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Abstract We discuss the spectral theory of second-order differential operators that
describe the vibration of strings, diffusion processes, and others.M.G.Krein established
a one-to-one correspondence between the spectral measure and the string in the case of
regular left boundaries, and this correspondence was extended by S. Kotani to a certain
class of strings with singular left boundary. In this article we study the relationship
between the asymptotic behavior of the spectral measure and that of the corresponding
string. Although the results are basically for Kotani’s strings, some are also applicable
to Krein’s.

1. Introduction

We first review quickly S. Kotani’s generalization (see [5]) of M. G. Krein’s spec-
tral theory in order to explain the notation. By a string we mean a function

m : (−∞,+∞) −→ [0,+∞]

which is nondecreasing, right-continuous, and normalized so that m(−∞) = 0.
We exclude the trivial case, where m vanishes identically. In this note a string m

is referred to as a Krein’s string if m(−0) = 0.
For a string m, we are interested in the spectral theory of the generalized

Strum-Liouville operator

L = − d

dm(x)
d

dx
, −∞ < x < �,

where

�
(
=�(m)

)
= sup

{
x

∣∣ m(x) < ∞
}

(≤ +∞).

This operator appears not only in the theory of vibration of strings but also in
Feller’s theory of diffusion processes, where dm(x) is called the speed measure.

We say that a string m has left boundary of limit circle type if, for some
c (< �),

(1.1)
∫ c

− ∞
x2 dm(x) < ∞,
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or, equivalently, for some c ∈ R,

(1.2)
∫ c

− ∞

(∫ x

− ∞
m(u)du

)
dx < ∞.

Although this terminology is compatible with Weyl’s classification of boundaries,
our framework is based on the idea of inextensible measures introduced in [7]
and, hence, boundary conditions are implicitly included in the string itself when
necessary. For example, the operator − d2

dx2 on [0,1] with the boundary condition
u′(0) = 0, u(1) = 0 corresponds to the string

m(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 (x < 0),

x (0 ≤ x < 1),

∞ (x ≥ 1).

Throughout the article we denote by Mcirc the totality of strings m satisfying
the condition (1.1). Elements of Mcirc are referred to as Kotani’s strings. Note
that Kotani’s strings include Krein’s. For each m ∈ Mcirc, we can define ϕλ(x)
(x < �), for every λ ∈ C, as the unique solution of

Lu = λu, u(−∞) = 1,

or, precisely, of the following integral equation:

ϕλ(x) = 1 − λ

∫ x

− ∞
(x − y)ϕλ(y)dm(y) (x < �).

Let L2
0((−∞, �), dm) denote the space of all square integrable functions f such

that Supp(f) ⊂ (−∞, �), and for f ∈ L2
0((−∞, �), dm), define the generalized

Fourier transform by

f̂(λ) =
∫ �

− ∞
f(x)ϕλ(x)dm(x).

Then a nonnegative Radon measure σ(dλ) on [0, ∞) is called a spectral measure
if

‖f ‖L2
0((− ∞,�),dm) = ‖f̂ ‖L2([0,∞),σ).

When a spectral measure is given, we have an eigenfunction expansion. For
example, in probability theory the transition density (with respect to dm) of the
diffusion process with generator −L is given by

p(t, x, y) =
∫ ∞

−0

e−tλϕλ(x)ϕλ(y)σ(dλ) (t > 0),

and, hence, for Krein’s string, it holds that

p(t,0,0) =
∫ ∞

−0

e−tλσ(dλ) (t > 0)

(see, e.g., [3]). Thus, the study of the transition function is sometimes reduced to
that of the spectral measure. However, applications of our results to probability
theory will be discussed in a future article.
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Throughout the article we put σ(x) =
∫
[0,x]

σ(dξ) and σ(−0) = 0 so that the
Lebesgue-Stieltjes measure dσ(ξ) equals σ(dξ). We can compute σ(dλ) by the
following procedure (see [5]). Let

(1.3) H(λ) = c +
∫ c

− ∞

( 1
ϕλ(x)2

− 1
)

dx +
∫ �

c

dx

ϕλ(x)2
,

which exists for every λ < 0 and does not depend on the choice of c (< �). Note
that

(1.4) H(−0) = �, H(−∞) = inf
{
x

∣∣ m(x) > 0
}
.

Then H(λ) turns out to be a function with the following representation:

(1.5) H(λ) = a +
∫ ∞

−0

( 1
ξ − λ

− ξ

ξ2 + 1

)
σ(dξ),

where a is a real number and σ(dξ) is a nonnegative Radon measure on [0, ∞)
satisfying ∫ ∞

−0

σ(dξ)
ξ2 + 1

< ∞.

Then σ(dξ) is the spectral measure we want. H(λ) may of course be extended for
λ ∈ C\[0, ∞) and is called the characteristic Herglotz function of the string m.
In order to keep the notation consistent with that of [3] and [6], we denote

h(s) = H(−s) (s > 0)

throughout the article. Kotani [5] proved that the correspondence between m

and H is not only one-to-one but also surjective: Let H be the totality of Herglotz
functions H of the form (1.5). Then for every H ∈ H, there exists a unique
m ∈ Mcirc corresponding to H . As a special case, the constant function H(λ) = a

corresponds to the string m(x) = ∞ · 1[a,∞)(x).
Further, note that if

∫ ∞
0

σ(dξ)/(1 + ξ) < ∞, then H has a simpler represen-
tation

H(λ) = a∗ +
∫ ∞

−0

σ(dξ)
ξ − λ

, where a∗ = a −
∫ ∞

−0

ξ

ξ2 + 1
σ(dξ),

and such an H corresponds to the string m which satisfies a∗ = inf{x | m(x) > 0},
so that its translated string ma∗ defined by ma∗ (x) = m(x+a∗) is a Krein’s string.
In particular, m is a Krein’s string if a∗ ≥ 0. Keeping the above facts in mind,
we set generally

(1.6) a∗ = a∗(m) := inf
{
x ∈ R

∣∣ m(x) > 0
}

(≥ −∞)

for m ∈ Mcirc throughout the article. Note that a∗ = h(∞−) by (1.4).
The following example plays the most important role in the present article,

and the notation is preserved throughout. For 0 < α < 2 (α 	= 1), define β by
α−1 + β−1 = 1, and define m(α) ∈ Mcirc as follows. Note that m(α) is a Krein’s
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string if and only if 0 < α < 1:

m(α)(x) =

⎧⎪⎪⎨
⎪⎪⎩

(−β)βx−β1(0,∞)(x) if 0 < α < 1 (β < 0),

ex if α = 1,

ββ(−x)−β1(− ∞,0)(x) + ∞ · 1[0,∞)(x) if 1 < α < 2 (β > 2).

If 0 < α ≤ 1, then a∗ = 0, � = ∞; if 1 < α < 2, then a∗ = −∞, � = 0; and if α = 1,
then a∗ = −∞, � = ∞. The characteristic Herglotz function is

H(α)(−s) = h(α)(s) =

⎧⎨
⎩

Γ(2 − α)
(1 − α)Γ(1 + α)

α2αsα−1 (0 < α < 2, α 	= 1),

−(log s + 2γ) (α = 1),

where γ = −Γ′(1) is Euler’s constant. Inverting the Stieltjes transform, we obtain

σ(α)(ξ) =
α2α

Γ(1 + α)2
ξα (ξ ≥ 0).

For details we refer to Kotani [5].
The aim of this article is to study the asymptotic behavior of the spectral

function σ(ξ); that is, we find necessary and sufficient conditions for σ(ξ) ∼
const. × ξα as ξ → +0 (or ξ → ∞). (Throughout the article f(x) ∼ g(x) means
that limf(x)/g(x) = 1.)

In the case where 0 < α < 1, we already have the following result for Krein’s
strings.

THEOREM A ([3, THEOREM 3])

Let m be a Krein’s string, and let h(s), σ(ξ), and a∗ be associated with m as
above. Let 0 < α < 1, C > 0, and a ≥ 0. Define β by α−1 + β−1 = 1 so that
β = −α/(1 − α) < 0. Then the following are equivalent:

m(x) ∼ C(−β)β(x − a)−β as x ↓ a,(1.7)

h(s) − a ∼ Cα−1 Γ(1 − α)
Γ(1 + α)

α2αsα−1 as s → ∞,(1.8)

a∗ = a and σ(ξ) ∼ Cα−1 α2α

Γ(1 + α)2
ξα as ξ → ∞.(1.9)

Also, the following are equivalent:

m(x) ∼ C(−β)βx−β as x → ∞,(1.10)

σ(ξ) ∼ Cα−1 α2α

Γ(1 + α)2
ξα as ξ ↓ 0,(1.11)

h(s) ∼ Cα−1 Γ(1 − α)
Γ(1 + α)

α2αsα−1 as s ↓ 0(1.12)

(see also [3] for related bibliographies). The above result is stated only for Krein’s
strings, but we see later that this restriction is inessential when we are concerned
with the case x → ∞ (see Theorem 2.3).
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The main aim of this article is to study similar problems for the case 1 <

α < 2, and our main results are the following. Note that h(α)(s) < 0 (s > 0) when
1 < α < 2.

THEOREM 1.1

Let 1 < α < 2 and C > 0. Define, as before, β by α−1 + β−1 = 1, so that β > 2.
Then the following are equivalent:

m(x) ∼ Cββ |x| −β as x → −∞,(1.13)

−h(s) ∼ Cα−1 Γ(2 − α)
(α − 1)Γ(1 + α)

α2αsα−1 as s → ∞,(1.14)

σ(ξ) ∼ Cα−1 α2α

Γ(1 + α)2
ξα as ξ → ∞.(1.15)

THEOREM 1.2

Let α,β, and C be as in Theorem 1.1, and let a ∈ R. Then the following are
equivalent:

m(x) ∼ Cββ(a − x)−β as x ↑ a,(1.16)

a − h(s) ∼ Cα−1 Γ(2 − α)
(α − 1)Γ(1 + α)

α2αsα−1 as s ↓ 0,(1.17)

�(m) = a and σ(ξ) ∼ Cα−1 α2α

Γ(1 + α)2
ξα as ξ ↓ 0.(1.18)

Note that, in (1.18), the condition �(m) = a is indispensable because σ does not
determine m uniquely; it allows translations.

The above two theorems are proved in an extended form in Section 2. The
case when we are interested in the orders but not in multiplicative constants is
discussed in Section 3. The case α = 1 is a little complicated and is discussed in
Section 4. In this article we often use Tauberian theorems for Stieltjes transforms.
The theory and results are found in the monograph [1], which is, however, not
necessarily convenient for our present use. Therefore, in the appendix we sum
up the necessary results with proofs for the convenience of the reader.

2. Main results

A positive, measurable function L(x) defined on some interval (A, ∞) (or (0,

1/A)) is said to be slowly varying at ∞ (resp., +0) if

lim
c→∞[+0]

L(xc)
L(c)

= 1 (∀x > 0).

Also, a positive, measurable function ϕ(x) defined on some interval (A, ∞) (or
(0,1/A)) is said to be regularly varying at ∞ [resp., +0] with exponent ρ(∈ R) if

lim
c→∞[+0]

ϕ(xc)
ϕ(c)

= xρ (∀x > 0).
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A regularly varying function with exponent ρ can be expressed as ϕ(x) = xρL(x)
with slowly varying L(x). In many situations slowly varying functions behave
as if they were constants. For example, the following facts are well known for
regularly varying ϕ(x) = xρL(x). If ρ > −1, then

(2.1)
∫ x

0

ϕ(u)du ∼ xϕ(x)
ρ + 1

as x → ∞ [+0]

provided that the left-hand side makes sense. (In the case x → ∞, the lower
limit zero of the integral is of course inessential and may be replaced by other
numbers.) Similarly, if ρ < −1, then

(2.2)
∫ ∞

x

ϕ(u)du ∼ − xϕ(x)
ρ + 1

as x → ∞ [+0]

provided that the left-hand side makes sense. (In the case x → +0, the upper
bound of the integral may be replaced by any finite positive number; see pp. 26–
28 of [1] for details. Change the variable u = 1/x to treat the case x → +0.)
Furthermore, if ρ > 0 and if ϕ is absolutely continuous with monotone derivative,
then

(2.3) ϕ′(x) ∼ ρϕ(x)
x

as x → ∞ [+0]

(see [1, p. 36]). When ρ 	= 0, there exists a function f such that f(ϕ(x)) ∼ x and
ϕ(f(x)) ∼ x. Such an f , which varies regularly with exponent 1/ρ, is called an
asymptotic inverse of ϕ and is denoted by ϕ−1.

Let m ∈ Mcirc, and let h,H,σ, �(=�(m)), a∗(=a∗(m)) be as in Section 1.
Our main results are the following three theorems. Theorems 1.1 and 1.2 in the
introduction can be obtained as special cases when L(x) = C.

THEOREM 2.1

Let 1 < α < 2, and define β, as before, by α−1 +β−1 = 1, so that β > 2. If ϕ(x) =
xα−1L(x) > 0 is a measurable function varying regularly at ∞ with exponent
α − 1, then the following are equivalent:

m(x) ∼ ββ 1
|x|ϕ−1(|x|) as x → −∞,(2.4)

−h(s) ∼ Γ(2 − α)
(α − 1)Γ(1 + α)

α2αϕ(s) as s → ∞,(2.5)

σ(ξ) ∼ α2α

Γ(1 + α)2
ξϕ(ξ) as ξ → ∞.(2.6)

Notice here (and in the next theorem) that xϕ−1(x) and ξϕ(ξ) are regularly
varying at ∞ with exponent 1 + 1/(α − 1) = β and α, respectively.

THEOREM 2.2

Let α and β be as in Theorem 2.1, and let a ∈ R. If ϕ(x) = xα−1L(x) > 0 is a func-
tion varying regularly at +0 with exponent α − 1, then the following are equivalent:
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m(x) ∼ ββ 1
(a − x)ϕ−1(a − x)

as x ↑ a,(2.7)

a − h(s) ∼ Γ(2 − α)
(α − 1)Γ(1 + α)

α2αϕ(s) as s ↓ 0,(2.8)

�(m) = a and σ(ξ) ∼ α2α

Γ(1 + α)2
ξϕ(ξ) as ξ ↓ 0.(2.9)

An extension of Theorem A to Kotani’s strings is the following. Although it is
essentially due to [3], we write it here to stress that it also holds not only for
Krein’s strings but also for Kotani’s (and another purpose is to correct a misprint
in [3]).

THEOREM 2.3

Let 0 < α < 1 and α−1 + β−1 = 1, so that β < 0. If ϕ(x) = xα−1L(x) > 0 is
a measurable function varying regularly at +0 with exponent α − 1; then the
following are equivalent:

m(x) ∼ (−β)β 1
xϕ−1(x)

as x → ∞,(2.10)

h(s) ∼ Γ(1 − α)
Γ(1 + α)

α2αϕ(s) as s ↓ 0,(2.11)

σ(ξ) ∼ α2α

Γ(1 + α)2
ξϕ(ξ) as ξ ↓ 0.(2.12)

THEOREM 2.4

Let α and β be as in Theorem 2.3, and let a ∈ R. If ϕ(x) = xα−1L(x) > 0
is a measurable function varying regularly at ∞ with exponent α − 1, then the
following are equivalent:

m(x) ∼ (−β)β 1
(x − a)ϕ−1(x − a)

as x ↓ a,(2.13)

h(s) − a ∼ Γ(1 − α)
Γ(1 + α)

α2αϕ(s) as s → ∞,(2.14)

a∗ = a and σ(ξ) ∼ α2α

Γ(1 + α)2
ξϕ(ξ) as ξ → ∞.(2.15)

REMARK 1

Since in these two theorems ϕ(x) varies regularly with negative exponent, ϕ(x)
is essentially decreasing. Therefore, the asymptotic behavior of ϕ(x) as x → +0
or x → ∞ corresponds to that of ϕ−1(x) as x → ∞ or x → +0, respectively.

Our idea of the proofs of these theorems is based on [3]: we use the scaling
property to reduce the problem to the continuity of the correspondence.
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THEOREM B (KOTANI [5, THEOREM 8])

Let m∞,m1,m2, . . . ∈ Mcirc, and let Hn be their characteristic Herglotz func-
tions. Then Hn(λ) → H∞(λ) as n → ∞ for all λ < 0 if and only if the following
two conditions hold:

(M1) mn(x) =⇒ m∞(x), x ∈ R,

(M2) lim
c→ − ∞

sup
n≥1

∫ c

− ∞

(∫ y

− ∞
mn(u)du

)
dy = 0.

Here =⇒ denotes the convergence at all continuity points of the limit function.
Notice that (M2) is equivalent to

(M2a) lim
c→ − ∞

limsup
n→∞

∫ c

− ∞
x2 dmn(x) = 0

(see (2.16); for the case when (M2) fails, see [4]). We also note the following fact.

PROPOSITION 2.1

For mn ∈ Mcirc (n = ∞,1,2, . . .), define Nn : R → [0, ∞] as follows:

(2.16) Nn(x) =
∫ x

− ∞

(∫ y

− ∞
mn(u)du

)
dy =

1
2

∫ x

− ∞
(x − u)2 dmn(u).

Then the conditions (M1) and (M2) hold if and only if

(N) Nn(x) =⇒ N∞(x), x ∈ R (n → ∞).

Proof
Suppose that (N) holds. Then (M2) may be written as

lim
c→ − ∞

sup
n≥1

Nn(c) = 0,

which can easily be seen because N∞(−∞) = Nn(−∞) = 0. So let us prove (M1).
Let

Mn(x) = N ′
n(x)

(
=

∫ x

− ∞
mn(u)du

)
.

By the monotonicity in x of Mn(x) (n ≥ 1), the convergence of Nn implies that
of Mn. Indeed, since, for every ε > 0,

Mn(x) ≤ 1
ε

(
Nn(x + ε) − Nn(x)

)
,

we see that

limsup
n→∞

Mn(x) ≤ 1
ε

(
N∞(x + ε) − N∞(x)

)
≤ M∞(x + ε).

Letting ε → 0, we have

limsup
n→∞

Mn(x) ≤ M∞(x + 0).

Similarly, we have

lim inf
n→∞

Mn(x) ≥ M∞(x − 0),
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and, hence, Mn(x) =⇒ M∞(x). Repeating the same argument, we conclude that
(M1) holds.

Conversely, let us see that (M1) and (M2) imply (N). Let us fix a continuity
point x ∈ R of m∞. Then (M1) implies that, for every continuity point c(< x)
of m∞,

lim
n→∞

∫ x

c

(x − u)2 dmn(u) =
∫ x

c

(x − u)2 dm∞(u).

Therefore, in order to see (N), it suffices to show that

lim
c→ − ∞

limsup
n→∞

∫ c

− ∞
(x − u)2 dmn(u) = 0.

However, this follows from (M2a). �

We next note the following scaling property, which can be proved by simple
changes of variables.

LEMMA 2.1 ([3, LEMMA 2])

Let a > 0, c > 0, b ∈ R, and let m ∈ Mcirc, for which we define N as in Proposi-
tion 2.1. Then, if m ∈ Mcirc corresponds to H ∈ H, then ma,b,c(x) = acm(ax+b)
and Na,b,c(x) = (c/a)N(ax + b) correspond to Ha,b,c(λ) = (1/a)(H(cλ) − b).

Especially, cϕ(c)m(ϕ(c)x) and (c/(ϕ(c)))N(ϕ(c)x) correspond to (1/(ϕ(c))) ×
H(cs) for any function ϕ(c) > 0. This fact is used repeatedly.

We are now ready to prove Theorems 2.1–2.4. Since the proofs of these four
theorems are essentially the same, we prove Theorem 2.2 only. In fact, the proofs
of the other three are even simpler.

Proof of Theorem 2.2
Recall (1.4). Since h(s) − b corresponds to m(x + b) by Lemma 2.1, we may and
do assume that � = h(+0) = a = 0 without loss of generality.

We first see the equivalence of (2.7) and (2.8). Let

(2.17) N(x) =
∫ x

− ∞

(∫ y

− ∞
m(u)du

)
dy =

1
2

∫ x

− ∞
(x − u)2 dm(u) (x ∈ R).

Then, since 1/(xϕ−1(x)) varies regularly with exponent −(1 + 1/(α − 1)) = −β,
(2.7) is equivalent to

(2.18) N(x) ∼ ββ

(β − 2)(β − 1)
x2

ϕ−1(−x)
(x ↑ 0)

by the property of regularly varying functions (see (2.2)). Thus, in order to prove
the equivalence of (2.7) and (2.8), it suffices to see that of (2.18) and (2.8) (with
a = 0). By the regularly varying property, (2.18) is equivalent to

(2.19)
ϕ−1(λ)

λ
N(λx) =⇒ N (α)(x) :=

ββ

(β − 2)(β − 1)
(−x)2−β (λ ↓ 0).



632 Yuji Kasahara and Shinzo Watanabe

Indeed, (2.19) follows from (2.18) if we note that λ/ϕ−1(λ) varies regularly with
exponent 2 − β. Notice that ((ϕ−1(λ))/λ)N(λx) corresponds to (1/(ϕ(λ)))h(λs)
by Lemma 2.1. Then we apply Kotani’s continuity theorem (see Theorem B and
Proposition 2.1) to see that (2.19) implies

(2.20)
1

ϕ(c)
h(cs) → h(α)(s), ∀s > 0, c ↓ 0.

Putting s = 1, we have (2.8). The converse can be shown similarly.
We next see the equivalence of (2.9) and (2.8). Note that

(2.21) −h′(s) =
∫ ∞

−0

dσ(ξ)
(ξ + s)2

.

Therefore, by Karamata’s Tauberian theorem (see Theorem C in the appendix),
(2.9) is equivalent to

(2.22) −h′(s) ∼ Γ(2 − α)
Γ(1 + α)

α2αϕ(s)/s (s ↓ 0).

But since a − h(s) = −
∫ s

0
h′(u)du, (2.22) is equivalent to (2.8) by the property

of regularly varying functions with monotone derivatives that we stated at the
beginning of this section (see (2.1) and (2.3)). �

3. The case of oscillations

Throughout the article f(x) � g(x) means that f(x) = O(g(x)) and g(x) =
O(f(x)); that is,

0 < lim inf f(x)/g(x) ≤ limsupf(x)/g(x) < ∞.

Let m ∈ Mcirc, and let N,h,H,σ, �(=�(m)), a∗(=a∗(m)) be as in the previous
sections.

THEOREM 3.1

Let 1 < α < 2. If ϕ(x) = xα−1L(x) > 0 is a function varying regularly at ∞ with
exponent α − 1, then the following are equivalent:

m(x) � 1
|x|ϕ−1(|x|) as x → −∞,(3.1)

−h(s) � ϕ(s) as s → ∞,(3.2)

σ(ξ) � ξϕ(ξ) as ξ → ∞.(3.3)

THEOREM 3.2

Let 1 < α < 2 and a ∈ R. If ϕ(x) = xα−1L(x) > 0 is a measurable function vary-
ing regularly at +0 with exponent α − 1, then the following are equivalent:

m(x) � 1
(a − x)ϕ−1(a − x)

as x ↑ a,(3.4)

a − h(s) � ϕ(s) as s ↓ 0,(3.5)
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�(m) = a and σ(ξ) � ξϕ(ξ) as ξ ↓ 0.(3.6)

THEOREM 3.3

Let 0 < α < 1. If ϕ(x) = xα−1L(x) > 0 is a measurable function varying regularly
at +0 with exponent α − 1, then the following are equivalent:

m(x) � 1
xϕ−1(x)

as x → ∞,(3.7)

h(s) � ϕ(s) as s ↓ 0,(3.8)

σ(ξ) � ξϕ(ξ) as ξ ↓ 0.(3.9)

We write below the counterpart of Theorem 3.3 for reference. However, since
it may be reduced to the case of Krein’s strings, it is also an easy corollary of
I. S. Kac’s inequality, and we do not claim that it is new (cf. [3]).

THEOREM 3.4

Let 0 < α < 1, and let a ∈ R. If ϕ(x) = xα−1L(x) > 0 is a measurable function
varying regularly at ∞ with exponent α − 1, then the following are equivalent:

m(x) � 1
(x − a)ϕ−1(x − a)

as x ↓ a,(3.10)

h(s) − a � ϕ(s) as s → ∞,(3.11)

a∗(m) = a and σ(ξ) � ξϕ(ξ) as ξ → ∞.(3.12)

For the proof of the Abelian implication, we prepare the following.

PROPOSITION 3.1

Let m1,m2 ∈ Mcirc, and let H1,H2 ∈ H be their characteristic Herglotz functions.
If

m1(x) ≤ m2(x) (∀x ∈ R),

then

H1(−s) ≥ H2(−s) (∀s > 0).

Proof
By Kotani’s continuity theorem (Theorem B), it suffices to show the case where
m1 and m2 are step functions. However, for such strings the assertion is already
well known because, for such strings, we can compute the characteristic Herglotz
functions explicitly using continued fractions (cf. [6, Examples 1.1, 1.3]). �

Since the proofs of Theorems 3.1–3.3 are essentially the same, we prove the first
one only.



634 Yuji Kasahara and Shinzo Watanabe

Proof of Theorem 3.1
We first show that (3.1) implies (3.2). By (3.1), there exist C1,C2 > 0 and large
A > 0 such that

C1

|x|ϕ−1(|x|) < m(x) <
C2

|x|ϕ−1(|x|) (∀x < −A).

Now define m1,m2 ∈ Mcirc as follows:

m1(x) = min
{

m(x),
C1

|x|ϕ−1(|x|)
}

and

m2(x) = max
{

m(x),
C2

|x|ϕ−1(|x|)
}

.

Then

m1(x) ≤ m(x) ≤ m2(x) (∀x ∈ R)

and

mj(x) ∼ Cj

|x|ϕ−1(|x|) (x → −∞, j = 1,2).

Now let h1 and h2 correspond to m1 and m2, respectively. Then, by Proposi-
tion 3.1, it holds that

h1(s) ≥ h(s) ≥ h2(s) (∀s > 0).

Since we can apply Theorem 2.1 to m1,m2 to get the asymptotic behavior of
h1, h2, we have (3.2).

We next show that, conversely, (3.2) implies (3.1). Suppose that

(3.13) 0 < C1 = lim inf
λ→∞

−h(λ)
ϕ(λ)

≤ limsup
λ→∞

−h(λ)
ϕ(λ)

= C2 < ∞.

If we change the variable λ in (3.13) by λs and then use the assumption that ϕ

varies regularly with exponent α − 1, we have, for every s > 0,

(3.14) 0 < C1s
α−1 = lim inf

λ→∞

−h(λs)
ϕ(λ)

≤ limsup
λ→∞

−h(λs)
ϕ(λ)

= C2s
α−1 < ∞.

Now let 0 < λ1 < λ2 < · · · → ∞ be an arbitrary sequence. Since (3.14) implies
that h(λn)/ϕ(λn) and h(2λn)/ϕ(λn) are bounded, by Lemma A.2 in the appen-
dix, we can choose a subsequence {λnj }j such that

(3.15) lim
j→∞

h(λnj s)
ϕ(λnj )

= −vs + H∞(−s) (s > 0)

for some v ≥ 0 and an H∞ ∈ H. By (3.14), we see that

(3.16) 0 < C1s
α−1 ≤ vs − H∞(−s) ≤ C2s

α−1 < ∞.

Divide by s, and let s → ∞. Then since α < 2, we see that, in fact, v = 0. Here we
used H∞(−s)/s → 0 (s → ∞), which fact can be seen by the representation (1.5).
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Since h(λs)/ϕ(λ) corresponds to λϕ(λ)m(ϕ(λ)x) (see Lemma 2.1), (3.15) with
v = 0 implies

(3.17) λnj ϕ(λnj )m
(
ϕ(λnj )x

)
=⇒ m∞(x),

where m∞ ∈ Mcirc is the string corresponding to H∞. Putting x = −1, we have

m∞(−1 − 0) ≤ lim inf
j→∞

λnj ϕ(λnj )m
(

−ϕ(λnj )
)

≤ limsup
j→∞

λnj ϕ(λnj )m
(

−ϕ(λnj )
)

≤ m∞(−1).

Let us confirm that m∞(−1 − 0) > 0 and m∞(−1) < ∞. In fact, it holds that
0 < m∞(x) < ∞ on (−∞,0). To see this fact it is sufficient to show that
inf{Supp(dm∞)} = −∞ and �(m∞) = 0 or, equivalently, H(−∞) = −∞ and
H(−0) = 0 (cf. (1.4)). But these facts can easily be seen from (3.16) with v = 0
and the condition α > 1.

Thus, we have seen that, for any given 0 < λ1 < λ2 < · · · → ∞, we can choose
a subsequence such that

0 < lim inf
j→∞

λnj ϕ(λnj )m
(

−ϕ(λnj )
)

≤ limsup
j→∞

λnj ϕ(λnj )m
(

−ϕ(λnj )
)

< ∞.

This is possible only when

0 < lim inf
λ→∞

λϕ(λ)m
(

−ϕ(λ)
)

≤ limsup
λ→∞

λϕ(λ)m
(

−ϕ(λ)
)

< ∞.

Changing the variable x = −ϕ(λ), we have (3.1).
We next see the equivalence of (3.3) and (3.2). If (3.3) holds, then by Theo-

rem D in the appendix, it holds that

(3.18) −h′(s) =
∫ ∞

−0

dσ(ξ)
(s + ξ)2

� ϕ(s)
s

(s → ∞).

Therefore, integrating both sides, we can deduce (3.2) (for the integration of the
right-hand side, see the beginning of Section 2). Conversely, if (3.2) holds, then
there exist C1,C2 > 0 such that

(3.19) C1ϕ(s) ≤ −h(s) ≤ C2ϕ(s)

for all large s > 0. Let

c =
1
3

(
C1

C2

)1/(α−1)

(< 1).

Then, by (3.19),

limsup
s→∞

−h(cs)
−h(s)

≤ C2

C1
limsup

s→∞

ϕ(cs)
ϕ(s)

=
C2

C1
cα−1 =

1
3
.

Thus, for all large s > 0, we may assume that

0 <
−h(cs)

−h(s)
≤ 1

2
.
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Therefore, it holds that, as s → ∞,

−h(s)
s

� −h(s) + h(cs)
(1 − c)s

=
∫ ∞

−0

dσ(ξ)
(cs + ξ)(s + ξ)

�
∫ ∞

−0

dσ(ξ)
(s + ξ)2

.

Thus, (3.2) also implies ∫ ∞

−0

dσ(ξ)
(s + ξ)2

� ϕ(s)
s

,

from which we can deduce (3.3) by Theorem D in the appendix. �

4. The case α = 1

In this section we discuss the case α = 1. It is rather hard to give a simple
condition as in the other cases.

Let L(x) > 0 be a slowly varying function (at +∞ or at +0). Since f(x) =
xL(x) is a regularly varying function with exponent 1, so is its asymptotic inverse
f −1(x). Therefore, there exists a slowly varying function L∗ such that f −1(x) ∼
xL∗(x). L∗, which is unique up to asymptotic equivalence, is called the de Bruijn
conjugate of L. Thus, L∗ is a function such that cL(c)L∗(cL(c)) ∼ c. This relation
can be rewritten as c∗L∗(c∗) ∼ c = c∗/L(c) if we put c∗ = cL(c). Therefore, in
general,

(4.1) L∗(c∗) ∼ 1/L(c).

If L varies slowly enough so that

(4.2) L
(
xL(x)

)
∼ L(x),

then L(c∗) ∼ L(c) and, therefore, (4.1) implies that L∗(c∗) ∼ 1/L(c) ∼ 1/L(c∗)
and hence L∗(x) ∼ 1/L(x) (see [1, p. 78]). For example, if L(x) = C, then (4.2) is
trivially satisfied, and hence, L∗(x) = 1/C. Similarly, if L(x) ∼ logx as x → ∞,
then L∗(x) ∼ 1/logx, and if L(x) ∼ log(1/x) as x → +0, then L∗(x) ∼ 1/log(1/x).

Our main result for this section is the following. The reader should note that
we do not assume that either L(c) → ∞ or L(c) → 0.

THEOREM 4.1

Let m ∈ Mcirc, and define N as in (2.17). Let L(c) > 0 (c > 0) be a function
varying slowly at ∞ (or +0), and let L∗(c) > 0 be its de Bruijn conjugate. Then
the following conditions are equivalent as c → ∞ (resp., +0):

cL(c)N
( x

L(c)
+ f(c)

)
−→ ex (∀x ∈ R) for some f(c),(4.3)

1
L∗(c)

{
N −1

(x

c

)
− N −1

(1
c

)}
−→ logx (∀x > 0),(4.4)

(4.5) L(c)
(
h(cs) − h(c)

)
−→ − log s (∀s > 0),

(4.6) σ(c) ∼ c

L(c)
.
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Proof
We first prove the equivalence of (4.3) and (4.4). Considering the inverse func-
tions, we see that (4.3) is equivalent to

(4.7) L(c)
{

N −1
( x

cL(c)

)
− f(c)

}
−→ logx (∀x ∈ R).

If we change the variable c∗ = cL(c) as before and recall (4.1), then (4.7) may be
written as

1
L∗(c∗)

{
N −1

( x

c∗

)
− g(c∗)

}
−→ logx (∀x ∈ R)

for suitable g. But changing the notation of the parameter from c∗ to c, we see
that this implies (4.4). The converse is essentially the same.

Next, let us see the equivalence of (4.3) and (4.5). Note that (4.5) is equiv-
alent to the existence of f such that

(4.8) L(c)
(
h(cs) − f(c)

)
→ −(log s + 2γ)

(
=h(1)(s)

)
.

Indeed, if (4.5) holds, then put f(c) = h(c) + 2γ/L(c). The converse is trivial.
Applying Lemma 2.1 with a = 1/L(c) and b = f(c), we see that the left-hand
side of (4.8) corresponds to cL(c)N(x/(L(c)) + f(c)). Therefore, the equivalence
of (4.8) and (4.3) follows from the continuity theorem (see Theorem B and Propo-
sition 2.1).

It remains to show the equivalence of (4.5) and (4.6). By Theorem C in the
appendix with ρ = 2 (and hence Cα,ρ = 1), (4.6) is equivalent to

(4.9) −h′(c)
(
=

∫ ∞

−0

dσ(ξ)
(c + ξ)2

)
∼ 1

cL(c)
.

(The current 1/L corresponds to L of Theorem C.) Therefore, the assertion may
be reduced to the following lemma. �

LEMMA 4.1

Let L(c) > 0 (c > 0) be a function varying slowly at ∞ [or +0], and let f(x)
(x ∈ R) be a function which is absolutely continuous with nonincreasing derivative
f ′. Then, the following conditions are equivalent as x → ∞ [resp., +0]:

(4.10) L(c)
(
f(cx) − f(c)

)
−→ logx (∀x > 0),

(4.11) cL(c)f ′(c) −→ 1.

Proof
Since L varies slowly, (4.11) is equivalent to

(4.12) cL(c)f ′(cx) −→ 1
x

(∀x > 0).

As is well known, the convergence is locally uniform for u > 0. Therefore, this
implies (4.10) as follows:

(4.13) L(c)
(
f(cx) − f(c)

)
=

∫ x

1

cL(c)f ′(cu)du −→
∫ x

1

du

u
= logx.
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Conversely, suppose that (4.10) (and hence (4.13)) holds. If we differentiate both
sides of (4.13), then we have (4.11). To justify this argument, note that f ′ is
nonincreasing, and then see the proof of Proposition 2.1. �

As we mentioned at the beginning of this section, it holds that L∗(x) ∼ 1/L(x)
when (4.2) is satisfied. Therefore, we have the following.

COROLLARY 4.1

If, further, L(xL(x)) ∼ L(x), then the following conditions are equivalent as c →
∞ (or +0):

L(c)
{

N −1
(x

c

)
− N −1

(1
c

)}
−→ logx (∀x > 0),(4.14)

L(c)
(
h(cs) − h(c)

)
−→ − log s (∀s > 0),(4.15)

(4.16) σ(c) ∼ c

L(c)
.

EXAMPLE 4.1

Let m(x) ∼ AxγeBx (x → ∞), where A,B > 0 and γ ∈ R. Then N(x) ∼ (A/B2) ×
xγeBx. In other words,

logN(x) = Bx + γ logx + log(A/B2) + o(1) (x → +∞).

Changing the variable x = N −1(u), we see that

logu = BN −1(u) + γ logN −1(u) + log(A/B2) + o(1) (u → +∞),

and, hence, as c → +0,

B
{

N −1
(x

c

)
− N −1

(1
c

)}
= logx − γ log

N −1(x/c)
N −1(1/c)

+ o(1).

Since N −1 varies slowly, the second term of the right-hand side is o(1). Thus,
(4.14) holds with L(x) = B. Therefore,

σ(c) ∼ c

B
(c → +0).

EXAMPLE 4.2

Let m(x) ∼ A|x|γeBx (x → −∞), where A,B > 0 and γ ∈ R. (This does not
happen in Krein’s strings but is possible for Kotani’s.) Then, as in Example 4.1,
we have

σ(c) ∼ c

B
(c → ∞).

EXAMPLE 4.3

Let m(x) ∼ Axγe
√

Bx (x → ∞), where A,B > 0 and γ ∈ R. Then N(x) ∼ 4A ×
xγ+1e

√
Bx (x → ∞), and therefore,

logN(x) =
√

Bx + (γ + 1) logx + C + o(1) (x → +∞).
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Changing the variable, we see that

(4.17)
√

BN −1(u) = logu − (γ + 1) logN −1(u) − C + o(1) (u → +∞).

Since N −1(u) varies slowly, it is easy to see that logN −1(u) = o(logu). (A slowly
varying function is dominated by uε for all ε > 0.) Therefore, (4.17) implies

(4.18)
√

BN −1(u) ∼ logu (u → +∞)

as well as √
BN −1

(x

c

)
−

√
BN −1

(1
c

)
(4.19)

= logx − (γ + 1) log
{

N −1
(x

c

)/
N −1

(1
c

)}
+ o(1) → logx.

Here, we used the fact that N −1 varies slowly. Considering a − b as (
√

a +√
b)(

√
a −

√
b), we have the following by (4.18) and (4.19):

B

2 log(1/c)

{
N −1

(x

c

)
− N −1

(1
c

)}
−→ logx (c → +0).

Therefore,

σ(c) ∼ 2
B

c log(1/c) (c → +0).

REMARK 2

Functions N satisfying (4.4) appear in de Haan theory (see [1, Section 3.10]).

A. Appendix

Tauberian theorems for Stieltjes transforms are well known. They are due to
Hardy and Littlewood, Karamata, de Haan, and others. The theory and results
are found in the monograph [1], which is, however, not necessarily sufficient
enough for our present use. Therefore, we restate some of the results in our
own way with direct proofs. Let σ : R → [0, ∞) (n = 1,2, . . .) be a nondecreasing
right-continuous function, and set σ(−0) = 0 for the sake of convenience. Then
its generalized Stieltjes transform of order ρ (> 0) is defined by

(A.1) Sρ(σ;s) =
∫ ∞

−0

dσ(ξ)
(s + ξ)ρ

(s > 0)

provided that the right-hand side exists. Of course, Sρ(σ;s) uniquely determines
σ(·). A typical example is, for 0 ≤ α < ρ,

(A.2) Sρ(ξα;s) =
∫ ∞

0

dξα

(s + ξ)ρ
= Cα,ρs

α−ρ (s > 0),

where

Cα,ρ =
∫ ∞

0

dξα

(1 + ξ)ρ
=

Γ(α + 1)Γ(ρ − α)
Γ(ρ)

.

For the relationship between the asymptotic behavior of σ(·) and that of Sρ(σ; ·),
we have the following.
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THEOREM C (CF. [1, P. 40])

Let 0 ≤ α < ρ, and let L be a slowly varying function at ∞[+0]. Then

(A.3) σ(ξ) ∼ ξαL(ξ) (ξ → ∞[+0])

if and only if

(A.4) Sρ(σ;s) ∼ Sρ(ξα;s)L(s) (s → ∞[+0]),

that is,

(A.5) Sρ(σ;s) ∼ Cα,ρs
α−ρL(s) (s → ∞[+0]).

THEOREM D (CF. [8, APPENDIX])

Let 0 ≤ α < ρ, and let L be a slowly varying function at ∞[+0]. Then

(A.6) σ(ξ) � ξαL(ξ) (ξ → ∞[+0])

if and only if

(A.7) Sρ(σ;s) � sα−ρL(s) (s → ∞[+0]).

In order to prove Theorems C and D, we prepare a few lemmas. Let

Hρ =
{

f(λ) = v +
∫ ∞

−0

dσ(ξ)
(λ + ξ)ρ

;v ≥ 0,

∫ ∞

−0

dσ(ξ)
(1 + ξ)ρ

< ∞
}

.

LEMMA A.1

Let ρ > 0, and let f1, f2, . . . ∈ Hρ. That is,

fn(λ) = vn + Sρ(σn;λ) = vn +
∫ ∞

−0

dσn(ξ)
(λ + ξ)ρ

(vn ≥ 0).

If {fn(c)}n is bounded for some c > 0, then we can choose a subsequence 1 ≤
n1 < n2 < · · · and an f ∈ Hρ such that, for all λ ∈ C\[0, ∞),

f(λ) = lim
j→∞

fnj (λ).

Furthermore, it also holds that

σnj (ξ) =⇒ σ(ξ) (n → ∞),

where σ corresponds to f ; that is,

f(λ) = v + Sρ(σ;λ) = v +
∫ ∞

−0

dσ(ξ)
(λ + ξ)ρ

.

Proof
Let us consider the finite Borel measures on [0, ∞] defined by

Ξn(dξ) = 1[0,∞)(ξ)
dσn(ξ)
(c + ξ)ρ

+ vnδ∞(dξ) (n = 1,2, . . .),

where δ∞(dξ) denotes the unit mass at ∞. Then fn can be written as

fn(λ) =
∫

[0,∞]

(c + ξ)ρ

(λ + ξ)ρ
Ξn(dξ).
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Here notice that the integrand is bounded, continuous in ξ ∈ [0, ∞]. With this
representation, our assertion of the lemma is now reduced to the relative com-
pactness of the family of finite measures {Ξn(dξ)}n. However, since Ξn([0, ∞])
(=fn(c)) is bounded by assumption, the rest of the proof is routine. �

LEMMA A.2

Let H1,H2, . . . ∈ H; that is,

(A.8) Hn(λ) = an +
∫ ∞

−0

( 1
ξ − λ

− ξ

ξ2 + 1

)
dσn(ξ).

If both {Hn(−1)}n and {Hn(−2)}n are bounded, then we can choose a subse-
quence 1 ≤ n1 < n2 < · · · , an H ∈ Hρ, and a v ≥ 0 such that, for all λ ∈ C\[0, ∞),

lim
j→∞

Hnj (λ) = −vλ + H(λ).

Proof
Let

fn(s) =
Hn(−s) − Hn(−1)

s + 1
=

∫ ∞

−0

1
ξ + s

dσn(ξ)
ξ + 1

.

Then fn is the usual Stieltjes transform of τn(dξ) = dσn(ξ)/(ξ + 1). Since
{Hn(−1)}n and { −Hn(−2)}n are bounded, so is {fn(1)}n. Therefore, we can
apply Lemma A.1 with ρ = 1. We can choose a subsequence such that

(A.9)
Hnj (λ) − Hnj (−1)

−λ + 1
→ v +

∫ ∞

−0

1
ξ − λ

dσ(ξ)
ξ + 1

for some σ, for which we define

H∞(λ) =
∫ ∞

−0

( 1
ξ − λ

− ξ

ξ2 + 1

)
dσ(ξ) (∈ H),

so that

(A.10)
Hnj (λ) − Hnj (−1)

−λ + 1
→ v +

H∞(λ) − H∞(−1)
−λ + 1

.

Choosing a subsequence again if necessary, we can assume that {Hnj (−1)}j also
converges to some a ∈ R. Then (A.10) implies

Hnj (λ) → −vλ + H(λ),

where H(λ) = (v + a − H∞(−1)) + H∞(λ). �

LEMMA A.3

Let ρ > 0, and let σn(·) (n = 1,2, . . .), σ∞(·) be functions such that Sρ(σn;s) and
Sρ(σ∞;s) exist. Then

(A.11) Sρ(σn;s) → Sρ(σ∞;s) (∀s > 0)

if and only if

(A.12) σn(ξ) =⇒ σ∞(ξ) and Sρ(σn; 1) → Sρ(σ∞; 1).
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Proof
Suppose that (A.12) holds. Then, by Lemma A.1 and by the latter half of (A.12),
choosing a subsequence if necessary, we have

(A.13) Sρ(σn;s) → v + Sρ(σ;s) (∀s > 0)

for some v ≥ 0 and σ. Since Lemma A.1 insists that σn(ξ) =⇒ σ(ξ) as well,
we have in fact σ = σ∞ and, hence, Sρ(σn;s) → v + Sρ(σ∞;s), s > 0. Thus,
it remains only to show that v = 0. However, this follows immediately from
the latter half of assumption (A.12). The converse can be proved in a similar
way. �

Proof of Theorem C
We first prove for the case c → +0. For every c > 0, define

σc(ξ) =
σ(cξ)
cαL(c)

.

Then it is easy to see that (A.3) is equivalent to

(A.14) σc(ξ) → ξα (∀ξ > 0).

Also, (A.4) can be rewritten as

(A.15) Sρ

(
σc(ξ); 1

)
→ Sρ(ξα; 1).

Change the variables (ξ, c) by (ξ/s, sξ) in both sides, noting that L varies slowly;
then we see that this is also equivalent to

(A.16) Sρ

(
σc(ξ);s

)
→ Sρ(ξα;s) (∀s > 0).

Thus, the assertion of Theorem C may be reduced to the equivalence of (A.14)
and (A.16). This kind of problem is already discussed in Lemma A.3. We
directly have that (A.16) implies (A.14). Conversely, let us see that (A.16)
follows from (A.14). However, as we have seen already, it suffices to show (A.15),
which can also be rewritten as

(A.17) lim
c→+0

∫ ∞

0

σc(ξ)
(1 + ξ)ρ+1

dξ =
∫ ∞

0

ξα

(1 + ξ)ρ+1
dξ.

To prove (A.17) under the condition (A.14), choose 0 < ε < 1 such that 0 <

α + ε < ρ. Since σ varies regularly with exponent α, by Potter’s theorem (see [1,
p. 25]), there exists C > 0 and A > 0 such that

σ(x)
σ(y)

≤ C
{(x

y

)α+ε

+
(x

y

)α−ε}
, x, y ∈ (0,A].

Therefore,

(A.18) σc(ξ) =
σ(cξ)
σ(c)

σ(c)
cαL(c)

≤ C1(ξα+ε + ξα−ε), c, cξ ≤ A,

and, hence, by the dominated convergence theorem, we obtain

(A.19) lim
c→+0

∫ A/c

0

σc(ξ)
(1 + ξ)ρ+1

dξ =
∫ ∞

0

ξα

(1 + ξ)ρ+1
dξ.
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Therefore, it remains to show that

(A.20) lim
c→+0

∫ ∞

A/c

σc(ξ)
(1 + ξ)ρ+1

dξ = 0.

However,∫ ∞

A/c

σc(ξ)
ξρ+1

dξ =
∫ ∞

A/c

σ(cξ)
ξρ+1

dξ

cαL(c)
=

cρ−α

L(c)

∫ ∞

A

σ(ξ)
ξρ+1

dξ → 0 (c → +0)

because ρ > α. We next treat the case c → ∞. The idea is the same except
that (A.19) and (A.20) should be replaced by

(A.21) lim
c→∞

∫ ∞

A/c

σc(ξ)
(1 + ξ)ρ+1

dξ =
∫ ∞

0

ξα

(1 + ξ)ρ+1
dξ

and

(A.22) lim
c→∞

∫ A/c

0

σc(ξ)
(1 + ξ)ρ+1

dξ = 0,

respectively. However, the proof of (A.21) is the same as (A.19), while (A.22) is
almost trivial (for another proof, see [1, p. 40]). �

Proof of Theorem D
To begin, note that ∫ ∞

−0

dσ(ξ)
(s + ξ)ρ

= ρ

∫ ∞

−0

σ(ξ)
(s + ξ)ρ+1

dξ.

Therefore, if C1τ(ξ) ≤ σ(ξ) ≤ C2τ(ξ), then

C1Sρ(τ ;s) ≤ Sρ(σ;s) ≤ C2Sρ(τ ;s).

Thus, the Abelian implication is reduced to Theorem C by choosing a suitable
regular varying function τ(ξ). The proof of the Tauberian implication is essen-
tially the same as in the proof of Theorem C. Let σc(ξ) = σ(cξ)/(cρL(c)), as
before. Then instead of (A.15), we have

(A.23) C1 ≤ lim inf
c→0[∞]

Sρ(σc; 1) ≤ limsup
c→0[∞]

Sρ(σc; 1) ≤ C2

for some C1,C2 > 0. Since L varies slowly, this implies, instead of (A.16), for
every s > 0,

(A.24) C1s
α−ρ ≤ lim inf

c→0[∞]
Sρ

(
σc(ξ);s

)
≤ limsup

c→0[∞]

Sρ

(
σc(ξ);s

)
≤ C2s

α−ρ.

Therefore, for any given c1 > c2 > · · · → 0 (or 0 < c1 < c2 < · · · → ∞) we can
choose a subsequence {cnj } and a function σ∞(·) such that

Sρ(σcnj
;s) → v + Sρ(σ∞;s), σcnj

(ξ) =⇒ σ∞(ξ),

for some v ≥ 0. (In fact, v = 0 by (A.24).) The latter implies

lim
j→∞

σ(cnj )
cα
nj

L(cnj )
= σ∞(1).
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It remains to show that σ∞(1−) > 0 (σ∞(1) < ∞ holds in general). If σ∞(1−) =
0, then Sρ(σ∞(·); ∞) < ∞, which contradicts the first inequality in (A.24). Since
{cn} was arbitrary, we conclude that

0 < lim inf
c→0[∞]

σ(c)
cαL(c)

≤ limsup
c→0[∞]

σ(c)
cαL(c)

< ∞.

�
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