The complex cobordism of $B S O_{n}$

Koichi Inoue and Nobuaki Yagita

Abstract

In this article, we compute $M U^{*}(B S O(2 m))$ and show that it is generated as an $M U^{*}$-algebra by Conner-Floyd Chern classes c_{i} and one $2 m$-dimensional element y_{m}. The case $B O(n)$ was studied by W. S. Wilson, and the case $B S O(2 m+1)$ is derived directly from the result. We obtain the result for $B S O(2 m)$ by using (equivariant) stratification methods introduced to compute Chow rings by Guillot, Molina, Vezzosi, and Vistoli.

1. Introduction

The complex cobordism of the classifying space of the nth orthogonal group was computed by W. S. Wilson [Wi], which is the simplest possible result that we can expect:

$$
M U^{*}\left(B O_{n}\right) \cong M U^{*}\left[\left[c_{1}, \ldots, c_{n}\right]\right] /\left(c_{1}-c_{1}^{*}, \ldots, c_{n}-c_{n}^{*}\right),
$$

where c_{k} is the Conner-Floyd Chern class of complexification map $O(n) \rightarrow U(n)$ and c_{k}^{*} is the Chern class of the conjugate of the map.

The next problem is the case $B S O_{n}$. When n is odd, there is an isomorphism $O_{n} \cong S O_{n} \times \mathbb{Z} / 2$, and we get $M U^{*}\left(B S O_{\text {odd }}\right)$ directly from Wilson's result,

$$
M U^{*}\left(B S O_{2 m+1}\right) \cong M U^{*}\left(B O_{2 m+1}\right) /\left(F_{1}\right),
$$

where F_{1} is the image of c_{1} under $B \operatorname{det}^{*}: M U^{*}(B \mathbb{Z} / 2) \rightarrow M U^{*}\left(B O_{2 m+1}\right)$.
Kono and Yagita [KY] and Inoue [In] computed $M U^{*}\left(B S O_{2 n}\right)$ for $n \leq 3$ by using the Atiyah-Hirzebruch spectral sequence. The results are simple, but the Atiyah-Hirzebruch spectral sequence is very complicated even when $n=3$ (see [In]).

On the other hand, Totaro [To] showed that for algebraic groups G, the classifying spaces $B G$ are approximated by algebraic varieties. Molina and Vistoli [MVi] computed Chow rings $C H^{*}(B G)$ for classical groups G (e.g., $G L_{n}, O_{n}$, $\left.S O_{n}, \ldots\right)$ by using the stratification method introduced by Vezzosi [Ve]. Applying this method to $M U^{*}(-)$ theory (while we do not use results of algebraic geometry), we get the following theorems.

THEOREM 1.1
There is an element $y_{m} \in M U^{2 m}\left(B S O_{2 m}\right)$ with $y_{m}^{2}=(-1)^{m} 2^{2 m-2} c_{2 m} \bmod \left(v_{1}, \ldots\right)$
such that there is an $M U^{*}$-algebra isomorphism

$$
M U^{*}\left(B S O_{2 m}\right) \cong M U^{*}\left[\left[c_{2}, c_{4}, \ldots, c_{2 m}\right]\right]\left\{y_{m}\right\} \oplus M U^{*}\left(B O_{2 m}\right) /\left(F_{1}\right)
$$

with $c_{2 i-1} y_{m}=0 \bmod \left(v_{1}, \ldots\right)$ for $1 \leq i \leq m$.

We also prove

$$
K(s)^{*}\left(B S O_{2 m}\right) \cong K(s)^{*} \otimes_{M U^{*}} M U^{*}\left(B S O_{2 m}\right)
$$

for the Morava K-theory $K(s)^{*}(X)$ for each $s \geq 0$. Hence from the main result of [RWY], we have the following.

THEOREM 1.2
The Küneth formula holds for all $n_{i} \geq 1$ and $1 \leq i \leq s$

$$
M U^{*}\left(B S O_{n_{1}} \times \cdots \times B S O_{n_{s}}\right) \cong M U^{*}\left(B S O_{n_{1}}\right) \hat{\otimes}_{M U^{*}} \cdots \hat{\otimes}_{M U^{*}} M U^{*}\left(B S O_{n_{s}}\right)
$$

Let $\Omega^{*}(X)$ be the algebraic cobordism defined by Levine and Morel [LM1,2] and $M G L^{2 *, *}(X)$ be the $(2 *, *)$-dimensional parts of $M G L^{*, *}(X)([\mathrm{MoVo}],[\mathrm{Vo}])$ the motivic cobordism defined by Voevodsky.

THEOREM 1.3
For all $n \geq 1$, there are isomorphisms

$$
\Omega^{*}\left(B S O_{n}\right) \cong M G L^{2 *, *}\left(B S O_{n}\right) \cong M U^{2 *}\left(B S O_{n}\right)
$$

In particular, we see that Totaro's conjecture [To, Introduction]

$$
M U^{2 *}(B G) \otimes_{M U^{*}} \mathbb{Z} \cong C H^{*}(B G)
$$

holds for $G=S O_{n}$, while $C H^{*}\left(B S O_{n}\right)$ itself is computed by R. Field ([Fi], [Pa]) and recomputed by Molina and Vistoli by using the stratification methods.

In this article we use $B P$-theory assuming $p=2$ instead of $M U$-theory. Indeed, there is the isomorphism $M U^{*}(X)_{(p)} \cong M U_{(p)}^{*} \otimes_{B P^{*}} B P^{*}(X)$.

Section 2 is a brief introduction of the stratification method (for Chow rings) by Molina and Vistoli. Section 3 is the application of this method for $B P$-theory when $X=B O_{n}$. The $B P$-theories for cases $B S O_{n}$ are studied in $\S 4$ and $\S 5$ when $n=$ odd and $n=$ even, respectively. Morava K-theory of $B S O_{n}$ is studied in $\S 6$. In $\S 7$, we note some results of $B P$-orientability as applications of the preceding sections.

2. Stratification method

We recall in this section the arguments by Molina and Vistoli [MVi] (see also $[\mathrm{Gu}],[\mathrm{Vi}])$. For a smooth algebraic set X over a field k of $\operatorname{ch}(k)=0$, let $A^{*}(X)=C H^{*}(X)$ be the Chow ring generated by algebraic cycles modulo rational equivalence. Let G be an algebraic group over k. Suppose that G acts on X. Let $A_{G}^{*}(X)$ be the equivariant Chow ring (the Borel cohomology) defined by

Edidin and Graham [EG] (and by Totaro [To]) as follows. For each $i \geq 0$, choose a representation V of G with an open algebraic set U on which G acts freely, and $\operatorname{codim}_{V}(V-U)>i$. Then the quotient $(U \times X) / G$ exists as a smooth algebraic space, and we can define

$$
A_{G}^{i}(X)=A^{i}((U \times X) / G)
$$

This definition is independent of the choice of such V and U.
Of course, we identify $A_{G}^{*}=A_{G}^{*}(\mathrm{pt})=A^{*}(B G)$. For a subgroup H of G, by the definition we see

$$
A_{G}^{*}((X \times G) / H) \cong A_{H}^{*}(X)
$$

One of the most important properties for $A_{G}^{*}(-)$-theory is the localization exact sequence; if Y is a closed G-equivariant algebraic subset of X of codimension s and $i: Y \subset X$ and $j: X-Y \subset X$ are the inclusions, then the following sequence is exact:

$$
A_{G}^{*-s}(Y) \xrightarrow{i_{*}} A_{G}^{*}(X) \xrightarrow{j^{*}} A_{G}^{*}(X-Y) \rightarrow 0 .
$$

R. Field [Fi] computed the Chow ring of $\mathrm{BSO}_{2 m}$.

THEOREM 2.1
(Field) The Chow ring $A_{S O_{2 m}}^{*}=C H^{*}\left(\mathrm{BSO}_{2 m}\right)$ is isomorphic to

$$
\mathbb{Z}\left[c_{2}, c_{3}, \ldots, c_{2 m}, y_{m}\right] /\left(y_{m}^{2}-(-1)^{m} 2^{2 m-2} c_{2 m}, 2 c_{\mathrm{odd}}, y_{m} c_{\mathrm{odd}}\right)
$$

By using a Vezzosi stratification method (see [Ve]) Molina and Vistoli [MVi] give a very clear explanation of A_{G}^{*} for classical groups G; the outline of their arguments for $G=S O_{2 m}$ is as follows.

Let $G=S O_{n}, n=2 m$. Recall that the (split) special orthogonal group $S O_{n}$ is defined as the subgroup of $S L_{n}$ generated by elements that preserve the quadratic form

$$
q\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1}^{2}+\cdots+x_{m}^{2}-x_{m+1}^{2}-\cdots-x_{2 m}^{2}
$$

for the basis e_{1}, \ldots, e_{n} of $V=\mathbb{A}^{n}$. Hence the sets

$$
B=\left\{x \in \mathbb{A}^{n} \mid q(x) \neq 0\right\}, \quad C=\left\{x \in \mathbb{A}^{n}-\{0\} \mid q(x)=0\right\}
$$

and $\mathbb{A}^{n}-\{0\}$ are all $S O_{n}$-invariant (and O_{n}-invariant) sets.
Thus we have the localization exact sequences

$$
\begin{align*}
& \text { (1) } A_{G}^{*-n}(\{0\}) \xrightarrow{i_{1 *}} A_{G}^{*}\left(\mathbb{A}^{n}\right) \longrightarrow A_{G}^{*}\left(\mathbb{A}^{n}-\{0\}\right) \rightarrow 0, \tag{1}\\
& (2) \quad A_{G}^{*-1}(C) \xrightarrow{i_{2 *}} A_{G}^{*}\left(\mathbb{A}^{n}-\{0\}\right) \longrightarrow A_{G}^{*}(B) \rightarrow 0 .
\end{align*}
$$

Let $\mathbb{G}_{m}=\mathbb{A}^{*}=\mathbb{A}-\{0\}$ be the multiplicative group. The group $\mathbb{G}_{m} \times_{\mathbb{Z} / 2} S O_{n}$ acts on B via $x \mapsto k s(x)$ for $(k, s) \in \mathbb{G}_{m} \times_{\mathbb{Z} / 2} S O_{n}$ identifying $(k, s)=(-k,-s)$. The stabilizer of e_{1} in B for this action is isomorphic to the group $S O_{n-1}$. Hence it is proven (the detailed proof is given for O_{n} in $[\mathrm{MVi}]$) that

$$
B \cong\left(\mathbb{G}_{m} \times_{\mathbb{Z} / 2} S O_{n}\right) /\left(S O_{n-1}\right) \cong\left(\mathbb{G}_{m} \times S O_{n}\right) /\left(\mathbb{Z} / 2 \times S O_{n-1}\right)
$$

(We also note that $B \cong\left(\mathbb{G}_{m} \times_{\mathbb{Z} / 2} O_{n}\right) / O_{n-1}$.) Hence we have the isomorphism

$$
A_{S O_{n}}^{*}(B) \cong A_{S O_{n}}^{*}\left(\left(\mathbb{G}_{m} \times S O_{n}\right) /\left(\mathbb{Z} / 2 \times S O_{n-1}\right)\right) \cong A_{\mathbb{Z} / 2 \times S O_{n-1}}^{*}\left(\mathbb{G}_{m}\right)
$$

By using the facts that $\mathbb{G}_{m} \cong \mathbb{A}-\{0\}$ and $A_{\mathbb{Z} / 2}^{*} \cong \mathbb{Z}[y] /(2 y)$ and using the localization sequence again, we can prove (see [MVi])

$$
A_{S O_{n}}^{*}(B) \cong A_{\mathbb{Z} / 2 \times S O_{n-1}}^{*}\left(\mathbb{G}_{m}\right) \cong A_{S O_{n-1}}^{*} .
$$

Next, consider $A_{S O_{n}}^{*}(C)$. The stabilizer of the pair $\left(e_{1}, e_{m+1}\right)$ is isomorphic to $S O_{n-2}$, and the action is transitive. Consider another basis $e_{i}^{\prime}=1 / 2\left(e_{i}+\right.$ $\left.e_{m+i}\right), e_{m+i}^{\prime}=1 / 2\left(e_{i}-e_{m+i}\right)$ for $1 \leq i \leq m$, so that $e_{i}^{\prime}, e_{m+i}^{\prime} \in C$ and

$$
q\left(x_{1} e_{1}^{\prime}+\cdots+x_{n} e_{n}^{\prime}\right)=x_{1} x_{m+1}+x_{2} x_{m+2}+\cdots+x_{m} x_{2 m} .
$$

The stabilizer of the one point e_{1}^{\prime} contains elements in $S O_{n}$ which are represented by transformations

$$
\begin{gathered}
e_{m+1}^{\prime} \mapsto e_{m+1}^{\prime \prime}=e_{m+1}^{\prime}-\left(\sum_{2 \leq i \leq m} a_{i} a_{m+i}\right) e_{1}^{\prime}+\sum_{j \neq 1, m+1} a_{j} e_{j}^{\prime}, \\
e_{1}^{\prime} \mapsto e_{1}^{\prime}, \quad e_{i}^{\prime} \mapsto-a_{i \pm m} e_{1}^{\prime}+e_{i}^{\prime}(i \neq 1, m+1),
\end{gathered}
$$

on C; indeed, $q\left(e_{m+1}^{\prime \prime}\right)=0$ and $e_{m+1}^{\prime \prime} \in C$. Thus it is proven that (see [MVi, $\left.\S 4\right]$)

$$
C \cong S O_{n} /\left(\mathbb{A}^{n-2} \rtimes S O_{n-2}\right),
$$

where \rtimes means the semidirect product. Since $A_{\mathbb{A}^{n-2} \rtimes G}^{*} \cong A_{G}^{*}$, we have the isomorphisms

$$
A_{S O_{n}}^{*}(C) \cong A_{\mathbb{A}^{n-2} \rtimes S O_{n-2}}^{*} \cong A_{S O_{n-2}}^{*} .
$$

Moreover, we know that $y_{m}=-i_{2 *}\left(y_{m-1}\right)$ by [MVi, Lemma 5.5] and $i_{1 *}(1)=$ c_{n}. By induction, we see that A_{G}^{*} is multiplicatively generated by $c_{2}, \ldots, c_{n}, y_{m}$. Then Field's theorem is proved by considering restriction to $A_{T_{G}}^{*}$ for the maximal torus T_{G} of G.

These arguments work for $\Omega^{*}(X)$, the algebraic cobordism defined by Levine and Morel (see [LM1], [LM2]), or $M G L^{2 *, *}(X)$, the $(2 *, *)$-dimensional parts of $M G L^{*, *}(X)$ (see [MoVo], [Vo]), the motivic cobordism defined by Voevodsky. It is still known (see [LM2]) that

$$
\Omega^{*}(X) \otimes_{\Omega^{*}} \mathbb{Z} \cong C H^{*}(X)
$$

and we may not have new information directly from the above arguments. However, if we can show the main theorem, Theorem 1.1, we then get Theorem 1.3 immediately.

Next, consider the case $B P^{*}(-)$, the Brown-Peterson cohomology. In general, $B P^{\text {odd }}(X) \neq 0$, and there does not exist the localization exact sequence. (In general, j^{*} is not epic.) Moreover, $B P_{\mathbb{Z} / 2 \times S O_{n-1}}^{\text {odd }}\left(\mathbb{G}_{m}\right) \neq 0$. However, we prove the main theorem by using the assumption that $B P_{S O_{n^{\prime}}}^{\text {odd }}=0$ for $n^{\prime}<n$ and $B P_{S O_{n^{\prime}}}^{*}$ is 2-torsion free, in the next sections.

3. $B P$-theories of $B O_{n}$

In this section, we apply the stratification methods to $B P^{*}$-theory for $G=O_{n}$ by using the result of Wilson [Wi]. Of course, we consider the case $k=\mathbb{A}=\mathbb{C}$, the complex number field for $B P^{*}(B G)$. Moreover, there is Totaro's cycle map $\tilde{c l}$ (see $[\mathrm{To}]$) such that the composition

$$
C H^{*}(X)_{(p)} \xrightarrow{\tilde{c l}} B P^{2 *}(X) \otimes_{B P^{*}} \mathbb{Z}_{(p)} \xrightarrow{\rho} H^{2 *}(X)_{(p)},
$$

with the Thom map ρ, is the usual cycle map. (We will see that $\tilde{c l}$ are isomorphic for cases $X=B O_{n}, B S O_{n}$.)

REMARK

Totaro began to study $C H^{*}(B G)$ to show that the cycle map is not injective in general. He first showed that for $X=B S O(4)$ the $\bmod 2$ cycle map is not injective by using the result for $B P^{*}(S O(4))$ in $[\mathrm{KY}]$; indeed, $\rho_{\mathbb{Z} / 2}\left(y_{2}\right)=0$ in $H^{*}(B S O(4) ; \mathbb{Z} / 2)$.

For a compact Lie group G, we mainly consider its complexification $G_{\mathbb{C}}$ but not G itself. In fact, G is a maximal compact subgroup of $G_{\mathbb{C}}$, and we have the homotopy equivalence $G \cong G_{\mathbb{C}}$ and $B G \cong B G_{\mathbb{C}}$. Hence, hereafter in this article, the group G always means its complexification $G_{\mathbb{C}}$ but not the original (real) Lie group.

For example, $S O_{n}$ is identified as the subgroup of $S L_{n}(\mathbb{C})$ generated by matrices A with $A^{t} A=I_{n}$, where A^{t} is the transposed matrix. Namely, A are matrices that preserve the quadratic form

$$
q^{\prime}\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}
$$

for the basis e_{1}, \ldots, e_{n} of \mathbb{C}^{n}, as described in $\S 2$. Of course, these forms q^{\prime} and q given in $\S 2$ are isomorphic over \mathbb{C} but not over \mathbb{R}. In topology, $S O_{n}$ usually means $S O_{n}\left(q^{\prime}\right)_{\mathbb{R}}$, the orthogonal group defined by q^{\prime} over \mathbb{R}. We still know the homotopy equivalences

$$
B S O_{n}\left(q^{\prime}\right)_{\mathbb{R}} \cong B S O_{n}\left(q^{\prime}\right)_{\mathbb{C}} \cong B S O_{n}(q)_{\mathbb{C}} .
$$

The group $S O_{n}(q)_{\mathbb{C}}$ is written simply by $S O_{n}$ in this article. However, note that it is unknown whether $C H^{*}\left(B S O_{n}\left(q^{\prime}\right)\right)$ for $k=\mathbb{R}$ is isomorphic or not to $C H^{*}\left(B S O_{n}(q)\right)$ given in Theorem 2.1 for $n=2 \bmod (4)$ (see [MVi, Remark 5.4]).

The topological counter part of the localization exact sequence given in $\S 2$ is the following long exact sequence. Let Y be a closed G-complex submanifold of G-complex manifold X of codimension s. It is well known that each complex bundle is $M U^{*}(-)$ orientable (see [Sw, page 400]), and so it is $B P^{*}(-)$-orientable. Hence we have the Thom isomorphism

$$
B P^{*-2 s}(Y) \cong B P^{*}\left(\operatorname{Th}_{Y}(X)\right) \cong B P^{*}(X /(X-Y))
$$

where $\operatorname{Th}_{Y}(X)$ is the Thom space for the normal bundle induced from $Y \subset X$. By the definition $\left.B P_{G}^{*}(X)=B P^{*}\left(\left(E_{G} \times X\right) / G\right)\right)$, its G-equivariant version follows
from the nonequivariant version. Thus we have the long exact sequence

$$
\rightarrow B P_{G}^{*-2 s}(Y) \xrightarrow{i_{*}} B P_{G}^{*}(X) \xrightarrow{j^{*}} B P_{G}^{*}(X-Y) \rightarrow B P_{G}^{*-2 s+1}(Y) \rightarrow \cdots .
$$

By Wilson's result, we know that $B P_{O_{n}}^{\text {odd }}=0$. The $B P$-version of the exact sequence (1) in $\S 2$ is given by

$$
\begin{aligned}
(1)^{\prime} \quad 0 & \rightarrow B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n}}^{2 *-2 n}(\{0\}) \\
& \xrightarrow{c_{n}} B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}\right) \rightarrow B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow 0 .
\end{aligned}
$$

Next, we study the $B P$-version of the exact sequence (2) in $\S 2$. As for $C=\left\{x \in \mathbb{C}^{n}-\{0\} \mid q(x)=0\right\}$, we have the similar results

$$
(*) \quad B P_{O_{n}}^{*}(C) \cong B P_{\mathbb{C}^{n-2} \rtimes O_{n-2}}^{*} \cong B P_{O_{n-2}}^{*} .
$$

As for $B=\left\{x \in \mathbb{C}^{n}-\{0\} \mid q(x) \neq 0\right\}$, we have the isomorphism

$$
B P_{O_{n}}^{*}(B) \cong B P_{\mathbb{Z} / 2 \times O_{n-1}}^{*}\left(\mathbb{C}^{*}\right)
$$

from the the isomorphism for $A_{S O_{n}}^{*}(B)$, similarly. This isomorphism induces the long exact sequence

$$
\rightarrow B P_{O_{n}}^{*-1}(B) \rightarrow B P_{\mathbb{Z} / 2 \times O_{n-1}}^{*-2}(\{0\}) \xrightarrow{i+} B P_{\mathbb{Z} / 2 \times O_{n-1}}^{*}(\mathbb{C}) \xrightarrow{j^{*}} B P_{O_{n}}^{*}(B) \rightarrow \cdots .
$$

Here we recall that

$$
B P^{*}(B \mathbb{Z} / 2) \cong B P^{*}[[y]] /([2](y)) \quad \text { with }|y|=2
$$

where $y=c_{1}$; the first Chern class of the induced bundle from the natural inclusion $\mathbb{Z} / 2 \subset \mathbb{C}^{*}=\mathrm{GL}_{1}(\mathbb{C})$, and

$$
[2](y)=2 y+v_{1} y^{2}+\cdots+\in B P^{*}[[y]]
$$

is the sum of the formal group law for $B P^{*}$-theory. Since this $B P^{*}$-module satisfies the condition of the Landweber exact functor theorem (see [KY]) we know that

$$
B P_{\mathbb{Z} / 2 \times O_{n-1}}^{*} \cong B P_{O_{n-1}}^{*}[[y]] /([2](y)) .
$$

We also see that $i_{*}(x)=y \cdot x$ in the above exact sequence. Hence we have the isomorphisms

$$
(* *) \quad B P_{O_{n}}^{*}(B) \cong \begin{cases}B P_{O_{n-1}}^{*}[[y]] /([2](y), y) \cong B P_{O_{n-1}}^{*} & \text { for } *=\text { even } \\ B P_{O_{n-1}}^{*-1}\{[2](y) / y\} \cong B P_{O_{n-1}}^{*-1} & \text { for } *=\text { odd }\end{cases}
$$

The $B P$-version of the exact sequence (2) is written as

$$
\begin{aligned}
& \rightarrow B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n}}^{2 *-1}(B) \\
& \rightarrow B P_{O_{n}}^{2 *-2}(C) \xrightarrow{i_{2 *}} B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n}}^{2 *}(B) \rightarrow \cdots .
\end{aligned}
$$

From the isomorphisms $(*),(* *)$, we have

$$
\begin{aligned}
(2)^{\prime} \quad 0 & \rightarrow B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n-1}}^{2 *-2} \\
& \rightarrow B P_{O_{n-2}}^{2 *-2} \xrightarrow{i_{2} *} B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n-1}}^{2 *} \rightarrow 0 .
\end{aligned}
$$

LEMMA 3.1
We have $B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \cong B P_{O_{n-1}}^{2 *}$, and $i_{2 *}=0$ in $(2)^{\prime}$.
Proof
From (1) ${ }^{\prime}$ and $(2)^{\prime}$, we see the existence of epimorphisms

$$
B P_{O_{n}}^{*} /\left(c_{n}\right) \rightarrow B P_{O_{n}}^{*}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n-1}}^{*} .
$$

By Wilson, we still know that $B P_{O_{n}}^{*} /\left(c_{n}\right) \cong B P_{O_{n-1}}^{*}$. Hence we have the first isomorphism. Hence $i_{2 *}=0$ in (2)'.

For ease of notation, let us write

$$
\begin{gathered}
\operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{2 *}=\operatorname{Ker}\left(\times c_{n}: B P_{O_{n}}^{2 *} \rightarrow B P_{O_{n}}^{2 *+2 n}\right), \\
B P_{O_{n}}^{*}\left(c_{n}\right)=\operatorname{Ideal}\left(c_{n}\right) \subset B P_{O_{n}}^{*}
\end{gathered}
$$

COROLLARY 3.2

We have $B P_{O_{n-1}}^{*}\left(c_{n-1}\right) \cong \operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*}$.
Proof
Consider the maps in (2)',

$$
B P_{O_{n-1}}^{2 *-2} \xrightarrow{j} B P_{O_{n-2}}^{2 *-2} \xrightarrow{i_{2 *}} B P_{O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) .
$$

Here $j\left(c_{n-1}\right)=c_{n-1} j(1)=0$ since all maps in (2)' are those of $B P_{O_{n}}^{*}$-algebras. Hence $B P_{O_{n-1}}^{*}\left(c_{n-1}\right) \subset \operatorname{Ker}(j)$. So j is decomposed as

$$
B P_{O_{n-1}}^{2 *} \rightarrow B P_{O_{n-1}}^{2 *} /\left(c_{n-1}\right) \xrightarrow{j^{\prime \prime}} B P_{O_{n-2}}^{2 *} .
$$

Here note that $i_{2 *}=0$ and j is epic. So $j^{\prime \prime}$ is epic and hence is isomorphic also. Thus we see that $\operatorname{Ker}(j)=B P_{O_{n-1}}^{*}\left(c_{n-1}\right)$.

From (1)' and (2) again, we have

$$
B P_{O_{n-1}}^{*}\left(c_{n-1}\right) \cong B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \cong \operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*} .
$$

Here we recall the arguments and results of Kriz [Kr].

LEMMA 3.3 ([KR, THEOREM 6.2, LEMMA 6.3])
There is an element $q_{n} \in B P_{O_{n}}^{*}$ such that

$$
c_{n}-c_{n}^{*}=c_{n} q_{n} \quad \text { and } \quad q_{n-1}=2-q_{n} \quad \bmod \left(c_{n}\right) .
$$

Moreover, we have the isomorphism

$$
B P_{O_{n}}^{*}\left(c_{n}\right) \cong B P^{*}\left[\left[c_{1}, \ldots, c_{n}\right]\right] /\left(c_{1}-c_{1}^{*}, \ldots, c_{n-1}-c_{n-1}^{*}, q_{n}\right)\left\{c_{n}\right\}
$$

Proof of the second equation
Let $i=[-1]$ be the inverse map of the formal group laws over $B P^{*}$. Then

$$
c_{n}^{*}=i\left(x_{1}\right) \cdots i\left(x_{n}\right),
$$

identifying $c_{n}=x_{1} \cdots x_{n}$ over n variables x_{i}. Of course,

$$
i(x)=-x-v_{1} x^{2}+\cdots+\in B P^{*}[[x]] .
$$

So c_{n} divides c_{n}^{*}, and we put $t_{n}=c_{n}^{*} / c_{n}$. Consider the map fixing x_{1}, \ldots, x_{n-1} and sending x_{n} to zero. Then $i\left(x_{j}\right) / x_{j}$ remains fixed for $j<n$ but $i\left(x_{n}\right) / x_{n}$ is sent to -1 . Thus we get

$$
t_{n-1}=-t_{n} \quad \bmod \left(x_{n}\right)
$$

Since $c_{n}-c_{n}^{*}=\left(1-t_{n}\right) c_{n}$, we get the desired equation identifying $q_{n}=(1-$ t_{n}).

REMARK
S. Wilson also computed q_{n} in [Wi]:

$$
q_{n}=\sum v_{i} s_{2^{i}-1} \quad \bmod \left(2, v_{1}, \ldots\right)^{2}
$$

where $s_{2^{i}-1}=\sum x_{i}^{2^{i}-1}$ identifying $c_{j}=\sum x_{i_{1}} \cdots x_{i_{j}}$.
As a $B P_{O_{n-1}}^{*}$-module, $\operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*}$ is generated by only one element q_{n}. Hence the isomorphism $B P_{O_{n-1}}^{*}\left(c_{n-1}\right) \cong \operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*}$ in Corollary 3.2 is explicitly written by $x c_{n-1} \mapsto \lambda x q_{n}$ for $x \in B P_{O_{n-1}}^{*}$, where $0 \neq \lambda \in B P_{O_{n}}^{*}$ is a unit.

LEMMA 3.4
For $x \in B P_{O_{n-1}}^{*}$, the map

$$
B P_{O_{n-1}}^{*}\left(c_{n-1}\right) \stackrel{\cong}{\leftrightharpoons} \operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*} \rightarrow B P_{O_{n-1}}^{*}
$$

given by $x c_{n-1} \mapsto x q_{n} \mapsto x q_{n} \bmod \left(c_{n}\right)$ is injective.
Proof
Let $0 \neq x c_{n-1} \in B P_{O_{n-1}}^{*}\left(c_{n-1}\right)$. Consider the element

$$
c_{n-1} x q_{n}=c_{n-1} x\left(2-q_{n-1}\right) \quad \bmod \left(c_{n}\right) .
$$

Since $c_{n-1} q_{n-1}=0$ in $B P_{O_{n-1}}^{*}$, the above element is $2 c_{n-1} x$ in $B P_{O_{n-1}}^{*}$. But $B P_{O_{n-1}}^{*}$ is 2-torsion free (see [KY], $[\mathrm{Kr}]$), and so $2 c_{n-1} x \neq 0 \in B P_{O_{n-1}}^{*}$. Hence $c_{n-1} x q_{n} \neq 0 \in B P_{O_{n-1}}^{*}$, and so $x q_{n} \neq 0 \in B P_{O_{n-1}}^{*}$. Thus we get the desired result.

Since $B P_{O_{n}}^{*} /\left(c_{n}\right) \cong B P_{O_{n-1}}^{*}$, we have the following corollary.

We have $\operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*} \cap B P_{O_{n}}^{*}\left(c_{n}\right)=0$.

4. $B P$-theories of $B S O_{\text {odd }}$

In this section we consider the $B P$-theory for $B S O_{2 m+1}$. Let $n=2 m+1$ throughout this section. First, recall $O_{n} \cong S O_{n} \times \mathbb{Z} / 2$ and the induced isomorphism

$$
\begin{gathered}
B P_{O_{n}}^{*} \cong B P_{S O_{n}}^{*} \otimes_{B P^{*}} B P_{\mathbb{Z} / 2}^{*} \cong B P_{S O_{n}}^{*}[[y]] /([2](y)), \\
B P_{S O_{n}}^{*} \cong B P_{O_{n}}^{*} /\left(F_{1}\right)
\end{gathered}
$$

Here $F_{1}=B \operatorname{det}^{*}(y)$ under the map $B \operatorname{det}^{*}: B P_{\mathbb{Z} / 2}^{*} \rightarrow B P_{O_{n}}^{*}$. We note that $F_{1}=\sum_{B P} x_{i}$ but $c_{1}=\sum x_{i}$, where $\sum_{B P}$ is the sum of the formal group over $B P^{*}$.

We consider the $S O_{n}$-version of (1) .

LEMMA 4.1
We have $\operatorname{Ker}\left(c_{n}\right) \mid B P_{S O_{n}}^{*} \cong\left(\operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*}\right) /\left(F_{1}\right)$, and hence

$$
B P_{S O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \cong B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) /\left(F_{1}\right) .
$$

Proof
Since $B P_{\mathbb{Z} / 2}^{*}$ is $B P^{*}$-exact, we know that

$$
\operatorname{Ker}\left(c_{n}\right) \mid B P_{O_{n}}^{*} \cong\left(\operatorname{Ker}\left(c_{n}\right) \mid B P_{S O_{n}}^{*}\right) \otimes_{B P^{*}} B P_{\mathbb{Z} / 2}^{*}
$$

Taking the quotient ring by the ideal $\left(F_{1}\right)$, we get the result.
Next consider the $S O_{n}$-version of (2)'. We first note that

$$
B P_{S O_{n}}^{*}(C) \cong B P_{S O_{n-2}}^{*} \cong B P_{O_{n-2}}^{*} /\left(F_{1}\right) .
$$

Recall that

$$
B \cong \mathbb{C}^{*} \times O_{n-1} S O_{n} \cong\left(\mathbb{C}^{*} \times S O_{n}\right) / O_{n-1}
$$

Hence we see that $B P_{S O_{n}}^{*}(B) \cong B P_{O_{n-1}}^{*}\left(\mathbb{C}^{*}\right)$.

REMARK

Since $(1,1 \oplus g)=(-1,-1 \oplus-g) \in G_{m} \times_{\mathbb{Z} / 2} O_{n-1}$, we can identify $O_{n-1} \subset S O_{n}$.
We consider the exact sequence

$$
\rightarrow B P_{O_{n-1}}^{*}(\{0\}) \stackrel{\times F_{1}}{\rightarrow} B P_{O_{n-1}}^{*}\left(\mathbb{C}^{1}\right) \rightarrow B P_{O_{n-1}}^{*}\left(\mathbb{C}^{*}\right) \rightarrow \cdots
$$

So we have the isomorphism

$$
B P_{S O_{n}}^{*}(B) \cong \begin{cases}B P_{O_{n-1}}^{*} /\left(F_{1}\right) & \text { for } *=\text { even } \\ \operatorname{Ker}\left(F_{1}\right) \mid B P_{O_{n-1}}^{*-1} & \text { for } *=\text { odd }\end{cases}
$$

Since $[2]\left(F_{1}\right)=0$ in $B P_{O_{n-1}}^{*}$, we see that

$$
B P_{O_{n-1}}^{*}\left([2]\left(F_{1}\right) / F_{1}\right) \subset \operatorname{Ker}\left(F_{1}\right) \mid B P_{O_{n-1}}^{*} \subset B P_{S O_{n}}^{*+1}(B) .
$$

For ease of notation, let us write $2_{F}=[2]\left(F_{1}\right) / F_{1}$ and $2_{y}=[2](y) /(y)$ in $B P_{S O_{n}}^{*}(B)$.

LEMMA 4.2

We have the isomorphisms

$$
B P_{S O_{n}}^{2 *-1}(B) \cong B P_{O_{n-1}}^{2 *}\left(2_{F}\right) \cong B P_{O_{n-1}}^{2 *} /\left(F_{1}\right)\left\{2_{F}\right\},
$$

where $B P_{O_{n-1}}^{2 *} /\left(F_{1}\right)\left\{2_{F}\right\}$ means the free $B P_{O_{n-1}}^{2 *} /\left(F_{1}\right)$-module generated by 2_{F}.
Proof
Compare the sequences (2)':

Here, from $(* *)$ in §3, we still know that

$$
B P_{O_{n}}^{2 *-1}(B) \cong B P_{O_{n-1}}^{2 *-2}\left\{2_{y}\right\}\left(\cong B P_{O_{n-1}}^{2 *-2}\right) .
$$

Moreover, we also know from the above argument that

$$
B P_{S O_{n}}^{2 *-1}(B) \cong \operatorname{Ker}\left(F_{1}\right) \mid B P_{O_{n-1}}^{2 *-2} \supset B P_{O_{n-1}}^{2 *-2}\left(2_{F}\right)
$$

Since $d\left(2_{y}\right)=2_{F}$, we see that $\operatorname{Im}(d) \subset B P_{O_{n-1}}^{2 *-2}\left(2_{F}\right)$.
Since e and j are epic, j^{\prime} is epic. As the above sequences are short exact sequences, then d is epic since e and c are epic. Thus we have

$$
\operatorname{Ker}\left(F_{1}\right) \mid B P_{O_{n-1}}^{2 *-2} \cong B P_{S O_{n}}^{2 *-1}(B) \cong B P_{O_{n-1}}^{2 *-2}\left(2_{F}\right)
$$

Let us consider the following commutative diagram of short exact sequences:

Here d^{\prime} is isomorphic. Hence $B P_{O_{n-1}}^{*}\left(2_{F}\right) \cong B P_{O_{n-1}}^{*} /\left(F_{1}\right)\left\{2_{F}\right\} \cong$ $B P_{O_{n-1}}^{*} /\left(F_{1}\right)\{2\}$.

Thus we get the exact sequence

$$
\begin{aligned}
0 & \rightarrow B P_{O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) /\left(F_{1}\right) \rightarrow B P_{O_{n-1}}^{2 *-2} /\left(F_{1}\right) \\
& \rightarrow B P_{O_{n-2}}^{2 *-2} /\left(F_{1}\right)^{i_{2}=0} B P_{S O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{O_{n-1}}^{2 *} /\left(F_{1}\right) \rightarrow 0 .
\end{aligned}
$$

LEMMA 4.3
We have $B P_{S O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \cong B P_{O_{n-1}}^{2 *} /\left(F_{1}\right)$, and

$$
\operatorname{Ker}\left(c_{n}\right) \mid B P_{S O_{n}}^{2 *} \cong B P_{O_{n-1}}^{2 *} /\left(F_{1}\right)\left(c_{n-1}\right)
$$

5. $B P$-theories of $B S O_{2 m}$

Now we study $B P_{S O_{n}}^{*}$ for $n=2 m$. By induction on m, we assume

$$
B P_{S O_{n-2}}^{*} \cong B P_{O_{n-2}}^{*} /\left(F_{1}\right) \oplus B P^{*}\left[\left[c_{2}, \ldots, c_{2 m-2}\right]\right]\left\{y_{m-1}\right\}
$$

For ease of notation, let us write $B P^{*}\left[\left[c_{\text {even }}\right]\right]\left\{y_{k}\right\}=B P^{*}\left[\left[c_{2}, c_{4}, \ldots, c_{2 k}\right]\right]\left\{y_{k}\right\}$. By this assumption $B P_{S O_{n-2}}^{\text {odd }}=0$ and the arguments similar to case $(2)^{\prime}$, we have the $B P_{S O_{n}}$-version of the exact sequence

$$
\begin{aligned}
(2)^{\prime \prime} \quad 0 & \rightarrow B P_{S O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{S O_{n-1}}^{2 *-2} \\
& \rightarrow B P_{S O_{n-2}}^{2 *-2} \xrightarrow{i_{2 *}} B P_{S O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{S O_{n-1}}^{2 *} \rightarrow 0 .
\end{aligned}
$$

We also write the long exact sequence

$$
\begin{aligned}
(1)^{\prime \prime} & \rightarrow B P_{S O_{n}}^{*-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{S O_{n}}^{*-2 n}(\{0\}) \\
& \xrightarrow{c_{n}} B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}\right) \rightarrow B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow \cdots
\end{aligned}
$$

Here we note the following.

LEMMA 5.1

There is an element $y_{m} \in B P_{S O_{n}}^{*}$ such that

$$
y_{m}^{2}=(-1)^{m} 2^{2 m-2} c_{2 m} \quad \bmod \left(v_{1}, \ldots\right)
$$

and $B P^{*}\left[\left[c_{\text {even }}\right]\right]\left\{y_{m}\right\} \subset B P_{S O_{n}}^{*}$.
Proof
From (1)", we know that $B P_{S O_{n}}^{*} /\left(c_{n}\right) \subset B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}-\{0\}\right)$. Let us define $i_{2 *}\left(y_{m-1}\right)=y_{m} \in B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}-\{0\}\right)$. We still know that $y_{m} \in C H^{*}\left(B S O_{n}\right)$ from the argument in $\S 2$ (Field's theorem). By Totaro's cycle map, we can take $y_{m} \in B P_{S O_{n}}^{*}$ (but only decided with $\bmod \left(c_{n}, v_{1}, \ldots\right)$).

Moreover, considering the restriction on the $B P^{*}$-free algebra

$$
B P^{*}\left(B T_{S O_{n}}\right) \cong B P^{*} \otimes H^{*}\left(B T_{S O_{n}}\right)
$$

for the maximal torus $T_{S O_{n}}$, we see $B P^{*}\left[\left[c_{\text {even }}\right]\right]\left\{y_{m}\right\} \subset B P_{S O_{n}}^{*}$ and the equality of the lemma (see also the arguments (or Lemma 5.7) in [MVi, §5]).

REMARK

The element y_{m} is also defined in $B P^{*}$-theories (but not as an image of Totaro's cycle map).

LEMMA 5.2
We have

$$
B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}-\{0\}\right) \cong \begin{cases}B P_{O_{n-1}}^{*+1} /\left(F_{1}\right)\left(c_{n-1}\right) & \text { if } *=\text { odd } \\ B P_{O_{n-1}}^{*} /\left(F_{1}\right) \oplus B P^{*}\left[\left[c_{\mathrm{even}}\right]\right]\left\{y_{m}\right\} /\left(c_{n}\right) & \text { if } *=\text { even }\end{cases}
$$

Proof
Consider the exact sequence (2)". For the element $1 \in B P_{S O_{n-2}}^{*}$, the image $i_{2 *}(1)=0$ since it is so in $B P_{O_{n-2}}^{*}$. Recall that

$$
\operatorname{Ker}\left(B P_{S O_{n-1}}^{*} \rightarrow B P_{S O_{n-2}}^{*}\right) \cong B P_{S O_{n-1}}^{*}\left(c_{n-1}\right) \subset B P_{S O_{n-1}}^{*}
$$

From (2) ${ }^{\prime \prime}$ and $B P_{S O_{n-1}}^{*} \cong B P_{O_{n-1}}^{*} /\left(F_{1}\right)$, we have the isomorphism for $*=$ odd.
When $*=$ even, the right-hand formula in this lemma is contained in the left-hand formula by $(2)^{\prime \prime}$ and the inductive assumption introduced in the earlier parts of this section. Since $i_{2 *}\left(y_{m-1}\right)=y_{m}$ and $i_{2 *}(1)=0$ in $(2)^{\prime \prime}$, we see the isomorphism for $*=$ even.

From Lemma 5.2, we show that the map

$$
B P_{S O_{n}}^{2 *}\left(\mathbb{C}^{n}\right) \rightarrow B P_{S O_{n}}^{2 *}\left(\mathbb{C}^{n}-\{0\}\right)
$$

in $(1)^{\prime \prime}$ is an epimorphism since $y_{m} \in B P_{S O_{n}}^{*}\left(\mathbb{C}^{n}\right)$.
LEMMA 5.3
In $(1)^{\prime \prime}$, the map $B P_{S O_{n}}^{2 *-1}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{S O_{n}}^{2 *-2 n}(\{0\})$ is injective.
Proof
Consider the composition of maps

$$
B P_{O_{n-1}}^{2 *}\left(c_{n-1}\right) /\left(F_{1}\right) \cong B P_{S O_{n}}^{2 *+}\left(\mathbb{C}^{n}-\{0\}\right) \rightarrow B P_{S O_{n}}^{2 *-2 n} \rightarrow B P_{O_{n-1}}^{2 *-2 n} /\left(F_{1}\right)
$$

which sends $x c_{n-1}$ to $x q_{n} \bmod \left(c_{n}\right)$ as the map in Lemma 3.4. Since $B P_{O_{n-1}}^{*} / F_{1} \cong$ $B P_{S O_{n-1}}^{*}$ is 2-torsion free, we get the injection of the composition map from the same argument as the proof of Lemma 3.4.

From Lemma 5.3 and (1) ${ }^{\prime \prime}$, we have the exact sequence $0 \rightarrow B P_{S O_{n}}^{\text {odd }} \xrightarrow{c_{n}} B P_{S O_{n}}^{\text {odd }} \rightarrow$ 0 and $B P_{S O_{n}}^{\text {odd }}=0$.

Proof of Theorem 1.1
By (1) ${ }^{\prime \prime}$ and $B P_{S O_{n}}^{\text {odd }}=0$, we see that $B P_{S O_{n}}^{*}$ is multiplicatively generated by c_{1}, \ldots, c_{n} and y_{m}.

Given the filtration by the ideal $\left(c_{n}^{i}\right) \subset B P_{O_{n}}^{*}$, we consider the associated graded algebra

$$
\operatorname{gr} B P_{O_{n}}^{*}=\bigoplus_{i}\left(c_{n}^{i}\right) /\left(c_{n}^{i+1}\right)
$$

Since $\left(c_{n}^{i}\right) /\left(c_{n}^{i+1}\right)$ is a $B P_{O_{n-1}}^{*}$-module generated by only one element c_{n}^{i}, we can write it as $B P_{O_{n-1}}^{*} / A_{i}\left\{c_{n}^{i}\right\}$ for some ideal $A_{i} \subset B P_{O_{n-1}}^{*}$. The fact that
$B P_{O_{n}}^{*} /\left(c_{n}\right) \cong B P_{O_{n-1}}$ implies $A_{0}=\{0\}$. From Lemma 3.3, we see that $\operatorname{Ker}\left(c_{n}\right) \mid$ $B P_{O_{n}}^{*}\left(c_{n}\right)=\left(q_{n} c_{n}\right)$ and $A_{1}=\left(q_{n}\right)$. Moreover, for all $i \geq 1$, we see that $A_{i}=\left(q_{n}\right)$ since

$$
\times c_{n}:\left(c_{n}^{i}\right) /\left(c_{n}^{i+1}\right) \rightarrow\left(c_{n}^{i+1}\right) /\left(c_{n}^{i+2}\right)
$$

is injective (so isomorphic) because $\operatorname{Ker}\left(c_{n}\right) \cap\left(c_{n}\right)=\{0\} \subset B P_{O_{n}}^{*}$ from Corollary 3.5. Thus

$$
\begin{aligned}
(*) \quad \operatorname{gr} B P_{O_{n}}^{*} & \cong B P_{O_{n-1}}^{*} \oplus \bigoplus_{i=1} B P_{O_{n-1}}^{*} /\left(q_{n}\right)\left\{c_{n}^{i}\right\} . \\
& \cong B P_{O_{n-1}}^{*} \oplus B P_{O_{n-1}}^{*} /\left(q_{n}\right)\left[c_{n}\right]\left\{c_{n}\right\}
\end{aligned}
$$

Next, consider the similar graded ring gr $B P_{S O_{n}}^{*}$ for $S O_{n}$. From the $*=$ even case in Lemma 5.2, we see

$$
\operatorname{gr}^{0} B P_{S O_{n}}^{*}=B P_{S O_{n}}^{*} /\left(c_{n}\right) \cong B P_{O_{n-1}}^{*} /\left(F_{1}\right) \oplus B P^{*}\left[\left[c_{\text {even }}\right]\right] /\left(c_{n}\right)\left\{y_{m}\right\} .
$$

We still know $\operatorname{Ker}\left(c_{n}\right) \mid B P_{S O_{n}}^{*} \subset B P_{O_{n-1}}^{*} /\left(F_{1}\right)$ from Lemma 5.3. This shows that $\operatorname{Ker}\left(c_{n}\right) \cap\left(c_{n}\right)=0$ also in $B P_{S O_{n}}^{*}$. Hence for all $i \geq 1$, the map $\times c_{n}:\left(c_{n}^{i}\right) /\left(c_{n}^{i+1}\right) \rightarrow$ $\left(c_{n}^{i+1}\right) /\left(c_{n}^{i+2}\right)$ is isomorphic. Thus we have the isomorphism

$$
\begin{gathered}
(* *) \quad \operatorname{gr} B P_{S O_{n}}^{*} \cong B P_{O_{n-1}}^{*} /\left(F_{1}\right) \oplus B P_{O_{n-1}}^{*} /\left(F_{1}, q_{n}\right)\left[c_{n}\right]\left\{c_{n}\right\} \\
\oplus\left(B P^{*}\left[\left[c_{\mathrm{even}}\right]\right] /\left(c_{n}\right)\right)\left[c_{n}\right]\left\{y_{m}\right\} .
\end{gathered}
$$

Here, of course, the last term is isomorphic to $B P^{*}\left[\left[c_{\text {even }}\right]\right]\left\{y_{m}\right\}$.
In general, $\operatorname{gr}\left(B P_{O_{n}}^{*} / F_{1}\right)$ is a quotient of $\operatorname{gr}\left(B P_{O_{n}}^{*}\right) /\left(F_{1}\right)$. In this case, there is a map $B P_{O_{n}}^{*} /\left(F_{1}\right) \rightarrow B P_{S O_{n}}^{*}$, and there is the isomorphism $\operatorname{gr}\left(B P_{O_{n}}^{*} / F_{1}\right) \cong$ $\operatorname{gr}\left(B P_{O_{n}}^{*}\right) /\left(F_{1}\right)$ from (*) and (**). From the isomorphism ($* *$), we have

$$
\operatorname{gr} B P_{S O_{n}}^{*} \cong \operatorname{gr}\left(B P_{O_{n}}^{*} / F_{1}\right) \oplus B P^{*}\left[\left[c_{\mathrm{even}}\right]\right]\left\{y_{m}\right\}
$$

Of course, this implies the isomorphism (without gr) in the theorem.
Proof of Theorem 1.3
Recall that

$$
\Omega^{*}(X) \otimes_{\Omega^{*}} \mathbb{Z} \cong M G L^{2 *, *}(X) \otimes_{M U^{*}} \mathbb{Z} \cong C H^{*}(X)
$$

Hence $\Omega_{S O_{n}}^{*}$ and $M G L_{S O_{n}}^{2 * *}$ are generated by c_{1}, \ldots, c_{n} and y_{m} as $M U^{*}$-algebras. Of course, there are relations $c_{i}-c_{i}^{*}, F_{1}$ also in $\Omega_{S O_{n}}^{*}$ and $M G L_{S O_{n}}^{2 * * *}$. Thus we get Theorem 1.3 in the introduction.

6. Integral Morava K-theory

The arguments of this section are suggested from the article by Kriz [Kr]. Let $K(s)^{*}(X)$ (resp., $\tilde{K}(s)^{*}(X)$) be the Morava (the integral Morava) K-theory with the coefficient ring

$$
K(s)^{*}=\mathbb{Z} / 2\left[v_{s}, v_{s}\right] \quad\left(\text { resp., } \tilde{K}(s)^{*}=\mathbb{Z}_{(2)}\left[v_{s}, v_{s}^{-1}\right]\right) .
$$

For ease of notation, fixing s, we simply write

$$
E=\tilde{K}(s), \quad E / 2=K(s)
$$

From $[\mathrm{KY}]$ and $[\mathrm{Kr}]$, it is known that $E / 2^{*}\left(B O_{n}\right)$ and $E / 2^{*}\left(B S O_{\text {odd }}\right)$ are generated by even-dimensional elements. Hence we know that $E^{*}\left(B O_{n}\right)$ and $E^{*}\left(B S O_{\text {odd }}\right)$ are also generated by even-dimensional elements and are 2-torsion free. Hence all arguments in $\S 5$ work well, and we see that $E^{*}\left(B S O_{2 m}\right)$ is also even-dimensionally generated, and

$$
E^{*}\left(B S O_{2 m}\right) \cong E^{*} \otimes_{B P^{*}} B P^{*}\left(B S O_{2 m}\right)
$$

We prove the the following lemma.

LEMMA 6.1
$E^{*}\left(\mathrm{BSO}_{2 m}\right)$ is 2-torsion free.
If Lemma 6.1 holds, then we get $E / 2^{*}\left(B S O_{2 m}\right) \cong E^{*}\left(B S O_{2 m}\right) / 2$ and hence $E /$ $2^{\text {odd }}\left(B S O_{2 m}\right)=0$. Then from the theorem of Ravenel, Wilson, and Yagita [RWY], we see that $B P^{*}\left(B S O_{2 m}\right)$ is $B P^{*}$-flat. Thus we get Theorem 1.2 in the introduction.

Now we prove Lemma 6.1. Since we have

$$
E^{*}\left(B S O_{2 m}\right) \cong E^{*}\left[\left[c_{\text {even }}\right]\right]\left\{y_{m}\right\} \oplus E_{O_{2 m}}^{*} /\left(F_{1}\right),
$$

we only need to show that $E_{O_{2 m}}^{*} /\left(F_{1}\right)$ is 2-torsion free. We consider the short exact sequence

$$
\text { (3) } 0 \rightarrow E_{O_{n}}^{*} /\left(F_{1}\right)\left(c_{n}\right) \rightarrow E_{O_{n}}^{*} /\left(F_{1}\right) \rightarrow E_{O_{n-1}}^{*} /\left(F_{1}\right) \rightarrow 0 .
$$

Since $E_{O_{n-1}}^{*} /\left(F_{1}\right) \cong E_{S O_{n-1}}^{*}$ is 2-torsion free, we only need to prove that $B P_{O_{n}}^{*} /$ $\left(F_{1}\right)\left(c_{n}\right)$ is 2-torsion free.

We can show that we have the grading

$$
\text { (4) } \operatorname{gr} E_{O_{n}}^{*} /\left(F_{1}\right)\left(c_{n}\right) \cong E_{S O_{n-1}}^{*} /\left(q_{n}\right)\left[c_{n}\right]\left\{c_{n}\right\}
$$

by the same reason as in the proof of Theorem 1.1 in $\S 5$. Here note that $E_{S O_{n-1}}^{*} /\left(q_{n}\right) \cong E_{S O_{n-1}}^{*} /\left(2-q_{n-1}\right)$ and
(5) $\operatorname{gr} E_{S O_{n-1}}^{*} /\left(2-q_{n-1}\right) \cong E_{O_{n-2}}^{*} /\left(q_{n-2}, F_{1}\right) \oplus E_{S O_{n-1}}^{*} /(2)\left[c_{n-1}\right]\left\{c_{n-1}\right\}$
since $q_{n-1} c_{n-1}=0 \in B P_{O_{n-1}}^{*}$.
By induction and (3), we can assume that

$$
E_{O_{n-2}}^{*} /\left(q_{n-2}, F_{1}\right) \cong E_{O_{n-2}}^{*}\left(c_{n-2}\right) /\left(F_{1}\right) \subset E_{S O_{n-2}}^{*}
$$

has no 2 -torsion. Hence Lemma 6.1 is proved if we see the following lemma.

LEMMA 6.2

Let $x c_{n-1}^{i} c_{n}^{j} \in E_{O_{n}}^{*} /\left(F_{1}, q_{n}\right), i, j \geq 1$, be an element such that $x c_{n-1}^{i} \neq 0 \in$ $E_{O_{n-1}}^{*} /\left(2, F_{1}\right)$. Then $2 x c_{n-1}^{i} c_{n}^{j} \neq 0 \in E_{O_{n}}^{*} /\left(F_{1}, q_{n}\right)$.

Proof

We consider the map

$$
\left[c_{n-1}^{-1}\right] E_{O_{n}}^{*} \rightarrow\left[c_{n-1}^{-1}\right] E_{O_{n-1}}^{*} \otimes_{E^{*}} E^{*}\left[\left[x_{n}\right]\right] /\left(x_{n}-i\left(x_{n}\right)\right)
$$

given by $c_{i} \mapsto c_{i}$ for $i \leq n-1$ and $c_{n} \mapsto c_{n-1} x_{n}$. The map sends

$$
\begin{aligned}
c_{n}-c_{n}^{*} & \mapsto x_{n} c_{n-1}-i\left(x_{n}\right) c_{n-1}^{*} \\
& =i\left(x_{n}\right)\left(c_{n-1}-c_{n-1}^{*}\right)+\left(x_{n}-i\left(x_{n}\right)\right) c_{n-1}
\end{aligned}
$$

and is well defined, and moreover, it is isomorphic; indeed, $x_{n}=c_{n} / c_{n-1}$.
Recall that

$$
x_{n}-i\left(x_{n}\right)=2 x_{n}+v_{s} x_{n}^{2^{s}}+\cdots \quad \text { in } E^{*}\left[\left[x_{n}\right]\right]=\tilde{K}(s)\left[\left[x_{n}\right]\right] .
$$

Then in $\left[c_{n-1}^{-1}\right] E_{O_{n}}^{*}$, we have

$$
2 c_{n}=2 x_{n} c_{n-1}=-v_{s} x_{n}^{2^{s}} c_{n-1} \quad \bmod \left(x_{n}^{2^{s}+1}\right)
$$

From $x_{n}=c_{n} / c_{n-1}$, the above equation means

$$
2 c_{n-1}^{2^{s}} c_{n}=-v_{s} c_{n}^{2^{s}} c_{n-1} \quad \bmod \left(c_{n}^{2^{s}+1}\right)
$$

in $E_{O_{n}}^{*}$. Hence, note that it is so in $E_{O_{n}}^{*} /\left(F_{1}, q_{n}\right)$.
Let x be an element that satisfies the assumption of this lemma. Then

$$
2 x c_{n-1}^{i+2^{s}} c_{n}^{j}=-v_{s} x c_{n-1}^{i+1} c_{n}^{2^{s}+j} \quad \bmod \left(c_{n}^{s^{s}+j+1}\right),
$$

which is also nonzero from (4), (5), and $v_{s}^{-1} \in E^{*}=\mathbb{Z}_{(2)}\left[v_{s}, v_{s}^{-1}\right]$.

REMARK

By using arguments in $\S 3$ and $\S 4$, we can inductively prove $E^{\text {odd }}\left(B S O_{n}\right)=0$ and $E^{*}\left(B S O_{n}\right)$ has no 2-torsion, without using Wilson's results. Logically it may be more simple than the arguments here. However, the proof that it is 2 -torsion free is somewhat technical, and we include them in this section.

7. $B P^{*}$-orientability

Recall that an n-dimensional vector bundle $p: E \rightarrow X$ is $B P^{*}$-orientable if there is an element (Thom class) th $\in B P^{n}\left(\operatorname{Th}_{X}(E)\right)$ such that for each inclusion $i: \mathrm{pt} \rightarrow X$ the restriction image

$$
i^{*}(\operatorname{th}) \in B P^{*}\left(\operatorname{Th}_{\mathrm{pt}}\left(p^{-1}(\mathrm{pt})\right)\right) \cong B P^{*}\left(S^{n}\right)
$$

is a $B P^{*}$-module generator. If $p: E \rightarrow X$ is $B P^{*}$-orientable, we have the Thom isomorphism $B P^{*}(X) \cong B P^{*+n}\left(\operatorname{Th}_{X}(E)\right)$ by the standard arguments using the Mayer-Vietoris sequence.

It is well known that each complex bundle is $B P^{*}$-orientable as stated in $\S 3$. Of course, there are $S O_{n}$-bundles which are not $B P^{*}$-orientable. Note that

$$
B O_{n} \cong U \times_{O_{n}} D^{n}, \quad B O_{n-1} \cong U \times_{O_{n}} O_{n} / O_{n-1} \cong U \times_{O_{n}} S^{n-1}
$$

where U is an O_{n}-free contractible space, and D^{n} is the n-dimensional disk. Hence we can identify

$$
\operatorname{Th}_{U / O_{n}}\left(U \times_{O_{n}} D^{n}\right) \cong B O_{n} / B O_{n-1} .
$$

A similar fact also applies to $S O_{n}$. Let us write the Thom space of $B O_{n}$ (resp., $B S O_{n}$) for the universal bundle as $M O_{n}=B O_{n} / B O_{n-1}$ (resp., $M S O_{n}=$ $\left.B S O_{n} / B S O_{n-1}\right)$.

The cofibering $B O_{n-1} \rightarrow B O_{n} \rightarrow M O_{n}$ induces the exact sequence

$$
0 \leftarrow B P_{O_{n-1}}^{*} \leftarrow B P_{O_{n}}^{*} \leftarrow \tilde{B P}^{*}\left(M O_{n}\right) \leftarrow 0 .
$$

Hence we see (cf. [Wi]) that

$$
\tilde{B P}^{*}\left(M O_{n}\right) \cong \operatorname{Ker}\left(B P_{O_{n}}^{*} \rightarrow B P_{O_{n-1}}^{*}\right) \cong B P_{O_{n}}^{*}\left(c_{n}\right) .
$$

THEOREM 7.1 ([KR, THEOREM 6.2])
We have the short exact sequence

$$
0 \rightarrow \tilde{B P}{ }^{*+2 n-2}\left(M O_{n-1}\right) \xrightarrow{i} B P_{O_{n}}^{*} \xrightarrow{\mathrm{Th}} \tilde{B P}{ }^{*+2 n}\left(M O_{n}\right) \rightarrow 0 .
$$

Proof

Consider the short exact sequence

$$
0 \rightarrow \operatorname{Ker}\left(c_{n}\right) \rightarrow B P_{O_{n}}^{*} \xrightarrow{c_{n}} B P_{O_{n}}^{*}\left(c_{n}\right) \rightarrow 0
$$

By Corollary 3.2, we still know that $\operatorname{Ker}\left(c_{n} \mid B_{O_{n}}^{*}\right) \cong \tilde{B_{P}}\left(M O_{n-1}\right)$. Moreover, we know $B P_{O_{n}}^{*}\left(c_{n}\right) \cong \tilde{B P}{ }^{*}\left(M O_{n}\right)$.

Next, consider the case $S O_{n}$. The cofiber sequence $B S O_{n-1} \rightarrow B S O_{n} \rightarrow M S O_{n}$ induces the long exact sequence

$$
0 \leftarrow \tilde{B P}{ }^{*+1}\left(M S O_{n}\right) \leftarrow B P_{S O_{n-1}}^{*} \leftarrow B P_{S O_{n}}^{*} \leftarrow \tilde{B P^{*}}\left(M S O_{n}\right) \leftarrow 0 .
$$

Hence we have the isomorphism

$$
B P^{*}\left(M S O_{n}\right) \cong B P_{O_{n}}^{*}\left(c_{n}\right) /\left(F_{1}\right) \oplus B P^{\sharp}\left[\left[c_{\text {even }}\right]\right]\left\{y_{m}\right\},
$$

where $\sharp=*$ for $n=2 m$ but $\sharp=*-1$ for $n=2 m+1$. Thus we have the $S O_{n^{-}}$ version of Theorem 7.1.

THEOREM 7.2

Let $n=2 m$ or $2 m+1$. Then there is an exact sequence

$$
\begin{aligned}
0 \rightarrow & \tilde{B P}^{*+2 n-2}\left(M O_{n-1}\right) /\left(F_{1}\right) \xrightarrow{i} B P_{S O_{n}}^{*} \xrightarrow{\mathrm{Th}} \\
& \tilde{B P^{*+2 n}}\left(M S O_{n}\right) \rightarrow B P^{\sharp}\left[\left[c_{\text {even }}\right]\right] /\left(c_{n}\right)\left\{y_{m}\right\} \rightarrow 0,
\end{aligned}
$$

where $\sharp=*$ for $n=2 m$ but $\sharp=*-1$ for $n=2 m+1$.
REMARK
When $n=2 m+1$, note that $B P^{\sharp}\left[\left[c_{\text {even }}\right]\right] /\left(c_{n}\right)=B P^{*-1}\left[\left[c_{\text {even }}\right]\right]$.

The kernel in $B P_{S O_{n}}^{*}$ of the map Th is generated by only one element q_{n}, which generates $\operatorname{Ker}\left(c_{n}\right) \mid B P_{S O_{n}}$ (recall Lemma 3.3). This element gives an obstruction for $B P^{*}$-orientability.

PROPOSITION 7.3

Let $p: E \rightarrow X$ be an $S O_{n}$-bundle, and let $f: X \rightarrow B S O_{n}$ be its classifying map. If $f^{*}\left(q_{n}\right) \neq 0 \in B P^{*}(X)$ then this bundle is not $B P^{*}$-orientable.

Proof
In $B P^{*}\left(M S O_{n}\right)$, we see $\mathrm{Th} \cdot q_{n}=0$. Hence in $B P^{*}\left(\operatorname{Th}_{X}(E)\right)$, the induced element $f^{*}\left(\mathrm{Th} \cdot q_{n}\right)=0$. Thus the Thom isomorphism does not hold.

Acknowledgments. Pierre Guillot and Angelo Vistoli showed their preprints to the authors. This is the starting point of this article. They also corrected some errors in the early version of this article. The authors thank them very much.

References

[EG] D. Edidin and W. Graham, Equivariant intersection theory, with an appendix "The Chow ring of M_{2}," by A. Vistoli, Invent. Math. 131 (1998), 595-634.
[Fi] R. Field, On the Chow ring of classifying space $B S O(2 n, C)$, preprint, 2000.
[Gu] P. Guillot, The Chow ring of G_{2} and $\operatorname{Spin}(7)$, J. Reine Angew. Math. 604 (2007), 137-158.
[In] K. Inoue, The Brown-Peterson cohomology of BSO(6), J. Math. Kyoto Univ. 32 (1992), 655-666.
[KY] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), 781-798.
[Kr] I. Kriz, Morava K-theory of classifying spaces: Some calculations, Topology 36 (1997), 1247-1273.
[LM1] M. Levine and F. Morel, Cobordisme algébrique, I, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 723-728.
[LM2] , Cobordisme algébrique, II, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 815-820.
[MVi] L. Molina and A. Vistoli, On the Chow rings of classifying spaces for classical groups, Rend. Sem. Mat. Univ. Padova 116 (2006), 271-298.
[MoVo] F. Morel and V. Voevodsky, A^{1}-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (2001), 45-143.
[Pa] R. Pandharipande, Equivariant Chow rings of $O(k), S O(2 k+1)$, and SO(4), J. Reine Angew. Math. 496 (1998), 131-148.
[RWY] D. C. Ravenel, W. S. Wilson, and N. Yagita, Brown-Peterson cohomology from Morava K-theory, K-theory 15 (1998), 147-199.
[Sw] R. Switzer, Algebraic Topology: Homotopy and Homology, Grundlehren. Math. Wiss. 212, Springer, Berlin, 1975.
[To] B. Totaro, "The Chow ring of a classifying space" in Algebraic K-Theory (Seattle, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, 1999, 249-281.
[Ve] G. Vezzosi, On the Chow ring of the classifying stack of $\mathrm{PGL}_{3, C}$, J. Reine Angew. Math. 523 (2000), 1-54.
[Vi] A. Vistoli, On the cohomology and the chow ring of the classifying space of PGL_{p}, J. Reine Angew. Math. 610 (2007), 181-227.
[Vo] V. Voevodsky, The Milnor conjecture, preprint, 1996.
[Wi] W. S. Wilson, The complex cobordism of $B O_{n}$, J. London Math. Soc. (2) 29 (1984), 352-366.

Inoue: Department of Mathematics, Tokyo City University, Tamazutsumi, Setagaya, Tokyo, Japan; inoue@ma.ns.tcu.ac.jp

Yagita: Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan; yagita@mx.ibaraki.ac.jp

