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Abstract This article is a continuationof previouswork,whichhas the same title. LetY

be anaffine symplectic varietywith aC∗-actionwithpositiveweights, and letπ : X → Y

be its crepant resolution. Then π induces a natural map PDef(X) → PDef(Y ) of Kuran-
ishi spaces for the Poisson deformations of X and Y . In Part I, we proved that PDef(X)

and PDef(Y ) are both nonsingular, and this map is a finite surjective map. In this arti-
cle (Part II), we prove that it is a Galois covering. Markman already obtained a similar
result in the compact case, which was a motivation for this article. As an application, we
construct explicitly the universal Poisson deformation of the normalization Õ of a nilpo-
tent orbit closure Ō in a complex simple Lie algebra when Õ has a crepant resolution.

Introduction

Let Y be an affine symplectic variety of dimension 2n, and let π : X → Y be
a crepant resolution. By the definition, there is a symplectic 2-form σ̄ on the
smooth part Yreg

∼= π−1(Yreg), and it extends to a 2-form σ on X . Since π is
crepant, σ is a symplectic 2-form on X . The symplectic structures on X and
Y define Poisson structures on them in a natural manner. One can define a
Poisson deformation of X (resp., Y ) (see [Na5]). A Poisson deformation of X is
equivalent to a symplectic deformation, namely, a deformation of the pair (X,σ).
Let

PDY : (Art)C → (Set)

be the Poisson deformation functor from the category of local Artinian C-algebras
with residue field C to the category of sets (cf. [Na6, Section 1.1]). In [Na6] we
studied a morphism of functors

π∗ : PDX → PDY

induced by π (cf. [Na6, Section 5]). In particular, PDX and PDY are both
unobstructed, and π∗ is a finite covering. To apply these results to geomet-
ric situations, we need the algebraizations of various formal objects. For this
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purpose, we start with an affine symplectic variety Y with a C∗-action. More
precisely, we assume that this C∗-action has a unique fixed point 0 ∈ Y and
the cotangent space mY,0/m2

Y,0 is decomposed into 1-dimensional eigenspaces
with positive weights. Moreover, σ̄ is assumed to be positively weighted (cf.
[Na5, (Appendix 1)]). This C∗-action extends to a C∗-action on X (see [Na5,
Proposition Appendix 7, Step 1]). By [Na6], one can construct a C∗-equivariant
commutative diagram

(1)

X −−−−→ Y⏐⏐�
⏐⏐�

Ad −−−−→ Ad

where X → Ad (resp., Y → Ad) is a Poisson deformation of X = X0 (resp., Y =
Y0), and both of them are universal at 0 ∈ Ad. Let PDef(X) (resp., PDef(Y )) be
a small open neighborhood of zero in the first affine space Ad (resp., second affine
space Ad). We call them the Kuranishi spaces for the Poisson deformations of
X and Y , respectively. The map Ad → Ad restricts to the map f : PDef(X) →
PDef(Y ); f is a finite surjective map between smooth varieties of the same
dimension.

The main result of this article claims that f is a Galois covering (cf. The-
orem 1.1). Section 1 is devoted to the proof of Theorem 1.1. For a projective
symplectic variety Y and its crepant resolution X , Markman [Ma] has already
proved the same result for the usual Kuranishi spaces, where he pointed out the
Weyl groups of the folded Dynkin diagrams appear as the Galois group. A main
motivation for this article was to generalize his result for a Poisson deformation
of an affine symplectic variety. While trying to understand his result, the author
realized that his result can be proved very naturally in terms of Poisson defor-
mations. This point of view also enables us to re-prove his original result in a
slightly different manner (see Section 1.3).

In Section 1, we apply Theorem 1.1 to the Poisson deformations of an affine
symplectic variety related to a nilpotent orbit in a complex simple Lie algebra.
Let g be a complex simple Lie algebra, and let G be the adjoint group. For a
parabolic subgroup P of G, denote by T ∗(G/P ) the cotangent bundle of G/P .
The image of the Springer map s : T ∗(G/P ) → g is the closure Ō of a nilpotent
(adjoint) orbit O in g. Then the normalization Õ of Ō is an affine symplectic
variety with the Kostant-Kirillov 2-form. If s is birational onto its image, then
the Stein factorization T ∗(G/P ) → Õ → Ō of s gives a crepant resolution of Õ.
In this situation, we prove that the Brieskorn-Slodowy diagram (cf. Section 2)

(2)

G ×P r(p) −−−−→ ˜G · r(p)⏐⏐�
⏐⏐�

k(p) −−−−→ k(p)/W ′

coincides with the C∗-equivariant commutative diagram of the universal Pois-
son deformations of T ∗(G/P ) and Õ. The precise definitions and notation for
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the Brieskorn-Slodowy diagram can be found in Section 2. Here the group W ′

appears as the Galois group of the finite covering of Kuranishi spaces. The group
W ′ is defined as NW (L)/W (L) (see Section 2), where L is a Levi subgroup of P ,
W (L) is the Weyl group of L, and NW (L) is the normalizer group of L in the
Weyl group W of G. This W ′ coincides with the W ′ in [Ho]. Howlett [Ho] has
extensively studied W ′. According to [Ho], W ′ is almost a reflection group. But
in our situation, where the Springer map has degree 1, we can give a geometric
proof that W ′ is a reflection group (see Lemma 2.2).

Terminologies
(i) A symplectic variety (X,ω) is a pair of a normal algebraic variety X defined
over C and a symplectic 2-form ω on the regular part Xreg of X such that,
for any resolution μ : X̃ → X , the 2-form ω on μ−1(Xreg) extends to a closed
regular 2-form on X̃ . We also have a similar notion of a symplectic variety
in the complex analytic category (e.g., the germ of a normal complex space,
a holomorphically convex, normal, complex space). The symplectic 2-form ω

defines a bivector Θ ∈ ∧2ΘXreg by the identification Ω2
Xreg

∼= ∧2ΘXreg by ω. Define
a Poisson structure { , } on Xreg by {f, g} := Θ(df ∧ dg). Since X is normal, the
Poisson structure on Xreg uniquely extends to a Poisson structure on X .

(ii) Let X be a Poisson variety, and let f : X → T be a Poisson deformation
of X such that X0 = X with 0 ∈ T . In this article, we say that f is universal
(or, more precisely, formally universal) at 0 ∈ T if, for any Poisson deformation
X ′ → S of X (X ′

0 = X , 0 ∈ S) with a local Artinian base S, there is a unique
map (S,0) → (T,0) such that X ′ ∼= X ×T S as the Poisson deformations of X

over S. In this case, for a small open neighborhood V of 0 ∈ T , the family
f |f −1(V ) : f −1(V ) → V is called the Kuranishi family for the Poisson deforma-
tions of X , and V is called the Kuranishi space for the Poisson deformations
of X .

1. The Kuranishi spaces for Poisson deformations and Galois coverings

Let (X,σ) and (Y, σ̄) be the same as in the introduction. Let Σ be the singular
locus of Y . According to [Ka], Σ is stratified into symplectic varieties. In par-
ticular, each stratum has even dimension. If CodimY Σ = 2, then the maximal
strata parameterize ADE singularities. More precisely, there is a closed subset
Σ0 ⊂ Σ with CodimY Σ0 ≥ 4, and Y is locally isomorphic to (S,0) × (C2n−2,0)
at every point p ∈ Σ − Σ0, where S is an ADE surface singularity. Let B be the
set of connected components of Σ − Σ0. Let B ∈ B. Pick a point b ∈ B, and
take a transversal slice SB ⊂ Y of B passing through b. In other words, Y is
locally isomorphic to SB × (B,b) around b. Note that SB is a surface with an
ADE singularity. Put S̃B := π−1(SB). Then S̃B is a minimal resolution of SB .
Put TB := SB × (B,b) and T̃B := π−1(TB). Note that T̃B = S̃B × (B,b). We put
σ̄B := σ̄|(TB)reg and σB := σ|T̃B

. Then (TB , σ̄B) is a singular symplectic variety,
and (T̃B , σB) is a smooth symplectic variety. Let Ci (1 ≤ i ≤ r) be the (−2)-
curves contained in S̃B , and let [Ci] ∈ H2(S̃B ,R) be their classes in the second
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cohomology group. Then

Φ :=
{
Σai[Ci];ai ∈ Z, (Σai[Ci])2 = −2

}

is a root system of the same type as that of the ADE singularity SB . Let W

be the Weyl group of Φ. Let {Ei(B)}1≤i≤r̄ be the set of irreducible exceptional
divisors of π lying over B, and let ei(B) ∈ H2(X,Z) be their classes. Clearly,
r̄ ≤ r. If r̄ = r, then we define WB := W . If r̄ < r, the Dynkin diagram of Φ has
a nontrivial graph automorphism. When Φ is of type Ar with r > 1, r̄ = [r +1/2]
and the Dynkin diagram has a graph automorphism τ of order 2. When Φ is of
type Dr with r ≥ 5, r̄ = r − 1 and the Dynkin diagram has a graph automorphism
τ of order 2. When Φ is of type D4, the Dynkin diagram has two different graph
automorphisms of orders 2 and 3. There are two possibilities for r̄: r̄ = 2 or
r̄ = 3. In the first case, let τ be the graph automorphism of order 3. In the latter
case, let τ be the graph automorphism of order 2. Finally, when Φ is of type E6,
r̄ = 4 and the Dynkin diagram has a graph automorphism τ of order 2. In all
these cases, we define

WB := {w ∈ W ; τwτ −1 = w}.

THEOREM 1.1

The map f : PDef(X) → PDef(Y ) is a Galois covering with G =
∏

B∈B WB .

Proof
We divide the proof into four steps.

Step 1: Outline of the proof. In Step 2(ii) we construct the Kuranishi space
PDef(TB) for the Poisson deformation of TB and the Kuranishi space PDef(T̃B)
for the Poisson deformation of T̃B . By the construction, there is a finite Galois
map fB : PDef(T̃B) → PDef(TB) whose Galois group is the Weyl group of the
root system corresponding to the ADE singularity SB . Since TB (resp., T̃B) is
an open set of Y (resp., X), any Poisson deformation of Y (resp., X) over a
local Artinian base induces a Poisson deformation of TB (resp., T̃B) over the
same base. Thus we have a morphism of functors PDY → PDTB

(resp., PDX →
PDT̃B

). Since R1π∗ OX = 0 and π∗ OX = OY , the crepant resolution π : X → Y

induces a morphism of functors PDX → PDY (cf. [Na6, Theorem 5.1, Proof(i)]).
Similarly, we have a morphism of functors PDT̃B

→ PDTB
. These morphisms

form a commutative diagram

(3)

PDX −−−−→ PDT̃B⏐⏐�
⏐⏐�

PDY −−−−→ PDTB

For a complex space W with an origin 0 ∈ W , we denote by Ŵ the formal
completion of W at zero. The commutative diagram above induces a commuta-
tive diagram of formal spaces
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(4)

̂PDef(X) −−−−→ ̂PDef(T̃B)⏐⏐�
⏐⏐�

̂PDef(Y ) −−−−→ ̂PDef(TB)

By using the period maps (cf. Step 2(i)), one can see that this diagram is
actually the formal completions of a commutative diagram of complex spaces (cf.
Step 4(i))

(5)

PDef(X)
ϕB−−−−→ PDef(T̃B)⏐⏐� fB

⏐⏐�
PDef(Y ) −−−−→ PDef(TB)

Put VB := Im(ϕB). We prove that
(a) VB and fB(VB) are both nonsingular, and
(b) fB |VB

: VB → fB(VB) is a WB-Galois covering (cf. Step 3 and the final
part of Step 4(ii)).
Then we get the commutative diagram

(6)

PDef(X)
ϕB−−−−→

∏
B∈B VB⏐⏐�

⏐⏐�
PDef(Y ) −−−−→

∏
B∈B fB(VB)

We finally prove that the induced map

ι : PDef(X) → PDef(Y ) ×∏
fB(VB)

∏
VB

is an isomorphism (cf. Step 4(iii)).

Step 2: Poisson deformations and period maps.
(i) Let us consider the commutative diagram of universal Poisson deforma-

tions in the introduction

(7)

X −−−−→ Y

α

⏐⏐�
⏐⏐�

Ad −−−−→ Ad

Note that Y has a C∗-action with positive weights with a fixed point 0 ∈ Y .
Moreover, the diagram is C∗-equivariant, and α : X → Ad is a simultaneous
resolution of Y → Ad. Then we see that X is a C∞-trivial fiber bundle over Ad

by [S1, remark at the end of Section 4.2].† Let Ω·
X an/Ad be the relative complex-

analytic de Rham complex. Let K be the subsheaf of Ω2
X an/Ad which consists of

d-closed relative 2-forms. By the natural map K[−2] → Ω·
X an/Ad , we can define

a sequence of maps:

†In [S1, 4.2], Y is assumed to be smooth. But the arguments can be applied to our case.
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α∗ K → R2α∗Ω·
X an/Ad

∼= R2α∗α−1Oan
Ad .

Since R2α∗α−1Oan
Ad

∼= R2α∗C ⊗C Oan
Ad (cf. [Lo, Lemma 8.2]), we have an isomor-

phism

R2α∗α−1Oan
Ad

∼= H2(X,C) ⊗C Oan
Ad .

Since α is a Poisson deformation of X , X admits a relative symplectic 2-form σX
such that σX |X = σ. Then σX gives a section s of the sheaf H2(X,C) ⊗C Oan

Ad .
Let

evt : H2(X,C) ⊗C Oan
Ad → H2(X,C)

be the evaluation map at t ∈ Ad. We define a period map

p : Ad → H2(X,C)

by p(t) = evt(s). By the construction, p is a holomorphic map. In [GK, Propo-
sition 5.4], one can find another approach to the definition of the period map.
The period map restricts to give a map

pX : PDef(X) → H2(X,C).

We also call this map the period map for α. Since the tangential map
T0 PDef(X) → H2(X,C) of pX is an isomorphism (see [Na5, Corollary 10]), pX

is an open immersion.
(ii) Since SB is an ADE singularity, it is isomorphic to the hypersurface

defined by a weighted homogeneous polynomial f(x, y, z). Then SB has a C∗-
action with positive weights, and τ̄B := Res(dx ∧ dy ∧ dz/f) is a generator of
KSB

with a positive weight. By the minimal resolution S̃B → SB , τ̄B is pulled
back to a symplectic 2-form τB on S̃B . On the other hand, (B,b) is isomorphic
to (C2n−2,0), and it admits a canonical symplectic 2-form τC2n−2 := ds1 ∧ dt1 +
· · · + dsn−1 ∧ dtn−1 with the standard coordinates (s1, . . . , sn−1, t1, . . . , tn−1) of
C2n−2. By a generalization of Darboux’s theorem (see [Na6, Lemma 1.3]), one
can see that (TB , σ̄B) is equivalent to (TB , τ̄B + τC2n−2) as a symplectic variety.
Therefore, (T̃B , σB) is equivalent to (T̃B , τB + τC2n−2). Let g be the complex
simple Lie algebra of the same type as SB , and let h be a Cartan subalgebra
of g. We denote by W the Weyl group of g. By using a special transversal slice
of g, one can construct the universal Poisson deformation

SB → h/W

of SB and the universal Poisson deformation

S̃B → h

of S̃B (see [Na6, Proposition 3.1(1)]). Moreover, the composite

SB × (C2n−2,0)
p1→ SB → h/W

and the composite

S̃B × (C2n−2,0)
p1→ S̃B → h
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are, respectively, universal Poisson deformations of TB and T̃B (see [Na6, Propo-
sition 3.1(2)]). Note that TB has a C∗-action with positive weights. Since S̃B

is the minimal resolution of SB , this C∗-action extends uniquely to that on T̃B .
We now have a C∗-equivariant commutative diagram

(8)

S̃B × (C2n−2,0) −−−−→ SB × (C2n−2,0)⏐⏐�
⏐⏐�

h −−−−→ h/W

As is seen in (i), one can define a period map h → H2(T̃B ,C). The Kuranishi
space PDef(T̃B) for the Poisson deformation of T̃B is an open neighborhood of
0 ∈ h, and the period map above restricts to a map

pB : PDef(T̃B) → H2(T̃B ,C) ∼= H2(S̃B ,C).

Since the tangential map T0 PDef(T̃B) → H2(T̃B ,C) of pB is an isomorphism (see
[Na5, Corollary 10]), pB is an open immersion. Since PDef(X) (resp., PDef(T̃B))
can be regarded as open subsets of H2(X,C) (resp., H2(T̃B ,C)) by the period
maps, one can define a holomorphic map

ϕB : PDef(X) → PDef(T̃B)

so that the following diagram commutes:

(9)

PDef(X)
pX−−−−→ H2(X,C)

ϕB

⏐⏐�
⏐⏐�

PDef(T̃B)
pB−−−−→ H2(S̃B ,C)

Since a Poisson deformation of X over a local Artinian base restricts to give
a Poisson deformation of T̃B over the same base, we have a natural morphism of
functors PDX → PDT̃B

. By the (formal) universality of PDef(T̃B), a formal map

ϕ̂B : ̂PDef(X) → ̂PDef(T̃B)

is uniquely determined. This is nothing but the formal completion of ϕB .

Step 3: Description of Im(ϕB). The Weyl group W (of the root system Φ
associated with S̃B) acts on H2(S̃B ,C). The period map p : h → H2(S̃B ,C) is
a W -equivariant linear map by [Ya] (cf. [Na6, proof of Proposition 3.2]). The
commutative diagram

(10)

h
p−−−−→ H2(S̃B ,C)⏐⏐�

⏐⏐�
h/W −−−−→ H2(S̃B ,C)/W
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induces a commutative diagram

(11)

PDef(T̃B)
pB−−−−→ H2(S̃B ,C)

fB

⏐⏐� q

⏐⏐�
PDef(TB) −−−−→ H2(S̃B ,C)/W

Let Ei(B) (1 ≤ i ≤ r̄) be the irreducible exceptional divisors of π : X → Y

lying over B, and let ei(B) ∈ H2(X,Z) be the cohomology class determined by
Ei(B). Even if Ei(B) is irreducible, Ei(B) ∩ S̃B might be reducible. Denote
by rB the restriction map H2(X,Z) → H2(S̃B ,Z). Then Im(rB ⊗ C) is the C-
vector subspace generated by rB(ei(B)), (1 ≤ i ≤ r̄). Let r be the number of
(−2)-curves in S̃B . As explained at the beginning of this section, when r̄ < r we
have a nontrivial graph automorphism τ of the Dynkin diagram. We then define
ΓB := 〈τ 〉. When r̄ = r, we just put ΓB = id . Then H2(S̃B ,C)ΓB = Im(rB ⊗ C).
We put ṼB := Im(rB ⊗ C). Let W ′ be the subgroup of W consisting of the
elements which preserve ṼB as a set, and let WB := {w ∈ W ; τwτ −1 = w}. This
WB is nothing but W 1 in [Ca1, Chapter 13]. It is obvious that WB ⊂ W ′.

LEMMA 1.2

The group WB coincides with W ′.

Proof
For simplicity we put V := H2(S̃B ,R) and V τ := H2(S̃B ,R)ΓB . Let (V τ )⊥ be
the orthogonal complement of V τ with respect to the inner product. Assume
that τ2 = 1. Assume that g ∈ W preserves V τ as a set. Since g is an isometry
of V , it acts on (V τ )⊥. Since τ acts on (V τ )⊥ by −1, we see that g commutes
with τ . This means that g ∈ WB . We next treat the case where τ has order 3
(i.e., the D4 case). By the first part of [Ca1, Chapter 13], W is normalized by
τ ; in other words, τWτ −1 = W in the automorphism group of the root system.
Assume that WB does not coincide with W ′. Then there is an element w′ ∈ W ′

such that w := τw′τ −1 does not equal w′. Note that w′w−1 = 1 and w′w−1 acts
trivially on V τ . We show that such an element does not exist. Let V = (R4, ( , ))
be a 4-dimensional real vector space with a positive definite symmetric form. Let
e1, . . . , e4 be an orthogonal basis such that (ei, ej) = 0 if i = j and (ei, ei) = 1. One
can choose simple roots for D4 in such a way that C1 := e1 − e2, C2 := e2 − e3,
C3 := e3 − e4, and C4 := e3 + e4. Define τ by τ(C1) = c3, τ(C3) = C4, and
τ(C4) = C1. Then V τ is a 2-dimensional vector space spanned by e2 − e3 and
e1 − e2 + 2e3. Every element w of the Weyl group has the form

w(ei) = (−1)εieσ(i)

with a permutation σ of 1, 2, 3, and 4. Here each εi is zero or one and Σεi is
even. It is easily checked that if w acts on V τ trivially, then w = id . �

The natural map ṼB → q(ṼB) factors through ṼB/WB . By Lemma 1.2, the map
ṼB/WB → q(ṼB) is the normalization map. Since WB is generated by reflections
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(cf. [Ca1, Chapter 13]), ṼB/WB is smooth. Put VB := ṼB ∩ PDef(T̃B). Then
there is a commutative diagram

(12)

VB −−−−→ PDef(T̃B)⏐⏐� fB

⏐⏐�
fB(VB) −−−−→ PDef(TB)

We prove that the image of the map PDef(X) → PDef(T̃B) coincides with
VB . Since ṼB = Im(rB ⊗ C), the image is contained in VB by the commuta-
tive diagram of the period maps pX and pB . The tangent space T([X,σ]) PDef(X)
(resp., T([T̃B ,σB ]) PDef(T̃B)) is identified with H2(X,C) (resp., H2(S̃B ,C)).
Moreover, the tangential map

T([X,σ]) PDef(X) → T([T̃B ,σB ]) PDef(T̃B)

is identified with the map

rB ⊗ C : H2(X,C) → H2(S̃B ,C).

This means that the image of the map PDef(X) → PDef(T̃B) coincides with VB .

Step 4: Proof that ι is an isomorphism.
(i) There is a commutative diagram of functors

(13)

PDX −−−−→ PDT̃B⏐⏐�
⏐⏐�

PDY −−−−→ PDTB

Correspondingly we have a commutative diagram of formal spaces

(14)

̂PDef(X)
ϕ̂B−−−−→ ̂PDef(T̃B)

f̂

⏐⏐� f̂B

⏐⏐�
̂PDef(Y )

φ̂B−−−−→ ̂PDef(TB)

We have seen in Step 2 that the formal maps f̂ , f̂B , and ϕ̂B are completions
of the holomorphic maps f , fB , and ϕB . Let us prove that φ̂B is also the com-
pletion of a holomorphic map φB : PDef(Y ) → PDef(TB). In fact, there is a
commutative diagram of local rings

(15)

OPDef(TB),0

φ̂∗
B |PDef(TB),0−−−−−−−−−→ ÔPDef(Y ),0⏐⏐�

⏐⏐�
OPDef(T̃B),0

ϕ∗
B−−−−→ ÔPDef(X),0

Since Im(ϕ∗
B) ⊂ OPDef(X),0, we see that

φ̂∗
B(OPDef(TB),0) ⊂ OPDef(X),0 ∩ ÔPDef(Y ),0.
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On the right-hand side, we take the intersection in ÔPDef(X),0. We prove that

OPDef(X),0 ∩ ÔPDef(Y ),0 = OPDef(Y ),0.

For simplicity, we put A = OPDef(Y ),0 and B = OPDef(X),0. Let m be the maximal
ideal of A. Note that B is a finite A-module. Assume that g ∈ Â ∩ B. For n > 0,
we can write g = gn + hn with gn ∈ A and hn ∈ mnÂ. Since hn = g − gn ∈ B, we
have

hn ∈ mnÂ ∩ B ⊂ mnB̂ ∩ B = mnB.

In other words, g ∈ A + mnB. Since n is arbitrary, we have

g ∈
⋂
n>0

(A + mnB) = A.

This shows that φ̂B induces a homomorphism OPDef(TB),0 → OPDef(Y ),0 and
hence a holomorphic map

φB : PDef(Y ) → PDef(TB).

As a consequence we have a commutative diagram

(16)

PDef(X)
ϕB−−−−→ PDef(T̃B)

f

⏐⏐� fB

⏐⏐�
PDef(Y )

φB−−−−→ PDef(TB)

(ii) We briefly recall some results proved in [Na6]. Put U := Y \ Σ0 and
Ũ := π−1(U). There are natural morphisms of functors PDY → PDU and PDX →
PDŨ . By [Na6, Lemma 5.3], these are both isomorphisms. Denote by PT1

U

(resp., PT1
Ũ

) the tangent space of PDU (resp., PDŨ ). We have an isomorphism
PT1

Ũ
∼= H2(Ũ ,C) (cf. [Na6, Theorem 5.1, Proof(i)]). In [Na6] we constructed

a local system H of C-modules on Σ − Σ0. The local system H is the subsheaf
of Ext1(Ω1

U , OU ) which consists of local sections coming from the Poisson defor-
mations (see [Na6, Sections 1.4, 1.5]). We have an exact sequence (cf. [Na6,
Proposition 1.11])

0 → H2(U,C) → PT1
U → H0(Σ − Σ0, H).

Here the first term H2(U,C) is the space of locally trivial Poisson deformations
of U . There is a commutative diagram of exact sequences

(17)

0 −−−−→ H2(U,C) −−−−→ H2(Ũ ,C) −−−−→ H0(U,R2(πŨ )∗C)⏐⏐�
⏐⏐�

0 −−−−→ H2(U,C) −−−−→ PT1
U −−−−→ H0(Σ − Σ0, H)

Theorem 5.1 of [Na6] claims that PDU and PDŨ are both unobstructed and
have the same dimension. In the course of its proof, we also prove that two maps

H2(Ũ ,C) → H0
(
U,R2(πŨ )∗C

)
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and

PT1
U → H0(Σ − Σ0, H)

are both surjective. Suppose that the exceptional locus of π|Ũ : Ũ → U has
exactly m irreducible components. Then we have

dimIm
[
H2(Ũ ,C) → H0

(
U,R2(πŨ )∗C

)]
= m

and

dimIm[PT1
U → H0(Σ − Σ0, H)] = m.

There is a natural injection H0(U,R2(πŨ )∗C) →
∏

H2(S̃B ,C), and the image of
the composed map H2(Ũ ,C) → H0(U,R2(πŨ )∗C) →

∏
H2(S̃B ,C) has dimen-

sion m. Since H2(X,C) ∼= H2(Ũ ,C) (cf. [Na6, Lemma 5.3]),

dimIm
[
H2(X,C) →

∏
H2(S̃B ,C)

]
= m.

On the other hand, the left-hand side equals ΣdimVB by the argument in Step 3.
Hence we have m = ΣdimVB . Denote by T 1

SB
the tangent space of Def(SB)

at the origin. The stalk Hb of H at b ∈ B is isomorphic to T 1
SB

(cf. [Na6,
Sections 1.3, 1.5, 3.1]). Since H is a local system, there is a natural injection
H0(Σ − Σ0, H) →

∏
B∈B T 1

SB
. The image of the composed map PT1

U → H0(Σ −
Σ0, H) →

∏
B∈B T 1

SB
has dimension m. Note that T 1

SB
is identified with the

tangent space T0 PDef(TB) of PDef(TB) (see [Na6, Proposition 3.1]). The map
PT1

U →
∏

T 1
SB

coincides with T0 PDef(Y ) →
∏

T0 PDef(TB). Hence we have

dimIm
[
T0 PDef(Y ) →

∏
T0 PDef(TB)

]
= m.

On the other hand, the image of the map

PDef(Y ) →
∏

PDef(TB)

is
∏

fB(VB). Since PDef(Y ) is smooth and m = ΣdimfB(VB), we see that
fB(VB) is smooth. In particular, the map VB → fB(VB) is a finite Galois cover
with Galois group WB .

(iii) Let us consider the commutative diagram

(18)

PDef(X)
∏

ϕB−−−−→
∏

B∈B PDef(T̃B)

f

⏐⏐� ∏
fB

⏐⏐�
PDef(Y )

∏
φB−−−−→

∏
B∈B PDef(TB)

By the argument in Step 3, the horizontal map at the bottom factorizes as
PDef(Y ) →

∏
B∈B fB(VB) →

∏
PDef(TB) and the following diagram commutes:

(19)

PDef(X) −−−−→
∏

B∈B VB⏐⏐�
⏐⏐�

PDef(Y ) −−−−→
∏

B∈B fB(VB)
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The commutative diagram above induces a map

ι : PDef(X) → PDef(Y ) ×∏
fB(VB)

∏
VB .

First, we prove that PDef(Y ) ×∏
fB(VB)

∏
VB is smooth. Since m = ΣdimfB(VB)

and each fB(VB) is smooth, the map PDef(Y ) →
∏

fB(VB) is a smooth map.
Therefore, PDef(Y ) ×∏

fB(VB)

∏
VB →

∏
VB is also a smooth map, and

PDef(Y ) ×∏
fB(VB)

∏
VB is smooth. Finally, we prove that the map ι is an

isomorphism. The tangent space T of PDef(Y ) ×∏
fB(VB)

∏
VB at the ori-

gin {0} ×
∏

{0} is isomorphic to PT1
U ×∏

T0(fB(VB))

∏
T0VB . Since T0(VB) →

T0(fB(VB)) is the zero map, it is isomorphic to H2(U,C) ⊕
∏

VB . The map
dι : T0 PDef(X) (∼= H2(Ũ ,C)) → T is injective. In fact, if v ∈ H2(Ũ ,C) is
mapped to zero by this map, then v must be sent to zero by the map H2(Ũ ,C) →
T0VB for each B. In other words, v is sent to zero by the composed map
H2(Ũ ,C) → H0(U,R2(πŨ )∗C) →

∏
H2(S̃B ,C). Since the second map H0(U,

R2(πŨ )∗C) →
∏

H2(S̃B ,C) is an injection, v is already sent to zero by the first
map H2(Ũ ,C) → H0(U,R2(πŨ )∗C). By the commutative diagram above, we
see that v ∈ H2(U,C). On the other hand, v must be sent to zero by the map
H2(Ũ ,C) → PT1

U . The restriction of this map to H2(U,C) is an injection; hence,
v = 0. Since both T0 PDef(X) and T have the same dimension h2(U,C) + m, dι

is an isomorphism. Note that PDef(X) and PDef(Y ) ×∏
fB(VB)

∏
VB are both

smooth; hence, ι is an isomorphism. (This is the end of the proof of Theo-
rem 1.1) �

REMARK

For g ∈ WB , denote by gB : PDef(T̃B) → PDef(T̃B) the automorphism induced
by g. By Theorem 1.1, g also induces an automorphism gX : PDef(X) →
PDef(X). By pulling back the universal family T̃B → PDef(T̃B) by gB :
PDef(T̃B) → PDef(T̃B), we have a new family T̃ ′

B → PDef(T̃B). Since G acts
trivially on the universal family TB → PDef(TB), we have a diagram of the bira-
tional maps

T̃B → TB ×PDef(TB) PDef(T̃B) ← T̃ ′
B .

If g = 1, the birational map T̃B − − → T̃ ′
B is not regular. Similarly, by pulling

back the universal family X → PDef(X) by gX , we get a diagram of the birational
maps

X → Y ×PDef(Y ) PDef(X) ← X ′.

If g = 1, the birational map X − − → X ′ is not regular; moreover, some π-
exceptional divisor E ⊂ X lying over B is contained in its indeterminacy locus.

1.3.
The proof of Theorem 1.1 also works for the compact case. More exactly, let Y

be a projective symplectic variety, and let π : X → Y be a crepant (projective)
resolution. We assume that h0(X,Ω2

X) = 1 and h1(X, OX) = 0. By [Na1], the
Kuranishi spaces Def(X) and Def(Y ) are both nonsingular, and the induced
map f̄ : Def(X) → Def(Y ) is a finite surjective map. Markman [Ma] proved
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that f̄ is actually a Galois covering whose Galois group coincides with
∏

WB .
Let PDef(X) be the Kuranishi space for the Poisson deformations (symplectic
deformations) of (X,σ). Let μ : X → Def(X) be the Kuranishi family in the
usual sense. Then V := μ∗Ω2

X /Def(X) is a line bundle on Def(X), and V ∗ := V −
{0 − section} is a C∗-bundle over Def(X). The Kuranishi space PDef(X) for the
Poisson deformation of (X,σ) is defined as an open neighborhood of (X,σ) ∈ V ∗.
In particular, PDef(X) is a smooth variety. One can define a period map

pX : PDef(X) → H2(X,C)

by pX(Xt, σt) := [σt] ∈ H2(X,C). Let Q ⊂ H2(X,C) be the hypersurface defined
by q = 0 with the Beauville-Bogomolov form q (see [Be]). Let Q̄ ⊂ P(H2(X,C))
be the projective hypersurface defined by q = 0. There is a commutative diagram

(20)

PDef(X)
pX−−−−→ Q − {0}⏐⏐�

⏐⏐�
Def(X)

p̄X−−−−→ Q̄

where p̄X is the usual period map (see [Be]). The fibers of both vertical maps
are C∗, and pX maps the fibers isomorphically. Since p̄X is an open immersion
by the local Torelli theorem, pX is also an open immersion by the commutative
diagram. As in the proof of Theorem 1.1, Step 2, we have a commutative diagram
of period maps

(21)

PDef(X) −−−−→ PDef(T̃B)⏐⏐�
⏐⏐�

H2(X,C) −−−−→ H2(S̃B ,C)

Note that [σ] ∈ H2(X,C) is not zero, but [σB ] = 0 in H2(S̃B ,C) (cf. [Ka,
Corollary 2.8]). Let PDY be the Poisson deformation functor of (Y, σ̄) (see [Na6]).
As in [Na6], we prove that PDY is unobstructed. Let U := Y − Σ0, and put
Ũ := π−1(U). The key commutative diagram in the compact case is

(22)

0 −−−−→ H2(U, Ω̃≥1
U ) −−−−→ H2(Ũ ,Ω≥1

Ũ
) −−−−→ H0(U,R2(πŨ )∗C)⏐⏐�

⏐⏐�
0 −−−−→ H2(U, Ω̃≥1

U ) −−−−→ PT1
U −−−−→ H0(Σ − Σ0, H)

The exact sequence on the first row comes from the Leray spectral sequence

Ep,q
2 := Hp

(
U,Rq(πŨ )∗Ω≥1

Ũ

)
⇒ Hp+q(Ũ ,Ω≥1

Ũ
).

In the exact sequence on the second row, H2(U, Ω̃≥1
U ) is the space of the first-

order Poisson deformations of U which are locally trivial as flat deformations
(cf. the proof of [Na6, Lemma 1.9]), and PT1

U is the tangent space of PDU .
Note that H2(Ũ ,Ω≥1

Ũ
) is the tangent space of PDŨ (cf. [Na5, Propositions 8, 9]).

Since H2(X,C) ∼= H2(Ũ ,C) (cf. the proof of [Na3, Proposition 2]), H2(Ũ) has
a pure Hodge structure of weight 2. By the distinguished triangle
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Ω≥1

Ũ
→ Ω·

Ũ
→ OŨ

[1]→ Ω≥1

Ũ
[1]

and by the fact that H1(Ũ , OŨ ) = 0, we have an exact sequence

0 → H2(Ũ ,Ω≥1

Ũ
) → H2(Ũ ,C) → H2(Ũ , OŨ ).

By the proof of [Na3, Proposition 2], Gr0F (H2(Ũ)) = H2(Ũ , OŨ ). Therefore,
H2(Ũ ,Ω≥1

Ũ
) = F 1(H2(Ũ)). Since F 1(H2(X)) = H2,0(X) ⊕ H1,1(X), we see that

the map

H2(Ũ ,Ω≥1

Ũ
) → H0

(
U,R2(πŨ )∗C

)

is identified with the map

H2,0(X) ⊕ H1,1(X) ⊂ H2(X,C) → H0
(
U,R2(πŨ )∗C

)
.

Since U has only quotient singularities, U is Q-factorial. Then by [KM, Propo-
sition 12.1.6],

Im
[
H2(X,C) → H0

(
U,R2(π|Ũ )∗C

)]
= Im

[
ΣB,iC[Ei(B)] → H0

(
U,R2(π|Ũ )∗C

)]
.

Since the map H0(U,R2(π|Ũ )∗C) →
∏

H2(S̃B ,C) is an injection, we see that

dimIm
[
H2(X,C) → H0

(
U,R2(π|Ũ )∗C

)]
= dimIm

[
H2(X,C) →

∏
H2(S̃B ,C)

]

= m,

where m = ΣdimVB . By the map H2(X,C) → H0(Y,R2π∗C), H0,2(X) is sent
to zero. Therefore,

dimIm
[
H2(Ũ ,Ω≥1

Ũ
) → H0

(
U,R2(πŨ )∗C

)]
= m.

By [Na6, Proposition 4.2], dimH0(Σ − Σ0, H) = m. Then the same argument as
in [Na1, Theorem 4.1] can be applied to our case to prove that PDY is unob-
structed. Since H0(Y,ΘY ) = 0, PDY is prorepresented by a complete regular
local ring R over C. We denote by ̂PDef(Y ) the formal scheme† defined by R.
Since R1π∗ OX = 0 and π∗ OX = OY , the crepant resolution π : X → Y induces
a morphism of functors PDX → PDY (cf. [Na6, Theorem 5.1, proof (i)]). By
the formal universality of ̂PDef(Y ), we have a formal map ̂PDef(X) → ̂PDef(Y ).
Note that dim ̂PDef(X) = dim ̂PDef(Y ), and as in [Na1, Lemma 4.2], the formal
map is finite. There is a commutative diagram

(23)

̂PDef(X) −−−−→ ̂PDef(Y )⏐⏐�
⏐⏐�

̂Def(X) −−−−→ ̂Def(Y )

†The author has not yet constructed the Kuranishi space for PDY as a complex space.
Let β : Y → Def(Y ) be the universal family, and let Y 0 ⊂ Y be the locus where β is smooth.

We put β0 := β| Y0 . Then V̄ := (β0)∗Ω2
Y0/Def(Y )

seems very likely to be a line bundle on

Def(Y ) (see [Na7]). Then the Kuranishi space for PDY would be realized as an open subset of

V̄ − {0 − section}.
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The fibers of the maps ̂PDef(X) → ̂Def(X) and ̂PDef(Y ) → ̂Def(Y ) both
have dimension 1, and they correspond to the Poisson deformations of X and Y ,
where the underlying flat deformations are fixed and the symplectic structures
only vary. Therefore,

̂PDef(X) ∼= ̂PDef(Y ) ×
̂Def(Y )

̂Def(X).

To prove Markman’s result, we have to prove only that the map ̂PDef(X) →
̂PDef(Y ) is a finite Galois cover with Galois group

∏
B∈B WB . The rest of the

argument is similar to Theorem 1.1. Another approach avoiding formal schemes
is the following. We first remark that Poisson deformations of T̃B and TB are
consequently determined only by the underlying flat deformations (cf. proof of
Theorem 1.1, Step 2(ii) and [Na6, Proposition 3.1]). In particular, the map
ϕB : PDef(X) → PDef(T̃B) factorizes as

PDef(X) → Def(X) → PDef(T̃B).

Let VB (⊂ PDef(T̃B)) be the image of the second map. By the same reasoning
as in Theorem 1.1, we then have a commutative diagram

(24)

Def(X) −−−−→
∏

B∈B VB⏐⏐�
⏐⏐�

Def(Y ) −−−−→
∏

B∈B fB(VB)

The induced map

Def(X) ∼= Def(Y ) ×∏
B∈B fB(VB)

∏
B∈B

VB

turns out to be an isomorphism.

2. Poisson deformations associated with nilpotent orbits

Let g be a complex simple Lie algebra. We fix a Cartan subalgebra h of g and
let p be a parabolic subalgebra of g such that h ⊂ p. Denote by r(p) (resp.,
n(p)) the solvable radical (resp., nilpotent radical) of p. Define k(p) := h ∩ r(p),
and let l(p) be the Levi subalgebra of p which contains h. Let G be the adjoint
group of g, and let P (resp., L) be the closed subgroup of G corresponding to p

(resp., l(p)). The cotangent bundle T ∗(G/P ) of G/P is isomorphic to the vector
bundle G ×P n(p) over G/P . The Springer map s : G ×P n(p) → g is defined by
s([g,x]) := Adg(x) for [g,x] ∈ G ×P n(p). The image Im(s) is the closure Ō of a
nilpotent orbit O. The Springer map is a generically finite, surjective, projective
morphism. Let G ×P n(p) → Õ → Ō be the Stein factorization of s. Let W be
the Weyl group of G. If we fix a Borel subalgebra b such that h ⊂ b ⊂ p, then
p is determined by a choice of a subset J of the set of simple roots (see [Na4,
(P1)]). Then W (L) is generated by reflections in elements of J ; hence, W (L) is
a subgroup of W . Define W ′ := NW (L)/W (L), where NW (L) is the normalizer
group of L in W , and W (L) is the Weyl group of L. NW (L) acts on k(p),
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where W (L) acts trivially on k(p). Therefore, W ′ acts effectively on k(p). Let us
construct the Brieskorn-Slodowy diagram. There is a direct sum decomposition

r(p) = k(p) ⊕ n(p) (x → x1 + x2),

where n(p) is the nil-radical of p. We have a well-defined map

G ×P r(p) → k(p)

by sending [g,x] ∈ G ×P r(p) to x1 ∈ k(p) ([S2, Section 4.3]). On the other hand,
define a map G ×P r(p) → G · r(p) by [g,x] → Adg(x). By the adjoint quotient
map g → h/W , we have a map from G · r(p) to h/W . These maps form a
commutative diagram (see [S2, Section 4.3])

(25)

G ×P r(p) −−−−→ G · r(p)

f

⏐⏐�
⏐⏐�

k(p) −−−−→ h/W

One can find an instructive example of the diagram in [Na2, Example 7.10].

Let ˜G · r(p) be the normalization of G · r(p). Here the set G · r(p) is irreducible
since it is the image of the smooth variety G ×P r(p); we regard G · r(p) as a
variety with the reduced structure. The normalization of the image of the map
G · r(p) → h/W coincides with k(p)/W ′. Then the map ˜G · r(p) → h/W factors
through k(p)/W ′. By [Na4, Lemma 1.1], we already know that G · r(p) ×h/W k(p)

is irreducible. Let ˜G · r(p) ×h/W k(p) be the normalization of the variety (G ·
r(p) ×h/W k(p))red. Then ˜G · r(p) is the quotient variety of ˜G · r(p) ×h/W k(p) by

W ′. The variety ˜G · r(p) ×h/W k(p) has a resolution G ×P r(p) whose canonical

line bundle is trivial (see [Na4, Lemma 1.2]). In particular, ˜G · r(p) ×h/W k(p)
has only rational singularities (cf. [Na4, Lemma 1.2]). Hence its quotient variety
˜G · r(p) also has rational singularities. In particular, ˜G · r(p) is Cohen-Macaulay.

LEMMA 2.1

The central fiber F of ˜G · r(p) ×h/W k(p) → k(p) is isomorphic to Õ.

Proof
Since ˜G · r(p) ×h/W k(p) is Cohen-Macaulay and k(p) is smooth, the central fiber
F is also Cohen-Macaulay. On the other hand, let us consider the birational
map G ×P r(p) → ˜G · r(p) ×h/W k(p) and take their central fibers to get a map
T ∗(G/P ) → Fred with connected fibers. Since the Springer map is generically
finite, this map is birational by Zariski’s main theorem. Moreover, it is an
isomorphism outside a certain codimension 2 subset Z of Fred. Take a point
x ∈ Fred − Z. Then we have a surjection

OF,x → OFred,x
∼= OT ∗(G/P ),x.
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By the lemma of Nakayama, this implies that O
˜G·r(p)×h/W k(p),x

∼= OG×P r(p),x.

Therefore, F is reduced at x, and moreover, F is smooth at x. Since F is
Cohen-Macaulay and regular in codimension one, F is normal. This means that
F = Õ. �

In the remainder, we always assume the following.

ASSUMPTION

The Springer map s : T ∗(G/P ) → Ō is birational.

We often write Xp for G ×P r(p) and Yk(p) for ˜G · r(p) ×h/W k(p). Denote by
μp the birational map from Xp to Yk(p). The map μp is a crepant resolution
of Yk(p), which is an isomorphism in codimension one (see [Na4, Theorem 1.3]).
Let Xp,0 (resp., Yk(p),0) be the central fiber of Xp → k(p) (resp., Yk(p) → k(p)).
Note that Xp,0 = T ∗(G/P ); and Yk(p),0 = Õ by Lemma 2.1. The birational map
μp,0 : Xp,0 → Yk(p),0 coincides with the Stein factorization of the Springer map
s : T ∗(G/P ) → Ō.

We briefly review [Na4, Section 1(P2), (P3)]. Let S(l(p)) be the set of
parabolic subalgebras p′ which contain l(p) as Levi subalgebras. Then every
crepant resolution of Yk(p) is isomorphic to μp′ : Xp′ → Yk(p) with p′ ∈ S(l(p)) (see
[Na4, Theorem 1.3]). Let M(L) := Homalg.gp.(L,C∗). The second cohomology
group H2(Xp′ ,R) is isomorphic to M(L) ⊗ R. By this isomorphism, the nef
cone Amp(μp′ ) is regarded as a cone in M(L) ⊗ R. The cohomology group
H2(Xp′,0,R) is also isomorphic to M(L) ⊗ R. By this isomorphism, the nef
cone Amp(μp′,0) is regarded as a cone in M(L) ⊗ R. Note that Amp(μp′ ) =
Amp(μp′,0). One has the following (see [Na4, Remark 1.6]):

M(L) ⊗ R =
⋃

p′ ∈S(l(p))

Amp(μp′ ).

We say that two nef cones Amp(μp′ ) and Amp(μp′ ′ ) are adjacent to each other
if they share a common codimension one face. In this case, we also say that
p′ and p′ ′ are adjacent to each other. If p′ and p′ ′ are adjacent to each other,
p′ and p′ ′ are related by an operation called the twist. There are two kinds of
twists, a twist of the first kind and a twist of the second kind. If p′ and p′ ′

are adjacent to each other, Xp′ and Xp′ ′ are connected by a flop (cf. [Na4,
Section 1]). If the corresponding twist is of the first kind (resp., second kind),
we say that the flop is of the first kind (resp., second kind). Let S 1(l(p)) be the
set of parabolic subalgebras in S(l(p)) which can be obtained from p by a finite
succession of twists of the first kind. Then

⋃
p′ ∈S1(l(p)) Amp(μp′ ) coincides with

the movable cone Mov(μp,0). This movable cone Mov(μp,0) is a fundamental
domain of M(L) ⊗ R by the action of W ′. In particular,

M(L) ⊗ R =
⋃

w∈W ′

w(Mov(μp,0)).
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Moreover, w(Mov(μp,0)) coincides with the movable cone Mov(μw(p),0). One has

Mov(μw(p),0) =
⋃

p′ ∈S1(l(p))

Amp(μw(p′),0).

By [Ho], W ′ is almost a reflection group. But W ′ turns out to be a reflection
group under Assumption.

LEMMA 2.2

The group W ′ is generated by reflections of k(p). In particular, k(p)/W ′ is
smooth.

Proof
Assume that p and p′ are adjacent to each other and that they are related by
a second twist. Then p′ = w(p) for some w ∈ W ′. Let φw : Xp → Xw(p) be
the isomorphism defined by [g,x] → [gw−1,Adw(x)] for [g,x] ∈ G ×P r(p). Let
φ̄w : Yk(p) → Yk(p) be the automorphism induced by the map id × w : G · r(p) ×h/W

k(p) → G · r(p) ×h/W k(p). Then we have a commutative diagram

(26)

Xp

φw−−−−→ Xw(p)⏐⏐�
⏐⏐�

Yk(p)
φ̄w−−−−→ Yk(p)

The composite Xp → Xw(p) − − → Xp induces an automorphism of H2(Xp,

R). We call this automorphism ϕw. In this way, W ′ acts on H2(Xp,R). Note
that its dual action coincides with the natural action of W ′ on k(p) by [Na4,
Lemma 2.1]. We prove that ϕw is a reflection, that is, an involution that fixes
all points in a certain hyperplane. The flop Xw(p) − − → Xp can be expressed
more exactly by the diagram

Xw(p) → ˜G ×P̄ P̄ · r(p) ×k(l(p̄)∩p)/W ′ ′ k
(
l(p̄) ∩ p

)
←− Xp.

Here W ′ ′ is the subgroup of the Weyl group W (l(p̄)) which stabilizes k(l(p̄) ∩ p)
as a set. The element w is contained in W ′ ′; hence, it acts on

˜G ×P̄ P̄ · r(p) ×k(l(p̄)∩p)/W ′ ′ k(l(p̄) ∩ p) by id × w. Put

Zp̄ := ˜G ×P̄ P̄ · r(p) ×k(l(p̄)∩p)/W ′ ′ k
(
l(p̄) ∩ p

)

for short.
Then we have a commutative diagram

Xp

φw→ Xw(p) − − → Xp

↓ ↓

Zp̄
id×w→ Zp̄

↓ ↓

Yk(p) → Yk(p)
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The automorphism Zp̄
id×w→ Zp̄ induces the identity map on H2(Zp̄,R). Since

the image of the map H2(Zp̄,R) → H2(Xp,R) has codimension one, the auto-
morphism ϕw of H2(Xp,R) is a reflection. By [Na4, Proposition 2.3],

H2(Xp,R) =
⋃

w∈W ′

w
(
Mov(μp,0)

)
.

Note that w(Mov(μp,0)) = Mov(μw(p),0). If w(Mov(μp,0)) and w′(Mov(μp,0))
are adjacent to each other, then w−1w′ is a reflection. For any w ∈ W ′, one
can connect w(Mov(μp,0)) and Mov(μp,0) by a finite sequence of movable cones
w1(Mov(μp,0)), w2(Mov(μp,0)), . . . ,wn(Mov(μp,0)) with w1 = 1 and wn = w in
such a way that wi(Mov(μp,0)) and wi+1(Mov(μp,0)) are adjacent for all i. Then
w can be represented as a product of reflections: w = (wn · w−1

n−1) · · · (w2 · w−1
1 ).

�

REMARK

When the Springer map s : T ∗(G/P ) → Ō is not birational, Lemma 2.2 does not
hold (see [Na4, Example 1.9, Remark 2.4]).

COROLLARY 2.3
˜G · r(p) is flat over k(p)/W ′.

Proof
First, note that ˜G · r(p) is Cohen-Macaulay. Since every fiber of the map
˜G · r(p) → k(p)/W ′ has the dimension equal to dim ˜G · r(p) − dim k(p)/W ′ and

k(p)/W ′ is smooth, the map ˜G · r(p) → k(p)/W ′ is flat. �

LEMMA 2.4
˜G · r(p) ×k(p)/W ′ k(p) is a variety.

Proof
Let B be the affine ring of ˜G · r(p), and let A (resp., A′) be the affine ring of
k(p)/W ′ (resp., k(p)). Denote by L the quotient field of B and by K (resp., K ′)
the quotient field of A (resp., A′). Since B is flat over A, B ⊗A A′ ⊂ B ⊗A K ′ =
B ⊗A K ⊗K K ′. Since B ⊗A K is the localization of B by the multiplicative
set S := A − {0}, it is naturally contained in L. Therefore, B ⊗A K ⊗K K ′ ⊂
L ⊗K K ′. Since K ′ is a separable extension of K, L ⊗K K ′ is reduced. Since
G · r(p) ×h/W k(p) is irreducible, we see that L ⊗K K ′ is an integral domain.
Finally, we conclude that B ⊗A A′ is an integral domain because B ⊗A A′ ⊂
L ⊗K K ′. �

LEMMA 2.5

We have

˜G · r(p) ×k(p)/W ′ k(p) ∼= ˜G · r(p) ×h/W k(p).
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The map ˜G · r(p) → k(p)/W ′ is flat, and its central fiber coincides with Õ.

Proof
Let A, A′, and B be the same as in the proof of Lemma 2.4. Consider the
map G · r(p) → h/W . If B̄ and C are affine rings of G · r(p) and h/W , respec-
tively, then B̄ is a C-algebra. The origin 0 ∈ h/W corresponds to a maximal

ideal m̄ of C. Let B′ be the affine ring of ˜G · r(p) ×h/W k(p). By Lemma 2.4,
we already know that B ⊗A A′ is an integral domain. We have an injection
B ⊗A A′ → B′. Let m′ (resp., m) be the maximal ideal of A′ (resp., A) corre-
sponding to the origin 0 ∈ k(p) (resp., 0 ∈ k(p)/W ′). By the base change prop-
erty, B ⊗A (A′/m′) = B/mB. Then the injection above induces a homomorphism
B/mB → B′/m′B′. Moreover, there is a map B̄/m̄B̄ → B/mB. By the defini-
tion, Spec(B̄/m̄B̄)red = Ō. In our case, Spec(B′/m′B′) = Õ is the normalization
of Ō. Note that the normalization map Õ → Ō is an isomorphism in codimen-
sion one. Therefore, the cokernel of the map B̄/m̄B̄ → B′/m′B′ has the support
with codimension ≥ 2 in Õ. The cokernel Q of the map B/mB → B′/m′B′ also
has the support with codimension ≥ 2 in Õ. Take a point q ∈ Õ − Supp(Q).
Then, by the lemma of Nakayama, we have an isomorphism (B ⊗A A′)q

∼= B′
q.

In particular, Spec(B/mB) and Spec(B′/mB′) are isomorphic in codimension
one; hence, we see that Spec(B/mB) is regular in codimension one. On the
other hand, by Corollary 2.3, B is Cohen-Macaulay and is flat over A. There-
fore, Spec(B/mB) is Cohen-Macaulay. This means that Spec(B/mB) is normal;
hence, Spec(B/mB) = Õ. �

REMARK

When the Springer map s : T ∗(G/P ) → Ō is not birational, the central fiber of
the map G · r(p) → h/W is everywhere nonreduced.

PROPOSITION 2.6

Two flat morphisms

G ×P r(p) → k(p)

and

˜G · r(p) → k(p)/W ′

are, respectively, Poisson deformations of T ∗(G/P ) and Õ.

Proof
The smooth variety G ×P r(p) over k(p) admits a G-invariant relative symplectic
2-form ω (see [CG, Proposition 1.4.14]).† Let ωt be the restriction of ω to the

†In [CG], coajoint orbits of g∗ are treated. But the Killing form of g identifies the coadjoint
orbits with adjoint orbits. The variety G ×P (λ + p⊥) is identified with a fiber of G ×P r(p) →
k(p) by the Killing form.
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fiber G ×P (t + n(p)) over t ∈ k(p). There is a G-equivariant map

μt : G ×P
(
t + n(p)

)
→ g

defined by μt([g, t+x]) = Adg(t+x). The image Im(μt) coincides with the closure
Ōt of an adjoint orbit Ot. By [CG, Proposition 1.4.14(2)], ωt is the pullback of

the Kostant-Kirillov form on Ot by μt. Denote by ( ˜G · r(p) ×h/W k(p))reg the
smooth part of ˜G · r(p) ×h/W k(p). There is a crepant resolution

G ×P r(p) → ˜G · r(p) ×h/W k(p)

which does not change the smooth locus. Then ω determines a relative symplectic
2-form ω̄ of ( ˜G · r(p) ×h/W k(p))reg → k(p). Note that

˜G · r(p) ×h/W k(p) ∼= ˜G · r(p) ×k(p)/W ′ k(p)

by Lemma 2.5. Since W ′ acts on k(p), it acts on ˜G · r(p) ×k(p)/W ′ k(p) in a natural
manner. Let us check that ω̄ is W ′-invariant. Take a general point t ∈ k(p) (or
more precisely, take t ∈ k(p)reg in the notation of [Na4, Section 1, (P1)]). Then
the fiber of the map

f̄ : ˜G · r(p) ×k(p)/W ′ k(p) → k(p)

over t is the semisimple (adjoint) orbit G · t (cf. [Na4, Lemma 1.1]). Then
ω̄t coincides with the Kostant-Kirillov form on G · t. If w ∈ W ′, then w(t) ∈
k(p)reg and the fiber f̄ −1(w(t)) is G · w(t). Moreover, ω̄w(t) coincides with the
Kostant-Kirillov form on G · w(t). Since G · t = G · w(t), we see that ω̄t and
ω̄w(t) coincide. This argument shows that ω̄ is W ′-invariant on a Zariski open
subset of ( ˜G · r(p) ×k(p)/W ′ k(p))reg. Therefore, ω̄ is W ′-invariant. The relative
2-form ω̄ descends to a relative symplectic 2-form of ( ˜G · r(p))reg → k(p)/W ′,
which determines a Poisson structure of ( ˜G · r(p))reg over k(p)/W ′. This Poisson

structure uniquely extends to that of ˜G · r(p). �

PROPOSITION 2.7

The Poisson deformation f : G ×P r(p) → k(p) of T ∗(G/P ) is universal at 0 ∈
k(p).

Proof
For λ ∈ k(p), the vector space Cλ ⊕ n(p) becomes a P -module by the adjoint
action. Thus one can define a vector bundle G ×P (Cλ ⊕ n(p)) over G/P . This
vector bundle fits into the exact sequence

0 → G ×P n(p) → G ×P
(
Cλ ⊕ n(p)

)
→ G/P × Cλ → 0.

Since G ×P n(p) ∼= T ∗(G/P ), this extension gives an element e(λ) ∈ H1(G/P,

Ω1
G/P ). Assume that b2(G/P ) = n, or equivalently, assume that dim k(p) = n.

Then one can find n maximal parabolic subgroups Qi (1 ≤ i ≤ n) such that
P ⊂ Qi and each projection map πi : G/P → G/Qi determines an extremal ray



748 Yoshinori Namikawa

of the nef cone Amp(G/P ), which is a simplicial polyhedral cone of dimension
n. Note that each Qi is the maximal parabolic subgroup associated to a vertex
in the set of marked vertices corresponding to P (cf. [Na4, Section 1(P3)]). Let
λi ∈ k(qi) ⊂ k(p) be a nonzero element. Note that, since k(qi) is one-dimensional,
λi is unique up to constant. Then one has an exact sequence of vector bundles
on G/Qi:

0 → G ×Qi n(qi) → G ×Qi
(
Cλ ⊕ n(qi)

)
→ G/Qi × Cλi → 0.

Let fi : G ×Qi (Cλi ⊕ n(qi)) → k(qi) be the map defined by fi([g, tλi + x]) :=
tλi with x ∈ n(qi). The fiber f −1

i (0) = T ∗(G/Qi) is not an affine variety, but
f −1

i (λi) is an affine variety. Thus the exact sequence above does not split, and
its extension class e(λi) ∈ H1(G/Qi,Ω1

G/Qi
) is not zero. The exact sequence is

pulled back to the exact sequence of vector bundles on G/P :

0 → G ×P n(qi) → G ×P
(
Cλ ⊕ n(qi)

)
→ G/P × Cλi → 0.

By the natural injection G ×P n(qi) → G ×P n(p), one obtains an exact sequence

0 → G ×P n(p) → G ×P
(
Cλi ⊕ n(p)

)
→ G/P × Cλi → 0.

The extension class of this exact sequence is the image of e(λi) ∈ H1(G/Qi,

Ω1
G/Qi

) by the map H1(G/Qi,Ω1
G/Qi

) → H1(G/P,Ω1
G/P ). Note that {e(λi)} is

a basis of H1(G/P,Ω1
G/P ). Therefore, the exact sequence

0 → G ×P n(p) → G ×P r(p) → G/P × k(p) → 0

is the universal extension of G ×P n(p) by the trivial line bundle. Let

0 → Ω1
G/P → E → On

G/P → 0

be the corresponding exact sequence of the sheaves. Let p : T ∗(G/P ) (= G ×P

n(p)) → G/P be the canonical projection. Then we have a commutative diagram
of exact sequences:

(27)

0 −−−→ p∗Ω1
G/P −−−→ p∗ E −−−→ p∗ On

G/P −−−→ 0
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−→ ΘT ∗(G/P ) −−−→ ΘG×P r(p)|T ∗(G/P ) −−−→ NT ∗(G/P )/G×P r(p) −−−→ 0

Identify k(p) with its tangent space at zero. The Kodaira-Spencer map θf of
f is given by the composite

k(p) → H0
(
T ∗(G/P ),NT ∗(G/P )/G×P r(p)

)
→ H1

(
T ∗(G/P ),ΘT ∗(G/P )

)
.

On the other hand, by the identification of k(p) with H0(G/P, On
G/P ), one has a

map

k(p) ∼= H0(G/P, On
G/P ) → H1(G/P,Ω1

G/P ).

By the construction, the Kodaira-Spencer map is factored by this map:

k(p) → H1(G/P,Ω1
G/P ) → H1

(
T ∗(G/P ),ΘT ∗(G/P )

)
.
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The first map is an isomorphism by the definition of E . The second map is an
injection. In fact, let S ⊂ T ∗(G/P ) be the zero section. Then NS/T ∗(G/P )

∼= Ω1
S ,

and the composite H1(G/P,Ω1
G/P ) → H1(T ∗(G/P ),ΘT ∗(G/P )) → H1(S,Ω1

S) is
an isomorphism. Therefore, the Kodaira-Spencer map θf is an injection. Since
f is a Poisson deformation of T ∗(G/P ), the Kodaira-Spencer map θf is factored
by the Poisson Kodaira-Spencer map θP

f :

k(p)
θP

f→ H2
(
T ∗(G/P ),C

)
→ H1

(
T ∗(G/P ),Ω1

T ∗(G/P )

)
.

Hence θP
f is also injective. Since dim k(p) = h2(T ∗(G/P ),C) = n, θP

f is actually
an isomorphism. �

THEOREM 2.8

The Poisson deformation ˜G · r(p) → k(p)/W ′ is universal at 0 ∈ k(p)/W ′.

Proof
By Proposition 2.7, G ×P r(p) → k(p) is the universal Poisson deformation of
T ∗(G/P ) around 0 ∈ k(p). Since Õ has a C∗-action with positive weight, the
universal Poisson deformation of Õ is algebraized to a C∗-equivariant map Y →
Ad with Y0 = Õ. There is a C∗-equivariant commutative diagram

(28)

G ×P r(p) −−−−→ Y⏐⏐�
⏐⏐�

k(p) π−−−−→ Ad

If t ∈ k(p) is general, then the induced map G ×P (t + n(p)) → Yπ(t) is an
isomorphism. By the main theorem (Theorem 1.1), k(p) → Ad is a finite Galois
map. Denote by H its Galois group. By Proposition 2.6, we have seen that
˜G · r(p) → k(p)/W ′ is a Poisson deformation of Õ. By the (formal) universality

of Y → Ad at zero, there is a formal map ̂k(p)/W ′ → Âd. Since ˜G · r(p) has

a C∗-action and the Poisson deformation ˜G · r(p) → k(p)/W ′ is C∗-equivariant,
the formal map is also C∗-equivariant. Then the formal map determines a map
k(p)/W ′ → Ad (cf. [Na5, Section 7]). The map k(p) → Ad in the commutative
diagram factorizes as

k(p) → k(p)/W ′ → Ad.

In fact,

SpecΓ
(
G ×P r(p), OG×P r(p)

)
→ k(p)

is a Poisson deformation of Õ, and it coincides with the pullback of Y → Ad

by π. But

SpecΓ
(
G ×P r(p), OG×P r(p)

)
= ˜G · r(p) ×k(p)/W ′ k(p)
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by Lemma 2.5. As a result, we have a commutative diagram of Poisson defor-
mations of Õ:

(29)

SpecΓ(G ×P r(p), OG×P r(p)) −−−−→ ˜G · r(p) −−−−→ Y⏐⏐�
⏐⏐�

⏐⏐�
k(p) −−−−→ k(p)/W ′ −−−−→ Ad

We prove that H = W ′. We only have to show that H ⊂ W ′. An element h ∈
H induces an automorphism of k(p) over Ad. Denote this automorphism also by
h. Let us consider the automorphism of Y ×Ad k(p) defined by id × h. It induces a
birational automorphism G ×P r(p) − − → G ×P r(p) and a commutative diagram

G ×P r(p) − − → G ×P r(p)

↓ ↓

Y ×Ad k(p) → Y ×Ad k(p)

Let X be the fiber product of the diagram

Y ×Ad k(p) id×h→ Y ×Ad k(p) ← G ×P r(p).

Then there is a birational map (over Y ×Ad k(p))

G ×P r(p) − − → X ,

which is an isomorphism in codimension one. Since Y ×Ad k(p) is affine, its
normalization is isomorphic to Yk(p). Denote by μp (resp., μ) the birational map
from G ×P r(p) (resp., X ) to Yk(p). In H2(G ×P r(p),R), the movable cone
Mov(μ0) coincides with w(Mov(μp,0)) for some w ∈ W ′. Let us consider the
automorphism of Y ×Ad k(p) defined by id × h · w−1. Let X ′ be the fiber product
of the diagram

Y ×Ad k(p) id×h·w−1

→ Y ×Ad k(p) ← G ×P r(p).

As above, there is a birational map (over Y ×Ad k(p); hence, over Yk(p))

G ×P r(p) − − → X ′.

Denote by μ′ the birational map from X ′ to Yk(p). Then by the construction,
Mov(μ′

0) coincides with Mov(μp,0). It follows that G ×P r(p) and X ′ are con-
nected by a sequence of flops of the first kind:

G ×P r(p) − − → G ×P1 r(p1) − − → · · · − − → G ×Pk r(pk) = X ′.

Let E ⊂ T ∗(G/P ) be an exceptional divisor of the Springer map s : T ∗(G/P ) →
Õ. At a general point of E, the flop G ×P r(p) − − → G ×P1 r(p1) is an iso-
morphism. Let E1 be the proper transform of E by this flop. At a general
point of E1, the next flop G ×P1 r(p1) − − → G ×P2 r(p2) is also an isomorphism.
Similar things happen for all flops of the first kind. If h · w−1 = 1, then, by
the main theorem (Theorem 1.1), the indeterminacy locus of the birational map
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G ×P r(p) − − → X ′ must contain at least one s-exceptional divisor E (cf. remark
below Theorem 1.1). Therefore, h · w−1 = 1. �

EXAMPLE 2.9

The following are standard examples due to Slodowy [S2]. Let g be of type
Bm, Cm, F4, or G2. Let B be a Borel subgroup of G. Then the Springer map
s : T ∗(G/B) → g gives a crepant resolution of the nilpotent cone N ; namely,
Im(s) = N . Note that N is the closure of the regular nilpotent orbit of g. In
this case, Σ − Σ0 has only one connected component, say, B. Then the surface
SB has a singularity of type A2m−1, Dm+1, E6, or D4 according as g is of type
Bm, Cm, F4, or G2. Note that W ′ is the Weyl group W (G) of G. By Theorems
2.8 and 1.1, we see that WB = W (G). This means that Exc(s) is a divisor of
T ∗(G/B) with exactly m (resp., 4, 2) irreducible components when g is of type
Bm or Cm (resp., F4, G2).

Acknowledgments. I thank E. Markman for pointing out a mistake in the proof
of Theorem 1.1 in the first version and the referee for reading the manuscript
very carefully and giving valuable suggestions.
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