3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of \mathfrak{g}_{ev} , \mathfrak{g}_0 and \mathfrak{g}_{ed} , III: $G = E_8$

Toshikazu Miyashita and Ichiro Yokota

Abstract In the articles [4] and [7], we completed the determination of group realizations \mathfrak{g}_{ev} and \mathfrak{g}_0 of 2-graded decompositions $\mathfrak{g} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$ of exceptional Lie algebras \mathfrak{g} for the universal exceptional Lie groups. In the present article, which is a continuation of [5] and [8], we determine group realizations of subalgebras \mathfrak{g}_{ev} , \mathfrak{g}_0 and \mathfrak{g}_{ed} of 3-graded decompositions of exceptional Lie algebras \mathfrak{g} for the universal exceptional Lie algebras \mathfrak{g} for

Introduction

The 3-graded decompositions of simple Lie algebras \mathfrak{g} ,

$$\mathfrak{g} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3, \quad [\mathfrak{g}_k, \mathfrak{g}_l] \subset \mathfrak{g}_{k+l},$$

are classified, and the types of subalgebras $\mathfrak{g}_{ev} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_2, \mathfrak{g}_0$ and $\mathfrak{g}_{ed} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_3$ are determined. Table 1 shows the results of $\mathfrak{g}_{ev}, \mathfrak{g}_0$, and \mathfrak{g}_{ed} for the exceptional Lie algebras of type E_8 (see [3]).

In the articles [5] and [8], we gave the group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$, and \mathfrak{g}_{ed} for the connected exceptional universal linear Lie groups G of type G_2, F_4 , E_6 , and E_7 . In this article, for the connected exceptional universal linear Lie groups G of type E_8 , we realize the subgroups G_{ev}, G_0 , and G_{ed} of G corresponding to $\mathfrak{g}_{ev}, \mathfrak{g}_0$, and \mathfrak{g}_{ed} of $\mathfrak{g} = \text{Lie } G$. Our results are shown in Table 2.

This article is a continuation of [5] and [8], and we use the same notation as in [5] and [8]. So the numbering of sections and theorems starts from Section 5.

Together with the preceding articles [5] and [8] and the present article, the group realization of Hara's table (see [3]) with respect to 3-graded decompositions of exceptional simple Lie algebras by the connected exceptional universal linear Lie groups has been completed.

Kyoto Journal of Mathematics, Vol. 50, No. 2 (2010), 281–305

DOI 10.1215/0023608X-2009-014, © 2010 by Kyoto University

Received June 1, 2009. Accepted October 29, 2009.

Mathematics Subject Classification: Primary 20G41.

Table 1						
Case 1	g	-	ev ed	\mathfrak{g}_0 dim \mathfrak{g}_1 , dim \mathfrak{g}_2 , dim \mathfrak{g}_3		
	\mathfrak{e}_8^C		$\mathfrak{l}(2,C) \oplus \mathfrak{e}_7{}^C$ $\mathfrak{l}(3,C) \oplus \mathfrak{e}_6{}^C$	$\mathfrak{sl}(2,C) \oplus C \oplus \mathfrak{e_6}^C$ 54, 27, 2		
	$\mathfrak{e}_{8(8)}$		$\mathfrak{sl}(2, \mathbf{R}) \oplus \mathfrak{e}_{7(7)}$ $\mathfrak{sl}(3, \mathbf{R}) \oplus \mathfrak{e}_{6(6)}$	$\mathfrak{sl}(2,oldsymbol{R})\oplusoldsymbol{R}\oplus\mathfrak{e}_{6(6)}$ 54, 27, 2		
	$\mathfrak{e}_{8(}$	-24) \$l	$\mathfrak{l}(2, \mathbf{R}) \oplus \mathfrak{e}_{7(-25)}$ $\mathfrak{l}(3, \mathbf{R}) \oplus \mathfrak{e}_{6(-26)}$	$\mathfrak{sl}, \mathfrak{27}, \mathfrak{2}$ $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathbb{R} \oplus \mathfrak{e}_{6(-26)}$ $54, 27, 2$		
Case 2	g	${\mathfrak g}_{ev}$ ${\mathfrak g}_{ed}$	$\mathfrak{g}_0 \ \dim \mathfrak{g}_1, \dim \mathfrak{g}_2, \mathbf{g}_3$	$\dim \mathfrak{g}_3$		
	$\mathfrak{e_8}^C$) $C \oplus \mathfrak{sl}(8,C)$			
	$\mathfrak{e}_{8(8)}$	$\mathfrak{so}(8,8)$	56, 28, 8 $R \oplus \mathfrak{sl}(8, R)$ 56, 28, 8			

Table 1

Table 2

Case 1	G	$G_{ev} \ G_{ed}$		G_0
	$E_8{}^C$		$ imes E_7{}^C)/{oldsymbol{Z}_2} \ imes E_6{}^C)/{oldsymbol{Z}_3}$	$(SL(2,C) \times C^* \times E_6{}^C) / \mathbf{Z}_6$
	$E_{8(8)}$	$(SL(2, \mathbf{R}))$ $SL(3, \mathbf{R})$	$\times E_{7(7)})/\mathbf{Z}_2 \times 2$ $\times E_{6(6)}$	$(SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(6)}) \times 2$
	$E_{8(-2)}$	($SL(2, \mathbf{R})$) $SL(3, \mathbf{R})$	$\times E_{7(-25)})/\mathbf{Z}_2 \times 2$ $\times E_{6(-26)}$	$(SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}) \times 2$
Case 2	G	G_{ev} G_{ed}	G_0	
	$E_8{}^C$	Ss(16, C) $SL(9, C)/\mathbf{Z}_3$	$(C^* \times SL(8,C))/Z$	24
	$E_{8(8)}$		$(\mathbf{R}^+ imes SL(8, \mathbf{R})) imes$: 3

5. Group E_8

5.1. Lie groups of type E_8 and their Lie algebras In a *C*-vector space \mathfrak{e}_8^C and *R*-vector spaces $\mathfrak{e}_{8(8)}, \mathfrak{e}_{8(-24)},$

$$\begin{split} \mathbf{e}_8{}^C &= \mathbf{e}_7{}^C \oplus \mathbf{\mathfrak{P}}^C \oplus \mathbf{\mathfrak{P}}^C \oplus C \oplus C \oplus C, \\ \mathbf{e}_{8(8)} &= \mathbf{e}_{7(7)} \oplus \mathbf{\mathfrak{P}}' \oplus \mathbf{\mathfrak{P}}' \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}, \\ \mathbf{e}_{8(-24)} &= \mathbf{e}_{7(-25)} \oplus \mathbf{\mathfrak{P}} \oplus \mathbf{\mathfrak{P}} \oplus \mathbf{R} \oplus \mathbf{R} \oplus \mathbf{R}, \end{split}$$

we define a Lie bracket $[R_1, R_2]$ by

$$\begin{split} & [(\varPhi_1, P_1, Q_1, r_1, s_1, t_1), (\varPhi_2, P_2, Q_2, r_2, s_2, t_2)] \\ & = (\varPhi, P, Q, r, s, t), \\ & P = [\varPhi_1, \varPhi_2] + P_1 \times Q_2 - P_2 \times Q_1, \end{split}$$

$$\begin{split} Q &= \varPhi_1 P_2 - \varPhi_2 P_1 + r_1 P_2 - r_2 P_1 + s_1 Q_2 - s_2 Q_1, \\ P &= \varPhi_1 Q_2 - \varPhi_2 Q_1 - r_1 Q_2 + r_2 Q_1 + t_1 P_2 - t_2 P_1, \\ r &= -\frac{1}{8} \{P_1, Q_2\} + \frac{1}{8} \{P_2, Q_1\} + s_1 t_2 - s_2 t_1, \\ s &= \frac{1}{4} \{P_1, P_2\} + 2r_1 s_2 - 2r_2 s_1, \\ t &= -\frac{1}{4} \{Q_1, Q_2\} - 2r_1 t_2 + 2r_2 t_1; \end{split}$$

then this becomes a simple Lie algebra of types $E_8^{\ C}, E_{8(8)}$, and $E_{8(-24)}$, respectively.

We define a *C*-linear transformation γ of \mathfrak{e}_8^C by

$$\gamma(\Phi, P, Q, r, s, t) = (\gamma \Phi \gamma, \gamma P, \gamma Q, r, s, t),$$

where γ of the right-hand side is the same as $\gamma \in G_2{}^C \subset F_4{}^C \subset E_6{}^C \subset E_7{}^C$, and the complex conjugation in $\mathfrak{e}_8{}^C$ is denoted by τ :

$$\tau(\Phi, P, Q, r, s, t) = (\tau \Phi \tau, \tau P, \tau Q, \tau r, \tau s, \tau t).$$

The connected universal linear Lie groups $E_8^{\ C}$, $E_{8(8)}$, and $E_{8(-24)}$ of type E_8 are given, respectively, by

$$E_8^{\ C} = \left\{ \alpha \in \operatorname{Iso}_C(\mathfrak{e}_8^{\ C}) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\},\$$
$$E_{8(8)} = \left\{ \alpha \in \operatorname{Iso}_R(\mathfrak{e}_{8(8)}) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\},\$$
$$E_{8(-24)} = \left\{ \alpha \in \operatorname{Iso}_R(\mathfrak{e}_{8(-24)}) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$$

The group $E_8{}^C$ is simply connected. From the definitions of the groups above, we have the following.

PROPOSITION 5.1

We have

$$E_{8(8)} \cong (E_8{}^C)^{\tau\gamma}, \qquad E_{8(-24)} = (E_8{}^C)^{\tau}.$$

For $\alpha \in E_7{}^C$, the mapping $\widetilde{\alpha} : \mathfrak{e}_8{}^C \to \mathfrak{e}_8{}^C$ is defined by

$$\widetilde{\alpha}(\Phi, P, Q, r, s, t) = (\alpha \Phi \alpha^{-1}, \alpha P, \alpha Q, r, s, t);$$

then $\tilde{\alpha} \in E_8{}^C$, so α and $\tilde{\alpha}$ are identified. The group $E_8{}^C$ contains $E_7{}^C$ as a subgroup by

$$E_7^{\ C} = \{ \widetilde{\alpha} \in E_8^{\ C} \mid \alpha \in E_7^{\ C} \}.$$

Especially, elements v, λ , and ι of $E_7^{\ C}(v(X, Y, \xi, \eta) = (-X, -Y, -\xi, -\eta), \lambda(X, Y, \xi, \eta) = (Y, -X, \eta, -\xi), \iota(X, Y, \xi, \eta) = (-iX, iY, -i\xi, i\eta))$ are also elements of $E_8^{\ C}$.

5.2. Subgroups of type $A_1^C \oplus E_7^C$, $A_1^C \oplus C \oplus E_6^C$, and $A_2^C \oplus E_6^C$ of E_8^C . We define *C*-linear transformations $\tilde{\lambda}$ and *w* of $\mathfrak{e}_8^C = \mathfrak{e}_7^C \oplus \mathfrak{P}^C \oplus \mathfrak{P}^C \oplus C \oplus C \oplus C$ by

$$\begin{split} \widetilde{\lambda}(\varPhi, P, Q, r, s, t) &= (\lambda \varPhi \lambda^{-1}, \lambda Q, -\lambda P, -r, -t, -s), \\ w(\varPhi, P, Q, r, s, t) &= w \big(\varPhi(\phi, A, B, \nu), (X, Y, \xi, \eta), (Z, W, \zeta, \mu), r, s, t \big) \\ &= \big(\varPhi(\phi, \omega A, \omega^2 B, \nu), (\omega X, \omega^2 Y, \xi, \eta), (\omega Z, \omega^2 W, \zeta, \mu), r, s, t \big), \end{split}$$

 $\omega = e^{2\pi i/3}$, respectively. Then $\widetilde{\lambda}, w \in E_8{}^C$ and $\widetilde{\lambda}^2 = 1, w^3 = 1$. In the Lie algebra $\mathfrak{e}_8{}^C$, let

$$Z = (\Phi(0,0,0,-3),0,0,0,0,0)$$

Hereafter (see Theorems 5.2.1 and 5.4.1) in \mathfrak{P}^C and $\mathfrak{e_8}^C,$ we use the following notation:

$$\begin{split} \dot{X} &= (X,0,0,0), \qquad \dot{Y} = (0,Y,0,0), \qquad \dot{\xi} = (0,0,\xi,0), \qquad \eta = (0,0,0,\eta), \\ \Phi &= (\Phi,0,0,0,0,0), \qquad P^- = (0,P,0,0,0,0), \qquad Q_- = (0,0,Q,0,0,0), \\ \tilde{r} &= (0,0,0,r,0,0), \qquad s^- = (0,0,0,0,s,0), \qquad t_- = (0,0,0,0,0,t). \end{split}$$

Moreover, we mix and combine the above notation. For example,

$$\dot{X}^{-} = (0, (X, 0, 0, 0), 0, 0, 0, 0), \qquad \dot{W}_{-} = (0, 0, (0, W, 0, 0), 0, 0, 0).$$

THEOREM 5.2.1

The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{8(8)} = (\mathfrak{e}_8^{\ C})^{\tau\gamma}$ (or $\mathfrak{e}_8^{\ C})$,

$$\mathfrak{e}_{8(8)} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$$

with respect to $\operatorname{ad} Z, Z = (\Phi(0, 0, 0, -3), 0, 0, 0, 0, 0)$, is given by

$$\mathfrak{g}_{0} = \begin{cases} iG_{01}, \quad 0 \leq k < 4 \leq l \leq 7, G_{kl} \text{ otherwise,} \\ \widetilde{A}_{1}(e_{k}), \widetilde{A}_{2}(e_{k}), \widetilde{A}_{3}(e_{k}), \widetilde{F}_{1}(e_{k}), \widetilde{F}_{2}(e_{k}), \widetilde{F}_{3}(e_{k}), \quad 0 \leq k \leq 3, \\ i\widetilde{A}_{1}(e_{k}), i\widetilde{A}_{2}(e_{k}), i\widetilde{A}_{3}(e_{k}), i\widetilde{F}_{1}(e_{k}), i\widetilde{F}_{2}(e_{k}), i\widetilde{F}_{3}(e_{k}), \quad 4 \leq k \leq 7, \\ (E_{1} - E_{2})^{\sim}, (E_{2} - E_{3})^{\sim}, \mathbf{1}, \widetilde{1}, \mathbf{1}^{-}, \mathbf{1}_{-}, \end{cases} \end{cases} \\ \mathfrak{g}_{-1} = \begin{cases} \dot{E}_{1}^{-}, \dot{E}_{2}^{-}, \dot{E}_{3}^{-}, \dot{F}_{1}(e_{k})^{-}, \dot{F}_{2}(e_{k})^{-}, \dot{F}_{3}(e_{k})^{-}, \quad 0 \leq k \leq 3, \\ i\dot{F}_{1}(e_{k})^{-}, i\dot{F}_{2}(e_{k})^{-}, i\dot{F}_{3}(e_{k})^{-}, \quad 4 \leq k \leq 7, \\ \dot{E}_{1-}, \dot{E}_{2-}, \dot{E}_{3-}, \dot{F}_{1}(e_{k}), ., \dot{F}_{2}(e_{k})_{-}, \dot{F}_{3}(e_{k})_{-}, \quad 0 \leq k \leq 3, \\ i\dot{F}_{1}(e_{k})_{-}, i\dot{F}_{2}(e_{k})_{-}, i\dot{F}_{3}(e_{k})_{-}, \quad 4 \leq k \leq 7, \end{cases} \end{cases} 54, \\ \mathfrak{g}_{-2} = \begin{cases} \widehat{E}_{1}, \widehat{E}_{2}, \widehat{E}_{3}, \widehat{F}_{1}(e_{k}), \widehat{F}_{2}(e_{k}), \widehat{F}_{3}(e_{k}), \quad 0 \leq k \leq 3, \\ i\dot{F}_{1}(e_{k}), i\hat{F}_{2}(e_{k}), i\hat{F}_{3}(e_{k}), \quad 4 \leq k \leq 7, \end{cases} \end{cases} 27, \\ \mathfrak{g}_{-3} = \{1^{-}, 1_{-}\} 2, \\ \mathfrak{g}_{-3} = \{1^{-}, 1_{-}\} 2, \\ \mathfrak{g}_{1} = \widetilde{\lambda}(\mathfrak{g}_{-1}), \mathfrak{g}_{2} = \widetilde{\lambda}(\mathfrak{g}_{-2}), \mathfrak{g}_{3} = \widetilde{\lambda}(\mathfrak{g}_{-3}). \end{cases}$$

Since $(\exp \Phi(0,0,0,-3\nu))(X,Y,\xi,\eta) = (e^{\nu}X, e^{-\nu}Y, e^{-3\nu}\xi, e^{3\nu}\eta), \nu \in C$, we have $\exp \binom{2\pi i}{2} = \exp \binom{$

$$\exp\left(\frac{2\pi i}{2}Z\right) = v, \qquad \exp\left(\frac{2\pi i}{4}Z\right) = v\iota, \quad \exp\left(\frac{2\pi i}{3}Z\right) = w.$$

Now, let

$$z_2 = \exp\left(\frac{2\pi i}{2}\operatorname{ad} Z\right), \quad z_4 = \exp\left(\frac{2\pi i}{4}\operatorname{ad} Z\right), \quad z_3 = \exp\left(\frac{2\pi i}{3}\operatorname{ad} Z\right).$$

Then, since $(\mathfrak{e}_8^C)_{ev} = (\mathfrak{e}_8^C)^{z_2} = (\mathfrak{e}_8^C)^v, (\mathfrak{e}_8^C)_0 = (\mathfrak{e}_8^C)^{z_4} = (\mathfrak{e}_8^C)^{v\iota}, (\mathfrak{e}_8^C)_{ed} = (\mathfrak{e}_8^C)^{z_3} = (\mathfrak{e}_8^C)^w$, we determine the structures of groups

$$(E_8^C)_{ev} = (E_8^C)^{z_2} = (E_8^C)^v,$$

$$(E_8^C)_0 = (E_8^C)^{z_4} = (E_8^C)^{v_4},$$

$$(E_8^C)_{ed} = (E_8^C)^{z_3} = (E_8^C)^w.$$

We define a mapping $\psi : SL(2, C) \to E_8{}^C, A \to \psi(A)$, where $\psi(A)$ is the *C*-linear transformation of $\mathfrak{e}_8{}^C$ defined by

$$\psi\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\right) = \begin{pmatrix}1&0&0&0&0&0\\0&a1&b1&0&0&0\\0&c1&d1&0&0&0\\0&0&0&ad+bc&-ac&bd\\0&0&0&-2ab&a^2&-b^2\\0&0&0&2cd&-c^2&d^2\end{pmatrix},$$

and we define a mapping $\phi: C^* \to E_7^C, \theta \to \phi(\theta)$, where $\phi(\theta)$ is the *C*-linear transformation of \mathfrak{P}^C defined by

$$\phi(\theta)(X,Y,\xi,\theta) = (\theta X, \theta^{-1}Y, \theta^{-3}\xi, \theta^{3}\eta).$$

THEOREM 5.2.2

We have the following:

(1)
$$(E_8^C)_{ev} \cong (SL(2,C) \times E_7^C) / \mathbb{Z}_2, \mathbb{Z}_2 = \{(E,1), (-E,-1)\},$$

(2) $(E_8^C)_0 \cong (SL(2,C) \times C^* \times E_6^C) / \mathbb{Z}_6, \mathbb{Z}_6 = \mathbb{Z}_2 \times \mathbb{Z}_3, \mathbb{Z}_2 = \{(E,1,1), (-E,-1,1)\}, \mathbb{Z}_3 = \{(E,1,1), (E,\omega,\phi(\omega^2)), (E,\omega^2,\phi(\omega))\},$
(3) $(E_8^C)_{ed} \cong (SL(3,C) \times E_6^C) / \mathbb{Z}_3, \mathbb{Z}_3 = \{(E,1), (\omega E, \omega^2 1), (\omega^2 E, \omega 1)\}.$

Proof

(1) We define a mapping
$$\varphi_{ev} : SL(2,C) \times E_7{}^C \to (E_8{}^C)^v = (E_8{}^C)_{ev}$$
 by
 $\varphi_{ev}(A,\beta) = \psi(A)\beta;$

 φ_{ev} is well defined because $\psi(A) \in (E_8{}^C)^v$. Since $\psi(A)$ and $\beta \in E_7{}^C$ commute, φ_{ev} is a homomorphism. Ker $\varphi_{ev} = \{(E,1), (-E,-1)\} = \mathbb{Z}_2$. Since $(E_8{}^C)^v$ is connected and $\dim_C(\mathfrak{sl}(2,C) \oplus \mathfrak{e}_7{}^C) = 3 + 133 = 136 = 82 + 27 \times 2 = \dim_C((\mathfrak{e}_8{}^C)_{ev}) = \dim_C((\mathfrak{e}_8{}^C)^v)$ (see Theorem 5.2.1), φ_{ev} is surjective. Thus we have the isomorphism $(E_8{}^C)_{ev} = (E_8{}^C)^v \cong (SL(2,C) \times E_7{}^C)/\mathbb{Z}_2$. (2) Since the group $E_7{}^C$ has subgroups C^* and $E_6{}^C$ (see [6, Theorem 4.4.4]), we define a mapping $\varphi_0: SL(2, C) \times C^* \times E_6{}^C \to (E_8{}^C)^{\upsilon\iota} = (E_8{}^C)_0$ by

$$\varphi_0(A,\theta,\beta) = \psi(A)\phi(\theta)\beta$$

as the restriction mapping of φ_{ev} . So φ_0 is well defined and a homomorphism. Since $(\upsilon \iota)^2 = \upsilon$, $(E_8^{\ C})^{\upsilon \iota}$ is a subgroup of $(E_8^{\ C})^{\upsilon}$. Now, for $\alpha \in (E_8^{\ C})^{\upsilon \iota} \subset (E_8^{\ C})^{\upsilon}$, there exist $A \in SL(2, C)$ and $\beta' \in E_7^{\ C}$ such that $\alpha = \varphi_{ev}(A, \beta')$ from (1). Moreover, from the condition $(\upsilon \iota)\alpha(\upsilon \iota)^{-1} = \alpha$, that is, $(\upsilon \iota)\varphi_{ev}(A, \beta')(\upsilon \iota)^{-1} = \varphi_{ev}(A, \beta')$, we have $\varphi_{ev}(A, \iota\beta'\iota^{-1}) = \varphi_{ev}(A, \beta')$. Hence

$$\begin{cases} A = A, \\ \iota \beta' \iota^{-1} = \beta', \end{cases} \quad \text{or} \quad \begin{cases} A = -A, \\ \iota \beta' \iota^{-1} = -\beta'. \end{cases}$$

In the former case, $A \in SL(2, C), \beta' \in (E_7^{-C})^{\iota} \cong (C^* \times E_6^{-C})/\mathbb{Z}_3, \mathbb{Z}_3 = \{(1, 1), (\omega, \phi(\omega^2)), (\omega^2, \phi(\omega))\}$ (see [6, Theorem 4.4.4]), so β' is expressed as $\beta' = \varphi(\theta)\beta, \theta \in C^*, \beta \in E_6^{-C}$. The latter case is impossible because A = 0. It is easy to see that

$$\operatorname{Ker} \varphi_{0} = \left\{ (E, 1, 1), (E, \omega, \phi(\omega^{2})), (E, \omega^{2}, \phi(\omega)), (-E, -1, 1), (E, -\omega, \phi(\omega^{2})), (-E, -\omega^{2}, \phi(\omega)) \right\}$$
$$= \left\{ (E, 1, 1), (-E, -1, 1) \right\}$$
$$\times \left\{ (E, 1, 1), (E, \omega, \phi(\omega^{2})), (E, \omega^{2}, \phi(\omega)) \right\}$$
$$= \mathbf{Z}_{2} \times \mathbf{Z}_{3}.$$

Thus we have the isomorphism $(E_8^{\ C})_0 = (E_8^{\ C})^{\upsilon\iota} \cong (SL(2, C) \times C^* \times E_6^{\ C})/(\mathbb{Z}_2 \times \mathbb{Z}_3).$

(3) The determination of the group $(E_8^{\ C})^w$ is essentially done in Gomyo [1]. However, we write the result again. We construct one more *C*-Lie algebra $\check{\mathfrak{e}}_8^{\ C}$ of type $E_8^{\ C}$.

We first consider a $27 \times 3 = 81$ dimensional C-vector space

$$(\mathfrak{J}^C)^3 = \left\{ \boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \middle| X_i \in \mathfrak{J}^C \right\}.$$

In $(\mathfrak{J}^C)^3$, we define an inner product $(\boldsymbol{X}, \boldsymbol{Y})$, a Hermitian inner product $\langle \boldsymbol{X}, \boldsymbol{Y} \rangle$, a cross product $\boldsymbol{X} \times \boldsymbol{Y}$, an element $\boldsymbol{X} \cdot \boldsymbol{Y}$ of $\mathfrak{sl}(3, C)$, and an element $\boldsymbol{X} \vee \boldsymbol{Y}$ of $\mathfrak{e}_6^{\ C}$, respectively, by

$$(\boldsymbol{X}, \boldsymbol{Y}) = (X_1, Y_1) + (X_2, Y_2) + (X_3, Y_3) \in C,$$

$$\langle \boldsymbol{X}, \boldsymbol{Y} \rangle = \langle X_1, Y_1 \rangle + \langle X_2, Y_2 \rangle + \langle X_3, Y_3 \rangle \in C,$$

$$\boldsymbol{X} \times \boldsymbol{Y} = \begin{pmatrix} X_2 \times Y_3 - Y_2 \times X_3 \\ X_3 \times Y_1 - Y_3 \times X_1 \\ X_1 \times Y_2 - Y_1 \times X_2 \end{pmatrix} \in (\mathfrak{J}^C)^3,$$

$$\begin{split} \boldsymbol{X} \cdot \boldsymbol{Y} &= \begin{pmatrix} (X_1, Y_1) & (X_1, Y_2) & (X_1, Y_3) \\ (X_2, Y_1) & (X_2, Y_2) & (X_2, Y_3) \\ (X_3, Y_1) & (X_3, Y_2) & (X_3, Y_3) \end{pmatrix} - \frac{1}{3} (\boldsymbol{X}, \boldsymbol{Y}) E \in \mathfrak{sl}(3, C), \\ \boldsymbol{X} \vee \boldsymbol{Y} &= X_1 \vee Y_1 + X_2 \vee Y_2 + X_3 \vee Y_3 \in \mathfrak{e}_6^C, \\ \text{where } \boldsymbol{X} &= \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}, \boldsymbol{Y} &= \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} \in (\mathfrak{J}^C)^3. \text{ Further, for } \phi \in \operatorname{Hom}_C(\mathfrak{J}^C), D = (d_{ij}) \in M(3, C), \\ M(3, C), \text{ and } \boldsymbol{X} &= \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \in (\mathfrak{J}^C)^3, \text{ we define } \phi \boldsymbol{X}, D\boldsymbol{X} \in (\mathfrak{J}^C)^3 \text{ naturally by} \\ \phi(\boldsymbol{X}) &= \begin{pmatrix} \phi X_1 \\ \phi X_2 \\ \phi X_3 \end{pmatrix}, \quad D\boldsymbol{X} &= \begin{pmatrix} d_{11}X_1 + d_{12}X_2 + d_{13}X_3 \\ d_{12}X_1 + d_{22}X_2 + d_{23}X_3 \\ d_{31}X_1 + d_{32}X_2 + d_{33}X_3 \end{pmatrix}. \end{split}$$

In an 8+78+81+81=248 dimensional C-vector space

$$\check{\mathfrak{e}}_8{}^C = \mathfrak{sl}(3,C) \oplus \mathfrak{e}_6{}^C \oplus (\mathfrak{J}^C)^3 \oplus (\mathfrak{J}^C)^3,$$

we define a Lie bracket $[R_1, R_2]$ by

$$\begin{split} & [(D_1, \phi_1, \boldsymbol{X}_1, \boldsymbol{Y}_1), (D_2, \phi_2, \boldsymbol{X}_2, \boldsymbol{Y}_2)] = (D, \phi, \boldsymbol{X}, \boldsymbol{Y}), \\ & \begin{cases} D = [D_1, D_2] + \frac{1}{4} \boldsymbol{X}_1 \cdot \boldsymbol{Y}_2 - \frac{1}{4} \boldsymbol{X}_2 \cdot \boldsymbol{Y}_1, \\ \phi = [\phi_1, \phi_2] + \frac{1}{2} \boldsymbol{X}_1 \vee \boldsymbol{Y}_2 - \frac{1}{2} \boldsymbol{X}_2 \vee \boldsymbol{Y}_1, \\ \boldsymbol{X} = \phi_1 \boldsymbol{X}_2 - \phi_2 \boldsymbol{X}_1 + D_1 \boldsymbol{X}_2 - D_2 \boldsymbol{X}_1 - \boldsymbol{Y}_1 \times \boldsymbol{Y}_2, \\ \boldsymbol{Y} = -{}^t \phi_1 \boldsymbol{Y}_2 + {}^t \phi_2 \boldsymbol{Y}_1 - {}^t D_1 \boldsymbol{Y}_2 + {}^t D_2 \boldsymbol{Y}_1 + \boldsymbol{X}_1 \times \boldsymbol{X}_2; \end{split}$$

then $\check{\mathfrak{e}}_8^C$ becomes a C-Lie algebra of type E_8^C .

 $\begin{array}{l} Proof\\ \text{Let } \mathfrak{e}_8{}^C = \mathfrak{e}_7{}^C \oplus \mathfrak{P}^C \oplus \mathfrak{P}^C \oplus C \oplus C \oplus C \text{ be the usual } C\text{-Lie algebra of type } E_8{}^C.\\ \text{We define a mapping } f: \mathfrak{e}_8{}^C \to \check{\mathfrak{e}}_8{}^C \text{ by} \end{array}$

$$\begin{split} f\left(\Phi(\phi,A,B,\nu),(X,Y,\xi,\eta),(Z,W,\zeta,\mu),r,s,t\right) \\ &= \left(\begin{pmatrix} \frac{2}{3}\nu & -\frac{1}{2}\xi & \frac{1}{2}\zeta\\ \frac{1}{2}\mu & -\frac{1}{3}\nu-r & t\\ \frac{1}{2}\eta & s & -\frac{1}{3}\nu+r \end{pmatrix},\phi,\begin{pmatrix} -2A\\ Z\\ X \end{pmatrix},\begin{pmatrix} -2B\\ Y\\ -W \end{pmatrix} \right); \end{split}$$

then we can prove that f is an isomorphism as Lie algebras by straightforward calculations. Thus we have the isomorphism $\mathfrak{e}_8^C \cong \check{\mathfrak{e}}_8^C$.

Now, let $\check{E}_8{}^C$ be the automorphism group of $\check{\mathfrak{e}}_8{}^C$, that is,

$$\check{E}_8^C = \left\{ \alpha \in \operatorname{Iso}_C(\check{\mathfrak{e}}_8^C) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$$

The group $E_8^{\ C}$ is isomorphic to the group $\check{E}_8^{\ C}$ by the correspondence $\alpha \in E_8^{\ C} \to f\alpha f^{-1} \in \check{E}_8^{\ C}$. Then the transformation w of $\mathfrak{e}_8^{\ C}$ is transferred to the following transformation w of $\check{\mathfrak{e}}_8^{\ C}$:

$$w(D, \phi, \boldsymbol{X}, \boldsymbol{Y}) = (D, \phi, \omega \boldsymbol{X}, \omega^2 \boldsymbol{Y}).$$

So, we determine the structure of the group $(\check{E}_8^C)^w$ instead of the group $(E_8^C)^w$. We first define a mapping $\varphi_1 : SL(3, C) \to (\check{E}_8^C)^w$ by

$$\varphi_1(A)(D,\phi,\boldsymbol{X},\boldsymbol{Y}) = (ADA^{-1},\phi,A\boldsymbol{X},{}^t\!A^{-1}\boldsymbol{Y}).$$

We have to prove that $\varphi_1(A) \in (\check{E}_8^C)^w$. Indeed, since the action of $D_1 = (D_1, 0, 0, 0) \in \mathfrak{sl}(3, C) \subset (\check{\mathfrak{e}}_8^C)^w$ is given by

$$(\mathrm{ad}(D_1))(D,\phi,\boldsymbol{X},\boldsymbol{Y}) = ((\mathrm{ad}\,D_1)D,0,D_1\boldsymbol{X},-{}^tD_1\boldsymbol{Y}),$$

we have

$$(\operatorname{exp} \operatorname{ad}(D_1))(D, \phi, \boldsymbol{X}, \boldsymbol{Y})$$

= $((\operatorname{exp} D_1)D(\operatorname{exp} D_1)^{-1}, \phi, (\operatorname{exp} D_1)\boldsymbol{X}, {}^t\!(\operatorname{exp} D_1)^{-1}\boldsymbol{Y}).$

Hence, for $A = \exp D_1 \in SL(3, C)$, we have $\varphi_1(A) = (\exp \operatorname{ad}(D_1)) \in \check{E}_8^C$. Evidently, $w\varphi_1(A) = \varphi_1(A)w$; hence we have $\varphi_1(A) \in (\check{E}_8^C)^w$. Next, we define a mapping $\varphi_2 : E_6^C \to (\check{E}_8^C)^w$ by

$$\varphi_2(\beta)(D,\phi, \boldsymbol{X}, \boldsymbol{Y}) = (D, \beta\phi\beta^{-1}, \beta\boldsymbol{X}, {}^t\beta^{-1}\boldsymbol{Y}).$$

We have to prove that $\varphi_2(\beta) \in (\check{E}_8{}^C)^w$. Indeed, since the action of $\phi' = (0, \phi', 0, 0) \in (\check{\mathfrak{e}}_8{}^C)^w$ is given by

$$(\mathrm{ad}\,\phi')(D,\phi,\boldsymbol{X},\boldsymbol{Y}) = (0,(\mathrm{ad}\,\phi')\phi,\phi'\boldsymbol{X},-{}^{t}\phi'\boldsymbol{Y}),$$

we have

$$\left(\exp\operatorname{ad}(\phi')\right)(D,\phi,\boldsymbol{X},\boldsymbol{Y}) = \left(D,(\exp\phi')\phi(\exp\phi')^{-1},(\exp\phi')\boldsymbol{X},{}^{t}(\exp\phi')^{-1}\boldsymbol{Y}\right).$$

Hence, for $\beta = \exp \phi'$, we have $\varphi_2(\beta) = (\exp \operatorname{ad}(\phi')) \in \check{E}_8^C$. Evidently, $w\varphi_2(\beta) = \varphi_2(\beta)w$; hence we have $\varphi_2(\beta) \in (\check{E}_8^C)^w$.

Now, we define a mapping $\varphi_{ed}: SL(3,C) \times E_6{}^C \to (\check{E}_8{}^C)^w = (\check{E}_8{}^C)_{ed}$ by

$$\varphi_{ed}(A,\beta) = \varphi_1(A)\varphi_2(\beta).$$

Since $\varphi_1(A)$ and $\varphi_2(\beta)$ commute, φ_{ed} is a homomorphism. It is not difficult to show that $\operatorname{Ker} \varphi_{ed} = \{(E,1), (\omega E, \omega^2 1), (\omega^2 E, \omega 1)\} = \mathbb{Z}_3$. Since $(\check{E}_8^C)^{\omega}$ is connected and $\dim_C(\mathfrak{sl}(3, C) \oplus \mathfrak{e}_6^C) = 8 + 78 = 86 = \dim_C((\mathfrak{e}_8^C)_{ed})$ (see Theorem 5.2.1) = $\dim_C((\check{\mathfrak{e}}_8^C)^w)$, φ_{ed} is surjective. Thus we have $(E_8^C)_{ed} \cong (\check{E}_8^C)_{ed} = (\check{E}_8^C)^w \cong (SL(3, C) \times E_6^C)/\mathbb{Z}_3, \mathbb{Z}_3 = \{(E, 1), (\omega E, \omega^2 1), (\omega^2 E, \omega 1)\}$. \Box

5.3. Subgroups of type $A_1 \oplus E_{7(7)}, A_1 \oplus \mathbf{R} \oplus E_{6(6)}$, and $A_2 \oplus E_{6(6)}$ of $E_{8(8)}$ In this section, we use Lie algebras $\mathfrak{e}_{8(8)}, \mathfrak{e}_8^C$ and Lie groups $E_{8(8)}, E_8^C$ defined in Section 5.1 and \check{E}_8^C defined in Section 5.2.

Since $(\mathfrak{e}_{8(8)})_{ev} = (\mathfrak{e}_8^C)_{ev} \cap (\mathfrak{e}_8^C)^{\tau\gamma} = (\mathfrak{e}_8^C)^v \cap (\mathfrak{e}_8^C)^{\tau\gamma}, (\mathfrak{e}_{8(8)})_0 = (\mathfrak{e}_8^C)_0 \cap (\mathfrak{e}_8^C)^{\tau\gamma} = (\mathfrak{e}_8^C)^{v\iota} \cap (\mathfrak{e}_8^C)^{\tau\gamma}, (\mathfrak{e}_{8(8)})_{ed} = (\mathfrak{e}_8^C)_{ed} \cap (\mathfrak{e}_8^C)^{\tau\gamma} = (\mathfrak{e}_8^C)^w \cap (\mathfrak{e}_8^C)^{\tau\gamma}, \text{ we}$

determine the structures of groups

$$(E_{8(8)})_{ev} = (E_8^{\ C})_{ev} \cap (E_8^{\ C})^{\tau\gamma} = (E_8^{\ C})^v \cap (E_8^{\ C})^{\tau\gamma},$$

$$(E_{8(8)})_0 = (E_8^{\ C})_0 \cap (E_8^{\ C})^{\tau\gamma} = (E_8^{\ C})^{v\iota} \cap (E_8^{\ C})^{\tau\gamma},$$

$$(E_{8(8)})_{ed} = (E_8^{\ C})_{ed} \cap (E_8^{\ C})^{\tau\gamma} = (E_8^{\ C})^w \cap (E_8^{\ C})^{\tau\gamma}.$$

THEOREM 5.3.1

We have the following:

- (1) $(E_{8(8)})_{ev} \cong (SL(2, \mathbf{R}) \times E_{7(7)}) / \mathbf{Z}_2 \times \{1, l\}, \mathbf{Z}_2 = \{(E, 1), (-E, -1)\},\$
- (2) $(E_{8(8)})_0 \cong (SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(6)}) \times \{1, l_0\},\$
- (3) $(E_{8(8)})_{ed} \cong SL(3, \mathbf{R}) \times E_{6(6)}.$

Proof

(1) For $\alpha \in (E_{8(8)})_{ev} \subset (E_8{}^C)_{ev} = (E_8{}^C)^v$, there exist $A \in SL(2,C)$ and $\beta \in E_7{}^C$ such that $\alpha = \varphi_{ev}(A,\beta) = \psi(A)\beta$ (see Theorem 5.2.2(1)). From the condition $\tau \gamma \alpha \gamma \tau = \alpha$, that is, $\tau \gamma \psi(A)\beta \gamma \tau = \psi(A)\beta$, we have $\psi(\tau A)\tau \gamma \beta \gamma \tau = \psi(A)\beta$. Hence

$$\begin{cases} \tau A = A, \\ \tau \gamma \beta \gamma \tau = \beta, \end{cases} \quad \text{or} \quad \begin{cases} \tau A = -A, \\ \tau \gamma \beta \gamma \tau = -\beta. \end{cases}$$

In the former case, from $\tau A = A$, we have $A \in SL(2, \mathbf{R})$, and from $\tau \gamma \beta \gamma \tau = \beta$, we have $\beta \in (E_7^{-C})^{\tau \gamma} \cong E_{7(7)}$ (see [6, Theorem 4.3.2]). In the latter case, $A = iI(I = \text{diag}(1, -1)), \beta = \iota$ satisfy the conditions, and we denote $\varphi_{ev}(iI, \iota)$ by l. Thus we have the isomorphism $(E_{8(8)})_{ev} \cong ((SL(2, \mathbf{R}) \times E_{7(7)}) \cup l(SL(2, \mathbf{R}) \times E_{7(7)}))/\mathbf{Z}_2 = (SL(2, \mathbf{R}) \times E_{7(7)})/\mathbf{Z}_2 \times \{1, l\}, \mathbf{Z}_2 = \{(E, 1), (-E, -1)\}.$

(2) For $\alpha \in (E_{8(8)})_0 \subset (E_8{}^C)_0 = (E_8{}^C)^{\upsilon \iota}$, there exist $A \in SL(2, C), \theta \in C^*$ and $\beta \in E_6{}^C$ such that $\alpha = \varphi_0(A, \theta, \beta) = \psi(A)\phi(\theta)\beta$ (see Theorem 5.2.2(2)). From the condition $\tau \gamma \alpha \gamma \tau = \alpha$, that is, $\tau \gamma \psi(A)\phi(\theta)\beta\gamma\tau = \psi(A)\phi(\theta)\beta$, we have $\psi(\tau A)\phi(\tau\theta)\tau\gamma\beta\gamma\tau = \psi(A)\phi(\theta)\beta$. Hence

(i)
$$\begin{cases} \tau A = A, \\ \tau \theta = \theta, \\ \tau \gamma \beta \gamma \tau = \beta, \end{cases}$$
(ii)
$$\begin{cases} \tau A = A, \\ \tau \theta = \omega \theta, \\ \tau \gamma \beta \gamma \tau = \phi(\omega^{2})\beta, \end{cases}$$
(iv)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega^{2} \theta, \\ \tau \gamma \beta \gamma \tau = \phi(\omega)\beta, \end{cases}$$
(iv)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\theta, \\ \tau \gamma \beta \gamma \tau = \beta, \end{cases}$$
(v)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega \theta, \\ \tau \gamma \beta \gamma \tau = \phi(\omega^{2})\beta, \end{cases}$$
(vi)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega^{2} \theta, \\ \tau \gamma \beta \gamma \tau = \phi(\omega)\beta. \end{cases}$$

Case (i). From $\tau A = A, \tau \theta = \theta$, we have $A \in SL(2, \mathbf{R}), \theta \in \mathbf{R}^*$, and from $\tau \gamma \beta \gamma \tau = \beta$, we have $\beta \in (E_6^C)^{\tau \gamma} \cong E_{6(6)}$. Hence the group of case (i) is isomorphic to

$$(SL(2, \mathbf{R}) \times \mathbf{R}^* \times E_{6(6)}) / \mathbf{Z}_2, \mathbf{Z}_2 = \{(E, 1, 1), (-E, -1, 1)\}.$$

The mapping $g: SL(2, \mathbb{R}) \times \mathbb{R}^* \times E_{6(6)} \to SL(2, \mathbb{R}) \times \mathbb{R}^+ \times E_{6(6)}$,

$$g(A, \theta, \beta) = \begin{cases} (A, \theta, \beta) & \text{if } \theta > 0, \\ (-A, -\theta, \beta) & \text{if } \theta < 0 \end{cases}$$

induces the isomorphism $SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(6)} \cong (SL(2, \mathbf{R}) \times \mathbf{R}^* \times E_{6(6)})/\mathbf{Z}_2$. Therefore the group of case (i) is isomorphic to $SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(6)}$.

- Case (ii). We have $\varphi_0(E, \omega, \phi(\omega^2)) = \psi(E)\phi(\omega)\phi(\omega^2) = 1$.
- Case (iii). We have $\varphi_0(E, \omega^2, \phi(\omega)) = \psi(E)\phi(\omega^2)\phi(\omega) = 1$.
- Case (iv). We have $\varphi_0(iI, i, 1) = l_0$ (hereafter we denote $\varphi_0(iI, i, 1)$ by l_0).
- Case (v). We have $\varphi_0(iI, i\omega, \phi(\omega^2)) = \varphi_0(iI, i, 1)\varphi_0(E, \omega, \phi(\omega^2)) = l_0$.
- Case (vi). We have $\varphi_0(iI, i\omega^2, \phi(\omega)) = \varphi_0(iI, i, 1)\varphi_0(E, \omega^2, \phi(\omega)) = l_0$.

Thus we have the isomorphism $(E_{8(8)})_0 \cong (SL(2, \mathbb{R}) \times \mathbb{R}^+ \times E_{6(6)}) \cup l_0(SL(2, \mathbb{R}) \times \mathbb{R}^+ \times E_{6(6)}) = (SL(2, \mathbb{R}) \times \mathbb{R}^+ \times E_{6(6)}) \times \{1, l_0\}.$

(3) Under the isomorphism between \mathfrak{e}_8^C and $\check{\mathfrak{e}}_8^C$ given in the proof of Theorem 5.2.2(3), the transformation γ and the complex conjugation τ of \mathfrak{e}_8^C are transferred to the following transformation γ and the complex conjugation τ of \check{E}_8^C :

$$\gamma(D,\phi, \mathbf{X}, \mathbf{Y}) = (D, \gamma \phi \gamma, \gamma \mathbf{X}, \gamma \mathbf{Y}),$$

$$\tau(D,\phi, \mathbf{X}, \mathbf{Y}) = (\tau D, \tau \phi \tau, \tau \mathbf{X}, \tau \mathbf{Y}),$$

respectively. Hence instead of $(E_{8(8)})_{ed} = (E_8^{\ C})_{ed} \cap (E_8^{\ C})^{\tau\gamma}$, we consider $(\check{E}_{8(8)})_{ed} = (\check{E}_8^{\ C})_{ed} \cap (\check{E}_8^{\ C})^{\tau\gamma}$. Now, for $\alpha \in (\check{E}_{8(8)})_{ed} \subset (\check{E}_8^{\ C})_{ed} = (\check{E}_8^{\ C})^w$, there exist $A \in SL(3, C)$ and $\beta \in E_6^{\ C}$ such that $\alpha = \varphi_{ed}(A, \beta) = \varphi_1(A)\varphi_2(\beta)$ (see Theorem 5.2.2(3)). From the condition $\gamma\tau\alpha\tau\gamma = \alpha$, that is, $\gamma\tau\varphi_1(A)\varphi_2(\beta)\tau\gamma = \varphi_1(A)\varphi_2(\beta)$, we have $\varphi_1(\tau A)\varphi_2(\tau\gamma\beta\gamma\tau) = \varphi_1(A)\varphi_2(\beta)$. Hence

(i)
$$\begin{cases} \tau A = A, \\ \tau \gamma \beta \gamma \tau = \beta, \end{cases}$$
 (ii)
$$\begin{cases} \tau A = \omega A, \\ \tau \gamma \beta \gamma \tau = \omega^2 \beta, \end{cases}$$
 or (iii)
$$\begin{cases} \tau A = \omega^2 A, \\ \tau \gamma \beta \gamma \tau = \omega \beta. \end{cases}$$

Case (i). From $\tau A = A$, we have $A \in SL(3, \mathbb{R})$, and from $\tau \gamma \beta \gamma \tau = \beta$, we have $\beta \in (E_6^{\ C})^{\tau \gamma} \cong E_{6(6)}$.

Case (ii). We have $\varphi_{ed}(\omega E, \omega^2 1)(D, \phi, \mathbf{X}, \mathbf{Y}) = (\omega D \omega^{-1}, \omega^2 \phi \omega^{-2}, \omega \omega^2 \mathbf{X}, \omega^{-1} \omega^{-2} \mathbf{Y}) = (D, \phi, \mathbf{X}, \mathbf{Y})$, that is, $\varphi_{ed}(\omega E, \omega^2 1) = 1$.

Case (iii). We have $\varphi_{ed}(\omega^2 E, \omega 1)(D, \phi, \mathbf{X}, \mathbf{Y}) = (\omega^2 D \omega^{-2}, \omega \phi \omega^{-1}, \omega^2 \omega \mathbf{X}, \omega^{-2} \omega^{-1} \mathbf{Y}) = (D, \phi, \mathbf{X}, \mathbf{Y})$; that is, $\varphi_{ed}(\omega^2 E, \omega 1) = 1$.

Thus we have the isomorphism $(E_{8(8)})_{ed} \cong (\check{E}_{8(8)})_{ed} \cong SL(3, \mathbb{R}) \times E_{6(6)}$.

5.4. Subgroups of type $A_1 \oplus E_{7(-25)}, A_1 \oplus \mathbf{R} \oplus E_{6(-26)}$, and $A_2 \oplus E_{6(-26)}$ of $E_{8(-24)}$

In this section, we use Lie algebras $\mathfrak{e}_{8(-24)}, \mathfrak{e}_8^C$ and Lie groups $E_{8(-24)}, E_8^C$ defined in Section 5.1 and \check{E}_8^C defined in Section 5.2.

THEOREM 5.4.1

The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{8(-24)} = (\mathfrak{e}_8^C)^{\tau}$ (or \mathfrak{e}_8^C),

$$\mathfrak{g}_{8(-24)} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$$

with respect to $\operatorname{ad} Z, Z = (\Phi(0, 0, 0, -3), 0, 0, 0, 0, 0)$, is given by

$$\begin{split} \mathfrak{g}_{0} &= \begin{cases} iG_{kl}, \quad 0 \leq k < l \leq 7, \\ \widetilde{A}_{1}(e_{k}), \widetilde{A}_{2}(e_{k}), \widetilde{A}_{3}(e_{k}), \widetilde{F}_{1}(e_{k}), \widetilde{F}_{2}(e_{k}), \widetilde{F}_{3}(e_{k}), \quad 0 \leq k \leq 7, \\ (E_{1} - E_{2})^{\sim}, (E_{2} - E_{3})^{\sim}, \mathbf{1}, \widetilde{1}, \mathbf{1}^{-}, \mathbf{1}_{-}, \end{cases} \right\} 82, \\ \mathfrak{g}_{-1} &= \begin{cases} \dot{E}_{1}^{-}, \dot{E}_{2}^{-}, \dot{E}_{3}^{-}, \dot{F}_{1}(e_{k})^{-}, \dot{F}_{2}(e_{k})^{-}, \dot{F}_{3}(e_{k})^{-}, \quad 0 \leq k \leq 7, \\ \dot{E}_{1-}, \dot{E}_{2-}, \dot{E}_{3-}, \dot{F}_{1}(e_{k})_{-}, \dot{F}_{2}(e_{k})_{-}, \dot{F}_{3}(e_{k})_{-}, \quad 0 \leq k \leq 7, \\ \dot{E}_{1-}, \dot{E}_{2-}, \dot{E}_{3-}, \dot{F}_{1}(e_{k})_{-}, \dot{F}_{2}(e_{k})_{-}, \dot{F}_{3}(e_{k})_{-}, \quad 0 \leq k \leq 7, \\ \mathfrak{g}_{-2} &= \{\widehat{E}_{1}, \widehat{E}_{2}, \widehat{E}_{3}, \widehat{F}_{1}(e_{k}), \widehat{F}_{2}(e_{k}), \widehat{F}_{3}(e_{k}), \quad 0 \leq k \leq 7 \} 27, \\ \mathfrak{g}_{-3} &= \{1^{-}, 1_{-}\} 2, \\ \mathfrak{g}_{1} &= \widetilde{\lambda}(\mathfrak{g}_{-1}), \mathfrak{g}_{2} &= \widetilde{\lambda}(\mathfrak{g}_{-2}), \mathfrak{g}_{3} &= \widetilde{\lambda}(\mathfrak{g}_{-3}). \end{split}$$

Since $(\mathfrak{e}_{8(-24)})_{ev} = (\mathfrak{e}_{8}^{C})_{ev} \cap (\mathfrak{e}_{8}^{C})^{\tau} = (\mathfrak{e}_{8}^{C})^{v} \cap (\mathfrak{e}_{8}^{C})^{\tau}, (\mathfrak{e}_{8(-24)})_{0} = (\mathfrak{e}_{8}^{C})_{0} \cap (\mathfrak{e}_{8}^{C})^{\tau} = (\mathfrak{e}_{8}^{C})^{v\iota} \cap (\mathfrak{e}_{8}^{C})^{\tau}, (\mathfrak{e}_{8(-24)})_{ed} = (\mathfrak{e}_{8}^{C})_{ed} \cap (\mathfrak{e}_{8}^{C})^{\tau} = (\mathfrak{e}_{8}^{C})^{w} \cap (\mathfrak{e}_{8}^{C})^{\tau}, \text{ we determine the structures of groups}$

$$(E_{8(-24)})_{ev} = (E_8^C)_{ev} \cap (E_8^C)^{\tau} = (E_8^C)^{\upsilon} \cap (E_8^C)^{\tau},$$

$$(E_{8(-24)})_0 = (E_8^C)_0 \cap (E_8^C)^{\tau} = (E_8^C)^{\upsilon\iota} \cap (E_8^C)^{\tau},$$

$$(E_{8(-24)})_{ed} = (E_8^C)_{ed} \cap (E_8^C)^{\tau} = (E_8^C)^w \cap (E_8^C)^{\tau}.$$

THEOREM 5.4.2

We have the following:

- (1) $(E_{8(-24)})_{ev} \cong (SL(2, \mathbf{R}) \times E_{7(-25)}) / \mathbf{Z}_2 \times \{1, l\}, \mathbf{Z}_2 = \{(E, 1), (-E, -1)\},\$
- (2) $(E_{8(-24)})_0 \cong (SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}) \times \{1, l_0\},\$
- (3) $(E_{8(-24)})_{ed} \cong SL(3, \mathbf{R}) \times E_{6(-26)}.$

Proof

(1) For $\alpha \in (E_{8(-24)})_{ev} \subset (E_8{}^C)_{ev} = (E_8{}^C)^v$, there exist $A \in SL(2, C)$ and $\beta \in E_7{}^C$ such that $\alpha = \varphi_{ev}(A, \beta) = \psi(A)\beta$ (see Theorem 5.2.2(1)). From the condition $\tau \alpha \tau = \alpha$, that is, $\tau \psi(A)\beta \tau = \psi(A)\beta$, we have $\psi(\tau A)\tau\beta \tau = \psi(A)\beta$. Hence

$$\begin{cases} \tau A = A, \\ \tau \beta \tau = \beta, \end{cases} \quad \text{or} \quad \begin{cases} \tau A = -A, \\ \tau \beta \tau = -\beta. \end{cases}$$

In the former case, from $\tau A = A$, we have $A \in SL(2, \mathbb{R})$, and from $\tau \beta \tau = \beta$, we have $\beta \in (E_7^{\ C})^{\tau} \cong E_{7(-25)}$ (see [6, Theorem 4.3.2]). In the latter case, $A = iI, (I = \text{diag}(1, -1)), \beta = \iota$ satisfy the conditions, and $l = \psi(iI)\iota$. Thus we have the isomorphism $(E_{8(-24)})_{ev} \cong ((SL(2, \mathbb{R}) \times E_{7(-25)}) \cup l(SL(2, \mathbb{R}) \times E_{7(-25)}))/\mathbb{Z}_2 = (SL(2, \mathbb{R}) \times E_{7(-25)})/\mathbb{Z}_2 \times \{1, l\}, \mathbb{Z}_2 = \{(E, 1), (-E, -1)\}.$

(2) For $\alpha \in (E_{8(-24)})_0 \subset (E_8^{\ C})_0 = (E_8^{\ C})^{\upsilon\iota}$, there exist $A \in SL(2,C), \theta \in C^*$, and $\beta \in E_6^{\ C}$ such that $\alpha = \varphi_0(A,\theta,\beta) = \psi(A)\phi(\theta)\beta$ (see Theorem 5.2.2(2)). From the condition $\tau \alpha \tau = \alpha$, that is, $\tau \psi(A)\phi(\theta)\beta\tau = \psi(A)\phi(\theta)\beta$, we have $\psi(\tau A)\phi(\tau\theta)\tau\beta\tau = \psi(A)\phi(\theta)\beta$. Hence

(i)
$$\begin{cases} \tau A = A, \\ \tau \theta = \theta, \\ \tau \beta \tau = \beta, \end{cases}$$
(ii)
$$\begin{cases} \tau A = A, \\ \tau \theta = \omega \theta, \\ \tau \beta \tau = \phi(\omega^2)\beta, \end{cases}$$
(ii)
$$\begin{cases} \tau A = A, \\ \tau \theta = \omega^2 \theta, \\ \tau \beta \tau = \phi(\omega)\beta, \end{cases}$$
(iv)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\theta, \\ \tau \beta \tau = \beta, \end{cases}$$
(v)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega \theta, \\ \tau \beta \tau = \phi(\omega^2)\beta, \end{cases}$$
(vi)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega^2 \theta, \\ \tau \beta \tau = \phi(\omega^2)\beta, \end{cases}$$
(vi)
$$\begin{cases} \tau A = -A, \\ \tau \theta = -\omega^2 \theta, \\ \tau \beta \tau = \phi(\omega)\beta. \end{cases}$$

Case (i). From $\tau A = A, \tau \theta = \theta$, we have $A \in SL(2, \mathbf{R}), \theta \in \mathbf{R}^*$, and from $\tau \beta \tau = \beta$, we have $\beta \in (E_6^C)^{\tau} = E_{6(-26)}$. Hence the group of case (i) is $(SL(2, \mathbf{R}) \times \mathbf{R}^* \times E_{6(-26)})/\mathbf{Z}_2, \mathbf{Z}_2 = \{(E, 1, 1), (-E, -1, 1)\}$. By the analogous argument in the proof of Theorem 5.3.1(2), we have $(SL(2, \mathbf{R}) \times \mathbf{R}^* \times E_{6(-26)})/\mathbf{Z}_2 \cong SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}$.

- Case (ii). We have $\varphi_0(E, \omega, \phi(\omega^2)) = \psi(E)\phi(\omega)\phi(\omega^2) = 1$.
- Case (iii). We have $\varphi_0(E, \omega^2, \phi(\omega)) = \psi(E)\phi(\omega^2)\phi(\omega) = 1$.
- Case (iv). We have $\varphi_0(iI, i, 1) = l_0$.
- Case (v). We have $\varphi_0(iI, i\omega, \phi(\omega^2)) = \varphi_0(iI, i, 1)\varphi_0(E, \omega, \phi(\omega^2)) = l_0$.
- Case (vi). We have $\varphi_0(iI, i\omega^2, \phi(\omega)) = \varphi_0(iI, i, 1)\varphi_0(E, \omega^2, \phi(\omega)) = l_0$.

Thus we have the isomorphism $(E_{8(-24)})_0 \cong (SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}) \cup l_0(SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}) = (SL(2, \mathbf{R}) \times \mathbf{R}^+ \times E_{6(-26)}) \times \{1, l_0\}.$

(3) From the opening statement in the proof of Theorem 5.3.1(3), we use $(\check{E}_{8(-24)})_{ed} = (\check{E}_8^{\ C})_{ed} \cap (\check{E}_8^{\ C})^{\tau} = (\check{E}_8^{\ C})^w \cap (\check{E}_8^{\ C})^{\tau}$ instead of the group $(E_{8(-24)})_{ed} = (E_8^{\ C})_{ed} \cap (E_8^{\ C})^{\tau} = (E_8^{\ C})^w \cap (E_8^{\ C})^{\tau}$. Now, for $\alpha \in (\check{E}_{8(-24)})_{ed} \subset (\check{E}_8^{\ C})^w$, there exists $A \in SL(3, C)$ and $\beta \in E_6^{\ C}$ such that $\alpha = \varphi_{ed}(A, \beta) = \varphi_1(A)\varphi_2(\beta)$ (see Theorem 5.2.2(3)). From the condition $\tau\alpha\tau = \alpha$, that is, $\tau\varphi_1(A)\varphi_2(\beta)\tau = \varphi_1(A)\varphi_2(\beta)$, we have $\varphi_1(\tau A)\varphi_2(\tau\beta\tau) = \varphi_1(A)\varphi_2(\beta)$. Hence

(i)
$$\begin{cases} \tau A = A, \\ \tau \beta \tau = \beta, \end{cases}$$
 (ii)
$$\begin{cases} \tau A = \omega A, \\ \tau \beta \tau = \omega^2 \beta, \end{cases}$$
 or (iii)
$$\begin{cases} \tau A = \omega^2 A, \\ \tau \beta \tau = \omega \beta. \end{cases}$$

Case (i). From $\tau A = A$, we have $A \in SL(3, \mathbb{R})$, and from $\tau \beta \tau = \beta$, we have $\beta \in (E_6{}^C)^{\tau} = E_{6(-26)}$. Case (ii). We have $\varphi_{ed}(\omega E, \omega^2 1)(D, \phi, \mathbf{X}, \mathbf{Y}) = (\omega D \omega^{-1}, \omega^2 \phi \omega^{-2}, \omega \omega^2 \mathbf{X}, \omega^{-1} \omega^{-2} \mathbf{Y}) = (D, \phi, \mathbf{X}, \mathbf{Y})$, that is, $\varphi_{ed}(\omega E, \omega^2 1) = 1$. Case (iii). We have $\varphi_{ed}(\omega^2 E, \omega 1)(D, \phi, \mathbf{X}, \mathbf{Y}) = (\omega^2 D \omega^{-2}, \omega \phi \omega^{-1}, \omega^2 \omega \mathbf{X}, \omega^2 \mathbf{X})$

 $\omega^{-2}\omega^{-1}\boldsymbol{Y}) = (D, \phi, \boldsymbol{X}, \boldsymbol{Y}), \text{ that is, } \varphi_{ed}(\omega^{-2}E, \omega 1) = 1.$ Thus we have the isomorphism $(E_{8(-24)})_{ed} \cong (\check{E}_{8(-24)})_{ed} \cong SL(3, \boldsymbol{R}) \times E_{6(-26)}.$

5.5. Subgroups of type $C \oplus {A_7}^C$ and ${A_8}^C$ of ${E_8}^C$

In this section, we use another *C*-Lie algebra $\tilde{\mathfrak{e}_8}^C$ of type E_8^C constructed by Gomyo [1]. We review notation in the definition of $\tilde{\mathfrak{e}_8}^C$.

Let e_1, \ldots, e_n be the canonical *C*-basis of *n*-dimensional *C*-vector space C^n , and let $(\boldsymbol{x}, \boldsymbol{y})$ be the inner product in C^n satisfying $(\boldsymbol{e}_i, \boldsymbol{e}_j) = \delta_{ij}$. In the exterior *C*-vector space $\Lambda^k(C^n)$, we define an inner product by

$$(\boldsymbol{x}_1 \wedge \dots \wedge \boldsymbol{x}_k, \boldsymbol{y}_1 \wedge \dots \wedge \boldsymbol{y}_k) = \det((\boldsymbol{x}_i, \boldsymbol{y}_j)), \quad k \ge 1,$$

 $(a,b) = ab, \quad a, b \in \Lambda^0(C^n) = C.$

Then $e_{i_1} \wedge \cdots \wedge e_{i_k}, 1 \leq i_1 < \cdots < i_k \leq n$, form an orthonormal *C*-basis of $\Lambda^k(C^n)$. For $u \in \Lambda^k(C^n)$, we define an element $*u \in \Lambda^{n-k}(C^n)$ satisfying

$$(*\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u} \wedge \boldsymbol{v}, \boldsymbol{e}_1 \wedge \dots \wedge \boldsymbol{e}_n), \quad \boldsymbol{v} \in \Lambda^{n-k}(C^n).$$

Then \ast induces a C-linear isomorphism $\ast: \Lambda^k(C^n) \to \Lambda^{n-k}(C^n).$

The group SL(n,C) naturally acts on $\Lambda^k(C^n)$ as

$$A(\boldsymbol{x}_1 \wedge \cdots \wedge \boldsymbol{x}_k) = A\boldsymbol{x}_1 \wedge \cdots \wedge A\boldsymbol{x}_k, \quad A1 = 1.$$

Hence the Lie algebra $\mathfrak{sl}(n,C)$ acts on $\Lambda^k(C^n)$ as

$$D(\boldsymbol{x}_1 \wedge \cdots \wedge \boldsymbol{x}_k) = \sum_{j=1}^k \boldsymbol{x}_1 \wedge \cdots \wedge D\boldsymbol{x}_j \wedge \cdots \wedge \boldsymbol{x}_k, \quad D1 = 0.$$

LEMMA 5.5.1

For $A \in SL(n, C), D \in \mathfrak{sl}(n, C)$, and $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^k(C^n)$, we have

- (1) $(A\boldsymbol{u}, {}^{t}A^{-1}\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v}), \ (D\boldsymbol{u}, \boldsymbol{v}) + (\boldsymbol{u}, -{}^{t}D\boldsymbol{v}) = 0,$
- (2) $*(A\boldsymbol{u}) = {}^{t}A^{-1}(*\boldsymbol{u}), \; *(D\boldsymbol{u}) = -{}^{t}D(*\boldsymbol{u}).$

For $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^k(C^n)$ $(1 \leq k \leq n)$, we define a C-linear mapping $\boldsymbol{u} \times \boldsymbol{v}$ of C^n by

$$(\boldsymbol{u} \times \boldsymbol{v})\boldsymbol{x} = * (\boldsymbol{v} \wedge * (\boldsymbol{u} \wedge \boldsymbol{x})) + (-1)^{n-k} \frac{n-k}{n} (\boldsymbol{u}, \boldsymbol{v})\boldsymbol{x}, \quad \boldsymbol{x} \in \boldsymbol{C}^{n}$$

Since $\operatorname{tr}(\boldsymbol{u} \times \boldsymbol{v}) = 0$, $\boldsymbol{u} \times \boldsymbol{v}$ can be regarded as an element of $\mathfrak{sl}(n, C)$ with respect to the canonical *C*-basis of C^n .

LEMMA 5.5.2 For $A \in SL(n, C), D \in \mathfrak{sl}(n, C)$, and $\boldsymbol{u}, \boldsymbol{v} \in \Lambda^k(C^n)$, we have

(1)
$$A(\boldsymbol{u} \times \boldsymbol{v})A^{-1} = A\boldsymbol{u} \times {}^{t}A^{-1}\boldsymbol{v}, \ [D, \boldsymbol{u} \times \boldsymbol{v}] = D\boldsymbol{u} \times \boldsymbol{v} + \boldsymbol{u} \times (-{}^{t}D\boldsymbol{v})$$

- (2) ${}^{t}(\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \times \boldsymbol{u}, \ \tau(\boldsymbol{u} \times \boldsymbol{v}) = \tau \boldsymbol{u} \times \tau \boldsymbol{v},$
- (3) $\operatorname{tr}(D(\boldsymbol{u} \times \boldsymbol{v})) = (-1)^{n-k} (D\boldsymbol{u}, \boldsymbol{v}).$

Now, we construct a *C*-Lie algebra $\widetilde{\mathfrak{e}_8}^C$ of type E_8^C .

PROPOSITION 5.5.3 (GOMYO [1, Theorem 3.2])

In an 80 + 84 + 84 = 248 dimensional C-vector space

$$\widetilde{\mathfrak{e}_8}^C = \mathfrak{sl}(9, C) \oplus \Lambda^3(C^9) \oplus \Lambda^3(C^9),$$

we define a Lie bracket $[R_1, R_2]$ by

$$[(D_1, u_1, v_1), (D_2, u_2, v_2)] = (D, u, v),$$

$$\begin{cases} D = [D_1, D_2] + u_1 \times v_2 - u_2 \times v_1, \\ u = D_1 u_2 - D_2 u_1 + *(v_1 \wedge v_2), \\ v = -^t D_1 v_2 + ^t D_2 v_1 - *(u_1 \wedge u_2); \end{cases}$$

then $\widetilde{\mathfrak{e}_8}^C$ becomes a simple C-Lie algebra.

This C-Lie algebra $\widetilde{\mathfrak{e}_8}^C$ has to be type E_8^C . Let $\widetilde{E_8}^C$ be the automorphism group of $\widetilde{\mathfrak{e}_8}^C$:

$$\widetilde{E_8}^C = \left\{ \alpha \in \operatorname{Iso}_C(\widetilde{\mathfrak{e}_8}^C) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$$

Then $\widetilde{E_8}^C$ is also a simply connected complex Lie group of type E_8^C . We define a *C*-linear transformation $\widehat{\lambda}$ of $\widetilde{\mathfrak{e}_8}^C$ by

$$\widehat{\lambda}(D, \boldsymbol{u}, \boldsymbol{v}) = (-^{t}D, -\boldsymbol{v}, -\boldsymbol{u}).$$

Then $\widehat{\lambda} \in \widetilde{E_8}^C$ and $\widehat{\lambda}^2 = 1$. The complex conjugation of $\widehat{\mathfrak{e}_8}^C$ is usually denoted by τ :

$$\tau(D, \boldsymbol{u}, \boldsymbol{v}) = (\tau D, \tau \boldsymbol{u}, \tau \boldsymbol{v}).$$

LEMMA 5.5.4 (see GOMYO [1])

The Killing form $\widetilde{B_8}$ of the Lie algebra $\widetilde{\mathfrak{e}_8}^{\rm C}$ is given by

$$\widetilde{B_8}((D_1, \boldsymbol{u}_1, \boldsymbol{v}_1), (D_2, \boldsymbol{u}_2, \boldsymbol{v}_2)) = 60(\operatorname{tr}(D_1 D_2) + (\boldsymbol{u}_1, \boldsymbol{v}_2) + (\boldsymbol{v}_1, \boldsymbol{u}_2)).$$

We shall find an *R*-Lie algebra of type $E_{8(8)}$. We define an *R*-Lie algebra $\tilde{\mathfrak{e}_8}'$ by

$$\widetilde{\boldsymbol{\epsilon_8}}' = \mathfrak{sl}(9, \boldsymbol{R}) \oplus \Lambda^3(\boldsymbol{R}^9) \oplus \Lambda^3(\boldsymbol{R}^9) = (\widetilde{\boldsymbol{\epsilon_8}}^C)^7$$

with the Lie bracket the same as that of $\tilde{\mathfrak{e}_8}^C$.

PROPOSITION 5.5.5

We have that $\widetilde{\mathfrak{e}_8}'$ is an **R**-Lie algebra of type $E_{8(8)}$.

294

Proof

We find the signature of the Killing form $\widetilde{B}_8' = \widetilde{B}_8|\widetilde{\mathfrak{e}}_8'$ of $\widetilde{\mathfrak{e}}_8'$. Decompose $\widetilde{\mathfrak{e}}_8'$ into eigenspaces relative to $\widehat{\lambda}$:

$$\widetilde{\mathfrak{e}}_{8}{}' = (\widehat{\mathfrak{e}}_{8}{}')_{\widehat{\lambda}} \oplus (\widetilde{\mathfrak{e}}_{8}{}')_{-\widehat{\lambda}},$$

$$\begin{aligned} &(\widetilde{\mathfrak{e}}_{8}')_{\widehat{\lambda}} = \{R \in \widehat{\mathfrak{e}}_{8}' \mid \widehat{\lambda}R = R\} = \big\{ (D, \boldsymbol{u}, -\boldsymbol{u}) \mid D \in \mathfrak{sl}(9, \boldsymbol{R}), {}^{t}\!D = -D, \boldsymbol{u} \in \Lambda^{3}(\boldsymbol{R}^{9}) \big\}, \\ &(\widetilde{\mathfrak{e}}_{8}')_{-\widehat{\lambda}} = \{R \in \widetilde{\mathfrak{e}}_{8}' \mid \widetilde{\lambda}R = -R\} = \big\{ (D, \boldsymbol{u}, \boldsymbol{u}) \mid D \in \mathfrak{sl}(9, \boldsymbol{R}), {}^{t}\!D = D, \boldsymbol{u} \in \Lambda^{3}(\boldsymbol{R}^{9}) \big\}. \end{aligned}$$

Then, from Lemma 5.5.4, we see that the Killing form \widetilde{B}_8' on $(\widetilde{\mathfrak{e}}_8')_{\widehat{\lambda}}$ is negative definite and \widetilde{B}_8' on $(\widetilde{\mathfrak{e}}_8')_{-\widehat{\lambda}}$ is positive definite. Therefore the number of negative eigenvalues of \widetilde{B}_8' is dim $((\widetilde{\mathfrak{e}}_8')_{\widehat{\lambda}}) = 44 + 84 = 128$, and the number of positive eigenvalues of \widetilde{B}_8' is dim $((\widetilde{\mathfrak{e}}_8')_{-\widehat{\lambda}}) = 36 + 84 = 120$. Therefore the signature of \widetilde{B}_8' is 128 - 120 = 8. Hence the type of \widetilde{B}_8' is $E_{8(8)}$.

Let $\widetilde{E_8}'$ be the automorphism group of $\widetilde{\mathfrak{e}_8}'$:

$$\widetilde{E_8}' = \left\{ \alpha \in \operatorname{Iso}_R(\widetilde{\mathfrak{e}_8}') \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$$

Although we cannot give any explicit isomorphism between \mathfrak{e}_8^C and $\tilde{\mathfrak{e}_8}^C$, $\mathfrak{e}_{8(8)}$ and $\tilde{\mathfrak{e}_8}'$, instead of $\tilde{\mathfrak{e}_8}^C$, $\tilde{\mathfrak{e}_8}'$, $\tilde{E_8}^C$, and $\tilde{E_8}'$, we use the same notation as \mathfrak{e}_8^C , $\mathfrak{e}_{8(8)}$, E_8^C , and $E_{8(8)}$ of Sections 5.1.

In the \tilde{C} -Lie algebra $\mathfrak{e}_8^C = \mathfrak{sl}(9, C) \oplus \Lambda^3(C^9) \oplus \Lambda^3(C^9)$, let

$$Z = \frac{1}{3} (\operatorname{diag}(-8, 1, 1, 1, 1, 1, 1, 1, 1), 0, 0).$$

THEOREM 5.5.6

The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{8(8)} = (\mathfrak{e}_8{}^C)^{\tau}$ (or $\mathfrak{e}_8{}^C$),

 $\mathfrak{e}_{8(8)} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$

with respect to $\operatorname{ad} Z, Z = \frac{1}{3}(\operatorname{diag}(-8, 1, 1, 1, 1, 1, 1, 1, 1, 1), 0, 0)$, is given by

$$\begin{aligned} \mathfrak{g}_{0} &= \left\{ (E_{ii} - E_{99}, 0, 0), 1 \leq i \leq 8, (E_{kl}, 0, 0), 2 \leq k \leq 9, 2 \leq l \leq 9, k \neq l \right\} \ 64, \\ \mathfrak{g}_{-1} &= \left\{ (0, 0, \mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \mathbf{e}_{k}), 2 \leq i < j < k \leq 9 \right\} \ 56, \\ \mathfrak{g}_{-2} &= \left\{ (0, \mathbf{e}_{1} \wedge \mathbf{e}_{j} \wedge \mathbf{e}_{k}, 0), 2 \leq j < k \leq 9 \right\} \ 28, \\ \mathfrak{g}_{-3} &= \left\{ (E_{1j}, 0, 0), 2 \leq j \leq 9 \right\} \ 8, \\ \mathfrak{g}_{1} &= \widehat{\lambda}(\mathfrak{g}_{-1}), \mathfrak{g}_{2} = \widehat{\lambda}(\mathfrak{g}_{-2}), \mathfrak{g}_{3} = \widehat{\lambda}(\mathfrak{g}_{-3}). \end{aligned}$$

For the characteristic element $Z = \frac{1}{3}(\text{diag}(-8, 1, 1, 1, 1, 1, 1, 1, 1), 0, 0)$, we set

$$z_4 = \exp\left(\frac{2\pi i}{4} \operatorname{ad} Z\right), \qquad z_3 = \exp\left(\frac{2\pi i}{3} \operatorname{ad} Z\right);$$

then we have

$$z_4(D, \boldsymbol{u}, \boldsymbol{v}) = (A_4 D A_4^{-1}, A_4 \boldsymbol{u}, {}^t A_4^{-1} \boldsymbol{v}), \quad A_4 = \operatorname{diag}(\omega_{12}{}^8, \omega_{12}, \omega_{12}, \dots, \omega_{12}),$$

$$z_3(D, \boldsymbol{u}, \boldsymbol{v}) = (A_3 D A_3^{-1}, A_3 \boldsymbol{u}, {}^t A_3^{-1} \boldsymbol{v}), \quad A_3 = \omega_9 E,$$
$$= (D, \omega_9 \boldsymbol{u}, \omega_9^{-1} \boldsymbol{v}),$$

where $(D, \boldsymbol{u}, \boldsymbol{v}) \in \mathfrak{e}_8{}^C, \omega_{12} = e^{2\pi i/12}, \omega_9 = e^{2\pi i/9}.$

Since $(\mathfrak{e}_8^C)_0 = (\mathfrak{e}_8^C)^{z_4}, (\mathfrak{e}_8^C)_{ed} = (\mathfrak{e}_8^C)^{z_3}$, we determine the structures of groups

$$(E_8^{\ C})_0 = (E_8^{\ C})^{z_4}, \qquad (E_8^{\ C})_{ed} = (E_8^{\ C})^{z_3}.$$

THEOREM 5.5.7

(1) As for $(E_8{}^C)_{ev}$, we will study this later.

(2) We have $(E_8^{\ C})_0 \cong (C^* \times SL(8,C))/\mathbb{Z}_{24}, \mathbb{Z}_{24} = \mathbb{Z}_3 \times \mathbb{Z}_8, \mathbb{Z}_3 = \{(1,E), (\omega, E), (\omega^2, E)\}, \mathbb{Z}_8 = \{(\omega_8^k, \omega_8^k E) \mid k = 0, 1, \dots, 7\}, \omega = e^{2\pi i/3}, \omega_8 = e^{2\pi i/8}.$ (3) We have $(E_8^{\ C})_{ed} \cong SL(9,C)/\mathbb{Z}_3, \mathbb{Z}_3 = \{E, \omega E, \omega^2 E\}, \omega = e^{2\pi i/3}.$

Proof

(2) We define a mapping $\varphi_0: S(GL(1,C) \times GL(8,C)) \to ({E_8}^C)^{z_4} = ({E_8}^C)_0$ by

$$\varphi_0(A)(D, \boldsymbol{u}, \boldsymbol{v}) = (ADA^{-1}, A\boldsymbol{u}, {}^t\!A^{-1}\boldsymbol{v});$$

 φ_0 is well defined. Indeed, by using Lemmas 5.5.1 and 5.5.2, we have

$$\varphi_0(A)[(D_1, \boldsymbol{u}_1, \boldsymbol{v}_1), (D_2, \boldsymbol{u}_2, \boldsymbol{v}_2)] = [\varphi_0(A)(D_1, \boldsymbol{u}_1, \boldsymbol{v}_1), \varphi_0(A)(D_2, \boldsymbol{u}_2, \boldsymbol{v}_2)];$$

that is, $\varphi_0(A) \in E_8^C$. Next, since $z_4 = \varphi_0(A_4)$ and $z_4\varphi_0(A) = \varphi_0(A_4)\varphi_0(A) = \varphi_0(A_4A) = \varphi_0(AA_4) = \varphi_0(A)\varphi_0(A_4) = \varphi_0(A)z_4$, we get $\varphi_0(A) \in (E_8^C)^{z_4}$. Obviously φ_0 is a homomorphism. It is easy to see that $\operatorname{Ker} \varphi_0 = \{E, \omega E, \omega^2 E\} = \mathbb{Z}_3$, $(E_8^C)^{z_4}$ is connected, $\operatorname{Ker} \varphi_0$ is discrete, and $\dim_C(\mathfrak{s}(\mathfrak{gl}(1, C) \oplus \mathfrak{gl}(8, C))) = (1 + 64) - 1 = 64 = \dim_C((\mathfrak{e}_8^C)_0) = \dim_C((\mathfrak{e}_8^C)^{z_4})$ (see Theorem 5.5.6), so φ_0 is surjective. Hence we have

$$(E_8^C)^{z_4} \cong S(GL(1,C) \times GL(8,C))/Z_3, \quad Z_3 = \{E, \omega E, \omega^2 E\}.$$

Further, the mapping $h: C^* \times SL(8, C) \rightarrow S(GL(1, C) \times GL(8, C))$,

$$h(z,B) = \begin{pmatrix} z^{-8} & 0\\ 0 & zB \end{pmatrix},$$

induces the isomorphism $S(GL(1,C) \times GL(8,C)) \cong (C^* \times SL(8,C))/\mathbb{Z}_8$, $\mathbb{Z}_8 = \{(\omega_8^k, \omega_8^k E) \mid k = 0, 1, ..., 7\}$, and h satisfies $h(\omega, E) = \omega E$. Thus we have the isomorphism $(E_8^C)_0 = (E_8^C)^{z_4} \cong (C^* \times SL(8,C))/(\mathbb{Z}_3 \times \mathbb{Z}_8), \mathbb{Z}_3 = \{(1,E), (\omega, E), (\omega^2, E)\}, \mathbb{Z}_8 = \{(\omega_8^k, \omega_8^k E) \mid k = 0, 1, ..., 7\}.$

(3) We define a mapping $\varphi_{ed}: SL(9,C) \to (E_8^{C})^{z_3} = (E_8^{C})_{ed}$ by

$$\varphi_{ed}(A)(D, \boldsymbol{u}, \boldsymbol{v}) = (ADA^{-1}, A\boldsymbol{u}, {}^{t}A^{-1}\boldsymbol{v}).$$

Then we see that φ_{ed} induces the isomorphism $(E_8^{\ C})_{ed} = (E_8^{\ C})^{z_3} \cong SL(9, C)/$ $\mathbf{Z}_3, \mathbf{Z}_3 = \{E, \omega E, \omega^2 E\}$ in a way similar to (2) above.

5.6. Subgroups of type $\mathbf{R} \oplus A_{7(7)}$ and $A_{8(8)}$ of $E_{8(8)}$

In this section, we use Lie algebras $\mathfrak{e}_8{}^C, \mathfrak{e}_{8(8)}$ and Lie groups $E_8{}^C, E_{8(8)}$ defined in Section 5.5.

Since $(\mathfrak{e}_{8(8)})_0 = (\mathfrak{e}_8^C)_0 \cap (\mathfrak{e}_8^C)^{\tau} = (\mathfrak{e}_8^C)^{z_4} \cap (\mathfrak{e}_8^C)^{\tau}, (\mathfrak{e}_{8(8)})_{ed} = (\mathfrak{e}_8^C)_{ed} \cap (\mathfrak{e}_8^C)^{\tau} = (\mathfrak{e}_8^C)^{z_3} \cap (\mathfrak{e}_8^C)^{\tau}$, we determine the structures of groups

$$(E_{8(8)})_0 = (E_8{}^C)_0 \cap (E_8{}^C)^\tau = (E_8{}^C)^{z_4} \cap (E_8{}^C)^\tau,$$

$$(E_{8(8)})_{ed} = (E_8{}^C)_{ed} \cap (E_8{}^C)^\tau = (E_8{}^C)^{z_3} \cap (E_8{}^C)^\tau.$$

THEOREM 5.6.1

- (1) As for $(E_{8(8)})_{ev}$, we will study this later.
- (2) We have $(E_{8(8)})_0 \cong (\mathbf{R}^+ \times SL(8, \mathbf{R})) \times \{1, \zeta, \zeta^2\}.$
- (3) We have $(E_{8(8)})_{ed} \cong SL(9, \mathbf{R}) \times \{1, \zeta, \zeta^2\}.$

Proof

(2) For $\alpha \in (E_{8(8)})_0 \subset (E_8{}^C)_0 = (E_8{}^C)^{z_4}$, there exists $A \in S(GL(1,C) \times GL(8,C))$ such that $\alpha = \varphi_0(A)$ (see Theorem 5.5.7(2)). From the condition $\tau \alpha \tau = \alpha$, that is, $\tau \varphi_4(A) \tau = \varphi_4(A)$, we have $\varphi_0(\tau A) = \varphi_0(A)$. Hence

(i)
$$\tau A = A$$
, (ii) $\tau A = \omega A$, or (iii) $\tau A = \omega^2 A$.

Case (i). From the condition $\tau A = A$, we have $A \in S(GL(1, \mathbb{R}) \times GL(8, \mathbb{R}))$. The mapping $h : \mathbb{R}^* \times SL(8, \mathbb{R}) \to S(GL(1, \mathbb{R}) \times GL(8, \mathbb{R}))$,

$$h(r,B) = \begin{pmatrix} r^{-8} & 0\\ 0 & rB \end{pmatrix},$$

induces the isomorphism $S(GL(1, \mathbf{R}) \times GL(8, \mathbf{R})) \cong (\mathbf{R}^* \times SL(8, \mathbf{R}))/\mathbf{Z}_2, \mathbf{Z}_2 = \{(1, E), (-1, -E)\}$. Further, the mapping $k : \mathbf{R}^* \times SL(8, \mathbf{R}) \to \mathbf{R}^+ \times SL(8, \mathbf{R})$,

$$k(r,B) = \begin{cases} (r,B) & \text{if } r > 0, \\ (-r,-B) & \text{if } r < 0 \end{cases}$$

induces the isomorphism $\mathbf{R}^+ \times SL(8, \mathbf{R}) \cong (\mathbf{R}^* \times SL(8, \mathbf{R}))/\mathbf{Z}_2, \mathbf{Z}_2 = \{(1, E), (-1, -E)\}$. Hence we have $S(GL(1, \mathbf{R}) \times GL(8, \mathbf{R})) \cong \mathbf{R}^+ \times SL(8, \mathbf{R})$.

Case (ii). Since $A = \omega E$ satisfies the condition $\tau A = \omega A$, we have

$$\varphi_0(\omega E)(D, \boldsymbol{u}, \boldsymbol{v}) = \left((\omega E)D(\omega E)^{-1}, (\omega E)\boldsymbol{u}, {}^t(\omega E)^{-1}\boldsymbol{v} \right)$$
$$= (D, \omega \boldsymbol{u}, \omega^2 \boldsymbol{v}) = \zeta(D, \boldsymbol{u}, \boldsymbol{v});$$

that is, ζ is defined by $\varphi_0(\omega E)$.

Case (iii). Since $A = \omega^2 E$ satisfies the condition $\tau A = \omega^2 A$, in a way similar to case (ii), we have $\varphi_0(\omega^2 E) = \zeta^2$.

Thus we have the isomorphism $(E_{8(8)})_0 \cong (\mathbf{R}^+ \times SL(8, \mathbf{R})) \cup \zeta(\mathbf{R}^+ \times SL(8, \mathbf{R})) \cup \zeta^2(\mathbf{R}^+ \times SL(8, \mathbf{R})) = (\mathbf{R}^+ \times SL(8, \mathbf{R})) \times \{1, \zeta, \zeta^2\}.$

(3) For $\alpha \in (E_{8(8)})_{ed} \subset (E_8^C)_{ed} = (E_8^C)^{z_3}$, there exists $A \in SL(9, C)$ such that $\alpha = \varphi_{ed}(A)$ (see Theorem 5.5.7(3)). From the condition $\tau \alpha \tau = \alpha$, that is,

 $\tau \varphi_{ed}(A) \tau = \varphi_{ed}(A)$, we have $\varphi_3(\tau A) = \varphi_3(A)$. Hence

(i)
$$\tau A = A$$
, (ii) $\tau A = \omega A$, or (iii) $\tau A = \omega^2 A$.

Case (i). From the condition $\tau A = A$, we have $A \in SL(9, \mathbf{R})$.

Case (ii). Since $A = \omega E$ satisfies the condition $\tau A = \omega A$, we have $\varphi_{ed}(\omega E) = \zeta$ as in Case of (2).

Case (iii). Since $A = \omega^2 E$ satisfies the conditions $\tau A = \omega^2 A$, we have $\varphi_{ed}(\omega^2 E) = \zeta^2$ as in Case (2). Thus we have the isomorphism $(E_{8(8)})_{ed} = (E_8^{\ C})^{z_3} \cong SL(9, \mathbf{R}) \cup \zeta(SL(9, \mathbf{R})) \cup \zeta^2(SL(9, \mathbf{R})) = SL(9, \mathbf{R}) \times \{1, \zeta, \zeta^2\}.$

5.7. Subgroup of type $D_8{}^C$ of $E_8{}^C$ and subgroup of type $D_{8(8)}$ of $E_{8(8)}$

In this section, we determine the structures of the groups $(E_8{}^C)_{ev}$ (see Theorem 5.5.7(1)) and $(E_{8(8)})_{ev}$ (see Theorem 5.6.1(1)). As we use a realization of semispinor groups Ss(16, C) in $E_8{}^C$ and Ss(8, 8) in $E_{8(8)}$ by Gomyo [2], we review here one more Lie algebra $\mathfrak{e}_8{}^C$ constructed by Gomyo [2].

Let e_0, e_1, \ldots, e_7 be the canonical *C*-basis of the *C*-vector space \mathfrak{C}^C which is the complexification of the *R*-Calyley algebra \mathfrak{C} . In a 16-dimensional *C*-vector space $(\mathfrak{C}^C)^2$, denote

$$\widetilde{e}_1 = \begin{pmatrix} e_0 \\ 0 \end{pmatrix}, \qquad \widetilde{e}_2 = \begin{pmatrix} e_1 \\ 0 \end{pmatrix}, \dots, \widetilde{e}_8 = \begin{pmatrix} e_7 \\ 0 \end{pmatrix},$$
$$\widetilde{e}_9 = \begin{pmatrix} 0 \\ e_0 \end{pmatrix}, \qquad \widetilde{e}_{10} = \begin{pmatrix} 0 \\ e_1 \end{pmatrix}, \dots, \widetilde{e}_{16} = \begin{pmatrix} 0 \\ e_7 \end{pmatrix}$$

We give an inner product (\tilde{a}, \tilde{b}) in $(\mathfrak{C}^C)^2$ so that $\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_{16}$ are an orthonormal C-basis of $(\mathfrak{C}^C)^2$. Let $Cl((\mathfrak{C}^C)^2)$ be the C-Clifford algebra with a C-basis

$$1, \widetilde{e}_1, \widetilde{e}_2, \dots, \widetilde{e}_{16}, \dots, \widetilde{e}_{k_1} \cdots \widetilde{e}_{k_l} (k_1 < \dots < k_l), \dots, \widetilde{e}_1 \widetilde{e}_2 \cdots \widetilde{e}_{16}$$

with relations $\tilde{e}_k^2 = -1$ and $\tilde{e}_k \tilde{e}_l = -\tilde{e}_l \tilde{e}_k$ $(k \neq l)$. Now, the complex spinor group Spin(16, C) is defined by

$$Spin(16, C) = \left\{ \widetilde{a}_1 \widetilde{a}_2 \cdots \widetilde{a}_{2q} \in Cl((\mathfrak{C}^C)^2) \middle| \begin{array}{l} \widetilde{a}_k \in (\mathfrak{C}^C)^2, (\widetilde{a}_k, \widetilde{a}_k) = 1, \\ q = 1, 2, 3, \dots \end{array} \right\}.$$

It is known that the group Spin(16, C) is connected and is a double covering group of $SO(16, C) = SO((\mathfrak{C}^C)^2)$ by the projection $p: Spin(16, C) \to SO(16, C)$,

$$p(\widetilde{\alpha})\widetilde{x} = \widetilde{\alpha}\widetilde{x}\widetilde{\alpha}^{-1}, \quad \widetilde{x} \in (\mathfrak{C}^C)^2.$$

So Spin(16, C) is simply connected. In $Cl((\mathfrak{C}^C)^2)$, let

$$\widetilde{\zeta} = \widetilde{e}_1 \widetilde{e}_2 \cdots \widetilde{e}_{15} \widetilde{e}_{16}.$$

Then $\tilde{\zeta} \in Spin(16, C)$ and $\tilde{\zeta}^2 = 1$. The center of the group Spin(16, C) is given by

$$z(Spin(16,C)) = \{1,-1,\widetilde{\zeta},-\widetilde{\zeta}\}.$$

The complex semispinor group Ss(16, C) is defined by

$$Ss(16, C) = Spin(16, C) / \{1, \tilde{\zeta}\}.$$

It is known that $Spin(16,C)/\{1,-1\} \cong SO(16,C)$ and $Ss(16,C) \not\cong SO(16,C)$.

In the *C*-Lie algebra $\mathfrak{so}(8,C) = \mathfrak{so}(\mathfrak{C}^C) = \{X \in \operatorname{Hom}_C(\mathfrak{C}^C) \mid (Xx,y) + (x, Xy) = 0, x, y \in \mathfrak{C}^C\}, G_{kl} \ (0 \le k \le 7, 0 \le l \le 7, k \ne l) \text{ is defined as a } C$ -endomorphism of \mathfrak{C}^C satisfying

$$G_{kl}e_l = e_k, \qquad G_{kl}e_k = -e_l, \qquad G_{kl}e_j = 0$$
 otherwise,

then $G_{kl}, 0 \le k < l \le 7$ is C-basis of $\mathfrak{so}(8, C)$. (These G_{kl} are already used in Theorems 5.2.1 and 5.4.1.) Next, $F_{kl} \in \mathfrak{so}(8, C)$ $(0 \le k \le 7, 0 \le l \le 7, k \ne l)$ is defined as

$$F_{kl}x = \frac{1}{2}e_k(\overline{e}_lx), \quad x \in \mathfrak{C}^C.$$

Now, we define C-linear transformations μ, κ , and ν of $\mathfrak{so}(8, C)$ by

$$\mu G_{kl} = F_{kl}, \quad (\kappa X)x = \overline{X\overline{x}}, \quad x \in \mathfrak{C}^C, \ \nu = \mu\kappa.$$

Then μ, κ , and ν are outer automorphisms of $\mathfrak{so}(8, C)$.

For $x, y \in \mathfrak{C}^C$, we define a *C*-linear transformation $x \times y$ of \mathfrak{C}^C by

$$(x \times y)z = (y, z)x - (x, z)y, \quad z \in \mathfrak{C}^C$$

Let $\mathfrak{so}(16, C) = \{D \in \operatorname{Hom}((\mathfrak{C}^C)^2) \mid (D\widetilde{x}, \widetilde{y}) + (\widetilde{x}, D\widetilde{y}) = 0, \widetilde{x}, \widetilde{y} \in (\mathfrak{C}^C)^2\} = \{D \in M(16, C) \mid {}^tD + D = 0\}$. We define a *C*-bilinear mapping $\times : (\mathfrak{C}^C \otimes \mathfrak{C}^C) \times (\mathfrak{C}^C \otimes \mathfrak{C}^C) \to \mathfrak{so}(16, C)$ by

$$(x_1 \otimes y_1, 0) \times (x_2 \otimes y_2, 0) = \begin{pmatrix} (y_1, y_2)\pi(x_1 \times x_2) & 0\\ 0 & (x_1, x_2)\pi(y_1 \times y_2) \end{pmatrix},$$

$$(0, z_1 \otimes u_1) \times (0, z_2 \otimes u_2) = \begin{pmatrix} (u_1, u_2)\nu^2(z_1 \times z_2) & 0\\ 0 & (z_1, z_2)\nu^2(u_1 \times u_2) \end{pmatrix},$$

$$(x \otimes y, 0) \times (0, z \otimes u) = \begin{pmatrix} 0 & \frac{1}{2}(x\overline{z})^t(y\overline{u})\\ -\frac{1}{2}(y\overline{u})^t(x\overline{z}) & 0 \end{pmatrix},$$

$$(0, z \otimes u) \times (x \otimes y, 0) = \begin{pmatrix} 0 & -\frac{1}{2}(x\overline{z})^t(y\overline{u})\\ \frac{1}{2}(y\overline{u})^t(x\overline{z}) & 0 \end{pmatrix}.$$

We define a representation ρ of Spin(16, C) on $(\mathfrak{C}^C \otimes \mathfrak{C}^C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C)$ (called the half-spinor representation of Spin(16, C)) by

$$\rho\left(\begin{pmatrix}a_1\\b_1\end{pmatrix}\begin{pmatrix}a_2\\b_2\end{pmatrix}\right)(x\otimes y,0) \\
= \left(-a_1(\overline{a}_2x)\otimes y - x\otimes b_1(\overline{b}_2y), \overline{a}_1x\otimes \overline{b}_2y - \overline{a}_2x\otimes \overline{b}_1y\right), \\
\rho\left(\begin{pmatrix}a_1\\b_1\end{pmatrix}\begin{pmatrix}a_2\\b_2\end{pmatrix}\right)(0, z\otimes u) \\
= \left(-a_1z\otimes b_2u + a_2z\otimes b_1u, -\overline{a}_1(a_2z)\otimes u - z\otimes \overline{b}_1(b_2u)\right), \\
\rho(\widetilde{a}_1\widetilde{a}_2\cdots\widetilde{a}_{2m-1}\widetilde{a}_{2m}) = \rho(\widetilde{a}_1\widetilde{a}_2)\cdots\rho(\widetilde{a}_{2m-1}\widetilde{a}_{2m}).$$

Then the differential representation $d\rho$ of $\mathfrak{so}(16, \mathbb{C})$ on $(\mathfrak{C}^{\mathbb{C}} \otimes \mathfrak{C}^{\mathbb{C}}) \oplus (\mathfrak{C}^{\mathbb{C}} \otimes \mathfrak{C}^{\mathbb{C}})$ has the following property:

$$d\rho\left(\begin{pmatrix} X & 0\\ 0 & Y \end{pmatrix}\right)(x \otimes y, z \otimes u) = \left((\mu X)x \otimes y + x \otimes (\mu Y)y, (\nu X)z \otimes u + z \otimes (\nu Y)u\right).$$

Under preliminaries above, we have the following proposition.

PROPOSITION 5.7.1 (GOMYO [2, Theorem 3.4])

In a 120 + 64 + 64 = 248 dimensional C-vector space

$$\widehat{\mathfrak{e}}_8{}^C = \mathfrak{so}(16, C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C),$$

we define a Lie bracket $[R_1, R_2]$ by

$$[(D_1, P_1), (D_2, P_2)] = ([D_1, D_2] - P_1 \times P_2, d\rho(D_1)P_2 - d\rho(D_2)P_1);$$

then $\widehat{\mathfrak{e}}_8^{\ C}$ becomes a simple C-Lie algebra.

This *C*-Lie algebra $\hat{\mathfrak{e}}_8^C$ has to be of type E_8^C . Let \hat{E}_8^C be the automorphism group of $\hat{\mathfrak{e}}_8^C$:

$$\widehat{E}_8^{\ C} = \left\{ \alpha \in \operatorname{Iso}_C(\widehat{\mathfrak{e}}_8^{\ C}) \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$$

Then $\hat{E}_8{}^C$ is also a simply connected complex Lie group of type $E_8{}^C$. So we use notations $\mathfrak{e}_8{}^C$ and $E_8{}^C$ instead of $\hat{\mathfrak{e}}_8{}^C$ and $\hat{E}_8{}^C$.

In the C-algebra $\mathfrak{e}_8^C = \mathfrak{so}(16, C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C)$, let

$$Z = \left(\operatorname{diag}(iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ), 0, 0\right), \qquad J = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$

Let G_{kl} be an element of $\mathfrak{so}(16, C) = \{D \in M(16, C) \mid {}^tD + D = 0\}$ such that $G_{kl} = E_{kl} - E_{lk}$ (where E_{kl} is a matrix of M(16, C) when the (k, l)-entry is 1 and the others are zero). Then $G_{kl}, 0 \leq k < l \leq 15$ is a C-basis of $\mathfrak{so}(16, C)$. The complex conjugation in \mathfrak{e}_8^C is usually denoted by τ :

$$au(D, x \otimes y, z \otimes u) = (au D, au x \otimes au y, au z \otimes au u).$$

THEOREM 5.7.2

The 3-graded decomposition of the Lie algebra $\mathfrak{e}_8^C = \mathfrak{so}(16, C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C) \oplus (\mathfrak{C}^C \otimes \mathfrak{C}^C),$

$$\mathfrak{e}_8^{\ C} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$$

with respect to ad Z, Z = (diag(iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ), 0, 0), is given by

$$\mathfrak{g}_{0} = \begin{cases} (G_{k,k+1},0,0), k = 0, 2, 4, \dots, 14, \\ (G_{k,k+j} + G_{k+1,k+1+j}, 0, 0), \\ k = 0, 2, 4, \dots, 14, j = k+2, k+4, \dots, 14, k, j \neq 8, \\ (G_{k,8} - G_{k+1,9}, 0, 0), k = 0, 2, 4, 6, G_{8,k} - G_{9,k+1}, k = 10, 12, 14, \\ (G_{k,k+1+j} - G_{k+1,k+j}, 0, 0), \\ k = 0, 2, 4, \dots, 14, j = k+2, k+4, \dots, 14, k, j \neq 8, \\ (G_{k,8} + G_{k+1,9}, 0, 0), k = 0, 2, 4, 6, G_{8,k} + G_{9,k+1}, k = 10, 12, 14 \end{cases}$$

$$64,$$

$$\mathfrak{g}_{-1} = \begin{cases} (0, (e_0 \otimes e_0 + e_1 \otimes e_1) - i(e_0 \otimes e_1 - e_1 \otimes e_0), 0), \\ (0, (e_1 \otimes e_k + e_0 \otimes e_{k+1}) - i(e_0 \otimes e_k - e_1 \otimes e_{k+1}), 0), \\ k = 2, 4, 6, \\ (0, (e_l \otimes e_0) + i(e_l \otimes e_1), 0), (0, (e_l \otimes e_k) - i(e_l \otimes e_{k+1}), 0), \\ k = 2, 4, 6, l = 2, 3, \dots, 7, \\ (0, 0, (e_0 \otimes e_0 + e_1 \otimes e_1) + i(e_0 \otimes e_1 - e_1 \otimes e_0)), \\ (0, 0, (e_k \otimes e_0 - e_{k+1} \otimes e_1) + (e_k \otimes e_1 + e_{k+1} \otimes e_0)), \\ k = 2, 4, 6, \\ (0, 0, (e_l \otimes e_0) + i(e_l \otimes e_1), (e_l \otimes e_k) - i(e_l \otimes e_{k+1})), \\ k = 2, 4, 6, l = 2, 3, \dots, 7 \end{cases}$$

$$\mathfrak{g}_{-2} = \begin{cases} (G_{k,l} - G_{k+1,l+1} + i(G_{k,l+1} + G_{k+1,l}), 0, 0), \\ k = 0, 2, \dots, 12, l = k + 2, k + 4, \dots, 14, k, l \neq 8 \\ (G_{k,8} - G_{k+1,9} - i(G_{k,9} + G_{k+1,8}), 0, 0), \\ k = 0, 2, \dots, 14, k \neq 8 \end{cases}$$

$$\mathfrak{g}_{-3} = \begin{cases} (0, (e_0 \otimes e_0 - e_1 \otimes e_1) + i(e_0 \otimes e_1 + e_1 \otimes e_0), 0), \\ (0, (e_0 \otimes e_k - e_0 \otimes e_{k+1}) - i(e_0 \otimes e_{k+1} + e_1 \otimes e_k), 0), \\ k = 2, 4, 6, \\ (0, 0, (e_0 \otimes e_0 - e_1 \otimes e_1) + i(e_0 \otimes e_1 + e_1 \otimes e_0), 0), \\ (0, 0, (e_k \otimes e_0 - e_1 \otimes e_1) + i(e_0 \otimes e_1 + e_1 \otimes e_0), 0), \\ k = 2, 4, 6, \end{cases}$$

$$\mathfrak{g}_{1} = \tau(\mathfrak{g}_{-1}), \qquad \mathfrak{g}_{2} = \tau(\mathfrak{g}_{-2}), \qquad \mathfrak{g}_{3} = \tau(\mathfrak{g}_{-3}). \end{cases}$$

Proof

Noting that

$$\begin{split} &\mu \big(i(G_{01} + G_{23} + G_{45} + G_{67}) \big) = 2iG_{01}, \\ &\mu \big(i(-G_{01} + G_{23} + G_{45} + G_{67}) \big) = i(G_{01} - G_{23} - G_{45} - G_{67}), \\ &\nu \big(i(G_{01} + G_{23} + G_{45} + G_{67}) \big) = i(G_{01} - G_{23} - G_{45} - G_{67}), \\ &\nu \big(i(-G_{01} + G_{23} + G_{45} + G_{67}) \big) = 2iG_{01}, \end{split}$$

we can prove this theorem by direct calculations.

We define a $C\text{-linear transformation }\varepsilon$ of ${\mathfrak{e}_8}^C$ by

$$\varepsilon(D, x \otimes y, z \otimes u) = (D, -x \otimes y, -z \otimes u).$$

Then $\varepsilon \in E_8{}^C$ and $\varepsilon^2 = 1$.

Now, for the characteristic element Z = (diag(iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ, iJ), 0, 0), we have the following proposition.

PROPOSITION 5.7.3

 $We\ have$

$$\exp\left(\frac{2\pi i}{2}\operatorname{ad} Z\right) = \varepsilon.$$

Proof

Since Z is a central element of $(\mathfrak{so}(16, C), 0, 0)$, the action of $\exp(\pi i \operatorname{ad} Z)$ on $(\mathfrak{so}(16, C), 0, 0)$ is trivial. Next,

$$i \operatorname{ad} Z(x \otimes y, 0) = \left(-\mu (G_{01} + G_{23} + G_{45} + G_{67})x \otimes y - x \times \mu (G_{01} + G_{23} + G_{45} + G_{67})y, 0\right)$$
$$= \left(-2G_{01}x \otimes y - x \otimes (G_{01} - G_{23} - G_{45} - G_{67})y, 0\right)$$
$$= \left(\operatorname{diag}(2J, 0, 0, 0)x \otimes y + x \otimes \operatorname{diag}(J, -J, -J, -J)y, 0\right).$$

Hence, for $t \in \mathbf{R}$, we have

$$(\exp(ti \operatorname{ad} Z))(x \otimes y, 0)$$

$$= (\operatorname{diag}(R(2t), E, E, E)x \otimes \operatorname{diag}(R(t), R(-t), R(-t), R(-t))y, 0),$$
where $R(t) = (\operatorname{cos} t - \operatorname{sin} t)$. Setting $t = \pi$, we have
$$(\exp(\pi i \operatorname{ad} Z))(x \otimes y, 0)$$

$$= (\operatorname{diag}(E, E, E, E)x \otimes \operatorname{diag}(-E, -E, -E, -E)y, 0)$$

$$= (x \otimes (-y), 0) = (-x \otimes y, 0).$$

Similarly, we obtain

$$(\exp(\pi i \operatorname{ad} Z))(0, z \otimes u) = (0, z \otimes (-u)) = (0, -z \otimes u).$$

Thus we have

$$(\exp(\pi i \operatorname{ad} Z))(D, x \otimes y, z \otimes u) = (D, -x \otimes y, -z \otimes u) = \varepsilon(D, x \otimes y, z \otimes u),$$

that is, $\exp((2\pi i/2) \operatorname{ad} Z) = \varepsilon$.

Set $z_2 = \exp((2\pi i/2) \operatorname{ad} Z) = \varepsilon$. Then since $(\mathfrak{e}_8^C)_{ev} = (\mathfrak{e}_8^C)^{z_2} = (\mathfrak{e}_8^C)^{\varepsilon}$, we determine the structure of the group

$$(E_8^{\ C})_{ev} = (E_8^{\ C})^{z_2} = (E_8^{\ C})^{\varepsilon}.$$

THEOREM 5.7.4 We have

$$(E_8{}^C)_{ev} \cong Ss(16, C).$$

Proof

We define a mapping
$$\varphi_{ev} : Spin(16, C) \to (E_8{}^C)^{\varepsilon} = (E_8{}^C)_0$$
 by
 $\varphi_{ev}(\widetilde{\alpha})(D, P) = (p(\widetilde{\alpha})Dp(\widetilde{\alpha})^{-1}, \rho(\widetilde{\alpha})P).$

Since $\varphi_{ev}(-1) = \varepsilon$, for $\widetilde{\alpha} \in Spin(16, C)$ we have $\varphi_{ev}(\widetilde{\alpha})\varepsilon = \varphi_{ev}(\widetilde{\alpha})\varphi_{ev}(-1) = \varphi_{ev}(\widetilde{\alpha}(-1)) = \varphi_{ev}((-1)\widetilde{\alpha}) = \varphi_{ev}(-1)\varphi_{ev}(\widetilde{\alpha}) = \varepsilon\varphi_{ev}(\widetilde{\alpha})$, that is, $\varphi(\widetilde{\alpha}) \in (E_8^{\ C})^{\varepsilon}$. Hence φ_{ev} is well defined. Since $(E_8^{\ C})^{\varepsilon}$ is connected and $\dim_C((\mathfrak{e}_8^{\ C})^{\varepsilon}) = \varepsilon$ $\dim_C((\mathfrak{e}_8^C)_{ev}) = 64 + 28 \times 2 \text{ (see Theorem 5.7.2)} = 120 = \dim_C(\mathfrak{spin}(16, C)),$ Ker φ_{ev} is discrete, so Ker φ_{ev} is contained in the center of Spin(16, C): Ker $\varphi_{ev} \subset z(Spin(16, C)) = \{1, -1, \widetilde{\zeta}, -\widetilde{\zeta}\}.$ However

$$\varphi_{ev}(1) = \varphi_{ev}(\widetilde{\zeta}) = 1$$
 and $\varphi_{ev}(-1) = \varphi_{ev}(-\widetilde{\zeta}) = \varepsilon_{ev}(-\widetilde{\zeta}) = \varepsilon_{ev}(-\widetilde{\zeta}$

so Ker $\varphi = \{1, \tilde{\zeta}\}$. Again, since $(E_8{}^C)^{\varepsilon}$ is connected and $\dim_C((\mathfrak{e}_8{}^C)^{\varepsilon}) = \dim_C(\mathfrak{spin}(16, C)), \varphi$ is surjective. Thus we have the isomorphism $(E_8{}^C)_{ev} = (E_8{}^C)^{\varepsilon} \cong Spin(16, C)/\{1, \tilde{\zeta}\} = Ss(16, C).$

Next, we define the semispinor group Ss(8,8). Let $I_8 = \begin{pmatrix} -E & 0 \\ 0 & E \end{pmatrix}$, $E \in M(8,C)$, and define Spin(8,8) by

$$Spin(8,8) = \left\{ \widetilde{\alpha} \in Spin(16,C) \mid (\tau I_8)\widetilde{\alpha} = \widetilde{\alpha} \right\},\$$

where τ is the complex conjugation in $Cl((\mathfrak{C}^C)^2)$. Then Spin(8,8) is a connected (but not simply connected) group, and Ss(8,8) is defined by

$$Ss(8,8) = Spin(8,8)/\{1,\zeta\}$$

which is a double-covering group of the identity-connected component group $SO(8,8)^0$ of $SO(8,8) = \{A \in SO(16,C) \mid \tau(I_8AI_8) = A\}.$

We define C-linear transformations ε_1 and ε_2 of \mathfrak{e}_8^C by

$$\varepsilon_1(D, x \otimes y, z \otimes u) = (I_8 D I_8, -x \otimes y, z \otimes u),$$

$$\varepsilon_2(D, x \otimes y, z \otimes u) = (I_8 D I_8, x \otimes y, -z \otimes u).$$

Then $\varepsilon_1, \varepsilon_2 \in E_8^{\ C}, \varepsilon_1^2 = \varepsilon_2^2 = 1$, and $\varepsilon, \varepsilon_1, \varepsilon_2$ commute with each other.

We find an *R*-Lie algebra of type $E_{8(8)}$. We define an *R*-Lie algebra \mathfrak{e}_8' by

 $\mathbf{e_8}' = \mathfrak{so}(8,8) \oplus (i\mathfrak{C} \otimes \mathfrak{C}) \oplus (\mathfrak{C} \otimes \mathfrak{C}) = (\mathbf{e_8}^C)^{\tau \varepsilon_1}$

with the Lie bracket the same as that of \mathfrak{e}_8^C .

LEMMA 5.7.5 (GOMYO [2, Proposition 3.5])

The Killing form B_8 of the Lie algebra $\mathfrak{e}_8{}^C$ is given by

$$B_8 \big((D_1, (x_1 \otimes y_1, z_1 \otimes u_1)), (D_2, (x_2 \otimes y_2, z_2 \otimes u_2)) \big) \\= 30 \operatorname{tr}(D_1 D_2) - 60 \big((x_1, x_2)(y_1, y_2) + (z_1, z_2)(u_1, u_2) \big).$$

PROPOSITION 5.7.6

We have that \mathfrak{e}_{8}' is an **R**-Lie algebra of type $E_{8(8)}$.

Proof

We find the signature of the Killing form $B_8' = B_8 | \mathfrak{e}_8'$ of \mathfrak{e}_8' . Decompose \mathfrak{e}_8' into eigenspaces relative to τ :

$$\mathbf{e_8}' = (\mathbf{e_8}')_\tau \oplus (\mathbf{e_8}')_{-\tau},$$

$$\begin{aligned} (\mathfrak{e}_8')_\tau &= \{ R \in \mathfrak{e}_8' \mid \tau R = R \} \\ &= \{ (D, 0, Q) \mid D \in \mathfrak{so}(8, 8), \tau D = D, Q \in \mathfrak{C} \otimes \mathfrak{C} \}, \\ (\mathfrak{e}_8')_{-\tau} &= \{ R \in \mathfrak{e}_8' \mid \tau R = -R \} \\ &= \{ (D, iP, 0) \mid D \in \mathfrak{so}(8, 8), \tau D = -D, P \in \mathfrak{C} \otimes \mathfrak{C} \}. \end{aligned}$$

Then, from Lemma 5.7.5, we see that the Killing form B_8' on $(\mathfrak{e}_8')_{\tau}$ is positive definite and B_8' on $(\mathfrak{e}_8')_{-\tau}$ is negative definite. Therefore the number of positive eigenvalues of B_8' is dim $((\mathfrak{e}_8')_{-\tau}) = 54 + 64 = 120$, and the number of negative eigenvalues of B_8' is dim $((\mathfrak{e}_8')_{-\tau}) = 64 + 64 = 128$. Therefore the signature of B_8' is 128 - 120 = 8. Hence the type of B_8' is $E_{8(8)}$.

Let E_8' be the automorphism group of \mathfrak{e}_8' :

 $E_8' = \left\{ \alpha \in \operatorname{Iso}_R(\mathfrak{e}_8') \mid \alpha[R_1, R_2] = [\alpha R_1, \alpha R_2] \right\}.$

Although we cannot give any explicit isomorphism between E_{8}' and $E_{8(8)}$ of Section 5.1, hereafter we denote \mathfrak{e}_{8}' by $\mathfrak{e}_{8(8)}$ and E_{8}' by $E_{8(8)}$.

PROPOSITION 5.7.7

The involution $\tau \varepsilon_1$ leaves $(\mathfrak{e}_8^C)_{ev}$ invariant.

Proof

We can easily check that $(\mathfrak{e}_8^C)_{ev} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_2$ of Theorem 5.7.2 is left invariant under the action of $\tau \varepsilon_1$ of $\mathfrak{so}(16, C)$. So we have this proposition.

From Proposition 5.7.7, we have $(\mathfrak{e}_{8(8)})_{ev} = (\mathfrak{e}_8^C)_{ev} \cap (\mathfrak{e}_8^C)^{\tau \varepsilon_1} = (\mathfrak{e}_8^C)^{\varepsilon} \cap (\mathfrak{e}_8^C)^{\tau \varepsilon_1}$. So we determine the structure of the group

$$(E_{8(8)})_{ev} = (E_8^{\ C})_{ev} \cap (E_8^{\ C})^{\tau \varepsilon_1} = (E_8^{\ C})^{\varepsilon} \cap (E_8^{\ C})^{\tau \varepsilon_1}.$$

THEOREM 5.7.8 We have

$$(E_{8(8)})_{ev} \cong Ss(8,8) \times \{1, J\varepsilon_2\}.$$

Proof

For $\alpha \in (E_{8(8)})_{ev} \subset (E_8{}^C)_{ev} = (E_8{}^C)^{\varepsilon}$, there exists $\widetilde{\alpha} \in Spin(16, C)$ such that $\alpha = \varphi_{ev}(\widetilde{\alpha})$ (see Theorem 5.7.5). From the condition $\tau \varepsilon_1 \alpha \varepsilon_1 \tau = \alpha$, that is, $\tau \varepsilon_1 \varphi_{ev}(\widetilde{\alpha}) \varepsilon_1 \tau = \varphi_{ev}(\widetilde{\alpha})$, we have $\varphi_{ev}(\tau(I_8\widetilde{\alpha})) = \varphi_{ev}(\widetilde{\alpha})$. Hence

(i)
$$(\tau I_8)\widetilde{\alpha} = \widetilde{\alpha}$$
 or (ii) $(\tau I_8)\widetilde{\alpha} = \widetilde{\zeta}\widetilde{\alpha}$.

Case (i). From the condition $(\tau I_8)\widetilde{\alpha} = \widetilde{\alpha}$, we have $\widetilde{\alpha} \in Spin(8,8)$. Case (ii). We easily obtain that $\widetilde{\alpha} = \widetilde{j}$ satisfies condition (ii), where

$$\widetilde{j} = \begin{pmatrix} \frac{1}{\sqrt{2}}e_0\\ \frac{1}{\sqrt{2}}e_0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}}e_1\\ \frac{1}{\sqrt{2}}e_1 \end{pmatrix} \cdots \begin{pmatrix} \frac{1}{\sqrt{2}}e_7\\ \frac{1}{\sqrt{2}}e_7 \end{pmatrix} \in Spin(16, C).$$

Here we define a transformation J of \mathfrak{e}_8^C by

$$J(D, x \otimes y, z \otimes u) = (J_8 D J_8^{-1}, y \otimes x, u \otimes z),$$

where $J_8 = \begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix}$, $E \in M(8, C)$. Then we have $\varphi_{ev}(\tilde{j}) = J\varepsilon_2$. Thus we have the isomorphism $(E_{8(8)})_0 = ((E_8{}^C)^{\tau\varepsilon_1})^{\varepsilon} \cong Ss(8, 8) \cup J\varepsilon_2(Ss(8, 8)) = Ss(8, 8) \times \{1, J\varepsilon_2\}$.

Acknowledgment. This article is closely connected with Gomyo [1], [2], so the authors wish to thank professor Satoshi Gomyo for his works.

References

- [1] S. Gomyo, Realization of maximal subgroups of rank 8 of simply connected compact simple Lie groups of type E₈, Tsukuba J. Math. **21** (1997), 595–616.
- [2] _____, Realizations of subgroups of type D_8 of connected exceptional simple Lie groups of type E_8 , Tsukuba J. Math. **23** (1999), 585–615.
- M. Hara, Real semisimple graded Lie algebras of the third kind (in Japanese), master's thesis, Shinshu University, Nagano, Japan, 2000.
- T. Miyashita and I. Yokota, 2-graded decompositions of exceptional Lie algebras g and group realizations of gev, go, III: G = E₈, Japan. J. Math. (N.S.) 26 (2000), 31–50.
- [5] _____, 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of \mathfrak{g}_{ev} , \mathfrak{g}_0 and \mathfrak{g}_{ed} , II: $G = E_7$, case 1, J. Math. Kyoto Univ. 46 (2006), 383–413; cases 2, 3, and 4 46 (2006), 805–832; case 5, 47 (2007), 121–128.
- [6] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, II: $G = E_7$, Tsukuba J. Math. **14** (1990), 379–404.
- [7] _____, 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$, I: $G = G_2, F_4, E_6$, Japan. J. Math. (N.S.) **24** (1998), 257–296; II: $G = E_7$, **25** (1999), 154–179.
- [8] _____, 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$ and \mathfrak{g}_{ed} , I: $G = G_2, F_4, E_6$, J. Math. Kyoto Univ. **41** (2001), 449–475.

Miyashita: Ueda-Higashi High School, Ueda City, Nagano 386-8683, Japan; anarchybin@gmail.com

Yokota: 339-5, Okada-Matsuoka, Matsumoto 390-0312, Japan