Modulus of a rational map into
a commutative algebraic group

Kazuya Kato and Henrik Russell

Abstract For a rational map ¢ : X — G from a normal algebraic variety X to a com-
mutative algebraic group G, we define the modulus of ¢ as an effective divisor on X. We
study the properties of the modulus. This work generalizes the known theories for
curves X to higher-dimensional varieties.

1. Introduction

Let X be a normal algebraic variety over a perfect field k, let G be a commutative
algebraic group over k, and let ¢ : X — G be a rational map. In this article, we
give a geometric definition of a modulus of ¢ as an effective divisor ), m(v)v
on X. Here v ranges over all codimension 1 points of X at which ¢ is not defined
as a morphism and m(v) is a certain integer > 1. In the curve case, this definition
coincides with Serre’s definition (see [Se]), which is based on the theory of local
symbols. The case when k is of characteristic zero was explained in our previous
article (see [KR, §5]). We discuss the positive characteristic case in this article.
We study properties of this modulus.

An alternative way to define the modulus of ¢ is by using K-theoretic idele
class groups developed by Kato and Saito in [KS], as was done in [On] for surfaces.
The coincidence of these two approaches follows from Proposition 7.5.

This article is related to the theory of generalized Albanese varieties devel-
oped by Russell in [Rul] and [Ru2]. In particular, the following fact is proved
in [Ru2] by using this article. If X is proper smooth and if Y is an effective
divisor on X, ¢ factors through the generalized Albanese variety Alb(X,Y") of X
with modulus Y if and only if (modulus of ¢) <Y. In the case when k is of
characteristic zero, this was proved in [KR, §5] as a consequence of the theory
in [Rul].

The definition of the modulus of ¢ is given in Section 3 assuming Theo-
rem 3.3. The proof of this theorem is completed in Section 5. In Sections 6
and 7, we consider the relation of modulus with local symbols. In Section 8, we
consider the relation of modulus with field extensions.
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2. Filtrations on additive groups and on Witt vector groups

Let K be a discrete valuation field, and let Ok be the valuation ring of K.

2.1
For m > 0, we define

il (K)={f €K | vx(f)>—-m}.

Here vi denotes the normalized valuation of K.

2.2
Let p be a prime number, and assume that K is of characteristic p. Let W,,(K)
be the set of Witt vectors of length n with entries in K. For m >0, define

fil,, W,,(K)
= {(fnflwﬂvf()) ‘ fj EKapij(fj) Z _m(OSJ Sn— ].)} C Wn(K)

This filtration appeared in the article [Br] of Brylinski. In the case n =1, this
filtration coincides with the filtration on K = W7 (K) in Section 2.1.

Let F: W, (K) — W, (K) be the map (an_1,...,a0) — (a?_,,... ah). For
m €N, let

AL, Wi (K) =Y F7 (fily, Wi (K)) C W, (K).
Jj=0
We have fily W, (K) = fill’ W, (K) = W, (Ok).
If we regard W, (K) as a subgroup of Wy, 1(K) via V : W,,(K) — W, 11(K);

(an—1,---,a0) — (0,an_1,...,ap), we have

fil,, Wiyt (K) W, (K) = fil,,, W, (K), fill W, 1 (K) N W, (K) =fill W, (K).

3. Modulus

3.1

Let X be a normal algebraic variety over a perfect field k. We regard X as a
scheme. Let G be a commutative smooth connected algebraic group over k, and
let ¢ : X — G be a rational map. We define the modulus

mod(y) = Z mod, (¢)v

of ¢ as an effective divisor on X, where v ranges over all points of X of codi-
mension one and mod, () € N is as follows.

The case when k is of characteristic zero is already explained in [KR].
(In [KR], we assumed that X is proper smooth over k, but this condition is
not used in the definition.)

3.2
First, assume that k is algebraically closed.
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Let 0 - L - G — A — 0 be the canonical exact sequence of commutative
algebraic groups, where A is an abelian variety and L is an affine smooth con-
nected algebraic group. Write L = L,,, X L,,, where L,,, is multiplicative and L,,
is unipotent. Then since k is algebraically closed, L., = (G,,)! for some ¢ > 0.
If k is of characteristic zero, L, = (G,)® for some s > 0. Fix such an isomor-
phism. If k is of characteristic p > 0, L, is embedded into a finite direct sum
@le W, of Witt vector groups for some s > 0 and for some n; > 1. Fix such
an embedding.

Let K be the function field of X. Since H} ((Spec(Ox z),Gm) =0 and
H, ¢ (Spec(Ox ), Ly) =0 for any point x of X, we have exact sequences

0— L(K) = G(K) —» A(K) =0, 00— L(Ox.4) — G(Ox.0) — A(Ox.2) — 0.

If v is a point of X of codimension one, since A is proper and Ox, is a
discrete valuation ring, we have A(K) = A(Ox,). Hence the canonical map
L(K)/L(Ox ) — G(K)/G(Ox ) is bijective. Take an element [ € L(K) whose
image in G(K)/G(Ox ) coincides with the class of ¢ € G(K). In the case when k
is of characteristic zero, let (I;)1<i<s be the image of [ in (G,(K))® = K* under
L — L, = (G,)*. In the case when k is of characteristic p > 0, let (I;)1<;<s be
the image of [ in @_, W, (K) under L — L, = @5_, W,,.

If ¢ € G(Ox,), then we define mod,(p) =0. If ¢ ¢ G(Ox,) and if the
characteristic of k is zero (resp., p > 0), then we define

mod, (p) =1+ max{r(l;) | 1<i<n}, wherefor fe€K (resp., Wy, (K)),
r(f)=min{r eN | f€fil,(K)} (resp.,r(f)=min{reN]|fe filX W, (K)}).
In the case when k is of characteristic zero, it is easy to see that mod, (p) is

independent of the choice of the isomorphism L, 2 (G,)*®. In the case when k is
of characteristic p > 0, however, it is not so easy to prove

THEOREM 3.3
Let the notation be as above, and assume that k is of characteristic p > 0. Then
mod,, (¢) is independent of the choice of the embedding L, — @_; W, .

This theorem is proved in Section 5.

34

Now we do not assume k is algebraically closed. Then by Galois descent for
Gal(k/k), we see that there is a unique effective divisor mod(¢) on X whose
pullback to X ® k is the modulus of the rational map X ®; k — G @y, k.

4. Quotients of the filtrations

Let p be a prime number, and let K be a discrete valuation field of characteristic p
with residue field .

We study fil, W,,(K)/flf,, ,; Wi (K) and its quotient fil}, W, (K)/fil}, ,
W, (K), for m > 1. Here for x € R, [z] denotes max{a € Z | a <z} as usual.
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PROPOSITION 4.1
(1) The following sequence is exact.

0 — @D filj ) Wa (K) 2 @D il Wi () — L], W, (K) — 0,
Jj=0 j>0
where the third arrow is (z;); — 3, Fi(x;), and h is the map (x;); — (y;); with
Yo = F(xo), yj = F(x;) —xj1 for j > 1.
(2) We have an isomorphism
fil,, W, (K) ~ filf W, (K)
= .
> /o] W (K) + F (6l /) Wi (K)) - £, Wi (K)

Proof
(1) We prove that for each i > 0, the sequence
i—1
0 — P il Wi (K @ﬁl W ( ZF fil,,, W, (K) — 0
7=0

is exact, where h; is the restriction of h. We prove this by induction on i. The
case ¢ =0 is trivial. Assume that ¢ > 1. The nontrivial point is the exactness
at the central term. Let x = (z;); be an element of EB;-ZO fil,, W,,(K) such
that >, F7(z;) =0. We prove that z belongs to the image of h;. We have
Fi(a;) = — Y0 F(x5) € fil -1 Wi (K). Hence @; € filjy, /) W (K). Let y =
(yj); be the element of @;;}) fil /5] Wi (K) defined by y; 1 = 2; and y; =0 for
0<j<i—1,andlet 2’ =z + h;(y). Then 2’ € @Z 4 fil,, W, (K). By induction
on i, (z}); is in the image of h;.
(2) This follows from (1) easily.

4.2
For a commutative ring R, let Q}, = Q}z/z be the differential module of R. Then
for any commutative ring R over F,, there is a homomorphism

§: Wi(R) — Qks (an_1,...,a0) — Zaftl da;.

4.3
Let Qf,_(log) be the differential module of O with log poles defined by

05, (log) = (25, ® (Ok @z K*))/N,

where N is the Og-submodule of Qf, & (Ox ®z K*) generated by (da, —a ® a)
for a € Og — {0}. We have canonical homomorphisms Qf, — Qg _(log) and
K* — Qo (log); a class(0,1® a). We denote the latter map by dlog. If the
condition



Modulus of a rational map 611

(i) the completion of K is separable over K

is satisfied, then for a lifting (b;); of a p-base of k to Ok and for a prime element ¢
of K, Qf  (resp., Qp, (log)) is a free Ox-module with base (db;); and dt (resp.,
(db;); and dlog(t)).

(Condition (i) is equivalent to the condition that (b;); and ¢ form a p-base
of K. Recall that for a field F of characteristic p, a family (b;);cr of elements
of F is called a p-base of F' if F is generated over FP by b; (i € I) as a field and
for any subset J of I such that J # I, F' is not generated over F? by b; (j € J).
Recall also that if (b;); is a p-base of F, (db;); is a base of the F-module Q1..)

Without assumption (i), for any integer j > 0, Q%)K ®0k OK/mi( (resp.,
Q. (log) ®o, Ox /mi;) is a free Og /m.-module with base (db;); and dt (resp.,
(db;); and dlog(t)). This is because this group is invariant under the completion
of K, and the condition (i) is satisfied of course if K is complete.

PROPOSITION 4.4

For m > 1, the homomorphism § (see Section 4.2) for K induces an injective
homomorphism

fil,,, Wy, (K) mg"

Om : — 05, (log) ®o, —E——.
Al p) Wi (K) + F(filj ) Wa(K))  OF “

Proof
The problem is the injectivity. By induction on m, it is reduced to the injectivity
of
fil,,, Wy (K mp"
o W (K) — 0b, (10g) o, .
Mg

A=

We assume that K = x((t)) without a loss of generality. Note that

00, (log) @0, my™ [mi ™ = Qp @K,

adb®@t™™ < (adb,0) (a,b€ k), adlog(t) @ t™™ < (0,a) (a € k).

We define an increasing filtration (A4;)_1<i<n—1 on A as follows. For —1 <
i<n—1,let A; be the image of fil,, W;;1(K) in A under V=170 W, 1 (K) —
Wy (K). Then as is easily seen, A; = A if ¢ > ord,(m), A_1 =0, and for 0 <i <
r:=min(ord,(m),n — 1), we have an isomorphism

K (vesp., k/KP) = A;/A;_1 in the case i = ord,(m) (resp., i < ordy,(m)),

a— (fo-1,...,fo) with f; = at™mP"" if j =1, f; =0 otherwise.

Ifa; €5 (0<i<r)and fi:ait_mpfi for 0 <¢<rand f; =0 for r <i<n, then
the image of (fn_1,..., fo) € fil,, W, (K) in Q4 _(log) ®o, mE"/my "= Ok
is

.
i mo -
(Zaf 1dai,f7'a£ ) €l @ k.
i=0 p
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For i > 0, let B; be the subgroup of Q! generated by elements of the form a?’ ~lda
with a € k and 0 < j <4. For example, By =dk. Let B_; =0. The theory of
Cartier isomorphisms shows

(4.1) k/KP = B;/B;_1, a—a? "‘da

for i > 0. For 0 <i<r, the image of the composition 4; — QL & xk — QL is
contained in B;, and the composition x/kP = A;/A;—1 — B;/B;_1 is nothing
but the isomorphism (4.1). If ord,(m) <n—1 and i = ord,(m), the composition
A; — QL @k — K kills A;_1, and the composition & = A;/A;_1 — K coincides
with injective map a+— —m/p" - a?". This completes the proof of injectivity in
the proposition. O

4.5
Let Ok[F] be the noncommutative polynomial ring defined by

OK[F]:{ZFjaj;CLjEOK}, FCL:(IPF(GEO[().
Jj=0
For m e N; let

Dy = Ok [F] ®0, Qb (10g) ®0, mz™ /m™'",

Dy = K[F] @, (Qb,, (log) ®0, mg™ /my™).

4.6
For m € N, by Propositions 4.1(2) and 4.4, we have an injective homomorphism

O 2 il Wy (K)/ i1, /) Wi (K) — Dpo (K) -

> FI(x5) = Y @ bm(x)
j=0 J
for z € fil,, W, (K).

For m > 1, 6, induces an injective homomorphism

O, = A1E W, (K) /1L W, (K) — D,,.

4.7
For m >0, we define a subgroup 1%, W,,(K) of fil%, W,,(K) as follows.

Let °D,, be the image of x[F] ®, (6, ®ox mE™/mi™) (here we do not
put a log pole) in D,,,. We have

"Dy 2 K[F] @, QL @, mp™ /mi™.
Note that
Dy /' Do = K[F) @, me"/mic ™, Fla@dlog(t)@t ™« Fla@t™™,

where a € k and t is a prime element of K.
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Let *filf W, (K) c filf W, (K) be the inverse image of °D,, under
O 2 filZ W, (K) — D,,. We have
B W (K) = F7 (*fil, W, (K)),
Jj=0

where "fil,,, W,,(K) is the subgroup of fil,, W,,(K) consisting of all elements
(fn=1,---, fo) which satisfy the following condition: if the p-adic order i of m
is <n, then plvg(f;) > —m.

We have injections

fi1l W, (K)/*61E W, (K) S Dy /Dy,

"0l W, (K)/61E_ W (K)S D,

induced by 6,),.

As is easily seen, we have the following.

(1) For m > 1, *flf W, (K) > filY |, W,(K). If m is prime to p, then
bﬁlTFn Wn(K) = ﬁlfm—l Wn(K)

(2) If & is perfect, then A1 W, (K) =filZ | W, (K).

4.8
The following relation with the refined Swan conductor in [Ka2] and [Ma] is
proved easily. By Artin-Schreier-Witt theory, we have an isomorphism

W, (K)/(F —1)W,(K)= H'(K,Z/p"Z) = H" (Gal(K*? /K),Z/p"Z),

where K®°P denotes the separable closure of K. As in [Ka2], let fil,, H*(K,Z/
p"Z) be the image of fil,, W, (K).

PROPOSITION 4.9

Let fil,, H'(K,Z/p"Z) — Q}, (log) ®o, mz" /myc™ (m > 1) be the refined Swan
conductor in [Ka2] whose kernel is fil,,,_1 H*(K,Z/p"Z). Then we have a com-
mutative diagram

filf, W, (K) —  Dyy/Dp1 = K[F]®, (2, (log) @0, mg™/mic™)
fil,, H'(K,Z/p"Z) — Qb (log) @0, my™ /my™
Here the right vertical arrow is induced from the ring homomorphism k[F] —
kY Flai— > a; (a; €K).
5. Homomorphisms and the filtrations

Let K be a discrete valuation field of characteristic p > 0.
We assume here that we are given a perfect subfield k of Ok .
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5.1
Let n,n’ > 1, and assume that we are given a homomorphism h: W,, — W,/ of
algebraic groups over k. Let hy : G, — G, be the homomorphism induced by h
on the subgroups G, C W,, (embedded via V"~!) and G, C W, (embedded via
V™' ~1). Since the endomorphism ring of G, over k is k[F], where F acts as
Go — Gg, x+— 2P, we can regard h; as an element of k[F].

The following proposition is proved easily.

PROPOSITION 5.2
(1) The homomorphism h sends fill, W,,(K) into fil5, W,/ (K).
(2) We have a commutative diagram

Ll Wo(K) 2 Dy(K)
! l
81F W (K) 2 D (K)

where the left vertical arrow is induced from h and the right vertical arrow is the
multiplication x — hix by hq € k[F].

Proof

Homomorphisms W,, — W, are described by F', V', and the multiplication by
elements of W (k). For each of them, we can check easily that the proposition
holds. (|

THEOREM 5.3

Let h: @;_, W,, — @jlzl Wy (s,8' > 0,n4,n); > 1) be an injective homomor-
phism defined over k. Let m > 0. Then for x € @;_, W,,(K), = belongs to
@;_, fl5 W, (K) if and only if h(x) belongs to @;;1 fil? Wy (K).

Proof

Let hy: B;_, G, — @j/:l G, be the homomorphism induced by h on the sub-
groups @B;_, G, C D;_, W,, and @;,:1 G, C @;/:1 W, This hy is understood
as a matrix with entries in k[F]. Since h is injective, the homomorphism

Hom,, (Ga,g_?@a) — Hom, (Ga,j@«;a), gohiog

is injective, where Hom, means the set of homomorphisms of algebraic groups
over . This means that the map @;_, s[F] — @]_, s[F], z+— hiz is injec-
tive. Hence for m > 1, the map @;_, D, — @;:1 D,,, x — hix is injective.
By Proposition 5.2(2), this proves that h induces an injective homomorphism

D;_, fill, Wi, (K) /AL, Wi, (K) — €, 15, W,y (K)/ L], Wiy (K. O

m—1 =1 j
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5.4 Proof of Theorem 3.3

Let Y =@, W,,. Consider another embedding L, — Y":= &, W,,. Embed
the pushout Y of Y < L, — Y” into a finite direct sum Y" =&p,, W, ,,. Then
we have the third embedding L, — Y and injective homomorphisms Y — Y
and Y/ — Y” which are compatible with embeddings. By Theorem 5.3, mod, (¢)
defined by the first (resp., second) embedding coincides with that defined by the
third embedding. O

6. Local symbols

6.1

Let k be an algebraically closed field, let X be a normal algebraic curve over k,
let G be a commutative smooth connected algebraic group over k, and let
¢: X — G be a rational map. Then in [Se], the modulus of ¢ was defined
by using local symbols. We show that our definition of the modulus coincides,
in the curve case, with this classical definition.

6.2

Let k, X, G, and ¢ be as in Section 6.1, and let K be the function field of X.
For each point v of X of codimension one (that is, v is a closed point of X)), the
local symbol map

(,)y: G(K) x K* — G(k)

is defined as in [Se]. It is a Z-bilinear map and is continuous for the v-adic
topology. In [Se], the modulus of ¢ is defined as the right-hand side of the
equation in the following proposition.

PROPOSITION 6.3
Let the notation be as in Section 6.2. Then our mod,(p) satisfies

mod, () = min{m € | (¢, U(™), =0}.

Here U™ s the mth unit group at v; that is, U™ = Ker(O% , — (Ox/
m',)*) where mx , is the mazimal ideal of Ox ..

Proof

Let 0 — L — G — A — 0 be as in Section 3. Since (G(Ox,,), 0% ,)» vanishes
and since L(K)/L(Ox,) — G(K)/G(Ox,,) is bijective, we are reduced to the
case G = L. If k is of characteristic zero, we are reduced to the cases G = G,,
and G =G,. If k is of characteristic p > 0, by embedding L, to a finite direct
sum of Witt vector groups as in Section 3, we are reduced to the cases G = G,,
and G =W,. In the case G = G,,, the local symbol coincides with (f,g) —
(—1)*Nv9) (gv() / £v(9))(v) where v(?) denotes the v-adic normalized valuation
and (v) denotes the value at v. By using this fact, the case G = G,, is proved
easily. In the case G = G, the local symbol map is (f, g) — Res(fdlog(g)), where
Res is the residue map. By using this fact, in the case when k is of characteristic
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zero, the case G = G, is proved easily. In the case when k is of characteristic
p>0and G =W,, it is sufficient to prove the following proposition.

PROPOSITION 6.4

Let K = k((t)) with k a perfect field of characteristic p > 0. For m >1, let
U =14+ t"k[t] C k[t]*. Let (,)x : Wn(K)x K* — W, (k) be the local symbol
for G=W,.

(1) For m>0, we have (5 W, (K), U]((mﬂ))K =0.

(2) Let ¢ € il W,(K), and let 3, Fla; be the image of ¢ wunder
fill W, (K) /15, W, (K) — Dy, /D1 = &[F), where the last isomorphism is
given by Fla ® dlog(t) ® t™™ +— F'a (a € k). Then for b € k, the local symbol
(p,1 4 bt™) coincides with the image of Zi(aib)piﬂin
Vil g — Wa(k).

(3) If k is an infinite field, then for any m >0, we have

fily, Wo(K) = {p € Wa(K) | (0, UZ" ™) =0}

€ k under the injection

6.5
For the proof of Proposition 6.4, we use the following explicit description of the
local symbol map of W,,.

Proof of Proposition 6.4
Let A=W, (x)[t][t!]. We have the evident surjective ring homomorphism A —
K and an injective ring homomorphism

On: Wi (K)— A, (an-1,-..,00) — Z p7l_1_idfi,

0<i<n—1

Here @; is any lifting of a; to A. Note that p"~!~G"" are independent of the
choice of the lifting. The differential module QY is a free A-module of rank 1
with basis dlog(t). We have a well-defined homomorphism

dlog : K* — QY /pdA; a+— dlog(a),
where @ denotes any lifting of a to A. Let

Res: QY — W, (k); Zaitidlog(t) — ag.

Then the local symbol (, )x for G =W, is expressed as
(6.1) (f,9)x = F'""Res(¢,(f)dlog(g)) for f€ W, (K) and g€ K*.

Here F~1: W, (k) — W, (k) is the inverse map of F : W, (k) — W,(k). In the
case n =1, this formula coincides with the formula (f,g)x = Res(fdlogg) for
G =Gs,.

By using the explicit formula (6.1) of the local symbol, we obtain Proposi-
tion 6.4(1), (2). Proposition 6.4(3) follows from Proposition 6.4(1), (2).
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The authors are sure that the above formula (6.1) is written in some refer-
ences, but they could not find it. This (6.1) can be deduced from the formula (6.2)
below.

Let W, Q% be the de Rham-Witt complex of K. Then W, Q1 is a W, (K)-
module, and we have a homomorphism dlog: K* — W,Q}.. There is a residue
map

Res : W, Q) — W, (k)
(see [Kal, §2] or [Ril, §2]; see also [Rii2]) which generalizes the residue map
QL — k (the case n =1). By [KS, Chap. III, Lem. 3], we have

(6.2) (f.9)k =Res(fdlog(g)) for feW,(K),ge K*.

The above formula (6.1) follows from this formula (6.2) and from
F'""Res(¢n(f)dlog(g)) = Res(fdlog(g)) for f e W,(K),ge K*.

This concludes the proof of Proposition 6.4 and hence the proof of Proposi-
tion 6.3. 0

7. Higher-dimensional local fields

7.1
The above relation between modulus and local symbols for curves is generalized
to the higher-dimensional cases by using local symbols for higher-dimensional
local fields defined in [KS, Chap. III].

Let p be a prime number, let kg be a perfect field of characteristic p, and
define fields k. (r > 1) inductively by

kr =kr—1((t)).

Let G be a commutative smooth connected algebraic group over kg. Then
the local symbol map

(k2 G(kr) % Ky(kr) — G(ko)

is defined in [KS], where KM denotes the rth Milnor K-group.

In the case G =W, this local symbol map is described as follows. Define
rings A, (r >0) inductively by Ag = W, (ko) and A, = A,_1[t.][t; ] for r > 1.
Then the local symbol map of k, for W, is described as

(7.1) (f,9)k, = F' " Res(¢,(f)dlog(g)) for f € W,(k,) and g € kX,

where Res is the map
Res: Qgr — Wn(ko)

defined to be the composition of the evident residue maps QY — QZL (1<
i <r)and ¢, : Wy(k,) — A, is defined in the same way as ¢, in the previous
paragraph, respectively. This (7.1) is deduced from the description of the local
symbol map (see [KS])

(f,9)k, = Res(fdlog(g)) for f e W, (k) and g € k%,
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where Res is the residue map
Res : W, — W, (ko)
defined in [Kal, §2].

7.2

By using the explicit presentation (7.1) of the local symbol, we can obtain the
following generalization Proposition 7.3 of Proposition 6.4 to higher-dimensional
local fields. In Proposition 7.3, for » > 1 we show that the two filtrations
fill’ W, (k,) and *filY W, (k,) (which are defined with respect to the t,-adic val-
uation of k,) are related to a certain two filtrations U and V,*) on KM(k,),
respectively.

Fix r > 1. We define subgroups Uﬁm) and Vr(m) of K,M(k:r). For m > 1,
let U™ be the subgroup of KM (k,) generated by all elements of the form
{z,y1,...,Yr—1} such that y; € kX and =z € 1 + t7k,_1[t,] C kr—1[t-]*. For
m >0, let V'™ be the subgroup of K (k,.) generated by all elements of the form
{z,y1,...,yr—1} such that y; € k,—1[t,]* and x € Ker(k,_1[t,]* — (kr—1[t,]/
(tm))*). Then

V=D 5 um 5 vm - for all m> 1.

Let U = (.
For m > 1, we have surjective homomorphisms
sm o QL =V oY,
adlog(by) A--- A dlog(by—1) — {1+ at],by1,...,br—1},

A
adlog(by) A--- A dlog(br—a) — {1+ at™ by,...,bp_2,t.}
(a€kp_1, bj k) ,).

PROPOSITION 7.3

Let r > 1. Define the filtrations ﬁlf; Wy (k) and *fil,,, W, (k) by using the t,-
adic discrete valuation of k.. Let (, )k, : Wy(kr) x KM (k) — W, (ko) be the
local symbol map of k, for G=W,,.

(1) For m>0, we have
(05, W, (k). U00), =0, CBIE Wo(k) V™), =0,

(2a) Let m > 1. Let ¢ € il W,,(k,), and let Y, Fla; (a; € ky—1) be
the image of ¢ under ﬁlﬁ VVn(k;T)/bﬁlfT Wi(k.) — Dy /"D = kp_1[F], where
the last isomorphism is given by Fla @ dlog(t,) @ t;™ — F'a (a € k,_1).
Then for b € Q}c_fl, the local symbol (p, s, (b)) coincides with the image of
S (Res(a;b)P " € ko under the injection V"1 : ko — Wi (ko). Here Res is the
residue map QZ:}I — ko.
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(2b) Let m > 1. Let ¢ € *All W, (k,), and let 3, Fla; (a; € Q) be
the image of ¢ under *A15, W, (k,)/ 15 _ W, (k) — "Dy = ky 1 [F] @, _, O
where the last isomorphism is given by Fla®@ w @ t,™ — Fla®@w for a € k,_1,
weQy . Then forbe Qz:i, the local symbol (¢, s),(b)) coincides with the

image of 3",(Res(a; Ab))P" " € ko under the injection V"= : kg — Wi, (ko).
(3) If ko is an infinite field, then for any m >0, we have
ﬁli Wh(ky) = {90 € Wy (kr) ‘ (‘P7U7(*m+1))kr = 0}’

"A1E W (k) = {0 € Wolkr) | (0, V™), =0}

m

r—1’

7.4
The following relation between modulus and higher-dimensional local fields is
deduced from Proposition 7.3. Let k be an algebraically closed field, let X be
a normal algebraic variety over k, let G be a commutative smooth connected
algebraic group over k, and let ¢ : X — G be a rational map. Let K be the
function field of X. Let v be a point of X of codimension one.

Let r = dim(X), let ko = k, and define k; (i > 1) as above. Assume r >
1, and assume that we are given a homomorphism of fields K S k, such that
kr_1tr ] N K =Ox v, trkr—1[t:] N K =mx y, kr—1 regarded as the residue field
of k._1[t,] is separable over the residue field of v, and the ramification index of
ky_1[t,] over Ox , is 1. (There are many such K — k,.)

PROPOSITION 7.5
(1) For the local symbol map (, )i, : G(k,) x KM (k) — G(k), we have

mod, (p) :min{m eN | (@,Uﬁm))kT = 1}

(1 denotes the neutral element of G).
(2) In the case G =W,, if we endow K with the discrete valuation associated
to v, we have, for any m >0,

fill W, (K) = {f € Wa(K) | (f, U™ )i, =0},
615 W, (K) = {f € Wou(K) | (f,V, ™)y, =0}.

8. Extension of local fields and the filtrations

In this section, let K be a discrete valuation field of characteristic p > 0, and
let k be the residue field of K.

We consider how the filtrations fil} W, (K) and °flZ W, (K) behave when
the field K extends. In Theorems 8.6 and 8.7, we show how these filtrations are
characterized by using extensions of K with perfect residue fields.

The following lemma can be proved easily.

LEMMA 8.1
Let K' be a discrete valuation field containing K such that O N K = Ok and
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mig NK =mpg. Let m' =e(K'/K)m, where e(K'/K) is the ramification index
of K' over K:

(1) fill W, (K) c filf, W, (K');

(2) for m>1, we have a commutative diagram

filf, Wo(K) 2 Dy (K)
! !
815, Wo(K) 2 Dy (K)

COROLLARY 8.2
Let si (@) =min{m € N | ¢ € fill, W,,(K)}. Then sg:(¢) <e(K'/K)sk(p).

COROLLARY 8.3
Let m>1.

(1) The map 15 W, (K)/*61E W, (K) — A5, W,(K")/°681F, W, (K") s
injective if e(K'/K) is prime to p and is the zero map if e(K'/K) is divisible

by p.
(2) The map "fl5 W, (K)/filE | W, (K) — 615, W, (K")/ ik, | W, (K") is
injective if the residue field of K’ is separable over k.

COROLLARY 8.4
In the case when e(K'/K) is prime to p and the extension of the residue field in
the extension K'/K is separable, we have

skr(p) = e(K'/K)sk (o).

Proof
This follows from Cor. 8.3. O

8.5
We consider what happens for extensions K’ of K, which have perfect residue
fields. We consider the following K.

(1) K’ is a discrete valuation field containing K such that Ox' N K = Ok
and my N K =mg, and such that the residue field of K’ is perfect.

We also consider the following K’.

(2) K’ is asin (1), but satisfies, furthermore, e(K'/K)=1.

THEOREM 8.6
Let p € W, (K). Then

sk (p) :sup{e(K’/K)_lsK/(go) | K' is as in Section 8.5(1)}.

For the filtration *Al% W,,(K), we have the following.
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THEOREM 8.7
Let p € W, (K). Then

min{m >1| ¢ € i1l Wo(K)} =1+max{sk (p) | K' is as in Section 8.5(2)}.
We use the following lemma for the proofs of these theorems.

LEMMA 8.8
Let K’ be as in Section 8.5(1). Then for m > 2, we have a commutative diagram
with injective rows

15 W, (K)/PRIE_ W (K) 2 k[F] @, OL @ mp™ fml ™

l l

Wo(K')/81E W, (K") By (K'[F] @ m™ /m2™) /N

em—2

filr

em—1

where e = e(K'/K), N = s[F|®,mj ™ /m% ™ ife=1, and N =0 if e > 2, and
the right vertical arrow is the map induced from

OK[F] R0k QlOK R0k m;{m/m}{m — Ok [F] ®0K, Q%)K, ®OK’ m;{r,n/m}(jm
This is proved easily.

8.9 The proofs of Theorems 8.6 and 8.7
For K' as in 8.5(1), *fil}, W (K) C i1l k1 /gy 1 W (K') by 4.7(2). Hence by
Proposition 8.1(1), it is sufficient to prove the following (1) and (2).

(1) Let m > 1, and assume that o € fill, W,,(K), ¢ ¢ *f15, W,,(K). Then for
any K’ as in Section 8.5(2), we have sk (¢) = sk ().

(2) Let m > 2, and assume that ¢ € fill | W, (K), ¢ ¢ filZ | W, (K). Then
for any integer e > 1, there is K’ as in Section 8.5(1) such that e = e(K’/K) and
such that sk (@) =em — 1.

We prove (1) and (2).

Item (1) follows from Proposition 8.1(2) easily by looking at the coefficient
of dlog(t) ®t~™ in the image of ¢ under 6,,. (Here t denotes any prime element
of K.)

We prove (2). Take a lifting (l;l-)ie[ of a p-base (b;)ier of k to Ok. Let

K =] K(Tsie V7,
r>0
where T; (i € I) are indeterminates. Let ¢ be another indeterminate. Let 7 be a
prime element of K. Then there is a unique homomorphism of fields K — K’ :=
#'((t)) which sends Ok into Ok, m into mg-, b; (i € I) to b; +Tst, and 7 to t°.
The right vertical arrow in the diagram in Lemma 8.8 sends FVa ® db; (a € k) to
FiaT;, and sends FVa @ dr (a € k) to Fia if e=1 and to 0 if e > 2. From this,
we see that in the case e = 1, the map

“fily, Wi (K) /6Ly, W (K) — il Wi (K")/ il Wi (K)
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is injective, and in the case e > 2, the map

"BIE WL (K fLE WL (K) — flE WL (K61, WL (K

m—1

is injective. This proves (2).

This concludes the proofs of Theorems 8.6 and 8.7. O

References

[Br] J.-L. Brylinski, Théorie du corps de classes de Kato et revétements abéliens de
surfaces, Ann. Inst. Fourier (Grenoble) 33 (1983), 23-38.

[Kal] K. Kato, A generalization of local class field theory by using K -groups, I1,

J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 603-683.

[Ka2] , “Swan conductors for characters of degree one in the imperfect
residue field case” in Algebraic K-Theory and Algebraic Number Theory
(Honolulu, 1987), Contemp. Math. 83, Amer. Math. Soc., Providence, 1989,
101-131.

[KR] K. Kato and H. Russell, Albanese varieties with modulus and Hodge theory,
preprint, arXiv:0906.0047v1 [math.AG].

[KS] K. Kato and S. Saito, “Two-dimensional class field theory” in Galois Groups
and Their Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2,
North-Holland, Amsterdam, 1983, 103-152.

[Ma] S. Matsuda, On the Swan conductor in positive characteristic, Amer. J. Math.
119 (1997), 705-739.

[On] H. Onsiper, Generalized Albanese varieties for surfaces in characteristic p >0,
Duke Math. J. 59 (1989), 359-364.

[Rul] H. Russell, Generalized Albanese and its dual, J. Math. Kyoto Univ. 48
(2008), 907-949.

[Ru2] , Albanese varieties with modulus over a perfect field, preprint,
arXiv:0902.2533v2 [math.AG].

[Ril] K. Rilling, The generalized de Rham—Witt complex over a field is a complez of
zero-cycles, J. Algebraic Geom. 16 (2007), 109-169.

[Rii2] , Erratum to “The generalized de Rham—Witt complex over a field is a
complex of zero-cycles,” J. Algebraic Geom. 16 (2007), 793-795.

[Se] J.-P. Serre, Groupes algébriques et corps de classes, Publ. Inst. Math. Univ.

Nancago 7, Hermann, Paris, 1959.

Kato: Department of Mathematics, University of Chicago, 5734 S. University Avenue,
Chicago, Illinois 60637, USA; kzkt@math.uchicago.edu

Russell: Universitat Duisburg-Essen, Fachbereich Mathematik, Campus Essen, 45117

Essen, Germany; henrik.russellQuni-due.de



	Introduction
	Filtrations on additive groups and on Witt vector groups
	Modulus
	Quotients of the filtrations
	Homomorphisms and the filtrations
	Proof of Theorem 3.3

	Local symbols
	Higher-dimensional local fields
	Extension of local fields and the filtrations
	The proofs of Theorems 8.6 and 8.7

	References
	Author's Addresses

