Differentiability of spectral functions for nonsymmetric diffusion processes

Atsushi Tanida

Abstract

Let $L=(1 / 2) \nabla \cdot a \nabla+b \cdot \nabla+W$ be a critical elliptic operator on \mathbb{R}^{d}. For a certain class of potential functions, we consider the generalized principal eigenvalues $\lambda(t)$ of $L_{t}=L+t V$. We show that it is differentiable if and only if L_{0} is null critical.

1. Introduction

We study the behavior of the generalized principal eigenvalues $\lambda(t)$ of operators $L_{t}=L+t V(t \in \mathbb{R})$. Here $L:=(1 / 2) \nabla \cdot a \nabla+b \cdot \nabla+W$ is an elliptic operator on \mathbb{R}^{d} and V is a potential function on \mathbb{R}^{d}. We call the function $\lambda(t)$ the spectral function, and we are interested in the behavior of $\lambda(t)$, in particular, its differentiability. A precise definition of the generalized principal eigenvalue is given later. We note that $\lambda(t)$ is the bottom of the real part of the spectrum of L_{t}. So it is an important characteristic for the large time behavior of the semigroup associated with L_{t}. We suppose that V is nonnegative. We may also suppose that $\lambda(0)=0$ by replacing L with $L-\lambda(0)$ if necessary. Since $\lambda(t)$ is convex, there are two possibilities:
(i) $\lambda(t)$ is flat to zero for a small positive t;
(ii) $\lambda(t)$ rises immediately as t increases.

Therefore one question arises. Is the initial rising steep or gradual? We show by using the method in [5] that if the operator L is positive critical, then $\lambda^{\prime}(+0)>0$, and if L is null critical, then $\lambda^{\prime}(+0)=0$. In the latter case, $\lambda(t)$ is differentiable at all $t \in \mathbb{R}$. Heuristically if the operator L is positive critical, then $\lambda(t)$ responds sensitively.

2. Preliminary

Let us consider an elliptic partial differential operator $L:=(1 / 2) \nabla \cdot a \nabla+b \cdot \nabla+W$ on \mathbb{R}^{d}. Let V be a potential function with compact support. We assume that the coefficients a, b, W, and V satisfy the following conditions.

CONDITION A. 1

There exists an $\alpha \in(0,1)$ such that for every relatively compact domain D^{\prime} with $\overline{D^{\prime}} \subset \mathbb{R}^{d}$,
(i) $a, b \in C^{1, \alpha}\left(D^{\prime}\right), W, V \in C^{\alpha}\left(D^{\prime}\right)$, and $\nabla \cdot b \geq-c,-W \geq-c$ for some positive constant c;
(ii) $a=\left\{a_{i j}\right\}$ is uniformly elliptic; that is, there exists a constant $\mu>0$ such that for any $x \in D^{\prime}$,

$$
\xi \cdot a(x) \xi \geq \mu|\xi|^{2}, \quad \xi \in \mathbb{R}^{d} ;
$$

(iii) $x \cdot b(x) \leq K\left(|x|^{2}+1\right), \xi \cdot a(x) \xi \leq K\left(|x|^{2}+1\right)|\xi|^{2}$ for some positive constant K.

We note that condition (iii) is used only in Lemma 4.5.
For the operator L, we denote the set of positive harmonic functions by $C_{L}\left(\mathbb{R}^{d}\right)$:

$$
C_{L}\left(\mathbb{R}^{d}\right)=\left\{u>0: u \in C^{2}\left(\mathbb{R}^{d}\right), L u=0\right\} .
$$

Following [3], we define the criticality as follows:
(1) If L has 0 Green function, then L is called subcritical.
(2) If L is not subcritical and $C_{L}\left(\mathbb{R}^{d}\right) \neq \emptyset$, then L is called critical.
(3) If $C_{L}\left(\mathbb{R}^{d}\right)=\emptyset$, then L is called supercritical.

In the critical case, $C_{L}\left(\mathbb{R}^{d}\right)$ is one-dimensional, that is, its positive harmonic function is unique up to positive constant multiplication. In that case, we denote the positive harmonic function by ϕ_{c} and call it the ground state of L. For an operator $L=(1 / 2) \nabla \cdot a \nabla+b \cdot \nabla+W$, we define its dual operator \widetilde{L} by $\widetilde{L}=$ $(1 / 2) \nabla \cdot a \nabla-b \cdot \nabla-\nabla \cdot b+W$.

The criticality properties of both L and \widetilde{L} coincide; that is, L is critical (subcritical, supercritical) if and only if \widetilde{L} is critical (subcritical, supercritical). In the critical case, both L and \widetilde{L} have ground states ϕ_{c} and $\tilde{\phi}_{c}$. Moreover, we classify its critical property as follows
(2-i) If L is critical and $\phi_{c} \tilde{\phi}_{c} \in L^{1}\left(\mathbb{R}^{d}, d x\right)$, then L is positive (or product L^{1}) critical.
(2-ii) If L is critical and $\phi_{c} \tilde{\phi}_{c} \notin L^{1}\left(\mathbb{R}^{d}, d x\right)$, then L is null (or product not L^{1}) critical.

In the subcritical case, $C_{L}\left(\mathbb{R}^{d}\right)$ is not empty. Hence if L is not supercritical, then $C_{L}\left(\mathbb{R}^{d}\right)$ is not empty. We take a $\phi \in C_{L}\left(\mathbb{R}^{d}\right)$ and consider an h transformation of L with respect to ϕ :

$$
L^{\phi}:=\frac{1}{2} \nabla \cdot a \nabla+b \cdot \nabla+a \frac{\nabla \phi}{\phi} \cdot \nabla .
$$

L^{ϕ} is a diffusion operator. It is known that
(1) L is subcritical $\Longleftrightarrow L^{\phi}$ is transient;
(2-i) L is positive critical $\Longleftrightarrow L^{\phi}$ is positive recurrent;
(2-ii) L is null critical $\Longleftrightarrow L^{\phi}$ is null recurrent.

Therefore the criticality property is regarded as a generalization of the recurrence property.

Using the criticality property, we define λ_{c} by

$$
\lambda_{c}:=\sup \{\lambda \in \mathbb{R}: L-\lambda \text { is supercritical }\} .
$$

The real number λ_{c} is called the generalized principal eigenvalue of L. We now assume that $L=L_{0}$ is subcritical. Let $\hat{L}=(1 / 2)(L+\widetilde{L})$ be the symmetric part of L. Define $\hat{G}_{\alpha}(x, y)=\int_{0}^{\infty} e^{-\alpha t} \hat{p}_{t}(x, y) d x$.

We assume the following conditions.
(A.2) We have $\lim _{\alpha \rightarrow \infty}\left\|\hat{G}_{\alpha} V\right\|_{\infty}=0$ (Kato class).
(A.3) We have $\lim _{n \rightarrow \infty}\left\|\hat{G}_{\alpha}\left(V \mathbb{1}_{D_{n}^{c}}\right)\right\|_{\infty}=0$ (tightness). Here a sequence of relatively compact sets $\left\{D_{n}\right\}$ is an approximation of $\mathbb{R}^{d} ; \overline{D_{n}} \subset D_{n+1}, \bigcup_{n=1}^{\infty} D_{n}=$ \mathbb{R}^{d}.

In the case $a=I, b=0, d=1,2$, B. Simon [4] and M. Klaus [2] obtained its perturbation series around $t=0$. For example, Klaus proved that $\lambda(t)^{1 / 2}=$ $(t / \sqrt{2}) \int_{\mathbb{R}} V(x) d x-\left(t^{2} / \sqrt{2}\right) \int_{\mathbb{R}} \int_{\mathbb{R}} V(x)|x-y| V(y) d x d y+O\left(t^{3}\right)$ as $t \searrow 0$, where $L=(1 / 2) \frac{d^{2}}{d x^{2}}$ and V satisfies $\int_{\mathbb{R}}|V(x)|(1+|x|) d x$. Further, M. Takeda and K. Tsuchida [5] showed that $\lambda(t)$ is differentiable when $a=I, b=0, d \leq 4$ and showed the necessary and sufficient condition for differentiability of $\lambda(t)$ for symmetric stable process. In this article we consider differentiability of $\lambda(t)$ of L_{t} by using the method of [5].

Finally, we note that the differentiability of $\lambda(t)$ is crucial when we prove the large deviation principle of the additive functional $\int_{0}^{t} V\left(X_{s}\right) d s$ by employing the Gärtner-Ellis theorem.

3. Main theorem and examples

We suppose that $L\left(=L_{0}\right)$ is subcritical. We also assume that $\lambda(0)=0$. Conditions (A.2) and (A.3) imply that L_{t} is a compact perturbation of L (see [5]), and thus there exists some constant $t_{0}>0$ such that $L_{t_{0}}$ is critical (see [3, p. 267] for details).

THEOREM 3.1

Assume that $L_{t_{0}}$ is null critical; then $\lambda^{\prime}\left(t_{0}+\right)=0$. Moreover, $\lambda(t)$ is a C^{1} function on \mathbb{R}.

Figure 1 shows examples of $\lambda(t)$ in the case $L=(1 / 2) \triangle$ on \mathbb{R}^{d} and $V=\mathbb{1}_{\{|x|<1\}}$. The left is three-dimensional ($L_{t_{0}}$ is null critical); the right is five-dimensional ($L_{t_{0}}$ is positive critical).

4. Proof of the main theorem

Let $\left(\hat{\mathcal{E}}, C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right)$ be a symmetric bilinear form defined by $\hat{\mathcal{E}}(u, v)=(1 / 2) \int_{\mathbb{R}^{d}} \nabla u$. $a \nabla v d x+(1 / 2) \int_{\mathbb{R}^{d}}(\nabla \cdot b) u v d x-\int_{\mathbb{R}^{d}} W u v d x$. Since $\nabla \cdot b$ and $-W$ are bounded below, we can take some constant α such that $\hat{\mathcal{E}}_{\alpha}$ is positive and closable on

Figure 1
$L^{2}\left(\mathbb{R}^{d}, d x\right)$. The closure of $\left(\hat{\mathcal{E}_{\alpha}}, C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right)$ is a symmetric Dirichlet form $\left(\hat{\mathcal{E}}_{\alpha}, \mathcal{F}\right)$. Moreover, if $u \in D(L) \cap \mathcal{F}$, then $\hat{\mathcal{E}}_{\alpha}(u, u)=(-L u, u)+\alpha(u, u)$.

A positive Radon measure μ is said to be smooth if $\mu(A)=0$ for any measurable set A of zero capacity and there exists an increasing sequence of compact sets $\left\{F_{n}\right\}$ such that $\mu\left(F_{n}\right)<\infty$ and $\operatorname{Cap}\left(K \backslash F_{n}\right) \rightarrow 0(n \rightarrow \infty)$ for every compact set $K \subset \mathbb{R}^{d}$. We need the following lemma (see [6]).

LEMMA 4.1

Let $u \in \tilde{\mathcal{F}}$ be a quasi-continuous version of $u \in \mathcal{F}$, and let $\hat{G}_{\alpha} \mu(x)=\int_{\mathbb{R}^{d}} \hat{G}_{\alpha}(x$, y) $\mu(d y)$; then

$$
\int_{\mathbb{R}^{d}} u^{2}(x) \mu(d x) \leq\left\|\hat{G}_{\alpha} \mu\right\|_{\infty} \hat{\mathcal{E}}_{\alpha}(u, u)
$$

If the operator L is positive critical, then $\phi_{c} \in C_{L}\left(\mathbb{R}^{d}\right), \widetilde{\phi}_{c} \in C_{\widetilde{L}}\left(\mathbb{R}^{d}\right)$ are the ground states of L and \widetilde{L}. We set $g_{c}:=\sqrt{\phi_{c} \widetilde{\phi}_{c}}$. Since $g_{c} \in L^{2}\left(\mathbb{R}^{d}, d x\right)$ by definition of the positive criticality, we normalize g_{c} so that $\left\|g_{c}\right\|_{2}=1$. Then we have the following lemma.

LEMMA 4.2
Let $H(u):=\int_{\mathbb{R}^{d}}(L u / u) g_{c}^{2} d x$; then $\inf _{u>0, u \in C^{2}\left(\mathbb{R}^{d}\right)} H(u)$ can be attained at $u=\phi_{c}$ and its infimum coincides with λ_{c}.

Proof
Noting that $H\left(e^{w}\right)=\int_{\mathbb{R}^{d}}((1 / 2) \nabla \cdot a \nabla w+b \cdot \nabla w+(1 / 2) \nabla w \cdot a \nabla w+W w) g_{c}^{2} d x$, we see that $H\left(e^{t v_{1}+(1-t) v_{2}}\right)=t H\left(e^{v_{1}}\right)+(1-t) H\left(e^{v_{2}}\right)-t(1-t) \int_{\mathbb{R}^{d}}(1 / 2) \nabla\left(v_{1}-\right.$ $\left.v_{2}\right) \cdot a \nabla\left(v_{1}-v_{2}\right) d x \leq t H\left(e^{v_{1}}\right)+(1-t) H\left(e^{v_{2}}\right)$. Let $\psi(\varepsilon):=H\left(\phi_{c} e^{\varepsilon v}\right)$. Then we can show that $\psi^{\prime}(+0)=\int_{\mathbb{R}^{d}}\left((1 / 2) \nabla \cdot a \nabla v+b \cdot \nabla v+(1 / 2) \frac{\nabla \phi_{c}}{\phi_{c}} \cdot a \nabla v+W v\right) g_{c}^{2} d x=$ $\int_{\mathbb{R}^{d}}\left(L^{\phi_{c}} v\right) \phi_{c} \widetilde{\phi}_{c} d x=\int_{\mathbb{R}^{d}} L\left(\phi_{c} v\right) \widetilde{\phi}_{c} d x=\int_{\mathbb{R}^{d}} \phi_{c} v\left(\widetilde{L} \widetilde{\phi}_{c}\right) d x=0$.

We have immediately $\left(-L g_{c}, g_{c}\right) \leq\left(-L \phi_{c}, \widetilde{\phi}_{c}\right)$ from $H\left(g_{c}\right)=\int_{\mathbb{R}^{d}} g_{c} L g_{c} d x \geq$ $\int_{\mathbb{R}^{d}} \widetilde{\phi}_{c} L \phi_{c} d x$. Suppose that $g_{c} \in \mathcal{F}$. Then, by combining Lemmas 4.1 and 4.2, we have the following lemma. One of the sufficient conditions for $g_{c} \in \mathcal{F}$ is given later.

LEMMA 4.3
Assume that μ is a smooth measure and that $g_{c} \in \mathcal{F}$. Then

$$
\int_{\mathbb{R}^{d}} \phi_{c}(x) \widetilde{\phi}_{c}(x) \mu(d x) \leq\left\|\hat{G}_{\alpha} \mu\right\|_{\infty}\left(\left(-L \phi_{c}, \widetilde{\phi}_{c}\right)+\alpha\right) .
$$

We consider a one-parameter family of operators $L_{t}=L+t V(t \in \mathbb{R})$. Assume that $L_{t_{0}}$ is critical. For $t>t_{0}, \lambda(t)>0$ and the ground state ϕ_{t} is in $L^{2}\left(\mathbb{R}^{d}, d x\right)$. Assume that $L_{t_{0}}$ is critical. For $t>t_{0}, \lambda(t)>0$ and the ground state ϕ_{t} is in $L^{2}\left(\mathbb{R}^{d}, d x\right)$. Since L_{t} is a holomorphic family of closed operators (see [1]), we can get that $\lambda(t)$ is analytic in variable $t\left(t>t_{0}\right)$ by the analytic perturbation theory, and we have the following.

LEMMA 4.4
Let $t>t_{0}$. Then $\lambda(t+\varepsilon)=\lambda(t)+\varepsilon \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x+o(\varepsilon)$.
Let $\left\{D_{n}\right\}$ be an approximation of \mathbb{R}^{d} given in (A.3). We take $x_{0} \in D_{1}$ and set $C_{t}=1 / \phi_{t}\left(x_{0}\right)$. Let $t_{n} \searrow t_{0}$. We see from Harnack inequality that $\left\{C_{t_{n}} \phi_{t_{n}}\right\}$ is uniformly bounded and equicontinuous on D_{1}, so we can choose a subsequence of $\left\{C_{t_{n}} \phi_{t_{n}}\right\}$ which converges uniformly on D_{1}. We denote the subsequence by $\left\{C_{t_{n}^{(1)}} \phi_{t_{n}^{(1)}}\right\}$. Next take a subsequence $\left\{C_{t_{n}^{(2)}} \phi_{t_{n}^{(2)}}\right\}$ of $\left\{C_{t_{n}^{(1)}} \phi_{t_{n}^{(1)}}\right\}$ so that it converges uniformly on D_{2}. By the same procedure, we take a subsequence $\left\{C_{t_{n}^{(m+1)}} \phi_{t_{n}^{(m+1)}}\right\}$ of $\left\{C_{t_{n}^{(m)}} \phi_{t_{n}^{(m)}}\right\}$ so that it converges uniformly on D_{m+1}. Then $C_{t_{0}} \phi_{t_{0}}(x)=\lim _{n \rightarrow \infty} C_{t_{n}^{(n)}} \phi_{t_{n}^{(n)}}(x)$. Since the limit is unique, we can get that $C_{t} \phi_{t} \rightarrow C_{t_{0}} \phi_{t_{0}}$ locally uniformly as $t \searrow t_{0}$. Now we are ready to give a proof of the main theorem.

Proof of Theorem 3.1
Applying Lemma 4.4, we have $\lambda^{\prime}(t)=\int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x$ for $t>t_{0}$. Therefore it is enough to show that if $L_{t_{0}}$ is null critical, then $\lim _{t \rightarrow t_{0}} \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x=0$.

We first note that

$$
\limsup _{t \rightarrow t_{0}} \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x \leq \limsup _{t \rightarrow t_{0}} \int_{D_{n}} \phi_{t} \widetilde{\phi}_{t} V d x+\limsup _{t \rightarrow t_{0}} \int_{D_{n}^{c}} \phi_{t} \widetilde{\phi}_{t} V d x .
$$

On the other hand, by Fatou's lemma, we have

$$
1=\liminf _{t \rightarrow t_{0}} \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} d x \geq \int_{\mathbb{R}^{d}} \liminf _{t \rightarrow t_{0}} \phi_{t} \widetilde{\phi}_{t} d x=C_{t_{0}} \widetilde{C}_{t_{0}} \int_{\mathbb{R}^{d}} \phi_{t_{0}} \widetilde{\phi}_{t_{0}} d x .
$$

Since $L_{t_{0}}$ is null critical, we have $C_{t_{0}} \widetilde{C}_{t_{0}}=0$. Hence $\phi_{t} \widetilde{\phi}_{t}$ tends to zero locally uniformly as $t \rightarrow t_{0}$. Therefore for fixed n the first term converges to zero.

For the second term, applying Lemma 4.3, we have

$$
\int_{D_{n}^{c}} \phi_{t} \widetilde{\phi}_{t} V d x \leq\left\|\hat{G}_{\alpha}\left(V \mathbb{1}_{D_{n}^{c}}\right)\right\|_{\infty}\left(\left(-L \phi_{t}, \widetilde{\phi}_{t}\right)+\alpha\right) .
$$

We note that from the condition of tightness with respect to $V,\left\|\hat{G}_{\alpha}\left(V \mathbb{1}_{D_{n}^{c}}\right)\right\|_{\infty} \rightarrow$ $0(n \rightarrow \infty)$. Again applying Lemma 4.3,

$$
\int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x \leq\left\|\hat{G}_{\alpha} V\right\|_{\infty}\left(\alpha-\lambda(t)+t \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x\right) .
$$

We have immediately

$$
\int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x \leq \frac{\left\|\hat{G}_{\alpha} V\right\|_{\infty}(\alpha-\lambda(t))}{1-t\left\|\hat{G}_{\alpha} V\right\|_{\infty}} .
$$

Since V is in Kato class, $\lim _{\alpha \rightarrow \infty}\left\|\hat{G}_{\alpha} V\right\|_{\infty}=0$. Hence we take α such that $t_{0}\left\|\hat{G}_{\alpha} V\right\|_{\infty}<1$, and then we have

$$
\limsup _{t \rightarrow t_{0}} \int_{\mathbb{R}^{d}} \phi_{t} \widetilde{\phi}_{t} V d x<\infty .
$$

Therefore the second term converges to zero.

The next lemma gives one of the sufficient conditions for $g_{c} \in \mathcal{F}$.

LEMMA 4.5
For a positive critical operator $L=(1 / 2) \nabla \cdot a \nabla+b \cdot \nabla+W$, assume that

$$
\begin{aligned}
x \cdot b(x) & \leq K\left(|x|^{2}+1\right), \\
\xi \cdot a(x) \xi & \leq K\left(|x|^{2}+1\right)|\xi|^{2}
\end{aligned}
$$

for some constant K. Then the the geometric mean $g_{c}=\sqrt{\phi_{c} \widetilde{\phi}_{c}} \in \mathcal{F}$.
Proof
Let $\varphi: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that $\varphi(t)=1$ for $t \in[0,1], \varphi(t)=0$ for $t \geq 2$, and $-2 \leq \varphi^{\prime}(t) \leq 0$. For an $n \in \mathbb{N}$, we define $\chi_{n}(x)=\varphi(|x| / n)$. We can easily have $\nabla \chi_{n}(x)=(1 / n) \varphi^{\prime}(|x| / n) x /|x|$. Using this, we have the following equality by direct calculation and integration by parts:

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} L\left(\chi_{n} g_{c}\right) \chi_{n} g_{c} d x \\
& =\int_{\mathbb{R}^{d}}\left\{\left(\nabla g_{c} \cdot a \nabla \chi_{n}\right) \chi_{n} g_{c}+\frac{1}{2}\left(\nabla \cdot a \nabla \chi_{n}\right) \chi_{n} g_{c}^{2}\right. \\
& \left.\quad+\left(b \cdot \nabla \chi_{n}\right) \chi_{n} g_{c}^{2}+\left(L g_{c}\right) g_{c} \chi_{n}^{2}\right\} d x \\
& = \\
& \quad \int_{\mathbb{R}^{d}}\left\{-\frac{1}{2} g_{c}^{2} \nabla \chi_{n} \cdot a \nabla \chi_{n}+\left(b \cdot \nabla \chi_{n}\right) \chi_{n} g_{c}^{2}+\left(L g_{c}\right) g_{c} \chi_{n}^{2}\right\} d x .
\end{aligned}
$$

For the first term, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}-\frac{1}{2} g_{c}^{2} \nabla \chi_{n} \cdot a \nabla \chi_{n} d x & =-\frac{1}{2} \int_{\mathbb{R}^{d}} g_{c}^{2} \frac{1}{n^{2}} \varphi^{\prime}\left(\frac{|x|}{n}\right)^{2} \frac{x}{|x|} \cdot a \frac{x}{|x|} d x \\
& \geq-\frac{1}{2} \int_{\mathbb{R}^{d}} g_{c}^{2} \frac{1}{n^{2}} \varphi^{\prime}\left(\frac{|x|}{n}\right)^{2} K\left(|x|^{2}+1\right) d x \\
& \geq-\frac{1}{2} \int_{\mathbb{R}^{d}} g_{c}^{2} \frac{1}{n^{2}} \varphi^{\prime}\left(\frac{|x|}{n}\right)^{2} K\left(4 n^{2}+1\right) d x \\
& \geq-9 K \int_{\mathbb{R}^{d}} g_{c}^{2} d x .
\end{aligned}
$$

For the second term, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left(b \cdot \nabla \chi_{n}\right) \chi_{n} g_{c}^{2} d x & =\int_{\mathbb{R}^{d}} \chi_{n} g_{c}^{2} b \cdot \frac{1}{n} \varphi^{\prime}\left(\frac{|x|}{n}\right) \frac{x}{|x|} d x \\
& \geq \int_{\mathbb{R}^{d}} \chi_{n} g_{c}^{2} \frac{1}{n} \varphi^{\prime}\left(\frac{|x|}{n}\right) \frac{K\left(|x|^{2}+1\right)}{|x|} d x \\
& \geq \int_{\mathbb{R}^{d}} \chi_{n} g_{c}^{2} \frac{1}{n} \varphi^{\prime}\left(\frac{|x|}{n}\right) K(|x|+1) d x \\
& \geq \int_{\mathbb{R}^{d}} \chi_{n} g_{c}^{2} \frac{1}{n} \varphi^{\prime}\left(\frac{|x|}{n}\right) K(2 n+1) d x \\
& \geq-5 K \int_{\mathbb{R}^{d}} g_{c}^{2} d x .
\end{aligned}
$$

Noting that $\int_{\mathbb{R}^{d}} L\left(\chi_{n} g_{c}\right) \chi_{n} g_{c} d x=-\hat{\mathcal{E}}\left(\chi_{n} g_{c}, \chi_{n} g_{c}\right)$, we can get

$$
\hat{\mathcal{E}}\left(\chi_{n} g_{c}, \chi_{n} g_{c}\right) \leq 14 K \int_{\mathbb{R}^{d}} g_{c}^{2} d x-\int_{\mathbb{R}^{d}}\left(L g_{c}\right) g_{c} \chi_{n}^{2} d x
$$

Therefore

$$
\limsup _{n \rightarrow \infty} \hat{\mathcal{E}}\left(\chi_{n} g_{c}, \chi_{n} g_{c}\right) \leq 14 K \int_{\mathbb{R}^{d}} g_{c}^{2} d x-\int_{\mathbb{R}^{d}}\left(L g_{c}\right) g_{c} d x
$$

Since $-\int_{\mathbb{R}^{d}}\left(L g_{c}\right) g_{c} d x<\infty$ by Lemma 4.2, we have shown $g_{c} \in D(\mathcal{E})$.
This concludes the proofs of Lemma 4.5 and Theorem 3.1.

5. One-dimensional case

In the one-dimensional case, there is a necessary and sufficient criterion for a diffusion being either recurrent or transient. Indeed, let $L=(1 / 2) a(x) \frac{d^{2}}{d x^{2}}+$ $b(x) \frac{d}{d x}$ on (α, β), where $-\infty \leq \alpha<\beta \leq \infty$. Then the corresponding diffusion to L is recurrent if and only if, for any $x_{0} \in(\alpha, \beta)$,

$$
\int_{\alpha}^{x_{0}} \exp \left(-\int_{x_{0}}^{x} \frac{2 b}{a}(s) d s\right) d x=\int_{x_{0}}^{\beta} \exp \left(-\int_{x_{0}}^{x} \frac{2 b}{a}(s) d s\right) d x=\infty .
$$

In general, for a $\phi \in C_{L}\left(\mathbb{R}^{d}\right)$, the critical properties of L and L^{ϕ} are the same. In the sequel we determine the criticality of L^{ϕ} from which the corresponding diffusion is recurrent.

Let $L=(1 / 2) a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+W(x)$ on $(0, \infty)$ be critical, where $a(x)>0$ and $a(x), b(x), W(x) \in C^{1}((0, \infty))$ and $V \in C^{1}((0, \infty))$ is compactly supported. Let $\lambda(t)$ be the generalized principal eigenvalue of $L+t V$.

In this assumption, we can get the following theorem.

THEOREM 5.1

We have $\lambda^{\prime}(+0)>0$ if and only if L is product L^{1} critical.

Proof

For a fixed $t>0$, if $\lambda=\lambda(t)$, then $L_{t, \lambda}=(1 / 2) a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+W(x)+t V(x)-$ λ on $(0, \infty)$ is also critical (see [3]). From now on we assume that $\lambda>\lambda(t)$. We denote by $u(x, t, \lambda)$ the ground state of $L_{t, \lambda}$. If $x \notin \operatorname{supp} V$, then u is the solution to the equation

$$
\left(\frac{1}{2} a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+W(x)-\lambda\right) w(x)=0 .
$$

Since $L-\lambda$ is subcritical, let $I(x, \lambda)$ be its increasing solution of $(L-\lambda) w=0$, and let $K(x, \lambda)$ be its decreasing solution of $(L-\lambda) w=0$. We note that $I(0, \lambda)=$ $K(\infty, \lambda)=0$ and assume that $I\left(x_{0}, \lambda\right)=K\left(x_{0}, \lambda\right)=1$. Then a general solution is $c_{1} I(x, \lambda)+c_{2} K(x, \lambda)$. From the boundary condition at x_{0}, c_{1}, c_{2} are satisfied:

$$
\left\{\begin{array}{l}
u\left(x_{0}, t, \lambda\right)=c_{1} I\left(x_{0}, \lambda\right)+c_{2} K\left(x_{0}, \lambda\right) \\
u^{\prime}\left(x_{0}, t, \lambda\right)=c_{1} I^{\prime}\left(x_{0}, \lambda\right)+c_{2} K^{\prime}\left(x_{0}, \lambda\right)
\end{array}\right.
$$

Here ' denotes the derivative w.r.t x variable. If $\lambda=\lambda(t)$, then $L_{t, \lambda}$ is critical, so that $c_{1}=0$. Therefore t and $\lambda=\lambda(t)$ satisfy

$$
\begin{equation*}
K^{\prime}\left(x_{0}, \lambda\right) u\left(x_{0}, t, \lambda\right)-K\left(x_{0}, \lambda\right) u^{\prime}\left(x_{0}, t, \lambda\right)=0 . \tag{*}
\end{equation*}
$$

We set

$$
G\left(x_{0}, t, \lambda\right)=u^{\prime}\left(x_{0}, t, \lambda\right)-u\left(x_{0}, t, \lambda\right) \frac{K^{\prime}\left(x_{0}, \lambda\right)}{K\left(x_{0}, \lambda\right)} ;
$$

then $(*)$ can be rewritten as $G\left(x_{0}, t, \lambda\right)=0$. Differentiating $G\left(x_{0}, t, \lambda\right)$ in t, we find that

$$
\frac{\partial}{\partial t} G\left(x_{0}, t, \lambda\right) t^{\prime}(\lambda)+\frac{\partial}{\partial \lambda} G\left(x_{0}, t, \lambda\right)=0 .
$$

We now regard t and λ as independent variables. Let

$$
\begin{aligned}
W(x, t, \lambda) & :=\left|\begin{array}{cc}
u(x, t, \lambda) & \partial_{t} u(x, t, \lambda) \\
G(x, t, \lambda) & \partial_{t} G(x, t, \lambda)
\end{array}\right| \\
& =\left|\begin{array}{cc}
u(x, t, \lambda) & \partial_{t} u(x, t, \lambda) \\
u^{\prime}(x, t, \lambda)-u(x, t, \lambda) k(x, \lambda) & \partial_{t} u^{\prime}(x, t, \lambda)-\partial_{t} u(x, t, \lambda) k(x, \lambda)
\end{array}\right| \\
& =\left|\begin{array}{cc}
u(x, t, \lambda) & \partial_{t} u(x, t, \lambda) \\
u^{\prime}(x, t, \lambda) & \partial_{t} u^{\prime}(x, t, \lambda)
\end{array}\right| .
\end{aligned}
$$

The function u satisfies

$$
\frac{1}{2} a(x) u^{\prime \prime}(x)+b(x) u^{\prime}(x)+W(x) u(x)+t V(x) u(x)-\lambda u(x)=0 .
$$

Differentiating the left side in t, we have

$$
\frac{1}{2} a \partial_{t} u^{\prime \prime}+b \partial_{t} u^{\prime}+(W+t V-\lambda) \partial_{t} u+V u=0 .
$$

Therefore

$$
\begin{aligned}
W^{\prime}(x, t, \lambda) & =\left|\begin{array}{cc}
u(x, t, \lambda) & \partial_{t} u(x, t, \lambda) \\
u^{\prime \prime}(x, t, \lambda) & \partial_{t} u^{\prime \prime}(x, t, \lambda)
\end{array}\right| \\
& =\left|\begin{array}{cc}
u & \partial_{t} u \\
-\frac{2 b}{a} u^{\prime}-\frac{2}{a}(W+t V-\lambda) u & -\frac{2 b}{a} \partial_{t} u^{\prime}-\frac{2}{a}(W+t V-\lambda) \partial_{t} u-\frac{2}{a} V u
\end{array}\right| \\
& =\left|\begin{array}{cc}
u & \partial_{t} u \\
-\frac{2 b}{a} u^{\prime} & -\frac{2 b}{a} \partial_{t} u^{\prime}-\frac{2}{a} V u
\end{array}\right| \\
& =-\frac{2 b}{a} W(x, t, \lambda)-\frac{2}{a} V(x) u^{2}(x, t, \lambda) .
\end{aligned}
$$

Noting that $W(0, t, \lambda)=0$, we can get

$$
W\left(x_{0}, t, \lambda\right)=-\frac{1}{a} \int_{0}^{x_{0}} \frac{2 V(x)}{a} u^{2}(x, t, \lambda) \exp \left(\int_{x_{0}}^{x} \frac{2 b}{a}(s) d s\right) d x<0 .
$$

Since $G\left(x_{0}, t_{0}, 0\right)=0$, we have proved that $\partial_{t} G\left(x_{0}, t_{0}, 0\right)<0$.
We have $t^{\prime}(+0)=\infty$ if and only if $\lim _{\lambda \rightarrow 0} \frac{\partial}{\partial \lambda} G\left(x_{0}, t, \lambda\right)=\infty$. Set $k\left(x_{0}, \lambda\right):=$ $\left(K^{\prime}\left(x_{0}, \lambda\right)\right) /\left(K\left(x_{0}, \lambda\right)\right)$. The function $k\left(x_{0}, \lambda\right)$ diverges as $\lambda \rightarrow 0$ if and only if $t^{\prime}(+0)=\infty$. Differentiating $k\left(x_{0}, \lambda\right)$ in λ, we have

$$
\frac{\partial}{\partial \lambda} k\left(x_{0}, \lambda\right)=\frac{1}{K^{2}\left(x_{0}, \lambda\right)}\left|\begin{array}{ll}
K\left(x_{0}, \lambda\right) & \partial_{\lambda} K\left(x_{0}, \lambda\right) \\
K^{\prime}\left(x_{0}, \lambda\right) & \partial_{\lambda} K^{\prime}\left(x_{0}, \lambda\right)
\end{array}\right| .
$$

Recall that $K(x, \lambda)$ satisfies

$$
\frac{1}{2} a(x) K^{\prime \prime}(x, \lambda)+b(x) K^{\prime}(x)+(W(x)-\lambda) K(x, \lambda)=0 .
$$

Differentiating in λ, we have,

$$
\frac{1}{2} a(x) \partial_{\lambda} K^{\prime \prime}(x, \lambda)+b(x) \partial_{\lambda} K^{\prime}(x)+(W(x)-\lambda) \partial_{\lambda} K(x, \lambda)-K(x, \lambda)=0 .
$$

Thus

$$
\left|\begin{array}{cc}
K(x, \lambda) & \partial_{\lambda} K(x, \lambda) \\
K^{\prime}(x, \lambda) & \partial_{\lambda} K^{\prime}(x, \lambda)
\end{array}\right|^{\prime}=-\frac{2 b}{a}(x)\left|\begin{array}{ll}
K(x, \lambda) & \partial_{\lambda} K(x, \lambda) \\
K^{\prime}(x, \lambda) & \partial_{\lambda} K^{\prime}(x, \lambda)
\end{array}\right|+\frac{2 K^{2}(x, \lambda)}{a(x)} .
$$

$K(\infty, \lambda)=0$ and $\left(K^{2}(y, \lambda)\right) /(a(y)) \exp \left(\int_{x_{0}}^{y} \frac{2 b}{a}(s) d s\right)$ is integrable on $\left(x_{0}, \infty\right)$.
From this,
$\partial_{\lambda} k\left(x_{0}, \lambda\right)=\frac{2}{K^{2}\left(x_{0}, \lambda\right)} \exp \left(-\int_{x_{0}}^{x_{0}} \frac{2 b}{a}(s) d s\right) \int_{\infty}^{x_{0}} \frac{K^{2}(y, \lambda)}{a(y)} \exp \left(\int_{x_{0}}^{y} \frac{2 b}{a}(s) d s\right) d y$.

Letting $\lambda \rightarrow 0, K^{2}(x, \lambda) \rightarrow u^{2}(x)$ on each point $x \in\left[x_{0}, \infty\right)$. Therefore if the integral

$$
\int_{\infty}^{x_{0}} \frac{u^{2}(y)}{a(y)} \exp \left(\int_{x_{0}}^{y} \frac{2 b}{a}(s) d s\right) d y
$$

converges, then $\partial_{\lambda} k\left(x_{0}, \lambda\right)$ also converges. Then L is product L^{1}-critical if and only if the above integral is finite, and we have shown the theorem.

References

[1] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 ed., Classics Math., Springer, Berlin, 1995.
[2] M. Klaus, On the bound state of Schrödinger operators in one dimension, Ann. Physics 108 (1977), 288-300.
[3] R. G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge Stud. Adv. Math. 45, Cambridge Univ. Press, Cambridge, 1995.
[4] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics 97 (1976), 279-288.
[5] M. Takeda and K. Tsuchida, Differentiability of spectral functions for symmetric α-stable processes, Trans. Amer. Math. Soc. 359 (2007), 4031-4054.
[6] Z. Vondraček, An estimate for the L^{2}-norm of a quasicontinuous function with respect to a smooth measure, Arch. Math. (Basel) 67 (1996), 408-414.

Department of Mathematics, Kyoto University, Kyoto 602-8502, Japan; tanida@math.kyoto-u.ac.jp

