3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v} \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, III: $G=E_{8}$

Toshikazu Miyashita and Ichiro Yokota

Abstract

In the articles [4] and [7], we completed the determination of group realizations $\mathfrak{g}_{e v}$ and \mathfrak{g}_{0} of 2-graded decompositions $\mathfrak{g}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ of exceptional Lie algebras \mathfrak{g} for the universal exceptional Lie groups. In the present article, which is a continuation of [5] and [8], we determine group realizations of subalgebras $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ of 3 -graded decompositions of exceptional Lie algebras \mathfrak{g} for the universal exceptional Lie groups of type E_{8}.

Introduction

The 3 -graded decompositions of simple Lie algebras \mathfrak{g},

$$
\mathfrak{g}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}, \quad\left[\mathfrak{g}_{k}, \mathfrak{g}_{l}\right] \subset \mathfrak{g}_{k+l},
$$

are classified, and the types of subalgebras $\mathfrak{g}_{e v}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{2}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}=$ $\mathfrak{g}_{-3} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{3}$ are determined. Table 1 shows the results of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, and $\mathfrak{g}_{e d}$ for the exceptional Lie algebras of type E_{8} (see [3]).

In the articles [5] and [8], we gave the group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, and $\mathfrak{g}_{\text {ed }}$ for the connected exceptional universal linear Lie groups G of type G_{2}, F_{4}, E_{6}, and E_{7}. In this article, for the connected exceptional universal linear Lie groups G of type E_{8}, we realize the subgroups $G_{e v}, G_{0}$, and $G_{e d}$ of G corresponding to $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, and $\mathfrak{g}_{e d}$ of $\mathfrak{g}=\operatorname{Lie} G$. Our results are shown in Table 2 .

This article is a continuation of [5] and [8], and we use the same notation as in [5] and [8]. So the numbering of sections and theorems starts from Section 5.

Together with the preceding articles [5] and [8] and the present article, the group realization of Hara's table (see [3]) with respect to 3-graded decompositions of exceptional simple Lie algebras by the connected exceptional universal linear Lie groups has been completed.

Table 1

Table 2

Case 1	G	$G_{\text {ev }}$	
		$G_{\text {ed }}$	G_{0}
	$E_{8}{ }^{C}$	$\left(S L(2, C) \times E_{7}^{C}\right) / \boldsymbol{Z}_{2}$	$\left(S L(2, C) \times C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{6}$
		$\left(S L(3, C) \times E_{6}{ }^{C}\right) / \boldsymbol{Z}_{3}$	
	$E_{8(8)}$	$\left(S L(2, \boldsymbol{R}) \times E_{7(7)}\right) / \boldsymbol{Z}_{2} \times 2$	$\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}\right) \times 2$
		$S L(3, \boldsymbol{R}) \times E_{6(6)}$	
	$E_{8(-24)}$	$\left(S L(2, \boldsymbol{R}) \times E_{7(-25)}\right) / \boldsymbol{Z}_{2} \times 2$	$\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}\right) \times 2$
		$S L(3, \boldsymbol{R}) \times E_{6(-26)}$	

Case $2 G \quad G_{e v} \quad G_{0}$
$G_{\text {ed }}$

$$
\begin{array}{lll}
E_{8}{ }^{C} & S s(16, C) & \left(C^{*} \times S L(8, C)\right) / \boldsymbol{Z}_{24} \\
& S L(9, C) / \boldsymbol{Z}_{3} & \\
E_{8(8)} & S s(8,8) \times 2 & \left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right) \times 3 \\
& S L(9, \boldsymbol{R}) \times 3 &
\end{array}
$$

5. Group E_{8}

5.1. Lie groups of type E_{8} and their Lie algebras

In a C-vector space \mathfrak{e}_{8}^{C} and \boldsymbol{R}-vector spaces $\mathfrak{e}_{8(8)}, \mathfrak{e}_{8(-24)}$,

$$
\begin{aligned}
\mathfrak{e}_{8}{ }^{C} & =\mathfrak{e}_{7}{ }^{C} \oplus \mathfrak{P}^{C} \oplus \mathfrak{P}^{C} \oplus C \oplus C \oplus C, \\
\mathfrak{e}_{8(8)} & =\mathfrak{e}_{7(7)} \oplus \mathfrak{P}^{\prime} \oplus \mathfrak{P}^{\prime} \oplus \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{R}, \\
\mathfrak{e}_{8(-24)} & =\mathfrak{e}_{7(-25)} \oplus \mathfrak{P} \oplus \mathfrak{P} \oplus \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{R},
\end{aligned}
$$

we define a Lie bracket $\left[R_{1}, R_{2}\right.$] by

$$
\begin{aligned}
& {\left[\left(\Phi_{1}, P_{1}, Q_{1}, r_{1}, s_{1}, t_{1}\right),\left(\Phi_{2}, P_{2}, Q_{2}, r_{2}, s_{2}, t_{2}\right)\right]} \\
& =(\Phi, P, Q, r, s, t), \\
& \left\{\begin{array}{l}
\Phi=\left[\Phi_{1}, \Phi_{2}\right]+P_{1} \times Q_{2}-P_{2} \times Q_{1}, \\
Q=\Phi_{1} P_{2}-\Phi_{2} P_{1}+r_{1} P_{2}-r_{2} P_{1}+s_{1} Q_{2}-s_{2} Q_{1}, \\
P=\Phi_{1} Q_{2}-\Phi_{2} Q_{1}-r_{1} Q_{2}+r_{2} Q_{1}+t_{1} P_{2}-t_{2} P_{1}, \\
r=-\frac{1}{8}\left\{P_{1}, Q_{2}\right\}+\frac{1}{8}\left\{P_{2}, Q_{1}\right\}+s_{1} t_{2}-s_{2} t_{1}, \\
s=\frac{1}{4}\left\{P_{1}, P_{2}\right\}+2 r_{1} s_{2}-2 r_{2} s_{1}, \\
t=-\frac{1}{4}\left\{Q_{1}, Q_{2}\right\}-2 r_{1} t_{2}+2 r_{2} t_{1} ;
\end{array}\right.
\end{aligned}
$$

then this becomes a simple Lie algebra of types $E_{8}{ }^{C}, E_{8(8)}$, and $E_{8(-24)}$, respectively.

We define a C-linear transformation γ of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\gamma(\Phi, P, Q, r, s, t)=(\gamma \Phi \gamma, \gamma P, \gamma Q, r, s, t),
$$

where γ of the right-hand side is the same as $\gamma \in G_{2}{ }^{C} \subset F_{4}^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}$, and the complex conjugation in $\mathfrak{e}_{8}{ }^{C}$ is denoted by τ :

$$
\tau(\Phi, P, Q, r, s, t)=(\tau \Phi \tau, \tau P, \tau Q, \tau r, \tau s, \tau t) .
$$

The connected universal linear Lie groups $E_{8}^{C}, E_{8(8)}$, and $E_{8(-24)}$ of type E_{8} are given, respectively, by

$$
\begin{aligned}
E_{8}^{C} & =\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{e}_{8}^{C}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\}, \\
E_{8(8)} & =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{e}_{8(8)}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\}, \\
E_{8(-24)} & =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{e}_{8(-24)}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\} .
\end{aligned}
$$

The group $E_{8}{ }^{C}$ is simply connected. From the definitions of the groups above, we have the following.

PROPOSITION 5.1

We have

$$
E_{8(8)} \cong\left(E_{8}^{C}\right)^{\tau \gamma}, \quad E_{8(-24)}=\left(E_{8}^{C}\right)^{\tau} .
$$

For $\alpha \in E_{7}{ }^{C}$, the mapping $\widetilde{\alpha}: \mathfrak{e}_{8}{ }^{C} \rightarrow \mathfrak{e}_{8}{ }^{C}$ is defined by

$$
\widetilde{\alpha}(\Phi, P, Q, r, s, t)=\left(\alpha \Phi \alpha^{-1}, \alpha P, \alpha Q, r, s, t\right) ;
$$

then $\widetilde{\alpha} \in E_{8}{ }^{C}$, so α and $\widetilde{\alpha}$ are identified. The group $E_{8}{ }^{C}$ contains $E_{7}{ }^{C}$ as a subgroup by

$$
E_{7}{ }^{C}=\left\{\widetilde{\alpha} \in E_{8}{ }^{C} \mid \alpha \in E_{7}{ }^{C}\right\} .
$$

Especially, elements v, λ, and ι of $E_{7}^{C}(v(X, Y, \xi, \eta)=(-X,-Y,-\xi,-\eta), \lambda(X, Y$, $\xi, \eta)=(Y,-X, \eta,-\xi), \iota(X, Y, \xi, \eta)=(-i X, i Y,-i \xi, i \eta))$ are also elements of $E_{8}{ }^{C}$.
5.2. Subgroups of type $A_{1}{ }^{C} \oplus E_{7}{ }^{C}, A_{1}{ }^{C} \oplus C \oplus E_{6}{ }^{C}$, and $A_{2}{ }^{C} \oplus E_{6}{ }^{C}$ of $E_{8}{ }^{C}$

We define C-linear transformations $\tilde{\lambda}$ and w of $\mathfrak{e}_{8}{ }^{C}=\mathfrak{e}_{7}^{C} \oplus \mathfrak{P}^{C} \oplus \mathfrak{P}^{C} \oplus C \oplus C \oplus C$ by

$$
\begin{aligned}
\widetilde{\lambda}(\Phi, P, Q, r, s, t) & =\left(\lambda \Phi \lambda^{-1}, \lambda Q,-\lambda P,-r,-t,-s\right) \\
w(\Phi, P, Q, r, s, t) & =w(\Phi(\phi, A, B, \nu),(X, Y, \xi, \eta),(Z, W, \zeta, \mu), r, s, t) \\
& =\left(\Phi\left(\phi, \omega A, \omega^{2} B, \nu\right),\left(\omega X, \omega^{2} Y, \xi, \eta\right),\left(\omega Z, \omega^{2} W, \zeta, \mu\right), r, s, t\right)
\end{aligned}
$$

$\omega=e^{2 \pi i / 3}$, respectively. Then $\widetilde{\lambda}, w \in E_{8}{ }^{C}$ and $\widetilde{\lambda}^{2}=1, w^{3}=1$.
In the Lie algebra $\mathfrak{e}_{8}{ }^{C}$, let

$$
Z=(\Phi(0,0,0,-3), 0,0,0,0,0)
$$

Hereafter (see Theorems 5.2 .1 and 5.4.1) in \mathfrak{P}^{C} and $\mathfrak{e}_{8}{ }^{C}$, we use the following notation:

$$
\begin{gathered}
\dot{X}=(X, 0,0,0), \quad Y=(0, Y, 0,0), \quad \dot{\xi}=(0,0, \xi, 0), \quad \eta=(0,0,0, \eta) \\
\Phi=(\Phi, 0,0,0,0,0), \quad P^{-}=(0, P, 0,0,0,0), \quad Q_{-}=(0,0, Q, 0,0,0) \\
\widetilde{r}=(0,0,0, r, 0,0), \quad s^{-}=(0,0,0,0, s, 0), \quad t_{-}=(0,0,0,0,0, t)
\end{gathered}
$$

Moreover, we mix and combine the above notation. For example,

$$
\dot{X}^{-}=(0,(X, 0,0,0), 0,0,0,0), \quad W_{-}=(0,0,(0, W, 0,0), 0,0,0) .
$$

THEOREM 5.2.1
The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{8(8)}=\left(\mathfrak{e}_{8}^{C}\right)^{\tau \gamma}\left(\right.$ or $\left.\mathfrak{e}_{8}{ }^{C}\right)$,

$$
\mathfrak{e}_{8(8)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to $\operatorname{ad} Z, Z=(\Phi(0,0,0,-3), 0,0,0,0,0)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0}= & \left\{\begin{array}{l}
i G_{01}, \quad 0 \leq k<4 \leq l \leq 7, G_{k l} \text { otherwise, } \\
\widetilde{A}_{1}\left(e_{k}\right), \widetilde{A}_{2}\left(e_{k}\right), \widetilde{A}_{3}\left(e_{k}\right), \widetilde{F}_{1}\left(e_{k}\right), \widetilde{F}_{2}\left(e_{k}\right), \widetilde{F}_{3}\left(e_{k}\right), \quad 0 \leq k \leq 3, \\
i \widetilde{A}_{1}\left(e_{k}\right), i \widetilde{A}_{2}\left(e_{k}\right), i \widetilde{A}_{3}\left(e_{k}\right), \widetilde{F}_{1}\left(e_{k}\right), i \widetilde{F}_{2}\left(e_{k}\right), i \widetilde{F}_{3}\left(e_{k}\right), \quad 4 \leq k \leq 7, \\
\left(E_{1}-E_{2}\right)^{\sim},\left(E_{2}-E_{3}\right)^{\sim}, \mathbf{1}, \widetilde{1}_{1}, 1^{-}, 1_{-},
\end{array}\right\} \\
\mathfrak{g}_{-1}= & \left\{\begin{array}{l}
\dot{E}_{1}^{-}, \dot{E}_{2}^{-}, \dot{E}_{3}^{-}, \dot{F}_{1}\left(e_{k}\right)^{-}, \dot{F}_{2}\left(e_{k}\right)^{-}, \dot{F}_{3}\left(e_{k}\right)^{-}, \quad 0 \leq k \leq 3, \\
i \dot{F}_{1}\left(e_{k}\right)^{-}, i \dot{F}_{2}\left(e_{k}\right)^{-}, i \dot{F}_{3}\left(e_{k}\right)^{-}, \quad 4 \leq k \leq 7, \\
\dot{E}_{1-}, \dot{E}_{2-}, \dot{E}_{3-}, \dot{F}_{1}\left(e_{k}\right), \dot{F}_{2}\left(e_{k}\right)_{-}, \dot{F}_{3}\left(e_{k}\right)_{-}, \quad 0 \leq k \leq 3, \\
i \dot{F}_{1}\left(e_{k}\right)_{-}, i \dot{F}_{2}\left(e_{k}\right)_{-}, i \dot{F}_{3}\left(e_{k}\right)_{-}, \quad 4 \leq k \leq 7,
\end{array}\right\} 54, \\
\mathfrak{g}_{-2} & =\left\{\begin{array}{l}
\widehat{E}_{1}, \widehat{E}_{2}, \widehat{E}_{3}, \widehat{F}_{1}\left(e_{k}\right), \widehat{F}_{2}\left(e_{k}\right), \widehat{F}_{3}\left(e_{k}\right), \quad 0 \leq k \leq 3, \\
i \widehat{F}_{1}\left(e_{k}\right), i \widehat{F}_{2}\left(e_{k}\right), i \widehat{F}_{3}\left(e_{k}\right), \quad 4 \leq k \leq 7,
\end{array}\right. \\
\mathfrak{g}_{-3} & =\left\{1^{-},, 1_{-}\right\} 2, \\
\mathfrak{g}_{1} & =\widetilde{\lambda}\left(\mathfrak{g}_{-1}\right), \mathfrak{g}_{2}=\widetilde{\lambda}\left(\mathfrak{g}_{-2}\right), \mathfrak{g}_{3}=\widetilde{\lambda}\left(\mathfrak{g}_{-3}\right) .
\end{aligned}
$$

Since $(\exp \Phi(0,0,0,-3 \nu))(X, Y, \xi, \eta)=\left(e^{\nu} X, e^{-\nu} Y, e^{-3 \nu} \xi, e^{3 \nu} \eta\right), \nu \in C$, we have

$$
\exp \left(\frac{2 \pi i}{2} Z\right)=v, \quad \exp \left(\frac{2 \pi i}{4} Z\right)=v \iota, \quad \exp \left(\frac{2 \pi i}{3} Z\right)=w
$$

Now, let

$$
z_{2}=\exp \left(\frac{2 \pi i}{2} \operatorname{ad} Z\right), \quad z_{4}=\exp \left(\frac{2 \pi i}{4} \operatorname{ad} Z\right), \quad z_{3}=\exp \left(\frac{2 \pi i}{3} \operatorname{ad} Z\right)
$$

Then, since $\left(\mathfrak{e}_{8}^{C}\right)_{e v}=\left(\mathfrak{e}_{8}^{C}\right)^{z_{2}}=\left(\mathfrak{e}_{8}^{C}\right)^{v},\left(\mathfrak{e}_{8}{ }^{C}\right)_{0}=\left(\mathfrak{e}_{8}^{C}\right)^{z_{4}}=\left(\mathfrak{e}_{8}^{C}\right)^{v \iota},\left(\mathfrak{e}_{8}^{C}\right)_{e d}=$ $\left(\mathfrak{e}_{8}^{C}\right)^{z_{3}}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{w}$, we determine the structures of groups

$$
\begin{aligned}
& \left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{z_{2}}=\left(E_{8}^{C}\right)^{v}, \\
& \left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{z_{4}}=\left(E_{8}^{C}\right)^{v \iota} \text {, } \\
& \left(E_{8}{ }^{C}\right)_{e d}=\left(E_{8}{ }^{C}\right)^{z_{3}}=\left(E_{8}{ }^{C}\right)^{w} .
\end{aligned}
$$

We define a mapping $\psi: S L(2, C) \rightarrow E_{8}{ }^{C}, A \rightarrow \psi(A)$, where $\psi(A)$ is the C linear transformation of $\mathfrak{e}_{8}{ }^{C}$ defined by

$$
\psi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & a 1 & b 1 & 0 & 0 & 0 \\
0 & c 1 & d 1 & 0 & 0 & 0 \\
0 & 0 & 0 & a d+b c & -a c & b d \\
0 & 0 & 0 & -2 a b & a^{2} & -b^{2} \\
0 & 0 & 0 & 2 c d & -c^{2} & d^{2}
\end{array}\right)
$$

and we define a mapping $\phi: C^{*} \rightarrow E_{7}{ }^{C}, \theta \rightarrow \phi(\theta)$, where $\phi(\theta)$ is the C-linear transformation of \mathfrak{P}^{C} defined by

$$
\phi(\theta)(X, Y, \xi, \theta)=\left(\theta X, \theta^{-1} Y, \theta^{-3} \xi, \theta^{3} \eta\right) .
$$

THEOREM 5.2.2

We have the following:
(1) $\left(E_{8}^{C}\right)_{e v} \cong\left(S L(2, C) \times E_{7}^{C}\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-1)\}$,
(2) $\left(E_{8}^{C}\right)_{0} \cong\left(S L(2, C) \times C^{*} \times E_{6}^{C}\right) / \boldsymbol{Z}_{6}, \boldsymbol{Z}_{6}=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{3}, \boldsymbol{Z}_{2}=\{(E, 1,1)$, $(-E,-1,1)\}, \boldsymbol{Z}_{3}=\left\{(E, 1,1),\left(E, \omega, \phi\left(\omega^{2}\right)\right),\left(E, \omega^{2}, \phi(\omega)\right)\right\}$,
(3) $\left(E_{8}^{C}\right)_{e d} \cong\left(S L(3, C) \times E_{6}^{C}\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\left\{(E, 1),\left(\omega E, \omega^{2} 1\right),\left(\omega^{2} E, \omega 1\right)\right\}$.

Proof
(1) We define a mapping $\varphi_{e v}: S L(2, C) \times E_{7}^{C} \rightarrow\left(E_{8}{ }^{C}\right)^{v}=\left(E_{8}^{C}\right)_{e v}$ by

$$
\varphi_{e v}(A, \beta)=\psi(A) \beta ;
$$

$\varphi_{e v}$ is well defined because $\psi(A) \in\left(E_{8}^{C}\right)^{v}$. Since $\psi(A)$ and $\beta \in E_{7}^{C}$ commute, $\varphi_{e v}$ is a homomorphism. $\operatorname{Ker} \varphi_{e v}=\{(E, 1),(-E,-1)\}=\boldsymbol{Z}_{2}$. Since $\left(E_{8}{ }^{C}\right)^{v}$ is connected and $\operatorname{dim}_{C}\left(\mathfrak{s l}(2, C) \oplus \mathfrak{e}_{7}^{C}\right)=3+133=136=82+27 \times 2=$ $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v}\right)=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}{ }^{C}\right)^{v}\right)$ (see Theorem 5.2.1), $\varphi_{e v}$ is surjective. Thus we have the isomorphism $\left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{v} \cong\left(S L(2, C) \times E_{7}^{C}\right) / \boldsymbol{Z}_{2}$.
(2) Since the group $E_{7}{ }^{C}$ has subgroups C^{*} and $E_{6}{ }^{C}$ (see [6, Theorem 4.4.4]), we define a mapping $\varphi_{0}: S L(2, C) \times C^{*} \times E_{6}{ }^{C} \rightarrow\left(E_{8}{ }^{C}\right)^{\nu \iota}=\left(E_{8}{ }^{C}\right)_{0}$ by

$$
\varphi_{0}(A, \theta, \beta)=\psi(A) \phi(\theta) \beta
$$

as the restriction mapping of $\varphi_{e v}$. So φ_{0} is well defined and a homomorphism. Since $(v \iota)^{2}=v,\left(E_{8}^{C}\right)^{v \iota}$ is a subgroup of $\left(E_{8}^{C}\right)^{v}$. Now, for $\alpha \in\left(E_{8}^{C}\right)^{v \iota} \subset$ $\left(E_{8}{ }^{C}\right)^{v}$, there exist $A \in S L(2, C)$ and $\beta^{\prime} \in E_{7}^{C}$ such that $\alpha=\varphi_{e v}\left(A, \beta^{\prime}\right)$ from (1). Moreover, from the condition $(v \iota) \alpha(v \iota)^{-1}=\alpha$, that is, $(v \iota) \varphi_{e v}\left(A, \beta^{\prime}\right)(v \iota)^{-1}=$ $\varphi_{e v}\left(A, \beta^{\prime}\right)$, we have $\varphi_{e v}\left(A, \iota \beta^{\prime} \iota^{-1}\right)=\varphi_{e v}\left(A, \beta^{\prime}\right)$. Hence

$$
\left\{\begin{array} { l }
{ A = A , } \\
{ \iota \beta ^ { \prime } \iota ^ { - 1 } = \beta ^ { \prime } , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
A=-A, \\
\iota \beta^{\prime} \iota^{-1}=-\beta^{\prime}
\end{array}\right.\right.
$$

In the former case, $A \in S L(2, C), \beta^{\prime} \in\left(E_{7}{ }^{C}\right)^{\iota} \cong\left(C^{*} \times E_{6}{ }^{C}\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\{(1,1),(\omega$, $\left.\left.\phi\left(\omega^{2}\right)\right),\left(\omega^{2}, \phi(\omega)\right)\right\}$ (see [6, Theorem 4.4.4]), so β^{\prime} is expressed as $\beta^{\prime}=\varphi(\theta) \beta, \theta \in$ $C^{*}, \beta \in E_{6}{ }^{C}$. The latter case is impossible because $A=0$. It is easy to see that

$$
\begin{aligned}
\operatorname{Ker} \varphi_{0}=\{ & (E, 1,1),\left(E, \omega, \phi\left(\omega^{2}\right)\right),\left(E, \omega^{2}, \phi(\omega)\right), \\
& \left.(-E,-1,1),\left(E,-\omega, \phi\left(\omega^{2}\right)\right),\left(-E,-\omega^{2}, \phi(\omega)\right)\right\} \\
=\{ & (E, 1,1),(-E,-1,1)\} \\
& \times\left\{(E, 1,1),\left(E, \omega, \phi\left(\omega^{2}\right)\right),\left(E, \omega^{2}, \phi(\omega)\right\}\right. \\
= & \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{3} .
\end{aligned}
$$

Thus we have the isomorphism $\left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{v \iota} \cong\left(S L(2, C) \times C^{*} \times E_{6}{ }^{C}\right) /\left(\boldsymbol{Z}_{2} \times\right.$ Z_{3}).
(3) The determination of the group $\left(E_{8}^{C}\right)^{w}$ is essentially done in Gomyo [1]. However, we write the result again. We construct one more C-Lie algebra $\check{\mathfrak{e}}_{8}{ }^{C}$ of type $E_{8}{ }^{C}$.

We first consider a $27 \times 3=81$ dimensional C-vector space

$$
\left(\mathfrak{J}^{C}\right)^{3}=\left\{\left.\boldsymbol{X}=\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right) \right\rvert\, X_{i} \in \mathfrak{J}^{C}\right\}
$$

In $\left(\mathfrak{J}^{C}\right)^{3}$, we define an inner product $(\boldsymbol{X}, \boldsymbol{Y})$, a Hermitian inner product $\langle\boldsymbol{X}, \boldsymbol{Y}\rangle$, a cross product $\boldsymbol{X} \times \boldsymbol{Y}$, an element $\boldsymbol{X} \cdot \boldsymbol{Y}$ of $\mathfrak{s l}(3, C)$, and an element $\boldsymbol{X} \vee \boldsymbol{Y}$ of $\mathfrak{e}_{6}{ }^{C}$, respectively, by

$$
\begin{aligned}
& (\boldsymbol{X}, \boldsymbol{Y})=\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)+\left(X_{3}, Y_{3}\right) \in C, \\
& \langle\boldsymbol{X}, \boldsymbol{Y}\rangle=\left\langle X_{1}, Y_{1}\right\rangle+\left\langle X_{2}, Y_{2}\right\rangle+\left\langle X_{3}, Y_{3}\right\rangle \in C, \\
& \boldsymbol{X} \times \boldsymbol{Y}=\left(\begin{array}{l}
X_{2} \times Y_{3}-Y_{2} \times X_{3} \\
X_{3} \times Y_{1}-Y_{3} \times X_{1} \\
X_{1} \times Y_{2}-Y_{1} \times X_{2}
\end{array}\right) \in\left(\mathfrak{J}^{C}\right)^{3},
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{X} \cdot \boldsymbol{Y} & =\left(\begin{array}{ccc}
\left(X_{1}, Y_{1}\right) & \left(X_{1}, Y_{2}\right) & \left(X_{1}, Y_{3}\right) \\
\left(X_{2}, Y_{1}\right) & \left(X_{2}, Y_{2}\right) & \left(X_{2}, Y_{3}\right) \\
\left(X_{3}, Y_{1}\right) & \left(X_{3}, Y_{2}\right) & \left(X_{3}, Y_{3}\right)
\end{array}\right)-\frac{1}{3}(\boldsymbol{X}, \boldsymbol{Y}) E \in \mathfrak{s l}(3, C), \\
\boldsymbol{X} \vee \boldsymbol{Y} & =X_{1} \vee Y_{1}+X_{2} \vee Y_{2}+X_{3} \vee Y_{3} \in \mathfrak{e}_{6}{ }^{C},
\end{aligned}
$$

where $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right), \boldsymbol{Y}=\left(\begin{array}{l}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right) \in\left(\mathfrak{J}^{C}\right)^{3}$. Further, for $\phi \in \operatorname{Hom}_{C}\left(\mathfrak{J}^{C}\right), D=\left(d_{i j}\right) \in$ $M(3, C)$, and $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right) \in\left(\mathfrak{J}^{C}\right)^{3}$, we define $\phi \boldsymbol{X}, D \boldsymbol{X} \in\left(\mathfrak{J}^{C}\right)^{3}$ naturally by

$$
\phi(\boldsymbol{X})=\left(\begin{array}{c}
\phi X_{1} \\
\phi X_{2} \\
\phi X_{3}
\end{array}\right), \quad D \boldsymbol{X}=\left(\begin{array}{c}
d_{11} X_{1}+d_{12} X_{2}+d_{13} X_{3} \\
d_{12} X_{1}+d_{22} X_{2}+d_{23} X_{3} \\
d_{31} X_{1}+d_{32} X_{2}+d_{33} X_{3}
\end{array}\right) .
$$

PROPOSITION 5.2.3 (GOMYO [1, Theorem 3.1])

In an $8+78+81+81=248$ dimensional C-vector space

$$
\check{\mathfrak{e}}_{8}^{C}=\mathfrak{s l}(3, C) \oplus \mathfrak{e}_{6}{ }^{C} \oplus\left(\mathfrak{J}^{C}\right)^{3} \oplus\left(\mathfrak{J}^{C}\right)^{3},
$$

we define a Lie bracket $\left[R_{1}, R_{2}\right]$ by

$$
\begin{aligned}
& {\left[\left(D_{1}, \phi_{1}, \boldsymbol{X}_{1}, \boldsymbol{Y}_{1}\right),\left(D_{2}, \phi_{2}, \boldsymbol{X}_{2}, \boldsymbol{Y}_{2}\right)\right]=(D, \phi, \boldsymbol{X}, \boldsymbol{Y}),} \\
& \left\{\begin{array}{l}
D=\left[D_{1}, D_{2}\right]+\frac{1}{4} \boldsymbol{X}_{1} \cdot \boldsymbol{Y}_{2}-\frac{1}{4} \boldsymbol{X}_{2} \cdot \boldsymbol{Y}_{1}, \\
\phi=\left[\phi_{1}, \phi_{2}\right]+\frac{1}{2} \boldsymbol{X}_{1} \vee \boldsymbol{Y}_{2}-\frac{1}{2} \boldsymbol{X}_{2} \vee \boldsymbol{Y}_{1}, \\
\boldsymbol{X}=\phi_{1} \boldsymbol{X}_{2}-\phi_{2} \boldsymbol{X}_{1}+D_{1} \boldsymbol{X}_{2}-D_{2} \boldsymbol{X}_{1}-\boldsymbol{Y}_{1} \times \boldsymbol{Y}_{2}, \\
\boldsymbol{Y}=-{ }^{t} \phi_{1} \boldsymbol{Y}_{2}+{ }^{t} \phi_{2} \boldsymbol{Y}_{1}-{ }^{t} D_{1} \boldsymbol{Y}_{2}+{ }^{t} D_{2} \boldsymbol{Y}_{1}+\boldsymbol{X}_{1} \times \boldsymbol{X}_{2},
\end{array}\right.
\end{aligned}
$$

then $\check{\mathfrak{e}}_{8}^{C}$ becomes a C-Lie algebra of type $E_{8}{ }^{C}$.
Proof
Let $\mathfrak{e}_{8}{ }^{C}=\mathfrak{e}_{7}^{C} \oplus \mathfrak{P}^{C} \oplus \mathfrak{P}^{C} \oplus C \oplus C \oplus C$ be the usual C-Lie algebra of type $E_{8}{ }^{C}$. We define a mapping $f: \mathfrak{e}_{8}{ }^{C} \rightarrow \check{\mathfrak{e}}_{8}^{C}$ by

$$
\begin{aligned}
& f(\Phi(\phi, A, B, \nu),(X, Y, \xi, \eta),(Z, W, \zeta, \mu), r, s, t) \\
& \quad=\left(\left(\begin{array}{ccc}
\frac{2}{3} \nu & -\frac{1}{2} \xi & \frac{1}{2} \zeta \\
\frac{1}{2} \mu & -\frac{1}{3} \nu-r & t \\
\frac{1}{2} \eta & s & -\frac{1}{3} \nu+r
\end{array}\right), \phi,\left(\begin{array}{c}
-2 A \\
Z \\
X
\end{array}\right),\left(\begin{array}{c}
-2 B \\
Y \\
-W
\end{array}\right)\right)
\end{aligned}
$$

then we can prove that f is an isomorphism as Lie algebras by straightforward calculations. Thus we have the isomorphism $\mathfrak{e}_{8}^{C} \cong \check{\mathfrak{c}}_{8}{ }^{C}$.

Now, let $\check{E}_{8}{ }^{C}$ be the automorphism group of $\check{\mathfrak{e}}_{8}{ }^{C}$, that is,

$$
\check{E}_{8}^{C}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\check{\mathfrak{e}}_{8}^{C}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\} .
$$

The group $E_{8}{ }^{C}$ is isomorphic to the group $\check{E}_{8}{ }^{C}$ by the correspondence $\alpha \in E_{8}{ }^{C} \rightarrow$ $f \alpha f^{-1} \in \check{E}_{8}{ }^{C}$. Then the transformation w of $\mathfrak{e}_{8}{ }^{C}$ is transfered to the following transformation w of $\check{\mathfrak{e}}_{8}^{C}$:

$$
w(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(D, \phi, \omega \boldsymbol{X}, \omega^{2} \boldsymbol{Y}\right) .
$$

So, we determine the structure of the group $\left(\check{E}_{8}{ }^{C}\right)^{w}$ instead of the group $\left(E_{8}^{C}\right)^{w}$.
We first define a mapping $\varphi_{1}: S L(3, C) \rightarrow\left(\check{E}_{8}^{C}\right)^{w}$ by

$$
\varphi_{1}(A)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(A D A^{-1}, \phi, A \boldsymbol{X},{ }^{t} A^{-1} \boldsymbol{Y}\right)
$$

We have to prove that $\varphi_{1}(A) \in\left(\check{E}_{8}^{C}\right)^{w}$. Indeed, since the action of $D_{1}=$ $\left(D_{1}, 0,0,0\right) \in \mathfrak{s l}(3, C) \subset\left(\check{\mathfrak{e}}_{8}^{C}\right)^{w}$ is given by

$$
\left(\operatorname{ad}\left(D_{1}\right)\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(\left(\operatorname{ad} D_{1}\right) D, 0, D_{1} \boldsymbol{X},-{ }^{t} D_{1} \boldsymbol{Y}\right)
$$

we have

$$
\begin{aligned}
& \left(\exp \operatorname{ad}\left(D_{1}\right)\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y}) \\
& \quad=\left(\left(\exp D_{1}\right) D\left(\exp D_{1}\right)^{-1}, \phi,\left(\exp D_{1}\right) \boldsymbol{X},{ }^{t}\left(\exp D_{1}\right)^{-1} \boldsymbol{Y}\right)
\end{aligned}
$$

Hence, for $A=\exp D_{1} \in S L(3, C)$, we have $\varphi_{1}(A)=\left(\exp \operatorname{ad}\left(D_{1}\right)\right) \in \check{E}_{8}{ }^{C}$. Evidently, $w \varphi_{1}(A)=\varphi_{1}(A) w$; hence we have $\varphi_{1}(A) \in\left(\check{E}_{8}^{C}\right)^{w}$. Next, we define a mapping $\varphi_{2}: E_{6}^{C} \rightarrow\left(\check{E}_{8}^{C}\right)^{w}$ by

$$
\varphi_{2}(\beta)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(D, \beta \phi \beta^{-1}, \beta \boldsymbol{X},,^{t} \beta^{-1} \boldsymbol{Y}\right) .
$$

We have to prove that $\varphi_{2}(\beta) \in\left(\check{E}_{8}^{C}\right)^{w}$. Indeed, since the action of $\phi^{\prime}=\left(0, \phi^{\prime}, 0\right.$, $0) \in\left(\check{\mathfrak{e}}_{8}^{C}\right)^{w}$ is given by

$$
\left(\operatorname{ad} \phi^{\prime}\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(0,\left(\operatorname{ad} \phi^{\prime}\right) \phi, \phi^{\prime} \boldsymbol{X},-{ }^{t} \phi^{\prime} \boldsymbol{Y}\right)
$$

we have

$$
\left(\operatorname{expad}\left(\phi^{\prime}\right)\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(D,\left(\exp \phi^{\prime}\right) \phi\left(\exp \phi^{\prime}\right)^{-1},\left(\exp \phi^{\prime}\right) \boldsymbol{X},{ }^{t}\left(\exp \phi^{\prime}\right)^{-1} \boldsymbol{Y}\right)
$$

Hence, for $\beta=\exp \phi^{\prime}$, we have $\varphi_{2}(\beta)=\left(\exp \operatorname{ad}\left(\phi^{\prime}\right)\right) \in \check{E}_{8}{ }^{C}$. Evidently, $w \varphi_{2}(\beta)=$ $\varphi_{2}(\beta) w$; hence we have $\varphi_{2}(\beta) \in\left(\check{E}_{8}^{C}\right)^{w}$.

Now, we define a mapping $\varphi_{e d}: S L(3, C) \times E_{6}^{C} \rightarrow\left(\check{E}_{8}^{C}\right)^{w}=\left(\check{E}_{8}^{C}\right)_{e d}$ by

$$
\varphi_{e d}(A, \beta)=\varphi_{1}(A) \varphi_{2}(\beta) .
$$

Since $\varphi_{1}(A)$ and $\varphi_{2}(\beta)$ commute, $\varphi_{e d}$ is a homomorphism. It is not difficult to show that $\operatorname{Ker} \varphi_{e d}=\left\{(E, 1),\left(\omega E, \omega^{2} 1\right),\left(\omega^{2} E, \omega 1\right)\right\}=Z_{3}$. Since $\left(\check{E}_{8}{ }^{C}\right)^{\omega}$ is connected and $\operatorname{dim}_{C}\left(\mathfrak{s l}(3, C) \oplus \mathfrak{e}_{6}{ }^{C}\right)=8+78=86=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}{ }^{C}\right)_{e d}\right)$ (see Theorem 5.2.1) $=\operatorname{dim}_{C}\left(\left(\check{\mathfrak{e}}_{8}^{C}\right)^{w}\right), \varphi_{e d}$ is surjective. Thus we have $\left(E_{8}^{C}\right)_{e d} \cong\left(\check{E}_{8}^{C}\right)_{e d}=$ $\left(\check{E}_{8}^{C}\right)^{w} \cong\left(S L(3, C) \times E_{6}^{C}\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\left\{(E, 1),\left(\omega E, \omega^{2} 1\right),\left(\omega^{2} E, \omega 1\right)\right\}$.
5.3. Subgroups of type $A_{1} \oplus E_{7(7)}, A_{1} \oplus \boldsymbol{R} \oplus E_{6(6)}$, and $A_{2} \oplus E_{6(6)}$ of $E_{8(8)}$

In this section, we use Lie algebras $\mathfrak{e}_{8(8)}, \mathfrak{e}_{8}{ }^{C}$ and Lie groups $E_{8(8)}, E_{8}{ }^{C}$ defined in Section 5.1 and $\check{E}_{8}{ }^{C}$ defined in Section 5.2.

Since $\left(\mathfrak{e}_{8(8)}\right)_{e v}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{v} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \gamma},\left(\mathfrak{e}_{8(8)}\right)_{0}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{0} \cap$ $\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{\nu \iota} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \gamma},\left(\mathfrak{e}_{8(8)}\right)_{e d}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{e d} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \gamma}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{w} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \gamma}$, we
determine the structures of groups

$$
\begin{aligned}
\left(E_{8(8)}\right)_{e v} & =\left(E_{8}^{C}\right)_{e v} \cap\left(E_{8}^{C}\right)^{\tau \gamma}=\left(E_{8}^{C}\right)^{v} \cap\left(E_{8}^{C}\right)^{\tau \gamma}, \\
\left(E_{8(8)}\right)_{0} & =\left(E_{8}^{C}\right)_{0} \cap\left(E_{8}^{C}\right)^{\tau \gamma}=\left(E_{8}^{C}\right)^{v \iota} \cap\left(E_{8}^{C}\right)^{\tau \gamma}, \\
\left(E_{8(8)}\right)_{e d} & =\left(E_{8}^{C}\right)_{e d} \cap\left(E_{8}^{C}\right)^{\tau \gamma}=\left(E_{8}^{C}\right)^{w} \cap\left(E_{8}^{C}\right)^{\tau \gamma} .
\end{aligned}
$$

THEOREM 5.3.1

We have the following:
(1) $\left(E_{8(8)}\right)_{e v} \cong\left(S L(2, \boldsymbol{R}) \times E_{7(7)}\right) / \boldsymbol{Z}_{2} \times\{1, l\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-1)\}$,
(2) $\left(E_{8(8)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}\right) \times\left\{1, l_{0}\right\}$,
(3) $\left(E_{8(8)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times E_{6(6)}$.

Proof
(1) For $\alpha \in\left(E_{8(8)}\right)_{e v} \subset\left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{v}$, there exist $A \in S L(2, C)$ and $\beta \in E_{7}{ }^{C}$ such that $\alpha=\varphi_{e v}(A, \beta)=\psi(A) \beta$ (see Theorem 5.2.2(1)). From the condition $\tau \gamma \alpha \gamma \tau=\alpha$, that is, $\tau \gamma \psi(A) \beta \gamma \tau=\psi(A) \beta$, we have $\psi(\tau A) \tau \gamma \beta \gamma \tau=\psi(A) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \tau A = A , } \\
{ \tau \gamma \beta \gamma \tau = \beta , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau A=-A \\
\tau \gamma \beta \gamma \tau=-\beta .
\end{array}\right.\right.
$$

In the former case, from $\tau A=A$, we have $A \in S L(2, \boldsymbol{R})$, and from $\tau \gamma \beta \gamma \tau=\beta$, we have $\beta \in\left(E_{7}{ }^{C}\right)^{\tau \gamma} \cong E_{7(7)}$ (see [6, Theorem 4.3.2]). In the latter case, $A=i I(I=$ $\operatorname{diag}(1,-1)), \beta=\iota$ satisfy the conditions, and we denote $\varphi_{e v}(i I, \iota)$ by l. Thus we have the isomorphism $\left(E_{8(8)}\right)_{e v} \cong\left(\left(S L(2, \boldsymbol{R}) \times E_{7(7)}\right) \cup l\left(S L(2, \boldsymbol{R}) \times E_{7(7)}\right)\right) / \boldsymbol{Z}_{2}=$ $\left(S L(2, \boldsymbol{R}) \times E_{7(7)}\right) / \boldsymbol{Z}_{2} \times\{1, l\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-1)\}$.
(2) For $\alpha \in\left(E_{8(8)}\right)_{0} \subset\left(E_{8}^{C}\right)_{0}=\left(E_{8}{ }^{C}\right)^{v \iota}$, there exist $A \in S L(2, C), \theta \in C^{*}$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{0}(A, \theta, \beta)=\psi(A) \phi(\theta) \beta$ (see Theorem 5.2.2(2)). From the condition $\tau \gamma \alpha \gamma \tau=\alpha$, that is, $\tau \gamma \psi(A) \phi(\theta) \beta \gamma \tau=\psi(A) \phi(\theta) \beta$, we have $\psi(\tau A) \phi(\tau \theta) \tau \gamma \beta \gamma \tau=\psi(A) \phi(\theta) \beta$. Hence

$$
\begin{aligned}
& \text { (i) } \begin{cases}\tau A=A, \\
\tau \theta=\theta, \\
\tau \gamma \beta \gamma \tau=\beta,\end{cases} \\
& \text { (iii) }\left\{\begin{array}{l}
\tau A=A, \\
\tau \theta=\omega^{2} \theta, \\
\tau \gamma \beta \gamma \tau=\phi(\omega) \beta,
\end{array}\right. \\
& \text { (v) }\left\{\begin{array}{l}
\tau A=A, \\
\tau \theta=\omega \theta, \\
\tau \gamma \beta \gamma \tau=\phi\left(\omega^{2}\right) \beta,
\end{array}\right. \\
& \left\{\begin{array}{l}
\tau A=-A, \\
\tau \theta=-\omega \theta, \\
\tau \gamma \beta \gamma \tau=\phi\left(\omega^{2}\right) \beta,
\end{array}\right. \\
& \text { (iv) }\left\{\begin{array}{l}
\tau A=-A, \\
\tau \theta=-\theta, \\
\tau \gamma \beta \gamma \tau=\beta,
\end{array}\right. \\
& \text { (vi) }\left\{\begin{array}{l}
\tau A=-A, \\
\tau \theta=-\omega^{2} \theta, \\
\tau \gamma \beta \gamma \tau=\phi(\omega) \beta .
\end{array}\right.
\end{aligned}
$$

Case (i). From $\tau A=A, \tau \theta=\theta$, we have $A \in S L(2, \boldsymbol{R}), \theta \in \boldsymbol{R}^{*}$, and from $\tau \gamma \beta \gamma \tau=\beta$, we have $\beta \in\left(E_{6}{ }^{C}\right)^{\tau \gamma} \cong E_{6(6)}$. Hence the group of case (i) is isomorphic to

$$
\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times E_{6(6)}\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1,1),(-E,-1,1)\} .
$$

The mapping $g: S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times E_{6(6)} \rightarrow S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}$,

$$
g(A, \theta, \beta)= \begin{cases}(A, \theta, \beta) & \text { if } \quad \theta>0 \\ (-A,-\theta, \beta) & \text { if } \quad \theta<0\end{cases}
$$

induces the isomorphism $S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times E_{6(6)}\right) / \boldsymbol{Z}_{2}$. Therefore the group of case (i) is isomorphic to $S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}$.

Case (ii). We have $\varphi_{0}\left(E, \omega, \phi\left(\omega^{2}\right)\right)=\psi(E) \phi(\omega) \phi\left(\omega^{2}\right)=1$.
Case (iii). We have $\varphi_{0}\left(E, \omega^{2}, \phi(\omega)\right)=\psi(E) \phi\left(\omega^{2}\right) \phi(\omega)=1$.
Case (iv). We have $\varphi_{0}(i I, i, 1)=l_{0}$ (hereafter we denote $\varphi_{0}(i I, i, 1)$ by $\left.l_{0}\right)$.
Case (v). We have $\varphi_{0}\left(i I, i \omega, \phi\left(\omega^{2}\right)\right)=\varphi_{0}(i I, i, 1) \varphi_{0}\left(E, \omega, \phi\left(\omega^{2}\right)\right)=l_{0}$.
Case (vi). We have $\varphi_{0}\left(i I, i \omega^{2}, \phi(\omega)\right)=\varphi_{0}(i I, i, 1) \varphi_{0}\left(E, \omega^{2}, \phi(\omega)\right)=l_{0}$.
Thus we have the isomorphism $\left(E_{8(8)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}\right) \cup l_{0}(S L(2, \boldsymbol{R}) \times$ $\left.\boldsymbol{R}^{+} \times E_{6(6)}\right)=\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(6)}\right) \times\left\{1, l_{0}\right\}$.
(3) Under the isomorphism between $\mathfrak{e}_{8}{ }^{C}$ and $\check{\mathfrak{e}}_{8}{ }^{C}$ given in the proof of Theorem 5.2.2(3), the transformation γ and the complex conjugation τ of $\mathfrak{e}_{8}{ }^{C}$ are transfered to the following transformation γ and the complex conjugation τ of $\check{E}_{8}{ }^{C}$:

$$
\begin{aligned}
\gamma(D, \phi, \boldsymbol{X}, \boldsymbol{Y}) & =(D, \gamma \phi \gamma, \gamma \boldsymbol{X}, \gamma \boldsymbol{Y}) \\
\tau(D, \phi, \boldsymbol{X}, \boldsymbol{Y}) & =(\tau D, \tau \phi \tau, \tau \boldsymbol{X}, \tau \boldsymbol{Y})
\end{aligned}
$$

respectively. Hence instead of $\left(E_{8(8)}\right)_{e d}=\left(E_{8}{ }^{C}\right)_{e d} \cap\left(E_{8}{ }^{C}\right)^{\tau \gamma}$, we consider $\left(\check{E}_{8(8)}\right)_{e d}=\left(\check{E}_{8}^{C}\right)_{e d} \cap\left(\check{E}_{8}^{C}\right)^{\tau \gamma}$. Now, for $\alpha \in\left(\check{E}_{8(8)}\right)_{e d} \subset\left(\check{E}_{8}^{C}\right)_{e d}=\left(\check{E}_{8}^{C}\right)^{w}$, there exist $A \in S L(3, C)$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{e d}(A, \beta)=\varphi_{1}(A) \varphi_{2}(\beta)$ (see Theorem 5.2.2(3)). From the condition $\gamma \tau \alpha \tau \gamma=\alpha$, that is, $\gamma \tau \varphi_{1}(A) \varphi_{2}(\beta) \tau \gamma=$ $\varphi_{1}(A) \varphi_{2}(\beta)$, we have $\varphi_{1}(\tau A) \varphi_{2}(\tau \gamma \beta \gamma \tau)=\varphi_{1}(A) \varphi_{2}(\beta)$. Hence
(i) $\left\{\begin{array}{l}\tau A=A, \\ \tau \gamma \beta \gamma \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau A=\omega A, \\ \tau \gamma \beta \gamma \tau=\omega^{2} \beta,\end{array}\right.$
or (iii) $\left\{\begin{array}{l}\tau A=\omega^{2} A, \\ \tau \gamma \beta \gamma \tau=\omega \beta .\end{array}\right.$

Case (i). From $\tau A=A$, we have $A \in S L(3, \boldsymbol{R})$, and from $\tau \gamma \beta \gamma \tau=\beta$, we have $\beta \in\left(E_{6}{ }^{C}\right)^{\tau \gamma} \cong E_{6(6)}$.

Case (ii). We have $\varphi_{e d}\left(\omega E, \omega^{2} 1\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(\omega D \omega^{-1}, \omega^{2} \phi \omega^{-2}, \omega \omega^{2} \boldsymbol{X}\right.$, $\left.\omega^{-1} \omega^{-2} \boldsymbol{Y}\right)=(D, \phi, \boldsymbol{X}, \boldsymbol{Y})$, that is, $\varphi_{e d}\left(\omega E, \omega^{2} 1\right)=1$.

Case (iii). We have $\varphi_{e d}\left(\omega^{2} E, \omega 1\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(\omega^{2} D \omega^{-2}, \omega \phi \omega^{-1}, \omega^{2} \omega \boldsymbol{X}\right.$, $\left.\omega^{-2} \omega^{-1} \boldsymbol{Y}\right)=(D, \phi, \boldsymbol{X}, \boldsymbol{Y})$; that is, $\varphi_{e d}\left(\omega^{2} E, \omega 1\right)=1$.
Thus we have the isomorphism $\left(E_{8(8)}\right)_{e d} \cong\left(\check{E}_{8(8)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times E_{6(6)}$.

5.4. Subgroups of type $A_{1} \oplus E_{7(-25)}, A_{1} \oplus \boldsymbol{R} \oplus E_{6(-26)}$, and $A_{2} \oplus E_{6(-26)}$

 of $E_{8(-24)}$In this section, we use Lie algebras $\mathfrak{e}_{8(-24)}, \mathfrak{e}_{8}{ }^{C}$ and Lie groups $E_{8(-24)}, E_{8}{ }^{C}$ defined in Section 5.1 and $\check{E}_{8}{ }^{C}$ defined in Section 5.2.

THEOREM 5.4.1
The 3 -graded decomposition of the Lie algebra $\mathfrak{e}_{8(-24)}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau}\left(\right.$ or $\left.\mathfrak{e}_{8}{ }^{C}\right)$,

$$
\mathfrak{e}_{8(-24)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to $\operatorname{ad} Z, Z=(\Phi(0,0,0,-3), 0,0,0,0,0)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0} & =\left\{\begin{array}{l}
i G_{k l}, \quad 0 \leq k<l \leq 7, \\
\widetilde{A}_{1}\left(e_{k}\right), \widetilde{A}_{2}\left(e_{k}\right), \widetilde{A}_{3}\left(e_{k}\right), \widetilde{F}_{1}\left(e_{k}\right), \widetilde{F}_{2}\left(e_{k}\right), \widetilde{F}_{3}\left(e_{k}\right), \quad 0 \leq k \leq 7, \\
\left(E_{1}-E_{2}\right)^{\sim},\left(E_{2}-E_{3}\right)^{\sim}, \mathbf{1}, \tilde{1}, 1^{-}, 1_{-},
\end{array}\right\} \\
\mathfrak{g}_{-1} & =\left\{\begin{array}{l}
\dot{E}_{1}^{-}, \dot{E}_{2}^{-}, \dot{E}_{3}^{-}, \dot{F}_{1}\left(e_{k}\right)^{-}, \dot{F}_{2}\left(e_{k}\right)^{-}, \dot{F}_{3}\left(e_{k}\right)^{-}, \quad 0 \leq k \leq 7, \\
\dot{E}_{1-}, \dot{E}_{2-}, \dot{E}_{3-}, \dot{F}_{1}\left(e_{k}\right)_{-}, \dot{F}_{2}\left(e_{k}\right)_{-}, \dot{F}_{3}\left(e_{k}\right)_{-}, \quad 0 \leq k \leq 7,
\end{array}\right\} 54, \\
\mathfrak{g}_{-2} & =\left\{\widehat{E}_{1}, \widehat{E}_{2}, \widehat{E}_{3}, \widehat{F}_{1}\left(e_{k}\right), \widehat{F}_{2}\left(e_{k}\right), \widehat{F}_{3}\left(e_{k}\right), \quad 0 \leq k \leq 7\right\} 27, \\
\mathfrak{g}_{-3} & =\left\{1^{-}, 1_{-}\right\} 2, \\
\mathfrak{g}_{1} & =\widetilde{\lambda}\left(\mathfrak{g}_{-1}\right), \mathfrak{g}_{2}=\widetilde{\lambda}\left(\mathfrak{g}_{-2}\right), \mathfrak{g}_{3}=\widetilde{\lambda}\left(\mathfrak{g}_{-3}\right) .
\end{aligned}
$$

Since $\left(\mathfrak{e}_{8(-24)}\right)_{e v}=\left(\mathfrak{e}_{8}^{C}\right)_{e v} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{v} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau},\left(\mathfrak{e}_{8(-24)}\right)_{0}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{0} \cap$ $\left.\left(\mathfrak{e}_{8}^{C}\right)^{\tau}=\left(\mathfrak{e}_{8}^{C}\right)^{v \iota} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau},\left(\mathfrak{e}_{8(-24)}\right)_{e d}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{e d} \cap\left(\mathfrak{e}_{8}\right)^{C}\right)^{\tau}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{w} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau}$, we determine the structures of groups

$$
\begin{gathered}
\left(E_{8(-24)}\right)_{e v}=\left(E_{8}^{C}\right)_{e v} \cap\left(E_{8}^{C}\right)^{\tau}=\left(E_{8}^{C}\right)^{v} \cap\left(E_{8}^{C}\right)^{\tau}, \\
\left(E_{8(-24)}\right)_{0}=\left(E_{8}^{C}\right)_{0} \cap\left(E_{8}^{C}\right)^{\tau}=\left(E_{8}^{C}\right)^{v \iota} \cap\left(E_{8}^{C}\right)^{\tau}, \\
\left(E_{8(-24)}\right)_{e d}=\left(E_{8}^{C}\right)_{e d} \cap\left(E_{8}^{C}\right)^{\tau}=\left(E_{8}^{C}\right)^{w} \cap\left(E_{8}^{C}\right)^{\tau} .
\end{gathered}
$$

THEOREM 5.4.2

We have the following:
(1) $\left(E_{8(-24)}\right)_{e v} \cong\left(S L(2, \boldsymbol{R}) \times E_{7(-25)}\right) / \boldsymbol{Z}_{2} \times\{1, l\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-1)\}$,
(2) $\left(E_{8(-24)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\left\{1, l_{0}\right\}$,
(3) $\left(E_{8(-24)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times E_{6(-26)}$.

Proof
(1) For $\alpha \in\left(E_{8(-24)}\right)_{e v} \subset\left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{v}$, there exist $A \in S L(2, C)$ and $\beta \in E_{7}{ }^{C}$ such that $\alpha=\varphi_{e v}(A, \beta)=\psi(A) \beta$ (see Theorem 5.2.2(1)). From the condition $\tau \alpha \tau=\alpha$, that is, $\tau \psi(A) \beta \tau=\psi(A) \beta$, we have $\psi(\tau A) \tau \beta \tau=\psi(A) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \tau A = A , } \\
{ \tau \beta \tau = \beta , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau A=-A \\
\tau \beta \tau=-\beta
\end{array}\right.\right.
$$

In the former case, from $\tau A=A$, we have $A \in S L(2, \boldsymbol{R})$, and from $\tau \beta \tau=\beta$, we have $\beta \in\left(E_{7}^{C}\right)^{\tau} \cong E_{7(-25)}$ (see [6, Theorem 4.3.2]). In the latter case, $A=$ $i I,(I=\operatorname{diag}(1,-1)), \beta=\iota$ satisfy the conditions, and $l=\psi(i I) \iota$. Thus we have the isomorphism $\left.\left(E_{8(-24)}\right)\right)_{e v} \cong\left(\left(S L(2, \boldsymbol{R}) \times E_{7(-25)}\right) \cup l\left(S L(2, \boldsymbol{R}) \times E_{7(-25)}\right)\right) /$ $\boldsymbol{Z}_{2}=\left(S L(2, \boldsymbol{R}) \times E_{7(-25)}\right) / \boldsymbol{Z}_{2} \times\{1, l\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E,-1)\}$.
(2) For $\alpha \in\left(E_{8(-24)}\right)_{0} \subset\left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{v \iota}$, there exist $A \in S L(2, C), \theta \in C^{*}$, and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{0}(A, \theta, \beta)=\psi(A) \phi(\theta) \beta$ (see Theorem 5.2.2(2)). From the condition $\tau \alpha \tau=\alpha$, that is, $\tau \psi(A) \phi(\theta) \beta \tau=\psi(A) \phi(\theta) \beta$, we have $\psi(\tau A) \phi(\tau \theta) \tau \beta \tau=\psi(A) \phi(\theta) \beta$. Hence
(i) $\left\{\begin{array}{l}\tau A=A, \\ \tau \theta=\theta, \\ \tau \beta \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau A=A, \\ \tau \theta=\omega \theta, \\ \tau \beta \tau=\phi\left(\omega^{2}\right) \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\tau A=A, \\ \tau \theta=\omega^{2} \theta, \\ \tau \beta \tau=\phi(\omega) \beta,\end{array}\right.$
(iv) $\left\{\begin{array}{l}\tau A=-A, \\ \tau \theta=-\theta, \\ \tau \beta \tau=\beta,\end{array}\right.$
(v) $\left\{\begin{array}{l}\tau A=-A, \\ \tau \theta=-\omega \theta, \\ \tau \beta \tau=\phi\left(\omega^{2}\right) \beta,\end{array}\right.$
(vi) $\left\{\begin{array}{l}\tau A=-A, \\ \tau \theta=-\omega^{2} \theta, \\ \tau \beta \tau=\phi(\omega) \beta .\end{array}\right.$

Case (i). From $\tau A=A, \tau \theta=\theta$, we have $A \in S L(2, \boldsymbol{R}), \theta \in \boldsymbol{R}^{*}$, and from $\tau \beta \tau=\beta$, we have $\beta \in\left(E_{6}{ }^{C}\right)^{\tau}=E_{6(-26)}$. Hence the group of case (i) is $(S L(2, \boldsymbol{R}) \times$ $\left.\boldsymbol{R}^{*} \times E_{6(-26)}\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1,1),(-E,-1,1)\} . \quad$ By the analogous argument in the proof of Theorem 5.3.1(2), we have $\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{*} \times E_{6(-26)}\right) / \boldsymbol{Z}_{2} \cong$ $S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}$.

Case (ii). We have $\varphi_{0}\left(E, \omega, \phi\left(\omega^{2}\right)\right)=\psi(E) \phi(\omega) \phi\left(\omega^{2}\right)=1$.
Case (iii). We have $\varphi_{0}\left(E, \omega^{2}, \phi(\omega)\right)=\psi(E) \phi\left(\omega^{2}\right) \phi(\omega)=1$.
Case (iv). We have $\varphi_{0}(i I, i, 1)=l_{0}$.
Case (v). We have $\varphi_{0}\left(i I, i \omega, \phi\left(\omega^{2}\right)\right)=\varphi_{0}(i I, i, 1) \varphi_{0}\left(E, \omega, \phi\left(\omega^{2}\right)\right)=l_{0}$.
Case (vi). We have $\varphi_{0}\left(i I, i \omega^{2}, \phi(\omega)\right)=\varphi_{0}(i I, i, 1) \varphi_{0}\left(E, \omega^{2}, \phi(\omega)\right)=l_{0}$.
Thus we have the isomorphism $\left(E_{8(-24)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}\right) \cup l_{0}(S L(2$, $\left.\boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}\right)=\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times E_{6(-26)}\right) \times\left\{1, l_{0}\right\}$.
(3) From the opening statement in the proof of Theorem 5.3.1(3), we use $\left(\check{E}_{8(-24)}\right)_{e d}=\left(\check{E}_{8}^{C}\right)_{e d} \cap\left(\check{E}_{8}^{C}\right)^{\tau}=\left(\check{E}_{8}^{C}\right)^{w} \cap\left(\check{E}_{8}^{C}\right)^{\tau}$ instead of the group $\left(E_{8(-24)}\right)_{e d}=\left(E_{8}{ }^{C}\right)_{e d} \cap\left(E_{8}{ }^{C}\right)^{\tau}=\left(E_{8}{ }^{C}\right)^{w} \cap\left(E_{8}{ }^{C}\right)^{\tau}$. Now, for $\alpha \in\left(\check{E}_{8(-24)}\right)_{e d} \subset$ $\left(\check{E}_{8}{ }^{C}\right)^{w}$, there exists $A \in S L(3, C)$ and $\beta \in E_{6}{ }^{C}$ such that $\alpha=\varphi_{e d}(A, \beta)=$ $\varphi_{1}(A) \varphi_{2}(\beta)$ (see Theorem 5.2.2(3)). From the condition $\tau \alpha \tau=\alpha$, that is, $\tau \varphi_{1}(A) \varphi_{2}(\beta) \tau=\varphi_{1}(A) \varphi_{2}(\beta)$, we have $\varphi_{1}(\tau A) \varphi_{2}(\tau \beta \tau)=\varphi_{1}(A) \varphi_{2}(\beta)$. Hence
(i) $\left\{\begin{array}{l}\tau A=A, \\ \tau \beta \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau A=\omega A, \\ \tau \beta \tau=\omega^{2} \beta,\end{array}\right.$
or
(iii) $\left\{\begin{array}{l}\tau A=\omega^{2} A, \\ \tau \beta \tau=\omega \beta .\end{array}\right.$

Case (i). From $\tau A=A$, we have $A \in S L(3, \boldsymbol{R})$, and from $\tau \beta \tau=\beta$, we have $\beta \in\left(E_{6}{ }^{C}\right)^{\tau}=E_{6(-26)}$.

Case (ii). We have $\varphi_{e d}\left(\omega E, \omega^{2} 1\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(\omega D \omega^{-1}, \omega^{2} \phi \omega^{-2}, \omega \omega^{2} \boldsymbol{X}\right.$, $\left.\omega^{-1} \omega^{-2} \boldsymbol{Y}\right)=(D, \phi, \boldsymbol{X}, \boldsymbol{Y})$, that is, $\varphi_{e d}\left(\omega E, \omega^{2} 1\right)=1$.

Case (iii). We have $\varphi_{e d}\left(\omega^{2} E, \omega 1\right)(D, \phi, \boldsymbol{X}, \boldsymbol{Y})=\left(\omega^{2} D \omega^{-2}, \omega \phi \omega^{-1}, \omega^{2} \omega \boldsymbol{X}\right.$, $\left.\omega^{-2} \omega^{-1} \boldsymbol{Y}\right)=(D, \phi, \boldsymbol{X}, \boldsymbol{Y})$, that is, $\varphi_{e d}\left(\omega^{2} E, \omega 1\right)=1$.
Thus we have the isomorphism $\left(E_{8(-24)}\right)_{e d} \cong\left(\check{E}_{8(-24)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times E_{6(-26)}$.

5.5. Subgroups of type $C \oplus A_{7}{ }^{C}$ and $A_{8}{ }^{C}$ of $E_{8}{ }^{C}$

In this section, we use another C-Lie algebra $\widetilde{\mathfrak{e}_{8}}{ }^{C}$ of type $E_{8}{ }^{C}$ constructed by Gomyo [1]. We review notation in the definition of $\widetilde{\mathfrak{\varepsilon}_{8}}{ }^{C}$.

Let $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ be the canonical C-basis of n-dimensional C-vector space C^{n}, and let $(\boldsymbol{x}, \boldsymbol{y})$ be the inner product in C^{n} satisfying $\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}$. In the exterior C-vector space $\Lambda^{k}\left(C^{n}\right)$, we define an inner product by

$$
\begin{gathered}
\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{k}, \boldsymbol{y}_{1} \wedge \cdots \wedge \boldsymbol{y}_{k}\right)=\operatorname{det}\left(\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)\right), \quad k \geq 1, \\
(a, b)=a b, \quad a, b \in \Lambda^{0}\left(C^{n}\right)=C .
\end{gathered}
$$

Then $\boldsymbol{e}_{i_{1}} \wedge \cdots \wedge \boldsymbol{e}_{i_{k}}, 1 \leq i_{1}<\cdots<i_{k} \leq n$, form an orthonormal C-basis of $\Lambda^{k}\left(C^{n}\right)$. For $\boldsymbol{u} \in \Lambda^{k}\left(C^{n}\right)$, we define an element $* \boldsymbol{u} \in \Lambda^{n-k}\left(C^{n}\right)$ satisfying

$$
(* \boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u} \wedge \boldsymbol{v}, \boldsymbol{e}_{1} \wedge \cdots \wedge \boldsymbol{e}_{n}\right), \quad \boldsymbol{v} \in \Lambda^{n-k}\left(C^{n}\right)
$$

Then $*$ induces a C-linear isomorphism $*: \Lambda^{k}\left(C^{n}\right) \rightarrow \Lambda^{n-k}\left(C^{n}\right)$.
The group $S L(n, C)$ naturally acts on $\Lambda^{k}\left(C^{n}\right)$ as

$$
A\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{k}\right)=A \boldsymbol{x}_{1} \wedge \cdots \wedge A \boldsymbol{x}_{k}, \quad A 1=1
$$

Hence the Lie algebra $\mathfrak{s l}(n, C)$ acts on $\Lambda^{k}\left(C^{n}\right)$ as

$$
D\left(\boldsymbol{x}_{1} \wedge \cdots \wedge \boldsymbol{x}_{k}\right)=\sum_{j=1}^{k} \boldsymbol{x}_{1} \wedge \cdots \wedge D \boldsymbol{x}_{j} \wedge \cdots \wedge \boldsymbol{x}_{k}, \quad D 1=0
$$

LEMMA 5.5.1

For $A \in S L(n, C), D \in \mathfrak{s l}(n, C)$, and $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^{k}\left(C^{n}\right)$, we have
(1) $\left(A \boldsymbol{u},{ }^{t} A^{-1} \boldsymbol{v}\right)=(\boldsymbol{u}, \boldsymbol{v}),(D \boldsymbol{u}, \boldsymbol{v})+\left(\boldsymbol{u},-{ }^{t} D \boldsymbol{v}\right)=0$,
(2) $*(A \boldsymbol{u})={ }^{t} A^{-1}(* \boldsymbol{u}), *(D \boldsymbol{u})=-{ }^{t} D(* \boldsymbol{u})$.

For $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^{k}\left(C^{n}\right)(1 \leq k \leq n)$, we define a C-linear mapping $\boldsymbol{u} \times \boldsymbol{v}$ of C^{n} by

$$
(\boldsymbol{u} \times \boldsymbol{v}) \boldsymbol{x}=*(\boldsymbol{v} \wedge *(\boldsymbol{u} \wedge \boldsymbol{x}))+(-1)^{n-k} \frac{n-k}{n}(\boldsymbol{u}, \boldsymbol{v}) \boldsymbol{x}, \quad \boldsymbol{x} \in \boldsymbol{C}^{n}
$$

Since $\operatorname{tr}(\boldsymbol{u} \times \boldsymbol{v})=0, \boldsymbol{u} \times \boldsymbol{v}$ can be regarded as an element of $\mathfrak{s l}(n, C)$ with respect to the canonical C-basis of C^{n}.

LEMMA 5.5.2
For $A \in S L(n, C), D \in \mathfrak{s l}(n, C)$, and $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^{k}\left(C^{n}\right)$, we have
(1) $A(\boldsymbol{u} \times \boldsymbol{v}) A^{-1}=A \boldsymbol{u} \times{ }^{t} A^{-1} \boldsymbol{v},[D, \boldsymbol{u} \times \boldsymbol{v}]=D \boldsymbol{u} \times \boldsymbol{v}+\boldsymbol{u} \times\left({ }^{t} D \boldsymbol{v}\right)$,
(2) ${ }^{t}(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \times \boldsymbol{u}, \tau(\boldsymbol{u} \times \boldsymbol{v})=\tau \boldsymbol{u} \times \tau \boldsymbol{v}$,
(3) $\operatorname{tr}(D(\boldsymbol{u} \times \boldsymbol{v}))=(-1)^{n-k}(D \boldsymbol{u}, \boldsymbol{v})$.

Now, we construct a C-Lie algebra $\widetilde{\mathfrak{e}_{8}^{C}}$ of type $E_{8}{ }^{C}$.
PROPOSITION 5.5.3 (GOMYO [1, Theorem 3.2])
In an $80+84+84=248$ dimensional C-vector space

$$
{\widetilde{\mathfrak{e}_{8}}}^{C}=\mathfrak{s l}(9, C) \oplus \Lambda^{3}\left(C^{9}\right) \oplus \Lambda^{3}\left(C^{9}\right),
$$

we define a Lie bracket $\left[R_{1}, R_{2}\right]$ by

$$
\begin{aligned}
& {\left[\left(D_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right),\left(D_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)\right]=(D, \boldsymbol{u}, \boldsymbol{v}),} \\
& \left\{\begin{array}{l}
D=\left[D_{1}, D_{2}\right]+\boldsymbol{u}_{1} \times \boldsymbol{v}_{2}-\boldsymbol{u}_{2} \times \boldsymbol{v}_{1}, \\
\boldsymbol{u}=D_{1} \boldsymbol{u}_{2}-D_{2} \boldsymbol{u}_{1}+*\left(\boldsymbol{v}_{1} \wedge \boldsymbol{v}_{2}\right), \\
\boldsymbol{v}=-{ }^{t} D_{1} \boldsymbol{v}_{2}+{ }^{t} D_{2} \boldsymbol{v}_{1}-*\left(\boldsymbol{u}_{1} \wedge \boldsymbol{u}_{2}\right) ;
\end{array}\right.
\end{aligned}
$$

then $\widetilde{\mathfrak{e}}_{8}^{C}$ becomes a simple C-Lie algebra.
This C-Lie algebra $\widetilde{\mathfrak{\varepsilon}_{8}}{ }^{C}$ has to be type $E_{8}{ }^{C}$. Let $\widetilde{E_{8}}{ }^{C}$ be the automorphism group of $\widetilde{\mathfrak{e}_{8}}{ }^{C}$:

$$
{\widetilde{E_{8}}}^{C}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\widetilde{\mathfrak{e}_{8}^{C}}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\} .
$$

Then ${\widetilde{E_{8}}}^{C}$ is also a simply connected complex Lie group of type $E_{8}{ }^{C}$.
We define a C-linear transformation $\widehat{\lambda}$ of $\widetilde{\mathfrak{\varepsilon}_{8}}{ }^{C}$ by

$$
\widehat{\lambda}(D, \boldsymbol{u}, \boldsymbol{v})=\left(-^{t} D,-\boldsymbol{v},-\boldsymbol{u}\right) .
$$

Then $\hat{\lambda} \in \widetilde{E}_{8}^{C}$ and $\widehat{\lambda}^{2}=1$. The complex conjugation of $\widetilde{\mathfrak{e}}^{C}$ is usually denoted by τ :

$$
\tau(D, \boldsymbol{u}, \boldsymbol{v})=(\tau D, \tau \boldsymbol{u}, \tau \boldsymbol{v}) .
$$

LEMMA 5.5.4 (see GOMYO [1])
The Killing form $\widetilde{B_{8}}$ of the Lie algebra $\widetilde{\mathfrak{e}_{8}}{ }^{C}$ is given by

$$
\widetilde{B_{8}}\left(\left(D_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right),\left(D_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)\right)=60\left(\operatorname{tr}\left(D_{1} D_{2}\right)+\left(\boldsymbol{u}_{1}, \boldsymbol{v}_{2}\right)+\left(\boldsymbol{v}_{1}, \boldsymbol{u}_{2}\right)\right)
$$

We shall find an \boldsymbol{R}-Lie algebra of type $E_{8(8)}$. We define an \boldsymbol{R}-Lie algebra $\widetilde{\boldsymbol{\varepsilon}}_{8}^{\prime}$ by

$$
\widetilde{\mathfrak{e}}_{8}^{\prime}=\mathfrak{s l}(9, \boldsymbol{R}) \oplus \Lambda^{3}\left(\boldsymbol{R}^{9}\right) \oplus \Lambda^{3}\left(\boldsymbol{R}^{9}\right)=\left(\widetilde{\mathfrak{e}}_{8}^{C}\right)^{\tau}
$$

with the Lie bracket the same as that of $\widetilde{\mathfrak{\varepsilon}_{8}}$.

PROPOSITION 5.5.5
We have that $\tilde{\mathfrak{e}}_{8}^{\prime}$ is an \boldsymbol{R}-Lie algebra of type $E_{8(8)}$.

Proof
We find the signature of the Killing form $\widetilde{B}_{8}{ }^{\prime}=\widetilde{B_{8}} \mid \widetilde{\mathfrak{e}}_{8}{ }^{\prime}$ of $\widetilde{\mathfrak{e}}_{8}{ }^{\prime}$. Decompose $\widetilde{\mathfrak{e}}_{8}{ }^{\prime}$ into eigenspaces relative to $\widehat{\lambda}$:

$$
\begin{gathered}
\widetilde{\mathfrak{e}}_{8}^{\prime}=\left(\widehat{\mathfrak{e}}_{8}^{\prime}\right)_{\hat{\lambda}} \oplus\left(\widetilde{\mathfrak{e}}_{8}^{\prime}\right)_{-\widehat{\lambda}} \\
\left(\widetilde{\mathfrak{e}}_{8}^{\prime}\right)_{\widehat{\lambda}}=\left\{R \in \hat{\mathfrak{e}}_{8}^{\prime} \mid \widehat{\lambda} R=R\right\}=\left\{(D, \boldsymbol{u},-\boldsymbol{u}) \mid D \in \mathfrak{s l}(9, \boldsymbol{R}),{ }^{t} D=-D, \boldsymbol{u} \in \Lambda^{3}\left(\boldsymbol{R}^{9}\right)\right\}, \\
\left(\widetilde{\mathfrak{e}}_{8}^{\prime}\right)_{-\widehat{\lambda}}=\left\{R \in \widetilde{\mathfrak{e}}_{8}^{\prime} \mid \widetilde{\lambda} R=-R\right\}=\left\{(D, \boldsymbol{u}, \boldsymbol{u}) \mid D \in \mathfrak{s l l}(9, \boldsymbol{R}),{ }^{t} D=D, \boldsymbol{u} \in \Lambda^{3}\left(\boldsymbol{R}^{9}\right)\right\} .
\end{gathered}
$$

Then, from Lemma 5.5.4, we see that the Killing form $\widetilde{B}_{8}{ }^{\prime}$ on $\left(\widetilde{e}_{8}\right)_{\hat{\lambda}}$ is negative definite and $\widetilde{B}_{8}{ }^{\prime}$ on $\left(\widetilde{\mathfrak{e}}_{8}{ }^{\prime}\right)_{-}$is positive definite. Therefore the number of negative eigenvalues of $\widetilde{B}_{8}{ }^{\prime}$ is $\operatorname{dim}\left(\left(\widetilde{\mathfrak{e}}_{8}{ }^{\prime}\right)_{\widehat{\lambda}}\right)=44+84=128$, and the number of positive eigenvalues of $\widetilde{B}_{8}{ }^{\prime}$ is $\operatorname{dim}\left(\left(\widetilde{\mathfrak{e}}_{8}{ }^{\prime}\right)_{-\widehat{\lambda}}\right)=36+84=120$. Therefore the signature of $\widetilde{B}_{8}{ }^{\prime}$ is $128-120=8$. Hence the type of $\widetilde{B}_{8}{ }^{\prime}$ is $E_{8(8)}$.

Let ${\widetilde{E_{8}}}^{\prime}$ be the automorphism group of $\widetilde{\mathfrak{\varepsilon}_{8}}$:

$$
\widetilde{E}_{8}^{\prime}=\left\{\alpha \in \operatorname{Iso}_{R}\left(\widetilde{\mathfrak{e}_{8}^{\prime}}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\} .
$$

Although we cannot give any explicit isomorphism between \mathfrak{e}_{8}^{C} and $\widetilde{\mathfrak{e}_{8}}{ }^{C}$, $\mathfrak{e}_{8(8)}$ and $\widetilde{\mathfrak{e}_{8}^{\prime}}$, instead of $\widetilde{\mathfrak{e}_{8}^{C}}, \widetilde{\mathfrak{e}}_{8}^{\prime}, \widetilde{E}_{8}^{C}$, and ${\widetilde{E_{8}}}^{\prime}$, we use the same notation as $\mathfrak{e}_{8}^{C}, \mathfrak{e}_{8(8)}$, $E_{8}{ }^{C}$, and $E_{8(8)}$ of Sections 5.1.

In the C-Lie algebra $\mathfrak{e}_{8}{ }^{C}=\mathfrak{s l}(9, C) \oplus \Lambda^{3}\left(C^{9}\right) \oplus \Lambda^{3}\left(C^{9}\right)$, let

$$
Z=\frac{1}{3}(\operatorname{diag}(-8,1,1,1,1,1,1,1,1), 0,0)
$$

THEOREM 5.5.6
The 3 -graded decomposition of the Lie algebra $\mathfrak{e}_{8(8)}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau}\left(\right.$ or $\left.\mathfrak{e}_{8}^{C}\right)$,

$$
\mathfrak{e}_{8(8)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to $\operatorname{ad} Z, Z=\frac{1}{3}(\operatorname{diag}(-8,1,1,1,1,1,1,1,1), 0,0)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0} & =\left\{\left(E_{i i}-E_{99}, 0,0\right), 1 \leq i \leq 8,\left(E_{k l}, 0,0\right), 2 \leq k \leq 9,2 \leq l \leq 9, k \neq l\right\} 64, \\
\mathfrak{g}_{-1} & =\left\{\left(0,0, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{k}\right), 2 \leq i<j<k \leq 9\right\} 56, \\
\mathfrak{g}_{-2} & =\left\{\left(0, \boldsymbol{e}_{1} \wedge \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{k}, 0\right), 2 \leq j<k \leq 9\right\} 28, \\
\mathfrak{g}_{-3} & =\left\{\left(E_{1 j}, 0,0\right), 2 \leq j \leq 9\right\} 8, \\
\mathfrak{g}_{1} & =\widehat{\lambda}\left(\mathfrak{g}_{-1}\right), \mathfrak{g}_{2}=\widehat{\lambda}\left(\mathfrak{g}_{-2}\right), \mathfrak{g}_{3}=\widehat{\lambda}\left(\mathfrak{g}_{-3}\right) .
\end{aligned}
$$

For the characteristic element $Z=\frac{1}{3}(\operatorname{diag}(-8,1,1,1,1,1,1,1,1), 0,0)$, we set

$$
z_{4}=\exp \left(\frac{2 \pi i}{4} \operatorname{ad} Z\right), \quad z_{3}=\exp \left(\frac{2 \pi i}{3} \operatorname{ad} Z\right) ;
$$

then we have

$$
z_{4}(D, \boldsymbol{u}, \boldsymbol{v})=\left(A_{4} D A_{4}^{-1}, A_{4} \boldsymbol{u},{ }^{t} A_{4}^{-1} \boldsymbol{v}\right), \quad A_{4}=\operatorname{diag}\left(\omega_{12}{ }^{8}, \omega_{12}, \omega_{12}, \ldots, \omega_{12}\right),
$$

$$
\begin{aligned}
z_{3}(D, \boldsymbol{u}, \boldsymbol{v}) & =\left(A_{3} D A_{3}^{-1}, A_{3} \boldsymbol{u}^{t} A_{3}^{-1} \boldsymbol{v}\right), \quad A_{3}=\omega_{9} E, \\
& =\left(D, \omega_{9} \boldsymbol{u}, \omega_{9}^{-1} \boldsymbol{v}\right),
\end{aligned}
$$

where $(D, \boldsymbol{u}, \boldsymbol{v}) \in \mathfrak{e}_{8}{ }^{C}, \omega_{12}=e^{2 \pi i / 12}, \omega_{9}=e^{2 \pi i / 9}$.
Since $\left.\left(\mathfrak{e}_{8}{ }^{C}\right)_{0}=\left(\mathfrak{e}_{8}\right)^{C}\right)^{z_{4}},\left(\mathfrak{e}_{8}{ }^{C}\right)_{e d}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{z_{3}}$, we determine the structures of groups

$$
\left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{z_{4}}, \quad\left(E_{8}^{C}\right)_{e d}=\left(E_{8}^{C}\right)^{z_{3}} .
$$

THEOREM 5.5.7

(1) As for $\left(E_{8}^{C}\right)_{e v}$, we will study this later.
(2) We have $\left(E_{8}^{C}\right)_{0} \cong\left(C^{*} \times S L(8, C)\right) / \boldsymbol{Z}_{24}, \boldsymbol{Z}_{24}=\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{8}, \boldsymbol{Z}_{3}=\{(1, E)$, $\left.(\omega, E),\left(\omega^{2}, E\right)\right\}, \boldsymbol{Z}_{8}=\left\{\left(\omega_{8}{ }^{k}, \omega_{8}{ }^{k} E\right) \mid k=0,1, \ldots, 7\right\}, \omega=e^{2 \pi i / 3}, \omega_{8}=e^{2 \pi i / 8}$.
(3) We have $\left(E_{8}{ }^{C}\right)_{e d} \cong S L(9, C) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\left\{E, \omega E, \omega^{2} E\right\}, \omega=e^{2 \pi i / 3}$.

Proof
(2) We define a mapping $\varphi_{0}: S(G L(1, C) \times G L(8, C)) \rightarrow\left(E_{8}^{C}\right)^{z_{4}}=\left(E_{8}^{C}\right)_{0}$ by

$$
\varphi_{0}(A)(D, \boldsymbol{u}, \boldsymbol{v})=\left(A D A^{-1}, A \boldsymbol{u},{ }^{t} A^{-1} \boldsymbol{v}\right) ;
$$

φ_{0} is well defined. Indeed, by using Lemmas 5.5.1 and 5.5.2, we have

$$
\varphi_{0}(A)\left[\left(D_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right),\left(D_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)\right]=\left[\varphi_{0}(A)\left(D_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right), \varphi_{0}(A)\left(D_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}\right)\right] ;
$$

that is, $\varphi_{0}(A) \in E_{8}{ }^{C}$. Next, since $z_{4}=\varphi_{0}\left(A_{4}\right)$ and $z_{4} \varphi_{0}(A)=\varphi_{0}\left(A_{4}\right) \varphi_{0}(A)=$ $\varphi_{0}\left(A_{4} A\right)=\varphi_{0}\left(A A_{4}\right)=\varphi_{0}(A) \varphi_{0}\left(A_{4}\right)=\varphi_{0}(A) z_{4}$, we get $\varphi_{0}(A) \in\left(E_{8}^{C}\right)^{z_{4}}$. Obviously φ_{0} is a homomorphism. It is easy to see that $\operatorname{Ker} \varphi_{0}=\left\{E, \omega E, \omega^{2} E\right\}=\boldsymbol{Z}_{3}$, $\left(E_{8}^{C}\right)^{z_{4}}$ is connected, $\operatorname{Ker} \varphi_{0}$ is discrete, and $\operatorname{dim}_{C}(\mathfrak{s}(\mathfrak{g l}(1, C) \oplus \mathfrak{g l}(8, C)))=(1+$ $64)-1=64=\operatorname{dim}_{C}\left(\left(e_{8}^{C}\right)_{0}\right)=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}^{C}\right)^{z_{4}}\right)$ (see Theorem 5.5.6), so φ_{0} is surjective. Hence we have

$$
\left(E_{8}^{C}\right)^{z_{4}} \cong S(G L(1, C) \times G L(8, C)) / \boldsymbol{Z}_{3}, \quad \boldsymbol{Z}_{3}=\left\{E, \omega E, \omega^{2} E\right\} .
$$

Further, the mapping $h: C^{*} \times S L(8, C) \rightarrow S(G L(1, C) \times G L(8, C))$,

$$
h(z, B)=\left(\begin{array}{cc}
z^{-8} & 0 \\
0 & z B
\end{array}\right),
$$

induces the isomorphism $S(G L(1, C) \times G L(8, C)) \cong\left(C^{*} \times S L(8, C)\right) / \boldsymbol{Z}_{8}, \boldsymbol{Z}_{8}=$ $\left\{\left(\omega_{8}{ }^{k}, \omega_{8}{ }^{k} E\right) \mid k=0,1, \ldots, 7\right\}$, and h satisfies $h(\omega, E)=\omega E$. Thus we have the isomorphism $\left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{z_{4}} \cong\left(C^{*} \times S L(8, C)\right) /\left(\boldsymbol{Z}_{3} \times \boldsymbol{Z}_{8}\right), \boldsymbol{Z}_{3}=\{(1, E)$, $\left.(\omega, E),\left(\omega^{2}, E\right)\right\}, \boldsymbol{Z}_{8}=\left\{\left(\omega_{8}{ }^{k}, \omega_{8}{ }^{k} E\right) \mid k=0,1, \ldots, 7\right\}$.
(3) We define a mapping $\varphi_{e d}: S L(9, C) \rightarrow\left(E_{8}{ }^{C}\right)^{z_{3}}=\left(E_{8}{ }^{C}\right)_{e d}$ by

$$
\varphi_{e d}(A)(D, \boldsymbol{u}, \boldsymbol{v})=\left(A D A^{-1}, A \boldsymbol{u},{ }^{t} A^{-1} \boldsymbol{v}\right) .
$$

Then we see that $\varphi_{e d}$ induces the isomorphism $\left(E_{8}{ }^{C}\right)_{e d}=\left(E_{8}{ }^{C}\right)^{z_{3}} \cong S L(9, C) /$ $\boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\left\{E, \omega E, \omega^{2} E\right\}$ in a way similar to (2) above.
5.6. Subgroups of type $\boldsymbol{R} \oplus A_{7(7)}$ and $A_{8(8)}$ of $E_{8(8)}$

In this section, we use Lie algebras $\mathfrak{e}_{8}{ }^{C}, \mathfrak{e}_{8(8)}$ and Lie groups $E_{8}^{C}, E_{8(8)}$ defined in Section 5.5.

Since $\left(\mathfrak{e}_{8(8)}\right)_{0}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{0} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau}=\left(\mathfrak{e}_{8}\right)^{z_{4}} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau},\left(\mathfrak{e}_{8(8)}\right)_{e d}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{e d} \cap$ $\left(\mathfrak{e}_{8}^{C}\right)^{\tau}=\left(\mathfrak{e}_{8}^{C}\right)^{z_{3}} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau}$, we determine the structures of groups

$$
\begin{aligned}
& \left(E_{8(8)}\right)_{0}=\left(E_{8}^{C}\right)_{0} \cap\left(E_{8}^{C}\right)^{\tau}=\left(E_{8}^{C}\right)^{z_{4}} \cap\left(E_{8}^{C}\right)^{\tau}, \\
& \left(E_{8(8)}\right)_{e d}=\left(E_{8}^{C}\right)_{e d} \cap\left(E_{8}^{C}\right)^{\tau}=\left(E_{8}^{C}\right)^{z_{3}} \cap\left(E_{8}^{C}\right)^{\tau} \text {. }
\end{aligned}
$$

THEOREM 5.6.1

(1) As for $\left(E_{8(8)}\right)_{e v}$, we will study this later.
(2) We have $\left(E_{8(8)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right) \times\left\{1, \zeta, \zeta^{2}\right\}$.
(3) We have $\left(E_{8(8)}\right)_{e d} \cong S L(9, \boldsymbol{R}) \times\left\{1, \zeta, \zeta^{2}\right\}$.

Proof
(2) For $\alpha \in\left(E_{8(8)}\right)_{0} \subset\left(E_{8}^{C}\right)_{0}=\left(E_{8}^{C}\right)^{z_{4}}$, there exists $A \in S(G L(1, C) \times$ $G L(8, C)$) such that $\alpha=\varphi_{0}(A)$ (see Theorem 5.5.7(2)). From the condition $\tau \alpha \tau=\alpha$, that is, $\tau \varphi_{4}(A) \tau=\varphi_{4}(A)$, we have $\varphi_{0}(\tau A)=\varphi_{0}(A)$. Hence

$$
\text { (i) } \tau A=A, \quad \text { (ii) } \tau A=\omega A, \quad \text { or } \quad \text { (iii) } \tau A=\omega^{2} A \text {. }
$$

Case (i). From the condition $\tau A=A$, we have $A \in S(G L(1, \boldsymbol{R}) \times G L(8, \boldsymbol{R}))$. The mapping $h: \boldsymbol{R}^{*} \times S L(8, \boldsymbol{R}) \rightarrow S(G L(1, \boldsymbol{R}) \times G L(8, \boldsymbol{R}))$,

$$
h(r, B)=\left(\begin{array}{cc}
r^{-8} & 0 \\
0 & r B
\end{array}\right),
$$

induces the isomorphism $S(G L(1, \boldsymbol{R}) \times G L(8, \boldsymbol{R})) \cong\left(\boldsymbol{R}^{*} \times S L(8, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=$ $\{(1, E),(-1,-E)\}$. Further, the mapping $k: \boldsymbol{R}^{*} \times S L(8, \boldsymbol{R}) \rightarrow \boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})$,

$$
k(r, B)= \begin{cases}(r, B) & \text { if } r>0 \\ (-r,-B) & \text { if } r<0\end{cases}
$$

induces the isomorphism $\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R}) \cong\left(\boldsymbol{R}^{*} \times S L(8, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1, E)$, $(-1,-E)\}$. Hence we have $S(G L(1, \boldsymbol{R}) \times G L(8, \boldsymbol{R})) \cong \boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})$.

Case (ii). Since $A=\omega E$ satisfies the condition $\tau A=\omega A$, we have

$$
\begin{aligned}
\varphi_{0}(\omega E)(D, \boldsymbol{u}, \boldsymbol{v}) & =\left((\omega E) D(\omega E)^{-1},(\omega E) \boldsymbol{u},{ }^{t}(\omega E)^{-1} \boldsymbol{v}\right) \\
& =\left(D, \omega \boldsymbol{u}, \omega^{2} \boldsymbol{v}\right)=\zeta(D, \boldsymbol{u}, \boldsymbol{v})
\end{aligned}
$$

that is, ζ is defined by $\varphi_{0}(\omega E)$.
Case (iii). Since $A=\omega^{2} E$ satisfies the condition $\tau A=\omega^{2} A$, in a way similar to case (ii), we have $\varphi_{0}\left(\omega^{2} E\right)=\zeta^{2}$.
Thus we have the isomorphism $\left(E_{8(8)}\right)_{0} \cong\left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right) \cup \zeta\left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right) \cup$ $\zeta^{2}\left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right)=\left(\boldsymbol{R}^{+} \times S L(8, \boldsymbol{R})\right) \times\left\{1, \zeta, \zeta^{2}\right\}$.
(3) For $\alpha \in\left(E_{8(8)}\right)_{e d} \subset\left(E_{8}^{C}\right)_{e d}=\left(E_{8}{ }^{C}\right)^{z_{3}}$, there exists $A \in S L(9, C)$ such that $\alpha=\varphi_{e d}(A)$ (see Theorem 5.5.7(3)). From the condition $\tau \alpha \tau=\alpha$, that is,
$\tau \varphi_{e d}(A) \tau=\varphi_{e d}(A)$, we have $\varphi_{3}(\tau A)=\varphi_{3}(A)$. Hence
(i) $\tau A=A$,
(ii) $\tau A=\omega A$,
or
(iii) $\tau A=\omega^{2} A$.

Case (i). From the condition $\tau A=A$, we have $A \in S L(9, \boldsymbol{R})$.
Case (ii). Since $A=\omega E$ satisfies the condition $\tau A=\omega A$, we have $\varphi_{e d}(\omega E)=$ ζ as in Case of (2).

Case (iii). Since $A=\omega^{2} E$ satisfies the conditions $\tau A=\omega^{2} A$, we have $\varphi_{e d}\left(\omega^{2} E\right)=\zeta^{2}$ as in Case (2). Thus we have the isomorphism $\left(E_{8(8)}\right)_{e d}=$ $\left(E_{8}{ }^{C}\right)^{z_{3}} \cong S L(9, \boldsymbol{R}) \cup \zeta(S L(9, \boldsymbol{R})) \cup \zeta^{2}(S L(9, \boldsymbol{R}))=S L(9, \boldsymbol{R}) \times\left\{1, \zeta, \zeta^{2}\right\}$.

5.7. Subgroup of type $D_{8}{ }^{C}$ of $E_{8}{ }^{C}$ and subgroup of type $D_{8(8)}$ of $E_{8(8)}$

In this section, we determine the structures of the groups $\left(E_{8}{ }^{C}\right)_{\text {ev }}$ (see Theorem 5.5.7(1)) and $\left(E_{8(8)}\right)_{e v}$ (see Theorem 5.6.1(1)). As we use a realization of semispinor groups $S s(16, C)$ in $E_{8}{ }^{C}$ and $S s(8,8)$ in $E_{8(8)}$ by Gomyo [2], we review here one more Lie algebra $\mathfrak{e}_{8}{ }^{C}$ constructed by Gomyo [2].

Let $e_{0}, e_{1}, \ldots, e_{7}$ be the canonical C-basis of the C-vector space \mathfrak{C}^{C} which is the complexification of the \boldsymbol{R}-Calyley algebra \mathfrak{C}. In a 16 -dimensional C-vector space $\left(\mathfrak{C}^{C}\right)^{2}$, denote

$$
\begin{array}{ll}
\widetilde{e}_{1}=\binom{e_{0}}{0}, & \widetilde{e}_{2}=\binom{e_{1}}{0}, \ldots, \widetilde{e}_{8}=\binom{e_{7}}{0}, \\
\widetilde{e}_{9}=\binom{0}{e_{0}}, & \widetilde{e}_{10}=\binom{0}{e_{1}}, \ldots, \widetilde{e}_{16}=\binom{0}{e_{7}} .
\end{array}
$$

We give an inner product $(\widetilde{a}, \widetilde{b})$ in $\left(\mathfrak{C}^{C}\right)^{2}$ so that $\widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{16}$ are an orthonormal C-basis of $\left(\mathfrak{C}^{C}\right)^{2}$. Let $C l\left(\left(\mathfrak{C}^{C}\right)^{2}\right)$ be the C-Clifford algebra with a C-basis

$$
1, \widetilde{e}_{1}, \widetilde{e}_{2}, \ldots, \widetilde{e}_{16}, \ldots, \widetilde{e}_{k_{1}} \cdots \widetilde{e}_{k_{l}}\left(k_{1}<\cdots<k_{l}\right), \ldots, \widetilde{e}_{1} \widetilde{e}_{2} \cdots \widetilde{e}_{16}
$$

with relations $\widetilde{e}_{k}^{2}=-1$ and $\widetilde{e}_{k} \widetilde{e}_{l}=-\widetilde{e}_{l} \widetilde{e}_{k}(k \neq l)$. Now, the complex spinor group $\operatorname{Spin}(16, C)$ is defined by

It is known that the group $\operatorname{Spin}(16, C)$ is connected and is a double covering group of $S O(16, C)=S O\left(\left(\mathfrak{C}^{C}\right)^{2}\right)$ by the projection $p: \operatorname{Spin}(16, C) \rightarrow S O(16, C)$,

$$
p(\widetilde{\alpha}) \widetilde{x}=\widetilde{\alpha} \widetilde{x} \widetilde{\alpha}^{-1}, \quad \widetilde{x} \in\left(\mathfrak{C}^{C}\right)^{2} .
$$

So $\operatorname{Spin}(16, C)$ is simply connected. In $C l\left(\left(\mathfrak{C}^{C}\right)^{2}\right)$, let

$$
\widetilde{\zeta}=\widetilde{e}_{1} \widetilde{e}_{2} \cdots \widetilde{e}_{15} \widetilde{e}_{16} .
$$

Then $\widetilde{\zeta} \in \operatorname{Spin}(16, C)$ and $\widetilde{\zeta}^{2}=1$. The center of the group $\operatorname{Spin}(16, C)$ is given by

$$
z(\operatorname{Spin}(16, C))=\{1,-1, \widetilde{\zeta},-\widetilde{\zeta}\}
$$

The complex semispinor group $S s(16, C)$ is defined by

$$
S s(16, C)=\operatorname{Spin}(16, C) /\{1, \widetilde{\zeta}\} .
$$

It is known that $\operatorname{Spin}(16, C) /\{1,-1\} \cong S O(16, C)$ and $S s(16, C) \nsubseteq S O(16, C)$.
In the C-Lie algebra $\mathfrak{s o}(8, C)=\mathfrak{s o}\left(\mathfrak{C}^{C}\right)=\left\{X \in \operatorname{Hom}_{C}\left(\mathfrak{C}^{C}\right) \mid(X x, y)+(x\right.$, $\left.X y)=0, x, y \in \mathfrak{C}^{C}\right\}, G_{k l}(0 \leq k \leq 7,0 \leq l \leq 7, k \neq l)$ is defined as a C-endomorphism of \mathfrak{C}^{C} satisfying

$$
G_{k l} e_{l}=e_{k}, \quad G_{k l} e_{k}=-e_{l}, \quad G_{k l} e_{j}=0 \quad \text { otherwise }
$$

then $G_{k l}, 0 \leq k<l \leq 7$ is C-basis of $\mathfrak{s o}(8, C)$. (These $G_{k l}$ are already used in Theorems 5.2.1 and 5.4.1.) Next, $F_{k l} \in \mathfrak{s o}(8, C)(0 \leq k \leq 7,0 \leq l \leq 7, k \neq l)$ is defined as

$$
F_{k l} x=\frac{1}{2} e_{k}\left(\bar{e}_{l} x\right), \quad x \in \mathfrak{C}^{C}
$$

Now, we define C-linear transformations μ, κ, and ν of $\mathfrak{s o}(8, C)$ by

$$
\mu G_{k l}=F_{k l}, \quad(\kappa X) x=\bar{X} \bar{x}, \quad x \in \mathfrak{C}^{C}, \nu=\mu \kappa
$$

Then μ, κ, and ν are outer automorphisms of $\mathfrak{s o}(8, C)$.
For $x, y \in \mathfrak{C}^{C}$, we define a C-linear transformation $x \times y$ of \mathfrak{C}^{C} by

$$
(x \times y) z=(y, z) x-(x, z) y, \quad z \in \mathfrak{C}^{C}
$$

Let $\mathfrak{s o}(16, C)=\left\{D \in \operatorname{Hom}\left(\left(\mathfrak{C}^{C}\right)^{2}\right) \mid(D \widetilde{x}, \widetilde{y})+(\widetilde{x}, D \widetilde{y})=0, \widetilde{x}, \widetilde{y} \in\left(\mathfrak{C}^{C}\right)^{2}\right\}=\{D \in$ $\left.\left.M(16, C)\right|^{t} D+D=0\right\}$. We define a C-bilinear mapping $\times:\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \times\left(\mathfrak{C}^{C} \otimes\right.$ $\left.\mathfrak{C}^{C}\right) \rightarrow \mathfrak{s o}(16, C)$ by

$$
\begin{aligned}
\left(x_{1} \otimes y_{1}, 0\right) \times\left(x_{2} \otimes y_{2}, 0\right) & =\left(\begin{array}{cc}
\left(y_{1}, y_{2}\right) \pi\left(x_{1} \times x_{2}\right) & 0 \\
0 & \left(x_{1}, x_{2}\right) \pi\left(y_{1} \times y_{2}\right)
\end{array}\right) \\
\left(0, z_{1} \otimes u_{1}\right) \times\left(0, z_{2} \otimes u_{2}\right) & =\left(\begin{array}{cc}
\left(u_{1}, u_{2}\right) \nu^{2}\left(z_{1} \times z_{2}\right) & 0 \\
0 & \left(z_{1}, z_{2}\right) \nu^{2}\left(u_{1} \times u_{2}\right)
\end{array}\right) \\
(x \otimes y, 0) \times(0, z \otimes u) & =\left(\begin{array}{cc}
0 & \frac{1}{2}(x \bar{z})^{t}(y \bar{u}) \\
-\frac{1}{2}(y \bar{u})^{t}(x \bar{z}) & 0
\end{array}\right) \\
(0, z \otimes u) \times(x \otimes y, 0) & =\left(\begin{array}{cc}
0 & -\frac{1}{2}(x \bar{z})^{t}(y \bar{u}) \\
\frac{1}{2}(y \bar{u})^{t}(x \bar{z}) & 0
\end{array}\right) .
\end{aligned}
$$

We define a representation ρ of $\operatorname{Spin}(16, C)$ on $\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right)$ (called the half-spinor representation of $\operatorname{Spin}(16, C))$ by

$$
\begin{aligned}
& \rho\left(\binom{a_{1}}{b_{1}}\binom{a_{2}}{b_{2}}\right)(x \otimes y, 0) \\
& \quad=\left(-a_{1}\left(\bar{a}_{2} x\right) \otimes y-x \otimes b_{1}\left(\bar{b}_{2} y\right), \bar{a}_{1} x \otimes \bar{b}_{2} y-\bar{a}_{2} x \otimes \bar{b}_{1} y\right), \\
& \rho\left(\binom{a_{1}}{b_{1}}\binom{a_{2}}{b_{2}}\right)(0, z \otimes u) \\
& \quad=\left(-a_{1} z \otimes b_{2} u+a_{2} z \otimes b_{1} u,-\bar{a}_{1}\left(a_{2} z\right) \otimes u-z \otimes \bar{b}_{1}\left(b_{2} u\right)\right), \\
& \rho\left(\widetilde{a}_{1} \widetilde{a}_{2} \cdots \widetilde{a}_{2 m-1} \widetilde{a}_{2 m}\right)=\rho\left(\widetilde{a}_{1} \widetilde{a}_{2}\right) \cdots \rho\left(\widetilde{a}_{2 m-1} \widetilde{a}_{2 m}\right) .
\end{aligned}
$$

Then the differential representation $d \rho$ of $\mathfrak{s o}(16, C)$ on $\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right)$ has the following property:
$d \rho\left(\left(\begin{array}{cc}X & 0 \\ 0 & Y\end{array}\right)\right)(x \otimes y, z \otimes u)=((\mu X) x \otimes y+x \otimes(\mu Y) y,(\nu X) z \otimes u+z \otimes(\nu Y) u)$.
Under preliminaries above, we have the following proposition.

PROPOSITION 5.7.1 (GOMYO [2, Theorem 3.4])
In a $120+64+64=248$ dimensional C-vector space

$$
\widehat{\mathfrak{e}}_{8}^{C}=\mathfrak{s o}(16, C) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right),
$$

we define a Lie bracket $\left[R_{1}, R_{2}\right]$ by

$$
\left[\left(D_{1}, P_{1}\right),\left(D_{2}, P_{2}\right)\right]=\left(\left[D_{1}, D_{2}\right]-P_{1} \times P_{2}, d \rho\left(D_{1}\right) P_{2}-d \rho\left(D_{2}\right) P_{1}\right) ;
$$

then $\widehat{\mathfrak{e}}_{8}{ }^{C}$ becomes a simple C-Lie algebra.
This C-Lie algebra $\widehat{\mathfrak{e}}_{8}{ }^{C}$ has to be of type $E_{8}{ }^{C}$. Let $\widehat{E}_{8}{ }^{C}$ be the automorphism group of $\widehat{\mathfrak{e}}_{8}{ }^{C}$:

$$
\widehat{E}_{8}^{C}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\widehat{\mathfrak{e}}_{8}^{C}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\} .
$$

Then $\widehat{E}_{8}{ }^{C}$ is also a simply connected complex Lie group of type $E_{8}{ }^{C}$. So we use notations $\mathfrak{e}_{8}{ }^{C}$ and E_{8}^{C} instead of $\widehat{\mathfrak{e}}_{8}{ }^{C}$ and $\widehat{E}_{8}{ }^{C}$.

In the C-algebra $\mathfrak{e}_{8}^{C}=\mathfrak{s o}(16, C) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right)$, let

$$
Z=(\operatorname{diag}(i J, i J, i J, i J,-i J, i J, i J, i J), 0,0), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Let $G_{k l}$ be an element of $\mathfrak{s o}(16, C)=\left\{D \in M(16, C) \mid{ }^{t} D+D=0\right\}$ such that $G_{k l}=E_{k l}-E_{l k}$ (where $E_{k l}$ is a matrix of $M(16, C)$ when the (k, l)-entry is 1 and the others are zero). Then $G_{k l}, 0 \leq k<l \leq 15$ is a C-basis of $\mathfrak{s o}(16, C)$. The complex conjugation in $\mathfrak{e}_{8}{ }^{C}$ is usually denoted by τ :

$$
\tau(D, x \otimes y, z \otimes u)=(\tau D, \tau x \otimes \tau y, \tau z \otimes \tau u)
$$

THEOREM 5.7.2
The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{8}{ }^{C}=\mathfrak{s o}(16, C) \oplus\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right) \oplus$ $\left(\mathfrak{C}^{C} \otimes \mathfrak{C}^{C}\right)$,

$$
\mathfrak{e}_{8}{ }^{C}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to ad $Z, Z=(\operatorname{diag}(i J, i J, i J, i J,-i J, i J, i J, i J), 0,0)$, is given by

$$
\mathfrak{g}_{0}=\left\{\begin{array}{l}
\left(G_{k, k+1}, 0,0\right), k=0,2,4, \ldots, 14 \\
\left(G_{k, k+j}+G_{k+1, k+1+j}, 0,0\right) \\
k=0,2,4, \ldots, 14, j=k+2, k+4, \ldots, 14, k, j \neq 8 \\
\left(G_{k, 8}-G_{k+1,9}, 0,0\right), k=0,2,4,6, G_{8, k}-G_{9, k+1}, k=10,12,14, \\
\left(G_{k, k+1+j}-G_{k+1, k+j}, 0,0\right) \\
k=0,2,4, \ldots, 14, j=k+2, k+4, \ldots, 14, k, j \neq 8 \\
\left(G_{k, 8}+G_{k+1,9}, 0,0\right), k=0,2,4,6, G_{8, k}+G_{9, k+1}, k=10,12,14
\end{array}\right\}
$$

$$
\begin{aligned}
& \mathfrak{g}_{-1}=\left\{\begin{array}{c}
\left(0,\left(e_{0} \otimes e_{0}+e_{1} \otimes e_{1}\right)-i\left(e_{0} \otimes e_{1}-e_{1} \otimes e_{0}\right), 0\right), \\
\left(0,\left(e_{1} \otimes e_{k}+e_{0} \otimes e_{k+1}\right)-i\left(e_{0} \otimes e_{k}-e_{1} \otimes e_{k+1}\right), 0\right), \\
k=2,4,6, \\
\left(0,\left(e_{l} \otimes e_{0}\right)+i\left(e_{l} \otimes e_{1}\right), 0\right),\left(0,\left(e_{l} \otimes e_{k}\right)-i\left(e_{l} \otimes e_{k+1}\right), 0\right), \\
k=2,4,6, l=2,3, \ldots 7, \\
\left(0,0,\left(e_{0} \otimes e_{0}+e_{1} \otimes e_{1}\right)+i\left(e_{0} \otimes e_{1}-e_{1} \otimes e_{0}\right)\right), \\
\left(0,0,\left(e_{k} \otimes e_{0}-e_{k+1} \otimes e_{1}\right)+\left(e_{k} \otimes e_{1}+e_{k+1} \otimes e_{0}\right)\right), \\
k=2,4,6, \\
\left(0,0,\left(e_{l} \otimes e_{0}\right)+i\left(e_{l} \otimes e_{1}\right),\left(e_{l} \otimes e_{k}\right)-i\left(e_{l} \otimes e_{k+1}\right)\right), \\
k=2,4,6, l=2,3, \ldots 7
\end{array}\right\} 28, \\
& \mathfrak{g}_{-2}=\left\{\begin{array}{c}
\left(G_{k, l}-G_{k+1, l+1}+i\left(G_{k, l+1}+G_{k+1, l}\right), 0,0\right), \\
k=0,2, \ldots, 12, l=k+2, k+4, \ldots, 14, k, l \neq 8 \\
\left(G_{k, 8}-G_{k+1,9}-i\left(G_{k, 9}+G_{k+1,8}\right), 0,0\right), \\
k=0,2, \ldots, 14, k \neq 8
\end{array}\right\} \\
& \mathfrak{g}_{-3}=\left\{\begin{array}{c}
\left(0,\left(e_{0} \otimes e_{0}-e_{1} \otimes e_{1}\right)+i\left(e_{0} \otimes e_{1}+e_{1} \otimes e_{0}\right), 0\right), \\
\left(0,\left(e_{0} \otimes e_{k}-e_{0} \otimes e_{k+1}\right)-i\left(e_{0} \otimes e_{k+1}+e_{1} \otimes e_{k}\right), 0\right), \\
k=2,4,6, \\
\left(0,0,\left(e_{0} \otimes e_{0}-e_{1} \otimes e_{1}\right)+i\left(e_{0} \otimes e_{1}+e_{1} \otimes e_{0}\right)\right), \\
\left(0,0,\left(e_{k} \otimes e_{0}+e_{k+1} \otimes e_{1}\right)-i\left(e_{k+1} \otimes e_{0}-e_{k} \otimes e_{1}\right)\right), \\
k=2,4,6, \\
\mathfrak{g}_{2}=\tau\left(\mathfrak{g}_{-2}\right), \quad \mathfrak{g}_{3}=\tau\left(\mathfrak{g}_{-3}\right) .
\end{array}\right. \\
& \mathfrak{g}_{1}=\tau\left(\mathfrak{g}_{-1}\right), \quad
\end{aligned}
$$

Proof

Noting that

$$
\begin{aligned}
\mu\left(i\left(G_{01}+G_{23}+G_{45}+G_{67}\right)\right) & =2 i G_{01}, \\
\mu\left(i\left(-G_{01}+G_{23}+G_{45}+G_{67}\right)\right) & =i\left(G_{01}-G_{23}-G_{45}-G_{67}\right), \\
\nu\left(i\left(G_{01}+G_{23}+G_{45}+G_{67}\right)\right) & =i\left(G_{01}-G_{23}-G_{45}-G_{67}\right), \\
\nu\left(i\left(-G_{01}+G_{23}+G_{45}+G_{67}\right)\right) & =2 i G_{01},
\end{aligned}
$$

we can prove this theorem by direct calculations.
We define a C-linear transformation ε of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\varepsilon(D, x \otimes y, z \otimes u)=(D,-x \otimes y,-z \otimes u) .
$$

Then $\varepsilon \in E_{8}{ }^{C}$ and $\varepsilon^{2}=1$.
Now, for the characteristic element $Z=(\operatorname{diag}(i J, i J, i J, i J,-i J, i J, i J, i J), 0$, 0), we have the following proposition.

PROPOSITION 5.7.3

We have

$$
\exp \left(\frac{2 \pi i}{2} \operatorname{ad} Z\right)=\varepsilon
$$

Proof
Since Z is a central element of $(\mathfrak{s o}(16, C), 0,0)$, the action $\exp (\pi i \operatorname{ad} Z)$ on $(\mathfrak{s o}(16, C), 0,0)$ is trivial. Next,

$$
\begin{aligned}
i \operatorname{ad} Z(x \otimes y, 0)= & \left(-\mu\left(G_{01}+G_{23}+G_{45}+G_{67}\right) x \otimes y\right. \\
& \left.-x \times \mu\left(G_{01}+G_{23}+G_{45}+G_{67}\right) y, 0\right) \\
= & \left(-2 G_{01} x \otimes y-x \otimes\left(G_{01}-G_{23}-G_{45}-G_{67}\right) y, 0\right) \\
=(& (\operatorname{diag}(2 J, 0,0,0) x \otimes y+x \otimes \operatorname{diag}(J,-J,-J,-J) y, 0) .
\end{aligned}
$$

Hence, for $t \in \boldsymbol{R}$, we have

$$
\begin{aligned}
& (\exp (t i \operatorname{ad} Z))(x \otimes y, 0) \\
& \quad=(\operatorname{diag}(R(2 t), E, E, E) x \otimes \operatorname{diag}(R(t), R(-t), R(-t), R(-t)) y, 0)
\end{aligned}
$$

where $R(t)=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$. Setting $t=\pi$, we have

$$
\begin{aligned}
& (\exp (\pi i \operatorname{ad} Z))(x \otimes y, 0) \\
& \quad=(\operatorname{diag}(E, E, E, E) x \otimes \operatorname{diag}(-E,-E,-E,-E) y, 0) \\
& \quad=(x \otimes(-y), 0)=(-x \otimes y, 0)
\end{aligned}
$$

Similarly, we obtain

$$
(\exp (\pi i \operatorname{ad} Z))(0, z \otimes u)=(0, z \otimes(-u))=(0,-z \otimes u)
$$

Thus we have

$$
\begin{aligned}
& (\exp (\pi i \operatorname{ad} Z))(D, x \otimes y, z \otimes u) \\
& \quad=(D,-x \otimes y,-z \otimes u)=\varepsilon(D, x \otimes y, z \otimes u)
\end{aligned}
$$

that is, $\exp ((2 \pi i / 2) \operatorname{ad} Z)=\varepsilon$.
Set $z_{2}=\exp ((2 \pi i / 2)$ ad $Z)=\varepsilon$. Then since $\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{z_{2}}=\left(\mathfrak{e}_{8}{ }^{C}\right)^{\varepsilon}$, we determine the structure of the group

$$
\left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{z_{2}}=\left(E_{8}^{C}\right)^{\varepsilon} .
$$

THEOREM 5.7.4

We have

$$
\left(E_{8}^{C}\right)_{e v} \cong S s(16, C) .
$$

Proof
We define a mapping $\varphi_{e v}: \operatorname{Spin}(16, C) \rightarrow\left(E_{8}^{C}\right)^{\varepsilon}=\left(E_{8}{ }^{C}\right)_{0}$ by

$$
\varphi_{e v}(\widetilde{\alpha})(D, P)=\left(p(\widetilde{\alpha}) D p(\widetilde{\alpha})^{-1}, \rho(\widetilde{\alpha}) P\right) .
$$

Since $\varphi_{e v}(-1)=\varepsilon$, for $\widetilde{\alpha} \in \operatorname{Spin}(16, C)$ we have $\varphi_{e v}(\widetilde{\alpha}) \varepsilon=\varphi_{e v}(\widetilde{\alpha}) \varphi_{e v}(-1)=$ $\varphi_{e v}(\widetilde{\alpha}(-1))=\varphi_{e v}((-1) \widetilde{\alpha})=\varphi_{e v}(-1) \varphi_{e v}(\widetilde{\alpha})=\varepsilon \varphi_{e v}(\widetilde{\alpha})$, that is, $\varphi(\widetilde{\alpha}) \in\left(E_{8}^{C}\right)^{\varepsilon}$. Hence $\varphi_{e v}$ is well defined. Since $\left(E_{8}^{C}\right)^{\varepsilon}$ is connected and $\operatorname{dim}_{C}\left(\left(e_{8}^{C}\right)^{\varepsilon}\right)=$
$\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v}\right)=64+28 \times 2\left(\right.$ see Theorem 5.7.2) $=120=\operatorname{dim}_{C}(\mathfrak{s p i n}(16, C))$, $\operatorname{Ker} \varphi_{e v}$ is discrete, so $\operatorname{Ker} \varphi_{e v}$ is contained in the center of $\operatorname{Spin}(16, C): \operatorname{Ker} \varphi_{e v} \subset$ $z(\operatorname{Spin}(16, C))=\{1,-1, \widetilde{\zeta},-\widetilde{\zeta}\}$. However

$$
\varphi_{e v}(1)=\varphi_{e v}(\widetilde{\zeta})=1 \quad \text { and } \quad \varphi_{e v}(-1)=\varphi_{e v}(-\widetilde{\zeta})=\varepsilon
$$

so $\operatorname{Ker} \varphi=\{1, \widetilde{\zeta}\}$. Again, since $\left(E_{8}^{C}\right)^{\varepsilon}$ is connected and $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{8}{ }^{C}\right)^{\varepsilon}\right)=$ $\operatorname{dim}_{C}(\mathfrak{s p i n}(16, C)), \varphi$ is surjective. Thus we have the isomorphism $\left(E_{8}^{C}\right)_{e v}=$ $\left(E_{8}{ }^{C}\right)^{\varepsilon} \cong \operatorname{Spin}(16, C) /\{1, \widetilde{\zeta}\}=S s(16, C)$.

Next, we define the semispinor group $S s(8,8)$. Let $I_{8}=\left(\begin{array}{cc}-E & 0 \\ 0 & E\end{array}\right), E \in M(8, C)$, and define $\operatorname{Spin}(8,8)$ by

$$
\operatorname{Spin}(8,8)=\left\{\widetilde{\alpha} \in \operatorname{Spin}(16, C) \mid\left(\tau I_{8}\right) \widetilde{\alpha}=\widetilde{\alpha}\right\},
$$

where τ is the complex conjugation in $\operatorname{Cl}\left(\left(\mathfrak{C}^{C}\right)^{2}\right)$. Then $\operatorname{Spin}(8,8)$ is a connected (but not simply connected) group, and $S s(8,8)$ is defined by

$$
S s(8,8)=\operatorname{Spin}(8,8) /\{1, \widetilde{\zeta}\},
$$

which is a double-covering group of the identity-connected component group $S O(8,8)^{0}$ of $S O(8,8)=\left\{A \in S O(16, C) \mid \tau\left(I_{8} A I_{8}\right)=A\right\}$.

We define C-linear transformations ε_{1} and ε_{2} of $\mathfrak{e}_{8}{ }^{C}$ by

$$
\begin{aligned}
& \varepsilon_{1}(D, x \otimes y, z \otimes u)=\left(I_{8} D I_{8},-x \otimes y, z \otimes u\right), \\
& \varepsilon_{2}(D, x \otimes y, z \otimes u)=\left(I_{8} D I_{8}, x \otimes y,-z \otimes u\right) .
\end{aligned}
$$

Then $\varepsilon_{1}, \varepsilon_{2} \in E_{8}{ }^{C}, \varepsilon_{1}{ }^{2}=\varepsilon_{2}{ }^{2}=1$, and $\varepsilon, \varepsilon_{1}, \varepsilon_{2}$ commute with each other.
We find an \boldsymbol{R}-Lie algebra of type $E_{8(8)}$. We define an \boldsymbol{R}-Lie algebra $\mathfrak{e}_{8}{ }^{\prime}$ by

$$
\mathfrak{e}_{8}{ }^{\prime}=\mathfrak{s o}(8,8) \oplus(i \mathfrak{C} \otimes \mathfrak{C}) \oplus(\mathfrak{C} \otimes \mathfrak{C})=\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \varepsilon_{1}}
$$

with the Lie bracket the same as that of $\mathfrak{e}_{8}{ }^{C}$.
LEMMA 5.7.5 (GOMYO [2, Proposition 3.5])
The Killing form B_{8} of the Lie algebra $\mathfrak{e}_{8}{ }^{C}$ is given by

$$
\begin{aligned}
& B_{8}\left(\left(D_{1},\left(x_{1} \otimes y_{1}, z_{1} \otimes u_{1}\right)\right),\left(D_{2},\left(x_{2} \otimes y_{2}, z_{2} \otimes u_{2}\right)\right)\right) \\
& \quad=30 \operatorname{tr}\left(D_{1} D_{2}\right)-60\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\left(u_{1}, u_{2}\right)\right)
\end{aligned}
$$

PROPOSITION 5.7.6

We have that $\mathfrak{e}_{8}{ }^{\prime}$ is an \boldsymbol{R}-Lie algebra of type $E_{8(8)}$.
Proof
We find the signature of the Killing form $B_{8}{ }^{\prime}=B_{8} \mid \mathfrak{e}_{8}{ }^{\prime}$ of $\mathfrak{e}_{8}{ }^{\prime}$. Decompose $\mathfrak{e}_{8}{ }^{\prime}$ into eigenspaces relative to τ :

$$
\mathfrak{e}_{8}^{\prime}=\left(\mathfrak{e}_{8}^{\prime}\right)_{\tau} \oplus\left(\mathfrak{e}_{8}^{\prime}\right)_{-\tau},
$$

$$
\begin{aligned}
\left(\mathfrak{e}_{8}^{\prime}\right)_{\tau} & =\left\{R \in \mathfrak{e}_{8}{ }^{\prime} \mid \tau R=R\right\} \\
& =\{(D, 0, Q) \mid D \in \mathfrak{s o}(8,8), \tau D=D, Q \in \mathfrak{C} \otimes \mathfrak{C}\}, \\
\left.\left(\mathfrak{e}_{8}\right)^{\prime}\right)_{-\tau} & =\left\{R \in \mathfrak{e}_{8}{ }^{\prime} \mid \tau R=-R\right\} \\
& =\{(D, i P, 0) \mid D \in \mathfrak{s o}(8,8), \tau D=-D, P \in \mathfrak{C} \otimes \mathfrak{C}\} .
\end{aligned}
$$

Then, from Lemma 5.7.5, we see that the Killing form $B_{8}{ }^{\prime}$ on $\left(\mathfrak{e}_{8}{ }^{\prime}\right)_{\tau}$ is positive definite and $B_{8}{ }^{\prime}$ on $\left(\mathfrak{e}_{8}{ }^{\prime}\right)_{-\tau}$ is negative definite. Therefore the number of positive eigenvalues of $B_{8}{ }^{\prime}$ is $\operatorname{dim}\left(\left(\mathfrak{e}_{8}{ }^{\prime}\right)_{\tau}\right)=54+64=120$, and the number of negative eigenvalues of $B_{8}{ }^{\prime}$ is $\operatorname{dim}\left(\left(\mathfrak{e}_{8}{ }^{\prime}\right)_{-\tau}\right)=64+64=128$. Therefore the signature of $B_{8}{ }^{\prime}$ is $128-120=8$. Hence the type of $B_{8}{ }^{\prime}$ is $E_{8(8)}$.

Let $E_{8}{ }^{\prime}$ be the automorphism group of $\mathfrak{e}_{8}{ }^{\prime}$:

$$
E_{8}^{\prime}=\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{e}_{8}^{\prime}\right) \mid \alpha\left[R_{1}, R_{2}\right]=\left[\alpha R_{1}, \alpha R_{2}\right]\right\}
$$

Although we cannot give any explicit isomorphism between $E_{8}{ }^{\prime}$ and $E_{8(8)}$ of Section 5.1, hereafter we denote $\mathfrak{e}_{8}{ }^{\prime}$ by $\mathfrak{e}_{8(8)}$ and $E_{8}{ }^{\prime}$ by $E_{8(8)}$.

PROPOSITION 5.7.7
The involution $\tau \varepsilon_{1}$ leaves $\left(\mathfrak{e}_{8}{ }^{C}\right)_{\text {ev }}$ invariant.
Proof
We can easily check that $\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{2}$ of Theorem 5.7.2 is left invariant under the action of $\tau \varepsilon_{1}$ of $\mathfrak{s o}(16, C)$. So we have this proposition.

From Proposition 5.7.7, we have $\left(\mathfrak{e}_{8(8)}\right)_{e v}=\left(\mathfrak{e}_{8}{ }^{C}\right)_{e v} \cap\left(\mathfrak{e}_{8}{ }^{C}\right)^{\tau \varepsilon_{1}}=\left(\mathfrak{e}_{8}^{C}\right)^{\varepsilon} \cap\left(\mathfrak{e}_{8}^{C}\right)^{\tau \varepsilon_{1}}$. So we determine the structure of the group

$$
\left(E_{8(8)}\right)_{e v}=\left(E_{8}^{C}\right)_{e v} \cap\left(E_{8}^{C}\right)^{\tau \varepsilon_{1}}=\left(E_{8}^{C}\right)^{\varepsilon} \cap\left(E_{8}^{C}\right)^{\tau \varepsilon_{1}} .
$$

THEOREM 5.7.8
We have

$$
\left(E_{8(8)}\right)_{e v} \cong S s(8,8) \times\left\{1, J \varepsilon_{2}\right\}
$$

Proof
For $\alpha \in\left(E_{8(8)}\right)_{e v} \subset\left(E_{8}^{C}\right)_{e v}=\left(E_{8}^{C}\right)^{\varepsilon}$, there exists $\widetilde{\alpha} \in \operatorname{Spin}(16, C)$ such that $\alpha=\varphi_{e v}(\widetilde{\alpha})$ (see Theorem 5.7.5). From the condition $\tau \varepsilon_{1} \alpha \varepsilon_{1} \tau=\alpha$, that is, $\tau \varepsilon_{1} \varphi_{e v}(\widetilde{\alpha}) \varepsilon_{1} \tau=\varphi_{e v}(\widetilde{\alpha})$, we have $\varphi_{e v}\left(\tau\left(I_{8} \widetilde{\alpha}\right)\right)=\varphi_{e v}(\widetilde{\alpha})$. Hence

$$
\text { (i) }\left(\tau I_{8}\right) \widetilde{\alpha}=\widetilde{\alpha} \quad \text { or } \quad \text { (ii) }\left(\tau I_{8}\right) \widetilde{\alpha}=\widetilde{\zeta} \widetilde{\alpha} \text {. }
$$

Case (i). From the condition $\left(\tau I_{8}\right) \widetilde{\alpha}=\widetilde{\alpha}$, we have $\widetilde{\alpha} \in \operatorname{Spin}(8,8)$.
Case (ii). We easily obtain that $\widetilde{\alpha}=\widetilde{j}$ satisfies condition (ii), where

$$
\widetilde{j}=\binom{\frac{1}{\sqrt{2}} e_{0}}{\frac{1}{\sqrt{2}} e_{0}}\binom{\frac{1}{\sqrt{2}} e_{1}}{\frac{1}{\sqrt{2}} e_{1}} \cdots\binom{\frac{1}{\sqrt{2}} e_{7}}{\frac{1}{\sqrt{2}} e_{7}} \in \operatorname{Spin}(16, C) .
$$

Here we define a transformation J of $\mathfrak{e}_{8}{ }^{C}$ by

$$
J(D, x \otimes y, z \otimes u)=\left(J_{8} D J_{8}^{-1}, y \otimes x, u \otimes z\right)
$$

where $J_{8}=\left(\begin{array}{cc}0 & -E \\ E & 0\end{array}\right), E \in M(8, C)$. Then we have $\varphi_{e v}(\widetilde{j})=J \varepsilon_{2}$.
Thus we have the isomorphism $\left(E_{8(8)}\right)_{0}=\left(\left(E_{8}^{C}\right)^{\tau \varepsilon_{1}}\right)^{\varepsilon} \cong S s(8,8) \cup J \varepsilon_{2}(S s(8$, $8))=S s(8,8) \times\left\{1, J \varepsilon_{2}\right\}$.

Acknowledgment. This article is closely connected with Gomyo [1], [2], so the authors wish to thank professor Satoshi Gomyo for his works.

References

[1] S. Gomyo, Realization of maximal subgroups of rank 8 of simply connected compact simple Lie groups of type E_{8}, Tsukuba J. Math. 21 (1997), 595-616.
[2] , Realizations of subgroups of type D_{8} of connected exceptional simple Lie groups of type E_{8}, Tsukuba J. Math. 23 (1999), 585-615.
[3] M. Hara, Real semisimple graded Lie algebras of the third kind (in Japanese), master's thesis, Shinshu University, Nagano, Japan, 2000.
[4] T. Miyashita and I. Yokota, 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$, III: $G=E_{8}$, Japan. J. Math. (N.S.) 26 (2000), 31-50.
[5] __, 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, II: $G=E_{7}$, case 1, J. Math. Kyoto Univ. 46 (2006), 383-413; cases 2, 3, and 446 (2006), 805-832; case 5, 47 (2007), 121-128.
[6] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, II: $G=E_{7}$, Tsukuba J. Math. 14 (1990), 379-404.
[7] , 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}, I: G=G_{2}, F_{4}, E_{6}$, Japan. J. Math. (N.S.) 24 (1998), 257-296; II: $G=E_{7}, 25$ (1999), 154-179.
[8] _, 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$, I: $G=G_{2}, F_{4}, E_{6}$, J. Math. Kyoto Univ. 41 (2001), 449-475.

Miyashita: Ueda-Higashi High School, Ueda City, Nagano 386-8683, Japan; anarchybin@gmail.com
Yokota: 339-5, Okada-Matsuoka, Matsumoto 390-0312, Japan

