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Abstract In this article, we investigate the converging radius of the “generalized zeta
function,” which is, roughly speaking, the generating function of the number of effective
cycles. In Section 3, we give the explicit value of the converging radius when the codi-
mension of the cycles is 1. In Section 4, we deal with 1-dimensional cycles on a projective
space and give a lower bound of the convergent radius.

1. Introduction

Let X be a projective scheme defined over a finite base field Fq . The power series

ζ(X; t) := exp
( ∞∑

r=1

#X(Fqr )
tr

r

)

is the well-known zeta function of X . Many beautiful properties of the zeta
function are known, such as the analogue of the Riemann hypothesis, functional
equations, relations with the Betti numbers, and so on.

We can look at the zeta function in a slightly different way: It can be regarded
as a generating function of the numbers of zero-dimensional cycles: Let Nd(X) be
the number of effective zero-dimensional cycles Y defined over Fq with degY = d.

An easy calculation gives the next equation:

ζ(X; t) =
∞∑

d=0

Nd(X)td.

It might as well be natural to consider the generating function of the number of
higher-dimensional cycles.

DEFINITION 1.1

Let (X,H) be a Q-polarized quasi-projective scheme (i.e., H is a Q-ample line
bundle on X) of dimension n over a finite field Fq . Let us fix a compactification
(X̄, H̄) of (X,H).

Fix an integer l with 0 ≤ l ≤ n − 1. For any positive integer d ∈ Z>0, define
Gd(X,H, l;Fq) as the set of all effective l-dimensional cycles Y on X of degree d,
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defined over Fq ; that is, Y is an effective l-dimensional cycle on X̄ such that
degH̄ Y = d and every irreducible component of Y is not contained in X̄ \ X .

Also, define Nd(X,H, l;Fq) as the cardinal of Gd(X,H, l;Fq). Note that
Nd(X,H, l;Fq) is finite since the cycles are defined over the finite field, with the
degree bounded.

DEFINITION 1.2

Let (X,H) and l be as above. Set

Z(X,H, l; t) :=
∞∑

d=0

Nd(X,H, l;Fq)td
l+1 ∈ Z[[t]].

This is a generating function of Nd(X,H, l;Fq).
Define C(X,H, l;Fq) as

C(X,H, l;Fq) := limsup
d→∞

logq Nd(X,H, l;Fq)
dl+1

.

THEOREM 1.3 (MORIWAKI [5])

With the notation above, we have

0 < C(X,H, l;Fq) < ∞.

From Theorem 1.3, we see that Z(X,H, l; t) converges (in the complex analytic
sense) at the origin t = 0, with the convergence radius q−C(X,H,l;Fq).

When l = 0, we can easily see that Z(X,H,0; t) coincides with Weil’s zeta
function:

Z(X,H,0; t) = ζ(X; t).

Thus, if X is a smooth projective variety, we have C(X,H,0;Fq) = n via Weil
conjecture.

EXAMPLE 1.4

Let us calculate Nd(X,H,1;Fq) and Z(X,H,1; t) for (X,H) = (P2, O(1)). Since a
1-dimensional cycle is a Cartier divisor on P2, PicP2 = ZO(1), and h0(P2, O(d)) =
(1/2)(d + 1)(d + 2), we obtain

Nd

(
P2, O(1),1;Fq

)
=

q(1/2)(d+1)(d+2) − 1
q − 1

.

(For a further explanation of this calculation, see Section 3.) So we have

Z
(
P2, O(1),1; t

)
=

1
q − 1

∞∑
d=0

(q(1/2)(d+1)(d+2) − 1)td
2
.

From this formula, we can easily see that C(P2, O(1),1;Fq) = 1/2.

Although it is difficult to analyze Z(X,H, l; t) in general, we can calculate C(X,

H,dimX − 1;Fq) using asymptotic theories.
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Here is the main result of this article.

THEOREM 1.5 (CF. THEOREM 3.5)

Let (X,H) be a Q-polarized n-dimensional smooth projective variety over Fq.
Then

C(X,H,n − 1;Fq) =
1

n!(Hn)n−1
.

REMARK 1.6

When l ≤ dimX − 2, we do not have any good calculating method for Nd(X,H, l;
Fq). In fact, we cannot hope for a simple formula for C(X,H, l;Fq) like that in
the main theorem (see Remark 2.5).

Here we explain the strategy of the proof of the main theorem.
For simplicity, assume that X is smooth. Since 1-codimensional cycles (i.e.,

Weil divisors) are parametrized by complete linear systems of (effective) line
bundles, the problem is reduced to the evaluation of the maximum value of the
dimension of H0(X,L) when we increase the degree of the line bundle L. A rough
estimate is sufficient for our purpose.

In [7] we verified that the asymptotic behavior of the dimension of global
sections of a line bundle can be approximated by the volume function. The
volume function is a continuous, positive real-valued function on N1(X)R, naively
defined as

volX(L) := limsup
m→∞

h0(X,mL)
mn/n!

.

We also verified that Fujita’s approximation theorem also holds in positive char-
acteristics, which gives us the upper bound of the dimension of linear systems.

In this way, we can calculate the explicit value of C(X,H,n − 1;Fq), namely,
the growth of the number of 1-codimensional cycles. However, it becomes ex-
tremely difficult to calculate C(X,H, l;Fq) if the codimension is bigger than 1.
It is difficult even in the simplest case, that is, X = P3 and l = 1. In the rest
of this article we struggled to find the upper bound of C(P3, O(1),1;Fq). Yet it
is still unknown whether the result obtained in this article is the best possible.
The interesting thing is that, when the codimension is bigger than 1, the map
H �→ C(X,H, l;Fq) (regarded as a function on N1(X)R) seems to be a piecewise
analytic function on the ample cone, dividing the ample cone into several smaller
cones. Compare this with the case when the codimension is 1, in which case,
C(X,H,n − 1;Fq) is determined only by the self-intersection of H .

This article consists of four sections.
In Section 2, we discuss general properties of C(X,H, l;Fq). The results in

this chapter are used later, often without being noted. In Section 3, we prove
the main theorem explained above. In Section 4, we try to give a good upper
bound of C(P3, O(1),1;Fq).
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Notation and conventions
In this article, any scheme is separated and of finite type over its base field.
A variety is a geometrically integral scheme. We use Snapper’s definition of the
intersection theory (see [2]).

Since we work mainly on projective varieties, we use the notion of line bundles
and Cartier divisors interchangeably.

For a projective scheme X , we denote the Picard group of X by Pic(X),
the group of line bundles on X numerically equivalent to zero by Num(X), and
the Néron-Severi group of X by N1(X): N1(X) = Pic(X)/Num(X). The Q-
Néron-Severi group N1(X)Q (resp., N1(X)R) is defined by N1(X)Q = N1(X) ⊗Z Q

(resp., N1(X)R = N1(X) ⊗Z R), and ρ(X) := rankN1(X) is the Picard num-
ber of X , which is finite (see [3]). Similarly, we call the linear combination
of 1-codimensional subvarieties with rational (resp., real) coefficients “Q-divisor”
(resp., “R-divisor”). We sometimes use the term “Z-divisor” for the usual Cartier
divisor (i.e., with integral coefficients). Eff(X) ⊂ N1(X)R is the closure of the
convex cone spanned by the classes of effective Q-divisors. The elements in
Eff(X) are called “pseudoeffective” (see [4]).

We use the word “l-cycle” for the abbreviation of “l-(equi)dimensional cycle.”
If X is integral, then we denote the function field (or the constant sheaf associated
to the function field) by Rat(X).

2. Properties of C(X,H, l;Fq)

Throughout this section, (X,H) is a Q-polarized n-dimensional projective variety
over Fq .

DEFINITION 2.1

Define a positive integer e as

e = e(X,H, l;Fq)

:= min
{
a ∈ Z>0 | Nad(X,H, l;Fq) > 0 (∀d 
 0)

}
.

LEMMA 2.2

Let e be as above. There exists a positive integer c > 0 such that

Ned(X,H, l;Fq) ≤ Ne(d+r)(X,H, l;Fq)

for all r ≥ c.

Proof
There exists c such that Ner(X,H, l;Fq) > 0 for all r ≥ c. Choose Yr ∈ Ger(X,H,

l;Fq) for r ≥ c. There is an injective map

ϕr : Ged(X,H, l;Fq) ↪→ Ge(d+r)(X,H, l;Fq)

given by Y �→ Y + Yr. �
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PROPOSITION 2.3

For any positive integer s ∈ Z>0,

limsup
d→∞

logq Nsd(X,H, l;Fq)
(sd)l+1

= limsup
d→∞

logq Nd(X,H, l;Fq)
dl+1

.

Proof
It is clear that the right-hand side is not smaller than the left-hand side. Hence
it suffices to show

limsup
d→∞

logq Nsd(X,H, l;Fq)
(sd)l+1

≥ limsup
d→∞

logq Nd(X,H, l;Fq)
dl+1

.

For arbitrary small ε > 0, there exists a strictly increasing sequence d1, d2, . . . →
∞ such that

logq Nedi(X,H, l;Fq)
(edi)l+1

≥ C(X,H, l;Fq) − ε.

Fix c that satisfies the condition in Lemma 2.2. For each i, there exists a
positive integer c ≤ ∃ri ≤ c + s such that e(di + ri) is a multiple of s. Then, by
Lemma 2.2,

logq Ne(di+ri)(X,H, l;Fq)
(e(di + ri))l+1

≥
logq Nedi(X,H, l;Fq)

(edi)l+1
· (edi)l+1

(e(di + ri))l+1

≥
(
C(X,H, l;Fq) − ε

)
· (edi)l+1

(e(di + ri))l+1
.

Taking di → ∞, the last value converges to C(X,H, l;Fq) − ε. Taking ε → 0, we
obtain the result. �

COROLLARY 2.4

For any positive rational number a ∈ Q>0, we have

C(X,aH, l;Fq) =
1

al(l+1)
C(X,H, l;Fq).

Proof
We may assume that a is an integer. Using Proposition 2.3, we have

C(X,aH, l;Fq) = limsup
d→∞

logq Nd(X,aH, l;Fq)
dl+1

= limsup
d→∞

logq Nald(X,aH, l;Fq)
(ald)l+1

=
1

al(l+1)
limsup

d→∞

logq Nd(X,H, l;Fq)
dl+1

=
1

al(l+1)
C(X,H, l;Fq).

�
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REMARK 2.5

Corollary 2.4 says that C(X,H, l;Fq) is a homogeneous function on N1(X)Q.
In [5], the finiteness of C(X,H, l;Fq) is proven only for very ample H , but the
proposition says that this holds for any Q-ample H .

Also, note that Proposition 2.3 implies that C(X,H, l;Fq) is not a rational
function with respect to (Hn) if 1 ≤ l ≤ n − 2.

Now, we prepare some lemmas, which enable us to calculate C(X,H, l;Fq) some-
what more easily.

LEMMA 2.6

Fix a positive real number l. Let {αd}d=1,2,... be a sequence of positive real num-
bers, and assume that

α := limsup
d→∞

logαd

dl

is finite. Then

(2.1) limsup
d→∞

log(
∑

r≤d αr)
dl

= α.

Proof
It is sufficient to prove that the left-hand side of (2.1) is not bigger than α.
For any small real number ε > 0, there exists a positive integer N such that
logαd ≤ (α + ε)dl for all d ≥ N . Set C :=

∑
r<N αr. Then

limsup
d→∞

log
∑

r≤d αr

dl
≤ limsup

d→∞

log(C +
∑

N ≤r≤d e(α+ε)dl

)
dl

= limsup
d→∞

log(C + (d − N)e(α+ε)dl

)
dl

= limsup
d→∞

log(d − N) + (α + ε)dl

dl
.

Since l is positive, (log(d − N))/dl → 0 as d increases to infinity. Thus we
obtain the result. �

LEMMA 2.7

Fix a positive real number l > 0. Let {αd}d=1,2,... and {βd}d=1,2,... be two se-
quences of positive real numbers, and assume that

α = limsup
d→∞

logαd

dl
, β = limsup

d→∞

logβd

dl

are both finite. Then

(2.2) limsup
d→∞

log(αd + βd)
dl

= max{α,β}.
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Proof
We may assume that α ≤ β. It is sufficient to prove that the left-hand side
of (2.2) is not bigger than β. For any positive ε > 0,

logαd

dl
< α + ε,

logβd

dl
< β + ε

for sufficiently large d. Then

limsup
d→∞

log(αd + βd)
dl

≤ limsup
d→∞

log(edl(α+ε) + edl(β+ε))
dl

≤ limsup
d→∞

log 2edl(β+ε)

dl

= limsup
d→∞

( log 2
dl

+
dl(β + ε)

dl

)

= β + ε.

Taking ε → 0, we obtain the result. �

A similar argument shows that multiplication by a sequence of polynomial order
does not change the value of limsupd→∞(logαd)/dl. More precisely, we have the
following.

LEMMA 2.8

Fix a positive number l > 0. Let {αd}d=1,2,... and {βd}d=1,2,... be two sequences
of positive real numbers, and assume that βd = O(dn) for some n ∈ Z. Then

(2.3) limsup
d→∞

logαd

dl
= limsup

d→∞

logβdαd

dl
.

LEMMA 2.9

Let S be a set, and let deg : S → Z>0 be a map from S to the set of natural
numbers, such that Sd := deg−1(d) is a finite set for all d ∈ Z>0. Let M be the
free commutative monoid generated by S. Then we can extend the degree map to
a monoid homomorphism

deg : M → (Z≥0,+)

in a natural way. Set Md := deg−1(d) for d ∈ Z≥0. (This is a finite set.) If

α := limsup
d→∞

log#Sd

dl

is finite for a fixed constant l > 1, then

(2.4) limsup
d→∞

log#Md

dl
= α.
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Proof
It is sufficient to prove that the left-hand side of (2.4) is not bigger than α. For
any ε > 0, there exists a constant C such that

log#Sd < (α + ε)dl + C

for all d.
Since any element of M is a linear combination of elements of S, we have an

upper bound of the cardinal of Md:

#Md ≤
∑

(a1,...,ar)∈σ(d)

r∏
i=1

#Sai .

Here σ(d) is the set of partitions of d; that is, (a1, . . . , ar) ∈ σ(d) means 1 ≤ a1 ≤
· · · ≤ ar and

∑r
i=1 ar = d. Since the number of partition is less than 2d,

#Md ≤ 2d max
(a1,...,ar)∈σ(d)

r∏
i=1

#Sai .

Hence,

limsup
d→∞

log#Md

dl
≤ limsup

d

d log 2 + logmax(a1,...,ar)∈σ(d)

∏r
i=1 #Sai

dl

= limsup
d

max(a1,...,ar)

∑r
i=1 log#Sai

dl

≤ limsup
d

max(a1,...,ar)((α + ε)
∑

i d
l + rC)

dl

≤ α + ε.

Taking ε → 0, we obtain the result. �

REMARK 2.10

If we define Ñd(X,H, l;Fq) as the number of effective l-cycles Y on X defined
over Fq , with degH Y ≤ d, and

C̃(X,H, l;Fq) := limsup
d→∞

logq Ñd(X,H, l;Fq)
dl+1

,

then we have C̃(X,H, l;Fq) = C(X,H, l;Fq). This follows immediately from
Lemma 2.6.

PROPOSITION 2.11

Define Gint
d (X,H, l;Fq) as the set of l-dimensional integral subschemes Y of X,

defined over Fq, with degH Y = d, and N int
d (X,H, l;Fq) as the cardinal of Gint

d (X,

H, l;Fq).
Also, set

C int(X,H, l;Fq) := limsup
d→∞

logq N int
d (X,H, l;Fq)

dl+1
.

Then for l ≥ 1, we have C(X,H, l;Fq) = C int(X,H, l;Fq).
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Proof
This follows immediately from Lemma 2.9. �

PROPOSITION 2.12

Let Z ⊂ X be a closed subscheme of X, defined over Fq. Set U := X \ Z. We fix
the compactification (X,H) of (U,H|U ). Then we have

C(X,H, l;Fq) = max
{
C(U,H|U , l;Fq),C(Z,H|Z , l;Fq)

}
.

Proof
Since C(X,H, l;Fq) = C int(X,H, l;Fq) and Gint

d (X,H, l;Fq) = Gint
d (U,H|U , l;

Fq) ∪ Gint
d (Z,H|Z , l;Fq), the result follows from Lemma 2.7. �

3. The value of C(X,H,n − 1;Fq)

Throughout this section, X is a projective variety, unless otherwise stated. In
this section, we give the precise value of C(X,H,n − 1;Fq). First, we give the
lower bound.

LEMMA 3.1

Let D be a Cartier divisor on X. Then, the number of effective divisors linearly
equivalent to D defined over Fq is

qh0(X,O(D)) − 1
q − 1

.

This holds also for any Weil divisor D if X is normal.

Proof
|D| has a natural structure of the set of closed points of the projective space
P := P

(
H0(X, O(D))

)
, and divisors defined over Fq correspond to Fq-rational

points of P. Thus, the number of divisors linearly equivalent to D (these are all
Cartier) is

#P(Fq) =
qh0(X,O(D)) − 1

q − 1
.

The second statement is also proven by a similar argument (see [7]). �

PROPOSITION 3.2

We have the following lower bound of C(X,H,n − 1;Fq):

C(X,H,n − 1;Fq) ≥ 1
n!(Hn)n−1

.

Proof
By multiplying H by a sufficiently big positive integer and applying Corollary 2.4,
we may assume that H is an ample line bundle defined over Fq . Then

Gd(Hn)(X,H,n − 1;Fq) ⊃ |dH|(Fq),
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where |dH|(Fq) is the set of divisors linearly equivalent to dH , defined over Fq .
Using Lemma 3.1, we see that

lim
d→∞

logq #|dH|(Fq)
h0(X,dH)

= 1.

Combining all these, we have

C(X,H,n − 1;Fq) = limsup
d→∞

logq Nd(X,H,n − 1;Fq)
dn

= limsup
d→∞

logq Nd(Hn)(X,H,n − 1;Fq)
(d(Hn))n

≥ limsup
d→∞

logq #|dH|(Fq)
(d(Hn))n

= limsup
d→∞

h0(X,dH)
(d(Hn))n

=
volX(H)
n!(Hn)n

=
1

n!(Hn)n−1
. �

Next, we show that the lower bound of C(X,H,n − 1;Fq) given above is, in fact,
also the upper bound.

LEMMA 3.3

We have that

#
{
δ ∈ N1(X) ∩ Eff(X) | degH δ = d

}
is at most polynomial order with respect to d.

Proof
Induce an ordinary topology and a measure on the finite-dimensional vector space
N1(X)R. Kleiman’s criterion of ampleness implies that Eff(X) ∩ {degH = 1} is
compact. So the measure (as a hyperplane) of Eff(X) ∩ {degH = d} increases at
most polynomial order with respect to d. Since N1(X)Z ⊂ N1(X)R is a discrete
lattice, the result follows. �

LEMMA 3.4

The number of numerically trivial line bundles on X, defined over Fq, is finite.

Proof
The set Num(X) of numerically trivial line bundles is a bounded family; that
is, there exists an algebraic scheme T of finite type over Fq and a line bundle L

on X × T such that for any numerically trivial line bundle M ∈ Num(X), there
exists a geometric point t ∈ T such that M � L|X× {t}. Moreover, if M is defined
over Fq , t can be taken as an Fq-rational point of T .
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T is of finite type; hence the number of its Fq-rational points is finite. There-
fore, the number of numerically trivial line bundles defined over Fq is finite (see
[6] for further explanations). �

THEOREM 3.5 (MAIN THEOREM)

If (X,H) is a Q-polarized smooth projective variety defined over Fq of dimen-
sion n, we have

C(X,H,n − 1;Fq) =
1

n!(Hn)n−1
.

Proof
It is already proven in Proposition 3.2 that the left-hand side is not smaller than
the right-hand side. Hence, it is sufficient to show

C(X,H,n − 1;Fq) ≤ 1
n!(Hn)n−1

.

From Lemma 3.1, we have the following:

Nd(X,H,n − 1;Fq) =
∑

δ∈N1(X)

degH δ=d

∑
L∈[δ]

qh0(X,L) − 1
q − 1

.

Here L runs over all the line bundles in the class δ. By Lemmas 2.8, 3.3, and 3.4,
this yields

C(X,H,n − 1;Fq) ≤ limsup
d→∞

max
δ∈N1(X)∩Eff(X)

degH δ=d

h0(δ)
dn

,

where

h0(δ) := max
{
h0(X,L) | L ∈ [δ]

}
.

Note that this value is finite via the semicontinuity theorem since Num(X) is a
bounded family.

Further, [7, Theorem 3.2] shows that

limsup
d→∞

max
δ∈N1(X)∩Eff(X)

degH δ=d

h0(δ)
dn

≤ max
δ∈N1(X)R

degH δ=1

volX(δ)
n!

.

Using [7, Corollary 2.19], we have

max
δ∈N1(X)R

degH δ=1

volX(δ)
n!

≤ 1
n!(Hn)n−1

.

Combining all of these, we obtain the result. �

Note that C(X,H,n − 1;Fq) depends only on (Hn), and independently of q, the
order of the base field. In other cases, such as l ≤ n − 2, this is not assured, but
it is meaningful to consider the next value.
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Define

C̄(X,H, l) := limsup
r→∞

C(X,H, l;Fqr).

Note that this invariant is not assured to be finite for l ≤ n − 2 at the present.

PROPOSITION 3.6

Let (X,H) be a Q-polarized normal n-dimensional projective variety defined
over Fq. Suppose that there exists resolution of singularities of X; that is, sup-
pose that there exists a projective birational morphism π : X ′ → X from a smooth
variety. Then we have

C̄(X,H,n − 1) =
1

n!(Hn)n−1
.

Here it is convenient to use C̄ because it allows us to change the base field.

Proof
Since π∗H is nef and big, there is an effective divisor D such that Hε := π∗H −
εD ∈ N1(X ′)R is ample for any sufficiently small number ε. We have (Hn−1

ε ·
π∗Y ) ≤ (Hn−1 · Y ) for any effective Weil divisor Y on X . Here π∗Y is defined
merely by the pullback of ideals corresponding to the irreducible components
of Y . The closed subscheme π∗Y may have some components of codimension
bigger than 1, but we may ignore them since it does not affect the intersection
number.

So we have the injection G̃d(X ′,H,n − 1;Fq) ↪→ G̃d(X,Hε, n − 1;Fq) via Y �→
π∗Y , which shows that

Ñd(X,H,n − 1;Fq) ≤ Ñd(X ′,Hε, n − 1;Fq).

This implies

C(X,H,n − 1;Fq) ≤ C(X ′,Hε, n − 1;Fq) ≤ 1
n!(Hn

ε )n−1
.

The right-hand side converges to 1/(n!(Hn)n−1) as we take ε → 0.
Note that in the above proof, we did not care whether the resolution π is

defined over Fq or not; We may change the base field and resolve this problem if
necessary. �

COROLLARY 3.7

If (X,H) is a Q-polarized projective surface (or a 3-fold with characteristic not
less than 5) defined over Fq, then we have

C̄(X,H,n − 1) =
1

n!(Hn)n−1
.

Proof
The desingularization theorem exists for surfaces (and 3-folds, when the charac-
teristic is not less than 5; see [1]). �
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COROLLARY 3.8

Let (X,H) be a Q-polarized projective scheme of dimension n, defined over Fq.
For any closed smooth (l +1)-dimensional subvariety Z defined over Fq, we have

C(X,H, l;Fq) ≥ 1
(l + 1)!(degH Z)l

.

Proof
This follows from the fact that Gd(Z,H|Z , l;Fq) ⊂ Gd(X,H, l;Fq). �

COROLLARY 3.9

Let (X,H) be a Q-polarized smooth projective variety of dimension n > 0, defined
over Fq. Then C̄(X,H, l) > 0 for any 0 ≤ l ≤ n − 1.

Proof
We can obtain a smooth (l+1)-dimensional subvariety of X by applying Bertini’s
theorem inductively. Since we have a positive lower bound of C(X,H, l;Fqr)
which is independent of r, the result follows. �

4. The Value of C(P3, O(1),1;Fq)

The aim of this section is to obtain the upper bound of C(P3, O(1),1;Fq). Here
we explain the outline of the proof. We cannot calculate the value directly, so
we replace P3 by P2 × P1 and consider the upper bound of C(P2 × P1,H,1;Fq)
instead. Then we compare the number of cycles on the above two varieties by a
fixed birational map.

LEMMA 4.1

Let X and Y be a projective variety over an algebraically closed field k, and let J

be the Picard scheme of Y . Then we have a (noncanonical) isomorphism

Pic(X × Y ) � Pic(X) ⊕ Pic(Y ) ⊕ Hom(X,J).

In particular,

Pic(X × Pn) = Pic(X) ⊕ ZOPn(1).

Proof
Fix closed points x0 ∈ X and y0 ∈ Y . Let p and q be the first and the second
projection of X × Y , respectively. Define a map

F : Pic(X × Y ) → Pic(X) ⊕ Pic(Y ) ⊕ Hom(X,J)

as follows. Let L1 := L|X× {y0} and L2 := L| {x0} ×Y . Regard L1 (resp., L2) as a
line bundle on X (resp., Y ). Set M := L ⊗ p∗L−1

1 ⊗ q∗L−1
2 . Since M | {x0} ×Y is

trivial, M | {x} ×Y is algebraically equivalent to zero for all closed points x ∈ X .
Thus, from the universal property of the Jacobian variety, we obtain a unique
map ϕ : X → J which satisfies M � (ϕ × IdY )∗ E , where E ∈ Pic(J × Y ) is the
universal bundle. Set F (L) := (L1,L2, ϕ).
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On the other hand, define

G : Pic(X) ⊕ Pic(Y ) ⊕ Hom(X,J) → Pic(X × Y )

by G(L1,L2, ϕ) := p∗L1 ⊗ q∗L2 ⊗ (ϕ × IdY )∗ E . It is easy to see that G gives the
inverse of F . �

PROPOSITION 4.2

Let B be a smooth projective surface defined over Fq, and let X := B × P1.
Let p and q be the first and the second projection from X, respectively. Let
H := p∗H1 + aq∗ O(1) be an Q-ample line bundle on X, where H1 is a Q-ample
line bundle on B, and a ∈ Q is a positive rational number. Then we have

C(X,H,1;Fq) ≤ max
{ (1 + c+)

2(H2
1 )

,
1

4aμ

}
,

where

c+ = c+(Fq) := 2 logq(
√

q + 1)

and μ = μ(H1;Fq) is the minimum value of the degree (with respect to H1) of a
1-dimensional integral subscheme of B defined over Fq.

Proof
It is sufficient to show that C int(X,H,1;Fq) is not bigger than the right-hand
side.

We need some notation. For a 1-dimensional integral subscheme C of B

defined over Fq , let SC := C × P1 be the inverse image of C via p. Set

Gd(C) :=
{
D ∈ Gd(X,H,1;Fq)

∣∣ Supp(D) ⊂ SC

}
,

Gint
d (C) :=

{
D ∈ Gint

d (X,H,1;Fq)
∣∣ Supp(D) ⊂ SC

}
.

Then we see that

Gint
d (X,H,1;Fq) ⊂

⋃
C

Gd(C).

Moreover, if D ∈ Gd(C) and p(Supp(D)) = C, then it is obvious that degH D ≥
degH1

C. Hence,

Gint
d (X,H,1;Fq) =

⋃
C;degH1

C≤d

Gd(C).

In order to evaluate #Gd(X,H,1;Fq), we must
(i) count the number of C’s the degree of which is not greater than d,
(ii) evaluate #Gd(C) for each C.

CLAIM 4.3

Define Te as the set of 1-dimensional integral subschemes C of B, defined over Fq

with degH1
C = e. Then for any small ε > 0, there exists a constant c0 such that,
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for any e,

logq #Te ≤ e2
( 1

2(H2
1 )

+ ε
)

+ c0.

This follows from the fact that

C(B,H1,1;Fq) =
1

2(H2
1 )

.

(See Main Theorem 3.5.)

CLAIM 4.4

Let C ∈ Te. Then for any small ε > 0,

logq #Gd(C) ≤ max
e≤d

f(e, d),

where

f(e, d) = e2
( c+

2(H2
1 )

+ ε
)

+
d2

4ae
+ O(d).

Proof
First, we prove the claim when C is geometrically integral and nonsingular.
(This is the essential case.) Then S = SC = C × P1 is also nonsingular; hence
any element of Gd(C) is a Cartier divisor of S.

Since Pic(S) = Pic(C) ⊕ Pic(P1), any line bundle L on S can be described as
L = p∗

1M + p∗
2N , where M and N are line bundles on C, P1, respectively. Let x

and y be the degree of M , N , respectively. Suppose that degH L = d. Then we
have d = ax + ey, and Künneth’s formula implies

h0(S,L) = h0(C,M)h0(P1,N)

≤ (x + 1)(y + 1)

= xy + x + y + 1(4.1)

≤ 1
ae

(aexy) + ax + ey + 1

≤ 1
4ae

d2 + d + 1.

Next, we show that

logq #
{
L ∈ Pic(S)

∣∣ L is defined over Fq and degH L = d
}

(4.2)
≤ 1

2
c+e2 + O(e).

Since the number of effective classes ξ ∈ N1(S) which satisfy degH ξ = d is at
most linear order with respect to d, we may ignore it.

We need to know the upper bound of the number of line bundles numerically
equivalent to zero. Num(S) is equal to the Jacobian variety Jac(C) of C, and
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the analogue of the Riemann hypothesis shows that

#Jac(C)(Fq) =
2g∏

i=1

(ωi − 1),

where g = g(C) is the genus of C, and |ωi| =
√

q for all i. Let K be the canonical
divisor of B. There exists r > 0 such that rH1 − K is ample. The adjunction
formula yields

2g = 2 + (C + K) · C

≤ 2 +
e2

(H2
1 )

+ (K · C)

≤ 2 +
e2

(H2
1 )

+ (rH1 · C)

=
e2

(H2
1 )

+ O(e).

Hence,

logq #Jac(C)(Fq) ≤ c+

2(H2
1 )

e2 + O(e),

from which (4.2) follows. Combining with (4.1), we obtain

#Gint
d (X,H,1;Fq) ≤

∑
e≤d

∑
C:integral

degH1
C=e

#Gd(C) ≤
∑
e≤d

#Te · max
C;degH1

=e
#Gd(C).

Since

logq #Gd(C) ≤ d2

4ae
+

c+

2(H2
1 )

e2 + O(d),

we obtain the result.
Second, we prove the claim when C is geometrically integral but singular.
Let Z ⊂ S be the fiber of the singular locus of C, and let π : C̃ → C be the

normalization of C. Note that the genus of C̃ is less than that of C. Set SC̃ := C̃ ×
P1 and H ′ := π∗H|S . Note that since C̃ → C is finite, H ′ is also ample. Let G̃d(C)
be the set of effective 1-cycles on SC̃ defined over Fq satisfying degH′ D = d.

Also, let Ggen
d (C) be the subset of Gd(C), consisting of prime divisors whose

support is not contained in Z. We count only the cardinals of Ggen
d (C) since the

number of prime divisors contained in Z is comparatively small.
The natural map π : SC̃ → SC induces an injective map

π∗ : Ggen
d (C) → G̃d(C)

via D �→ π−1(D ∩ (SC \ Z)). Then, an argument similar to that above shows
that

logq #G̃d(C) ≤ 1
4ae

d2 +
c+

2(H2
1 )

e2 + O(d).
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Finally, we see the case when C is not geometrically integral. There exists
a sufficiently large positive integer r ∈ Z>0 such that C ×Fq Fqr decomposes into
geometrically integral components:

C ×Fq Fqr = C1 ∪ · · · ∪ Cr.

Note that C ×Fq Fqr is reduced since a finite field is perfect. The Galois action
maps Ci’s transitively. Note that degH C1 = e/r. Set S1 := C1 × P1. Then, there
is a one-to-one correspondence

Gd(C) 1:1↔ Gd/r(C1;Fqr ),

where Gd/r(C1;Fqr) is the set of effective 1-cycles D on S1 defined over Fqr with
degH D = d/r. Hence,

logq #Gd(C) = r logqr #Gd/r(C1;Fqr)

≤ r

(
c+

2
e2

r2
+

d2

4r2ae
+ O

(d

r

))

=
1
r

(
c+e2

2
+

d2

4rae
+ O

(d

r

))
.

The above claim is thus proved. �

From the above claim, we have

C(X,H,1;Fq) ≤ limsup
d

1
d2

max
e≤d

(
e2

(1 + c+

2(H2
1 )

+ ε
)

+
d2

4ae

)
.

Note that we ignored the terms of lower degree, since they converge to zero when
divided by d2. It is easy to see that

Md,e := e2
(1 + c+

2(H2
1 )

+ ε
)

+
d2

4ae

takes the maximum value only when e takes the smallest or the largest value.
The largest value of e is d, and Md,d/d2 → 1+c+

2(H2
1 )

+ ε as d → ∞. The smallest
value of e is μ = μ(H1;Fq), and Md,μ/d2 → 1

4aμ as d → ∞. Thus, we have proved
the theorem.

We have used Landau’s O in the formulas. Note that these values behave
properly, so that they will not disturb our argument when taking limits, and so
on. �

COROLLARY 4.5

Let (X,H) be as above. Then, C̄(X,H,1) is finite, and

C̄(X,H,1) ≤ max
{ 1

(H2
1 )

,
1

4aμ

}
.

In particular, if (H2
1 ) ≥ 4aμ, then

C̄(X,H,1) =
1

4aμ
.
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Proof
The first statement follows immediately from the fact that

lim
r→∞

c+(Fqr ) = 1.

The second statement follows from Corollary 3.8. �

EXAMPLE 4.6

Let B := P2 and H := ap∗ O(1) + bq∗ O(1). We have H1 = aO(1), so μ(H1) = a.
Hence,

C(X,H,1;Fq) ≤ max
{1 + c+

2a2
,

1
4ab

}

and

C̄(X,H,1) ≤ max
{ 1

a2
,

1
4ab

}
.

EXAMPLE 4.7

Let X := P1 × P1 × P1, and let pi be the ith projection (i = 1,2,3). Set H :=
ap∗

1O(1) + bp∗
2O(1) + cp∗

3O(1). We may assume that a ≥ b ≥ c. Let B be the
image of p1 × p2. (Hence, H1 = ap∗

1O(1) + bp∗
2O(1).)

We have μ(H1) = b, so we obtain

C(X,H,1;Fq) ≤ max
{1 + c+

4ab
,

1
4bc

}
.

In particular,

C̄(X,H,1) ≤ max
{ 1

2ab
,

1
4bc

}
.

By symmetry, there are other ways of defining B, but the others give larger upper
bounds.

CONJECTURE 4.8

We hope that the inequality of Corollary 4.5 is in fact, equal:

C̄(X,H,1) = max
{ 1

(H2
1 )

,
1

4aμ

}
.

We still have a gap between the upper bound and the lower bound at the present;
the upper bound is at most the double of the lower bound. This gap arises
essentially from the fact that the Jacobians we must look at are not only one but
infinitely many.

Also, we must be careful at several points when calculating the bounds more
precisely; for example, we need the next statement to be proven to fill the gap.

CONJECTURE 4.9

Let (B,H) be a Q-polarized smooth projective surface defined over Fq. Let Me be
the number of nonsingular curves on B defined over Fq, which satisfies degH = e.
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Then

limsup
e→∞

logq Me

e2
=

1
2(H2)

.

Let A be a very ample divisor on B. According to Bertini’s theorem, most of the
hypersection is reduced and nonsingular; that is, there is a Zariski open subset
U ⊂ |A| (regarding |A| as a projective space) such that any section in U is a
nonsingular curve. The above conjecture is asking whether the number of the
Fq-rational points in U grows properly if we increase the degree e. In other
words, are most of the elements of Gd(B,H,1;Fq) nonsingular?

COROLLARY 4.10

Let ω := 1+2 logq(
√

q+1)

2 . Then we have

C
(
P3, O(1),1;Fq

)
≤ (4ω + 1)2

16ω
.

In particular,

C̄
(
P3, O(1),1

)
≤ 25

16
.

Proof
Define a rational map

π : P3 → P2 × P1,

(x : y : z : w) �→
(
(x : y : w), (z : w)

)
.

The indeterminancy locus of this map is

{w = z = 0} ∪ {w = x = y = 0}.

For any Y ∈ Gint
d (P3, O(1),1;Fq) which is not contained in the plane Z = {w = 0}

(π is injective outside Z), consider the strict transform Ỹ of Y by π. Obviously,
the map Y �→ Ỹ is injective. Set

a :=
4ω

4ω + 1
, b :=

1
4ω + 1

,

and fix an ample line bundle H := aA + bB on P2 × P1, A := p∗
1OP2(1), and

B := p∗
2OP1(1). Since a+ b = 1, and A · Ỹ = B · Ỹ = degY , we may conclude that

C
(
P3, O(1),1;Fq

)
≤ C(P2 × P1,H,1;Fq)

≤ (4ω + 1)2

16ω
.

Note that we ignored the effective 1-cycles which are included in the plane Z =
{w = 0} because C(Z, O(1)|Z ,1;Fq) = 1/2 is smaller than the above upper bound.
Also, note that the above a, b give the smallest upper bound in this approach.
The two constants a and b are not rational numbers, but suitable approximations
of a and b by rational numbers give the same result. It is not the essential part
of the proof, so we omitted it. �
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REMARK 4.11

We can also consider the birational map

P3 → P1 × P1 × P1

and calculate C(P3, O(1),1;Fq). But this gives a bigger upper bound.
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