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Abstract For a rational map φ : X → G from a normal algebraic variety X to a com-
mutative algebraic group G, we define the modulus of φ as an effective divisor on X. We
study the properties of the modulus. This work generalizes the known theories for
curves X to higher-dimensional varieties.

1. Introduction

Let X be a normal algebraic variety over a perfect field k, let G be a commutative
algebraic group over k, and let ϕ : X → G be a rational map. In this article, we
give a geometric definition of a modulus of ϕ as an effective divisor

∑
v m(v)v

on X . Here v ranges over all codimension 1 points of X at which ϕ is not defined
as a morphism and m(v) is a certain integer ≥ 1. In the curve case, this definition
coincides with Serre’s definition (see [Se]), which is based on the theory of local
symbols. The case when k is of characteristic zero was explained in our previous
article (see [KR, §5]). We discuss the positive characteristic case in this article.
We study properties of this modulus.

An alternative way to define the modulus of ϕ is by using K-theoretic idèle
class groups developed by Kato and Saito in [KS], as was done in [Ön] for surfaces.
The coincidence of these two approaches follows from Proposition 7.5.

This article is related to the theory of generalized Albanese varieties devel-
oped by Russell in [Ru1] and [Ru2]. In particular, the following fact is proved
in [Ru2] by using this article. If X is proper smooth and if Y is an effective
divisor on X , ϕ factors through the generalized Albanese variety Alb(X,Y ) of X

with modulus Y if and only if (modulus of ϕ) ≤ Y . In the case when k is of
characteristic zero, this was proved in [KR, §5] as a consequence of the theory
in [Ru1].

The definition of the modulus of ϕ is given in Section 3 assuming Theo-
rem 3.3. The proof of this theorem is completed in Section 5. In Sections 6
and 7, we consider the relation of modulus with local symbols. In Section 8, we
consider the relation of modulus with field extensions.
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2. Filtrations on additive groups and on Witt vector groups

Let K be a discrete valuation field, and let OK be the valuation ring of K.

2.1
For m ≥ 0, we define

film(K) =
{
f ∈ K

∣∣ vK(f) ≥ −m
}
.

Here vK denotes the normalized valuation of K.

2.2
Let p be a prime number, and assume that K is of characteristic p. Let Wn(K)
be the set of Witt vectors of length n with entries in K. For m ≥ 0, define

film Wn(K)

=
{
(fn−1, . . . , f0)

∣∣ fj ∈ K,p jvK(fj) ≥ −m (0 ≤ j ≤ n − 1)
}

⊂ Wn(K).

This filtration appeared in the article [Br] of Brylinski. In the case n = 1, this
filtration coincides with the filtration on K = W1(K) in Section 2.1.

Let F : Wn(K) → Wn(K) be the map (an−1, . . . , a0) �→ (ap
n−1, . . . , a

p
0). For

m ∈ N, let

filFm Wn(K) =
∑
j≥0

F j
(
film Wn(K)

)
⊂ Wn(K).

We have fil0 Wn(K) = filF0 Wn(K) = Wn(OK).
If we regard Wn(K) as a subgroup of Wn+1(K) via V : Wn(K) → Wn+1(K);

(an−1, . . . , a0) �→ (0, an−1, . . . , a0), we have

film Wn+1(K) ∩ Wn(K) = film Wn(K), filFm Wn+1(K) ∩ Wn(K) = filFm Wn(K).

3. Modulus

3.1
Let X be a normal algebraic variety over a perfect field k. We regard X as a
scheme. Let G be a commutative smooth connected algebraic group over k, and
let ϕ : X → G be a rational map. We define the modulus

mod(ϕ) =
∑

v

modv(ϕ)v

of ϕ as an effective divisor on X , where v ranges over all points of X of codi-
mension one and modv(ϕ) ∈ N is as follows.

The case when k is of characteristic zero is already explained in [KR].
(In [KR], we assumed that X is proper smooth over k, but this condition is
not used in the definition.)

3.2
First, assume that k is algebraically closed.
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Let 0 → L → G → A → 0 be the canonical exact sequence of commutative
algebraic groups, where A is an abelian variety and L is an affine smooth con-
nected algebraic group. Write L = Lm × Lu, where Lm is multiplicative and Lu

is unipotent. Then since k is algebraically closed, Lm
∼= (Gm)t for some t ≥ 0.

If k is of characteristic zero, Lu
∼= (Ga)s for some s ≥ 0. Fix such an isomor-

phism. If k is of characteristic p > 0, Lu is embedded into a finite direct sum⊕s
i=1 Wni of Witt vector groups for some s ≥ 0 and for some ni ≥ 1. Fix such

an embedding.
Let K be the function field of X . Since H1

fppf(Spec(OX,x),Gm) = 0 and
H1

fppf(Spec(OX,x),Lu) = 0 for any point x of X , we have exact sequences

0 → L(K) → G(K) → A(K) → 0, 0 → L(OX,x) → G(OX,x) → A(OX,x) → 0.

If v is a point of X of codimension one, since A is proper and OX,v is a
discrete valuation ring, we have A(K) = A(OX,v). Hence the canonical map
L(K)/L(OX,v) → G(K)/G(OX,v) is bijective. Take an element l ∈ L(K) whose
image in G(K)/G(OX,v) coincides with the class of ϕ ∈ G(K). In the case when k

is of characteristic zero, let (li)1≤i≤s be the image of l in (Ga(K))s = Ks under
L → Lu

∼= (Ga)s. In the case when k is of characteristic p > 0, let (li)1≤i≤s be
the image of l in

⊕s
i=1 Wni(K) under L → Lu

⊂→
⊕s

i=1 Wni .
If ϕ ∈ G(OX,v), then we define modv(ϕ) = 0. If ϕ /∈ G(OX,v) and if the

characteristic of k is zero (resp., p > 0), then we define

modv(ϕ) = 1 + max
{
r(li)

∣∣ 1 ≤ i ≤ n
}
, where for f ∈ K (resp., Wni(K)),

r(f) = min
{
r ∈ N

∣∣ f ∈ filr(K)
}

(resp., r(f) = min{r ∈ N | f ∈ filFr Wni(K)}).

In the case when k is of characteristic zero, it is easy to see that modv(ϕ) is
independent of the choice of the isomorphism Lu

∼= (Ga)s. In the case when k is
of characteristic p > 0, however, it is not so easy to prove

THEOREM 3.3

Let the notation be as above, and assume that k is of characteristic p > 0. Then
modv(ϕ) is independent of the choice of the embedding Lu →

⊕s
i=1 Wni .

This theorem is proved in Section 5.

3.4
Now we do not assume k is algebraically closed. Then by Galois descent for
Gal(k̄/k), we see that there is a unique effective divisor mod(ϕ) on X whose
pullback to X ⊗k k̄ is the modulus of the rational map X ⊗k k̄ → G ⊗k k̄.

4. Quotients of the filtrations

Let p be a prime number, and let K be a discrete valuation field of characteristic p

with residue field κ.
We study filFm Wn(K)/filF[m/p] Wn(K) and its quotient filFm Wn(K)/filFm−1

Wn(K), for m ≥ 1. Here for x ∈ R, [x] denotes max{a ∈ Z | a ≤ x} as usual.
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PROPOSITION 4.1

(1) The following sequence is exact.

0 →
⊕
j≥0

fil[m/p] Wn(K) h→
⊕
j≥0

film Wn(K) → filFm Wn(K) → 0,

where the third arrow is (xj)j �→
∑

j F j(xj), and h is the map (xj)j �→ (yj)j with
y0 = F (x0), yj = F (xj) − xj−1 for j ≥ 1.

(2) We have an isomorphism
⊕
i≥0

film Wn(K)
fil[m/p] Wn(K) + F (fil[m/p] Wn(K))

�→ filFm Wn(K)
filF[m/p] Wn(K)

;

(xi)i �→
∑

i

F i(xi).

Proof
(1) We prove that for each i ≥ 0, the sequence

0 →
i−1⊕
j=0

fil[m/p] Wn(K) hi→
i⊕

j=0

film Wn(K) →
i∑

j=0

F j film Wn(K) → 0

is exact, where hi is the restriction of h. We prove this by induction on i. The
case i = 0 is trivial. Assume that i ≥ 1. The nontrivial point is the exactness
at the central term. Let x = (xj)j be an element of

⊕i
j=0 film Wn(K) such

that
∑

j F j(xj) = 0. We prove that x belongs to the image of hi. We have
F i(xi) = −

∑i−1
j=0 F j(xj) ∈ filmpi−1 Wn(K). Hence xi ∈ fil[m/p] Wn(K). Let y =

(yj)j be the element of
⊕i−1

j=0 fil[m/p] Wn(K) defined by yi−1 = xi and yj = 0 for
0 ≤ j < i − 1, and let x′ = x + hi(y). Then x′ ∈

⊕i−1
j=0 film Wn(K). By induction

on i, (x′
j)j is in the image of hi.

(2) This follows from (1) easily.
�

4.2
For a commutative ring R, let Ω1

R = Ω1
R/Z

be the differential module of R. Then
for any commutative ring R over Fp, there is a homomorphism

δ : Wn(R) → Ω1
R; (an−1, . . . , a0) �→

∑
i

api −1
i dai.

4.3
Let Ω1

OK
(log) be the differential module of OK with log poles defined by

Ω1
OK

(log) =
(
Ω1

OK
⊕ (OK ⊗Z K×)

)
/N,

where N is the OK -submodule of Ω1
OK

⊕ (OK ⊗Z K×) generated by (da, −a ⊗ a)
for a ∈ OK − {0}. We have canonical homomorphisms Ω1

OK
→ Ω1

OK
(log) and

K× → ΩOK
(log); a �→ class(0,1 ⊗ a). We denote the latter map by d log. If the

condition
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(i) the completion of K is separable over K

is satisfied, then for a lifting (bi)i of a p-base of κ to OK and for a prime element t

of K, Ω1
OK

(resp., Ω1
OK

(log)) is a free OK -module with base (dbi)i and dt (resp.,
(dbi)i and d log(t)).

(Condition (i) is equivalent to the condition that (bi)i and t form a p-base
of K. Recall that for a field F of characteristic p, a family (bi)i∈I of elements
of F is called a p-base of F if F is generated over F p by bi (i ∈ I) as a field and
for any subset J of I such that J �= I , F is not generated over F p by bj (j ∈ J).
Recall also that if (bi)i is a p-base of F , (dbi)i is a base of the F -module Ω1

F .)
Without assumption (i), for any integer j ≥ 0, Ω1

OK
⊗OK

OK/mj
K (resp.,

Ω1
OK

(log) ⊗OK
OK/mj

K) is a free OK/mj
K -module with base (dbi)i and dt (resp.,

(dbi)i and d log(t)). This is because this group is invariant under the completion
of K, and the condition (i) is satisfied of course if K is complete.

PROPOSITION 4.4

For m ≥ 1, the homomorphism δ (see Section 4.2) for K induces an injective
homomorphism

δm :
film Wn(K)

fil[m/p] Wn(K) + F (fil[m/p] Wn(K))
→ Ω1

OK
(log) ⊗OK

m−m
K

m
−[m/p]
K

.

Proof
The problem is the injectivity. By induction on m, it is reduced to the injectivity
of

A :=
film Wn(K)

film−1 Wn(K) + F (fil[m/p] Wn(K))
→ Ω1

OK
(log) ⊗OK

m−m
K

m1−m
K

.

We assume that K = κ((t)) without a loss of generality. Note that

Ω1
OK

(log) ⊗OK
m−m

K /m1−m
K

∼= Ω1
κ ⊕ κ,

adb ⊗ t−m ↔ (adb,0) (a, b ∈ κ), ad log(t) ⊗ t−m ↔ (0, a) (a ∈ κ).

We define an increasing filtration (Ai)−1≤i≤n−1 on A as follows. For −1 ≤
i ≤ n − 1, let Ai be the image of film Wi+1(K) in A under V n−1−i : Wi+1(K) →
Wn(K). Then as is easily seen, Ai = A if i ≥ ordp(m), A−1 = 0, and for 0 ≤ i ≤
r := min(ordp(m), n − 1), we have an isomorphism

κ (resp., κ/κp)
∼=→ Ai/Ai−1 in the case i = ordp(m) (resp., i < ordp(m)),

a �→ (fn−1, . . . , f0) with fj = at−mp−i

if j = i, fj = 0 otherwise.

If ai ∈ κ (0 ≤ i ≤ r) and fi = ait
−mp−i

for 0 ≤ i ≤ r and fi = 0 for r < i < n, then
the image of (fn−1, . . . , f0) ∈ film Wn(K) in Ω1

OK
(log) ⊗OK

m−m
K /m1−m

K
∼= Ω1

κ ⊕ κ

is
( r∑

i=0

api −1
i dai, − m

pr
· apr

r

)
∈ Ω1

κ ⊕ κ.
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For i ≥ 0, let Bi be the subgroup of Ω1
κ generated by elements of the form apj −1da

with a ∈ κ and 0 ≤ j ≤ i. For example, B0 = dκ. Let B−1 = 0. The theory of
Cartier isomorphisms shows

(4.1) κ/κp �→ Bi/Bi−1, a �→ api −1 da

for i ≥ 0. For 0 ≤ i ≤ r, the image of the composition Ai → Ω1
κ ⊕ κ → Ω1

κ is
contained in Bi, and the composition κ/κp �→ Ai/Ai−1 → Bi/Bi−1 is nothing
but the isomorphism (4.1). If ordp(m) ≤ n − 1 and i = ordp(m), the composition
Ai → Ω1

κ ⊕ κ → κ kills Ai−1, and the composition κ
∼=→ Ai/Ai−1 → κ coincides

with injective map a �→ −m/pr · apr

. This completes the proof of injectivity in
the proposition. �

4.5
Let OK [F ] be the noncommutative polynomial ring defined by

OK [F ] =
{∑

j≥0

F jaj ;aj ∈ OK

}
, Fa = apF (a ∈ OK).

For m ∈ N, let

Dm = OK [F ] ⊗OK
Ω1

OK
(log) ⊗OK

m−m
K /m

−[m/p]
K ,

D̄m = κ[F ] ⊗κ

(
Ω1

OK
(log) ⊗OK

m−m
K /m1−m

K

)
.

4.6
For m ∈ N, by Propositions 4.1(2) and 4.4, we have an injective homomorphism

θm : filFm Wn(K)/filF[m/p] Wn(K) → Dm(K) :

∑
j≥0

F j(xj) �→
∑

j

F j ⊗ δm(xj)

for x ∈ film Wn(K).
For m ≥ 1, θm induces an injective homomorphism

θ̄m : filFm Wn(K)/filFm−1 Wn(K) → D̄m.

4.7
For m ≥ 0, we define a subgroup �filFm Wn(K) of filFm Wn(K) as follows.

Let �D̄m be the image of κ[F ] ⊗κ (Ω1
OK

⊗OK
m−m

K /m1−m
K ) (here we do not

put a log pole) in D̄m. We have
�D̄m

∼= κ[F ] ⊗κ Ω1
κ ⊗κ m−m

K /m1−m
K .

Note that

D̄m/ �D̄m
∼= κ[F ] ⊗κ m−m

K /m1−m
K , F ja ⊗ d log(t) ⊗ t−m ↔ F ja ⊗ t−m,

where a ∈ κ and t is a prime element of K.
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Let �filFm Wn(K) ⊂ filFm Wn(K) be the inverse image of �D̄m under
θ̄m : filFm Wn(K) → D̄m. We have

�filFm Wn(K) =
∑
j≥0

F j
(
�film Wn(K)

)
,

where �film Wn(K) is the subgroup of film Wn(K) consisting of all elements
(fn−1, . . . , f0) which satisfy the following condition: if the p-adic order i of m

is < n, then pivK(fi) > −m.
We have injections

filFm Wn(K)/ �filFm Wn(K) ⊂→ D̄m/ �D̄m,

�filFm Wn(K)/filFm−1 Wn(K) ⊂→ �D̄m

induced by θ̄m.
As is easily seen, we have the following.
(1) For m ≥ 1, �filFm Wn(K) ⊃ filFm−1 Wn(K). If m is prime to p, then

�filFm Wn(K) = filFm−1 Wn(K).
(2) If κ is perfect, then �filFm Wn(K) = filFm−1 Wn(K).

4.8
The following relation with the refined Swan conductor in [Ka2] and [Ma] is
proved easily. By Artin-Schreier-Witt theory, we have an isomorphism

Wn(K)/(F − 1)Wn(K) ∼= H1(K,Z/pn
Z) := H1

(
Gal(Ksep/K),Z/pn

Z
)
,

where Ksep denotes the separable closure of K. As in [Ka2], let film H1(K,Z/

pn
Z) be the image of film Wn(K).

PROPOSITION 4.9

Let film H1(K,Z/pnZ) → Ω1
OK

(log) ⊗OK
m−m

K /m1−m
K (m ≥ 1) be the refined Swan

conductor in [Ka2] whose kernel is film−1 H1(K,Z/pn
Z). Then we have a com-

mutative diagram

filFm Wn(K) −→ Dm/Dm−1 = κ[F ] ⊗κ

(
Ω1

OK
(log) ⊗OK

m−m
K /m1−m

K

)
⏐� ⏐�

film H1(K,Z/pn
Z) −→ Ω1

OK
(log) ⊗OK

m−m
K /m1−m

K

Here the right vertical arrow is induced from the ring homomorphism κ[F ] →
κ;

∑
i F

iai �→
∑

i ai (ai ∈ κ).

5. Homomorphisms and the filtrations

Let K be a discrete valuation field of characteristic p > 0.
We assume here that we are given a perfect subfield k of OK .
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5.1
Let n,n′ ≥ 1, and assume that we are given a homomorphism h : Wn → Wn′ of
algebraic groups over k. Let h1 : Ga → Ga be the homomorphism induced by h

on the subgroups Ga ⊂ Wn (embedded via V n−1) and Ga ⊂ Wn′ (embedded via
V n′ −1). Since the endomorphism ring of Ga over k is k[F ], where F acts as
Ga → Ga, x �→ xp, we can regard h1 as an element of k[F ].

The following proposition is proved easily.

PROPOSITION 5.2

(1) The homomorphism h sends filFm Wn(K) into filFm Wn′ (K).
(2) We have a commutative diagram

filFm Wn(K) θm−→ Dm(K)
⏐� ⏐�

filFm Wn′ (K) θm−→ Dm(K)

where the left vertical arrow is induced from h and the right vertical arrow is the
multiplication x �→ h1x by h1 ∈ k[F ].

Proof
Homomorphisms Wn → Wn′ are described by F , V , and the multiplication by
elements of W (k). For each of them, we can check easily that the proposition
holds. �

THEOREM 5.3

Let h :
⊕s

i=1 Wni →
⊕s′

j=1 Wn′
j

(s, s′ ≥ 0, ni, n
′
j ≥ 1) be an injective homomor-

phism defined over k. Let m ≥ 0. Then for x ∈
⊕s

i=1 Wni(K), x belongs to⊕s
i=1 filFm Wni(K) if and only if h(x) belongs to

⊕s′

j=1 filFm Wn′
j
(K).

Proof
Let h1 :

⊕s
i=1 Ga →

⊕s′

j=1 Ga be the homomorphism induced by h on the sub-

groups
⊕s

i=1 Ga ⊂
⊕s

i=1 Wni and
⊕s′

j=1 Ga ⊂
⊕s′

j=1 Wn′
j
. This h1 is understood

as a matrix with entries in k[F ]. Since h is injective, the homomorphism

Homκ

(
Ga,

s⊕
i=1

Ga

)
→ Homκ

(
Ga,

s′⊕
j=1

Ga

)
, g �→ h1 ◦ g

is injective, where Homκ means the set of homomorphisms of algebraic groups
over κ. This means that the map

⊕s
i=1 κ[F ] →

⊕s′

j=1 κ[F ], x �→ h1x is injec-

tive. Hence for m ≥ 1, the map
⊕s

i=1 D̄m →
⊕s′

j=1 D̄m, x �→ h1x is injective.
By Proposition 5.2(2), this proves that h induces an injective homomorphism⊕s

i=1 filFm Wni(K)/filFm−1 Wni(K) →
⊕s′

j=1 filFm Wn′
j
(K)/filFm−1 Wn′

j
(K). �
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5.4 Proof of Theorem 3.3
Let Y =

⊕
i Wni . Consider another embedding Lu → Y ′ :=

⊕
i′ Wni′ . Embed

the pushout Y ′ ′ of Y ← Lu → Y ′ into a finite direct sum Y ′ ′ =
⊕

i′ ′ Wni′ ′ . Then
we have the third embedding Lu → Y ′ ′ and injective homomorphisms Y → Y ′ ′

and Y ′ → Y ′ ′ which are compatible with embeddings. By Theorem 5.3, modv(ϕ)
defined by the first (resp., second) embedding coincides with that defined by the
third embedding. �

6. Local symbols

6.1
Let k be an algebraically closed field, let X be a normal algebraic curve over k,
let G be a commutative smooth connected algebraic group over k, and let
ϕ : X → G be a rational map. Then in [Se], the modulus of ϕ was defined
by using local symbols. We show that our definition of the modulus coincides,
in the curve case, with this classical definition.

6.2
Let k, X , G, and ϕ be as in Section 6.1, and let K be the function field of X .
For each point v of X of codimension one (that is, v is a closed point of X), the
local symbol map

( , )v : G(K) × K× → G(k)

is defined as in [Se]. It is a Z-bilinear map and is continuous for the v-adic
topology. In [Se], the modulus of ϕ is defined as the right-hand side of the
equation in the following proposition.

PROPOSITION 6.3

Let the notation be as in Section 6.2. Then our modv(ϕ) satisfies

modv(ϕ) = min
{
m ∈ N

∣∣ (ϕ,U (m)
v )v = 0

}
.

Here U
(m)
v is the mth unit group at v; that is, U

(m)
v = Ker(O ×

X,v → (OX,v/

mm
X,v)×) where mX,v is the maximal ideal of OX,v.

Proof
Let 0 → L → G → A → 0 be as in Section 3. Since (G(OX,v), O ×

X,v)v vanishes
and since L(K)/L(OX,v) → G(K)/G(OX,v) is bijective, we are reduced to the
case G = L. If k is of characteristic zero, we are reduced to the cases G = Gm

and G = Ga. If k is of characteristic p > 0, by embedding Lu to a finite direct
sum of Witt vector groups as in Section 3, we are reduced to the cases G = Gm

and G = Wn. In the case G = Gm, the local symbol coincides with (f, g) �→
(−1)v(f)v(g)(gv(f)/fv(g))(v) where v(?) denotes the v-adic normalized valuation
and (v) denotes the value at v. By using this fact, the case G = Gm is proved
easily. In the case G = Ga, the local symbol map is (f, g) �→ Res(fd log(g)), where
Res is the residue map. By using this fact, in the case when k is of characteristic
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zero, the case G = Ga is proved easily. In the case when k is of characteristic
p > 0 and G = Wn, it is sufficient to prove the following proposition.

PROPOSITION 6.4

Let K = κ((t)) with κ a perfect field of characteristic p > 0. For m ≥ 1, let
U (m) = 1+ tmκ[[t]] ⊂ κ[[t]]×. Let (, )K : Wn(K) × K× → Wn(κ) be the local symbol
for G = Wn.

(1) For m ≥ 0, we have (filFm Wn(K),U (m+1)
K )K = 0.

(2) Let ϕ ∈ filFm Wn(K), and let
∑

i F
iai be the image of ϕ under

filFm Wn(K)/filFm−1 Wn(K) → Dm/Dm−1
∼= κ[F ], where the last isomorphism is

given by F ia ⊗ d log(t) ⊗ t−m �→ F ia (a ∈ κ). Then for b ∈ κ, the local symbol
(ϕ,1 + btm) coincides with the image of

∑
i(aib)pi+1−n ∈ κ under the injection

V n−1 : κ → Wn(κ).
(3) If κ is an infinite field, then for any m ≥ 0, we have

filFm Wn(K) =
{
ϕ ∈ Wn(K)

∣∣ (ϕ,U
(m+1)
K )K = 0

}
.

6.5
For the proof of Proposition 6.4, we use the following explicit description of the
local symbol map of Wn.

Proof of Proposition 6.4
Let A = Wn(κ)[[t]][t−1]. We have the evident surjective ring homomorphism A →
K and an injective ring homomorphism

φn : Wn(K) → A, (an−1, . . . , a0) �→
∑

0≤i≤n−1

pn−1−iãpi

i .

Here ãi is any lifting of ai to A. Note that pn−1−iãpi

are independent of the
choice of the lifting. The differential module Ω1

A is a free A-module of rank 1
with basis d log(t). We have a well-defined homomorphism

d log : K× → Ω1
A/pdA; a �→ d log(ã),

where ã denotes any lifting of a to A. Let

Res : Ω1
A → Wn(κ);

∑
i

ait
id log(t) �→ a0.

Then the local symbol ( , )K for G = Wn is expressed as

(6.1) (f, g)K = F 1−n Res
(
φn(f)d log(g̃)

)
for f ∈ Wn(K) and g ∈ K×.

Here F −1 : Wn(κ) → Wn(κ) is the inverse map of F : Wn(κ) → Wn(κ). In the
case n = 1, this formula coincides with the formula (f, g)K = Res(fd log g) for
G = Ga.

By using the explicit formula (6.1) of the local symbol, we obtain Proposi-
tion 6.4(1), (2). Proposition 6.4(3) follows from Proposition 6.4(1), (2).
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The authors are sure that the above formula (6.1) is written in some refer-
ences, but they could not find it. This (6.1) can be deduced from the formula (6.2)
below.

Let WnΩ•
K be the de Rham–Witt complex of K. Then WnΩ1

K is a Wn(K)-
module, and we have a homomorphism d log : K× → WnΩ1

K . There is a residue
map

Res : WnΩ1
K → Wn(κ)

(see [Ka1, §2] or [Rül, §2]; see also [Rü2]) which generalizes the residue map
Ω1

K → κ (the case n = 1). By [KS, Chap. III, Lem. 3], we have

(6.2) (f, g)K = Res
(
fd log(g)

)
for f ∈ Wn(K), g ∈ K×.

The above formula (6.1) follows from this formula (6.2) and from

F 1−n Res
(
φn(f)d log(g̃)

)
= Res

(
fd log(g)

)
for f ∈ Wn(K), g ∈ K×.

This concludes the proof of Proposition 6.4 and hence the proof of Proposi-
tion 6.3. �

7. Higher-dimensional local fields

7.1
The above relation between modulus and local symbols for curves is generalized
to the higher-dimensional cases by using local symbols for higher-dimensional
local fields defined in [KS, Chap. III].

Let p be a prime number, let k0 be a perfect field of characteristic p, and
define fields kr (r ≥ 1) inductively by

kr = kr−1((tr)).

Let G be a commutative smooth connected algebraic group over k0. Then
the local symbol map

( , )kr : G(kr) × KM
r (kr) → G(k0)

is defined in [KS], where KM
r denotes the rth Milnor K-group.

In the case G = Wn, this local symbol map is described as follows. Define
rings Ar (r ≥ 0) inductively by A0 = Wn(k0) and Ar = Ar−1[[tr]][t−1

r ] for r ≥ 1.
Then the local symbol map of kr for Wn is described as

(7.1) (f, g)kr = F 1−n Res
(
φn(f)d log(g̃)

)
for f ∈ Wn(kr) and g ∈ k×

r ,

where Res is the map

Res : Ωr
Ar

→ Wn(k0)

defined to be the composition of the evident residue maps Ωi
Ai

→ Ωi−1
Ai−1

(1 ≤
i ≤ r) and φn : Wn(kr) → Ar is defined in the same way as φn in the previous
paragraph, respectively. This (7.1) is deduced from the description of the local
symbol map (see [KS])

(f, g)kr = Res
(
fd log(g)

)
for f ∈ Wn(kr) and g ∈ k×

r ,



618 Kazuya Kato and Henrik Russell

where Res is the residue map

Res : WnΩr
kr

→ Wn(k0)

defined in [Ka1, §2].

7.2
By using the explicit presentation (7.1) of the local symbol, we can obtain the
following generalization Proposition 7.3 of Proposition 6.4 to higher-dimensional
local fields. In Proposition 7.3, for r ≥ 1 we show that the two filtrations
filF• Wn(kr) and �filF• Wn(kr) (which are defined with respect to the tr-adic val-
uation of kr) are related to a certain two filtrations U

(•)
r and V

(•)
r on KM

r (kr),
respectively.

Fix r ≥ 1. We define subgroups U
(m)
r and V

(m)
r of KM

r (kr). For m ≥ 1,
let U

(m)
r be the subgroup of KM

r (kr) generated by all elements of the form
{x, y1, . . . , yr−1} such that yi ∈ k×

r and x ∈ 1 + tmr kr−1[[tr]] ⊂ kr−1[[tr]]×. For
m ≥ 0, let V

(m)
r be the subgroup of KM

r (kr) generated by all elements of the form
{x, y1, . . . , yr−1} such that yi ∈ kr−1[[tr]]× and x ∈ Ker

(
kr−1[[tr]]× → (kr−1[tr]/

(tmr ))×)
. Then

V (m−1)
r ⊃ U (m)

r ⊃ V (m)
r for all m ≥ 1.

Let U
(0)
r = V

(0)
r .

For m ≥ 1, we have surjective homomorphisms

sm : Ωr−1
kr−1

→ V
(m)
r /U

(m+1)
r ,

ad log(b1) ∧ · · · ∧ d log(br−1) �→ {1 + atmr , b1, . . . , br−1},

s′
m : Ωr−2

kr−1
→ U

(m)
r /V

(m)
r ,

ad log(b1) ∧ · · · ∧ d log(br−2) �→ {1 + atmr , b1, . . . , br−2, tr }

(a ∈ kr−1, bj ∈ k×
r−1).

PROPOSITION 7.3

Let r ≥ 1. Define the filtrations filFm Wn(kr) and �film Wn(kr) by using the tr-
adic discrete valuation of kr. Let ( , )kr : Wn(kr) × KM

r (kr) → Wn(k0) be the
local symbol map of kr for G = Wn.

(1) For m ≥ 0, we have
(
filFm Wn(kr),U (m+1)

r

)
kr

= 0,
(
�filFm Wn(kr), V (m)

r

)
kr

= 0.

(2a) Let m ≥ 1. Let ϕ ∈ filFm Wn(kr), and let
∑

i F
iai (ai ∈ kr−1) be

the image of ϕ under filFm Wn(kr)/ �filFm Wn(kr) → D̄m/ �D̄m
∼= kr−1[F ], where

the last isomorphism is given by F ia ⊗ d log(tr) ⊗ t−m
r �→ F ia (a ∈ kr−1).

Then for b ∈ Ωr−1
kr−1

, the local symbol (ϕ, sm(b)) coincides with the image of∑
i(Res(aib))pi+1−n ∈ k0 under the injection V n−1 : k0 → Wn(k0). Here Res is the

residue map Ωr−1
kr−1

→ k0.
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(2b) Let m ≥ 1. Let ϕ ∈ �filFm Wn(kr), and let
∑

i F
iai (ai ∈ Ω1

kr−1
) be

the image of ϕ under �filFm Wn(kr)/filFm−1 Wn(kr) → �D̄m
∼= kr−1[F ] ⊗kr−1 Ω1

kr−1
,

where the last isomorphism is given by F ia ⊗ w ⊗ t−m
r �→ F ia ⊗ w for a ∈ kr−1,

w ∈ Ω1
kr−1

. Then for b ∈ Ωr−2
kr−1

, the local symbol (ϕ, s′
m(b)) coincides with the

image of
∑

i(Res(ai ∧ b))pi+1−n ∈ k0 under the injection V n−1 : k0 → Wn(k0).
(3) If k0 is an infinite field, then for any m ≥ 0, we have

filFm Wn(kr) =
{
ϕ ∈ Wn(kr)

∣∣ (ϕ,U (m+1)
r )kr = 0

}
,

�filFm Wn(kr) =
{
ϕ ∈ Wn(kr)

∣∣ (ϕ,V (m)
r )kr = 0

}
.

7.4
The following relation between modulus and higher-dimensional local fields is
deduced from Proposition 7.3. Let k be an algebraically closed field, let X be
a normal algebraic variety over k, let G be a commutative smooth connected
algebraic group over k, and let ϕ : X → G be a rational map. Let K be the
function field of X . Let v be a point of X of codimension one.

Let r = dim(X), let k0 = k, and define ki (i ≥ 1) as above. Assume r ≥
1, and assume that we are given a homomorphism of fields K

⊂→ kr such that
kr−1[[tr]] ∩ K = OX,v , trkr−1[[tr]] ∩ K = mX,v , kr−1 regarded as the residue field
of kr−1[[tr]] is separable over the residue field of v, and the ramification index of
kr−1[[tr]] over OX,v is 1. (There are many such K → kr.)

PROPOSITION 7.5

(1) For the local symbol map ( , )kr : G(kr) × KM
r (kr) → G(k), we have

modv(ϕ) = min
{
m ∈ N

∣∣ (ϕ,U (m)
r )kr = 1

}

(1 denotes the neutral element of G).
(2) In the case G = Wn, if we endow K with the discrete valuation associated

to v, we have, for any m ≥ 0,

filFm Wn(K) =
{
f ∈ Wn(K)

∣∣ (f,U (m+1)
r )kr = 0

}
,

�filFm Wn(K) =
{
f ∈ Wn(K)

∣∣ (f,V (m)
r )kr = 0

}
.

8. Extension of local fields and the filtrations

In this section, let K be a discrete valuation field of characteristic p > 0, and
let κ be the residue field of K.

We consider how the filtrations filF• Wn(K) and �filF• Wn(K) behave when
the field K extends. In Theorems 8.6 and 8.7, we show how these filtrations are
characterized by using extensions of K with perfect residue fields.

The following lemma can be proved easily.

LEMMA 8.1

Let K ′ be a discrete valuation field containing K such that OK′ ∩ K = OK and
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mK′ ∩ K = mK . Let m′ = e(K ′/K)m, where e(K ′/K) is the ramification index
of K ′ over K:

(1) filFm Wn(K) ⊂ filFm′ Wn(K ′);
(2) for m ≥ 1, we have a commutative diagram

filFm Wn(K) θm−→ Dm(K)
⏐� ⏐�

filFm′ Wn(K)
θm′−→ Dm′ (K ′)

COROLLARY 8.2

Let sK(ϕ) = min{m ∈ N | ϕ ∈ filFm Wn(K)}. Then sK′ (ϕ) ≤ e(K ′/K)sK(ϕ).

COROLLARY 8.3

Let m ≥ 1.
(1) The map filFm Wn(K)/ �filFm Wn(K) → filFm′ Wn(K ′)/ �filFm′ Wn(K ′) is

injective if e(K ′/K) is prime to p and is the zero map if e(K ′/K) is divisible
by p.

(2) The map �filFm Wn(K)/filFm−1 Wn(K) → �filFm′ Wn(K ′)/filFm′ −1 Wn(K ′) is
injective if the residue field of K ′ is separable over κ.

COROLLARY 8.4

In the case when e(K ′/K) is prime to p and the extension of the residue field in
the extension K ′/K is separable, we have

sK′ (ϕ) = e(K ′/K)sK(ϕ).

Proof
This follows from Cor. 8.3. �

8.5
We consider what happens for extensions K ′ of K, which have perfect residue
fields. We consider the following K ′.

(1) K ′ is a discrete valuation field containing K such that OK′ ∩ K = OK

and mK′ ∩ K = mK , and such that the residue field of K ′ is perfect.
We also consider the following K ′.
(2) K ′ is as in (1), but satisfies, furthermore, e(K ′/K) = 1.

THEOREM 8.6

Let ϕ ∈ Wn(K). Then

sK(ϕ) = sup
{
e(K ′/K)−1sK′ (ϕ)

∣∣ K ′ is as in Section 8.5(1)
}
.

For the filtration �filFm Wn(K), we have the following.
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THEOREM 8.7

Let ϕ ∈ Wn(K). Then

min
{
m ≥ 1

∣∣ ϕ ∈ �filFm Wn(K)
}

= 1 + max
{
sK′ (ϕ)

∣∣ K ′ is as in Section 8.5(2)
}
.

We use the following lemma for the proofs of these theorems.

LEMMA 8.8

Let K ′ be as in Section 8.5(1). Then for m ≥ 2, we have a commutative diagram
with injective rows

�filFm Wn(K)/ �filFm−1 Wn(K) θ̄m−−→ κ[F ] ⊗κ Ω1
κ ⊗κ m−m

K /m1−m
K⏐� ⏐�

filFem−1 Wn(K ′)/filFem−2 Wn(K ′)
θ̄m−1−−→ (κ′[F ] ⊗κ′ m1−m

K′ /m2−m
K′ )/N

where e = e(K ′/K), N = κ[F ] ⊗κ m1−m
K /m2−m

K if e = 1, and N = 0 if e ≥ 2, and
the right vertical arrow is the map induced from

OK [F ] ⊗OK
Ω1

OK
⊗OK

m−m
K /m1−m

K → OK′ [F ] ⊗OK′ Ω1
OK′ ⊗OK′ m−m

K′ /m1−m
K′ .

This is proved easily.

8.9 The proofs of Theorems 8.6 and 8.7
For K ′ as in 8.5(1), �filFm Wn(K) ⊂ filFe(K′/K)m−1 Wn(K ′) by 4.7(2). Hence by
Proposition 8.1(1), it is sufficient to prove the following (1) and (2).

(1) Let m ≥ 1, and assume that ϕ ∈ filFm Wn(K), ϕ /∈ �filFm Wn(K). Then for
any K ′ as in Section 8.5(2), we have sK(ϕ) = sK′ (ϕ).

(2) Let m ≥ 2, and assume that ϕ ∈ filFm−1
�Wn(K), ϕ /∈ filFm−1 Wn(K). Then

for any integer e ≥ 1, there is K ′ as in Section 8.5(1) such that e = e(K ′/K) and
such that sK′ (ϕ) = em − 1.

We prove (1) and (2).
Item (1) follows from Proposition 8.1(2) easily by looking at the coefficient

of d log(t) ⊗ t−m in the image of ϕ under θ̄m. (Here t denotes any prime element
of K.)

We prove (2). Take a lifting (b̃i)i∈I of a p-base (bi)i∈I of κ to OK . Let

κ′ =
⋃
r≥0

κ(Ti; i ∈ I)1/pr

,

where Ti (i ∈ I) are indeterminates. Let t be another indeterminate. Let π be a
prime element of K. Then there is a unique homomorphism of fields K → K ′ :=
κ′((t)) which sends OK into OK′ , mK into mK′ , b̃i (i ∈ I) to bi +Tit, and π to te.
The right vertical arrow in the diagram in Lemma 8.8 sends F ja ⊗ dbi (a ∈ κ) to
F jaTi, and sends F ja ⊗ dπ (a ∈ κ) to F ja if e = 1 and to 0 if e ≥ 2. From this,
we see that in the case e = 1, the map

�filFm Wn(K)/ �filFm−1 Wn(K) → filFm−1 Wn(K ′)/filFm−2 Wn(K ′)
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is injective, and in the case e ≥ 2, the map
�filFm Wn(K)/filFm−1 Wn(K) → filFm−1 Wn(K ′)/filFm−2 Wn(K ′)

is injective. This proves (2).
This concludes the proofs of Theorems 8.6 and 8.7. �
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[Ön] H. Önsiper, Generalized Albanese varieties for surfaces in characteristic p > 0,

Duke Math. J. 59 (1989), 359–364.

[Ru1] H. Russell, Generalized Albanese and its dual, J. Math. Kyoto Univ. 48

(2008), 907–949.

[Ru2] , Albanese varieties with modulus over a perfect field, preprint,

arXiv:0902.2533v2 [math.AG].
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[Rü2] , Erratum to “The generalized de Rham–Witt complex over a field is a

complex of zero-cycles,” J. Algebraic Geom. 16 (2007), 793–795.
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