
Cyclic symmetry and adic convergence
in Lagrangian Floer theory

Kenji Fukaya

Abstract In this article we use a continuous family of multisections of the moduli space
of pseudoholomorphic discs to partially improve the construction of the Lagrangian
Floer cohomology of [11] in the case of R coefficient. Namely, we associate a cyclically

symmetric filtered A∞-algebra to every relatively spin Lagrangian submanifold. We use
the same trick to construct a local rigid analytic family of filtered A∞-structures asso-
ciated to a (family of) Lagrangian submanifolds. We include the study of homological
algebra of pseudoisotopy of cyclic (filtered) A∞-algebras.
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1. Introduction

In this article we study the de Rham version of Lagrangian Floer theory and use
it to improve some of the results in [11] over R coefficient. In particular, in this
article, we prove [11] Conjectures 3.6.46, 3.6.48, and part of Conjecture T over
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R coefficient. Let L be a relatively spin Lagrangian submanifold in a symplectic
manifold (M,ω). In this article we always assume that L is compact and M is
either compact or convex at infinity.

The universal Novikov ring ΛR
0,nov is defined in [11] (see also Definition 6.3).

Let H(L;R) be the (de Rham) cohomology group of L over R coefficient. We
put H(L;ΛR

0,nov) = H(L;R) ⊗R ΛR
0,nov.

THEOREM 1.1

H(L;ΛR
0,nov) has a structure of unital filtered cyclic A∞-algebra which is well

defined up to isomorphism.

Hereafter we work over R coefficient, so we write Λ0,nov in place of ΛR
0,nov. We

denote by Λ+
0,nov its ideal

⋃
E0>0

⋃
G FE0ΛG

0 (see Definition 6.3).
Let us explain the notions appearing in Theorem 1.1. We consider a (graded)

antisymmetric inner product 〈 · 〉 on H(L;R)[1] by

(1.1) 〈u, v〉 = (−1)deg udeg v+deg u

∫
L

u ∧ v.

Filtered A∞-structure defines a map

mk : Bk

(
H(L;Λ0,nov)[1]

)
→ H(L;Λ0,nov)[1]

of degree one (for k ≥ 0) such that

(1.2)
∑

k1+k2=k+1

k1∑
i=1

(−1)∗mk1

(
x1, . . . ,m2(xi, . . . ,xi+k2−1), . . . ,xk

)
= 0,

∗ = degx1 + · · · + degxi−1 + i − 1. (We require m0(1) ≡ 0 mod Λ+
0,nov.)

The filtered A∞-structure is said to be unital if e = 1 ∈ H0(L;R) satisfies

(1.3a) mk(x1, . . . ,xi,e,xi+2, . . . ,xk) = 0

for k �= 2 and

(1.3b) x = m2(e,x) = (−1)degxm2(x,e).

The filtered A∞-structure is said to be cyclically symmetric or cyclic if

(1.4) 〈mk(x1, . . . ,xk),x0〉 = (−1)∗ 〈mk(x0,x1, . . . ,xk−1),xk 〉.

∗ = (degx0 + 1)(degx1 + · · · + degxk + k). A cyclically symmetric filtered A∞-
algebra is said to be a cyclic filtered A∞-algebra (see Remark 8.1 for the definition
of isomorphism of cyclic filtered A∞-algebra).

REMARK 1.1

(1) Except for the statement on cyclicity, Theorem 1.1 was proved in [11,
Theorem A]. Actually in that case we may take Q in place of R. The author
does not know how to generalize Theorem 1.1 to Q (or ΛQ

0,nov) coefficient. See
also [6, Section 9].
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(2) The formula (1.4) is slightly different from [11, Proposition 8.4.8]. Also,
the sign in (1.1) is different from those explained in [11, Remark 8.4.7(1)]. If
we use sign convention in (1.1), then (1.4) becomes equivalent to one in [11,
Proposition 8.4.8] (see Lemma 6.1). The author thanks C.-H. Cho (see [3]) for
this remark.

We next state our result about adic convergence. We take a basis ei of H(L;R)
(i = 0, . . . , b) such that e = e0 = 1 ∈ H0(L;R), e1, . . . ,eb1 are the basis of H1(L;R)
and other ei’s (i = b1 + 1, . . . , b) are the basis of Hk(L;R), k ≥ 2. For x ∈
Hodd(L;Λ0,nov), we put

(1.5) x =
∑

xiei.

We introduce yi (i = 1, . . . , b1) by

(1.6) yi = exi =
∞∑

k=0

1
k!

xk
i

(see Section 10 for a discussion of the convergence of the right-hand side). We
consider

N∑
k=0

mk(x, . . . ,x) = PN (x).

We remark that limN →∞ PN (x) converges in T -adic topology if xi ∈ Λ+
0,nov. We

used this fact to define the Maurer-Cartan equation and its solution (bounding
cochain) in [14]. We improve it as follows.

THEOREM 1.2

(1) If xi ∈ Λ0,nov then limN →∞ PN (x) converges. We denote its limit by
m(ex).

(2) m(ex) depends only on y1, . . . , yb1 , xb1+1, . . . , xb.
(3) There exists δ > 0 such that m(ex) extends to{

(x0, y1, . . . , yb1 , xb1+1, . . . , xb)
∣∣ δ > v(yi) > −δ,

(1.7)
v(xb1+1), . . . , v(xb) ≥ 0

}
.

(4) Let M(L)δ be the set of (x0, y1, . . . , yb1 , xb1+1, . . . , xb) in the domain (1.7)
such that m(ex) = 0. Then there exists a family of strict and unital cyclic filtered
A∞-algebras parameterized by M(L)δ.

Here v : Λ → R is a valuation defined by

v
(∑

aiT
λi

)
= inf{λi | ai �= 0}.

(Here we assume that ai ∈ R[e, e−1] and λi �= λj for i �= j.)
A filtered A∞-algebra is said to be strict if m0 = 0.
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In [14] we considered the case x ≡ 0 mod Λ+
0,nov. In that case, we defined

(1.8) mx
k(x1, . . . ,xk) =

∞∑
m0,...,mk=0

mk+
∑k

i=0 mi
(x⊗m0 ,x1, . . . ,xk,x⊗mk).

Then (H(L;Λ0,nov),mx
k) is a filtered A∞-algebra. (This A∞-algebra may not be

strict; namely, mx
∗ (1) may be nonzero. The equality mx

∗ (1) = 0 holds if and only
if

∑∞
k=0 mk(xk) = 0.) It is unital or cyclic if (H(L;Λ0,nov),mk) is unital or cyclic,

respectively. It is strict if and only if m(ex) = 0 (see [11, Proposition 3.6.10]).
Using the techinique of [2], we can relax the condition x ≡ 0 mod Λ+

0,nov to
x ≡ 0 ∈ H1(L;Λ0,nov) (see [12], where the case when M is toric is discussed).

Theorem 1.2(4) says that we can further extend this story to the case when x
is contained in a larger domain. The convergence of (1.8) is one on T -adic topol-
ogy. The convergence in Theorem 1.2(1) is different from T -adic topology and is
a mixture of Archimedean and non-Archimedean topology (see Definition 13.1).

Our main theorems, Theorems 1.1 and 1.2, are related as follows. In Theorem
1.2 it is essential to be able to change variables from xi to yi = exi . This becomes
possible after we perform the whole construction of Kuranishi structure and its
perturbation in a way compatible with the forgetful map. Then, for example,
m3,β(ei,ei,x)+m3,β(ei,x,ei)+m3,β(x,ei,ei) is related to m1,β(x) by the formula

(1.9) m3,β(ei,ei,x) + m3,β(ei,x,ei) + m3,β(x,ei,ei) =
1
2!

(β ∩ ei)2m1,β(x).

Here ei is a degree 1 cohomology class and β is an element of H2(X;Z). The
map mk,β is the contribution of the pseudoholomorphic disc of homology class
β to mk. Equation (1.9) and a similar formula make the change of coordinates
yi = exi possible.

Compatibility with the forgetful map (which is the reason why (1.9) is cor-
rect) is also used to prove cyclic symmetry (1.4). (See also [6, Section 9].) It is
used also to prove unitality (1.3).

Thus the main technical part of this article works out the way to construct
Kuranishi structure and (an abstract multivalued continuous family of) pertur-
bations on it, which is invariant of the process of forgetting boundary marked
points. This construction is performed in Sections 2–5. We use it to prove a
version of Theorem 1.1 (namely, a version modulo TE) in Sections 6–7. To go
from this version to Theorem 1.1, we use a trick similar to the one in [11, Chapter
7]. We need to discuss some homological algebra of cyclic filtered A∞-algebras,
which is in Sections 8–10. In Section 11, we work out the one-parameter family
version of the construction of Sections 2–5, which is used to prove well-definedness
of the structure up to pseudoisotopy. Theorem 1.1 then is proved in Section 12.
(The proof of independence of choices is completed in Section 14.) In Section 13
we prove Theorem 1.2.

Our main result of this article has two applications.
One is to define a numerical invariant of a (special) Lagrangian submanifold

in a Calabi-Yau 3-fold, which is a rational homology sphere. Roughly speaking, it
counts the number of pseudoholomorphic discs with appropriate weights. This is
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invariant of perturbation and other choices but depends on almost complex struc-
ture. Existence of such an invariant was expected by several people, especially
by D. Joyce. For the rigorous construction it is essential to find a perturbation
that is compatible with forgetful maps. Such a perturbation is provided in this
article. We will use it to define this invariant and discuss its properties in [8].

The other application is to define a (rigid analytic) family of Floer coho-
mologies. Actually the space M(L)δ in Theorem 1.2 is a chart of certain rigid
analytic spaces. We can glue them up to define appropriate rigid analytic space.
Then, by extending the construction of Theorem 1.2 to a pair (or triple, etc.)
of Lagrangian submanifolds, we can show that another Lagrangian submanifold
L′ gives an object of derived category of coherent sheaves on this rigid analytic
space. This is a proof of a part of [11, Conjecture U] and a step to realizing
the project to construct a homological mirror functor by using family of Floer
cohomology. (This project was started around 1998 in [5]; see also [4]. Its rigid
analytic version was first proposed by [19].) The construction of the rigid ana-
lytic family of Floer cohomology will be given by extending the construction of
this article in [9]; there its application to mirror symmetry of a torus in a form
more general than [5] and [19] will be given. The story will be further generalized
to include the case of singular fibers in [10], in dimension 2.

2. Kuranishi structure on the moduli space of pseudoholomorphic discs:
Review

For the purpose of this article, we need to take a Kuranishi structure on the
moduli space of pseudoholomorphic discs with some additional properties. We
construct such a Kuranishi structure in Section 3. In this section we review the
definition of a Kuranishi structure and the construction of it on the moduli space
of pseudoholomorphic discs, which was due to [13].

Let M be a compact space. A Kuranishi chart is (Vα,Eα,Γα, ψα, sα) which
satisfies the following:

(1) Vα is a smooth manifold (with boundaries or corners), and Γα is a finite
group acting effectively on Vα;

(2) prα : Eα → Vα is a finite-dimensional vector bundle on which Γα acts so
that prα is Γα-equivariant;

(3) sα is a Γα-equivariant section of Eα;
(4) ψα : s−1

α (0)/Γα → M is a homeomorphism to its image, which is an open
subset.

We call Eα an obstruction bundle, and we call sα a Kuranishi map. If p ∈
ψα(s−1

α (0)/Γα), we call (Vα,Eα,Γα, ψα, sα) a Kuranishi neighborhood of p.
Let ψα1(s

−1
α1

(0)/Γα1) ∩ ψα2(s
−1
α2

(0)/Γα2) �= ∅. A coordinate transformation
from (Vα1 ,Eα1 ,Γα1 , ψα1 , sα1) to (Vα2 ,Eα2 ,Γα2 , ψα2 , sα2) is (φ̂α2α1 , φα2α1 , hα2α1)
such that

(1) hα2α1 is an injective homomorphism Γα1 → Γα2 ;
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(2) φα2α1 : Vα1α2 → Vα2 is an hα2α1 -equivariant smooth embedding from a
Γα1 -invariant open set Vα1α2 to Vα1 , such that the induced map φ

α2α1
: Vα1α2/

Γα1 → Vα2/Γα2 is injective;
(3) (φ̂α2α1 , φα2α1) is an hα2α1 -equivariant embedding of vector bundles

Eα1 |Vα1α2
→ Eα2 ;

(4) φ̂α2α1 ◦ sα1 = sα2 ◦ φα2α1 ;
(5) ψα1 = ψα2 ◦ φ

α2α1
on (s−1

α2
(0) ∩ Vα1α2)/Γα2 (here φ

α2α1
is as in (2));

(6) the map hα2α1 restricts to an isomorphism (Γα1)x → (Γα1)φα2α1 (x) be-
tween isotopy groups, for any x ∈ Vα1α2 ;

(7) ψα1(s
−1
α1

(0)/Γα1) ∩ ψα2(s
−1
α2

(0)/Γα2) = ψα1

(
(s−1

α1
(0) ∩ Vα1α2)/Γα1

)
.

A Kuranishi structure on M assigns a Kuranishi neighborhood (Vp,Ep,Γp,

ψp, sp) to each p ∈ M, such that if q ∈ ψp(Vp/Γp), then there exists a coordinate
transformation (φ̂pq, φpq, hpq) from (Vq,Eq,Γq, ψq, sq) to (Vp,Ep,Γp, ψp, sp).
We assume appropriate compatibility conditions among coordinate transforma-
tions, which we omit, and refer the reader to [16].

Let M have a Kuranishi structure. We consider the normal bundle Nφpq(Vq)Vp.
We take the fiber derivative of the Kuranishi map sp and obtain a homomorphism

dfibersp : Nφpq(Vq)Vp → Ep|Imφpq ,

which is an hpq-equivariant bundle homomorphism. We say that the space with
Kuranishi structure M has the tangent bundle if dfibersp induces a bundle iso-
morphism

(2.1) Nφpq(Vq)Vp
∼=

Ep|Imφpq

φ̂pq(Eq)
.

We call a space with Kuranishi structure which has a tangent bundle a Kuranishi
space or K-space.

We call a Kuranishi space oriented if Vp and Ep are oriented and if (2.1) is
orientation preserving.

Let (M,ω) be a symplectic manifold of (real) dimension 2n. We take an
almost complex structure J , which is tamed by ω. For each α ∈ H2(M ;Z) and
	 ≥ 0, we denote by Mcl

� (α;J) the moduli space of stable J -holomorphic curves
of genus zero with 	 marked points and of homology class α. (In this article
we use only genus zero pseudoholomorphic curves.) We sometimes write it as
Mcl

� (α). It has a Kuranishi structure of dimension 2(n + 	 − 3 + c1(M) ∩ α) (see
[16]).

Let L be a relatively spin Lagrangian submanifold of M . For each β ∈
H2(M,L;Z) and 	 ≥ 0, k ≥ 0, we denote by M�,k(β;L;J) the moduli space of
bordered stable J -holomorphic curve of genus zero with 	 interior marked points
and k boundary marked points, one boundary component, and of homology class
β. We sometimes write it as M�,k(β). In the case 	 = 0 we write Mk(β) also. It
has a Kuranishi structure with corner and boundary of dimension 2n + 2	 + k −
3 + μ(β), where μ : H2(M,L;Z) → Z is a Maslov index (see [13]).
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REMARK 2.1

In [13] we used compatible almost complex structures. However, all the construc-
tions there work for tame almost complex structures.

We review the construction of these Kuranishi structures, since we need to modify
them so that they have some additional properties, in the next section.

Let p = (Σ, v) ∈ M�,k(β;L;J) (resp., (Σ, v) ∈ Mcl
� (α;J)). Here Σ is a semi-

stable marked bordered Riemann surface of genus zero with one boundary compo-
nent, and v : (Σ, ∂Σ) → (M,L) is a J -holomorphic map (resp., Σ is a semistable
marked Riemann surface of genus zero, and v : Σ → M is a J -holomorphic map).
We assume that the enumeration of the boundary marked points respects the
counterclockwise cyclic order of the boundary of Σ.

REMARK 2.2

In [11] we wrote Mmain
�,k (β;L;J). Here “main” means the compatibility of the

enumeration of the boundary marked points with the counterclockwise cyclic
order of the boundary of Σ. We omit this symbol in this article since we consider
only such Σ.

We consider the decomposition

(2.2) Σ =
⋃
a∈A

Σa

to irreducible components. Here Σa is either a disc or a sphere component (resp.,
is a sphere component). Let Γp be a finite group consisting of biholomorphic
maps ϕ : Σ → Σ such that v ◦ ϕ = v.

We choose an open subset Ua for each Σa. We may choose them so that they
are Γp-invariant in an obvious sense. We also assume that the closure of Ua does
not intersect with the boundary marked points or singular points. Let Λ01 be a
bundle on the disjoint union

⊔
Σa of (0,1)-forms. We take a finite-dimensional

vector space

(2.3) Ea ⊂ C∞
0 (Ua;v∗TM ⊗ Λ01)

and take its direct sum E0
a =

⊕
a∈A Ea as a tentative choice of the obstruction

bundle. The explanation of this choice of Ea is in order. (The right-hand side of
(2.3) denotes the space of compactly supported smooth sections of the pullback
bundle v∗TM on Ua.)

We take a positive integer p and consider the space of sections W 1,p(Σa,

v∗TM) of the pullback bundle v∗TM on Σa of W 1,p-class. We choose p suffi-
ciently large so that the element of W 1,p(Σa, v∗TM) is continuous on Σa. In the
case when Σa has a boundary, we put boundary condition

(2.4) ξ|∂Σa ⊂ W 1−1/p,p(∂Σa, v∗TL)

and denote by W 1,p(Σa, v∗TM ;v∗TL) the space of ξ satisfying (2.4). By tak-
ing p large we may assume that the restriction to ∂Σa is also continuous. We
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write W 1,p(Σa, v∗TM ;v∗TL) = W 1,p(Σa, v∗TM) in the case when Σa is a sphere
component.

We now consider the sum

(2.5)
⊕

a

W 1,p(Σa, v∗TM ;v∗TL).

We require the following additional condition at the singular points. Let p

be a singular point. There exist Σa1 and Σa2 (a1 �= a2) with p ∈ Σa1 ∩ Σa2 .
(Using the fact that Σ has only a nodal point as a singularity and that the
genus is zero, there exist such a1, a2 uniquely.) We now require that (ξa) ∈⊕

a W 1,p(Σa, v∗TM ;v∗TL) satisfy

(2.6) ξa1(p) = ξa2(p).

We denote by

(2.7) W 1,p(Σ, v∗TM ;v∗TL)

the subspace of (2.5) of the elements (ξa) satisfying (2.6) at every singular point p.
Let Λ01 be a bundle on

⋃
Σa of (0,1) forms. We put

(2.8) Lp(Σ, v∗TM ⊗ Λ01) =
⊕

a

Lp(Σa, v∗TM ⊗ Λ01).

The linearization of the pseudoholomorphic curve equation defines an operator

(2.9) Dv∂ : W 1,p(Σ, v∗TM ;v∗TL) → Lp(Σ, v∗TM).

(2.9) is a Fredholm operator.

DEFINITION 2.1

We say that (Σ, v) is Fredholm regular if (2.9) is surjective.

In the case when (Σ, v) is Fredholm regular, we can take its neighborhood in
M�,k(β;L;J) (resp., M�(α;J)) so that it is an orbifold with boundary/corner
(resp., orbifold). In general we need to take the obstruction bundle Ep. We
consider the finite-dimensional subspaces Ea as in (2.3). We require that

⊕
a Ea

be Γp invariant.

DEFINITION 2.2

We say that ((Σ, v), (Ea)) is Fredholm regular if

(2.10) ImDv∂ +
⊕

a

Ea = Lp(Σ, v∗TM).

Under this assumption we construct a Kuranishi neighborhood of p. We intro-
duce the following notation (Definition 2.3) for convenience. We attach each of
the tree of sphere components to the disc component to which the component is
rooted. Let

(2.11) Σ =
⋃
b∈B

Σb =
⋃
b∈B

⋃
a∈Ab

Σa
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be the resulting decomposition. (Here
⋃

b Ab = A.)

DEFINITION 2.3

The choice of (Ea) is said to be component-wise if Ea depends only on (Σa, v|Σa)
and is independent of other components or the restriction of v to other compo-
nents.

The choice of (Ea) is said to be disc-component-wise if Ea depends only
on (Σa′ , v|Σa′ ) with a, a′ ∈ Ab for some b and is independent of the components
(Σa′ , v|Σa′ ) with a′ /∈ Ab, where a ∈ Ab.

Before reviewing the construction of the Kuranishi neighborhood for Fredholm
regular ((Σ, v), (Ea)), we need to discuss the stability of the domain. We here
follow [16, appendix]. Let Σa be a component of Σ. We remark that we include
marked or singular points in the notation Σa. Namely, Σa is a marked disc or
marked sphere where its marked points are either singular or a marked point of
Σ which is on Σa. We say that Σa is stable if its automorphism group is of finite
order. (In the case of disc components, it is equivalent to ka + 2	a ≥ 3, where
ka is the number of boundary marked points and 	a is the number of interior
marked points. In the case of sphere components, it is equivalent to 	a ≥ 3.)

If Σa is not stable, we add some interior marked points and make it stable.
We denote it by Σ+

a . Note that v|Σa is nontrivial (in the case when Σa is unsta-
ble), since (Σ, v) is stable. Therefore v|Σa is an immersion at the generic point.
We assume that v is an immersion at the additional marked points. We glue
them and obtain Σ+. Let mkadd(Σ+) be the set of the marked points we add.

We require that mkadd(Σ+) be invariant of the Γp-action. Namely, we
assume that none of the nontrivial elements of Γp fixes any of p ∈ mkadd(Σ+)
and that Γp exchanges elements of mkadd(Σ+).

For each added marked point p ∈ mkadd(Σ+), we take a (2n − 2)-dimensional
submanifold XMp ⊂ M such that XMp ⊂ M intersect with v : Σa → M transver-
sally at v(p). (Here Σa is a component containing p.) We also require that if
γ ∈ Γp then XMp = XMγ(p).

Now we start with (Σ, v) and consider (Σ+, v). We take E(Σ+, v) =
⊕

Ea(Σ+,

v) such that ((Σ+, v),E(Σ+, v)) is Fredholm regular. We remark that all the com-
ponents of Σ+ are now stable. Let U(defresolv;Σ+) be a neighborhood of Σ+ in
the moduli space of marked bordered Riemann surface of genus zero and with
one boundary component (resp., marked Riemann surface of genus zero). It is
an orbifold with boundary or corners. We write

U(defresolv;Σ+) = V (defresolv;Σ+)/Aut(Σ+),

where V (defresolv;Σ+) is a manifold with boundary or corner and Aut(Σ+) is
a finite group of automorphisms of Σ+. By our choice of mkadd(Σ+), the group
Γp of automorphisms of (Σ, v) is a subgroup of Aut(Σ+).

Let v ∈ V (defresolv;Σ+), and let Σ+(v) be the corresponding marked bor-
dered Riemann surface of genus zero. Σ+(v) minus a small neighborhood of
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“neck region” is canonically isomorphic to Σ+ minus a small neighborhood of
singular points (see [16, Section 12]). Therefore the support Ua of Ea for
each Ea = Ea(Σ+, v) has a canonical embedding to Σ+(v). (Note that we use
here the fact that v is an element of V (defresolv;Σ+), not just an element of
U(defresolv;Σ+).) We consider v′ : (Σ+(v), ∂Σ+(v)) → (M,L), which is C0-close
to v.

To define this C0-closedness precisely, we proceed as follows. We decompose

Σ+ = Σ+
reg ∪ Σ+

sin,

where the second term is a small neighborhood (ε-neighborhood) of the singular
point. We then decompose

Σ+(v) = Σ+
reg(v) ∪ Σ+

sin(v),

where Σ+
reg(v) is biholomorphic to Σ+

reg. (For each ε we may take V (defresolv;Σ+)
small enough that such decomposition exists.) We may assume that Ua(Σ+, v) ⊂
Σ+

reg and hence that Ua(Σ+, v) ⊂ Σ+
reg(v). Now v′ is said to be ε-close to v if

(1) dist(v(x), v′(x)) ≤ ε if x ∈ Σ+
reg = Σ+

reg(v);
(2) the diameter of the v′-image of each connected component of Σ+

sin(v) is
smaller than ε.

Now for v′ that is ε-close to v we define E(Σ+(v), v′) as follows. For Ua we
consider the isomorphism

(2.12) C∞(Ua;v∗TM) ∼= C∞(Ua;v′ ∗
TM)

by taking parallel transport along the minimal geodesic joining v(x) to v′(x).
(If ε is smaller than the injectivity radius of M , such a minimal geodesic exists
uniquely.) Using (2.12), we regard Ea(Σ+, v) as a subspace of Lp(Σ+(v);v′ ∗

TM).
Now we consider

V +(p) =
{
(v, v′) | v′ : (Σ+(v), ∂Σ+(v)) → (M,L) is ε-close to v

(2.13)
and satisfies (2.14)

}
,

(2.14) ∂v′ ∈
⊕

a

Ea(Σ+, v).

The following is a consequence of standard glueing analysis (see [13]).

PROPOSITION 2.1

If ((Σ+, v),E(Σ+, v)) is Fredholm regular and ε is sufficiently small, then V +(p)
is a smooth manifold with boundary and corner.

We next define an evaluation map at an added marked point. Namely, we define

(2.15) evint,add : V +(p) → M#(mkadd(Σ+))

by

(v, v′) �→
(
v′(p1), . . . , v′(pmkadd(Σ+))

)
.
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Using the fact that v is immersion and is transversal to XMp for each p ∈
mkadd(Σ+), it follows that the fiber product

(2.16) Vp = V +
p evint,add ×M#(mkadd(Σ+))

∏
p∈mkadd(Σ+)

XMp

is transversal. In particular, Vp is a smooth manifold with corners. We define
Ep by

Ep(v, v′) =
⊕

a

Ea(Σ+, v)

using the isomorphism (2.12). The section (Kuranishi map) sp is defined by

sp(v, v′) = ∂v′ ∈ Ep(v, v′).

They are Γp-equivariant by construction.
Let sp(v, v′) = 0. Then v′ : (Σ+(v), ∂Σ+(v)) → (M,L) is pseudoholomorphic.

We forget the added marked point and obtain v′ : (Σ(v), ∂Σ(v)) → (M,L). We
put

ψp(v, v′) =
(
Σ(v), v′) ∈ M�,k(β).

We thus described a construction of a Kuranishi neighborhood for each given
choice of Ea(Σ+, v), mkadd(Σ+). We next review how to glue them.

For each element p ∈ M�,k(β), we fix Ep and mkadd(p). We write them as
E0

p and mkadd0(p) since later we change them. We also take sufficiently small ε

depending on p and construct a (tentative) Kuranishi neighborhood, which we
denote by (V 0

p ,E0
p,Γ0

p, s0
p, ψ0

p). We consider the covering

M�,k(β;L;J) =
⋃
p

ψ0
p((s0

p)−1(0)/Γ0
p).

We now take a finite set pa, a ∈ A, and a closed subset W (pa) of ψ0
pa

((s0
pa

)−1(0)/
Γ0

pa
), such that ⋃

a∈A

IntW (pa) = M�,k(β;L;J).

Now, for each p = (Σ, v) ∈ M�,k(β;L;J), we choose Ep and mkadd(p) as follows.
We put

A(p) =
{
a ∈ A | p ∈ W (pa)

}
.

Then

(2.17) mkadd(p) =
⋃

a∈A(p)

mkadd0(pa)

and

(2.18) Ep =
⊕

a∈A(p)

E0p.
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We remark that we may regard mkadd0(pa) ⊂ Σ and E0
p ⊂ Lp(Σ, v∗TM ⊗ Λ01) by

using ψpa
. We can use them to define a Kuranishi neighborhood (Vp,Ep,Γp, sp,

ψp) of each point in M�,k(β;L;J).
Using the closedness of the set W (pa), we can prove that if q ∈ ψp((sp)−1(0)/

Γp), then Eq ⊆ Ep and mkadd0(q) ⊆ mkadd0(p). We can use it to construct
coordinate change and then obtain Kuranishi structure.

We remark that here we construct Kuranishi structure on M�,k(β;L;J) for
each of 	, k, β individually. We actually need to construct them so that they are
related to each other at their boundaries. In the next section we do it in a way
slightly different from [11]. Namely, in [11] the constructions are not compatible
with the forgetful map. We modify it so that it is compatible with the forgetful
map of boundary marked points. For this purpose we include k = 0 (the case of no
boundary marked points). This is the technical heart of the whole construction
of this article.

We use the following notions in the next section.

DEFINITION 2.4

Let M be a Kuranishi space, and let N be a smooth manifold. A strongly con-
tinuous smooth map f : M → N is a family f = {fp} of Γp-equivariant smooth
maps fp : Vp → N which induces fp : Vp/Γp → N and such that fp ◦ ϕpq = fq

on Vqp/Γq.
We say that {fp} is weakly submersive if each of fp is a submersion.

In the case when Kuranishi space has boundary or corner, for the map to be
submersive, we require that the restriction to each stratum be submersive.

We consider the moduli spaces M�,k(β;L;J) and Mcl
� (α;J). The evaluation

at marked points induces maps

ev = (evint, ev) =
(
(evint

1 , . . . , evint
� ), (ev0, . . . , evk−1)

)
: M�,k(β) → M � × Lk,

ev = evint = (evint
1 , . . . , evint

� ) : Mcl
� (β̃) → M �.

These maps are strongly continuous. In [11] the Kuranishi structure is chosen so
that they are weakly submersive. In the next section we do not choose so. We
explain the reason in Remark 3.2.

We next review fiber product of Kuranishi structures. Let M1, M2 be
Kuranishi spaces, and let f = {fp}, g = {gp′ } be strongly continuous maps from
them to a manifold N . We consider

(2.19) M1f ×g M2 =
{
(x, y) ∈ M1 × M2

∣∣ f(x) = g(y)
}
.

LEMMA 2.1

If either f or g are weakly submersive then the fiber product (2.19) has a Kuran-
ishi structure.
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See [11, Section A1.3] for the proof. Let h = {hp′ } : M2 → N ′ be another
strongly continuous map. It induces a strongly continuous map

(2.20) M1f ×g M2 → N ′

in an obvious way.

LEMMA 2.2

If f and h are weakly submersive, then the map (2.20) is also weakly submersive.

The proof is immediate from the corresponding statement for the submersion of
smooth maps between manifolds and from the construction of fiber product in
[11].

3. Forgetful-map-compatible Kuranishi structure

Let (M,ω) be a symplectic manifold, and let L be its Lagrangian submanifold.
For β ∈ H2(M,L;Z), we defined the moduli space M�,k(β) as in Section 2. In
Section 2, we wrote M�,k(β;L;J) or Mcl

� (α;J). Hereafter we omit J from the
notation when no confusion can occur.

We include the case k = 0. In that case we compactify it by adding
Mcl

1+�(β̃) ×M L if ∂β = 0 as is explained in [11, Section 7.4.1]. Namely, we
have an embedding

(3.1) clop : Mcl
1+�(β̃)evint

0
×M L → M�,0(β).

Note that Mcl
1+�(β̃) is a moduli space of a pseudoholomorphic map from a genus

zero stable map (without boundary). Here β̃ ∈ H2(X;Z) is a class that goes to
the class β by the natural homomorphism H2(X;Z) → H2(X,L;Z). We fix a
compatible system of Kuranishi structures on them so that evaluation maps are
submersion. And we do not change them.

We have a forgetful map

(3.2) forget : M�,1(β) → M�,0(β).

We also consider the embedding

(3.3a) glue : M�1,1(β1)ev0 ×ev0 M�2,1(β2) → ∂M�1+�2,0(β1 + β2)

in the case (β1, 	1) �= (β2, 	2) and

(3.3b) glue :
(

M�1,1(β′)ev0 ×ev0 M�2,1(β′)
)
/Z2 → ∂M�1+�2,0(2β′),

where Z2 acts by exchanging the factors.

DEFINITION 3.1

Kuranishi structures of M�,1(β) and of M�,0(β) are said to be forgetful-map
compatible to each other if the following holds.

Let p̃ = [(Σ, z0, �z
int), u] ∈ M�,1(β) and p = forget([(Σ, z0, �z

int), u]) =
[(Σ, �z int), u] ∈ M�,0(β). We first consider the case when p is not in the image of
(3.1).



534 Kenji Fukaya

There exist Kuranishi neighborhoods (Vp̃,Ep̃,Γp̃, ψp̃, sp̃) and (Vp,Ep,Γp,

ψp, sp) of them, respectively, such that

(1) Vp̃ = Vp × (0,1);
(2) Ep̃ = Ep × (0,1);
(3) Γp̃ = Γp; the action of Γp̃ preserves identifications given in (1) and (2),

where the action to the factor (0,1) is trivial;
(4) sp̃(x, t) = (sp(x), t) by the identification given in (1) and (2);
(5) forget ◦ ψp̃ coincides with the composition of ψp and the projection to

the first factor.

We next consider the case when p is in the image of (3.1). This implies that
u is a constant map on the disc component Σ0 containing z0 and that Σ0 has
exactly one singular point and has no interior or boundary marked points other
than z0. Let Σ be a closed semistable curve of genus zero without boundary,
which is obtained by removing Σ0 from Σ. Let zint

0 be the point Σ ∩ Σ0 ⊂ Σ. We
put �z int

+ = (zint
0 , �z int). Then

(
(Σ, �z int

+ , u), u(zint
0 )

)
is an element of Mcl

1+�(β̃) × L

such that

clop
(
(Σ, �z int

+ , u), u(zint
0 )

)
= p.

Let (Vp̃,Ep̃,Γp̃, ψp̃, sp̃) be a Kuranishi neighborhood of p̃.
Let p = [Σ, �z int

+ , u], and let (Vp,Ep,Γp, ψp, sp) be its Kuranishi neighborhood
in Mcl

1+�(β̃). Since evint
0 : Mcl

1+�(β̃) → M is strongly continuous and weakly sub-
mersive, it induces a submersion evint

0 : Vp̃ → M. Let Vp̃ ∩ L = (evint
0 )−1(L) ⊂ Vp̃.

The fiber product Kuranishi structure on Mcl
1+�(β̃)evint

0
×M L is (Vp ∩ L,Ep ∩

L,Γp, ψp, sp). (Here we write Ep ∩ L for the restriction of Ep to Vp ∩ L by abuse
of notation. We also write sp or ψp for its appropriate restriction.) We have the
following:

(1) Vp̃ = (Vp ∩ L) × [0,1);
(2) Ep̃ = Ep ∩ L × [0,1);
(3) Γp̃ = Γp; the action of Γp̃ preserves identifications given in (1) and (2),

where the action to the factor (0,1) is trivial;
(4) sp̃(x, t) = (sp(x), t) by the identification given in (1) and (2);
(5) forget ◦ ψp̃ coincides with the composition of ψp and the projection to

the first factor.

The main result of this section is the following.

THEOREM 3.1

There exists a system of Kuranishi structures on M�,1(β) and M�,0(β), such
that

(1) they are forgetful-map compatible in the sense of Definition 3.1;
(2) ev0 : M�,1(β) → L is strongly submersive;
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(3) they are compatible with (3.3). Namely, the fiber product Kuranishi struc-
ture on M�1,1(β1)ev0 ×ev0 M�2,1(β2) (which is well defined by (2)) coincides with
the pullback of the ∂M�1+�2,0(β1 + β2) by glue (in the case β1 = β2, we divide
the fiber product by Z2-action exchanging the factors);

(4) they are componentwise in the sense of Definition 2.3.

Proof
The most essential part of the proof is the following lemma. Let p̃ = [(Σ, z0, �z

int),
u] ∈ M�,1(β) and p = forget([(Σ, z0, �z

int), u]) = [(Σ, �z int), u] ∈ M�,0(β). We con-
sider the case when p is not in the image of (3.1).

We consider the linearization of the pseudoholomorphic curve equation (2.9).
We consider the case Σ = D2.

LEMMA 3.1

For any open subset U of IntD2, there exists a finite-dimensional linear subspace
E(u) of sections of u∗TM ⊗ Λ01 such that the following holds.

(1) Each of elements of E(u) is smooth and supported in U .
(2) We put

(3.4) K(u) = (Du∂)−1
(
E(u)

)
.

Then for any z0 ∈ ∂D2, the map Evz0 : K(u) → Tu(z0)L defined by

(3.5) Evz0(v) = v(z0)

is surjective.

We remark that elements of K(u) are smooth by elliptic regularity. Therefore
(3.5) is well defined.

Proof
For each fixed z0 we can find E(u; z0) satisfying 1 and such that for K(u; z0) =
(Du∂)−1(E(u; z0)), the map Evz0;z0 : K(u; z0) → Tu(z0)L defined by (3.5) is sur-
jective. (This is a consequence of unique continuation; see [11].)

Then there exists a neighborhood W (z0) of z0 in ∂D2 such that if z ∈ W (z0),
then the map Evz0;z : K(u; z0) → Tu(z)L defined by Evz0;z(v) = v(z) is a sub-
mersion. We cover ∂D2 by finitely many W (z0), say, W (zi), i = 1, . . . ,N . Then
E(u) =

⊕N
i=1 E(u; zi) has the required property. �

We next consider the case of the boundary point corresponding to Mcl
�+1(β̃)evint

1
×M

L. For this purpose, we need to take a Kuranishi structure on the moduli space
of a pseudoholomorphic sphere.

LEMMA 3.2

There exists a system of Kuranishi structures on Mcl
� (α) for various 	 ≥ 0 and

α ∈ π2(M) with the following properties.
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(1) The action of a permutation group of order 	! on Mcl
� (α) exchanging

marked points is extended to an action of the Kuranishi structures.
(2) The evaluation map evint : Mcl

� (α) → M � is strongly continuous and
weakly submersive.

(3) Let 	1 + 	2 = 	 + 2, α1 + α2 = α. Then by the embedding

Mcl
�1(α1)evint

1
×evint

1
Mcl

�2(α2) ⊂ Mcl
� (α),

the Kuranishi structure in the right-hand side restricts to the fiber product Kuran-
ishi structure in the left-hand side. In particular, our Kuranishi structures are
componentwise.

This is proved in [16].
We now consider the boundary point (v,x) ∈ Mcl

�+1(β̃)evint
1

×M L, where v ∈
Mcl

�+1(β̃) and x = evint
1 (v) ∈ L. Let (V,Γ,E, s,ψ) be a Kuranishi neighborhood

of v we have taken in Lemma 3.2. We take

V ′ = (evint
1 )−1(L).

This is smooth, and ev : V ′ → L (which is the restriction of evint to V ′) is a
submersion. Therefore (V ′,Γ,E|V ′ , s|V ′ , ψ|(s|V ′ )−1(0)/Γ) can be regarded as the
Kuranishi neighborhood of (v,x) in Mcl

�+1(β̃)evint
1

×M L. We put

Confo
(
k; (∂D2,0)

)
=

{
(z1, . . . , zk) ∈ (∂D2)k

∣∣ zi respects cyclic order
}
/S1

and let Conf(k; (∂D2,0)) be its compactification. Then

Conf
(
k; (∂D2,0)

)
× V ′

can be regarded as a stratum of a Kuranishi neighborhood of the pullback of
(v,x) in M�,k(β). We can extend it to a Kuranishi neighborhood of (v,x). Then
properties (1) and (2) of Lemma 3.1 are satisfied.

We thus described a way to obtain a space E(u) satisfying properties (1) and
(2) of Lemma 3.1 at each point of the compactification of M�,0(β).

Now we are in position to complete the proof of Theorem 3.1. The proof is
by induction on β ∩ ω. We assume that we have chosen already the Kuranishi
structure satisfying the conclusion of Theorem 3.1 for β′ with β′ ∩ ω < β ∩ ω.

We consider M�,0(β). A component of its boundary is

M�1,1(β1) ×L M�2,1(β2) (resp., (M1(	′, β′) ×L M1(	′, β′))/Z2)

with β1 + β2 = β, 	1 + 	2 = 	 (resp., 2β′ = β, 2	′ = 	). We already fixed a Kuran-
ishi structure on each of the factors. We take the fiber product Kuranishi struc-
ture on it. We then lift it to a Kuranishi structure of a boundary component of
M�,1(β). We claim that ev0 is weakly submersive for this Kuranishi structure.
In fact, the boundary component we are studying is one of the following three
cases:

(3.6a) M�1,2(β1)ev0 ×ev0 M1(	2, β2),
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where ev0 : M�,1(β) → L is the map ev1 of the first factor;

(3.6b) M�1,1(β1)ev0 ×ev0 M2(	2, β2),

where ev0 : M�,1(β) → L is the map ev1 of the second factor;

(3.6c) M�1,1(β1)ev0 ×ev0 M�2,1(β2),

where ev0 is the map ((Σ1, v1), (Σ2, v2)) �→ ev0(Σ1, v1) = ev0(Σ2, v2).
We remark that (3.6c) is identified with(

M�1,1(β1) × M�2,1(β2)
)
(ev0,ev0) ×(ev1,ev2) M3(0).

Here zero in M3(0) is 0 ∈ H2(M,L;Z).
We first consider the case (3.6a). By the induction hypothesis,

(ev1, ev0) : M�1,2(β1) × M�2,1(β2) → L2

is weakly submersive. It follows from Lemma 2.2 that ev0 is submersive on (3.6a).
The cases (3.6b) and (3.6c) are similar.

The case β1 = β2 = β′, 	1 = 	2 = 	′ can be discussed in the same way.
In the case [∂β] = 0, there is another boundary component Mcl

�+1(β̃) ×M L

of M�,0(β). We have already explained the way to impose an obstruction bun-
dle and then Kuranishi structure on Mcl

�+1(β̃) so that the map ev0 is weakly
submersive. Therefore we can define a Kuranishi structure on a neighborhood
of this boundary component of M�,0(β) by extending fiber product Kuranishi
structure. We thus constructed the required Kuranishi structure on a neighbor-
hood of the boundary of M�,0(β). Because of the inductive way to constructing
our Kuranishi structures, they are compatible at their intersections.

Now we can use Lemma 3.1 in the same way as [11, Section 7.2] to extend
it the whole M�,0(β). We define Kuranishi structure on M�,1(β) by taking the
pullback of the Kuranishi structure of M�,0(β) via the forgetful map. The proof
of Theorem 3.1 is now complete. �

We consider the forgetful map

forgetk+1,1 : M�,k+1(β) → M�,1(β),

forgetting the 2nd, . . . , k+1th boundary marked points. Note that we enumerate
marked points as z0, . . . , zk. We forget z1, . . . , zk.

COROLLARY 3.1

There exists a system of Kuranishi structures on M�,k+1(β), k ≥ 0, 	 ≥ 0, with
the following properties.

(1) It is compatible with forgetk+1,1.
(2) It is invariant under the cyclic permutation of the boundary marked

points.
(3) It is invariant of the permutation of interior marked points.
(4) ev0 : M�,k+1(β) → L is strongly submersive.
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(5) We consider the decomposition of the boundary:

∂M�,k+1(β) =
⋃

1≤i≤j+1≤k+1

⋃
β1+β2=β

⋃
L1∪L2={1,...,�}

(3.7)
M#L1,j−i+1(β1)ev0 ×evi M#L2,k−j+i(β2)

(see [11, Section 7.1.1]). Then the restriction of the Kuranishi structure of
M�,k+1(β) in the left-hand side coincides with the fiber product Kuranishi struc-
ture in the right-hand side.

We first explain the statement.
(1) is similar to Definition 3.1. The only difference is that we replace (0,1)

appearing there with (0,1)k−m × [0,1)m for some appropriate m.
The cyclic permutation of boundary marked points is defined as follows. Let

(Σ, v) be a point in M�,k+1(β). Let z0, z1, . . . , zk be boundary marked points
of Σ. We change them to z1, . . . , zk, z0 to obtain (Σ′, v). Property (2) claims
that this action extends to the Kuranishi structure (see [11, Section A1.3] for the
definition of finite group action to Kuranishi structure).

The meaning of Property (3) is similar. Here we consider not only cyclic
permutation but also an arbitrary permutation of the interior marked points.

We remark that Property (4) and Lemma 2.19 imply that the right-hand side
of (3.7) has a Kuranishi structure. Then Property (5) claims that the boundary
of the moduli space of M�,k+1(β) as Kuranishi space decomposes as in the right-
hand side of (3.7). We remark that the ith, . . . , jth boundary marked points
of M�,k+1(β) correspond to the 1st, . . . , j − i + 1th marked points of the first
factor and the other boundary marked points (except the 0th) of M�,k+1(β)
correspond to the boundary marked points (except ith) of the right-hand side.
Also, the interior marked points correspond to each other in an obvious way. We
then have a compatibility statement of evaluation maps in an obvious way. It is
part of statement (5).

Note that k +1 ≥ 1. Therefore the extra boundary component Mcl
�+1(β̃) ×M

L of M�,0(β) does not appear in (3.7).

Proof
We defined the Kuranishi structure on M�,1(β) in Theorem 3.1. We define
the Kuranishi structure on M�,k+1(β) so that (1) holds. (This determines the
Kuranishi structure uniquely.) Then by Theorem 3.1(1), our Kuranishi struc-
ture of M�,k+1(β) is pulled back from one on M�,0(β). Property (2) follows
immediately. Property (3) is a consequence of Theorem 3.1(4). Property (4)
is a consequence of Theorem 3.1(2). Property (5) is a consequence of Theo-
rem 3.1(3). �

REMARK 3.1

The Kuranishi structure we constructed is not compatible with the forgetful map
of the interior marked points. The reason is rather technical. Namely, we require
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the support of the obstruction bundle Ea to be disjoint from marked or singular
points. This is automatic for the boundary marked points since we also assume
that it is disjoint from the boundary. However, if we try to imitate the proof of
Theorem 3.1 to obtain a Kuranishi structure that is compatible with the forgetful
map, this causes a problem. Namely, if we construct the Kuranishi structure of
M0,0(β) and Mcl

0 (α) so that the evaluation map is submersive for the pullback
Kuranishi structure on M1,0(β) and Mcl

1 (α), then, a priori, we cannot assume
the support of the obstruction bundle Ea to be disjoint from marked points. (In
fact, we need to fix Ea for elements of Mcl

0 (α). So the interior marked point of
the pullback Kuranishi structure Mcl

1 (α) can be arbitrary. Therefore we cannot
exclude that it is in the support of Ea.)

The reason why the support of the obstruction bundle Ea is assumed to be
disjoint from the singular point is as follows.

(1) The glueing analysis is easier. If Ea hits the singular point, we need to
study the case when perturbation is put on the neck region also.

(2) We need to identify the obstruction bundle of the pieces Σa as a section
of appropriate bundles after resolving the singularity of

⋃
Σa (see (2.12)). This

is easier in the case when the support of Ea is away from singular points.

We remark that we cannot distinguish marked points from singular points
when we want to make the perturbation componentwise. This is the reason why
it is assumed that the support of Ea is disjoint from marked points. However,
the description above also shows that by working harder we might remove this
restriction and then find a Kuranishi structure on M�,k(β) which is compatible
with the forgetful map of the interior marked points also. Since we do not need
it in this article, we do not try to prove it here.

REMARK 3.2

For the Kuranishi structure we constructed in Corollary 3.1, the evaluation map
ev0 is weakly submersive. As a consequence of cyclic symmetry it implies that evi

is submersive for all but fixed i. On the other hand, in [11] we used a Kuranishi
structure such that (ev0, . . . , evk−1) : M�,k(β) → Lk is weakly submersive. We
remark that there does not exist a system of Kuranishi structures such that
(ev0, . . . , evk−1) is weakly submersive and is compatible with the forgetful map
in the sense of Corollary 3.1.1 at the same time. In fact, if d is a dimension
of the Kuranishi neighborhood Vp of a point in M�,1(β), then the dimension of
the Kuranishi neighborhood Vp̃ of compatible Kuranishi structure in M�,k(β) is
k + d − 1. (We remark that the dimension here is one of the manifold Vp. It is
different from the dimension as the Kuranishi space.) If k is large, then dimension
of Lk, which is nk, is certainly bigger than k + d − 1. Therefore (ev0, . . . , evk−1)
cannot be weakly submersive.

A key idea of the proof of Corollary 3.1 is the observation that the submer-
sivity of ev0 is enough to carry out the inductive construction. (This observation
was due to [12].) We remark also that for this observation to hold the assump-
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tion, genus = 0 is essential. Namely, the same method does not work for its
generalization to higher genus.

4. Continuous family of multisections: Review

In Section 5 we construct a perturbation of the Kuranishi map of the Kuranishi
structure constructed in Section 3 so that it is compatible with the forgetful map
of the boundary marked points and is cyclically symmetric (as its consequence).
The author does not know how to do it using multi-(but finitely many) valued
sections. So we use a continuous family of multisections. The notion of a contin-
uous family of multisections had already been used in [14, Section 33], [7], [15],
and so on. We first review them in this section.

First, we recall the notion of a good coordinate system. Let (Vα,Eα,Γα, ψα,

sα) be Kuranishi charts parameterized by α ∈ A. We assume that the index set
A has a partial order <, where either α1 ≤ α2 or α2 ≤ α1 holds for α1, α2 ∈ A if

ψα1

(
s−1

α1
(0)/Γα1

)
∩ ψα2

(
s−1

α2
(0)/Γα2

)
�= ∅.

Moreover, we assume that if α1, α2 ∈ A and α1 ≤ α2, then there exists a coordi-
nate transformation from (Vα1 ,Eα1 ,Γα1 , ψα1 , sα1) to (Vα2 ,Eα2 ,Γα2 , ψα2 , sα2), in
the sense described in Section 2. We assume compatibility between coordinate
transformations in the sense of [16] and [11]. The existence of a good coordinate
system is proved in [16, Lemma 6.3].

We next review multisections (see [16, Section 3]). Let (Vα,Eα, ψα, sα,Γα)
be a Kuranishi chart of M. For x ∈ Vα we consider the fiber Eα,x of the bundle
Eα at x. We take its l copies and consider the direct product El

α,x. We divide it
by the action of a symmetric group of order l! and let S l(Eα,x) be the quotient
space. There exists a map tmm : S l(Eα,x) → S lm(Eα,x), which sends [a1, . . . , al]
to [a1, . . . , a1︸ ︷︷ ︸

m copies

, . . . , al, . . . , al︸ ︷︷ ︸
m copies

]. A multisection s of the orbibundle Eα → Vα consists

of an open covering
⋃

i Ui = Vα and si which sends x ∈ Ui to si(x) ∈ S li(Eα,x).
They are required to have the following properties.

(1) Ui is Γα-invariant; si is Γα-equivariant. (We remark that there exists an
obvious map γ : S li(Eα,x) → S li(Eα,γx) for each γ ∈ Γα.)

(2) If x ∈ Ui ∩ Uj , then we have tmlj (si(x)) = tmli(sj(x)) ∈ S lilj (Eα,γx).
(3) si is liftable and smooth in the following sense. For each x there exists a

smooth section s̃i of Eα ⊕ · · · ⊕ Eα︸ ︷︷ ︸
li times

in a neighborhood of x such that

(4.1) s̃i(y) =
(
si,1(y), . . . , si,li(y)

)
, si(y) = [si,1(y), . . . , si,li(y)].

We identify two multisections ({Ui}, {si}, {li}), ({U ′
i }, {s′

i}, {l′
i}) if

tmlj

(
si(x)

)
= tml′

i

(
s′

j(x)
)

∈ S lil
′
j (Eα,γx)

on Ui ∩ U ′
j . We say that si,j is a branch of si in the situation of (4.1).
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We next discuss a continuous family of multisections and its transversality.
Let Wα be a finite-dimensional manifold, and consider the pullback bundle

π∗
αEα → Vα × Wα

under πα : Vα × Wα → Vα. The action of Γα on Wα is, by definition, trivial.

DEFINITION 4.1

(1) A Wα-parameterized family sα of multisections is by definition a multi-
section of π∗

αEα.
(2) We fix a metric of our bundle Eα. We say that sα is ε-close to sα in

C0-topology if the following holds. Let (x,w) ∈ Vα × Wα. Then for any branch
sα,i,j of sα, we have

dist
(
sα,i,j(y,w), sα(y)

)
< ε

if y is in a neighborhood of x.
(3) sα is said to be transversal to zero if the following holds. Let (x,w) ∈

Vα × Wα. Then any branch sα,i,j of sα is transversal to zero.
(4) Let fα : Vα → M be a Γα-equivariant smooth map. We assume that sα

is transversal to zero. We then say that fα|
s

−1
α (0) is a submersion if the following

holds. Let (x,w) ∈ Vα × Wα. Then for any branch sα,i,j of sα, the restriction of
fα ◦ πα : Vα × Wα → M to

(4.2)
{
(x,w)

∣∣ sα,i,j(x,w) = 0
}

is a submersion. We remark that (4.2) is a smooth manifold by (3).

REMARK 4.1

In the case when M has boundary or corner, (4.2) has boundary or corner. In
this case we require that the restriction of fα to each of the stratum of (4.2) be
a submersion.

LEMMA 4.1

We assume that fα : Vα → M is a submersion. Then there exists Wα such that
for any ε there exists a Wα-parameterized family sα of multisections which is
ε-close to sα, transversal to zero, and such that fα|

s
−1
α (0) is a submersion.

Moreover, there exists 0 ∈ Wα such that the restriction of sα to Vα × {0}
coincides with sα.

If sα is already given and satisfies the required condition on a neighborhood
of a compact set Kα, then we may extend it to the whole Wα without changing
it on Kα.

We omit the proof (see [15]). We next describe the compatibility conditions
among the Wα-parameterized families of multisections for various α. During the
construction we need to shrink Vα a bit several times. We do not mention it
explicitly below.
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Let α1 < α2. We consider the normal bundle Nφα2α1 (Vα1α2 )Vα2 of the embed-
ding φα2α1 : Vα1α2 → Vα2 . We take a small neighborhood Uε(φα2α1(Vα1α2)) of
its image and identify it with an ε-neighborhood BεNφα2α1 (Vα1α2 )Vα2 of the
zero section ∼= Vα1α2 of Nφα2α1 (Vα1α2 )Vα2 . We then have a projection Pr :
Uε(φα2α1(Vα1α2)) → Vα1α2 .

We pull back the bundle Eα1 |Vα1α2
by Pr to obtain Pr∗ Eα1 → Vα1α2 . We

extend the bundle embedding φ̂α2α1 : Eα1 |Vα1α2
→ Eα2 to a bundle embedding

φ̂α2α1 : Pr∗ Eα1 → Eα2 |Uε(φα2α1 (Vα1α2 )).

We consider the section (Kuranishi map) sα2 : Uε(φα2α1(Vα1α2)) → Eα2 and com-
pose it with the projection to obtain

(4.3) π ◦ sα2 : Uε

(
φα2α1(Vα1α2)

)
→ Eα2

Pr∗ Eα1

.

We remark that (4.3) is zero on the zero section = φα2α1(Vα1α2) and the fiber
derivative of it there induces an isomorphism.

Let Exp : BεNφα2α1 (Vα1α2 )Vα2 → Uε(φα2α1(Vα1α2)) be the isomorphism we
mentioned above. By modifying it using fiberwise diffeomorphism, we may
assume that

(4.4) π ◦ sα2 ◦ Exp : BεNφα2α1 (Vα1α2 )Vα2 → Eα2

Pr∗ Eα1

is a restriction of a (linear) isomorphism of vector bundles.
Now, let Ui,α1 ⊂ Vα1 , and let {sα1,i,j | j = 1, . . . , li} be a multisection on Ui,α1 ×

Wα1 . We take Wα2,α1 and put Wα2 = Wα1 × Wα2,α1 . We define

Pr−1
(
φα2α1(Vα1α2)

)
= Ui,α2 ⊂ Uε

(
φα2α1(Vα1α2)

)
.

DEFINITION 4.2

A Wα2 -parameterized family of multisections {sα2,i,j | j = 1, . . . , li} on Ui,α2 is
said to be compatible with {sα1,i,j | j = 1, . . . , li} if the following holds: {sα2,i,j |
j = 1, . . . , li} is a multisection of Eα2 on Ui,α2 × Wα2 .

Let y = Exp(x, ξ) with x ∈ Ui,α1 ∩ Uα1,α2 , ξ ∈ (Nφα2α1 (Vα1α2 )Vα2)x (‖ξ‖ < ε),
and w = (w1,w2) ∈ Wα2 = Wα1 × Wα2,α1 . Then we have

(4.5) sα2,i,j(y,w) ≡ (π ◦ sα2)(y) mod Pr∗ Eα1 .

We assume also that

(4.6) sα2,i,j

(
Exp(x,0),w

)
= sα1,i,j(x,w1).

We remark that for given {sα1,i,j | j = 1, . . . , li}, we can always find {sα2,i,j | j =
1, . . . , li} which is compatible to it. In fact, we can use the splitting

Eα2 = Pr∗ Eα1 ⊕ Eα2

Pr∗ Eα1

to construct it.
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Moreover, if f = {fα} : M → N is a strongly continuous and weakly sub-
mersive map and fα1 |

s
−1
α1 (0) is a submersion, then fα2 |

s
−1
α2 (0) is a submersion, for

small ε.
Thus we can prove the following by induction of α with respect to the order <

and by using Lemma 4.1.

PROPOSITION 4.1

Let M be a Kuranishi space with a good coordinate system (Vα,Eα,Γα, ψα, sα)
(α ∈ A). Let f = {fα} : M → N be a strongly continuous and weakly submersive
map. Then there exists a system of continuous families of multisections sα =
{sα,i,j | j = 1, . . . , li} of Eα such that

(1) they are compatible in the sense of Definition 4.2;
(2) they are transversal to zero in the sense of Definition 4.1(3);
(3) fα|

s
−1
α (0) is a submersion in the sense of Definition 4.1(4);

(4) they are C0-close to the original Kuranishi map in the sense of Definition
4.1(2).

REMARK 4.2

We can prove a relative version of Proposition 4.1. Namely, if there exists an open
set U ⊂ M and a compact set K ⊂ U and sα satisfying Proposition 4.1(1)–(4)
are given on U , then we can extend it with required properties without changing
it on K.

We next review the way to use a family of multisections to define smooth corre-
spondence.

We work in the following situation. Let M be a Kuranishi space, let fs =
{fs

α} : M → Ns be a strongly continuous map, and let f t = {f t
α} : M → Nt be

a strongly continuous and weakly submersive map. Here Ns,Nt are smooth
manifolds. (Here s and t stand for source and target, resp.) Let Λd(M) denote
the set of smooth d-forms on M . We define

(4.7) Corr∗(M;fs, f t) : Λd(Ns) → Λ�(Nt),

where 	 = d + dimNt − dim M.

We first take a continuous family of multisections sα = {sα,i,j | j = 1, . . . , li}
on M such that f t

α|
s

−1
α (0) is a submersion. Let ρ ∈ Λd(Ns). We consider a

representative sα,i,j of sα. It is a section of Eα on Ui,α × Wα. We take a top-
dimensional smooth form ωα on Wα of compact support such that its total mass
is 1. Let χi be a partition of unity subordinate to the covering {Ui,α}. We
consider

(4.8)
∑

i

f t
α!

1
li

χi

(
(fs

α)∗ρ ∧ ωα

)∣∣∣
sα,i,j

.
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Here li is the number of branches, and f t
α! are integrations along fiber. This

defines the Uα part of Corr∗(M;fs, f t). We use the partition of unity again to
glue them for various α to obtain a map (4.7) (see [15] for details).

REMARK 4.3

The map (4.7) depends on the choice of multisection sα and the smooth form
ωα. But it is independent of the choice of partition of unity.

The smooth correspondence we defined above has the following two properties.

PROPOSITION 4.2 (STOKES)

We have

(4.9) d ◦ Corr∗(M;fs, f t) − Corr∗(M;fs, f t) ◦ d = Corr∗(∂M;fs, f t).

Proof
On each chart this is a consequence of Stokes’s theorem. By using partition of
unity in a standard way, we obtain the proposition. �

To state the next proposition, we need some notation. We consider oriented
Kuranishi spaces M1, M2. Let f1,s : M1 → N1

s , f2,s : M2 → N1
t × N2

s be
strongly continuous maps, and let f1,t : M1 → N1

t , f2,t : M2 → N2
t be strongly

continuous and weakly submersive maps. We put

(4.10) M = M1f1,t ×N1
t

M2,

where we use the second factor : M2 → N1
t of the map f2,s to define the above

fiber product. The maps f1,s and f2,s induce a strongly continuous map fs : M →
N1

s ×N2
s ; f2,t induces a strongly continuous and weakly submersive map f t : M →

N2
t (see Lemma 2.1).

PROPOSITION 4.3 (COMPOSITION FORMULA)

If ρi ∈ Λ(N i
s) (i = 1,2), then we have

Corr∗(M;fs, f t)(ρ1 × ρ2)
(4.11)

= Corr∗(M2;f2,s, f2,t)
(
Corr∗(M1;f1,s, f1,t)(ρ1) × ρ2

)
.

Proof
On each chart this is obvious. So we can use partition of unity in a standard way
to prove the propositions. �

REMARK 4.4

We need to take and fix appropriate orientation in Propositions 4.2 and 4.3. We
do it later but only in the case we use (see the end of Section 7).
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We also note the next lemma. Let (M;fs, f t) be as above. Here f t : M → Nt is
weakly submersive. We consider (M;fs × f t, const) where const : M → {point}
is a constant map to a point.

LEMMA 4.2

Let ρs ∈ Λ(Ns) and ρt ∈ Λ(Nt). Then

(4.12)
∫

Nt

Corr(M;fs, f t)(ρs) ∧ ρt = Corr(M;fs × f t, const)(ρs ∧ ρt).

Note that the right-hand side is an element of Λ({point}) = R.

5. Forgetful-map-compatible continuous family of multisections

In this section, we define a system of continuous families of multisections on the
Kuranishi space produced in Section 3. We construct the system so that it is
compatible with forgetful maps.

We first define this compatibility precisely. We consider the moduli spaces
M�,1(β), M�,0(β) and consider their Kuranishi structures, which are compatible
in the sense of Definition 3.1. We take their good coordinate systems, which are
compatible in a similar sense. More precise definition of this compatibility is
in order. We have Kuranishi charts (Vα,Eα, ψα, sα,Γα) (α ∈ A) of M�,0(β) and
(Vα̃,Eα̃, ψα̃, sα̃,Γα̃) (α̃ ∈ Ã) of M�,1(β). Here A and Ã are partially ordered sets.
We require that there exist an order-preserving map Ã → A, α̃ �→ α such that

(1) Vα̃ = Vα × (0,1);
(2) Eα̃ = Eα × (0,1);
(3) Γα̃ = Γα; The action of Γα̃ preserves identifications given in (1) and (2),

where the action to the factor (0,1) is trivial;
(4) sα̃(x, t) = (sα(x), t) by the identifications given in (1) and (2);
(5) forget ◦ ψα̃ coincides with the composition of ψα and the projection to

the first factor.

DEFINITION 5.1

Let (Uα,i, Wα, {sα,i,j }) define a compatible system of families of multisections
on M�,0(β), and let (Uα̃,i, Wα̃, {sα̃,i,j }) define a compatible system of family of
multisections on M�,1(β).

We say that they are compatible if the following conditions are satisfied:

(1) Uα̃,i = Uα,i × (0,1);
(2) Wα̃ = Wα;
(3) sα̃,i,j(w,x, t) = sα,i,j(w, (x, t)).

The main result of this section is as follows.
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THEOREM 5.1

For each E0 > 0, 	0 ∈ Z≥0, and ε > 0, there exists a compatible system of families
of multisections (Uα̃,i,Wα̃, {sα̃,i,j }), (Uα,i,Wα, {sα,i,j }) on M�,1(β), M�,0(β) for
β ∩ ω ≤ E0 and 	 ≤ 	0, with the following properties.

(1) They are ε-close to the Kuranishi map.
(2) They are compatible in the sense of Definition 5.1.
(3) They are transversal to zero in the sense of Definition 4.1(3).
(4) ev0 : M�,1(β) → L induces submersions (ev0)α̃|

s
−1
α̃ (0) : s

−1
α̃ (0) → L.

(5) They are compatible with (3.3) in the sense we describe.

Wedescribe condition (5) precisely below. We consider Uα1,i1 , sα̃1,i1,j1 of M�1,1(β1)
and Uα2,i2 , sα̃2,i2,j2 of M�2,1(β2). We put α = (α1, α2). The fiber product

(5.1) Vα := Vα1ev0 ×ev0 Vα2

is a Kuranishi neighborhood of the Kuranishi space

M�1,1(β1)ev0 ×ev0 M�2,1(β2);

(5.1) contains a fiber product Uα,(i1,i2) = Uα1,i1ev0 ×ev0 Uα2,i2 . An obstruction
bundle on (5.1) is a restriction of Eα1 × Eα2 . We put Wα = Wα1 × Wα2 . Now
we put

(5.2) sα,(i1,i2),(j1,j2) = (sα1,i1,j1 , sα2,i2,j2)|Uα,(i1,i2) .

It defines a compatible system of continuous families of multisections on
M�1,1(β1)ev0 ×ev0 M�2,1(β2). Condition (5) requires that this system coincide
with the restriction of the one in M�,0(β). Here β = β1 + β2, 	 + 2 = 	1 + 	2.

In the cases β1 = β2 = β′, 	1 = 	2 = 	′, and β = 2β′, 2	′ = 	 + 2, we put two
copies of M�,1(β′). Then the parameter space is given as Wα = Wα1 × Wα2 in
the same way. (In the case when Wα1 coincides with Wα2 , we take the square of
it.) Then we obtain a continuous family of multisections on

M�′,1(β′)ev0 ×ev0 M�′,1(β′).

Note that the Kuranishi structure is invariant of Z2-action exchanging the factors.
It is easy to see that any (local) multisection with m branches induces a (local)
multisection with 2m branches to the quotient of the Z2-action. Therefore we
obtain a continuous family of multisections on(

M�′,1(β′)ev0 ×ev0 M�′,1(β′)
)
/Z2.

We require compatibility with this multisection as in (5.2).

Proof
The strategy of the proof is similar to the proof of Theorem 3.1. We first consider
the situation of Lemma 3.1 and use the notation there.
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LEMMA 5.1

Let V0 ⊂ V 0 ⊂ V1 ⊂ V 1 ⊂ V be neighborhoods of u in Vα, where Vα is a Kuranishi
neighborhood of u.

Then there exists a finite-dimensional vector space W (u) and a section su :
V × W (u) → E(u) × W (u) with the following properties:

(1) su(v,0) = Dv∂;
(2) su(v,w) = Dv∂ if v /∈ V1;
(3) if Dv∂ = 0 and v ∈ V0, then the map

D(v,0)su : TvV × T0W (u) → E(u)

is surjective;
(4) if v is as in (3) and if z0 ∈ ∂D2, then

D(v,0)su ⊕ dv,0Evz0 : TvV × T0W (u) → E(u) ⊕ Tv(z0)L

is surjective.

Proof
Let χ : V → [0,1] be a smooth function such that χ ≡ 1 on V0 and χ ≡ 0 on the
complement of V1. We put W (u) = E(u) and

su(v,w) = Dv∂ + χ(v)w.

The lemma then follows easily from (3.5). �

We consider a Kuranishi chart Vα of M0(β). For simplicity of notation, we
assume that each element of Vα is represented by a map from a disc (without
singular point). Let u ∈ Vα. We apply Lemma 5.1 and obtain V0, V1, V , which
we denote by V0(u), V1(u), V (u). We also have E(u) and obtain su, W (u). (We
remark that E(u) here is the restriction of Eα, the obstruction bundle of our
Kuranishi chart.) Let Γ(u) ⊂ Γα be the isotropy group of u. We may assume
that U(u) ∩ γV (u) �= ∅, γ ∈ Γα, implies that γ ∈ Γ(u) and that V0(u), V1(u), V2(u)
are Γ(u)-invariant. (We do not, and cannot, require su to be Γ(u)-equivariant.)

We take a Γα-invariant relatively compact subset V ′
α ⊂ Vα such that V ′

α/Γα

still cover M0(β). V ′
α/Γα is covered by finitely many V0(u)/Γ(u)’s, which we

write as V0(uc)/Γ(uc), c = 1, . . . ,N . We put

Wα = W (u1) × · · · × W (uN ).

For each c, the map suc determines a multisection on Vα/Γα which coincides
with sα outside V1(uc)/Γ(uc) (see Lemma 5.1(2)). We denote it as suc by abuse
of notation. Let χc : Vα/Γ(uc) → [0,1] be a partition of unity subordinate to the
covering {V1(uc)/Γ(uc) | c = 1, . . . ,N }. We now put

(5.3) sα(v;w1, . . . ,wI) = sα(v) +
∑

i

χc(v)
(
sc(v,w) − sα(v)

)
(see [16, Definition 3.4] for the sum of multisections, which appear in the right-
hand side of (5.3)). Now we have the following.
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LEMMA 5.2

There exists ε > 0 such that the following hold.

(1) sα is transversal to zero.
(2) We take Ui ⊂ V ′

α/Γα such that sα has a representative (sα,i,j)
lj
j=1 on

Ui × W . We put

s
−1
α,i,j(0) =

{
(v,w) ∈ Ui × W

∣∣ sα,i,j(v,w) = 0, ‖w‖ ≤ ε
}
.

This is a manifold by (1). Then for each z0 ∈ ∂D2, the map

Evz0 : s
−1
α,i,j(0) → L

defined by (v,w) �→ Evz0(v,w) = v(z0) is a submersion.
(3) We have sα,i,j(v,0) = sα(v).

Proof
Statements (1), (2), and (3) follow from Lemma 5.1(3), (4), (1), respectively. �

Lemma 5.2 enables us to construct the family of multisections required in Theo-
rem 5.1 locally. We can prove the relative version of Lemma 5.2 also in the same
way.

REMARK 5.1

We remark that we can use Lemma 5.2(3) to prove property (1) in Theorem 5.1.
Namely, we can shrink W to its small neighborhood of zero. Then Lemma 5.2(3)
implies that sα,i,j is C0-close to the Kuranishi map sα.

We next state the analog of Lemma 3.2.

LEMMA 5.3

For each E0 and 	0, there exists a system of continuous families of multisections
on various Mcl

� (α) for various 	 ≥ 0 and α ∈ π2(M) with α ∩ ω ≤ E0 and 	 ≤ 	0.
It has the following properties.

(1) The action of permutation groups of order 	! on Mcl
� (α) exchanging

marked points preserves the family of multisections.
(2) It is transversal to zero.
(3) The evaluation map evint : Mcl

� (α) → M � is a submersion on the zero
set.

(4) Let 	1 + 	2 = 	 + 2, α1 + α2 = α. Then the embedding

Mcl
�1(α1)evint

1
×evint

1
Mcl

�2(α2) ⊂ Mcl
� (α)

is compatible with our system of continuous families of multisections.

Proof
The proof is by induction on (α, 	). We can organize the order of the induction
in the same way as [11, Section 7.2]. Property (4) determines the family of
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multisections in the singular locus of each of Mcl
� (α). By (2) and (3) of the fiber

product factors, we can prove that (2) and (3) are satisfied on the singular locus.
We can then use the argument of Section 4 to extend it to Mcl

� (α). �

Note that we do not require compatibility with forgetful map here. So the proof
of Lemma 5.3 is easier than that of Theorem 5.1.

Now we are in a position to complete the proof of Theorem 5.1. The proof is
by induction on (β, 	). We assume that we have constructed the required family
of multisections on M�′,0(β′) for β′ ∩ ω < β ∩ ω and 	′ ≤ 	. We study the case of
M�,0(β). We consider the boundary ∂M�,0(β). One of its boundary components
is

(5.4) M�1,1(β1)ev0 ×ev0 M�2,1(β2),

where 	1 + 	2 = 	, α1 + α2 = α. (In the case β1 = β2, 	1 = 	2, we need to divide
(5.4) by Z2-action.) A continuous family of multisections on the factors of (5.4)
is already given by the induction hypothesis. Moreover, properties (3) and (4)
of the factors of (5.4) imply the same properties for the fiber product family of
multisections.

For the other type of boundary component,

(5.5) Mcl
� (β̃)evint

1
×M L,

we can apply Lemma 5.3 to obtain the required family of multisections. We thus
obtain a family of multisections which has required properties.

Those families of the multisections on the components of the boundary
∂M�,0(β) are consistent at the overlapped part (see [11, Lemma 7.2.55]).

We can then extend it to a neighborhood of the boundary. It is easy to see
that this extended one still has the required transversality properties. Therefore
we can use a relative version of Lemma 5.2 to discuss in the same way as in
Section 4 to extend this family of multisections to M�,0(β). Since we have only
finitely many steps to work out, we can choose our family so that Theorem 5.1(1)
is satisfied. The proof of Theorem 5.1 is now complete. �

REMARK 5.2

See [11, Section 7.2.3] for the reason why we need to fix E0, 	0 and stop the
construction of the multisections after β ∩ ω > E0 or 	 > 	0.

In the same way as in Section 3, Theorem 5.1 has the following corollary.

COROLLARY 5.1

For each ε, E0, and 	0, there exists a system of continuous families of multisec-
tions on M�,k+1(β), k ≥ 0, 	0 ≥ 	 ≥ 0, β ∩ ω ≤ E0, with the following properties.

(1) It is ε-close to the Kuranishi map in the C0-sense.
(2) It is compatible with forgetk+1,1.
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(3) It is invariant under the cyclic permutation of the boundary marked
points.

(4) It is invariant by the permutation of interior marked points.
(5) ev0 : M�,k+1(β) → L induces a submersion on its zero set.
(6) We consider the decomposition of the boundary:

∂M�,k+1(β) =
⋃

1≤i≤j+1≤k+1

⋃
β1+β2=β

⋃
L1∪L2={1,...,�}

(5.6)
M#L1,j−i+1(β1)ev0 ×evi M#L2,k−j+i(β2)

(see [11, Section 7.1.1]). Then the restriction of our family of multisections of
M�,k+1(β) in the left-hand side coincides with the fiber product family of multi-
sections in the right-hand side.

6. Cyclic filtered A∞ -algebra and cyclic filtered A∞ -algebra modulo TE

Let C be a graded vector space over R, and let n be a positive integer. We con-
sider an R-bilinear map

(6.1) 〈 · 〉 : C
k ⊗ C

n−k → R

such that

(6.2) 〈x, y〉 = (−1)1+deg′ xdeg′ y 〈y,x〉.

Here and hereafter,

deg′ x = degx − 1.

We consider a sequence of operators

(6.3) mk : Bk(C[1]) → C[1]

of degree 1 for k = 1,2, . . . . (Here Bk(C[1]) is the tensor product of k copies of
C[1].)

DEFINITION 6.1

We say that (C, 〈 · 〉, {mk } ∞
k=1) is a cyclic A∞-algebra of dimension n if

(1) {mk } ∞
k=1 satisfies the A∞-relation

(6.4)
∑

k1+k2=k+1

k−k2+1∑
i=1

(−1)∗mk1

(
x1, . . . ,mk2(xi, . . . , xi+k2−1), . . . , xk

)
= 0,

where ∗ = deg′ x1 + · · · + deg′ xi−1;
(2) we have

(6.5) 〈mk(x1, . . . ,xk),x0〉 = (−1)∗ 〈mk(x0,x1, . . . ,xk−1),xk 〉,

where ∗ = deg′ x0(deg′ x1 + · · · + deg′ xk);
(3) 〈 · 〉 is nondegenerate and induces a perfect pairing on H(C) = Kerm1/

Imm1.
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We remark that m1 ◦ m1 = 0 by 1. Therefore H(C) is well defined. Definition
6.1(2) implies 〈m1(x), y〉 = ±〈m1(y), x〉. Therefore 〈 · 〉 induces one on H(C)
which satisfies (6.2).

EXAMPLE 6.1

Let M be an n-dimensional oriented closed manifold. Let C = Λ(M) be the de
Rham complex. We put

m1(u) = (−1)deg u du, m2(u, v) = (−1)deg udeg v+deg uu ∧ v,

mk = 0 for k �= 1,2, and

〈u, v〉 = (−1)deg udeg v+deg u

∫
M

u ∧ v.

DEFINITION 6.2

We say that a subset G ⊂ R≥0 × 2Z is a discrete submonoid if the following
holds. We denote by E : G → R and μ : G → 2Z the projections to each of the
components.

(1) If β1, β2 ∈ G, then β1 + β2 ∈ G, (0,0) ∈ G.
(2) The image E(G) ⊂ R≥0 is discrete.
(3) For each λ ∈ R≥0, the inverse image G ∩ E−1(λ) is a finite set.

We remark that (1), (2), and (3) imply that E−1(0) ∩ G = {(0,0)}.

DEFINITION 6.3

We put

ΛG
0 =

{∑
aβTE(β)eμ(β)/2

∣∣∣ β ∈ G,aβ ∈ R

}
,

where the sum may be either finite or infinite. For each E0 ∈ R≥0, we have a
filtration

FE0ΛG
0 =

{∑
aβTE(β)eμ(β)/2 ∈ ΛG

∣∣∣ E(β) ≥ E0

}
.

It determines a topology on ΛG
0 with which ΛG

0 is complete.
We define a grading on ΛG

0 by degT = 0, deg e = 2.

We remark that ΛG
0 contains a (semi)group ring of the monoid G that is nothing

but the set of elements of ΛG
0 with only finitely many nonzero aβ . ΛG

0 is its
completion.

The universal Novikov ring Λ0,nov which was introduced in [13] is the union
(inductive limit) of all ΛG

0 for various discrete submonoids G.

DEFINITION 6.4

A G-gapped cyclic filtered A∞-algebra structure on C is a sequence of operators

(6.6) mk,β : Bk(C[1]) → C[1]
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for each β ∈ G and k ∈ Z≥0 of degree 1 − μ(β) and 〈 · 〉 with the following prop-
erties:

(1) m0,β = 0 for β = (0,0);
(2) ∑

k1+k2=k+1

∑
β1+β2=β

k−k2+1∑
i=1

(6.7)
(−1)∗mk1,β1

(
x1, . . . ,mk2,β2(xi, . . . , xi+k2−1), . . . , xk

)
= 0,

holds for any β ∈ G and k; Here the sign is as in (6.1);
(3) 〈 · 〉 satisfies (6.1), (6.2), and

(6.8) 〈mk,β(x1, . . . ,xk),x0〉 = (−1)∗ 〈mk,β(x0,x1, . . . ,xk−1),xk 〉

holds for any β and k. Here the sign is as in (6.5). Definition 6.1(3) also holds.

DEFINITION 6.5

A G-gapped cyclic filtered A∞-algebra structure modulo TE0 is a sequence of
operators (6.6) for E(β) < E0 which satisfies the same properties, except that
(6.7) and (6.8) are assumed only for E(β) < E0.

DEFINITION 6.6

An element e ∈ C of degree zero is said to be a (strict) unit of an A∞-algebra if

m2(e, x) = (−1)deg xm2(x,e) = x,
(6.9)

mk(. . . ,e, . . .) = 0 for k �= 2.

An element e is said to be a unit of a filtered A∞-algebra if

m2,(0,0)(e, x) = (−1)deg xm2,(0,0)(x,e) = x,
(6.10)

mk,β(. . . ,e, . . .) = 0 for (k,β) �=
(
2, (0,0)

)
.

A unit for a filtered A∞-algebra modulo TE is defined in the same way. A (fil-
tered) A∞-algebra with unit is said to be unital.

We put

mk =
∑

β

TE(β)eμ(β)/2mk,β : Bk(C[1]) → C[1].

This satisfies (6.4) and (6.5).

REMARK 6.1

The sign convention of this article is slightly different from the one in [11]. We
explain the difference below. In [11] the inner product

(6.11) (u, v) = (−1)deg udeg v

∫
L

u ∧ v = (−1)deg u〈u, v〉
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is used (see [11, Remark 8.4.7(1)]). Then the cyclic symmetry of mk takes the
form

(6.12)
(
x0,mk,β(x1, . . . , xk)

)
= (−1)∗(

x1,mk,β(x2, . . . , xk, x0)
)
,

where ∗ = deg′ x0(deg′ x1 + · · · + deg′ xk) (see [11, Proposition 8.4.8]).

LEMMA 6.1

If (·) and 〈 · 〉 are related by (6.11), then (6.8) is equivalent to (6.12).

Proof
We assume (6.11) and (6.12). Then we calculate

〈mk,β(x1, . . . , xk), x0〉

= (−1)
∑k

i=1 deg′ xi
(
mk,β(x1, . . . , xk), x0

)
= (−1)

(∑k
i=1 deg′ xi

)
(deg′ x0)

(
x0,mk,β(x1, . . . , xk)

)
=

(
x1,mk,β(x2, . . . , xk, x0)

)
= (−1)∗1

(
mk,β(x2, . . . , xk, x0), x1

)
= (−1)∗2 〈mk,β(x2, . . . , xk, x0), x1〉.

Here

∗1 =
(∑

i �=1

deg′ xi

)
(deg′ x1 + 1)

and

∗2 = ∗1 +
∑
i �=1

deg′ xi =
(∑

i �=1

deg′ xi

)
deg′ x1.

We thus have (6.8). The proof of the converse is similar. �

By Lemma 6.1 we can apply the discussion of orientation and sign in [11, Section
8.4.2] for the purpose of this article.

7. Cyclic filtered A∞ -structure modulo TE on the de Rham complex

The main result of this section is as follows.

THEOREM 7.1

For any relatively spin Lagrangian submanifold L of (M,ω), we can assign G

such that for each E0 > 0 the de Rham complex Λ(L) has the structure of a
G-gapped cyclic unital filtered A∞-algebra modulo TE0 .

Proof
This theorem follows from Corollary 5.1 as follows. We fix a tame almost complex
structure J and let G be the submonoid of R≥0 × 2Z generated by the set{(

β ∩ ω,μ(β)
) ∣∣ β ∈ H2(X,L;Z), M0(β) �= ∅

}
.

Gromov compactness implies that G satisfies the conditions in Definition 6.2.
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We apply Corollary 5.1 by putting E0 as above and 	 = 0. Then for ρ1, . . . ,

ρk ∈ Λ(L), we define

mk,β(ρ1, . . . , ρk)
(7.1)

= Corr
(

Mk+1(β); (ev1, . . . , evk), ev0

)
(ρ1 × · · · × ρk) ∈ Λ(L)

for β �= (0,0). Since ev0 is weakly submersive by Corollary 5.1.5, the right-hand
side is well defined and is a smooth form. We define mk,β0 for β0 = (0,0) and 〈 · 〉
as in (6.1).

The cyclic symmetry follows from Corollary 5.1.3 (up to sign) as follows. By
Lemma 4.2 and the definitions we have

〈mk,β(ρ1, . . . , ρk), ρ0〉
(7.2)

= Corr
(

Mk+1(β), (ev1, . . . , evk, ev0), const
)
(ρ1 × · · · × ρk × ρ0).

By Corollary 5.1.3, the right-hand side of (7.2) is cyclically symmetric.
The filtered A∞-relation (6.7) is a consequence of Corollary 5.1.6 (up to sign)

and Propositions 4.2 and 4.3 (see [11, Section 3.5]).
The (strict) unitality (6.9) follows from Corollary 5.1.2 as follows. We con-

sider β �= (0,0) and k ≥ 1 and studies

(7.3) mk,β(ρ1, . . . , ρi−1,1, ρi+1, . . . , ρk).

Here 1 ∈ Λ0(L) is the zero form ≡ 1. We consider the forgetful map

forgeti : Mk(β) → Mk−1(β)

which forgets ith marked point. We have chosen the Kuranishi structure, and
the (family of) multisections are invariant of forgetful map. We consider the
expression (4.8):

(7.4)
∑

i

f t
α!

1
li

χi

(
(fs

α)∗ρ ∧ ωα

)∣∣∣
sα,i,j

.

In our case, ρ = ρ1 × · · · × ρi−1 × 1 × ρi+1 × · · · × ρk. Let X be the vector field
tangent to the fiber of forgeti. Then we have

iX
(
(fs

α)∗ρ ∧ ωα

)
= 0.

On the other hand, f t = ev0 factors through forgeti. Therefore (7.4) is zero in
our case. Since (7.3) is obtained from (7.4) by summing up using the partition
of unity, it follows that (7.3) is zero also. We thus proved the strict unitality.

We finally remark that we can handle the sign in the same way as in [11,
Section 8.10.3] and [7, Section 12]. Namely, we can reduce the sign in the de
Rham version to one in singular homology version. �

REMARK 7.1

We remark that the evaluation map ev0 from our perturbed moduli space is
submersive. This is enough to work with de Rham theory since we can pull back
differential forms by ev1, . . . , evk without assuming its submersivity.
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In the case when we work with (singular) chains, we need to take the fiber
product of singular chains Pi of L with our perturbed moduli space by evalu-
ation maps ev1, . . . , evk. This requires the submersivity of ev1, . . . , evk. As we
explained in Remark 3.2, it is impossible to do so while keeping compatibility
with the forgetful map.

8. Homological algebra of a cyclic filtered A∞ -algebra: Statement

In Sections 8–10 we study the homological algebra of a cyclic filtered A∞-algebra.
We follow [18] in various places (see also [3], [20]). However, our discussion is
different from [18], not only because we study filtered the case but also in several
other points. In [18] 〈u, v〉 �= 0 only when degu+deg v is odd. Thus our situation
is included in [18] when dimL is odd. In that case, according to [18, Remark
2.1.2], the sign convention of cyclic symmetry in [18] is similar to (6.12) (i.e., the
convention of [11]). The notion of pseudoisotopy of a cyclic filtered A∞-algebra
which we introduce in this section is also new.

We first review the definition of filtered A∞-homomorphisms from [11, Chap-
ter 4]. Let G ⊂ R≥0 × 2Z be a discrete submonoid, and let (C, {mk,β }), (C ′,

{m′
k,β }) be G-gapped filtered A∞-algebras.

DEFINITION 8.1

A sequence of R-linear maps

fk,β : Bk(C[1]) → C[1]

of degree −μ(β) for k = 0,1,2, . . . , β ∈ G is said to be a G-gapped filtered A∞-
homomorphism if

(1) f0,(0,0) = 0;
(2) For each β, k = 0,1,2, . . . , with (k,β) �= (0, (0,0)) and x1, . . . , xk ∈ C[1],

we have∑
m�,β0

(
fk1,β1(x1, . . .), . . . , fk�,β�

(. . . , xk)
)

(8.1)

=
∑

k1+k2=k+1

∑
β1+β2=β

k−k2+1∑
i=1

(−1)∗fβ1,k1

(
x1, . . . ,mk2,β2(xi, . . .), . . . , xk

)
.

Here the sum in the left-hand side is taken over 	, βi, ki such that β0 + β1 +
· · · + β� = β and k1 + · · · + k� = k, and the sign in the right-hand side is ∗ =
deg′ x1 + · · · + deg′ xi−1.

When fk,β is defined only for E(β) < E0 and (8.1) holds only for E(β) <

E0, we call it a filtered A∞-homomorphism modulo TE0 . This is defined if
(C, {mk,β }), (C ′, {m′

k,β }) are filtered A∞-algebras modulo TE0 .

DEFINITION 8.2

(1) A filtered A∞-homomorphism is said to be strict if f0,β = 0 for any β.
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(2) Suppose that (C, {mk,β }), (C ′, {m′
k,β }) are unital. We say a filtered A∞-

homomorphism is unital if

f1,β(e) =

{
e if β = (0,0),

0 if β �= (0,0),
(8.2)

fk,β(. . . ,e, . . .) = 0, k > 1.

(3) We say that a filtered algebra or homomorphism is gapped when it is
G-gapped for some G, which we do not specify.

DEFINITION 8.3 ([18] DEFINITION 2.13)

Let (C, 〈 · 〉, {mk,β }), (C ′, 〈 · 〉, {m′
k,β }) be G-gapped cyclic filtered A∞-algebras. A

G-gapped filtered A∞-homomorphism f = {fk,β } : C → C ′ is said to be cyclic if
the following holds:

(8.3) 〈f1,(0,0)(x), f1,(0,0)(y)〉 = 〈x, y〉

for any x, y;

(8.4)
∑

β1+β2=β

∑
k1+k2=k

〈fk1,β1(x1, . . . , xk1), fk2,β2(xk1+1, . . . , xk)〉 = 0

holds for (k,β) �= (2, (0,0)) and x1, . . . , xk.
When (8.4) holds only for E(β) < E0, we say that it is cyclic modulo TE0 .
We define the composition of a filtered A∞-homomorphism as in [11, Defin-

ition 3.2.31]. It is easy to see that compositions of cyclic filtered A∞-homomor-
phisms are cyclic.

REMARK 8.1

(1) We say that a (cyclic) filtered A∞-homomorphism {fk,β } is a weak homo-
topy equivalence if f1,(0,0) induces an isomorpism on m1,(0,0)-cohomology.

(2) We say that a filtered A∞-homomorphism {fk,β } is an isomorphism if
it has an inverse, that is, a filtered A∞-homomorphism {gk,β } such that the
compositions of them are identity. (An identity morphism {hk,β } is defined by
hk,β = 0 for (k,β) �= (1, (0,0)) and h1,(0,0) = identity.) It is easy to see that an
inverse of a cyclic filtered A∞-homomorphism is automatically cyclic.

We next define and study the properties of pseudoisotopy of cyclic filtered A∞-
algebras. Let C be a graded R vector space. We take a basis ei of C

k
and define

C∞([0,1],C
k
) to be a finite sum ∑

i

ai(t)ei

such that ai : [0,1] → R are smooth functions.

REMARK 8.2

In the case C = Λ(L), the de Rham complex, we need to take into acount the
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Fréchet topology of Λ(L) and define C∞([0,1],C) in a different way (see Sec-
tion 11).

We consider the set of formal sums

(8.5) a(t) + dt ∧ b(t),

where a(t) ∈ C∞([0,1],C
k
), b(t) ∈ C∞([0,1],C

k−1
). We write the totality of

such (8.5) as C∞([0,1] × C)k. We consider a filtered A∞-structure on it. More
precisely, we proceed as follows.

We assume that, for each t ∈ [0,1], we have operations

(8.6) mt
k,β : Bk(C[1]) → C[1]

of degree −μ(β) + 1 and

(8.7) ct
k,β : Bk(C[1]) → C[1]

of degree −μ(β).

DEFINITION 8.4

We say mt
k,β is smooth if for each x1, . . . , xk,

t �→ mt
k,β(x1, . . . , xk)

is an element of C∞([0,1],C).
The smoothness of ct

k,β is defined in the same way.

DEFINITION 8.5

We say that (C, 〈 · 〉, {mt
k,β }, {ct

k,β }) is a pseudoisotopy of G-gapped cyclic filtered
A∞-algebras if the following hold.

(1) mt
k,β and ct

k,β are smooth.
(2) For each (but fixed) t, the triple (C, 〈 · 〉, {mt

k,β }) defines a cyclic fitered
A∞-algebra.

(3) For each (but fixed) t, and xi ∈ C[1], we have

(8.8) 〈ct
k,β(x1, . . . , xk), x0〉 = (−1)∗ 〈ct

k,β(x0, x1, . . . , xk−1), xk 〉,

∗ = (degx0 + 1)(degx1 + · · · + degxk + k).
(4) For each xi ∈ C[1],

d

dt
mt

k,β(x1, . . . , xk)

+
∑

k1+k2=k

∑
β1+β2=β

k−k2+1∑
i=1

(−1)∗ct
k1,β1

(
x1, . . . ,m

t
k2,β2

(xi, . . .), . . . , xk

)
(8.9)

−
∑

k1+k2=k

∑
β1+β2=β

k−k2+1∑
i=1

mt
k1,β1

(
x1, . . . , c

t
k2,β2

(xi, . . .), . . . , xk

)
= 0.
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Here ∗ = deg′ x1 + · · · + deg′ xi−1.
(5) mt

k,(0,0) is independent of t. ct
k,(0,0) = 0.

REMARK 8.3

Condition (5) above may be a bit more restrictive than the optional definition.
We assume it here since it suffices for the purpose of this article.

We consider xi(t) + dt ∧ yi(t) = xi ∈ C∞([0,1],C). We define

m̂k,β(x1, . . . ,xk) = x(t) + dt ∧ y(t),

where

(8.10a) x(t) = mt
k,β

(
x1(t), . . . , xk(t)

)
,

y(t) = ct
k,β

(
x1(t), . . . , xk(t)

)
(8.10b)

−
k∑

i=1

(−1)∗imt
k,β

(
x1(t), . . . , xi−1(t), yi(t), xi+1(t), . . . , xk(t)

)
if (k,β) �= (1, (0,0)) and

(8.10c) y(t) =
d

dt
x1(t) + mt

1,(0,0)

(
y1(t)

)
if (k,β) = (1, (0,0)). Here ∗i in (8.10b) is ∗i = deg′ x1 + · · · + deg′ xi−1.

LEMMA 8.1

Equation (8.9) is equivalent to the filtered A∞-relation of m̂k,β defined by (8.10).

The proof is straightforward and is omitted (see [11, Lemma 4.2.13]). We define
〈 · 〉t0 on C∞([0,1],C) by

〈x1(t) + dt ∧ y1(t), x2(t) + dt ∧ y2(t)〉t0 = 〈x1(t0), x2(t0)〉.

Then (C∞([0,1],C), 〈 · 〉t0 , {m̂k,β }) is a cyclic filtered A∞-algebra for any t0.

DEFINITION 8.6

A pseudoisotopy (C, 〈 · 〉, {mt
k,β }, {ct

k,β }) is said to be unital if there exists e ∈ C
0

such that e is a unit of (C, {mt
k,β }) for each t and if

ct
k,β(. . . ,e, . . .) = 0

for each k,β, and t.

DEFINITION 8.7

Let (C, 〈 · 〉, {mk,(0,0)}) be a (unfiltered) cyclic A∞-algebra. We consider two G-
gapped filtered cyclic A∞-algebras (C, 〈 · 〉, {mi

k,β }) (i = 0,1) such that mi
k,(0,0) =

mk,(0,0) for i = 0,1.
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We say that (C, 〈 · 〉, {m0
k,β }) is pseudoisotopic to (C, 〈 · 〉, {m1

k,β }) if there exists
a pseudoisotopy (C, 〈 · 〉, {mt

k,β }, {ct
k,β }) with given boundary value at t = 0,1.

The modulo TE0 and/or unital version is defined in a similar way.

LEMMA 8.2

Pseudoisotopy of G-gapped filtered cyclic A∞-algebras is an equivalence relation.
The modulo TE0 version also holds.

Proof
Let (C, 〈 · 〉, {mt

k,β }, {ct
k,β }) be a pseudoisotopy. First, we show that we can modify

them so that mt
k,β is locally constant of t and that ct

k,β = 0, in a neighborhood
of t ∈ ∂[0,1], as follows. Let t = t(s) be a smooth map [0,1] → [0,1] which is
constant in a neighborhood of 0,1, and let t(1) = 1, t(0) = 0. We put

(8.11) ms
k,β = m

t(s)
k,β , cs

k,β =
dt

ds
(s) · c

t(s)
k,β .

It is easy to see that (C, 〈 · 〉, {ms
k,β }, {cs

k,β }) is a required pseudoisotopy.
Now we can easily join two pseudoisotopies satisfying the above additional

condition. It implies that the pseudoisotopy relation is transitive. The other
properties are easier to check. �

THEOREM 8.1

Let E0 < E1 and (C, 〈 · 〉, {mi
k,β }) (i = 0,1) be G-gapped cyclic filtered A∞-algebras

modulo TEi . Let (C, 〈 · 〉, {mt
k,β }, {ct

k,β }) be a pseudoisotopy modulo TE0 between
them. Then

(1) we can extend (C, 〈 · 〉, {m0
k,β }) to a G-gapped cyclic filtered A∞-algebra

modulo TE1 ;
(2) we can extend (C, 〈 · 〉, {mt

k,β }, {ct
k,β }) to a pseudoisotopy modulo TE1

between them.

The unital version also holds.

The proof is given in Section 9.

THEOREM 8.2

If (C, 〈 · 〉, {mt
k,β }, {ct

k,β }) is a pseudoisotopy, then there exists a filtered A∞-
homomorphism from (C, 〈 · 〉, {m0

k,β }) to (C, 〈 · 〉, {m1
k,β }) which is cyclic and has

an inverse.
The modulo TE and/or unital version also holds.

The proof is given in Section 9.

REMARK 8.4

It is possible to prove that a gapped cyclic filtered A∞-homomorphism which
is homotopy equivalence (as a gapped filtered A∞-homomorphism) has a homo-
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topy inverse that is cyclic (see [18, Theorem 5.17]). The explicit construction of
homotopy inverse given in [1] proves it also.

One reason why we built our story without using this theorem but used
pseudoisotopy more is that if a filtered A∞-algebra C is pseudoisotopic to C ′,
then C is homotopy equivalent to C ′. But the converse may not hold. (An
invariant of a kind of “Reidemeister torsion” may distinguish them.) So for
future application (especially the one in [8]) to keep track of pseudoisotopy type
rather than homotopy type seems essential.

This does not seem to be the case when we do not include cyclic symmetry
and inner product in the story.

Let (C, 〈 · 〉, {mk,β }) be a G-gapped cyclic filtered A∞-algebra. We have m1,(0,0) ◦
m1,(0,0) = 0 : C → C. We put

H =
Kerm1,(0,0)

Imm1,(0,0)
.

In [11, Theorem 5.4.2′], a G-gapped filtered A∞-structure {mcan
k,β } on H is defined.

Moreover, a G-gapped filtered A∞-homomorphism f : H → C (which is a homo-
topy equivalence) is defined. By (6.7), the inner product 〈 · 〉 on C induces one on
H , which we denote also by 〈 · 〉.

THEOREM 8.3

We assume that C is either finite-dimensional or is a de Rham complex. Then
(H, 〈 · 〉, {mcan

k,β }) is cyclic. Moreover, f : H → C is cyclic.
The modulo TE0 and/or unital version is also true.

We prove Theorem 8.3 in Section 10.

DEFINITION 8.8

We call (H, 〈 · 〉, {mcan
k,β }) the canonical model of the cyclic filtered A∞-algebra

(C, 〈 · 〉, {mk,β }).

Weak homotopy equivalence between (cyclic) canonical filtered A∞-algebras is
an isomorphism (see [11, Proposition 5.4.5]).

THEOREM 8.4

If (C, 〈 · 〉, {m0
k,β }) is pseudoisotopic to (C, 〈 · 〉, {m1

k,β }), then their canonical models
are also pseudoisotopic to each other.

We prove Theorem 8.4 in Section 10.
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9. Pseudoisotopy of cyclic filtered A∞ -algebras

In this section we prove Theorems 8.1 and 8.2. We begin with the proof of
Theorem 8.2. We construct the required isomorphism by taking an appropriate
sum over trees with some additional data, which we describe below.

A ribbon tree is a tree T together with isotopy type of an embedding T → R2.
(This is equivalent to fixing the cyclic order of the set of edges containing a given
vertex.) A rooted ribbon tree is a pair (T, v0) of a ribbon tree T and its vertex v0

such that v0 has exactly one edge. Let G ⊂ R≥0 × 2Z be a discrete submonoid.
We consider the triple Γ = (T, v0, β(·)) together with some other data that has
the following properties.

(1) (T, v0) is a rooted ribbon tree.
(2) The set of vertices C0(T ) is divided into the disjoint union C int

0 (T ) ∪
Cext

0 (T ), v0 ∈ Cext
0 (T ). Each of v ∈ Cext

0 (T ) has exactly one edge.
(3) β(·) : C int

0 (T ) → G is a map.
(4) If β(v) = (0,0), then v has at least three edges.

DEFINITION 9.1

We write Gr(β,k) as the set of all (T, v0, β(·)) as above such that

(1)
∑

v∈Cint
0 (T ) β(v) = β;

(2) #Cext
0 (T ) = k + 1.

We call an element of Cext
0 (T ) an exterior vertex and an element of C int

0 (T )
an interior vertex. An edge is said to be exterior if it contains an exterior edge.
It is called interior otherwise. The set of exterior edges and interior edges are
denoted by Cext

1 (T ) and C int
1 (T ), respectively.

We call v0 the root of (T, v0).

DEFINITION 9.2 (SEE [11, DEFINITION 4.6.6])

For a rooted ribbon tree (T, v0), we define a partial order < on C0(T ) as follows.
We have v < v′ if all the paths joining v with v0 contain v′.

DEFINITION 9.3 (SEE [11, DEFINITION 7.1.53])

The time allocation of an element (T, v0, β(·)) ∈ Gr(β,k) is a map τ : C int
0 (T ) →

[0,1] such that if v < v′, then τ(v) ≤ τ(v′).
Let 0 ≤ τb ≤ τa ≤ 1. We denote by M(T, v0, β(·); τa, τb) the set of all time allo-

cations τ such that τ(v) ∈ [τb, τa] for all v. We write M(T, v0, β(·)) = M(T, v0, β(·);
1,0).

We may regard

(9.1) M
(
T, v0, β(·)

)
⊆ [0,1]#Cint

0 (T ).

For (T, v0, β(·)) ∈ Gr(β,k) and τ ∈ M(T, v0, β(·)), we associate an R-linear map

c
(
T, v0, β(·), τ

)
: Bk(C[1]) → C[1]



562 Kenji Fukaya

of degree −μ(β) by induction on #C int
0 (T ) as follows.

Suppose #C int
0 (T ) = 0. Then T has only one edge and two (exterior) vertices.

So β(·) is void. We put

(9.2) c
(
T, v0, β(·), τ

)
= identity

in this case.
Suppose #C int

0 (T ) = 1. Let v be the unique interior vertex, and let β = β(v).
The vertex v has exactly k + 1 edges. We put

(9.3) c
(
T, v0, β(·), τ

)
(x1, . . . , xk) = −c

τ(v)
k,β (x1, . . . , xk).

(Note that τ(v) ∈ [0,1] and that ct(· · · ) for t ∈ [0,1] is defined as in (8.7).)
Let #C int

0 (T ) > 1. We take the unique edge e0 containing v0. Let v′
0 be the

vertex of e0 other than v0; v′
0 is necessarily interior. We remove v0, e0, and v′

0

from T and then obtain 	 components T1, . . . , T�. Here 	 + 1 is the number of
edges of v′

0. We number them so that v′
0, T1, . . . , T�, respects the counterclockwise

cyclic order induced by the canonical orientation of R2. We take the closures of
Ti and denote it by the same symbol by an abuse of notation. Together with
the other data that is induced in an obvious way from one of (T, v0, β(·), τ), we
obtain (Ti, v

′
0, βi(·), τi) for i = 1, . . . , 	. We now put

c
(
T, v0, β(·), τ

)
(9.4)

= −c
τ(v′

0)

�,β(v′
0)

◦
(
c(T1, v

′
0, β1(·), τ1) ⊗ · · · ⊗ c(T�, v

′
0, β�(·), τ�)

)
.

Note that the right-hand side is already defined by induction hypothesis.
Now we integrate on M(T, v0, β(·)) and define

(9.5) c(T, v0, β(·)) =
∫

τ ∈M(T,v0,β(·))
c(T, v0, β(·), τ)dτ.

Here we regard M(T, v0, β(·)) ⊂ [0,1]#Cint
0 (T ) and use standard the measure dτ

to integrate. We define c(T, v0, β(·); τa, τb) in the same way by integrating on
M(T, v0, β(·); τa, τb).

DEFINITION 9.4

We have

(9.6) c(k,β) =
∑

(T,v0,β(·))∈Gr(β,k)

c
(
T, v0, β(·)

)
.

We define c(k,β; τa, τb) in a similar way.

PROPOSITION 9.1

The system of maps {c(k,β; τa, τb)} defines a G-gapped filtered A∞-homomorphism
from (C, {m

τb

k,β }) to (C, {m
τa

k,β }).
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Proof
Let E(G) = {0,E1, . . . ,Ek, . . .} with Ei < Ei+1. We prove that {c(k,β; τa, τb)} is
a filtered A∞-homomorphism modulo Ej by induction on j.

We remark that

(9.7) c
(
k, (0,0)

)
=

{
identity if k = 1,

0 otherwise,

by Definition 8.5.5. The case j = 0 + 1 = 1 follows immediately.
We assume that {c(k,β; τ, τb)} is a filtered A∞-homomorphism modulo Ej .

Let E(β) = Ej . We study the two maps (9.8) and (9.9):

(9.8)
∑

mτ
�,β0

◦
(
c(k1, β1; τ, τb) ⊗ · · · ⊗ c(k�, β�; τ, τb)

)
,

where the sum is taken over all 	, ki, βi with β0 + β1 + · · · + β� = β, k1 + · · · +
k� = k;

(9.9) x1 ⊗ · · · ⊗ xk �→
∑

(−1)∗c(β1, k1; τ, τb)
(
x1, . . . ,m

τb

k2,β2
(xi, . . .), . . . , xk

)
,

where the sum is taken over k1, k2, β1, β2, i with k1 + k2 = k + 1, β1 + β2 = β,
and i = 1, . . . , k − k2 + 1 and ∗ = deg′ x1 + · · · + deg′ xi−1.

We denote (9.8) by P(k,β; τ, τb) and (9.9) by Q(k,β; τ, τb). To prove Propo-
sition 9.1 it suffices to show that P(k,β; τ, τb) = Q(k,β; τ, τb).

We calculate
d

dτ
P(k,β; τ, τb)

=
∑( d

dτ
mτ

�,βb

)
◦

(
c(k1, β1; τ, τb) ⊗ · · · ⊗ c(k�, β�; τ, τb)

)
(9.10)

+ mτ
�,β0

◦ d

dτ

(
c(k1, β1; τ, τb) ⊗ · · · ⊗ c(k�, β�; τ, τb)

)
.

By using (8.9), the first term of (9.10) becomes the sum of the following two
formulas.

(1) We have the sum of the composition of

(9.11) c(k1, β1; τ, τb) ⊗ · · · ⊗ c(k�, β�; τ, τb)

and

(9.12) x1 ⊗ · · · ⊗ x� �→ (−1)∗cτ
�1,β0

(
. . . ,mτ

�2,β′
0
(xi, . . .), . . .

)
.

Here the sum is taken over all β0, β′
0, β1, . . . , β�, 	1, 	2, k1, . . . , k� such that

β = β0 + β′
0 + β1 + · · · + β�, 	1 + 	2 = 	 + 1, k1 + · · · + k� = k. The sign is ∗ =

deg′ x1 + · · · + deg′ xi−1.
(2) We have the composition of (9.11) and

(9.13) x1 ⊗ · · · ⊗ x� �→ −mτ
�1,β0

(
. . . , cτ

�2,β′
0
(xi, . . .), . . .

)
.

We remark that the minus sign in (9.13) is induced by the minus sign in the third
line of (8.9).
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Using the induction hypothesis, we can show that (1) above is equal to (9.9).
(Note that the minus sign in (9.3), (9.4) is essential here.)

On the other hand, by definition we can show that (2) above cancels with
the second term of (9.10). (We again use the minus sign in (9.3), (9.4) here.)

The proof of Proposition 9.1 is now complete. �

PROPOSITION 9.2

The filtered A∞-homomorphism {c(k,β)} is cyclic.

Proof
Let (k,β) �= (2, (0,0)). We prove

(9.14)
∑

k1+k2=k
β1+β2=β

〈c(k1, β1)(x1, . . . , xk1), c(k2, β2)(xk1+1, . . . , xk)〉 = 0.

A term of (9.14) is written as

(9.15)
∫

τ ∈M(Γ1)

∫
τ ′ ∈M(Γ2)

〈c(Γ1; τ)(x1, . . . , xk1), c(Γ2; τ ′)(xk1+1, . . . , xk)〉 dτ dτ ′.

Here Γi = (Ti, v
i
0, βi(· · · )) ∈ Gr(ki, βi) with k1 + k2 = k, β1 + β2 = β.

We put

τmax = max
{
τ(v) | v ∈ C int

0 (T1)
}

= τ(v1′
0 ).

Here v1′
0 is the unique interior vertex that is joined with v1

0 . We define

τ ′
max = max

{
τ ′(v) | v ∈ C int

0 (T2)
}

= τ ′(v2′
0 )

in the same way. We divide the domain of integration (9.15) into two:

(1) τmax ≥ τ ′
max;

(2) τmax ≤ τ ′
max.

Integration on the domain (1) is the sum of the terms

−
∫ 1

0

〈(
ct
�,β(0)

◦ (c(Γ(1); t, τb) ⊗ · · · ⊗ c(Γ(	); t, τb))
)
(x1, . . . , xk1),

(9.16)
c
(
Γ(0); t, τb

)
(xk1+1, . . . , xk)

〉
dt.

Here Γ(i) = (Ti, v
i
0, β

i(·)) ∈ Gr(k(i), βi) such that
∑�

i=1 k(i) = k1, k(0) = k2, k1 +
k2 = k,

∑�
i=0 βi + β0 + β(0) = β.

In a similar way, integration on the domain (2) is the sum of the terms

−
∫ 1

0

〈
c
(
Γ(0); t, τb

)
(x1, . . . , xk2),

(9.17) (
ct
�,β(0)

◦ (c(Γ(1); t, τb) ⊗ · · · ⊗ c(Γ(	); t, τb))
)
(xk2+1, . . . , xk)

〉
dt.

Therefore (9.14) follows from the next lemma.
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LEMMA 9.1

We have

(9.18) 〈ct
�,β(x1, . . . , x�), x0〉 + 〈x1, c

t
�,β(x2, . . . , x�, x0)〉 = 0.

Proof
We have

〈ct
�,β(x1, . . . , x�), x0〉 = (−1)(deg′ x1)

(∑
i �=1 deg′ xi

)
〈ct

�,β(x2, . . . , x�, x0), x1〉

= −〈x1, c
t
�,β(x2, . . . , x�, x0)〉.

Here we use the cyclic symmetry of ct
�,β in the first equality and (6.2) in the

second equality. �

The proof of Proposition 9.2 is complete. �

Proof of Theorem 8.2
By Propositions 9.1 and 9.2, we obtain a cyclic filtered A∞-homomorphism
{ck,β }. We remark that c1,(0,0) is identity and ck,(0,0) = 0 for k �= 1 by defini-
tion. We can use this fact to show that {ck,β } has an inverse by induction on
energy filtration. The proof of Theorem 8.2 is complete. �

Proof of Theorem 8.1
We may assume that E(G) ∩ [E0,E1] = {E0,E1}. (In the general case we can
divide the interval [E0,E1] into the pieces so that the above assumption holds.)

We use the modulo TE0 version of Theorem 8.2 we proved above and obtain
a cyclic filtered A∞-homomorphism {ck,β } modulo TE0 .

Let E(β) > E0. We put ct
k,β = 0. We then define mt

k,β by solving (8.9).
Namely, we put

mτ
k,β(x1, . . . , xk)

= m1
k,β(x1, . . . , xk)

(9.19)

−
∑

k1+k2=k
β1+β2=β

k−k2+1∑
i=1

(−1)∗i

∫ 1

τ

ct
k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . .

)
dt

+
∑

k1+k2=k
β1+β2=β

k−k2+1∑
i=1

∫ 1

τ

mt
k1,β1

(
. . . , ct

k2,β2
(xi, . . .), . . .

)
dt.

Here ∗i = deg′ x1 + · · · + deg′ xi−1.
We remark that if ct

k,β �= 0, then E(β) > 0. Therefore the right-hand side of
(9.19) is already defined by the induction hypothesis.

Definitions 8.5(1), (3), (4), (5) are obvious.
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LEMMA 9.2

The operators mτ
k,β in (9.19) satisfies the filtered A∞-relation (6.7).

Proof
We remark that m1

k,β satisfies (6.7) by assumption. We prove (6.7) by induction
on E(β). Since mτ

k,(0,0) is independent of τ , (6.7) holds for E(β) = 0. We assume
that it is satisfied for β′ with E(β′) < E(β) and consider the case of β. We
calculate

d

dt

(∑
(−1)∗imt

k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . .

))
=

∑
(−1)∗1

i,j ct
k1,β1

(
. . . ,mt

k2,β2
(xj , . . .), . . . ,mt

k3,β3
(xi, . . .), . . .

)
+

∑
(−1)∗2

i,j ct
k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . . ,mt

k3,β3
(xj , . . .), . . .

)
+

∑
(−1)∗3

i,j ct
k1,β1

(
. . . ,mt

k2,β2
(xj , . . .m

t
k3,β3

(xi, . . .), . . .), . . .
)

+
∑

(−1)∗4
i,j mt

k1,β1

(
. . . , ct

k2,β2
(xj , . . .), . . . ,mt

k3,β3
(xi, . . .), . . .

)
+

∑
(−1)∗5

i,j mt
k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . . , ct

k3,β3
(xj , . . .), . . .

)
+

∑
(−1)∗6

i,j mt
k1,β1

(
. . . , ct

k2,β2
(xj , . . .m

t
k3,β3

(xi, . . .), . . .), . . .
)

+
∑

(−1)∗7
i,j mt

k1,β1

(
. . . , ct

k2,β2
(xi, . . .m

t
k3,β3

(xj , . . .), . . .), . . .
)

+
∑

(−1)∗8
i,j mt

k1,β1

(
. . . ,mt

k2,β2
(xi, . . . c

t
k3,β3

(xj , . . .), . . .), . . .
)
.

Here the first six terms are obtained by differentiating mt
k1,β1

and the last two
terms are obtained by differentiating mt

k2,β2
. The signs are given by

∗1
i,j = deg′ x1 + · · · + deg′ xi−1 + deg′ x1 + · · · + deg′ xj−1,

∗2
i,j = deg′ x1 + · · · + deg′ xi−1 + deg′ x1 + · · · + deg′ xj−1 + 1,

∗3
i,j = deg′ xj + · · · + deg′ xi−1,

∗4
i,j = deg′ x1 + · · · + deg′ xi−1 + 1,

∗5
i,j = deg′ x1 + · · · + deg′ xi−1 + 1,

∗6
i,j = deg′ x1 + · · · + deg′ xi−1 + 1,

∗7
i,j = deg′ x1 + · · · + deg′ xi−1 + deg′ x1 + · · · + deg′ xj−1,

∗8
i,j = deg′ x1 + · · · + deg′ xi−1 + 1.

Now the first and second terms cancel. The third term is zero by the induction
hypothesis (A∞-relation for m; we remark that ck,β �= 0 only if E(β) > 0). The
sum of the fourth, fifth, and eighth terms are zero by the induction hypothesis
also. The sixth and seventh terms cancel. The proof of Lemma 9.2 is now
complete. �
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LEMMA 9.3

The operators mτ
k,β is cyclically symmetric.

Proof
We consider the following formulas:

(9.20)
∑

k1+k2=k
β1+β2=β

k−k2+1∑
i=1

(−1)∗i+1
〈
ct
k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . .

)
, x0

〉
,

where ∗i = deg′ ρ1 + · · · + deg′ ρi−1, and

(9.21)
∑

k1+k2=k
β1+β2=β

k−k2+1∑
i=1

〈
mt

k1,β1

(
. . . , ct

k2,β2
(xi, . . .), . . .

)
, x0

〉
.

We denote (9.20) as P(x1, . . . , xk, x0) and (9.21) as Q(x1, . . . , xk, x0).
We prove

P(x0, x1, . . . , xk) + Q(x0, x1, . . . , xk)
(9.22)

= (−1)(deg′ x0)(deg′ x1+···+deg′ xk)
(
P(x1, . . . , xk, x0) + Q(x1, . . . , xk, x0)

)
.

We have

P(x0, x1, . . . , xk)

= −
∑〈

ct
k1,β1

(
mt

k2,β2
(x0, . . .), . . .

)
, xk

〉
(9.23)

+
∑

(−1)deg′ x0+∗i+1
〈
ct
k1,β1

(
x0, . . . ,m

t
k2,β2

(xi, . . .), . . .
)
, xk

〉
and

Q(x0, x1, . . . , xk)

=
∑〈

mt
k1,β1

(
ct
k2,β2

(x0, . . .), . . .
)
, xk

〉
(9.24)

+
∑〈

mt
k1,β1

(
x0, . . . , c

t
k2,β2

(. . .), . . .
)
, xk

〉
.

Moreover,

(−1)(deg′ x0)(deg′ x1+···+deg′ xk)P(x1, . . . , xk, x0)

=
∑

(−1)∗+1+∗i
〈
ct
k1,β1

(
. . . ,mt

k2,β2
(xi, . . .), . . . , xk

)
, x0

〉
(9.25)

+
∑

(−1)∗+∗i+1
〈
ct
k1,β1

(
. . . ,mt

k2,β2
(xi, . . . , xk)

)
, x0

〉
with ∗ = (deg′ x0)(deg′ x1 + · · · + deg′ xk) and

(−1)(deg′ x0)(deg′ x1+···+deg′ xk)Q(x1, . . . , xk, x0)

=
∑

(−1)∗〈
mt

k1,β1

(
. . . , ct

k2,β2
(xi, . . .), . . . , xk

)
, x0

〉
(9.26)

+
∑

(−1)∗〈
mt

k1,β1

(
. . . , ct

k2,β2
(xi, . . . , xk)

)
, x0

〉
.
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The second term of (9.23) coincides with first term of (9.25) by the cyclic sym-
metry of ct. The second term of (9.24) coincides with first term of (9.26) by the
cyclic symmetry of mt.

The first term of (9.23) coincides with the second term of (9.26). In fact,

−
〈
ct
k1,β1

(
mt

k2,β2
(x0, . . . , xi−1), . . .

)
, xk

〉
= (−1)1+(∗i+1)(deg′ xi+···+deg′ xk)〈ct

k1,β1
(xi, . . . , xk),mt

k2,β2
(x0, . . . , xi−1)〉

= 〈mt
k2,β2

(x0, . . . , xi−1), ct
k1,β1

(xi, . . . , xk)〉,

which is equal to the second term of (9.26).
In the same way, the first term of (9.24) coincides with the second term of

(9.25). We thus proved (9.22).
Lemma 9.3 now follows from (9.22) and (9.19). �

Theorem 8.1 follows from Lemmas 9.2 and 9.3. �

10. Canonical model of cyclic filtered A∞ -algebras

In this section we prove Theorems 8.3 and 8.4. We first review the construc-
tion of the filtered A∞-structure mcan

k,β on H and the filtered A∞-homomorphism
{fk,β } : H → C from [11, Section 5.4.4].

We consider the chain complex (C,m1,(0,0)) together with its inner product.
We take an R-linear subspace H ⊂ C such that m1,(0,0) = 0 on H and H is
identified with the m1,(0,0)-cohomology by an obvious map. In the case when C

is the de Rham complex of L, we take a Riemannian metric on L and let H be
the space of harmonic forms.

LEMMA 10.1 (CF. [18, SECTION 5.1])

We assume that C either is finite-dimensional or is a de Rham complex. There
exists a map Π : C → C of degree zero and G : C → C of degree +1 with the
following properties:

(1) Π ◦ Π = Π: The image of Π is a H ;
(2)

(10.1) identity − Π = −(m1,(0,0) ◦ G + G ◦ m1,(0,0));

(3) G ◦ G = 0;
(4) 〈Πx, y〉 = 〈x,Πy〉;
(5)

(10.2) 〈x,Gy〉 = (−1)deg xdeg y 〈y,Gx〉.

Proof
We first assume that C is finite-dimensional. We remark that

(10.3) 〈m1,(0,0)x, y〉 = (−1)deg′ xdeg′ y+1〈m1,(0,0)y,x〉.



Cyclic symmetry and adic convergence in Lagrangian Floer theory 569

We put B = Imm1,(0,0). Equation (10.3) implies 〈B,H〉 = 0, 〈B,B〉 = 0. We put

C
′
=

{
x ∈ C | 〈x,H〉 = 0

}
.

Since 〈 · 〉 is nondegenerate on H , it follows that it is nondegenerate also on C
′
. By

an easy linear algebra, we can find D ⊂ C
′
such that B ⊕ D = C

′
and 〈D,D〉 = 0.

We thus have a decomposition

(10.4) C = B ⊕ D ⊕ H.

We use this decomposition to define projections ΠB , ΠD, Π to B, D, H , respec-
tively. We have

(10.5) 〈Πx, y〉 = 〈x,Πy〉, 〈ΠBx, y〉 = 〈x,ΠDy〉, 〈ΠDx, y〉 = 〈x,ΠBy〉.

Thus we have (1) and (4).
By construction, the restriction of m1,(0,0) to D induces an isomorphism : D →

B. Let n be its inverse. We put

(10.6) G = −n ◦ ΠB = −ΠD ◦ n ◦ ΠB .

It is easy to check (2) and (3). We prove (5). We first show that

(10.7) 〈x,n(y)〉 = (−1)deg xdeg y 〈y,n(x)〉.

To prove (10.7) we may assume x, y ∈ B. We put x = m1,(0,0)a, y = m1,(0,0)b.
Then

〈x,n(y)〉 = 〈m1,(0,0)a, b〉 = (−1)deg′ adeg′ b〈m1,(0,0)b, a〉 = (−1)deg xdeg y 〈y,n(x)〉,

as required. Now we have

〈x,G(y)〉 = −〈x,ΠD ◦ n ◦ ΠB(y)〉

= −
〈
ΠB(x),n

(
ΠB(y)

)〉
= −(−1)deg xdeg y

〈
ΠB(y),n

(
ΠB(x)

)〉
= (−1)deg xdeg y 〈y,G(x)〉.

The proof of Lemma 10.1 is complete in the case when C is finite-dimensional.
In the case of the de Rham complex, we take δ the L2-conjugate to m1,(0,0) and
let D be the image of it. Equation (10.4) is nothing but the Hodge-Kodaira
decomposition; (10.5) is well known. The rest of the proof is the same. �

Let Gr(β,k) be as in Section 9. For each Γ = (T, v0, β(·)) ∈ Gr(β,k), we define

(10.8) fΓ : Bk(H [1]) → C[1]

of degree −μ(β) and

(10.9) mΓ : Bk(H [1]) → H[1]

of degree 1 − μ(β) by induction on #C int
0 (T ).
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Suppose #C int
0 (T ) = 0. Then k = 1. We put fΓ = identity and mΓ = m1,(0,0).

Suppose #C int
0 (T ) = 1. Then v ∈ C int

0 (T ) has k + 1 edges. We put{
fΓ(x1, . . . , xk) = G(mk,β(v)(x1, . . . , xk)),

mΓ(x1, . . . , xk) = Π(mk,β(v)(x1, . . . , xk)).

We next assume #C int
0 (T ) ≥ 2. Let e be the edge containing v0, and let v

be another vertex of e; v is necessarily interior. We remove v0, v, e from T and
obtain T1, . . . , T�, where v has 	 + 1 edges. We number Ti so that e,T1, . . . , T�

respects the counterclockwise cyclic order induced by the orientation of R2. The
tree Ti, together with the data induced from Γ in an obvious way, determines
Γi ∈ Gr(ki, βi). We have β = β(v) +

∑
β(i), k =

∑
ki. We put{

fΓ = G ◦ mk,β(v) ◦ (fΓ1 ⊗ · · · ⊗ fΓ�
),

mΓ = Π ◦ mk,β(v) ◦ (fΓ1 ⊗ · · · ⊗ fΓ�
).

We now define

(10.10) fk,β =
∑

Γ∈Gr(β,k)

fΓ, mcan
k,β =

∑
Γ∈Gr(β,k)

mΓ.

LEMMA 10.2

The system of operators {mcan
k,β } defines a structure of a filtered A∞-algebra on H .

The system of operators {fcank,β } defines a filtered A∞-homomorphism : H → C.
Unital and/or modTE0 versions also hold.

We omit the proof and refer to [11, Section 5.4.4].
We next prove the cyclicity of mcan

k,β . We need some more notation. Let
Γ = (T, v0, β(·)) ∈ Gr(β,k). A flag of Γ is a pair (v, e), where v is an interior
vertex of T and e is an edge containing v. For each (Γ, v, e) we define

(10.11) m(Γ, v, e) : Bk+1(C[1]) → R

as follows. We remove v from T . Let T0, T1, . . . , T� be the components of the
complement. We assume e ∈ T0, and T0, T1, . . . , T� respects the counterclockwise
cyclic order induced by the standard orientation of R2. Together with data
induced from Γ, the ribbon tree Ti determines Γi = (Ti, v, βi(·)) ∈ Gr(ki, βi) such
that β(v) +

∑
βi = β and

∑
ki = k. (We remark that the root of Γi is always v

by convention.)
We enumerate the exterior vertices of Γ as v0, v1, . . . , vk so that it respects the

counterclockwise cyclic order. We take ji such that vji , . . . , vji+ki −1 are vertices
of Ti. (In the case ji + ki − 1 > k, we identify vji+ki −1 with vji+ki −1−k.)

DEFINITION 10.1

We have

m(Γ, v, e)(x1, . . . , xk, x0)
(10.12)

= (−1)∗〈
m�,β(v)

(
fΓ1(xj1 , . . .), . . . , fΓ�

(xj�
, . . .)

)
, fΓ0(xj0 , . . . , xj1−1)

〉
.
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Here

∗ = (deg′ xj1 + deg′ xj1+1 + · · · + deg′ x0)(deg′ x1 + · · · + deg′ xj1−1).

PROPOSITION 10.1

The element m(Γ, v, e)(x1, . . . , xk, x0) is independent of the flag (v, e) but depends
only on Γ, x1, . . . , xk, x0.

Proof
Independence of e is a consequence of the cyclic symmetry of mk,β . We prove
the independence of v. Let v and v′ be interior vertices. We assume that there
exists an edge e joining v and v′.

We first consider the flag (v, e). We then obtain Γ0, . . . ,Γ� as above. We
next consider the flag (v′, e). We then obtain Γ′

0, . . . ,Γ
′
�′ as above. It is easy to

see the following:

(10.13)

⎧⎪⎪⎨⎪⎪⎩
Γ1 ∪ · · · ∪ Γ� ∪ e ∪ Γ′

1 ∪ · · · ∪ Γ′
�′ = Γ,

e ∪ Γ′
1 ∪ · · · ∪ Γ′

�′ = Γ0,

e ∪ Γ1 ∪ · · · ∪ Γ� = Γ′
0.

Let vji , . . . , vji+ki −1 be the vertices of Γi, and let vj′
i
, . . . , vj′

i+k′
i −1 be the vertices

of Γ′
i. We put

yi = fΓi(xji , . . . , xji+ki −1), zi = fΓ′
i
(xj′

i
, . . . , xj′

i+k′
i −1).

Now by the definitions and (10.13), we have

m(Γ, v, e)(x1, . . . , xk, x0)
(10.14)

= (−1)∗1
〈
m�,β(v)(y1, . . . , y�),G

(
m�′,β(v′)(z1, . . . , z�′ )

)〉
,

where

∗1 = (deg′ xj1 + deg′ xj1+1 + · · · + deg′ x0)(deg′ x1 + · · · + deg′ xj1−1).

On the other hand, we have

m(Γ, v′, e)(x1, . . . , xk, x0)
(10.15)

= (−1)∗2
〈
m�′,β(v′)(z1, . . . , z�′ ),G

(
m�,β(v)(y1, . . . , y�)

)〉
,

where

∗2 = (deg′ xj′
1
+ deg′ xj′

1+1 + · · · + deg′ x0)(deg′ x1 + · · · + deg′ xj′
1−1).

Equation (10.14) coincides with (10.15) by (10.2). (We use the fact that the
degree of m is +1 here.) �

LEMMA 10.3

The operator mcan
k,β is cyclically symmetric.
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Proof
We consider

〈mcan
k,β(x1, . . . , xk), x0〉 =

∑
Γ∈Gr(β,k)

〈mcan
Γ (x1, . . . , xk), x0〉

(10.16)
=

∑
Γ∈Gr(β,k)

m
(
Γ, (v′

0, e0)
)
(x1, . . . , xk, x0).

Let e0 be the edge containing v0 (the root of Γ), and let v′
0 be the other edge of e0.

We number the exterior edges of Γ as v0, . . . , vk so that it respects counter-
clockwise cyclic order. Let ei be the edge containing vi, and let v′

i be the other
vertex of ei. Proposition 10.1 implies that (10.16) is equal to

(−1)∗
∑

Γ∈Gr(β,k)

m
(
Γ, (v′

i, ei)
)
(x1, . . . , xk, x0).

Here ∗ = (deg′ xi+1 + · · · +deg′ x0)(deg′ x1 + · · · +deg′ xi). Clearly this is equal to

(−1)∗ 〈mcan
k,β(xi+1, . . . , xi−1), xi〉.

The proof of Lemma 10.3 is now complete. �

LEMMA 10.4

The filtered A∞-homomorphism {fk,β } is cyclic.

Proof
We consider

(10.17) 〈f(Γ1)(x1, . . . , xk1), f(Γ2)(xk1+1, . . . , xk)〉

where Γi ∈ Gr(ki, βi), k1 + k2 = k + 1, β1 + β2 = β.
We remark that the image of f(Γi) is in D = ImG if (ki, βi) �= (1, (0,0)). If

(ki, βi) = (1, (0,0)) then the image of f(Γi) is in H . Moreover 〈D,D〉 = 〈D,H〉 =
0. Therefore (10.17) is 0 unless (k,β) = (2, (0,0)). In the case (k,β) = (2, (0,0)),
(10.17) is 〈x1, x2〉. The lemma follows. �

Proof of Theorem 8.3
Lemmas 10.2, 10.3, and 10.4 imply Theorem 8.3. �

Proof of Theorem 8.4
Let (C, 〈 · 〉, {mt

k,β }, {ct
k,β }) be a pseudoisotopy. We take G, Π as in Lemma 10.1.

Since mt
1,(0,0) is independent of t, we can choose G, Π to be independent of t. We

take the canonical model (H, 〈 · 〉, {mtcan
k,β }) for each fixed t. It is easy to see from

the construction that mtcan
k,β is smooth with respect to t. We next define ctcan

k,β .
We consider a pair (Γ, vs) of Γ ∈ Gr(β,k) and an interior vertex vs of Γ. We

denote by Gr+(k,β) the set of all such pairs. We define

(10.18) ct(Γ, vs) : Bk(H [1]) → H[1]
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of degree −μ(β) and

(10.19) ht(Γ, vs) : Bk(H[1]) → c[1]

of degree −1 − μ(β), by induction on #C int
0 (Γ).

Since vs ∈ C int
0 (Γ), we have #C int

0 (Γ) ≥ 1.
If #C int

0 (Γ) = 1, we put

ht(Γ, vs)(x1, . . . , xk) = G
(
ct
k,β(vs)(x1, . . . , xk)

)
,

ct(Γ, vs)(x1, . . . , xk) = Π
(
ct
k,β(vs)(x1, . . . , xk)

)
.

Suppose that #C int
0 (Γ) > 1. Let e1 be the edge containing v0, and let v be the

other vertex of e1.
Case 1: v = vs.
We remove e, v, v0 from Γ and obtain Γ1, . . . ,Γ�. (We assume that e,Γ1, . . . ,Γ�

respects counterclockwise cyclic order.) We put

ht(Γ, vs) = G ◦ ct
�,β(vs) ◦

(
ft(Γ1) ⊗ · · · ⊗ ft(Γ�)

)
,

ct(Γ, vs) = Π ◦ ct
�,β(vs) ◦

(
ft(Γ1) ⊗ · · · ⊗ ft(Γ�)

)
.

Here ft(Γ) is the operator that appeared in the definition of ftk,β .
Case 2: v �= vs.
We remove e, v, v0 from Γ and obtain Γ1, . . . ,Γ�. (We assume that e,Γ1, . . . ,Γ�

respects counterclockwise cyclic order.) We assume that vs ∈ Γi. We now put

ht(Γ, vs) = G ◦ mt
�,β(vs) ◦

(
ft(Γ1) ⊗ · · · ⊗ ht(Γi) ⊗ · · · ⊗ ft(Γ�)

)
,

ct(Γ, vs) = −Π ◦ mt
�,β(vs) ◦

(
ft(Γ1) ⊗ · · · ⊗ ht(Γi) ⊗ · · · ⊗ ft(Γ�)

)
.

Note that ft(Γ) is of even degree and ht(Γ) is of odd degree. We take their tensor
product as follows:(

ft(Γ1) ⊗ · · · ⊗ ht(Γi) ⊗ · · · ⊗ ft(Γ�)
)
(x1, . . . , xk)

= (−1)∗i ft(Γ1)(x1, . . . , xk1) ⊗ · · · ⊗ ht(Γi)(xj , . . . , xj+ki −1)(10.20)

⊗ · · · ⊗ ft(Γ�)(xk−k�+1, . . . , xk).

Here j = k1 + k2 + · · · + ki−1 + 1, ∗i = deg′ x1 + · · · + deg′ xj−1.

We remark that the minus sign in the definition of ct(Γ, vs) appears since we
change the order of mT

�,β(vs) and dt.
We put

ctcan
k,β =

∑
(Γ,vs)∈Gr+(k,β)

ct(Γ, vs).

It is easy to see that (H, 〈 · 〉, {mtcan
k,β }, {ctcan

k,β }) satisfies Definition 8.5(1), (2), (5).
We next prove (4) by using Lemma 8.1. We consider C∞([0,1],H) and define
m̂can

k,β by (8.10). We next define

Fk,β : Bk

(
C∞([0,1],H)[1]

)
→ C∞([0,1],H)[1]
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as follows. Let xi(t) + dt ∧ yi(t) = xi ∈ C∞([0,1],H). We put

Fk,β(x1, . . . ,xk) = x(t) + dt ∧ y(t),

where

(10.21a) x(t) = ftk,β

(
x1(t), . . . , xk(t)

)
,

y(t) = ht
k,β

(
x1(t), . . . , xk(t)

)
(10.21b)

−
k∑

i=1

(−1)∗imt
k,β

(
x1(t), . . . , xi−1(t), yi(t), xi+1(t), . . . , xk(t)

)
if (k,β) �= (1, (0,0)) and

(10.21c) y(t) =
d

dt
x1(t)

if (k,β) = (1, (0,0)). Here ∗i in (10.21b) is ∗i = deg′ x1 + · · · + deg′ xi−1. (We
remark that ft1,(0,0) = identity and ht

1,(0,0) = 0.)

LEMMA 10.5

The system of maps {Fk,β } is a filtered A∞-homomorphism.

Proof
We regard G and Π as homomorphisms

C∞([0,1] × C) → C∞([0,1] × C).

Then we can apply (the proof of) Lemma 10.2. It implies Lemma 10.5. �

COROLLARY 10.1

The operators ctcan and mtcan satisfies (8.9).

Proof
Since F1,(0,0) is injective, Lemma 10.5 implies that m̂tcan satisfies A∞-relation.
The Corollary then follows from Lemma 8.1. �

LEMMA 10.6

The operator ctcan is cyclically symmetric.

The proof is similar to the proof of Lemma 9.3 and so is omitted. The proof of
Theorem 8.4 is now complete. (The proof of unitality is easy.) �

11. Geometric realization of pseudoisotopy of cyclic filtered A∞ -algebras

The main result of this section is Theorem 11.1. Let (M,ω) be a symplectic
manifold, and let L be a relatively spin Lagrangian submanifold. We take two
almost complex structures J0, J1 tamed by ω. Let E0 ≤ E1. We apply Theo-
rem 7.1 for L,J0,E0 and L,J1,E1. Then we obtain G(Ji)-gapped cyclic filtered
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A∞-structures (Λ(L), {m
(i)
k,β }, 〈 · 〉) modulo TEi on the de Rham complex. (Note

that the discrete submonoid G(J) depends on the almost complex structure J ;
see the beginning of the proof of Theorem 7.1.)

THEOREM 11.1

There exists G ⊃ G(J0),G(J1) such that (Λ(L), 〈 · 〉, {m
(0)
k,β }) is pseudoisotopic to

(Λ(L), 〈 · 〉, {m
(1)
k,β }) as G-gapped cyclic unital filtered A∞-algebras modulo TE0 .

Before proving Theorem 11.1, we clarify the definition of pseudoisotopy in the
(infinite-dimensional) case of the de Rham complex. We consider C = Λ(L). We
put

(11.1) C∞([0,1] × C) = Λ([0,1] × L).

Note that an element of C∞([0,1] × C) is uniquely written as

x(t) + dt ∧ y(t),

where x(t), y(t) ∈ Λ(L). So this notation is consistent with one in Section 8.
However, the assumption on the smoothness here on the map t �→ x(t), t �→ y(t)
is different from the finite-dimensional case.

We consider the operations mt
k,β : Bk(C[1]) → C[1] of degree −μ(β) + 1 and

ct
k,β : Bk(C[1]) → C[1] of degree −μ(β).

DEFINITION 11.1

We say that mt
k,β is smooth if for each x1, . . . , xk,

t �→ mt
k,β(x1, . . . , xk)

is an element of C∞([0,1] × C).
The smoothness of ct

k,β is defined in the same way.

This is the same as Definition 11.1, except that we use (11.1) for C∞([0,1] × C).
We use this definition of the smoothness and define pseudoisotopy on the de
Rham complex in the same way as Definition 8.5. Theorems 8.1 and 8.2 can be
proved in the same way.

Proof of Theorem 11.1
We take a path J = {Jt}t∈[0,1] of tame almost complex structures joining J0

to J1. We consider the moduli spaces Mk(β;Jt) of Jt-holomorphic discs of
homology class β ∈ H2(M,L;Z). We put

(11.2) Mk(β; J ) =
⋃

t∈[0,1]

{t} × Mk(β;Jt).

We have evaluation maps

ev = (ev0, . . . , evk−1) : Mk(β; J ) → Lk

together with evt : Mk(β; J ) → [0,1], where evt({t} × Mk(β;Jt)) = {t}.
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LEMMA 11.1

There exists a system of Kuranishi structures on M1(β; J ) and M0(β; J ) with
the following properties.

(1) evt extends to a strongly continuous and weakly submersive map. So it
induces a Kuranishi structure on Mk(β;Jt) for each of t ∈ [0,1], k = 0,1.

(2) The induced Kuranishi structure on Mk(β;Ji) for i = 0,1, k = 0,1 coin-
cides with one produced in Theorem 3.1.

(3) For any t ∈ [0,1], k = 0,1, the induced Kuranshi structure on Mk(β;Jt)
satisfies the conclusions of Theorem 3.1.

Proof
The proof is the same as the proof of Theorem 3.1. Namely, we define the
obstruction bundle, that is, a subspace of C∞(Σ, u∗TM ⊗ Λ01), large enough so
that the submersivity of ev0 and evt holds. We can do it inductively so that the
parts already defined are untouched. �

LEMMA 11.2

There exists a system of Kuranishi structures on M�,k+1(β; J ), k ≥ 0, with the
following properties.

(1) evt extends to a strongly continuous and weakly submersive map. So it
induces a Kuranishi structure on Mk(β;Jt) for each of t ∈ [0,1].

(2) The induced Kuranishi structure on Mk(β;Ji) for i = 0,1 coincides with
one produced in Corollary 3.1.

(3) For any t ∈ [0,1], the induced Kuranshi structure on Mk(β;Jt) satisfies
the conclusion of Corollary 3.1.

Proof
The proof is the same as the proof of Corollary 3.1. �

LEMMA 11.3

For each ε > 0, there exists a compatible systems of families of multisections
(Uα̃,i,Wα̃, {sα̃,i,j }), (Uα,i,Wα, {sα,i,j }) on M1(β; J ), M0(β; J ) for β ∩ ω ≤ E0,
with the following properties.

(1) At t = 0,1, they coincide with the family of multisections produced in
Theorem 5.1.

(2) They are ε-close to the Kuranishi map.
(3) They are transversal to zero in the sense of Definition 4.1(3).
(4) (ev0, evt) : M1(β; J ) → L × [0,1] induces submersions (ev0)α̃|

s
−1
α̃ (0) :

s
−1
α̃ (0) → L × [0,1].

(5) They are compatible with (3.3) in the same sense as Theorem 5.1.
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Proof
The proof is the same as the proof of Theorem 5.1. �

REMARK 11.1

We remark that Lemma 11.3(4) implies submersivity of ev0 : M1(β;Jt) → L for
any t. Since there exist uncountably many t’s, we cannot do it when we are
working with multi-, but finitely many, valued sections. Since we are working
with a continuous family of multisections, this becomes possible. In fact, we can
take the dimension of our parameter space W as large as we want.

LEMMA 11.4

For each ε and E0, there exists a system of continuous families of multisections
on Mk+1(β; J ), k ≥ 0, β ∩ ω ≤ E0, with the following properties.

(1) At t = 0,1 they coincide with the family of multisections produced in
Corollary 5.1.

(2) It is ε-close to the Kuranishi map.
(3) It is compatible with forgetk+1,1.
(4) It is invariant under the cyclic permutation of the boundary marked

points.
(5) It is invariant by the permutation of interior marked points.
(6) (ev0, evt) : Mk+1(β; J ) → L × [0,1] induces a submersion on its zero set.
(7) We consider the decomposition of the boundary

∂Mk+1(β; J ) ⊃
⋃

1≤i≤j+1≤k+1

⋃
β1+β2=β

(11.3)
Mj−i+1(β1; J )(ev0,evt) ×(evi,evt) Mk−j+i(β2; J ).

Then the restriction of our family of multisections of Mk+1(β; J ) in the left-hand
side coincides with the fiber product family of multisections in the right-hand side.

Proof
The proof is the same as the proof of Corollary 5.1. �

Now we are in a position to complete the proof of Theorem 11.1. Let ρ1, . . . , ρk ∈
Λ(L). We put

(11.4) Corr∗
(

Mk+1(β; J ); (ev1, . . . , evk), ev0

)
(ρ1 × · · · × ρk) = ρ(t) + dt ∧ σ(t).

Here we use the continuous family of multisections produced in Lemma 11.4 to
define the left-hand side. We define

(11.5) mt
k,β(ρ1, . . . , ρk) = ρ(t), ct

k,β(ρ1, . . . , ρk) = σ(t).

Using Lemma 11.4, we can prove that they satisfy the required properties in the
same way as the proof of Theorem 7.1. �
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12. Cyclic filtered A∞ -structures on the
de Rham complex and on de Rham cohomology

In this section, we use Theorems 7.1 and 11.1 to produce a gapped, cyclic, and
unital filtered A∞-structure on de Rham cohomology. We first construct a cyclic
filtered A∞-structure on a de Rham complex.

THEOREM 12.1

For any relatively spin Lagrangian submanifold L, we can associate a gapped,
cyclic, unital filtered A∞-algebra, (Λ(L), 〈 · 〉, {mk,β }) on its de Rham complex.

It is independent of the choices up to pseudoisotopy as cyclic unital filtered
A∞-algebra modulo TE for any E.

Proof
We fix J and take E1 < E2 < · · · . For each Ei we apply Theorem 7.1 to obtain
a gapped, cyclic, unital filtered A∞-algebra modulo TEi , (Λ(L), 〈 · 〉, {m

(i)
k,β }) on

its de Rham complex. By Theorem 11.1, there exists a pseudoisotopy (Λ(L), 〈 · 〉,
{m

t,(i)
k,β }, {c

t,(i)
k,β }) of gaped, cyclic, unital filtered A∞-algebra modulo TEi between

(Λ(L), 〈 · 〉, {m
(i)
k,β }) and (Λ(L), 〈 · 〉, {m

(i+1)
k,β }). Now we use Theorem 8.2 to extend

unital pseudoisotopy modulo TE0 , (Λ(L), 〈 · 〉, {m
t,(i)
k,β }, {c

t,(i)
k,β }) and a unital and

cyclic filtered A∞-algebra modulo TE0 , and (Λ(L), 〈 · 〉, {m
(i)
k,β }) to a unital pseudo-

isotopy and unital and cyclic filtered A∞-algebra (see [11, Section 7.2.8]).
Let us take two choices Jj (j = 0,1) of J , perturbation, and so on, and obtain

a cyclic, unital filtered A∞-structure extending the one on (Λ(L), 〈 · 〉, {m
(i0,j)
k,β }).

We take i such that Ei > E. Then, by construction, (Λ(L), 〈 · 〉, {m
(i0,j)
k,β }) is pseudo-

isotopic to (Λ(L), 〈 · 〉, {m
(i,j)
k,β }) as a cyclic, unital filtered A∞-algebra. (Here mod-

ulo TE is superfluous.) On the other hand, by Theorem 11.1, (Λ(L), 〈 · 〉,
{m

(i,0)
k,β }) is pseudoisotopic to (Λ(L), 〈 · 〉, {m

(i,1)
k,β }) as a cyclic, unital filtered A∞-

algebra modulo TE . The uniqueness part of Theorem 12.1 follows. �

Theorems 12.1, 8.3, and 8.4 immediately imply the following.

COROLLARY 12.1

For any relatively spin Lagrangian submanifold L, we can associate a gapped,
cyclic, unital filtered A∞-algebra, (H(L), 〈 · 〉, {mcan

k,β }) on its de Rham cohomology.
It is independent of the choices up to homotopy equivalence as a cyclic, unital

filtered A∞-algebra modulo TE for any E.

REMARK 12.1

In Corollary 12.1 we proved that the cyclic filtered A∞-structure on the de Rham
cohomology is well defined up to homotopy equivalence modulo TE but not up
to pseudoisotopy modulo TE . Theorem 8.4 implies that it is well defined up to
pseudoisotopy modulo TE once we fix operators G and Π satisfying the conclusion
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of Lemma 10.1. It does not seem to be so immediate to prove its independence
of G and Π up to pseudoisotopy (modulo TE). The proof up to homotopy
equivalence follows from the fact that f in Theorem 8.3 is homotopy equivalence.

So Theorem 12.1 gives a stronger conclusion than Corollary 12.1.

REMARK 12.2

The difference between pseudoisotopy modulo TE for arbitrary E and pseudoiso-
topy is not important for most of the applications. To improve the statement of
Theorem 12.1 up to pseudoisotopy, we need to work out the story of pseudoiso-
topy of pseudoisotopies. We present the detail of this construction in Section 14
for completeness.

REMARK 12.3

Here we are using the bifurcation method rather than the cobordism method
(see [11, Section 7.2.14] for the comparison between these two methods). In [11]
we used the cobordism method mainly. In [1] the bifurcation method is used.
The reason why we use the bifurcation method here is related to Remark 12.1.
Namely, pseudoisotopy seems stronger than homotopy equivalence.

By carefully looking at the proof of Theorem 8.2, we find that they finally
give the same homotopy equivalence. In fact, time ordered product, which was
used in [11], appears during the proof of Theorem 8.2.

13. Adic convergence of filtered A∞ -structures

Proof of Theorem 1.2
We begin with the proof of properties (1) and (2) of Theorem 1.2. We define the
convergence used here first. Let G ⊂ R≥0 × 2Z be a discrete submonoid. Let C

be a finite-dimensional R-vector space, and let CG = C ⊗R ΛG
0 , C = C ⊗R Λ0,nov.

DEFINITION 13.1

A sequence of elements vi ∈ CG is said to converge to v if

vi =
∑
β∈G

vi,βTE(β)eμ(β)/2,

v =
∑
β∈G

vβTE(β)eμ(β)/2

and if search of vi,β converges to vβ in the topology of C (induced by the ordinary
topology of R).

A sequence vi ∈ C is said to converge to v if there exists G independent of i

such that vi, v ∈ CG and vi converges to v.

Let L be a relatively spin Lagrangian submanifold of M . We take an almost
complex structure J on M tamed by ω. We consider the cyclic, unital filtered
A∞-algebra (Λ(L), 〈 · 〉, {mk,β }) in Theorem 12.1 and (H(L), 〈 · 〉, {mcan

k,β }) in Corol-
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lary 12.1. Let e1, . . . ,eb1 be a basis of H1(L;Z). We take its representative as a
closed one-form and denote it by the same symbol. We put

(13.1) b =
b1∑

i=1

xie1

with xi ∈ Λ(0)
G . (Namely, xi does not contain e, the grading parameter of Λ0,nov,

and xi ∈ Λ(L) (i = 1, . . . , k).

LEMMA 13.1

We have ∑
m0+···+mk=m

mk+m,β(b⊗m0 ,x1,b⊗m1 , . . . ,b⊗mk−1 ,xk,b⊗mk)

(13.2)

=
1
m!

( b1∑
i=1

(∂β ∩ ei)xi

)m

mk(x1, . . . ,xk).

Proof
We consider the set (m0, . . . ,mk) ∈ Z≥0 with m0 + · · · + mk = m and denote it
by A(m). For each �m = (m0, . . . ,mk) ∈ A(m), we take a copy of Mk+m(β) and
denote it by M �m(β). We then consider the forgetful map

(13.3) forget�m : M �m(β) → Mk(β),

which forgets the first, . . . , m0th, m0 +second, m0 +m1 +first, m0 +m1 +third,
and, . . . ,m0 + · · · + mi + first, m0 + · · · + mi + i + third, . . . marked points. In
other words, we forget the marked points where b are assigned in the left-hand
side of (13.2).

We consider

(13.4) ev�m : M �m(β) → Lm,

the evaluation map at the marked points which we forget in (13.3). We take the
(continuous family of) perturbations as in Corollary 5.1. We write its zero-set as
M �m(β)s, Mk(β)s. Since the perturbation is compatible with the forgetful map,
there exists a map

(13.5) forget
s
�m : M �m(β)s → Mk(β)s.

For each p ∈ Mk(β)s, the fiber (forget
s
�m)−1(p) is m-dimensional. Moreover, we

have the following. We represent p by (Σ, u). Then the cycle∑
�m

(ev�m)∗
(
(forget

s
�m)−1(p)

)
is equal to {(

u(t1), . . . , u(tm)
) ∣∣ t1, . . . , tm ∈ [0,1), t1 ≤ · · · ≤ tm

}
as currents. Here we identify ∂Σ = [0,1) so that zero corresponds to the zeroth
boundary marked point. In fact, by counting the dimension of the support it
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suffices to consider the case when k + m + 1 boundary marked points are all
distinct. In that case, there are various possibilities in which marked points,
among k +m marked points, become k marked points that remain after applying
forgetful maps. Those possibilities correspond to the choice of �m.

Therefore we have∑
�m

∫
(forgets

�m)−1(p)

ev∗
�m(b × · · · × b) =

1
m!

( b1∑
i=1

(∂β ∩ ei)xi

)m

.

We remark that the sign is independent of �m in the left-hand side. This is because
the shifted degree of b is even (see [11, Lemma 8.4.3]). The same argument
appears also in the proof of [12, Lemma 11.8].

Equation (13.2) follows (1/m! is the volume of the domain {(t1, . . . , tm) |
t1, . . . , tm ∈ [0,1), t1 ≤ · · · ≤ tm}). �

LEMMA 13.2

We have ∑
m0+···+mk=m

mcan
k+m,β(b⊗m0 ,x1,b⊗m1 , . . . ,b⊗mk−1 ,xk,b⊗mk)

(13.6)

=
1
m!

( b1∑
i=1

(∂β ∩ ei)xi

)m

mcan
k (x1, . . . ,xk).

Proof
We have ∑

m0+···+mk=m

fk+m,β(b⊗m0 ,x1,b⊗m1 , . . . ,b⊗mk−1 ,xk,b⊗mk)

(13.7)

=
1
m!

( b1∑
i=1

(∂β ∩ ei)xi

)m

fk(x1, . . . ,xk),

by its inductive construction and (13.2). Equation (13.6) then follows from the
definition, (13.2), and (13.7). �

COROLLARY 13.1

We have

lim
N →∞

∑
m0+···+mk=m≤N

mcan
k+m,β(b⊗m0 ,x1,b⊗m1 , . . . ,b⊗mk−1 ,xk,b⊗mk)

(13.8)

= exp
( b1∑

i=1

(∂β ∩ ei)xi

)
mcan

k (x1, . . . ,xk).

Namely, the left-hand side converges to the right-hand side in the usual topology
of H(L;R), that is, the topology induced by the usual topology of R.
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The right-hand side depends only on yi = exi and xi. Namely, it is indepen-
dent of the change xi �→ xi + 2π

√
−1ai for ai ∈ H(L;ΛZ

0,nov).

This is immediate from Lemma 13.2.
So far we consider the bounding cochain b consisting of a cohomology class

of degree 1. The degree-zero class does not appear in the bounding cochain. We
next consider the class of degree > 1. We put

(13.9) bhigh =
∑
i>b1

xiei.

Here ei, i = b1 + 1, . . . , is a basis of
⊕

d≥1 H2d+1(L;Z).

LEMMA 13.3

There exists E(m) such that limm→∞ E(m) = ∞ and that

(13.10) TE(β)mcan
k+m,β(b⊗m0

high ,x1, . . . ,xk,b⊗mk

high ) ≡ 0 mod TE(m)

if m = m0 + · · · + mk. E(m) is independent of β.

Proof
Since the degree of each term of bhigh is strictly larger than 1, we have

μ(β) > md + C,

where C depends only on x1, . . . ,xk and L. By Gromov compactness (see Defi-
nition 6.2(2), (3)), it implies that E(β) → ∞ as m → ∞. �

We put

(13.11) mk =
∑
β∈G

TE(β)eμ/2mk,β .

Then Theorem 1.2(1), (2) follow from Corollary 13.1 and Lemma 13.3.
We turn to the proof of Theorem 1.2(3), (4). We take a Weinstein neigh-

borhood U of L. Namely, U is symplectomorphic to a neighborhood U ′ of zero
section in T ∗L. We choose δ1 such that for c = (c1, . . . , cb) ∈ [−δ1,+δ1]b, the
graph of the closed one-form

∑b1
i=1 ciei is contained in U ′. We send it by the

symplectomorphism to U and denote it by L(c). We may take δ2 < δ1 such that
if c = (c1, . . . , cb) ∈ [−δ2,+δ2]b, then there exists a diffeomorphism Fc : M → M

such that

Fc(L) = L(c);(13.12)

(Fc)∗J is tamed by ω.(13.13)

REMARK 13.1

It is essential here to consider tame almost complex structures rather than com-
patible almost complex structures. In fact, the compatibility is used to prove
Gromov compactness, which was actually proved in [17] for the tame almost
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complex structure. In fact, we cannot take Fc to be a symplectomorphism in
general. So in general, (Fc)∗J is not compatible with ω. However, it is tamed by
ω if c is sufficiently small. This is because the condition for an almost complex
structure to be tame is an open condition.

We consider the cyclic filtered A∞-algebra (Λ(L(c)), 〈 · 〉, {m
(Fc)∗J
k,β }). We compare

it with (Λ(L), 〈 · 〉, {mJ
k,β }). (Here we include (Fc)∗J and J in the notation to

specify the complex structure we use.) The closed one-form ei representing
the basis H1(L;Z) is transformed to a closed one-form ei(c) on L(c) by the
diffeomorphism Fc. For b in (13.1) we put

bc(x1, . . . , xb1) = b =
bi∑

i=1

(
xi · (Fc)∗(ei)

)
.

We define

bhigh,c(xb1+1, . . . , xb)

= bhigh,c =
∑
i>b1

(
xi · (Fc)∗(ei)

)
and bc+ = bc + bhigh,c, b+ = b + bhigh.

LEMMA 13.4

We may choose perturbation of the choices entering in the definition of m
(Fc)∗J
k,β ,

mJ
k,β such that the following holds:

m
(Fc)∗J

k+m,(F −1
c )∗β

(
b⊗m0

c+ , (F −1
c )∗x1,b⊗m1

c+ , . . . ,b⊗mk−1
c+ , (F −1

c )∗xk,b⊗mk
c+

)
(13.14)

= mJ
k+m,β(b⊗m0

+ ,x1,b⊗m1
+ , . . . ,b⊗�k−1

+ ,xk,b⊗mk
+ ).

Proof
We remark that Fc gives an isomorphism

(13.15) (Fc)∗ : Mk(β;J) → Mk

(
(Fc)∗β; (Fc)∗J

)
.

We can extend this isomorphism to one of the Kuranishi structures. Therefore
we can take the continuous family of perturbations in Corollary 5.1 so that it is
preserved by (13.15). The lemma follows immediately. �

LEMMA 13.5

If ∂β ∩ ei = gi, then

(Fc)∗(β) ∩ (F −1
c )∗(ei) = β ∩ ei +

b1∑
j=1

cigi.

Proof
This follows from the fact that Fc(L) = L(c) is the graph of

∑
ciei. �
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Let b+ =
∑

i xiei. We put yi = exi , i = 1, . . . , b1, and �x = (y1, . . . , yb1 , xb1+1, . . . ,

xb). We define

m
(Fc)∗J,�x
k,β

(
(F −1

c )∗x1, . . . , (F −1
c )∗xk

)
=

∑
m

∑
m=m0+···+mk

T (Fc)∗(β)∩ωeμ(β)/2(13.16)

× m
(Fc)∗J

k+m,(F −1
c )∗β

(
b⊗m0

c+ , (F −1
c )∗x1, . . . , (F −1

c )∗xk,b⊗mk
c+

)
.

We write

m
J,�x
k,β(x1, . . . ,xk)

(13.17)
=

∑
m

∑
m=m0+···+mk=m

T β∩ωeμ(β)/2mJ
k+m,β(b⊗m0

+ ,x1, . . . ,xk,b⊗mk
+ ).

We put

�x(c) = (T c1y1, . . . , T
cb1 yb1 , xb1+1, . . . , xb).

Then Lemmas 13.4 and 13.5 imply

(13.18) m
(Fc)∗J,�x
k,β

(
(F −1

c )∗x1, . . . , (F −1
c )∗xk

)
= m

J,�x(c)
k,β (x1, . . . ,xk).

We apply Corollary 12.1 to L(c) and (Fc)∗J . Then the sum of the left-hand
side of (13.18) over β converges for yi ∈ 1 + Λ+

0,nov and v(xi) ≥ 0 (i = b1 + 1, . . .).
Therefore the sum of the right-hand side of (13.18) over β also converges there.
Hence, by taking various ci, we obtain Theorem 1.2(3), (4). �

REMARK 13.2

By the construction of this section, we can prove a similar convergence result
for the pseudoisotopy we constructed in Sections 11, 12, and 14. Therefore the
family of unital, cyclic filtered A∞-algebras in Theorem 1.2.4 is well defined up
to the homotopy equivalence of unital, cyclic filtered A∞-algebras.

14. Pseudoisotopy of pseudoisotopies

Let C be a finite-dimensional R-vector space or a de Rham complex Λ(L).
The vector space C∞([0,1]2,C) is the set of all smooth maps [0,1]2 → C. Let
C∞([0,1]2 × C) be the set of the formal expression

(14.1) x(t, s) + dt ∧ y(t, s) + ds ∧ z(t, s) + dt ∧ ds ∧ w(t, s),

where x(t, s), y(t, s), z(t, s),w(t, s) ∈ C∞([0,1]2 × C). We define the degree by
putting degdt = degds = 1.

In the case of the de Rham complex C = Λ(L), we put

C∞([0,1]2 × C) = Λ([0,1]2 × L).

(In this case also, an element of Λ([0,1]1 × L) can be uniquely written as (14.1).)
We assume that, for each (t, s) ∈ [0,1]2, we have operations

(14.2) m
t,s
k,β : Bk(C[1]) → C[1]
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of degree −μ(β) + 1,

(14.3) c
t,s
k,β : Bk(C[1]) → C[1], d

t,s
k,β : Bk(C[1]) → C[1]

of degree −μ(β), and

(14.4) et
k,β : Bk(C[1]) → C[1]

of degree −μ(β) − 1. We assume that they are smooth in the following sense:

(s, t) �→ m
t,s
k,β(x1, . . . , xk) ∈ C∞([0,1],C),

and similarly for c
t,s
k,β ,dt,s

k,β , et,s
k,β . We use them to define

(14.5) Mk,β : Bk

(
C∞([0,1]2 × C)[1]

)
→ C∞([0,1]2 × C)

as follows. Let

xi = xi(t, s) + dt ∧ yi(t, s) + ds ∧ zi(t, s) + dt ∧ ds ∧ wi(t, s).

We put

Mk,β(x1, . . . ,xk) = x(t, s) + dt ∧ y(t, s) + ds ∧ z(t, s) + dt ∧ ds ∧ w(t, s),

where x(t, s), y(t, s), z(t, s),w(t, s) are defined as follows:

(14.6a) x(t, s) = m
t,s
k,β(x1(t, s), . . . , xk(t, s)),

y(s, t) = c
t,s
k,β(x1(t, s), . . . , xk(t, s))

(14.6b)
+

∑
(−1)∗im

t,s
k,β(x1(t, s), . . . , yi(t, s), . . . , xk(t, s))

where ∗i = deg′ x1 + · · · + deg′ xi−1 + 1,

z(s, t) = d
t,s
k,β

(
x1(t, s), . . . , xk(t, s)

)
(14.6c)

+
∑

(−1)∗im
t,s
k,β

(
x1(t, s), . . . , zi(t, s), . . . , xk(t, s)

)
,

w(s, t) = e
t,s
k,β

(
x1(t, s), . . . , xk(t, s)

)
+

∑
(−1)∗1

i c
t,s
k,β

(
x1(t, s), . . . , zi(t, s), . . . , xk(t, s)

)
+

∑
(−1)∗2

i d
t,s
k,β

(
x1(t, s), . . . , yi(t, s), . . . , xk(t, s)

)
(14.6d)

+
∑
i<j

(−1)∗3
ij m

t,s
k,β

(
x1(t, s), . . . , yi(t, s), . . . , zj(t, s), . . . , xk(t, s)

)
+

∑
i>j

(−1)∗4
ij m

t,s
k,β

(
x1(t, s), . . . , zj(t, s), . . . , yi(t, s), . . . , xk(t, s)

)
.

Here

∗1
i = deg′ x1 + · · · + deg′ xi−1,

∗2
i = deg′ x1 + · · · + deg′ xi−1,

∗3
ij = deg′ yi + deg′ xi+1 + · · · + deg′ xj−1,
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∗4
ij = 1 + deg′ zi + deg′ xi+1 + · · · + deg′ xj−1.

In the case (k,β) = (1, (0,0)), we put

x(t, s) = m1,(0,0)

(
x1(t, s)

)
,

y(t, s) =
d

dt
x1(t, s) − m1,(0,0)

(
y1(t, s)

)
,

z(t, s) =
d

ds
x1(t, s) − m1,(0,0)

(
z1(t, s)

)
,

w(s, t) =
d

ds
y1(t, s) − d

dt
z1(t, s) + m1,(0,0)

(
w1(t, s)

)
.

DEFINITION 14.1

We say that (C, 〈 · 〉, {m
t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) is a pseudoisotopy of pseudoiso-

topies if the following hold:

(1) Mk,β satisfies filtered A∞-formula (6.7);
(2) m

t,s
k,β , ct,s

k,β ,dt,s
k,β , et,s

k,β are all cyclically symmetric;
(3) m

t,s
k,(0,0) is independent of t, s. Moreover, c

t,s
k,(0,0),d

t,s
k,(0,0),e

t,s
k,(0,0) are all

zero.

The unital and/or mod TE0 -version is defined in the same way.

If (C, 〈 · 〉, {m
t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) is a pseudoisotopy of pseudoisotopies, then

for each s0 ∈ [0,1], (C, 〈 · 〉, {m
t,s0
k,β }, {c

t,s0
k,β }) is a pseudoisotopy, and for each t0 ∈

[0,1], (C, 〈 · 〉, {m
t0,s
k,β }, {d

t0,s
k,β }) is also a pseudoisotopy. We call them the restric-

tions.

THEOREM 14.1

Let E0 < E1. Let (C, 〈 · 〉, {m
t0,s0
k,β }) be cyclic filtered A∞-algebras modulo TE1 for

s0, t0 ∈ {0,1}. For s0 = 0,1, let (C, 〈 · 〉, {m
t,s0
k,β }, {c

t,s0
k,β }) be a pseudoisotopy modulo

TE1 . For t0 = 1, let (C, 〈 · 〉, {m
t0,s
k,β }, {d

t0,s
k,β }) be a pseudoisotopy modulo TE1 .

Let (C, 〈 · 〉, {m
t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) be a pseudoisotopy of pseudoisotopies

modulo TE0 .
We assume that the restriction of a pseudoisotopy of pseudoisotopies to s0 =

0,1 or to t0 = 1 coincides with the above pseudoisotopy as pseudoisotopies modulo
TE0 .

We assume Assumption 14.1.
Then (C, 〈 · 〉, {m

t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) extends to a pseudoisotopy of pseu-

doisotopies modulo TE1 so that its restriction to s0 = 0,1 or to t0 = 1 coincides
with the above pseudoisotopy as pseudoisotopies modulo TE1 .

The unital version also holds.

REMARK 14.1

This theorem is a cyclic and de Rham version of [11, Theorem 7.2.212].
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ASSUMPTION 14.1

(1) If E(β) < E0, then c
t,s
k,β ,dt,s

k,β , et,s
k,β are zero in a neighborhood of {0,1}2

and m
t,s
k,β is locally constant there.

(2) If E(β) < E1, then c
t,s0
k,β (s0 = 0,1) is zero if t is in a neighborhood of

{0,1}. Moreover, d
0,s
k,β is zero if s is in a neighborhood of {0,1}. Furthermore,

m
t,s0
k,β , m

0,s
k,β are locally constant there.

We remark that by the method of the proof of Lemma 8.2, we may change
(C, 〈 · 〉, {m

t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) so that it satisfies Assumption 14.1.

Proof of Theorem 14.1
We take a map

h =
(
ht(u, v), hs(u, v)

)
: [0,1]u × [0,1]v → [0,1]t × [0,1]s

with the following properties (we write [0,1]s, etc., to show that the parameter
of this factor is s):

(1) h(u,0) = (1,0), h(u,1) = (1,1);
(2) h(1, v) = (1, v);
(3) h(0,1/3) = (0,0). h(0,2/3) = (0,1);
(4) the restriction of h determines a homeomorphism

[0,1]2 \ ([0,1] × {0}) → [0,1]2 \
(
([0,1] × {0,1}) ∪ {0} × [0,1]

)
;

(5) it is a diffeomorphism outside {(0,1/3), (0,2/3))} of the domain and
{(0,0), (0,1)} of the target.

In particular, h determines a homeomorphism

(14.7) {0} × [0,1]v ∼= ({0} × [0,1]s) ∪ ([0,1]t × {0,1}).

(C, 〈 · 〉, {m
0,s
k,β }, {d

0,s
k,β }) and (C, 〈 · 〉, {m

t,s0
k,β }, {c

t,s0
k,β }) define pseudoisotopies parame-

terized by the target of (14.7). We pull it back by (14.7) and obtain a pseudoiso-
topy (C, 〈 · 〉, {m

0,v
k,β }, {c

0,v
k,β }) modulo TE1 parameterized by [0,1]v. (The pullback

is defined by a formula similar to that in (8.11). We use Assumption 14.1 to
show the smoothness of the pullback at v = 1/3,2/3.)

We next pull back (C, 〈 · 〉, {m
t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β }) by h as follows. We

consider

dht =
dht

du
du +

dht

dv
dv, dhs =

dhs

du
du +

dhs

dv
dv,

dht ∧ dhs =
(dht

du

dhs

dv
− dht

dv

dhs

du

)
du ∧ dv

and put

c
u,v
k,β =

dht

du
c
h(u,v)
k,β +

dhs

du
d

h(u,v)
k,β ,

d
u,v
k,β =

dht

dv
c
h(u,v)
k,β +

dhs

dv
d

h(u,v)
k,β ,(14.8)
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e
u,v
k,β =

(dht

du

dhs

dv
− dht

dv

dhs

du

)
e
h(u,v)
k,β .

(We use Assumption 14.1 to show that the pullback is smooth.) It may be
regarded as a pseudoisotopy modulo TE0 from the pullback of (C∞([0,1] ×
C), 〈 · 〉, {m

0,v
k,β }, {c

0,v
k,β }) to the restriction of (C, 〈 · 〉, {m

t,s
k,β }, {c

t,s
k,β }, {d

t,s
k,β }, {e

t,s
k,β })

to the line s = 1. We now apply Theorem 8.2 and extend c
u,v
k,β , d

u,v
k,β , e

u,v
k,β so that

we obtain an isotopy of isotopies module TE1 .
Therefore we pull back again by the inverse of h to obtain required isotopy

of isotopies. The proof of Theorem 14.1 is complete. �

Now the main result of this section is the following.

THEOREM 14.2

The cyclic, unital filtered A∞-structure in Theorem 12.1 is independent of the
choices up to pseudoisotopy.

Proof
The proof is similar to that in [11, Section 7.2.13].

We take tame almost complex structures J0 and J1 and E0 < · · · < Ei · · · .

We use J0 and Ei to define cyclic filtered A∞-structures (Λ(L), 〈 · 〉, {m
(0,i)
k,β }) mod-

ulo TEi and pseudoisotopies modulo TEi (Λ(L), 〈 · 〉, {m
t,(0,i)
k,β }, {c

t,(0,i)
k,β }) between

(Λ(L), 〈 · 〉, {m
(0,i)
k,β }) and (Λ(L), 〈 · 〉, {m

(0,i+1)
k,β }). We then extend them to cyclic

filtered A∞-structures and pseudoisotopies. We next use J1 and Ei to define
(Λ(L), 〈 · 〉, {m

(1,i)
k,β }) and (Λ(L), 〈 · 〉, {m

t,(1,i)
k,β }, {c

t,(0,i)
k,β }) and extend them to cyclic

filtered A∞-structures and pseudoisotopies.
To prove Theorem 14.2, it suffices to show that the extension of (Λ(L), 〈 · 〉,

{m
(0,i)
k,β }) is pseudoisotopic to the extension of (Λ(L), 〈 · 〉, {m

(1,i)
k,β }).

Theorem 11.1 implies that there exists a pseudoisotopy modulo TEi , (Λ(L),
〈 · 〉, {m

s,i
k,β }, {d

s,i
k,β }) between (Λ(L), 〈 · 〉, {m

(0,i)
k,β }) and (Λ(L), 〈 · 〉, {m

(1,i)
k,β }).

LEMMA 14.1

There exists a pseudoisotopy of pseudoisotopies modulo TEi , (Λ(L), 〈 · 〉, {m
t,s;i
k,β },

{c
t,s;i
k,β }, {d

t,s;i
k,β }, {e

t,s;i
k,β }) such that its restriction to t = j (j = 0,1) coincides with

(Λ(L), 〈 · 〉, {m
s,i+j
k,β }, {c

s,i+j
k,β }) as pseudoisotopy modulo TEi+j . Moreover, its re-

striction to sj (j = 0,1) coincides with (Λ(L), 〈 · 〉, {m
s,i
k,β }, {d

s,i
k,β }) as pseudoiso-

topy modulo TEi .

Proof
We construct a two-parameter family of Kuranishi structures and multisections
in a way similar to that used in Section 11. Then we use it to construct pseudoiso-
topy of pseudoisotopies in the same way as (11.5). �
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By Lemma 14.1 and Theorem 14.1, we can extend the pseudoisotopy modulo
TEi (Λ(L), 〈 · 〉, {m

s,i
k,β }, {d

s,i
k,β }) to a pseudoisotopy. The proof of Theorem 14.2 is

complete. �

The uniqueness part of Theorem 1.1 follows from Theorems 14.2, 8.1, and 8.2.
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