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Abstract Malliavin calculus is applicable to functionals of stable processes by using
subordination.WeprepareMalliavin calculus for stochastic differential equationsdriven
by Brownian motions with deterministic time change, and the conditions that the exis-
tence and the regularity of the densities inherit from those of the densities of conditional
probabilities. By using these, we prove regularity properties of the solutions of equations
driven by subordinated Brownian motions. In [4] a similar problem is considered. In this
article we consider more general cases. We also consider equations driven by rotation-
invariant stable processes. We prove that the ellipticity of the equations implies the exis-
tence of the density of the solution, and we also prove that the regularity of the coeffi-
cients implies the regularity of the densities in the case when the equations are driven
by one rotation-invariant stable process.

1. Introduction

Malliavin calculus is well known as a method to know regularity properties of
distributions of solutions of stochastic differential equations driven by Brownian
motions, and we can see that the densities of the solution have the regularity
according to the smoothness of the coefficients of equations (see [3], [8]). There
is a natural interest in applying Malliavin calculus the equation driven by stable
processes. Consider the following N -dimensional stochastic differential equation:{

dX(t) =
∑r

k=1 σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

where {Zk } are independent rotation-invariant stable processes, and the coef-
ficients are Lipschitz continuous. The indexes of the stable processes may be
different. The definition of the stochastic integral can be found in [2], and the
precise idea of the definition is given in Section 5. If the equation has some
conditions about ellipticity, it seems that the distribution of the solution has its
density function at each time.
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On the other hand, there is Malliavin calculus for Lévy processes (see [6]).
The method works in mathematical finance very well. However, the theory is not
applicable to the problem concerned. So, another idea is needed for the problem
that concerns us here.

By using subordination, the classical formulation of Malliavin calculus is appli-
cable to functionals of rotation-invariant stable processes. This method enables
us to prove that the ellipticity of the stochastic differential equation driven by
subordinated Brownian motions implies existence of the density of the solution.
We can find Malliavin calculus for equations driven by subordinated Brownian
motions in [4]. In [4] the case when the number of subordinators is one and the
subordinator is an increasing Lévy process with some condition is considered.

In this article we consider the case including that the number of subordina-
tors is more than one and the subordinators are not necessarily increasing Lévy
processes. We prove our theorems in a way similar to [8] and show regular-
ity properties of distributions of solutions of equations driven by subordinated
Brownian motions. The proof consists of two parts. One is Malliavin calculus for
stochastic differential equations driven by Brownian motions with deterministic
time change, and the other is the inheritance of the regularity of densities from
those of conditional probabilities. That is because the discussion is simplified by
considering the equation under the conditional probability given by the σ-field
generated by the subordinators. So we make two steps to prove it. In the last
section, we consider the case of stochastic differential equations driven by stable
processes. We show that the ellipticity of equations driven by stable processes
implies existence of the density of the solution. Moreover, in the case r = 1, we
can also prove the regularity of the density according to the regularity of the
coefficients.

In Section 2, we prepare the techniques for calculating the integrals with
deterministic time change. The techniques enable us to use the deduction simi-
lar to the standard stochastic calculus. In Section 3, we discuss Malliavin calculus
for stochastic differential equations with deterministic time change. In Section 4,
we discuss the inheritance of regularity of densities from those of conditional
probabilities. That is the reason why we consider stochastic differential equations
with deterministic time change. In Section 5, we discuss the general results from
Sections 3 and 4. In Section 6, we discuss the most interesting example: stochas-
tic differential equations driven by rotation-invariant stable processes.

In the proofs in the article, we use {Cj ; j = 0,1,2, . . .} as positive constants
and the dependent parameters are described like C0(p).

2. Malliavin calculus for the functional of
Brownian motions with deterministic time change

We fix a positive number T and let φ be a right-continuous increasing function
on [0, T ] with φ(0) = 0. We define the inverse function φ−1 by
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φ−1(s) :=

{
inf{t;φ(t) > s} if s ∈ [0, φ(T )),

T if s = φ(T ).

Set

W := C
(
[0, φ(T )];Rd

)
,

H :=
{
h ∈ C

(
[0, φ(T )];Rd

)
; h is absolutely continuous and

ḣ ∈ L2
(
[0, φ(T )];Rd

)}
,

and let μ be the Wiener measure on W . Then the triplet (W,H,μ) is an abstract
Wiener space. Hence, we can apply Malliavin calculus to the functionals on
(W,H,μ). Let (B(t)) be the canonical d-dimensional Brownian motion associated
to (W,H,μ), let Ft be the σ-field generated by (B(s); 0 ≤ s ≤ φ(t)), let D be the
H-derivative operator, and let Dh be the differential for direction h for each
h ∈ H . Then, for all h ∈ H we have

DhB
(
φ(t)
)

= h
(
φ(t)
)
, t ∈ [0, T ],

Dh

∫ T

0

f(t)dB
(
φ(t)
)

=
∫ T

0

f(t)dh
(
φ(t)
)
, f ∈ C([0, T ]).

Here the integral of the left-hand side is in the sense of stochastic integrals by
(Ft)-martingales, and that of the right-hand side is in the sense of Stieltjes
integrals. More generally, we have an analogue of [8, Proposition 6.1]. We need
some lemmas and some notation before we state the analogue.

LEMMA 2.1

Let f be a right-continuous function with left limits. Then, we have∫ T

0

f(t−)dφ(t) =
∫ φ(T )

0

f
(
φ−1(s)−

)
ds.

Proof
Since φ is a function of bounded variation, the contribution of the small jumps
for the integrals are sufficiently small. So we assume that the number of the
jumps of φ is finite. Let {ξi; i = 1,2, . . . ,N − 1} be the discontinuous points of
φ, ξ0 := 0, ξN := T , and let {ti,j ; j = 0,1,2, . . . ,Ni} be a partition of [ξi−1, ξi] for
i = 1,2, . . . ,N . We denote maxi,j(ti,j − ti,j−1) by Δ. Then,∫ T

0

f(t−)dφ(t)

= lim
Δ→0

N∑
i=1

[Ni −1∑
j=1

f(ti,j−1−)
{
φ(ti,j) − φ(ti,j−1)

}
+ f(ti,Ni −1−)

{
φ(ti,Ni −) − φ(ti,Ni −1)

}
+ f(ti,Ni −)

{
φ(ti,Ni) − φ(ti,Ni −)

}]
.
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If we set si,j := φ(ti,j), then φ−1(si,j) = ti,j for j = 0,1,2, . . . ,Ni − 1. Therefore,∫ T

0

f(t−)dφ(t)

= lim
Δ→0

N∑
i=1

[Ni −1∑
j=1

f
(
φ−1(si,j−1)−

)
{si,j − si,j−1}

+ f
(
φ−1(si,Ni −1)−

){
φ(ti,Ni −) − si,Ni −1

}
+ f
(
φ−1(si,Ni)−

){
φ(ti,Ni) − φ(ti,Ni −)

}]

=
N∑

i=1

∫ φ(ξi −)

φ(ξi−1)

f
(
φ−1(s)−

)
ds +

N∑
i=1

f
(
φ−1(si,Ni)−

){
φ(ξi) − φ(ξi−)

}
.

Since φ−1(s) is a constant on s ∈ [φ(ξi−), φ(ξi)],

f
(
φ−1(si,Ni)−

){
φ(ξi) − φ(ξi−)

}
=
∫ φ(ξi)

φ(ξi −)

f
(
φ−1(s)−

)
ds, i = 1,2, . . . ,N.

Thus, we have ∫ T

0

f(t−)dφ(t) =
∫ φ(T )

0

f
(
φ−1(s)−

)
ds.

�

Similarly, we also have the following lemma.

LEMMA 2.2

Let Ψ be an (Ft)-adapted right-continuous process with left limits satisfying

E
[∫ T

0

|Ψ(s−)|2 dφ(s)
]

< ∞.

Then, we have∫ T

0

Ψ(t−)dB
(
φ(t)
)

=
∫ φ(T )

0

Ψ
(
φ−1(s)−

)
dB(s) almost surely.

Here the integral of the left-hand side is in the sense of stochastic integrals by
(Ft)-martingales and that of the right-hand side is in the sense of stochastic
integrals by (FB

t )-martingales, where (FB
t ) is the σ-field generated by (Bs; 0 ≤

s ≤ t).

Let A(t) be [B(φ(·)),B(φ(·))](t) where the definition of [·, ·] is as in [7, Chapter
II, Section 6]. We show the following lemma, which is a version of Burkholder’s
inequality (see [1, Chapter VII, Theorem 92]).

LEMMA 2.3

Let p be a positive number, and let Ψ be an (Ft)-adapted right-continuous process
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with left limits satisfying

E
[∫ T

0

|Ψ(s−)|2 dφ(s)
]

< ∞.

Then, we have [(∫ T

0

Ψ(s−)2 dA(s)
)p/2]

≤ C0(p)E
[

sup
0≤t≤T

∣∣∣∫ t

0

Ψ(s−)dB
(
φ(s)
)∣∣∣p]

≤ C1(p)E
[(∫ T

0

Ψ(s−)2 dφ(s)
)p/2]

.

Proof
Theorem 92 of Chapter VII of [1] implies the first estimate. Hence, we prove the
second estimate. Let

M(t) :=
∫ t

0

Ψ
(
φ−1(s)−

)
dB(s).

Then M is a continuous martingale. By Burkholder’s inequality, Lemma 2.1,
and Lemma 2.2, with a constant C(p) we have

E
[

sup
0≤t≤T

∣∣∣∫ t

0

Ψ(s−)dB
(
φ(s)
)∣∣∣p] = E

[
sup

0≤t≤T

∣∣M(φ(t)
)∣∣p]

≤ E
[

sup
0≤t≤φ(T )

|M(t)|p
]

≤ C(p)E
[

〈M 〉
(
φ(T )
)p/2]

= C(p)E
[(∫ φ(T )

0

Ψ
(
φ−1(s)−

)2
ds
)p/2]

= C(p)E
[(∫ T

0

Ψ(s−)2 dφ(s)
)p/2]

.

�

The next lemma is a version of Gronwall’s inequality.

LEMMA 2.4

Let α,β be positive constants, and let f be a right-continuous positive function
on [0, T ] with left limits. If

f(t) ≤ α + β

∫ t

0

f(u−)dφ(u), t ∈ [0, T ],

then

f(t) ≤ αeβφ(t), t ∈ [0, T ].
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Proof
Since φ−1(φ(t)) = t, it follows from Lemma 2.1 that

f
(
φ−1(φ(t))

)
≤ α + β

∫ φ(t)

0

f
(
φ−1(u)

)
du, t ∈ [0, T ].

So we have

f
(
φ−1(φ(t−))

)
≤ α + β

∫ φ(t−)

0

f
(
φ−1(u)

)
du, t ∈ [0, T ].

If s ∈ [φ(t−), φ(t)], φ−1(s) = φ−1(φ(t−)). Hence we have

f
(
φ−1(s)

)
≤ α + β

∫ s

0

f
(
φ−1(u)

)
du, s ∈ [0, φ(T )].

Applying Gronwall’s inequality to f ◦ φ−1, we have that

f
(
φ−1(s)

)
≤ αeβs, s ∈ [0, φ(T )].

Therefore, we have the conclusion by letting s = φ(t) and the equality φ−1(φ(t)) =
t. �

Next, we prepare some notation. Let p > 1, let n be a positive integer, let K be a
Hilbert space, let Wn,p(K) be the Sobolev space of K-valued functions associated
to H-derivative with indexes n and p, and let L n

2 (H;K) be the total set of K-

valued n-linear operators of Hilbert-Schmidt class on

n︷ ︸︸ ︷
H × · · · × H . Now we give

two classes of stochastic processes. We define Ln,p(dB(φ);K) by the total set of
(Ft)-predictable (Rd ⊗ K)-valued functions α satisfying α(t) ∈ Wn,p(Rd ⊗ K)
for all t ∈ [0, T ] and

‖α‖Ln,p(dB(φ);K) := E
[ n∑

k=0

{∫ T

0

|Dkα(t−)|2L k
2 (H;Rd ⊗K) dφ(t)

}p/2]1/p

< ∞.

Next, we define Ln,p(dφ;K) by the total set of (Ft)-predictable K-valued func-
tions β satisfying β(t) ∈ Wn,p(K) for all t ∈ [0, T ] and

‖β‖Ln,p(dφ;K) :=
n∑

k=0

∫ T

0

E[|Dkβ(t−)|p
L k

2 (H;K)
]1/p dφ(t) < ∞.

PROPOSITION 2.1

Let α = (α1, . . . , αd) ∈ Ln,p(dB(φ);K), β ∈ Ln,p(dφ;K), and γ = (γ(t); 0 ≤ t ≤
T ) be (Ft)-adapted K-valued functions. We assume that γ(t) ∈ Wn,p(K) for all
t ∈ [0, T ], and Dkγ is an (Ft)-adapted L k

2 (H;K)-valued function such that
n∑

k=0

E
[

sup
0≤t≤T

|Dkγ(t)|p
L k

2 (H;K)

]
< ∞.

Define Φ by

Φ(t) :=
∫ t

0

α(s−)dB
(
φ(s)
)
+
∫ t

0

β(s−)dφ(s) + γ(t).
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Then, Φ(t) ∈ Wn,p(K) for all t ∈ [0, T ], DkΦ are (Ft)-adapted L k
2 (H;K)-valued

processes for k = 1,2, . . . , n, and there exists a constant C such that

E
[

sup
0≤t≤T

|DkΦ(t)|pLk
2 (H;K)

]1/p

≤ C
(

‖α‖ Ln,p(dB(φ);K) + ‖β‖ Ln,p(dφ;K) +
n∑

k=0

E
[

sup
0≤t≤T

|Dkγ(t)|p
L k

2 (H;K)

])
.

Furthermore, DΦ(t) is given by

DΦ(t)[h] =
∫ t

0

Dα(s−)[h]dB
(
φ(s)
)
+
∫ t

0

α(s−)dh
(
φ(s)
)

+
∫ t

0

Dβ(s−)[h]dφ(s) + Dγ(t)[h], h ∈ H.

Here the equality is in the sense of elements of Lp(H ⊗ K). Therefore, if we
denote one of the complete orthonormal systems of H by {hλ}, then

DΦ(t) =
∫ t

0

Dα(s−)dB
(
φ(s)
)
+
∑

λ

hλ ⊗
∫ φ(t)

0

α
(
φ−1(s)−

)
ḣλ(s)ds

+
∫ t

0

Dβ(s−)dφ(s) + Dγ(t).

Proof
To prove the first assertion, we use induction on n. For n = 0, by Lemma 2.3 we
have

E
[

sup
0≤t≤T

∣∣∣∫ t

0

α(s−)dB
(
φ(s)
)∣∣∣p

K

]
≤ C1(p)E

[{∫ T

0

|α(s−)|2Rd ⊗K dφ(s)
}p/2]

= ‖α‖p
L0,p(dB(φ);K).

The other parts of the estimate are obtained easily. So we have the first assertion
for n = 0.

We assume the result for n − 1. We show the estimate for n. But the part of
the integral with respect to dφ follows similarly, and clearly the part of γ follows.
Hence, we check the part of the stochastic integral. To simplify the notation, let
d = 1. We show it in the case when α is a step function such as

α(t) = α(tj) for t ∈ [tj , tj + 1),

where 0 = t0 < t1 < · · · < tN = T . The general case is obtained by taking the
limit. Note that α is left-continuous.

In this case, the stochastic integral is expressed as∫ T

0

α(t)dB
(
φ(t)
)

=
N −1∑
j=0

α(tj)
{
B
(
φ(tj+1)

)
− B
(
φ(tj)
)}

.
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By the argument at the beginning of this section, for h ∈ H ,

Dh

∫ T

0

α(t)dB
(
φ(t)
)

=
N −1∑
j=0

Dhα(tj)
{
B
(
φ(tj+1)

)
− B
(
φ(tj)
)}

+
N −1∑
j=0

α(tj)
{
h
(
φ(tj+1)

)
− h
(
φ(tj)
)}

=
∫ T

0

Dhα(t)dB
(
φ(t)
)
+
∫ T

0

α(t)dh
(
φ(t)
)
.

Let Iα[h] :=
∫ T

0
α(t)dh(φ(t)). Now we show that Iα ∈ Wn,p(H ⊗ K). By dis-

cussing it similarly to the proof of Lemma 2.1, we have∫ T

0

α(t)dh
(
φ(t)
)

=
∫ φ(T )

0

α
(
φ−1(s)

)
dh(s).

Hence, we can express Iα as

Iα =
∑

λ

hλ ⊗
∫ φ(T )

0

α
(
φ−1(s)

)
ḣλ(s)ds.

Thus,

DkIα =
∑

λ

hλ ⊗
∫ φ(T )

0

Dkα
(
φ−1(s)

)
ḣλ(s)ds,

and by Lemma 2.1,

|DkIα|2Lk
2 (H;H⊗K) =

∑
λ

∣∣∣∫ φ(T )

0

Dkα
(
φ−1(s)

)
ḣλ(s)ds

∣∣∣2
L k

2 (H;K)

=
∫ φ(T )

0

∣∣Dkα
(
φ−1(s)

)∣∣2
L k

2 (H;K)
ds

=
∫ T

0

|Dkα(t)|2L k
2 (H;K) dφ(t).

Therefore, we have

Iα ∈ Wn,p(H ⊗ K),

‖DkIα‖p ≤ ‖α‖ Lk,p(dB(φ);K),

and

D
(∫ T

0

α(t)dB(φ(t))
)
[h]

(2.1)

=
∫ T

0

Dα(t)[h]dB
(
φ(t)
)
+
∫ T

0

α(t)dh
(
φ(t)
)
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in the sense of elements of Lp(H ⊗ K). It is easy to see that equation (2.1) also
holds by replacing T with t ∈ [0, T ]. Hence, we have

DΦ(t)[h] =
∫ t

0

Dα(s−)[h]dB
(
φ(s)
)
+
∫ t

0

α(s−)dh
(
φ(s)
)

+
∫ t

0

Dβ(s−)[h]dφ(s) + Dγ(t)[h], h ∈ H,

in the sense of elements of Lp(H ⊗ K), and the second assertion is obtained.
Now we note that DΦ satisfies the assumption of n − 1. Indeed, the third term
satisfies the assumption of γ for n − 1. Therefore, by the assumption of induction,
for k = 1,2, . . . , n − 1, we have

E
[

sup
0≤t≤T

|DkDΦ(t)|L k
2 (H;H⊗K)

]1/p

≤ C2(p)
{

‖Dα‖ Ln−1,p(dB(φ);H⊗K) + ‖Dβ‖ Ln−1,p(dB(φ);H⊗K)

+ E
[

sup
0≤t≤T

|DkIα(t)|p
L k

2 (H;H⊗K)

]1/p

+ E
[

sup
0≤t≤T

|DkDγ(t)|p
L k

2 (H;H⊗K)

]1/p}
≤ 2C2(p)

{
‖α‖ Ln,p(dB(φ);K)

+ ‖β‖ Ln,p(dB(φ);K) + E
[

sup
0≤t≤T

|Dk+1γ(t)|p
L k+1

2 (H;K)

]1/p}
.

Thus, we have the conclusion for n. �

3. Malliavin calculus for stochastic
differential equations with deterministic time change

We fix T > 0. Let r be a positive integer, let d1, . . . , dr be positive integers,
and let φ1, φ2, . . . , φr be right-continuous increasing functions on [0, T ] starting
at zero. Set

Wk := C
(
[0, φk(T )] → Rdk

)
,

Hk :=
{
h ∈ C

(
[0, φk(T )] → Rdk

)
; h is absolutely continuous and

ḣ ∈ L2
(
[0, φk(T )] → Rdk

)}
,

and let μk be the Wiener measure on Wk for k = 1,2, . . . , r. We define the
probability space (W,P ) by

W := W1 × W2 × · · · × Wr,

P := μ1 ⊗ μ2 ⊗ · · · ⊗ μr.
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If we set

H := H1 ⊗ H2 ⊗ · · · ⊗ Hr,

then (W,H,P ) is an abstract Wiener space. Let (Bk(t)) be the canonical dk-
dimensional Brownian motion associated to (Wk,Hk, μk) for k = 1,2, . . . , r. Clear-
ly, B1,B2, . . . ,Br are independent under P .

Next, we consider stochastic differential equations with deterministic time
change. Let Zk(t) := Bk(φk(t)) for t ∈ [0, T ] and k = 1,2, . . . , r, and let (Ft)
be the filtration generated by (Zk(s); 0 ≤ s ≤ t, k = 1,2, . . . , r). Then Zk is a
square-integrable (Ft)-martingale for all k = 1,2, . . . , r. We consider the next
N -dimensional stochastic differential equation:

(3.1)

{
dX(t) =

∑r
k=1 σk

(
t,X(t−)

)
dZk(t) + b

(
t,X(t)

)
dt,

X(0) = x0,

where σk is an Rdk ⊗ RN -valued continuous function on [0, T ] × RN for k =
1,2, . . . , r, b is also an RN -valued continuous function on [0, T ] × RN , and x0 ∈
RN . We assume that there exists a positive constant K satisfying

max
k

|σk(t, x) − σk(t, y)| + |b(t, x) − b(t, y)| ≤ K|x − y|, x, y ∈ RN , t ∈ [0, T ],

max
k

|σk(t, x)| + |b(t, x)| ≤ K(1 + |x|), x ∈ RN , t ∈ [0, T ].

Then, we have the following theorem.

THEOREM 3.1

Equation (3.1) has the unique (Ft)-adapted solution X = (X(t)) satisfying that,
for all p > 1,

E
[

sup
0≤t≤T

|X(t)|p
]

≤ x0 exp
{

M
(
T +

r∑
k=1

φk(T )
)}

,

where M is a constant depending on r, p, and K.

Proof
It is enough to show the case p ≥ 2. We use Picard’s successive approximation.
Define (Ft)-adapted right-continuous processes {Xn} with left limits by

X0(t) := x0,

Xn+1(t) := x0 +
∫ t

0

r∑
k=1

σk

(
s,Xn(s−)

)
dZk(s) +

∫ t

0

b
(
s,Xn(s)

)
ds.

Then, the discontinuous points of Xn correspond with the discontinuous points of
φ for all n almost surely. Now we show that there exists a constant M depending
on p and K such that

(3.2) E
[

sup
0≤s≤t

|Xn+1(s) − Xn(s)|p
]1/p

≤ x0

2n
exp
{

M
(
t +

r∑
k=1

φk(t)
)}
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by induction on n. We determine M later in this proof. It is easy to see that
the inequality (3.2) holds for efficiently large M when n = 1. We assume the
inequality (3.2) for n − 1. By Lemma 2.3,

E
[

sup
0≤s≤t

|Xn+1(s) − Xn(s)|p
]1/p

≤
r∑

k=1

E
[

sup
0≤s≤t

∣∣∣∫ s

0

(
σk(u,Xn(u−)) − σk(u,Xn−1(u−))

)
dZk(u)

∣∣∣p]1/p

+ E
[

sup
0≤s≤t

∣∣∣∫ s

0

(
b(u,Xn(u)) − b(u,Xn−1(u))

)
du
∣∣∣p]1/p

≤ C3(p)
{ r∑

k=1

E
[(∫ t

0

∣∣σk

(
u,Xn(u−)

)
− σk

(
u,Xn−1(u−)

)∣∣2 dφk(u)
)p/2]1/p

+ E
[∣∣∣∫ t

0

(
b(u,Xn(u)) − b(u,Xn−1(u))

)
du
∣∣∣p]1/p}

≤ C4(p,K)
{ r∑

k=1

E
[(∫ t

0

|Xn(u−) − Xn−1(u−)|2 dφk(u)
)p/2]1/p

+ E
[(∫ t

0

|Xn(u) − Xn−1(u)| du
)p]1/p}

≤ C4(p,K)
{ r∑

k=1

(∫ t

0

E[|Xn(u−) − Xn−1(u−)|p]2/p dφk(u)
)1/2

+
∫ t

0

E[|Xn(u) − Xn−1(u)|p]1/p du
}

.

By the assumption of induction, we have

E
[

sup
0≤s≤t

|Xn+1(s) − Xn(s)|p
]1/p

≤ x0

2n−1
C4(p,K)

{ r∑
k=1

(∫ t

0

exp
{

2M
(
u +

r∑
k=1

φk(u−)
)}

dφk(u)
)1/2

+
∫ t

0

exp
{

M
(
u +

r∑
l=1

φl(u)
)}

du

}

≤ x0

2n−1
C4(p,K)

[ r∑
k=1

exp
{

M
(
t +
∑
l �=k

φl(t−)
)}

×
(∫ t

0

exp
(
2Mφk(u−)

)
dφk(u)

)1/2

+ exp
(
M

r∑
l=1

φl(t)
)∫ t

0

eMu du
]
.
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Since φk(φ−1
k (s)−) ≤ s, by Lemma 2.1 we have∫ t

0

exp
(
2Mφk(u−)

)
dφk(u) =

∫ φk(t)

0

exp
(
2Mφk(φ−1

k (s)−)
)
ds

≤
∫ φk(t)

0

exp(2Ms)ds ≤ 1
2M

exp
(
2Mφk(t)

)
.

Therefore,

E
[

sup
0≤s≤t

|Xn+1(s) − Xn(s)|p
]1/p

≤ x0

2n−1
C4(p,K)

[ r∑
k=1

exp
{

M
(
t +
∑
l �=k

φl(t−)
)} 1√

2M
eMφk(t)

+ exp
(
M

r∑
l=1

φl(t)
) 1

M
eMt
]

≤ x0

2n−1
C4(p,K)

{ r√
2M

+
1
M

}
exp
{
M
(
t +

r∑
l=1

φl(t)
)}

.

So, if we choose M sufficiently large such that( r√
2M

+
1
M

)
C4(p,K) ≤ 1

2
,

then the inequality (3.2) holds for n + 1. Therefore, we complete the induction.
Let n and m be positive integers satisfying n > m. Then, by inequality (3.2),

E
[

sup
0≤s≤t

|Xn(s) − Xm(s)|p
]1/p

≤ x0

2m
exp
{

M
(
t +

r∑
k=1

φk(t)
)}

.

This inequality implies that {Xn} is a Cauchy sequence. Hence, there exists
an (Ft)-adapted right-continuous process X with left limits satisfying the fact
that the discontinuous points of X correspond with the discontinuous points of
φ almost surely, and

lim
n→∞

E
[

sup
0≤s≤t

|X(s) − Xn(s)|p
]1/p

= 0.

We get to know that X satisfies equation (3.1) by using a similar discussion for
the part of the stochastic integral. Thus, we have existence, and the estimate
follows easily.

To prove the uniqueness, let both X and Y be solutions of equation (3.1).
Then, by a discussion similar to that above, we have

E
[

sup
0≤s≤t

|X(s) − Y (s)|2
]

≤ C5(p, r,K)
{ r∑

k=1

∫ t

0

E
[

|X(s−) − Y (s−)|2
]
dφk(s)
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+
∫ t

0

E
[

|X(s) − Y (s)|2
]
ds
}

≤ C5(p, r,K)
∫ t

0

E
[

sup
0≤u≤s

|X(u−) − Y (u−)|2
]
d
(
s +

r∑
k=1

φk(s)
)
.

Therefore, by Lemma 2.4, we have

E
[

sup
0≤t≤T

|X(t) − Y (t)|2
]

= 0.

�

Now we apply Malliavin calculus to the solution X = (X(t)) of equation (3.1).

THEOREM 3.2

We assume that σk ∈ C0,m([0, T ] × RN ;Rdk ⊗ RN ) and ∇σk ∈ C0,m−1
b ([0, T ] ×

RN ;RN ⊗ Rdk ⊗ RN ) for k = 1,2, . . . , r, b ∈ C0,m([0, T ] × RN ;RN ), and ∇b ∈
C0,m−1

b ([0, T ] × RN ;RN ⊗ RN ). Then we have X(t) ∈ Wm,p(RN ) for t ∈ [0, T ],
and there exists a constant M depending on r, p,m and the bounds of the spacial
derivatives of σk and b up to order m such that

‖X(t)‖m,p ≤ exp
{

M
(
t +

r∑
k=1

φk(t)
)}

, t ∈ [0, T ].

Proof
It is sufficient to show the case p ≥ 2, so let p ≥ 2, and fix p. We define Xn as
in the proof of Theorem 3.1. By the proof of Theorem 3.1, we have that Xn(t)
converges to X(t) in Lp for t ∈ [0, T ]. We show that Xn(t) is in Wm,p for t ∈ [0, T ]
and all n and that there exists a constant M depending on p,m and the bounds
of the spatial derivatives of σk and b up to order m such that for n = 1,2, . . . ,

j = 1,2, . . . ,m,

(3.3) E
[

sup
0≤s≤t

|DjXn(s)|p
L j

2 (H;RN )

]1/p

≤ exp
{

M
(
t +

r∑
k=1

φk(t)
)}

.

We use induction on (n, j). By the proof of Theorem 3.1, we know that Xn(t) is
in Lp for t ∈ [0, T ] and all n, and there exists a proper M such that (3.3) holds for
j = 0. Clearly X0(t) is in Wm,p for t ∈ [0, T ], and there exists a proper M such
that (3.3) holds for n = 0. Let j0 ≤ m. As the assumption of the induction we
assume that Xn(t) is in W j,p for “t ∈ [0, T ], all n, and j = 1,2, . . . , j0 − 1” and for
“t ∈ [0, T ], n = 1,2, . . . , n0, and j = 1,2, . . . , j0”, and that there exists a constant
M satisfying (3.3) for “all n and j = 1,2, . . . , j0 − 1” and for “n = 1,2, . . . , n0

and j = 1,2, . . . , j0”. Now we show that Xn0+1(t) is in W j0,p for t ∈ [0, T ] and
that there exists a proper constant M satisfying (3.3) for n0 + 1 and j0. By
Proposition 2.1, we can express DXn0+1 explicitly as

DXn0+1(t) =
r∑

k=1

∫ t

0

∇σk

(
s,Xn0(s−)

)
DXn0(s−)dZk(s)
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+
∫ t

0

∇b
(
s,Xn0(s)

)
DXn0(s)ds

+
∑

λ

r∑
k=1

hλ
k ⊗
∫ φk(t)

0

σk

(
φ−1

k (s),Xn0(φ
−1
k (s))

)
ḣλ

k(s)ds,

where {hλ = (hλ
1 , hλ

2 , . . . , hλ
r )}λ is one of the complete orthonormal normal sys-

tems of H = H1 ⊗ H2 ⊗ · · · ⊗ Hr. Repeating this procedure, we have

Dj0Xn0+1(t)

=
r∑

k=1

∫ t

0

{
∇σk

(
s,Xn0(s−)

)
Dj0Xn0(s−)

+
j0∑

l=1

Ak
l

(
s,Xn0(s−)

)
Qk

l

(
DXn0(s−), . . . ,Dj0−1Xn0(s−)

)}
dZk(s)

+
∫ t

0

{
∇bk

(
s,Xn0(s)

)
Dj0Xn0(s)(3.4)

+
j0∑

l=1

Ãk
l

(
s,Xn0(s)

)
Q̃k

l

(
DXn0(s), . . . ,D

j0−1Xn0(s)
)}

ds

+
∑

λ

r∑
k=1

hλ
k ⊗
∫ φk(t)

0

j0−1∑
l=0

Âk
l

(
φ−1

k (s),Xn0(φ
−1
k (s))

)
× Q̂k

l

(
DXn0(φ

−1
k (s)), . . . ,Dj0−1Xn0(φ

−1
k (s))

)
ḣλ

k(s)ds,

where Ak
l , Ãk

l ∈ C1
b ([0, T ] × RN ; (RN )⊗l ⊗ Rdk ⊗ RN ), Âk

l ∈ C1([0, T ] × RN ;
(RN )⊗l ⊗ Rdk ⊗ RN ), satisfying

max
l,k

|Âk
l (t, x)| ≤ C6({ ‖ ∇lσk ‖ ∞ }1≤l≤m,1≤k≤r)(1 + |x|), x ∈ RN , t ∈ [0, T ],

and Qk
l , Q̃k

l , Q̂k
l are (RN )⊗l ⊗ Hj0 -valued functions whose components are poly-

nomials of order l. Therefore, by Lemma 2.3, it follows that

E
[

sup
0≤s≤t

|Dj0Xn0+1(s)|p
L

j0
2 (H;RN )

]1/p

≤ C7(p)E
[( r∑

k=1

∫ t

0

∣∣∣∇σk

(
s,Xn0(s)

)
Dj0Xn0(s)

+
j0∑

l=1

Ak
l

(
s,Xn0(s)

)

× Qk
l

(
DXn0(s), . . . ,D

j0−1Xn0(s)
)∣∣∣2

L
j0
2 (H;RN )

dφk(s)
)p/2]1/p

+
∫ t

0

E
[∣∣∣∇bk

(
s,Xn0(s)

)
Dj0Xn0(s)
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+
j0∑

l=1

Ãk
l

(
s,Xn0(s)

)
Q̃k

l

(
DXn0(s), . . . ,D

j0−1Xn0(s)
)∣∣∣p

L
j0
2 (H;RN )

]1/p

ds

+
r∑

k=1

E
[(∫ φk(t)

0

∣∣∣j0−1∑
l=0

Âk
l

(
φ−1

k (s),Xn0(φ
−1
k (s))

)

× Q̂k
l

(
DXn0(φ

−1
k (s)), . . . ,Dj0−1Xn0(φ

−1
k (s))

)∣∣∣2
L

j0
2 (H;RN )

ds
)p/2]1/p

.

By Lemma 2.1, the last term is equal to
r∑

k=1

E
[(∫ t

0

∣∣∣j0−1∑
l=0

Âk
l

(
s,Xn0(s−)

)

× Q̂k
l

(
DXn0(s−), . . . ,Dj0−1Xn0(s−)

)∣∣∣2
L

j0
2 (H;RN )

dφk(s)
)p/2]1/p

.

On the other hand, the induction assumptions tell us that

E
[

sup
0≤s≤t

|DjXn0(s)|p
L j

2 (H;RN )

]1/p

≤ C8

(
m,p,
{

‖ ∇lσk ‖ ∞
}

1≤l≤m,1≤k≤r
,
{

‖∇lb‖ ∞
}

1≤l≤m

)
× exp

{
C8

(
m,p,
{

‖ ∇lσk ‖ ∞
}

1≤l≤m,1≤k≤r
,
{

‖∇lb‖ ∞
}

1≤l≤m

)
×
(
t +

r∑
k=1

φk(t)
)}

, j = 1,2, . . . , j0.

Hence, by Hölder’s inequality, we have

E
[∣∣Ak

l

(
s,Xn0(s)

)
Qk

l

(
DXn0(s), . . . ,D

j0−1Xn0(s)
)∣∣p

L
j0
2 (H;RN )

]
≤ C9

(
m,p,
{

‖ ∇lσk ‖ ∞
}

1≤l≤m,1≤k≤r
,
{

‖∇lb‖ ∞
}

1≤l≤m

)
× exp

{
C9

(
m,p,
{

‖ ∇lσk ‖ ∞
}

1≤l≤m,1≤k≤r
,
{

‖∇lb‖ ∞
}

1≤l≤m

)
×
(
t +

r∑
k=1

φk(t)
)}

.

The same estimates also hold for Ãk
l Q̃k

l and Âk
l Q̂k

l . Thus, we can make an
argument similar to the proof of Theorem 3.1, and by choosing M large enough
depending on r, p,m and the bounds of the spacial derivatives of σk and b up to
order m, we have Xn0+1(t) ∈ W j0,p and (3.3). Thus, we have

Xn(t) −→ X(t) in Lp, sup
n

‖Xn(t)‖m,p < ∞.

Therefore, by [5, Lemma 1.5.3], we have the conclusion. �

Next, we consider the relation between the ellipticity of equations and the non-
degeneracy of Malliavin covariance matrices.
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THEOREM 3.3

We assume that σk ∈ C0,1([0, T ] × RN ;Rdk ⊗ RN ) and ∇σk is bounded for
k = 1,2, . . . , r, b ∈ C0,1([0, T ] × RN ;RN ), ∇b is bounded, and that there exists
a positive constant ε such that

r∑
k=1

σk(0, x0)tσk(0, x0) ≥ ε.

Then Malliavin covariance matrix Δ(t) =
(
(DXi(t),DXj(t))H∗

)
ij

is invertible,
and there exists a constant C = C(x0,N, p, ε, r, {‖∇σk ‖ ∞ }1≤k≤r, ‖∇b‖ ∞) satis-
fying, for all p > 1,

E
[
det
(
Δ(t)
)−p] ≤ C min

{
φi(t); i = 1,2, . . . , r

}−Np

(3.5)
× exp

[
C
(
t + max

{
φi(t); i = 1,2, . . . , r

})]
.

Moreover, if there exist a positive constant ε and t0 such that
r∑

k=1

σk(t, x)tσk(t, x) ≥ ε, t ∈ [0, t0], x ∈ RN ,

then we can choose a constant C = C(t0,N, p, ε, r, {‖∇σk ‖ ∞ }1≤k≤r, ‖∇b‖ ∞) sat-
isfying (3.5).

Proof
Let

Ak(t) :=
[
Bk

(
φk(·)
)
,Bk

(
φk(·)
)]

(t), t ∈ [0, T ], k = 1,2, . . . , r.

We define two (N × N )-matrix-valued processes J1 and J2, respectively, by the
solutions of the following stochastic differential equations:{

dJ1(t) =
∑r

k=1 ∇σk(t,X(t−))J1(t−)dZk(t) + ∇b(t,X(t−))J1(t−)dt,

J1(0) = I,⎧⎪⎪⎨
⎪⎪⎩

dJ2(t) = −
∑r

k=1 J2(t−)∇σk(t,X(t−))dZk(t) − J2(t−)∇b(t,X(t−))dt

+
∑r

k=1 J2(t−)∇σk(t,X(t−))∇σk(t,X(t−))dAk(t),

J2(0) = I.

By [7, Chapter II, Section 6, Corollary 2, Theorem 29], J1(t)J2(t) = I for all
t ∈ [0, T ]. Therefore, it follows that J1(t) = J2(t)−1. By [7, Chapter II, Section
6, Corollary 2, Theorem 29] again, we have

J2(t)DX(t)[h] =
r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
dhk

(
φk(s)

)
,

where h = (h1, h2, . . . , hr) ∈ H . From Lemma 2.1 we can express it as

J2(t)DX(t)[h] =
r∑

k=1

∫ φk(t)

0

J2

(
φ−1

k (u)−
)
σk

(
φ−1

k (u),X(φ−1
k (u)−)

)
ḣk(u)du.
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Hence, if we denote one of the complete orthonormal normal systems of H by
{hλ},

Δ(t) = J1(t)
∑

λ

r∑
k=1

∫ φk(t)

0

J2

(
φ−1

k (u)−
)
σk

(
φ−1

k (u),X(φ−1
k (u)−)

)
ḣλ

k(u)du

×
∫ φk(t)

0

t
[
J2

(
φ−1

k (u)−
)
σk

(
φ−1

k (u),X(φ−1
k (u)−)

)]
ḣλ

k(u)du tJ1(t)

= J1(t)
r∑

k=1

∫ φk(t)

0

J2

(
φ−1

k (u)−
)
σk

(
φ−1

k (u),X(φ−1
k (u)−)

)
× tσk

(
φ−1

k (u),X(φ−1
k (u)−)

)
tJ2

(
φ−1

k (u)−
)
dutJ1(t)

= J1(t)
r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
× tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)tJ1(t).

Thus, we have

det
(
Δ(t)
)

= det
(
J1(t)
)2 det

( r∑
k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
(3.6)

× tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)
.

For the estimate of det(J1(t)), the following lemma holds.

LEMMA 3.1

We have

E
[∣∣det
(
J2(t)
)∣∣p] < C10

(
p,N, r,

{
‖∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)

× exp
[
C10

(
p,N, r,

{
‖∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)

×
(
t + max

{
φi(t); i = 1,2, . . . , r

})]
.

Proof
By Lemma 2.3, we can make a discussion similar to the proof of Theorem 3.1,
and we have

max
i,j

E
[

sup
0≤s≤t

∣∣(J2(s)
)
ij

∣∣p]1/p

≤ C11

(
p, r,
{

‖ ∇σk ‖ ∞
}

1≤k≤r
, ‖∇b‖ ∞

)
×
∫ t

0

max
i,j

E
[

sup
0≤u≤s

∣∣(J2(u)
)
ij

∣∣p]1/p

d
(
s +

r∑
k=1

φk(s)
)
.
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From Lemma 2.4 it follows that

max
i,j

E
[∣∣(J2(t)

)
ij

∣∣p]1/p ≤ C11

(
p, r,
{

‖∇σk ‖ ∞
}

1≤k≤r
, ‖∇b‖ ∞

)
× exp

[
C11

(
p, r,
{

‖∇σk ‖ ∞
}

1≤k≤r
, ‖∇b‖ ∞

)
×
(
t + max

{
φi(t); i = 1,2, . . . , r

})]
.

By Hölder’s inequality, we have

E
[∣∣det
(
J2(t)
)∣∣p]≤ N !max

i,j
E
[∣∣(J2(t)

)
ij

∣∣Np]1/(Np)

Therefore, we have the conclusion of Lemma 3.1. �

The lemma is sufficient for the estimate of the part det(J1(t)). So we estimate
the other part. Let ξ ∈ SN −1, where SN −1 is the (N − 1)-dimensional sphere
centered at zero. From the assumption of ellipticity and the compactness of
SN −1, we can choose n ∈ N, Gi : open sets in SN −1, and ki = 1,2, . . . , r, for
i = 1,2, . . . , n such that

n⋃
i=1

Gi = SN −1,

tξσki(0, x0)tσki(0, x0)ξ >
ε

2r
, ξ ∈ Gi, i = 1,2, . . . , n.

From continuity of {σk }, we can choose Ri > 0 and ti ∈ (0, T ] satisfying

tξσki(s,x)tσki(s,x)ξ >
ε

3r
, x ∈ B(x0,Ri), s ∈ [0, ti], ξ ∈ Gi,

for i = 1,2, . . . , n. Let R := mini Ri and t0 := mini ti. We define a stopping time
ζ by

ζ := inf
{
t ∈ [0, T ]; |X(t) − x0| > R or |J1(t) − I| > δ

}
∧ T,

where we choose δ ∈ (0, t0) to be so small that

tξJ2(s)σki(s,x)tσki(s,x)tJ2(s)ξ ≥ ε

4r
,

x ∈ B(x0,R), s ∈ [0, ζ), ξ ∈ Gi, i = 1,2, . . . , n.

To simplify the notation, we denote min{φi(t); i = 1,2, . . . , r} by η(t). We note
that η is also a right-continuous increasing function on [0, T ]. From Lemma 2.1
we have that for i = 1,2, . . . , n and ξ ∈ Gi,

tξ
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)
ξ

≥
∫ t∧ζ

0

tξJ2(s−)σki

(
s,X(s−)

)
tσki

(
s,X(s−)

)
tJ2(s−)ξ dφki(s)

≥ ε

4r
η(t ∧ ζ).
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Thus, we have

det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)
≥ 4−Nr−NεNη(t ∧ ζ)N .

Hence,

E
[
det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)−p]
≤ 4NprNpε−NpE[η(t ∧ ζ)−Np]

= 4NprNpε−NpE[η(t)−Np; ζ ≥ t] + 4NprNpε−NpE[η(ζ)−Np; ζ < t].

Since η(η−1(u)−) ≤ u and by Lemma 2.1, we have

η(ζ)−Np − η(t)−Np = Np

∫ η(t)

η(ζ)

u−Np−1 du

≤ Np

∫ η(t)

η(ζ)

η
(
η−1(u)−

)−Np−1
du

= Np

∫ t

ζ

η(s−)−Np−1 dη(s).

Hence, we have

E
[
det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)−p]
≤ 4NprNpε−Npη(t)−NpP (ζ ≥ t)

+ 4NprNpε−NpE
[
Np

∫ t

ζ

η(s−)−Np−1 dη(s) + η(t)−Np; ζ < t
]

= 4NprNpε−Npη(t)−Np

+ 4NprNpε−NpNpE
[∫ t

0

1(ζ,t](s)η(s−)−Np−1 dη(s); ζ < t
]

(3.7)

= 4NprNpε−Npη(t)−Np

+ 4NprNpε−NpNp

∫ t

0

η(s−)−Np−1E[1(ζ,t](s); ζ < t]dη(s)

= 4NprNpε−Npη(t)−Np

+ 4NprNpε−NpNp

∫ t

0

η(s−)−Np−1P (ζ < s)dη(s).

On the other hand, we have the next estimate about ζ .
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LEMMA 3.2

We have

P (ζ ≤ t) ≤ 2Nr exp
{

−C12(N,r,R, δ, ‖∇b‖∞)η(t)−1
}
.

Proof
Note that it is sufficient to prove the estimate for small t. Set

ζ1 = inf
{
t ∈ [0, T ]; |X(t) − x0| > R

}
∧ T,

ζ2 = inf
{
t ∈ [0, T ]; |J1(t) − I| > δ

}
∧ T.

Then, it is sufficient to prove the same estimate for ζ1 and ζ2. Since the proofs
are similar, we prove the estimate only for ζ2. We define continuous martingales
(Mk(t)) by

Mk(t) :=
∫ t

0

∇σk

(
φ−1

k (s),X(φ−1
k (s)−)

)
J1

(
φ−1

k (s)−
)
dBk(s), k = 1,2, . . . , r.

Denote
∑N

i,j=1〈(Mk)ij 〉 by 〈Mk 〉 for k = 1,2, . . . , r. Then we have

〈Mk 〉
(
φk(t ∧ ζ2)

)
=
∫ φk(t∧ζ2)

0

∣∣∇σk

(
φ−1

k (s),X(φ−1
k (s)−)

)
J1

(
φ−1

k (s)−
)∣∣2 ds

≤ C13(δ)φk(t ∧ ζ2).

By Lemma 2.2, it follows that

sup
s∈[0,t]

|J1(s ∧ ζ2) − I| ≤
r∑

k=1

sup
s∈[0,φk(t∧ζ2)]

|Mk(s)| + C14(‖∇b‖∞)t.

Therefore, if t ≤ δ/(2C14(‖ ∇b‖∞)), then by [8, Proposition 6.8], we have

P (ζ2 ≤ t)

≤ P
(

sup
s∈[0,t]

|J1(s ∧ ζ2) − I| ≥ δ
)

≤ P
( r∑

k=1

sup
s∈[0,φk(t∧ζ2)]

|Mk(s)| ≥ δ

2

)

≤
r∑

k=1

P
(

sup
s∈[0,φk(t∧ζ2)]

|Mk(s)| ≥ δ

2r

)

=
r∑

k=1

P
(

sup
s∈[0,φk(t∧ζ2)]

|Mk(s)| ≥ δ

2r
, 〈Mk 〉

(
φk(t ∧ ζ2)

)
≤ C13(δ)φk(t ∧ ζ2)

)

= 2N

r∑
k=1

exp
(

− δ2

8N2r2C13(δ)φk(t)

)
.

This completes the proof of Lemma 3.2. �
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By the lemma, it holds that

P (ζ < t) ≤ 2Nr exp
{

−C12(N,r,R, δ, ‖∇b‖∞)η(t−)−1
}
.

Therefore, by (3.7) we have

E
[
det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)−p]
≤ 22NprNpε−Npη(t)−Np + 22Np+1rNp+1ε−NpN2p

×
∫ t

0

η(s−)−Np−1 exp
{

−C12(N,r,R, δ, ‖∇b‖∞)η(s−)−1
}

dη(s).

Now we estimate the second term. Let

f(x) := x−Np−1e−C12(N,r,R,δ,‖ ∇b‖∞)x−1
.

Then, f is a positive, bounded, and concave function on (0, ∞), and the max-
imum is marked at C12(N,r,R, δ, ‖ ∇b‖∞)/(Np + 1). We denote the maximum
jump of (η(t); t ∈ [0, T ]) by J . Since u − J ≤ η(η−1(u)−) ≤ u, by Lemma 2.1,∫ t

0

η(s−)−Np−1e−C12(N,r,R,δ,‖ ∇b‖∞)η(s−)−1
dη(s)

=
∫ η(t)

0

η
(
η−1(u)−

)−Np−1
e−C12(N,r,R,δ,‖ ∇b‖∞)η(η−1(u)−)−1

du

≤
∫ J+C12(N,r,R,δ,‖ ∇b‖∞)/(Np+1)

0

η
(
η−1(u)−

)−Np−1

× e−C12(N,r,R,δ,‖ ∇b‖∞)η(η−1(u)−)−1
du

+
∫ ∞

J+C12(N,r,R,δ,‖ ∇b‖∞)/(Np+1)

η
(
η−1(u)−

)−Np−1

× e−C12(N,r,R,δ,‖ ∇b‖∞)η(η−1(u)−)−1
du

≤ ‖f ‖∞
(
J +

C12(N,r,R, δ, ‖∇b‖∞)
Np + 1

)
+
∫ ∞

J+C12(N,r,R,δ,‖ ∇b‖∞)/(Np+1)

(u − J)−Np−1

× e−C12(N,r,R,δ,‖ ∇b‖∞)(u−J)−1
du

≤ ‖f ‖∞
(
J +

C12(N,r,R, δ, ‖∇b‖∞)
Np + 1

)
+
∫ ∞

0

u−Np−1e−C12(N,r,R,δ,‖ ∇b‖∞)u−1
du.

If we denote the gamma function by Γ, then by changing variables we have∫ ∞

0

u−Np−1e−C12(N,r,R,δ,‖ ∇b‖∞)u−1
du = C12(N,r,R, δ, ‖∇b‖∞)−NpΓ(Np).
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So we have ∫ t

0

η(s−)−Np−1e−C12(N,r,R,δ,‖ ∇b‖∞)η(s−)−1
dη(s)

≤ C15(N,p, r,R, δ, ‖ ∇b‖∞)(1 + J).

Therefore,

E
[
det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)−p]
≤ 22NprNpε−Npη(t)−Np

+ 22Np+1rNp+1ε−NpN2pC15(N,p, r,R, δ, ‖∇b‖∞)(1 + J).

Thus, we can conclude that for all t ∈ [0, T ],

E
[
det
( r∑

k=1

∫ t

0

J2(s−)σk

(
s,X(s−)

)
tσk

(
s,X(s−)

)
tJ2(s−)dφk(s)

)−p]
≤ C16(N,p, r, ε,R, δ, ‖ ∇b‖∞)

(
1 + J + η(t)−Np

)
.

Note that R and δ are determined by {‖∇σk ‖ ∞ }1≤k≤r, x0, and ε. By (3.6),
this estimate, and Lemma 3.1, we have the first assertion. Since the condition of
the second assertion implies that the constants for the estimates can be chosen
independently from x0 but dependently on t0, the second assertion follows.

This completes the proof of Theorem 3.3. �

Thus, we can apply Sobolev’s inequality with respect to the H-derivative, and
we have the following theorem.

THEOREM 3.4

We consider the stochastic differential equation (3.1) and we assume that σk ∈
C0,m+2([0, T ] × RN ;Rdk ⊗ RN ) and ∇σk ∈ C0,m+1

b ([0, T ] × RN ;RN ⊗ Rdk ⊗
RN ) for k = 1,2, . . . , r, b ∈ C0,m+2([0, T ] × RN ;RN ), and ∇b ∈ C0,m+1

b ([0, T ] ×
RN ;RN ⊗ RN ) and that there exists a positive constant ε such that

r∑
k=1

σk(0, x0)tσk(0, x0) ≥ ε.

Then the law P (t, x0, dy) of X(t, x0) is absolutely continuous with respect to the
Lebesgue measure, and for its density function p(t, x0, y), there exist positive
constants c1, c2, c3 such that

max
0≤l≤m

sup
y∈Rd

| ∇l
yp(t, x0, y)|

(3.8)

≤ c1 min
{
φi(t); i = 1,2, . . . , r

}−c3 exp
{

c2

(
t +

r∑
k=1

φk(t)
)}

.
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Moreover, if there exist a positive constant ε and t0 such that
r∑

k=1

σk(t, x)tσk(t, x) ≥ ε, t ∈ [0, t0], x ∈ RN ,

then we can choose constants c1, c2, c3 satisfying (3.8) independently from x0 but
dependent on t0.

Proof
The conclusion follows from Theorems 3.3, 3.2, and [8, Theorem 5.9]. �

4. Regularity of conditional probabilities

In this section, we consider the inheritance of regularity of densities from those
of conditional probabilities.

Let (Ω,F , P ) be a probability space, and let G be a sub-σ-field of F . We
assume that there exists a regular conditional probability of P with respect to
G , and we denote it by p(ω,dω′). To begin, we consider the absolute continuity.

THEOREM 4.1

If the regular conditional probability p(ω,dω′) is absolutely continuous with respect
to a measure ν on (Ω,F ) for almost all ω, then P is also absolutely continuous
with respect to the measure ν.

Proof
Let A ∈ F be a ν-null set. Since A is also a p(ω,dω′)-null set for almost all ω,∫

Ω

1A(ω)P (dω) =
∫

Ω

∫
Ω

1A(ω′)p(ω,dω′)P (dω) = 0.

Thus, we have the conclusion. �

Next, we consider the regularity. Assume that the regular conditional probability
p(ω,dω′) has the density function p(ω,y) for almost all ω.

THEOREM 4.2

We assume that p(ω, ·) ∈ Cn
b (RN ) for almost all ω and that there exists a positive

random variable Y such that E[Y ] < ∞ and for almost all ω,

‖∂αp(ω, ·)‖ ∞ ≤ Y (ω), |α| ≤ n.

Then P has its density function q and q ∈ Cn
b (RN ).

Proof
By Theorem 4.1, P has its density function. We denote it by q. For f ∈ C∞

0 (RN )
and a multiindex α satisfying |α| ≤ n,∣∣∣∫

RN

(∂αf)(x)q(x)dx
∣∣∣ = ∣∣∣∫

RN

(∫
RN

(∂αf)(y)p(ω,y)dy
)
P (dω)

∣∣∣
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=
∣∣∣∫

RN

(∫
RN

f(y)(∂α
y p)(ω,y)dy

)
P (dω)

∣∣∣
≤
∫
RN

(∫
RN

|f(y)| |(∂α
y p)(ω,y)| dy

)
P (dω)

≤
∫
RN

|f(y)| dy

∫
RN

Y (ω)P (dω).

Therefore, q ∈ Wn,∞(RN , dx), and by [9, Chapter V, Theorem 2], we have the
conclusion. �

5. Regularities of solutions of stochastic differential
equations driven by subordinated Brownian motions

In this section, we join the results of Sections 3 and 4. First, we give settings.
Let r be a positive integer, let d1, . . . , dk be positive integers, let (Ω,F , P ) be

a probability space, and let Zk(t) be a dk-dimensional right continuous process
on [0, T ] with left limits for k = 1,2, . . . , r, where {Zk } are totally independent
for k = 1,2, . . . , r.

We assume that (Zk(t)) can be expressed as (Bk(τk(t))) for k = 1,2, . . . , r,
where (Bk(t)) is a dk-dimensional Brownian motion for k = 1,2, . . . , r, and {τk;
k = 1,2, . . . , r} are one-dimensional right continuous increasing processes starting
at zero, and {Bk;k = 1,2, . . . , r} and {τk;k = 1,2, . . . , r} are totally independent.
We define a Poisson point process pk by

pk(t) := Zk(t) − Zk(t−)

and decompose the counting measure Npk
(dtdx) on [0, T ] × Rdk of pk as

Npk
(dtdx) = 1D(x)Npk

(dtdx) + 1Dc(x)Npk
(dtdx),

where D is a unit ball centered at zero in Rdk . Then we have the jump part of
Zk(t): ∫ t+

0

∫
Rdk

x1D(x)Npk
(dsdx) +

∫ t+

0

∫
Rdk

x1Dc(x)Npk
(dsdx).

Now, as an additional assumption, we assume that the first term of the right-hand
side is a square integrable martingale and that the second term is a function of
bounded variation with respect to t. The assumption implies that we can define
the stochastic integrals by {Zk }. The precise definition can be found in [2].

Let (Ft) be the filtration generated by {Zk(s); 0 ≤ s ≤ t, k = 1,2, . . . , r}. We
consider the next N -dimensional stochastic differential equation:

(5.1)

{
dX(t) =

∑r
k=1 σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

where σk ∈ C([0, T ] × RN ;Rdk ⊗ RN ) for k = 1,2, . . . , r and b ∈ C([0, T ] × RN ;
RN ).

It is known that the stochastic differential equation has pathwise uniqueness
when the coefficients are Lipschitz continuous (see [2, Chapter IV, Section 9]).
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We denote the σ-field generated by {τk;k = 1,2, . . . , r} by F τ . Then, the
argument of Section 3 is available when we take equation (5.1) on (Ω,F , P (· |F τ )),
and by the argument of Section 4, we have the next theorem.

THEOREM 5.1

Assume that σk ∈ C0,1([0, T ] × RN ;Rdk ⊗ RN ) and that ∇σk is bounded for
k = 1,2, . . . , r; assume that b ∈ C0,1([0, T ] × RN ;RN ), ∇b is bounded, and there
exists a positive constant ε such that

r∑
k=1

σk(0, x0)tσk(0, x0) ≥ ε.

Then equation (5.1) has the unique solution (X(t)), and the distribution of X(t)
has its density for t ∈ (0, T ].

Proof
Under the probability P (· |F τ ), we can use Theorem 3.2, Theorem 3.3, and
[9, Chapter VIII, Theorem 1]. Therefore, we have that P (· |F τ ) is absolutely
continuous with respect to the N -dimensional Lebesgue measure almost surely.
Thus, the conclusion follows by Theorem 4.1. �

For the regularity of the density function of the solution, we have the following
theorem.

THEOREM 5.2

Assume that σk ∈ C0,m+2([0, T ] × RN ;Rdk ⊗ RN ) and ∇σk ∈ C0,m+1
b ([0, T ] ×

RN ;RN ⊗ Rdk ⊗ RN ) for k = 1,2, . . . , r, b ∈ C0,m+2([0, T ] × RN ;RN ), and ∇b ∈
C0,m+1

b ([0, T ] × RN ;RN ⊗ RN ), and there exists a positive constant ε such that

σ(0, x0)tσ(0, x0) ≥ ε.

Moreover, we assume that
r∑

k=1

E
[(

τk(T )
)−A exp

(
Aτk(T )

)]
< ∞ for all A ∈ [0, ∞).

Let (X(t)) be the solution of the stochastic differential equation (5.1). Then, the
distribution of X(T ) has its density q(x), and q ∈ Cm

b (RN ).

Proof
Under the probability P (· |F τ ), we can use Theorem 3.4. Therefore, we have the
conclusion by Theorem 4.2. �
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6. Regularities of solutions of stochastic
differential equations driven by stable processes

In this section, we consider a special case that is the most interesting of the
above results, stochastic differential equations driven by stable processes. First,
we make settings.

Let r be a positive integer, let d1, . . . , dk be positive integers, let (Ω,F , P )
be a probability space, and let Zk(t) be a dk-dimensional rotation-invariant αk-
stable process for k = 1,2, . . . , r, where Zk are independent for k = 1,2, . . . , r. Set
(Ft) be the filtration generated by {Zk(s); 0 ≤ s ≤ t, k = 1,2, . . . , r}. We consider
the next N -dimensional stochastic differential equation,

(6.1)

{
dX(t) =

∑r
k=1 σk(t,X(t−))dZk(t) + b(t,X(t))dt,

X(0) = x0,

where σk ∈ C([0, T ] × RN ;Rdk ⊗ RN ) for k = 1,2, . . . , r, and b ∈ C([0, T ] × RN ;
RN ). The stochastic integrals are defined as in Section 5.

Now we use subordination: (Zk(t)) can be expressed as (Bk(τk(t))) for k =
1,2, . . . , r, where {Bk;k = 1,2, . . . , r} is a dk-dimensional Brownian motion and
{τk;k = 1,2, . . . , r} is a one-sided (αk/2)-stable process for k = 1,2, . . . , r, and
{Bk;k = 1,2, . . . , r} and {τk;k = 1,2, . . . , r} are totally independent. If necessary,
we extend the probability space (Ω,F , P ). So the assumptions of Section 5 are
satisfied. We denote the σ-field generated by {τk;k = 1,2, . . . , r} by F τ . Then,
by Theorem 5.1, we have the next theorem.

THEOREM 6.1

Assume that σk ∈ C0,1([0, T ] × RN ;Rdk ⊗ RN ) and that ∇σk is bounded for
k = 1,2, . . . , r; assume that b ∈ C0,1([0, T ] × RN ;RN ), ∇b is bounded, and there
exists a positive constant ε such that

r∑
k=1

σk(0, x0)tσk(0, x0) ≥ ε.

Then equation (6.1) has the unique solution (X(t)), and the distribution of X(t)
has its density for t ∈ (0, T ].

Finally, we consider the regularity of the density function of the solution. But
Theorem 5.2 is not available because the condition about the expectation of
exponential function does not hold. However, in the case when r = 1, we can
conclude the next theorem.

THEOREM 6.2

Assume that σ ∈ C0,m+2([0, T ] × RN ;Rd ⊗ RN ) and ∇σk ∈ C0,m+1
b ([0, T ] × RN ;

RN ⊗ Rd ⊗ RN ), b ∈ C0,m+2([0, T ] × RN ;RN ), and ∇b ∈ C0,m+1
b ([0, T ] × RN ;

RN ⊗ RN ), and there exists a positive constant ε such that

σ(t, x)tσ(t, x) ≥ ε, t ∈ [0, T ], x ∈ RN .
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Let (X(t)) be the solution of the stochastic differential equation (6.1). Then, the
distribution of X(T ) has its density q(x), and q ∈ Cm

b (RN ).

Proof
Fix T0 > 0. We define an F τ -measurable random time ρ by

ρ := sup
{
t > 0; τ(T ) − τ(t) > T0

}
and let F τ,T0 be the σ-field generated by τ and (B(t); 0 ≤ t ≤ (τ(T ) − T0) ∨
0). Consider the next stochastic differential equation on [0, T − ρ] under (Ω,F ,

P (· |F τ,T0)):

(6.2)

{
dX̃(t) = σ

(
ρ + t, X̃(t−)

)
dZ̃(t) + b

(
ρ + t, X̃(t)

)
dt,

X̃(0) = ξ0 + ξ,

where Z̃(t) := B(τ(ρ + t)) − B(τ(ρ)),

ξ0 := X(ρ−) + σ
(
ρ,X(ρ−)

)(
B(τ(T ) − T0) − B(τ(ρ−))

)
+ b
(
ρ,X(ρ−)

)(
τ(ρ) − τ(ρ−)

)
,

ξ := σ
(
ρ,X(ρ−)

)(
B(τ(ρ)) − B(τ(T ) − T0)

)
.

Note that (Z̃(t)) is a Brownian motion with deterministic time change, and note
that ξ0 is a constant under P (· |F τ,T0). By Theorem 3.1, equation (6.2) has the
unique solution X̃ on (Ω,F , P (· |F τ,T0)), and it holds that

(6.3) X̃(t) = X(ρ + t) for t ∈ [0, T − ρ], P (· |F τ,T0)-a.s.

On the other hand, if (W,H,μ) is the Wiener space generated by (B(t); τ(T ) −
T0 ≤ t ≤ τ(T )), then the Malliavin calculus is available for ξ and (X̃(t)) under

P (· |F τ,T0). It is easy to see that |Dξ|H ≤ ‖σ‖ ∞ and that Dkξ = 0 for k ≥ 2.
By a discussion similar to the proof of Theorem 3.2, for all p > 0 there exists a
constant M such that

m+2∑
k=1

EP (·|Fτ,T0 )
[

|DkX̃(ρ)|p
L k

2 (H;RN )

]
≤ M exp

{
M
(
T + τ(T ) − τ(ρ)

)}
.

Since τ(T ) − τ(ρ) ≤ T0, we have

(6.4)
m+2∑
k=1

EP (·|Fτ,T0 )
[

|DkX̃(ρ)|p
L k

2 (H;RN )

]
≤ M exp

{
M(T + T0)

}
.

Now we consider the case τ(T ) > T0. By equation (6.2) and Proposition 2.1,
for h ∈ H ,

DX̃(T − ρ)[h]

= Dξ[h] +
∫ T −ρ

0

∇σ
(
ρ + t, X̃(t−)

)
DX̃(t−)[h]dZ̃(t)

+
∫ T −ρ

0

σ
(
ρ + t, X̃(t−)

)
dh
(
τ(ρ + t)

)
+
∫ T −ρ

0

∇b
(
ρ + t, X̃(t)

)
DX̃(t)[h]dt.
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We use a discussion similar to the proof of Theorem 3.3. Set

Ã(t) := [Z̃, Z̃](t), t ∈ [0, T − ρ].

We define two (N × N )-matrix-valued processes J̃1 and J̃2, respectively, on [0, T −
ρ] by the solutions of the following stochastic differential equations:{

dJ̃1(t) = ∇σ(ρ + t, X̃(t−))J̃1(t−)dZ̃(t) + ∇b(ρ + t, X̃(t))J̃1(t−)dt,

J̃1(0) = I,⎧⎪⎪⎨
⎪⎪⎩

dJ̃2(t) = −J̃2(t−)∇σ(ρ + t, X̃(t−))dZ̃(t) − J̃2(t−)∇b(ρ + t, X̃(t))dt

+ J̃2(t−)∇σ(ρ + t, X̃(t−))∇σ(ρ + t, X̃(t−))dÃ(t),

J̃2(0) = I.

By [7, Chapter II, Section 6, Corollary 2, Theorem 29], J̃1(t)J̃2(t) = I for all
t ∈ [0, T − ρ]. Therefore, it follows that J̃1(t) = J̃2(t)−1. To simplify the notation,
let J̃2(t) = I for t < 0. By [7, Chapter II, Section 6, Corollary 2, Theorem 29]
again, we have

J̃2(T − ρ)DX̃(T − ρ)[h] = Dξ[h] +
∫ T −ρ

0

J̃2(t−)σ
(
ρ + t, X̃(t−)

)
dh
(
τ(ρ + t)

)
.

Therefore, by (6.3) we have

J̃2(T − ρ)DX̃(T − ρ)[h] = Dξ[h] +
∫ T

ρ

J̃2

(
(t − ρ)−

)
σ
(
t,X(t−)

)
dh
(
τ(t)
)
.

From Lemma 2.1 and the definition of ξ, we have

J̃2(T − ρ)DX̃(T − ρ)[h]

= σ
(
ρ,X(ρ−)

)(
h(τ(ρ)) − h(τ(T ) − T0)

)
+
∫ τ(T )

τ(ρ)

J̃2

(
(τ −1(t) − ρ)−

)
σ
(
τ −1(t),X(τ −1(t)−)

)
ḣ(t)dt

=
∫ τ(ρ)

τ(T )−T0

σ
(
ρ,X(ρ−)

)
dh(t)

+
∫ τ(T )

τ(ρ)

J̃2

(
(τ −1(t) − ρ)−

)
σ
(
τ −1(t),X(τ −1(t)−)

)
ḣ
(
τ −1(t)

)
dt

=
∫ τ(T )

τ(T )−T0

J̃2

(
(τ −1(t) − ρ)−

)
σ
(
τ −1(t),X(τ −1(t)−)

)
ḣ
(
τ −1(t)

)
dt.

Hence, if we denote the Malliavin covariance matrix ((DX̃i(t),DX̃j(t))H∗ )ij by
Δ̃(t), then

Δ̃(T − ρ) = J̃1(T − ρ)
∫ τ(T )

τ(T )−T0

J̃2

(
(τ −1(t) − ρ)−

)
σ
(
τ −1(t),X(τ −1(t)−)

)
× tσ
(
τ −1(t),X(τ −1(t)−)

)
tJ̃2

(
(τ −1(t) − ρ)−

)
dttJ̃1(T − ρ).
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Thus, we have

det
(
Δ̃(T − ρ)

)
= det

(
J̃1(T − ρ)

)2 det
(∫ τ(T )

τ(T )−T0

J̃2

(
(τ −1(t) − ρ)−

)
σ
(
τ −1(t),X(τ −1(t)−)

)
× tσ
(
τ −1(t),X(τ −1(t)−)

)
tJ̃2

(
(τ −1(t) − ρ)−

)
dt
)
.

Similarly to the proof of Theorem 3.3, we have, for p ≥ 1 and τ(T ) > T0,

EP (·|Fτ,T0 )
[
det
(
Δ̃(T − ρ)

)−p]
≤ C16

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)
T −Np

0

× exp
[
C16

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)
(T + T0)

]
.

In the case τ(T ) ≤ T0, ρ = 0. Theorem 3.3 implies that for p ≥ 1 and τ(T ) ≤ T0,

EP (·|Fτ,T0 )
[
det
(
Δ̃(T )

)−p]
≤ C17

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)
τ(T )−Np

× exp
[
C17

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)
(T + T0)

]
.

So, for p ≥ 1 and for all τ , we have

EP (·|Fτ,T0 )
[
det
(
Δ̃(T )

)−p]
≤ C18

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)(

T0 ∧ τ(T )
)−Np

× exp
[
C18

(
N,p, ε, r,

{
‖ ∇σk ‖ ∞

}
1≤k≤r

, ‖∇b‖ ∞
)
(T + T0)

]
.

Therefore, by (6.4) and [8, Theorem 5.9], the law of X̃(ρ) under P (· |F τ,T0) has
its density function pτ,T0 belonging to Cm

b (RN ) P -almost surely, and it holds
that there exist positive constants c1, c2, c3 independent from ξ and satisfying

(6.5) max
0≤l≤m

sup
y∈Rd

| ∇l
ypτ,T0(T − ρ, ξ0 + ξ, y)| ≤ c1

(
T0 ∧ τ(T )

)−c3 exp
{
c2(T +T0)

}
.

Finally, we consider the law of (X(t)). By (6.3), (6.5), and the Markov
property of X under P (· |F τ,T0), we have that for f ∈ C∞

b (RN ) and a multi-
index β = (β1, . . . , βd) satisfying |β| ≤ m,∣∣EP

[
∂βf
(
X(T )

)]∣∣ = ∣∣EP
[
EP
[
∂βf
(
X(T )

)∣∣F τ,T0
]]∣∣

=
∣∣EP
[
EP (·|Fτ,T0 )

[
∂βf
(
X̃τ,T0(T − ρ)

)]]∣∣
=
∣∣∣EP
[∫

RN

∂βf(y)pτ,T0(T − ρ, ξ0 + ξ, y)dy
]∣∣∣

≤ EP
[∫

RN

|f(y)| |∂β
y pτ,T0(T − ρ, ξ0 + ξ, y)| dy

]
≤ c1E

p
[(

T0 ∧ τ(T )
)−c3
]

‖f ‖L1(RN ) exp
{
c2(T + T0)

}
.
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Since τ is a one-sided (α/2)-stable process, by the equality

EP [τ(T )−n] =
∫ ∞

0

∫ ∞

ηn

· · ·
∫ ∞

η2

EP
[
exp
(

−η1τ(T )
)]

dη1 · · · dηn,

we have

EP
[(

τ(T )
)−c3
]
< ∞.

Thus, we have the conclusion. �

Acknowledgment. I thank Professor Yozo Tamura for helpful discussions and his
careful reading of an earlier version.

References

[1] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, B: Theory of

Martingales, North-Holland Math. Stud. 72, North-Holland, Amsterdam, 1982.

[2] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion

Processes, 2nd ed., North-Holland Math. Library 24, North-Holland,

Amsterdam, 1989.

[3] S. Kusuoka and D. Stroock, “Application of the Malliavin calculus, I” in

Stochastic Analysis (Kyoto/Katata, 1982), North-Holland Math. Library 32,

North-Holland, Amsterdam, 1984, 271–306.
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