≤ m. It follows that Λ is a domain and has Krull dimension
m + 1. One can regard Γ as a subgroup of Λ×, and hence, one has a natural
representation

κ : Γ −→ GL1(Λ).

We let Λ(κ) denote the free Λ-module of rank 1 with this action of Γ.
Suppose now that T is a free Zp-module of rank n with a Zp-linear action

of Gal(KΣ/K). Let V = T ⊗Zp Qp and D = T ⊗Zp (Qp/Zp). Let TΛ = T ⊗Zp Λ,
a free Λ-module of rank n. This Λ-module has a Λ-linear action of Gal(KΣ/K),
where the action is just through the first factor. Since we have K∞ ⊂ KΣ, we can
regard κ as a representation of Gal(KΣ/K) over Λ of rank 1. We now consider
T = TΛ ⊗Λ Λ(κ), which is also a free Λ-module of rank n, but with a new Λ-linear
action of Gal(KΣ/K). If we choose a basis for T , then we obtain a representation

ρ : Gal(KΣ/K) −→ GLn(Λ).

The underlying Galois module is T . As in the introduction, the corresponding
discrete Galois module is D = T ⊗Λ Λ̂. We think of T as the twist of TΛ, or of
T , by the Λ×-valued character κ. For brevity, we sometimes denote T by T ⊗ κ.
Similarly, we sometimes write D ⊗ κ for D. Note also that T ∗ is isomorphic to
T ∗ ⊗ κ−1, where T ∗ = Hom(D,μp∞ ).

Suppose that ϕ : Γ → Q×
p is a continuous group homomorphism. Let Zp[ϕ]

denote the ring Zp[ϕ(γ1), . . . , ϕ(γm)]. This ring is an order in some finite exten-
sion of Qp. It is clear that ϕ has values in the group of principal units of Zp[ϕ].
We can define an action of Gal(KΣ/K) on the free Zp[ϕ]-module T ⊗Zp Zp[ϕ],
where Gal(KΣ/K) has the given action on the first factor and acts by ϕ on the
second. We denote this Galois module by T ⊗ ϕ and refer to it as the twist of T

by ϕ. The corresponding discrete module is denoted by D ⊗ ϕ.
We call the Galois module T defined above, or the corresponding represen-

tation ρ, a twist deformation for the following reason. If ϕ is as in the previous
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paragraph, then we can naturally extend ϕ to a continuous ring homomorphism
from Λ to Qp, which we also denote simply by ϕ. In effect, we are identifying
Homcont(Γ,Q×

p ) with Homcont(Λ,Qp). The kernel pϕ of ϕ is in Specht=m(Λ).
The image of ϕ is the ring Zp[ϕ]. Of course, ϕ induces a continuous homomor-
phism λϕ : GLn(Λ) → GLn(Zp[ϕ]), and composing this with ρ gives the repre-
sentation ρϕ = λϕ ◦ ρ which describes the action of Gal(KΣ/K) on the twisted
Galois module T ⊗ ϕ. That is, we have an isomorphism T /pϕT ∼= T ⊗ ϕ as Galois
modules. Note, however, that T ∗/pϕT ∗ ∼= T ∗ ⊗ ϕ-1.

5.1. The torsion Λ-submodule of H1(KΣ/K, T ∗)
We prove the following general results.

PROPOSITION 5.1.1

If m ≥ 2, then H1(KΣ/K, T ∗) is torsion free as a Λ-module.

PROPOSITION 5.1.2

If m = 1, then H1(KΣ/K, T ∗)Λ-tors is a free Zp-module of finite rank.

PROPOSITION 5.1.3

If K∞ is the cyclotomic Zp-extension of K, then H1(KΣ/K, T ∗)Λ-tors �= 0 if and
only if D = T ⊗Zp (Qp/Zp) has a quotient isomorphic to μp∞ for the action of
GK∞ .

The proofs of the above propositions will follow easily from the results proven in
Section 2 together with the following lemma.

LEMMA 5.1.4

We have H0(K, T ∗/pT ∗) = 0 for all but finitely many p ∈ Specht=m(Λ). If Λ/p

has characteristic p, then H0(K, T ∗/pT ∗) = 0. If we assume that m ≥ 2, then
we have H0(K, T ∗/ΠT ∗) = 0 for all Π ∈ Specht=1(Λ). For any m ≥ 1, we have
H0(K, T ∗) = 0.

Proof
If p ∈ Specht=m(Λ) and Λ/p has characteristic zero, then Λ/p is isomorphic to
an order in some finite extension of Qp. Thus, the ring homomorphism Λ → Λ/p

induces a continuous group homomorphism ϕ : Γ → Q×
p , and p = pϕ. We then

have T ∗/pT ∗ ∼= T ∗ ⊗ ϕ. Now H0(K,T ∗ ⊗ ϕ) �= 0 implies that the representation
space T ∗ ⊗Zp Qp for GK has a subspace on which GK acts by ϕ−1. This can
happen for only finitely many ϕ’s.

Assume that p ∈ Specht=m(Λ) and Λ/p has characteristic p. We show that
H0(K, T ∗/pT ∗) vanishes for all such p. The action of GK on T ∗/pT ∗ factors
through Gal(L/K), where L is a finite Galois extension of K. Thus, the action
of GK on T ∗/pT ∗ factors through Gal(LK∞/K). It is enough to prove that
H0(L, T ∗/pT ∗) = 0. Now T ∗/pT ∗ is a free module over Λ/p, and GL acts by the
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restriction of κ. Therefore, it is enough to show that H0(Γ′,Λ/p) = 0, where Γ′

is a subgroup of Γ with finite index. Furthermore, we can assume that Γ′ = Γpt

for some t ≥ 0.
Note that the maximal ideal m in Λ is generated by {p, γ1 − 1, . . . , γm − 1}.

Its image in Λ/p is the maximal ideal in that local ring, which we denote by
mp. It is a nonzero ideal because p has height m and m has height m + 1. Since
we are assuming that p ∈ p, mp is generated by the images of γ1 − 1, . . . , γm − 1
in Λ/p, and hence, at least one of those images is nonzero. Note also that for
1 ≤ i ≤ m, the images of γpt

i − 1 and (γi − 1)pt

in Λ/p are the same. Therefore,
for some γ′ ∈ Γ′, the image of γ′ − 1 in Λ/p is a nonzero element α in Λ/p. Thus,
we have

H0(Γ′,Λ/p) ⊆ (Λ/p)[α],

which vanishes because Λ/p is a domain.
The statement about the vanishing of H0(K, T ∗/ΠT ∗) now follows imme-

diately from Lemmas 2.2.6 and 2.2.8. The final statement also follows immedi-
ately. �

Proof of Propositions 5.1.1, 5.1.2, and 5.1.3
Proposition 5.1.1 now follows immediately from Proposition 2.2.7. For Proposi-
tion 5.1.2, one can verify that H1(KΣ/K, T ∗)[p] = 0 by using the exact sequence
(7) for θ = p and Lemma 5.1.4 for p = (p). The stated assertion then follows
because H1(KΣ/K, T ∗)Λ-tors is a finitely generated, torsion Λ-module.

For proving Proposition 5.1.3, note that the statement about D means that
U = H0(K∞, T ∗) has positive Zp-rank. The action of GK on U factors through Γ.
Hence, rankZp(U) > 0 if and only if there exists a ϕ ∈ Homcont(Γ,Q×

p ) such that
H0(K,T ∗ ⊗ ϕ−1) �= 0. That statement is in turn equivalent to the nonvanishing
of H1(KΣ/K, T ∗)[pϕ]. Now if p ∈ Specht=1(Λ) and Λ/p has characteristic zero,
then p = pϕ for some ϕ as above. Therefore, by Propositions 2.2.2 and 5.1.2, it
indeed follows that H1(KΣ/K, T ∗)Λ-tors �= 0 if and only if rankZp(U) > 0. �

5.2. The validity of LEO(D)
It is reasonable to conjecture that LEO(D) is always satisfied when D has the
form D = D ⊗ κ. We emphasize that here D is simply a Gal(KΣ/K)-module
which is isomorphic as a group to (Qp/Zp)n for some n ≥ 1.

CONJECTURE 5.2.1

Assume that D = D ⊗ κ as defined above. Then X2(K,Σ, D) = 0.

An equivalent version of this conjecture was stated in the introduction to [Gr3,
page 364]. It was called Conjecture L there and asserts that X2(K∞,Σ,D) = 0.
The equivalence of these formulations is discussed briefly in [Gr3] and will be
explained in detail in [Gr5].
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Proposition 5.2.3 below states that X2(K,Σ, D) is a divisible Λ-module.
Hence, the vanishing of X2(K,Σ, D) is equivalent to the validity of LEO(D).
The proposition follows immediately from Proposition 2.1.1 and the following
lemma.

LEMMA 5.2.2

Suppose that v ∈ Σ and that the decomposition subgroup of Γ for v is nontrivial.
Then H0(Kv, T ∗) = 0. In particular, H0(Kv, T ∗) vanishes for at least one v|p.

Proof
We use the analogue of Lemma 2.2.6 for Kv in place of K. The proof of that
lemma still works because if Lv is a finite extension of Kv and Mv is the maximal
pro-p extension of Lv , then Gal(Mv/Lv) is topologically finitely generated. This
follows from the Burnside Basis Theorem.

Let Γv be the decomposition subgroup of Γ for v. The assumption about
Γv implies that it is infinite. If ψ : Γv → Q×

p is any continuous homomorphism,
then choose some continuous homomorphism ϕ : Γ → Q×

p such that ϕ|Γv = ψ.
We can regard T ∗ ⊗Zp Qp as a representation space for GKv . It has a nontrivial
subspace on which GKv acts by ψ for only finitely many ψ’s. Thus, we can choose
ψ so that H0(Kv, T ∗ ⊗ ϕ−1) = 0. This means that H0(Kv, T ∗/pϕT ∗) = 0. The
analogue of Lemma 2.2.6 then implies that H0(Kv, T ∗) = 0. �

PROPOSITION 5.2.3

Assume that D = D ⊗ κ as above. Then X2(K,Σ, D) is a divisible Λ-module.

Archimedean primes always split completely in K∞/K. The hypothesis in the
next result is that the nonarchimedean primes in Σ do not split completely.
This assumption is satisfied if K∞ contains the cyclotomic Zp-extension of K.
However, if K is not totally real and if v is any nonarchimedean prime not lying
over p, then one can always find at least one Zp-extension of K in which v splits
completely.

PROPOSITION 5.2.4

Suppose that Γv is nontrivial for all nonarchimedean v ∈ Σ. If p is odd, then
X2(K,Σ, D) = H2(KΣ/K, D). If p = 2, then H2(KΣ/K, D)/X2(K,Σ, D) has
exponent 2.

Proof
Lemma 5.2.2 and the local duality theorem imply that H2(Kv, D) = 0 for all
nonarchimedean v ∈ Σ. If p > 2, the same is true for v| ∞. If p = 2, then
H2(Kv, D) may be nonzero but has exponent 2. The stated assertions clearly
follow. �
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Under the assumptions of Proposition 5.2.4, one can use [Gr3, Proposition 4.3]
to give a simple formula for the quantity b1(K, D) mentioned in the introduction.
It just involves T . For every real prime v of K, we can write

n = rankZp(T ) = n+
v + n−

v ,

where n±
v is the dimension of the (±1)-eigenspace for a generator of GKv acting

on T ⊗Zp Qp. Then we have

(18) b1(K, D) =
∑
v|∞

rankΛ

(
H0(Kv, T ∗)

)
= r2n +

∑
v real

n−
v ,

where r2 denotes the number of complex primes of K. For the last equality,
one uses the fact that if v is archimedean, then Γv is trivial. It follows that
rankΛ(H0(Kv, T ∗)) = rankZp(H0(Kv, T ∗)) for all v| ∞.

Proposition 2.1.4 provides one possible way to verify that LEO(D) is satisfied
in many interesting cases. It is an inductive argument. We suppose that K∞
contains the cyclotomic Zp-extension of K, which we now denote by C∞. We
can choose a sequence of extensions K

(i)
∞ for 1 ≤ i ≤ m such that K

(1)
∞ = C∞,

K
(m)

∞ = K∞, and Gal(K(i)
∞ /K) ∼= Zi

p. Let Γ(i) = Gal(K(i)
∞ /K), and let Λ(i) denote

Zp[[Γ(i)]]. Thus, Λ(i) has Krull dimension i + 1. Let κi : Γ(i) → GL1(Λ(i)) be the
corresponding representation. For each i, we have a Galois module D(i) = D ⊗ κi.
In particular, D = D(m).

There is also a surjective ring homomorphism Λ(i) → Λ(i-1) for each i ≥ 2.
The kernel of that homomorphism is a prime ideal Π(i) of height 1 in Λ(i). One
has D(i-1) ∼= D(i)[Π(i)]. According to Proposition 5.2.4, for 1 ≤ j ≤ m, LEO(D(j))
means that H2(KΣ/K, D(j)) is Λ(j)-cotorsion. Proposition 2.1.4 then shows that
if 2 ≤ i ≤ m and LEO(D(i-1)) is satisfied, then so is LEO(D(i)). Therefore, it is
enough to verify that LEO(D(1)) is satisfied.

Assume that H2(KΣ/K,D ⊗ ϕ) is finite for some ϕ in Homcont(Γ(1),Q×
p ).

We can identify ϕ with an element of Homcont(Λ(1),Qp), and then Π = ker(ϕ)
is in Specht=1(Λ(1)). Since D ⊗ ϕ ∼= D(1)[Π], Proposition 2.1.4 again shows that
H2(KΣ/K, D(1)) is Λ(1)-cotorsion, and so LEO(D(1)) is satisfied. These consid-
erations prove the following result.

PROPOSITION 5.2.5

Assume that K∞ contains the cyclotomic Zp-extension C∞ of K. Assume that
H2(KΣ/K,D ⊗ ϕ) is finite for some ϕ ∈ Hom(Gal(C∞/K),Q×

p ). Then LEO(D)
is satisfied.

We now discuss two important special cases as illustrations.

ILLUSTRATION 5.2.6

The action of GK on μp∞ is given by a homomorphism χ : GK → Z×
p which

factors through Gal(K(μp∞ )/K). Let w = [K(μp) : K] if p is odd, and let w =
[K(μ4) : K] if p = 2. Note that χw factors through Gal(C∞/K). Let j be
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a fixed integer. Suppose that T = Zp(j), which we regard as a Gal(KΣ/K)-
module. The Galois action is by χj . One has T ∗ ∼= Zp(1 − j). If j = 1, then
D = μp∞ , and one shows easily that X2(K,Σ,D) = 0. If j �= 1 and p is odd,
then the local H2’s vanish and so we have X2(K,Σ,D) = H2(KΣ/K,D). It is
a conjecture of Schneider that this group vanishes (see [Sch1, page 192]). In
general, one would conjecture that X2(K,Σ,D) = 0 for all j and all p. Satz 3
in Section 6 of [Sch1] proves this vanishing for all but finitely many j’s. This
theorem suffices to verify the hypothesis in Proposition 5.2.5. For if one takes
any j′ ≡ j (mod w), then Zp(j′) ∼= T ⊗ ϕ, where ϕ = χj′ −j . Note that ϕ is
in Homcont(Gal(C∞/K),1 + pZp). One can choose j′ so that X2(K,Σ,D ⊗ ϕ)
vanishes. It follows that LEO(D) is satisfied if K∞ contains C∞.

ILLUSTRATION 5.2.7

Assume now that T = Tp(E), where E is an elliptic curve defined over Q, and
that K/Q is abelian. We have D = E[p∞]. For n ≥ 0, let Cn denote the unique
subfield of C∞ such that [Cn : K] = pn. Theorems of Kato and Rohrlich then
imply that the Zp-corank of SelE(Cn)p is bounded as n → ∞. This follows easily
from [Kat, Theorem 17.4]. Thus, for some n0, we have

corankZp

(
SelE(Cn)p

)
= corankZp

(
SelE(Cn0)p

)
for all n ≥ n0. One can then show that if ϕ is a character of Gal(C∞/K) of
order pn, where n > n0, then H2(KΣ/K,D ⊗ ϕ) is finite (and zero if p is odd).
Therefore, one can again conclude from Proposition 5.2.5 that LEO(D) is satisfied
if K∞ contains C∞.

5.3. Surjectivity
Propositions 5.3.1 and 5.3.3 give sufficient conditions for the surjectivity of φL.
Proposition 5.3.2 is an interesting remark about the cokernel when it is nonzero.
Those results are consequences of the propositions in Section 5.1 and Proposi-
tion 3.1.1. The hypotheses imply that SL ∗ (K, T ∗) ⊆ H1(KΣ/K, T ∗)Λ-tors and
that X1(K,Σ, T ∗) = 0. For Proposition 5.3.3, the assumption that L is Λ-
divisible means that L(Kv, D) is a divisible Λ-module for all v ∈ Σ. If that is
so, then Proposition 2.3.1 implies that coker(φL) is dual to H1(KΣ/K, T ∗)Λ-tors.
The stated result then follows from Proposition 5.1.3.

PROPOSITION 5.3.1

Assume that m ≥ 2, that LEO(D) is satisfied and that coker(φL) is Λ-cotorsion.
Then φL is surjective.

PROPOSITION 5.3.2

Assume that m = 1, that LEO(D) is satisfied, and that coker(φL) is Λ-cotorsion.
Then coker(φL) ∼= (Qp/Zp)c for some c ≥ 0.
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PROPOSITION 5.3.3

Assume that K∞ is the cyclotomic Zp-extension of K, that LEO(D) is satisfied,
that the specification L is Λ-divisible, and that coker(φL) is Λ-cotorsion. Then
φL is surjective if and only if H0(K∞, T ∗) = 0.

Illustrations
To continue Illustration 5.2.6, assume that K∞ contains C∞ and that we choose
the specification L so that L(Kv, D) = 0 for all v ∈ Σ. Thus, LEO(D) is satis-
fied. Also, by definition, SL(K, D) = X1(K,Σ, D). In general, [Gr3, Proposi-
tion 4.4] implies that corankΛ(X1(K,Σ, D)) and rankΛ(X1(K,Σ, T )) are equal.
The argument in Illustration 5.2.6 for Zp(1 − j) instead of Zp(j) shows that
X1(K,Σ, T ) has Λ-rank zero. It follows that corankΛ(SL(K, D)) = 0.

By (2), we have corankΛ(coker(φL)) = 0 if and only if h1(K, D) = qL(K, D).
One finds that qL(K, D) = [K : Q]. This follows from [Gr2, Proposition 4.2],
which is a consequence of the formulas for the local Euler-Poincaré characteristic
for the Λ-module D and for all v ∈ Σ. The only nonzero contribution to qL(K, D)
comes from v|p and is then [Kv : Qp]. By (18), together with the fact that
LEO(D) holds, we have

h1(K, D) = b1(K, D) =

{
r2 if j is even,

r1 + r2 if j is odd.

The above remarks show that corankΛ(coker(φL)) = 0 if and only if j is odd and
K is totally real.

However, according to Leopoldt’s conjecture, if K is totally real, then the
cyclotomic Zp-extension of K should be the only one, and hence, we should have
K∞ = C∞ and m = 1. One can then apply Proposition 5.3.3 to conclude that
φL is surjective if and only if j �≡ 1 (mod w).

Assume now that j ≡ 1 (mod w). One then gets the isomorphism

(19) coker(φL) ∼= Λ̂[pϕ], where ϕ = χ1−j .

This is an isomorphism of discrete Λ-modules. We have coker(φL) ∼= Qp/Zp

as groups. To justify (19), recall that T ∗/pϕT ∗ is isomorphic to T ∗ ⊗ ϕ−1 for
any ϕ. Thus, H0(K, T ∗/pϕT ∗) �= 0 only for ϕ = χ1−j . For that ϕ, we have
H1(KΣ/K, T ∗)[pϕ] ∼= Λ/pϕ. This group is isomorphic to Zp. Furthermore, one
can easily show that H0(K, T ∗/p2

ϕT ∗) is also isomorphic to Zp. One then uses
Propositions 2.2.2 and 3.1.1 to prove that ̂coker(φL) ∼= Λ/pϕ and hence that (19)
holds.

We briefly discuss another choice of specification for T , where T = Zp(j).
Suppose that L(Kv, D) = H1(Kv, D)Λ-div for all v ∈ Σ. In particular, for v�p,
L(Kv, D) = 0. Obviously, we now have qL(K, D) = 0. The cokernel of φL is
always Λ-cotorsion. Propositions 5.3.1 and 5.3.3 imply that φL is surjective if
and only if either m ≥ 2 or m = 1 and j �≡ 1 (mod w).
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To continue Illustration 5.2.7. we still assume that T = Tp(E), that K/Q is
abelian, and that C∞ ⊆ K∞. Since LEO(D) is satisfied, we have the equality
h1(K, D) = b1(K, D). Now (18) implies that b1(K, D) = [K : Q]. If L is any
specification for D and Σ, it follows that

cL(K, D) = 0 ⇐⇒ corankΛ

(
SL(K, D)

)
= [K : Q] − qL(K, D).

If cL(K, D) = 0, then φL is surjective. This follows from Proposition 5.3.1 if
m ≥ 2. For m = 1, note that Remark 3.2.7 allows one to replace L by Ldiv.
Furthermore, it is known that H0(C∞,E[p∞]) is finite. Since T ∗ ∼= Tp(E), it
follows that H0(C∞, T ∗) = 0. One can then use Proposition 5.3.3 to see that φL
is surjective.

If A is an arbitrary abelian variety, K is an arbitrary number field, and
K∞ is ramified at all the primes of K lying above p, then there is a natural
choice for the specification L. As in Section 4, the definition involves the local
Kummer maps. One simply takes L(Kv, D) = 0 for v�p. There is a relatively
simple description of L(Kv, D) even for v|p. This is based on the results in [CG]
and will be discussed in [Gr5]. An important feature of the definition is that the
Λ-corank of L(Kv, D) depends on the reduction type of A at v. In general, one
has only the inequality qL(K, D) ≤ [K : Q]g. One conjectures that the equality

corankΛ

(
SL(K, D)

)
= [K : Q]g − qL(K, D)

always holds. In the case where K∞ = C∞, this conjecture was made by Mazur
[Maz, page 184] when A has good ordinary reduction at all v|p. In that case,
one has qL(K, D) = [K : Q]g, and the conjecture is that SL(K, D) is Λ-cotorsion.
Schneider stated such a conjecture when A is just assumed to have good reduction
at all v|p (see [Sch2, Conjecture, page 348; Lemma 2, page 344]). If the reduction
is not ordinary for at least one prime v|p, then one has qL(K, D) < [K : Q]g, and
SL(K, D) cannot be Λ-cotorsion. As in the above discussion, those conjectures
imply that φL is surjective.
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