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Abstract In this article, we compute MU ∗(BSO(2m)) and show that it is generated
as an MU ∗-algebra by Conner-Floyd Chern classes ci and one 2m-dimensional element
ym. The case BO(n) was studied by W. S. Wilson, and the case BSO(2m+1) is derived
directly from the result. We obtain the result for BSO(2m) by using (equivariant) strat-
ification methods introduced to compute Chow rings by Guillot, Molina, Vezzosi, and
Vistoli.

1. Introduction

The complex cobordism of the classifying space of the nth orthogonal group was
computed by W. S. Wilson [Wi], which is the simplest possible result that we
can expect:

MU ∗(BOn) ∼= MU ∗[[c1, . . . , cn]]/(c1 − c∗
1, . . . , cn − c∗

n),

where ck is the Conner-Floyd Chern class of complexification map O(n) → U(n)
and c∗

k is the Chern class of the conjugate of the map.
The next problem is the case BSOn. When n is odd, there is an isomorphism

On
∼= SOn × Z/2, and we get MU ∗(BSOodd) directly from Wilson’s result,

MU ∗(BSO2m+1) ∼= MU ∗(BO2m+1)/(F1),

where F1 is the image of c1 under B det∗ : MU ∗(BZ/2) → MU ∗(BO2m+1).
Kono and Yagita [KY] and Inoue [In] computed MU ∗(BSO2n) for n ≤ 3 by

using the Atiyah-Hirzebruch spectral sequence. The results are simple, but the
Atiyah-Hirzebruch spectral sequence is very complicated even when n = 3 (see
[In]).

On the other hand, Totaro [To] showed that for algebraic groups G, the clas-
sifying spaces BG are approximated by algebraic varieties. Molina and Vistoli
[MVi] computed Chow rings CH ∗(BG) for classical groups G (e.g., GLn, On,
SOn, . . .) by using the stratification method introduced by Vezzosi [Ve]. Apply-
ing this method to MU ∗(−) theory (while we do not use results of algebraic
geometry), we get the following theorems.

THEOREM 1.1

There is an element ym ∈ MU 2m(BSO2m) with y2
m = (−1)m22m−2c2m mod(v1, . . .)
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such that there is an MU ∗-algebra isomorphism

MU ∗(BSO2m) ∼= MU ∗[[c2, c4, . . . , c2m]]{ym} ⊕ MU ∗(BO2m)/(F1)

with c2i−1ym = 0mod(v1, . . .) for 1 ≤ i ≤ m.

We also prove

K(s)∗(BSO2m) ∼= K(s)∗ ⊗MU ∗ MU ∗(BSO2m)

for the Morava K-theory K(s)∗(X) for each s ≥ 0. Hence from the main result
of [RWY], we have the following.

THEOREM 1.2

The Küneth formula holds for all ni ≥ 1 and 1 ≤ i ≤ s

MU ∗(BSOn1 × · · · × BSOns) ∼= MU ∗(BSOn1)⊗̂MU ∗ · · · ⊗̂MU ∗ MU ∗(BSOns).

Let Ω∗(X) be the algebraic cobordism defined by Levine and Morel [LM1,2] and
MGL2∗,∗(X) be the (2∗, ∗)-dimensional parts of MGL∗,∗(X) ([MoVo], [Vo]) the
motivic cobordism defined by Voevodsky.

THEOREM 1.3

For all n ≥ 1, there are isomorphisms

Ω∗(BSOn) ∼= MGL2∗,∗(BSOn) ∼= MU 2∗(BSOn).

In particular, we see that Totaro’s conjecture [To, Introduction]

MU 2∗(BG) ⊗MU ∗ Z ∼= CH ∗(BG)

holds for G = SOn, while CH ∗(BSOn) itself is computed by R. Field ([Fi], [Pa])
and recomputed by Molina and Vistoli by using the stratification methods.

In this article we use BP -theory assuming p = 2 instead of MU -theory.
Indeed, there is the isomorphism MU ∗(X)(p)

∼= MU ∗
(p) ⊗BP∗ BP ∗(X).

Section 2 is a brief introduction of the stratification method (for Chow rings)
by Molina and Vistoli. Section 3 is the application of this method for BP -theory
when X = BOn. The BP -theories for cases BSOn are studied in §4 and §5 when
n = odd and n = even, respectively. Morava K-theory of BSOn is studied in §6.
In §7, we note some results of BP -orientability as applications of the preceding
sections.

2. Stratification method

We recall in this section the arguments by Molina and Vistoli [MVi] (see also
[Gu], [Vi]). For a smooth algebraic set X over a field k of ch(k) = 0, let
A∗(X) = CH ∗(X) be the Chow ring generated by algebraic cycles modulo ratio-
nal equivalence. Let G be an algebraic group over k. Suppose that G acts on
X . Let A∗

G(X) be the equivariant Chow ring (the Borel cohomology) defined by
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Edidin and Graham [EG] (and by Totaro [To]) as follows. For each i ≥ 0, choose
a representation V of G with an open algebraic set U on which G acts freely, and
codimV (V − U) > i. Then the quotient (U × X)/G exists as a smooth algebraic
space, and we can define

Ai
G(X) = Ai

(
(U × X)/G

)
.

This definition is independent of the choice of such V and U .
Of course, we identify A∗

G = A∗
G(pt) = A∗(BG). For a subgroup H of G, by

the definition we see

A∗
G

(
(X × G)/H

) ∼= A∗
H(X).

One of the most important properties for A∗
G(−)-theory is the localization

exact sequence; if Y is a closed G-equivariant algebraic subset of X of codimen-
sion s and i : Y ⊂ X and j : X − Y ⊂ X are the inclusions, then the following
sequence is exact:

A∗ −s
G (Y ) i∗→ A∗

G(X)
j∗

→ A∗
G(X − Y ) → 0.

R. Field [Fi] computed the Chow ring of BSO2m.

THEOREM 2.1

(Field) The Chow ring A∗
SO2m

= CH ∗(BSO2m) is isomorphic to

Z[c2, c3, . . . , c2m, ym]/
(
y2

m − (−1)m22m−2c2m,2codd, ymcodd

)
.

By using a Vezzosi stratification method (see [Ve]) Molina and Vistoli [MVi] give a
very clear explanation of A∗

G for classical groups G; the outline of their arguments
for G = SO2m is as follows.

Let G = SOn, n = 2m. Recall that the (split) special orthogonal group
SOn is defined as the subgroup of SLn generated by elements that preserve the
quadratic form

q(x1e1 + · · · + xnen) = x2
1 + · · · + x2

m − x2
m+1 − · · · − x2

2m

for the basis e1, . . . , en of V = An. Hence the sets

B =
{
x ∈ A

n
∣∣ q(x) �= 0

}
, C =

{
x ∈ A

n − {0}
∣∣ q(x) = 0

}
,

and An − {0} are all SOn-invariant (and On-invariant) sets.
Thus we have the localization exact sequences

(1) A∗ −n
G ({0}) i1∗−→ A∗

G(An) −→ A∗
G(An − {0}) → 0,

(2) A∗ −1
G (C) i2∗−→ A∗

G(An − {0}) −→ A∗
G(B) → 0.

Let Gm = A
∗ = A − {0} be the multiplicative group. The group Gm ×Z/2 SOn

acts on B via x �→ ks(x) for (k, s) ∈ Gm ×Z/2 SOn identifying (k, s) = (−k, −s).
The stabilizer of e1 in B for this action is isomorphic to the group SOn−1. Hence
it is proven (the detailed proof is given for On in [MVi]) that

B ∼= (Gm ×Z/2 SOn)/(SOn−1) ∼= (Gm × SOn)/(Z/2 × SOn−1).
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(We also note that B ∼= (Gm ×Z/2 On)/On−1.) Hence we have the isomorphism

A∗
SOn

(B) ∼= A∗
SOn

(
(Gm × SOn)/(Z/2 × SOn−1)

) ∼= A∗
Z/2×SOn−1

(Gm).

By using the facts that Gm
∼= A − {0} and A∗

Z/2
∼= Z[y]/(2y) and using the local-

ization sequence again, we can prove (see [MVi])

A∗
SOn

(B) ∼= A∗
Z/2×SOn−1

(Gm) ∼= A∗
SOn−1

.

Next, consider A∗
SOn

(C). The stabilizer of the pair (e1, em+1) is isomorphic
to SOn−2, and the action is transitive. Consider another basis e′

i = 1/2(ei +
em+i), e′

m+i = 1/2(ei − em+i) for 1 ≤ i ≤ m, so that e′
i, e

′
m+i ∈ C and

q(x1e
′
1 + · · · + xne′

n) = x1xm+1 + x2xm+2 + · · · + xmx2m.

The stabilizer of the one point e′
1 contains elements in SOn which are represented

by transformations

e′
m+1 �→ e′ ′

m+1 = e′
m+1 −

( ∑
2≤i≤m

aiam+i

)
e′
1 +

∑
j �=1,m+1

aje
′
j ,

e′
1 �→ e′

1, e′
i �→ −ai±me′

1 + e′
i (i �= 1,m + 1),

on C; indeed, q(e′ ′
m+1) = 0 and e′ ′

m+1 ∈ C. Thus it is proven that (see [MVi, §4])

C ∼= SOn/(An−2
� SOn−2),

where � means the semidirect product. Since A∗
An−2�G

∼= A∗
G, we have the iso-

morphisms

A∗
SOn

(C) ∼= A∗
An−2�SOn−2

∼= A∗
SOn−2

.

Moreover, we know that ym = −i2∗(ym−1) by [MVi, Lemma 5.5] and i1∗(1) =
cn. By induction, we see that A∗

G is multiplicatively generated by c2, . . . , cn, ym.

Then Field’s theorem is proved by considering restriction to A∗
TG

for the maximal
torus TG of G.

These arguments work for Ω∗(X), the algebraic cobordism defined by Levine
and Morel (see [LM1], [LM2]), or MGL2∗,∗(X), the (2∗, ∗)-dimensional parts of
MGL∗,∗(X) (see [MoVo], [Vo]), the motivic cobordism defined by Voevodsky. It
is still known (see [LM2]) that

Ω∗(X) ⊗Ω∗ Z ∼= CH ∗(X),

and we may not have new information directly from the above arguments. How-
ever, if we can show the main theorem, Theorem 1.1, we then get Theorem 1.3
immediately.

Next, consider the case BP ∗(−), the Brown-Peterson cohomology. In gen-
eral, BPodd(X) �= 0, and there does not exist the localization exact sequence. (In
general, j∗ is not epic.) Moreover, BPodd

Z/2×SOn−1
(Gm) �= 0. However, we prove

the main theorem by using the assumption that BPodd
SOn′ = 0 for n′ < n and

BP ∗
SOn′ is 2-torsion free, in the next sections.
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3. BP -theories of BOn

In this section, we apply the stratification methods to BP ∗-theory for G = On

by using the result of Wilson [Wi]. Of course, we consider the case k = A = C,
the complex number field for BP ∗(BG). Moreover, there is Totaro’s cycle map
c̃l (see [To]) such that the composition

CH ∗(X)(p)
c̃l→ BP2∗(X) ⊗BP∗ Z(p)

ρ→ H2∗(X)(p),

with the Thom map ρ, is the usual cycle map. (We will see that c̃l are isomorphic
for cases X = BOn,BSOn.)

REMARK

Totaro began to study CH ∗(BG) to show that the cycle map is not injective
in general. He first showed that for X = BSO(4) the mod 2 cycle map is not
injective by using the result for BP ∗(SO(4)) in [KY]; indeed, ρZ/2(y2) = 0 in
H∗(BSO(4);Z/2).

For a compact Lie group G, we mainly consider its complexification GC but not
G itself. In fact, G is a maximal compact subgroup of GC, and we have the
homotopy equivalence G ∼= GC and BG ∼= BGC. Hence, hereafter in this article,
the group G always means its complexification GC but not the original (real) Lie
group.

For example, SOn is identified as the subgroup of SLn(C) generated by
matrices A with AtA = In, where At is the transposed matrix. Namely, A are
matrices that preserve the quadratic form

q′(x1e1 + · · · + xnen) = x2
1 + · · · + x2

n

for the basis e1, . . . , en of C
n, as described in §2. Of course, these forms q′ and

q given in §2 are isomorphic over C but not over R. In topology, SOn usually
means SOn(q′)R, the orthogonal group defined by q′ over R. We still know the
homotopy equivalences

BSOn(q′)R
∼= BSOn(q′)C

∼= BSOn(q)C.

The group SOn(q)C is written simply by SOn in this article. However, note
that it is unknown whether CH ∗(BSOn(q′)) for k = R is isomorphic or not to
CH ∗(BSOn(q)) given in Theorem 2.1 for n = 2mod(4) (see [MVi, Remark 5.4]).

The topological counter part of the localization exact sequence given in §2
is the following long exact sequence. Let Y be a closed G-complex submanifold
of G-complex manifold X of codimension s. It is well known that each complex
bundle is MU ∗(−) orientable (see [Sw, page 400]), and so it is BP ∗(−)-orientable.
Hence we have the Thom isomorphism

BP ∗ −2s(Y ) ∼= BP ∗(
ThY (X)

) ∼= BP ∗(
X/(X − Y )

)
,

where ThY (X) is the Thom space for the normal bundle induced from Y ⊂ X . By
the definition BP ∗

G(X) = BP ∗((EG × X)/G)), its G-equivariant version follows
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from the nonequivariant version. Thus we have the long exact sequence

→ BP ∗ −2s
G (Y ) i∗→ BP ∗

G(X)
j∗

→ BP ∗
G(X − Y ) → BP ∗ −2s+1

G (Y ) → · · · .

By Wilson’s result, we know that BPodd
On

= 0. The BP -version of the exact
sequence (1) in §2 is given by

(1)′ 0 → BP2∗ −1
On

(Cn − {0}) → BP2∗ −2n
On

({0})

cn→ BP2∗
On

(Cn) → BP2∗
On

(Cn − {0}) → 0.

Next, we study the BP -version of the exact sequence (2) in §2. As for
C = {x ∈ C

n − {0} | q(x) = 0}, we have the similar results

(∗) BP ∗
On

(C) ∼= BP ∗
Cn−2�On−2

∼= BP ∗
On−2

.

As for B = {x ∈ C
n − {0} | q(x) �= 0}, we have the isomorphism

BP ∗
On

(B) ∼= BP ∗
Z/2×On−1

(C∗)

from the the isomorphism for A∗
SOn

(B), similarly. This isomorphism induces the
long exact sequence

→ BP ∗ −1
On

(B) → BP ∗ −2
Z/2×On−1

({0}) i∗→ BP ∗
Z/2×On−1

(C)
j∗

→ BP ∗
On

(B) → · · · .

Here we recall that

BP ∗(BZ/2) ∼= BP ∗[[y]]/
(
[2](y)

)
with |y| = 2,

where y = c1; the first Chern class of the induced bundle from the natural inclu-
sion Z/2 ⊂ C

∗ = GL1(C), and

[2](y) = 2y + v1y
2 + · · · + ∈ BP ∗[[y]]

is the sum of the formal group law for BP ∗-theory. Since this BP ∗-module
satisfies the condition of the Landweber exact functor theorem (see [KY]) we
know that

BP ∗
Z/2×On−1

∼= BP ∗
On−1

[[y]]/
(
[2](y)

)
.

We also see that i∗(x) = y · x in the above exact sequence. Hence we have the
isomorphisms

(∗∗) BP ∗
On

(B) ∼=
{

BP ∗
On−1

[[y]]/([2](y), y) ∼= BP ∗
On−1

for ∗ = even,

BP ∗ −1
On−1

{[2](y)/y} ∼= BP ∗ −1
On−1

for ∗ = odd.

The BP -version of the exact sequence (2) is written as

→ BP2∗ −1
On

(Cn − {0}) → BP2∗ −1
On

(B)

→ BP2∗ −2
On

(C) i2∗→ BP2∗
On

(Cn − {0}) → BP2∗
On

(B) → · · · .

From the isomorphisms (∗), (∗ ∗), we have

(2)′ 0 → BP2∗ −1
On

(Cn − {0}) → BP2∗ −2
On−1

→ BP2∗ −2
On−2

i2∗→ BP2∗
On

(Cn − {0}) → BP2∗
On−1

→ 0.
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LEMMA 3.1

We have BP2∗
On

(Cn − {0}) ∼= BP2∗
On−1

, and i2∗ = 0 in (2)′.

Proof
From (1)′ and (2)′, we see the existence of epimorphisms

BP ∗
On

/(cn) → BP ∗
On

(Cn − {0}) → BP ∗
On−1

.

By Wilson, we still know that BP ∗
On

/(cn) ∼= BP ∗
On−1

. Hence we have the first
isomorphism. Hence i2∗ = 0 in (2)′. �

For ease of notation, let us write

Ker(cn)|BP2∗
On

= Ker(×cn : BP2∗
On

→ BP2∗+2n
On

),

BP ∗
On

(cn) = Ideal(cn) ⊂ BP ∗
On

.

COROLLARY 3.2

We have BP ∗
On−1

(cn−1) ∼= Ker(cn)|BP ∗
On

.

Proof
Consider the maps in (2)′,

BP2∗ −2
On−1

j→ BP2∗ −2
On−2

i2∗→ BP2∗
On

(Cn − {0}).

Here j(cn−1) = cn−1j(1) = 0 since all maps in (2)′ are those of BP ∗
On

-algebras.
Hence BP ∗

On−1
(cn−1) ⊂ Ker(j). So j is decomposed as

BP2∗
On−1

→ BP2∗
On−1

/(cn−1)
j′ ′

→ BP2∗
On−2

.

Here note that i2∗ = 0 and j is epic. So j′ ′ is epic and hence is isomorphic also.
Thus we see that Ker(j) = BP ∗

On−1
(cn−1).

From (1)′ and (2)′ again, we have

BP ∗
On−1

(cn−1) ∼= BP2∗ −1
On

(Cn − {0}) ∼= Ker(cn)|BP ∗
On

.

�

Here we recall the arguments and results of Kriz [Kr].

LEMMA 3.3 ([KR, THEOREM 6.2, LEMMA 6.3])

There is an element qn ∈ BP ∗
On

such that

cn − c∗
n = cnqn and qn−1 = 2 − qn mod(cn).

Moreover, we have the isomorphism

BP ∗
On

(cn) ∼= BP ∗[[c1, . . . , cn]]/(c1 − c∗
1, . . . , cn−1 − c∗

n−1, qn){cn}.
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Proof of the second equation
Let i = [−1] be the inverse map of the formal group laws over BP ∗. Then

c∗
n = i(x1) · · · i(xn),

identifying cn = x1 · · · xn over n variables xi. Of course,

i(x) = −x − v1x
2 + · · · + ∈ BP ∗[[x]].

So cn divides c∗
n, and we put tn = c∗

n/cn. Consider the map fixing x1, . . . , xn−1

and sending xn to zero. Then i(xj)/xj remains fixed for j < n but i(xn)/xn is
sent to −1. Thus we get

tn−1 = −tn mod(xn).

Since cn − c∗
n = (1 − tn)cn, we get the desired equation identifying qn = (1 −

tn). �

REMARK

S. Wilson also computed qn in [Wi]:

qn =
∑

vis2i −1 mod(2, v1, . . .)2,

where s2i −1 =
∑

x2i −1
i identifying cj =

∑
xi1 · · · xij .

As a BP ∗
On−1

-module, Ker(cn) | BP ∗
On

is generated by only one element qn.
Hence the isomorphism BP ∗

On−1
(cn−1) ∼= Ker(cn) | BP ∗

On
in Corollary 3.2 is explic-

itly written by xcn−1 �→ λxqn for x ∈ BP ∗
On−1

, where 0 �= λ ∈ BP ∗
On

is a unit.

LEMMA 3.4

For x ∈ BP ∗
On−1

, the map

BP ∗
On−1

(cn−1)
∼=→ Ker(cn) | BP ∗

On
→ BP ∗

On−1

given by xcn−1 �→ xqn �→ xqn mod(cn) is injective.

Proof
Let 0 �= xcn−1 ∈ BP ∗

On−1
(cn−1). Consider the element

cn−1xqn = cn−1x(2 − qn−1) mod(cn).

Since cn−1qn−1 = 0 in BP ∗
On−1

, the above element is 2cn−1x in BP ∗
On−1

. But
BP ∗

On−1
is 2-torsion free (see [KY], [Kr]), and so 2cn−1x �= 0 ∈ BP ∗

On−1
. Hence

cn−1xqn �= 0 ∈ BP ∗
On−1

, and so xqn �= 0 ∈ BP ∗
On−1

. Thus we get the desired
result. �

Since BP ∗
On

/(cn) ∼= BP ∗
On−1

, we have the following corollary.

COROLLARY 3.5

We have Ker(cn) | BP ∗
On

∩ BP ∗
On

(cn) = 0.
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4. BP -theories of BSOodd

In this section we consider the BP -theory for BSO2m+1. Let n = 2m+1 through-
out this section. First, recall On

∼= SOn × Z/2 and the induced isomorphism

BP ∗
On

∼= BP ∗
SOn

⊗BP∗ BP ∗
Z/2

∼= BP ∗
SOn

[[y]]/([2](y)),

BP ∗
SOn

∼= BP ∗
On

/(F1).

Here F1 = B det∗(y) under the map B det∗ : BP ∗
Z/2 → BP ∗

On
. We note that

F1 =
∑

BP xi but c1 =
∑

xi, where
∑

BP is the sum of the formal group over
BP ∗.

We consider the SOn-version of (1)′.

LEMMA 4.1

We have Ker(cn) | BP ∗
SOn

∼= (Ker(cn) | BP ∗
On

)/(F1), and hence

BP2∗ −1
SOn

(Cn − {0}) ∼= BP2∗ −1
On

(Cn − {0})/(F1).

Proof
Since BP ∗

Z/2 is BP ∗-exact, we know that

Ker(cn)|BP ∗
On

∼=
(
Ker(cn)|BP ∗

SOn

)
⊗BP∗ BP ∗

Z/2.

Taking the quotient ring by the ideal (F1), we get the result. �

Next consider the SOn-version of (2)′. We first note that

BP ∗
SOn

(C) ∼= BP ∗
SOn−2

∼= BP ∗
On−2

/(F1).

Recall that

B ∼= C
∗ ×On−1 SOn

∼= (C∗ × SOn)/On−1.

Hence we see that BP ∗
SOn

(B) ∼= BP ∗
On−1

(C∗).

REMARK

Since (1,1 ⊕ g) = (−1, −1 ⊕ −g) ∈ Gm ×Z/2 On−1, we can identify On−1 ⊂ SOn.

We consider the exact sequence

→ BP ∗
On−1

({0}) ×F1→ BP ∗
On−1

(C1) → BP ∗
On−1

(C∗) → · · · .

So we have the isomorphism

BP ∗
SOn

(B) ∼=
{

BP ∗
On−1

/(F1) for ∗ = even,

Ker(F1) | BP ∗ −1
On−1

for ∗ = odd.

Since [2](F1) = 0 in BP ∗
On−1

, we see that

BP ∗
On−1

(
[2](F1)/F1

)
⊂ Ker(F1) | BP ∗

On−1
⊂ BP ∗+1

SOn
(B).

For ease of notation, let us write 2F = [2](F1)/F1 and 2y = [2](y)/(y) in BP ∗
SOn

(B).
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LEMMA 4.2

We have the isomorphisms

BP2∗ −1
SOn

(B) ∼= BP2∗
On−1

(2F ) ∼= BP2∗
On−1

/(F1){2F },

where BP2∗
On−1

/(F1){2F } means the free BP2∗
On−1

/(F1)-module generated by 2F .

Proof
Compare the sequences (2)′:

0 → BP2∗ −1
On

(Cn − {0})
a−−−−−→ BP2∗ −1

On
(B)

j−−−−−→ BP2∗ −2
On−2

i2∗−−−−−→ 0

c

⏐⏐ d

⏐⏐ e

⏐⏐
0 → BP2∗ −1

On
(Cn − {0})/(F1)

a′
−−−−−→ BP2∗ −1

SOn
(B)

j′
−−−−−→ BP2∗ −2

On−2
/(F1)

i2∗−−−−−→ 0

Here, from (∗ ∗) in §3, we still know that

BP2∗ −1
On

(B) ∼= BP2∗ −2
On−1

{2y } (∼= BP2∗ −2
On−1

).

Moreover, we also know from the above argument that

BP2∗ −1
SOn

(B) ∼= Ker(F1) | BP2∗ −2
On−1

⊃ BP2∗ −2
On−1

(2F ).

Since d(2y) = 2F , we see that Im(d) ⊂ BP2∗ −2
On−1

(2F ).
Since e and j are epic, j′ is epic. As the above sequences are short exact

sequences, then d is epic since e and c are epic. Thus we have

Ker(F1) | BP2∗ −2
On−1

∼= BP2∗ −1
SOn

(B) ∼= BP2∗ −2
On−1

(2F ).

Let us consider the following commutative diagram of short exact sequences:

0 → BP2∗ −1
On

(Cn − {0}) −−−−→ BP2∗ −1
On

(B) −−−−→ BP2∗ −2
On

(C) → 0⏐⏐∼=
⏐⏐∼=

⏐⏐∼=

0 → BP2∗ −2
On−1

(cn−1) −−−−→ BP2∗ −2
On−1

−−−−→ BP2∗ −2
On−2

→ 0⏐⏐pr1

⏐⏐pr2

⏐⏐pr3

0 → BP2∗ −2
On−1

/(F1)(cn−1) −−−−→ BP2∗ −2
On−1

/(F1) −−−−→ BP2∗ −2
On−2

/(F1) → 0⏐⏐∼=
⏐⏐d′

⏐⏐∼=

0 → BP2∗ −1
SOn

(Cn − {0}) −−−−→ BP2∗ −1
SOn

(B) −−−−→ BP2∗ −2
SOn

(C) → 0

Here d′ is isomorphic. Hence BP ∗
On−1

(2F ) ∼= BP ∗
On−1

/(F1){2F } ∼=
BP ∗

On−1
/(F1){2}. �

Thus we get the exact sequence

0 → BP2∗ −1
On

(Cn − {0})/(F1) → BP2∗ −2
On−1

/(F1)

→ BP2∗ −2
On−2

/(F1)
i2∗=0→ BP2∗

SOn
(Cn − {0}) → BP2∗

On−1
/(F1) → 0.
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LEMMA 4.3

We have BP2∗
SOn

(Cn − {0}) ∼= BP2∗
On−1

/(F1), and

Ker(cn) | BP2∗
SOn

∼= BP2∗
On−1

/(F1)(cn−1).

5. BP -theories of BSO2m

Now we study BP ∗
SOn

for n = 2m. By induction on m, we assume

BP ∗
SOn−2

∼= BP ∗
On−2

/(F1) ⊕ BP ∗[[c2, . . . , c2m−2]]{ym−1}.

For ease of notation, let us write BP ∗[[ceven]]{yk } = BP ∗[[c2, c4, . . . , c2k]]{yk }. By
this assumption BPodd

SOn−2
= 0 and the arguments similar to case (2)′, we have

the BPSOn -version of the exact sequence

(2)′ ′ 0 → BP2∗ −1
SOn

(Cn − {0}) → BP2∗ −2
SOn−1

→ BP2∗ −2
SOn−2

i2∗→ BP2∗
SOn

(Cn − {0}) → BP2∗
SOn−1

→ 0.

We also write the long exact sequence

(1)′ ′ → BP ∗ −1
SOn

(Cn − {0}) → BP ∗ −2n
SOn

({0})

cn→ BP ∗
SOn

(Cn) → BP ∗
SOn

(Cn − {0}) → · · · .

Here we note the following.

LEMMA 5.1

There is an element ym ∈ BP ∗
SOn

such that

y2
m = (−1)m22m−2c2m mod(v1, . . .)

and BP ∗[[ceven]]{ym} ⊂ BP ∗
SOn

.

Proof
From (1)′ ′, we know that BP ∗

SOn
/(cn) ⊂ BP ∗

SOn
(Cn − {0}). Let us define

i2∗(ym−1) = ym ∈ BP ∗
SOn

(Cn − {0}). We still know that ym ∈ CH ∗(BSOn)
from the argument in §2 (Field’s theorem). By Totaro’s cycle map, we can
take ym ∈ BP ∗

SOn
(but only decided with mod(cn, v1, . . .)).

Moreover, considering the restriction on the BP ∗-free algebra

BP ∗(BTSOn) ∼= BP ∗ ⊗ H∗(BTSOn)

for the maximal torus TSOn , we see BP ∗[[ceven]]{ym} ⊂ BP ∗
SOn

and the equality
of the lemma (see also the arguments (or Lemma 5.7) in [MVi, §5]). �

REMARK

The element ym is also defined in BP ∗-theories (but not as an image of Totaro’s
cycle map).
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LEMMA 5.2

We have

BP ∗
SOn

(Cn − {0}) ∼=
{

BP ∗+1
On−1

/(F1)(cn−1) if ∗ = odd,

BP ∗
On−1

/(F1) ⊕ BP ∗[[ceven]]{ym}/(cn) if ∗ = even.

Proof
Consider the exact sequence (2)′ ′. For the element 1 ∈ BP ∗

SOn−2
, the image

i2∗(1) = 0 since it is so in BP ∗
On−2

. Recall that

Ker(BP ∗
SOn−1

→ BP ∗
SOn−2

) ∼= BP ∗
SOn−1

(cn−1) ⊂ BP ∗
SOn−1

.

From (2)′ ′ and BP ∗
SOn−1

∼= BP ∗
On−1

/(F1), we have the isomorphism for ∗ = odd.
When ∗ = even, the right-hand formula in this lemma is contained in the

left-hand formula by (2)′ ′ and the inductive assumption introduced in the earlier
parts of this section. Since i2∗(ym−1) = ym and i2∗(1) = 0 in (2)′ ′, we see the
isomorphism for ∗ = even. �

From Lemma 5.2, we show that the map

BP2∗
SOn

(Cn) → BP2∗
SOn

(Cn − {0})

in (1)′ ′ is an epimorphism since ym ∈ BP ∗
SOn

(Cn).

LEMMA 5.3

In (1)′ ′, the map BP2∗ −1
SOn

(Cn − {0}) → BP2∗ −2n
SOn

({0}) is injective.

Proof
Consider the composition of maps

BP2∗
On−1

(cn−1)/(F1) ∼= BP2∗+1
SOn

(Cn − {0}) → BP2∗ −2n
SOn

→ BP2∗ −2n
On−1

/(F1),

which sends xcn−1 to xqn mod(cn) as the map in Lemma 3.4. Since BP ∗
On−1

/F1
∼=

BP ∗
SOn−1

is 2-torsion free, we get the injection of the composition map from the
same argument as the proof of Lemma 3.4. �

From Lemma 5.3 and (1)′ ′, we have the exact sequence 0 → BPodd
SOn

cn→ BPodd
SOn

→
0 and BPodd

SOn
= 0.

Proof of Theorem 1.1
By (1)′ ′ and BPodd

SOn
= 0, we see that BP ∗

SOn
is multiplicatively generated by

c1, . . . , cn and ym.
Given the filtration by the ideal (ci

n) ⊂ BP ∗
On

, we consider the associated
graded algebra

grBP ∗
On

=
⊕

i

(ci
n)/(ci+1

n ).

Since (ci
n)/(ci+1

n ) is a BP ∗
On−1

-module generated by only one element ci
n, we

can write it as BP ∗
On−1

/Ai{ci
n} for some ideal Ai ⊂ BP ∗

On−1
. The fact that
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BP ∗
On

/(cn) ∼= BPOn−1 implies A0 = {0}. From Lemma 3.3, we see that Ker(cn) |
BP ∗

On
(cn) = (qncn) and A1 = (qn). Moreover, for all i ≥ 1, we see that Ai = (qn)

since

×cn : (ci
n)/(ci+1

n ) → (ci+1
n )/(ci+2

n )

is injective (so isomorphic) because Ker(cn) ∩ (cn) = {0} ⊂ BP ∗
On

from Corol-
lary 3.5. Thus

(∗) grBP ∗
On

∼= BP ∗
On−1

⊕
⊕
i=1

BP ∗
On−1

/(qn){ci
n}.

∼= BP ∗
On−1

⊕ BP ∗
On−1

/(qn)[cn]{cn}.

Next, consider the similar graded ring grBP ∗
SOn

for SOn. From the ∗ = even
case in Lemma 5.2, we see

gr0BP ∗
SOn

= BP ∗
SOn

/(cn) ∼= BP ∗
On−1

/(F1) ⊕ BP ∗[[ceven]]/(cn){ym}.

We still know Ker(cn) | BP ∗
SOn

⊂ BP ∗
On−1

/(F1) from Lemma 5.3. This shows that
Ker(cn) ∩ (cn) = 0 also in BP ∗

SOn
. Hence for all i ≥ 1, the map ×cn : (ci

n)/(ci+1
n ) →

(ci+1
n )/(ci+2

n ) is isomorphic. Thus we have the isomorphism

(∗ ∗) grBP ∗
SOn

∼= BP ∗
On−1

/(F1) ⊕ BP ∗
On−1

/(F1, qn)[cn]{cn}

⊕
(
BP ∗[[ceven]]/(cn)

)
[cn]{ym}.

Here, of course, the last term is isomorphic to BP ∗[[ceven]]{ym}.
In general, gr(BP ∗

On
/F1) is a quotient of gr(BP ∗

On
)/(F1). In this case, there

is a map BP ∗
On

/(F1) → BP ∗
SOn

, and there is the isomorphism gr(BP ∗
On

/F1) ∼=
gr(BP ∗

On
)/(F1) from (∗) and (∗ ∗). From the isomorphism (∗∗), we have

grBP ∗
SOn

∼= gr(BP ∗
On

/F1) ⊕ BP ∗[[ceven]]{ym}.

Of course, this implies the isomorphism (without gr) in the theorem. �

Proof of Theorem 1.3
Recall that

Ω∗(X) ⊗Ω∗ Z ∼= MGL2∗,∗(X) ⊗MU ∗ Z ∼= CH ∗(X).

Hence Ω∗
SOn

and MGL2∗,∗
SOn

are generated by c1, . . . , cn and ym as MU ∗-algebras.
Of course, there are relations ci − c∗

i ,F1 also in Ω∗
SOn

and MGL2∗,∗
SOn

. Thus we
get Theorem 1.3 in the introduction. �

6. Integral Morava K-theory

The arguments of this section are suggested from the article by Kriz [Kr]. Let
K(s)∗(X) (resp., K̃(s)∗(X)) be the Morava (the integral Morava) K-theory with
the coefficient ring

K(s)∗ = Z/2[vs, vs] (resp., K̃(s)∗ = Z(2)[vs, v
−1
s ]).
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For ease of notation, fixing s, we simply write

E = K̃(s), E/2 = K(s).

From [KY] and [Kr], it is known that E/2∗(BOn) and E/2∗(BSOodd) are
generated by even-dimensional elements. Hence we know that E∗(BOn) and
E∗(BSOodd) are also generated by even-dimensional elements and are 2-torsion
free. Hence all arguments in §5 work well, and we see that E∗(BSO2m) is also
even-dimensionally generated, and

E∗(BSO2m) ∼= E∗ ⊗BP∗ BP ∗(BSO2m).

We prove the the following lemma.

LEMMA 6.1

E∗(BSO2m) is 2-torsion free.

If Lemma 6.1 holds, then we get E/2∗(BSO2m) ∼= E∗(BSO2m)/2 and hence E/

2odd(BSO2m) = 0. Then from the theorem of Ravenel, Wilson, and Yagita [RWY],
we see that BP ∗(BSO2m) is BP ∗-flat. Thus we get Theorem 1.2 in the introduc-
tion.

Now we prove Lemma 6.1. Since we have

E∗(BSO2m) ∼= E∗[[ceven]]{ym} ⊕ E∗
O2m

/(F1),

we only need to show that E∗
O2m

/(F1) is 2-torsion free. We consider the short
exact sequence

(3) 0 → E∗
On

/(F1)(cn) → E∗
On

/(F1) → E∗
On−1

/(F1) → 0.

Since E∗
On−1

/(F1) ∼= E∗
SOn−1

is 2-torsion free, we only need to prove that BP ∗
On

/

(F1)(cn) is 2-torsion free.
We can show that we have the grading

(4) grE∗
On

/(F1)(cn) ∼= E∗
SOn−1

/(qn)[cn]{cn}

by the same reason as in the proof of Theorem 1.1 in §5. Here note that
E∗

SOn−1
/(qn) ∼= E∗

SOn−1
/(2 − qn−1) and

(5) grE∗
SOn−1

/(2 − qn−1) ∼= E∗
On−2

/(qn−2, F1) ⊕ E∗
SOn−1

/(2)[cn−1]{cn−1}

since qn−1cn−1 = 0 ∈ BP ∗
On−1

.
By induction and (3), we can assume that

E∗
On−2

/(qn−2, F1) ∼= E∗
On−2

(cn−2)/(F1) ⊂ E∗
SOn−2

has no 2-torsion. Hence Lemma 6.1 is proved if we see the following lemma.

LEMMA 6.2

Let xci
n−1c

j
n ∈ E∗

On
/(F1, qn), i, j ≥ 1, be an element such that xci

n−1 �= 0 ∈
E∗

On−1
/(2, F1). Then 2xci

n−1c
j
n �= 0 ∈ E∗

On
/(F1, qn).



MU ∗(BSOn) 321

Proof
We consider the map

[c−1
n−1]E

∗
On

→ [c−1
n−1]E

∗
On−1

⊗E∗ E∗[[xn]]/
(
xn − i(xn)

)
given by ci �→ ci for i ≤ n − 1 and cn �→ cn−1xn. The map sends

cn − c∗
n �→ xncn−1 − i(xn)c∗

n−1

= i(xn)(cn−1 − c∗
n−1) +

(
xn − i(xn)

)
cn−1

and is well defined, and moreover, it is isomorphic; indeed, xn = cn/cn−1.
Recall that

xn − i(xn) = 2xn + vsx
2s

n + · · · in E∗[[xn]] = K̃(s)[[xn]].

Then in [c−1
n−1]E

∗
On

, we have

2cn = 2xncn−1 = −vsx
2s

n cn−1 mod(x2s+1
n ).

From xn = cn/cn−1, the above equation means

2c2s

n−1cn = −vsc
2s

n cn−1 mod(c2s+1
n )

in E∗
On

. Hence, note that it is so in E∗
On

/(F1, qn).
Let x be an element that satisfies the assumption of this lemma. Then

2xci+2s

n−1 cj
n = −vsxci+1

n−1c
2s+j
n mod(c2s+j+1

n ),

which is also nonzero from (4), (5), and v−1
s ∈ E∗ = Z(2)[vs, v

−1
s ]. �

REMARK

By using arguments in §3 and §4, we can inductively prove Eodd(BSOn) = 0 and
E∗(BSOn) has no 2-torsion, without using Wilson’s results. Logically it may be
more simple than the arguments here. However, the proof that it is 2-torsion
free is somewhat technical, and we include them in this section.

7. BP ∗ -orientability

Recall that an n-dimensional vector bundle p : E → X is BP ∗-orientable if there
is an element (Thom class) th ∈ BPn(ThX(E)) such that for each inclusion
i : pt → X the restriction image

i∗(th) ∈ BP ∗(
Thpt(p−1(pt))

) ∼= BP ∗(Sn)

is a BP ∗-module generator. If p : E → X is BP ∗-orientable, we have the Thom
isomorphism BP ∗(X) ∼= BP ∗+n(ThX(E)) by the standard arguments using the
Mayer-Vietoris sequence.

It is well known that each complex bundle is BP ∗-orientable as stated in §3.
Of course, there are SOn-bundles which are not BP ∗-orientable. Note that

BOn
∼= U ×On Dn, BOn−1

∼= U ×On On/On−1
∼= U ×On Sn−1,
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where U is an On-free contractible space, and Dn is the n-dimensional disk.
Hence we can identify

ThU/On
(U ×On Dn) ∼= BOn/BOn−1.

A similar fact also applies to SOn. Let us write the Thom space of BOn

(resp., BSOn) for the universal bundle as MOn = BOn/BOn−1 (resp., MSOn =
BSOn/BSOn−1).

The cofibering BOn−1 → BOn → MOn induces the exact sequence

0 ← BP ∗
On−1

← BP ∗
On

← B̃P
∗
(MOn) ← 0.

Hence we see (cf. [Wi]) that

B̃P
∗
(MOn) ∼= Ker(BP ∗

On
→ BP ∗

On−1
) ∼= BP ∗

On
(cn).

THEOREM 7.1 ([KR, THEOREM 6.2])

We have the short exact sequence

0 → B̃P
∗+2n−2

(MOn−1)
i→ BP ∗

On

Th→ B̃P
∗+2n

(MOn) → 0.

Proof
Consider the short exact sequence

0 → Ker(cn) → BP ∗
On

cn→ BP ∗
On

(cn) → 0.

By Corollary 3.2, we still know that Ker(cn | B∗
On

) ∼= B̃P
∗
(MOn−1). Moreover,

we know BP ∗
On

(cn) ∼= B̃P
∗
(MOn). �

Next, consider the case SOn. The cofiber sequence BSOn−1 → BSOn → MSOn

induces the long exact sequence

0 ← B̃P
∗+1

(MSOn) ← BP ∗
SOn−1

← BP ∗
SOn

← B̃P
∗
(MSOn) ← 0.

Hence we have the isomorphism

BP ∗(MSOn) ∼= BP ∗
On

(cn)/(F1) ⊕ BP �[[ceven]]{ym},

where � = ∗ for n = 2m but � = ∗ − 1 for n = 2m + 1. Thus we have the SOn-
version of Theorem 7.1.

THEOREM 7.2

Let n = 2m or 2m + 1. Then there is an exact sequence

0 → B̃P
∗+2n−2

(MOn−1)/(F1)
i→ BP ∗

SOn

Th→

B̃P
∗+2n

(MSOn) → BP �[[ceven]]/(cn){ym} → 0,

where � = ∗ for n = 2m but � = ∗ − 1 for n = 2m + 1.

REMARK

When n = 2m + 1, note that BP �[[ceven]]/(cn) = BP ∗ −1[[ceven]].
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The kernel in BP ∗
SOn

of the map Th is generated by only one element qn,
which generates Ker(cn) | BPSOn (recall Lemma 3.3). This element gives an
obstruction for BP ∗-orientability.

PROPOSITION 7.3

Let p : E → X be an SOn-bundle, and let f : X → BSOn be its classifying map.
If f ∗(qn) �= 0 ∈ BP ∗(X) then this bundle is not BP ∗-orientable.

Proof
In BP ∗(MSOn), we see Th · qn = 0. Hence in BP ∗(ThX(E)), the induced element
f ∗(Th · qn) = 0. Thus the Thom isomorphism does not hold. �
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