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O. Zariski® has clarified algebraically the proof of the so-called
theorem of Bertini concerning the reducible linear systems on
algebraic varieties in the projective space over the ground field of
characteristic zero. We wish to investigate it over general ground
field of any characteristic.

I express my sincere gratitude to Prof. Y. Akizuki for his
kind directions and important advices throughout this work. I
also thank to Dr. K. Okugawa for his kind criticisms.

Following A. Weil®, we fix once for all the universal domain
9, of the given characteristic p. We understand under the “ex-
tension of a field £” the subfield of £ which is finitely generated
over k by a set of quantities.

§ I Preliminaries (I)

Let a field 3} be an extension of a field k; the derivations of
>} over k form a 3} -module and we denote it by D(3]/k). Since
> is an extension of k, the rank of D(3/k) with respect to >
is finite.

Let ¥~ be a Subvariety of a projective n-space (F-Appendix
I) and assume that it is everywhere relatively normal with
reference to some field of definition & for V. (F-Appendix II).
Let V., be a representative of ¥ and ‘M or M, be a generic Point
of V or V, respectively over k. Then it holds 3}=k(M)=k(M,)
and the ring A M.] is integrally closed in 3. It is well-known that
the (r—1)-dimensional irreducible Subvariety of } over k£ (prime

1) O. Zariski. Pencils on an algebraic variety and a new proof of a theorem of
Bertini. Trans. Amer. Math. Soc. 1941. We indicate this by (Z).
2) A. Weil. Foundations of algebraic geometry. We indicate this by F-.
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rational F-divisor over k)® defines in 3} a prime divisor of the
first kind with respect to some representative V,, corresponding
to the discrete (r—1)-dimensional valuation of rank 1 in 3.

Conversely, to any prime divisor of the first kind with respect
to V,, there corresponds the uniquely determined prime rational ¥-
divisor 7, called the center of the valuation defined by that prime
divisor.

We fix one of.the representatives, say V.. Let P be a field
such that we have 3 DP Dk, dim, P=1 and (u)(14LiL r—1:
1274 #n) be (r—1)n independent variables over the field 37, and
put ;.= 3 uP¢,. (1 £LiLr—1), where (§,...,%..) is a generic
point of %/::*GT hen (#'®,74) is a set of algebraically independent
variables over P. The field 3¥=3(«*) is of dimension 1 over
the field ky=k(®'®,nw) and the field P*=P(u'*, 5,) is also of
dimension 1 over k¥. Therefore 3!(#)/P; is an algebraic
extension (cf. (Z) §3). Heretofore, we omit to write the suffix «.

The prime divisor p of P over k is uniquely extended to the .

prime divisor p* of P* over k*, under the conditions that it does
map each #, » into itself and so the p*-residues of them are
algebraically independent over the residue field of .

If p*zglg*ill“. khm in Z*,

then p =P P in X,

where P induces in X the prime divisor $; and . is a prime
divisor of the first kind with respect to some V,. Thus we find
the mode of the decomposition of p* into the power product of
By is independent of the choice of the representative V.. (cf. (Z),
§4, §5, and §6).

By the degree of p, we understand the degree [d(u,7) : k*]
where 4 is the residue field of p. 4J(u,7) is nothing but the
residue field of p*, since p* satisfies the above mentioned conditions.

By the degree of $3;, we understand the degree [J¥: k*], where

4¥ is the residue field of BF. Since the prime divisor we consider
is of the first kind, the following formula holds:

(1) [3*:P*] deg (p) =31 h: deg (B)®

3) We include in the F-cycles, multiple components.
4) By deg (p) or deg (P), we mean the degree of p or P respectively.
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§ 2. Preliminaries (II).

We find in Weil’'s book the following

LEMMA 1. Let a field 3} be an extension of a field k. If rank
(D(X/k)) =7, then we can find elements u,,...,u, from >} in such
a way that 3/k(u) is separably algebraic. Moveover, 7 is the minimal
number having this property. ‘

LEMMA 2. Let A=Fk(x) be an extension of a field k. Then ij
ued, Tk(x7), there exists at least one dervivation D in D(A/k) such
that Du=0®. And rank (D(A/k)) =log,[1: k(x")], here we assume
that the characteristic p of k is different from zevo.

THEOREM 2. 1 If a field 3 is an extension of dimension r
over a field k, then it is separably genevated over k if and only if

rank (D2/k)) =7.

REMARK The first part of Lemma 2 does hold even when 4
is not finitely generated over k. We can prove it by using Zorn’s
lemma in the same way as in the ordinary case.

THEOREM 2. 2 Let a field Y)=k(M) be a separably generated
extension of a field k and P an intermediary field between ) and
k, having dimension s over k. Then >)/k is separably generated if
and only if [P(M?) : k(M")]=p’. Here we assume that the chara-
cteristic p of k is different from zevo.

ProoF. Putrarnk ((2}/P))=t Then by Lemma2, [3: P(M?)]
=p' and [X:k(MP)]=p" where r=dim, 3). Since P contains k&,
we have

[P(M?) : k(M) ]=p"".

This proves that t=rank(D(3/P))=r—s and [P(M") : k(M) ]=p’
imply each other. Our theorem is thereby proved.

CHROLLARY 1. Let a field S}=k(M) be a separably generated
extension of a field k and P an intermediary field between 3 and
k, having dimension 1 over k. Then 3)/P is separably generated
if and only if P ¢ k(M?)

PrOOF. By the above theorem, /P is separably generated
if and only if

(P(M?) : k(M) ]=p.

5) This was tor the first time obtained by Baer. Cf. R. Baer. Alg:braische
Theorie der differentiierbaren Funktionenkorper. I. Sitz. Heid. 1927.
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If Pc k(M?), P(M") C k(M?) and hence P(M")=FEk(M") since P
contains k. Therefore 3}/k is not separably generated. If P ¢
k(M?), P(M?) contains k(M”) properly, and hence

[P(M?) : k(M) ]=p™ with m = 1.

But, by Lemma 1, [X:P(M?)]=p~", where r=dim, Y. This
implies that we have
[P(M) : k(M?)] < p.

This completes our proof.

COROLLARY 2.9 Let a field >=k(M) be an extension of a
perfect field k and P an intermediary field between Y and k, having
dimension 1 over k such that theve exists no purely inseparable
element in 3} over P other than that of P. Then 3)/P is separably
generaled.

PRrROOF. Since k is perfect, Y!/k is separably generated. By
our assumption on P, there exists an element # in P such that its
p-th root does not belong to >'. Then # cannot be an element
of k(MP), since k is perfect. Consequently

P q k(M).

By the above corollary, therefore, >!/P is separably generated.

THEOREM 2.3 Let >)=k(M) be a separably generated extension
of a field k of dimension r. Let uy; (1£LiZLr—1;14Lj4Ln) be
(r—1)n independent variables over 3, and M= (¢,,...,¢,), p.=2u:£,
(14 i4r—1). Further let P be an intermediary field between 3
and k, such that dim, P=1. Then 3 (u) is separably algebraic over
P(u,y) if 2 is separably generated over P. And Y is always
separably generaled over k(u, 7).

ProoF. Since (#) is free over k with respect to Y, it follows
that each of 3(u)/k(n), 3 (u)/P(u) and P(u)/k(u) is Separably
generated. Moreover, >(#) and P(x) have dimensions 7 and 1
respectively over k(u) and hence rank(2 (3 (u)/P(u))=7—1. Let
yD,,...,D._,{ be a basis for the X!(#)-module D3} (%)/P(u)) over
" 3 (u). Since D((u)/P(u,7)) is contained in (X (u)/P(u))
any element D of ®(3(#)/P(u,5)) can be written in the form

D=3%%71 a; Dy,

6) This result is not new. Cf. MacLane. Modular fields I, Separating transcendence
basis. Duke Math, J. vol. 5. 1939.

.
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with a;¢3)(#). Since .=} u.$; and since D is a derivation over
P(u, ), it follows that

Dy=32a)(StmaDE) (1L i L r—1).

Then lZzut1D4$1]= | (#a) (ngt)tl 1« i,jLr— 1).
As, by our assumption on D,,..;, D,_;, the rank of the matrix (D)
is »—1 and #’s are independent variables over Y, it follows that
the above determinant is not zero. This implies that @,=0 for
every j, and consequently D must be a trivial one. This proves
that X(u) is separably algebraic over P(u,7). Since (u,7) is
free over k with respect to P (cf. (Z) §3), and k(u,7) is a pure
transcendental extension of %, this implies that P and k(u,7) are
linearly disjoint over k with respect to each other. As X is
separably generated over &k, and > D P Dk, Y is linearly disjoint
over k with respect to k™, for all integer m >0. Therefore P
is linearly disjoint over k with respect to 27~ for all integer m > 0.
This shows that P is separably generated over k. By the linear
disjointness of P and k(wu,7) over k&, it follows that P(u,7z) is
separably generated over k(u, 7).

But the field P such that 3! is separably generated over it,
surely exists by virtue of cor. 1, th. 2.2. This completes our proof.

THEOREM 2.4 Let SX=k(M) be a regular extension of dimen-
sion = 2 of a field k with infinitely many elements. Let x and y
be two algebraically independent elements of > over k. If x oryis
not in k(M?), then but for a finite number of constants c in k, 3
is regular over k(x+cy). (If p=0, then this theorem holds for any
x and y. This will be clear from the proof given below).

PROOF. By our assumption, x or y is not in 2(M?”), say yek(M").
There exists at least one derivation D in D(X/k) such that we
have

Dy # 0.

If D(x+cy)=0, then Dx+cDy=0 and therefore c=—Dx/Dy. This
shows that if x or y is not in k(MP"), there is at most one constant
¢ in k such that we have x+cy €k(M?). Avoiding this special
constant, if necessary, we conclude that 3> is separably generated
over A=k(x+cy) (cf. cor. 1, th. 2.2), and hence >} is linearly
disjoint over 4 with respect to 4™ for every positive integer .
Let T, be a field consisting of all algebraic elements of 3 over
k(x+cy). Then T. must be a separably algebraic extension of 4
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since X and hence T, is linearly disjoint -over 4 with respect to
AP for every positive integer m.

Put 3.=T.(y), then as y is an independent variable over T,
it follows that 3. is a separably algebraic extension of k(x,y).
Let 37, be the field consisting of all separable elements in 3] over
kE(x,y). Then 3, is contained ir 3. There are only a finite
number of intermediary fields between 3%, and k(x,y). Therefore, -
except for a finite number of constants in &, there exists a constant
d # c¢ such that we have

Ec=2d
As we have 3} 5T, ok and 3 is regular over k, it follows

that 7, is regular over k. Since x+cy is linearly disjoint over k
with respect to T,, the field

2u=T\(y) =Ta(x+cy)
is regular over k(x+cy). As we have X.=31, this proves that

T.=k(x+cy) and so k(x+cy) is algebraically closed in 3}. There-
fore our assertion is completely proved.

§ 3. Theorem of Bertini for Pencils. .

Let ¥~ or V. be as stated in §1, and let M or M, be its
generic Point over k. Put

S1=k(M)=Fk(M,).
Let P be a field such that 3! DP >k and dim, P=1. If p is a
prime divisor of P over k, it decomposes in X! in the following
way to the divisors
p=Ph...... Pm
where each 9, is of the first kind with respect to some V,. As
we have seen in §1, there corresponds to 3, on V a prime rational
V-divisor I; over k. To each p we now associate the rational V-
divisor over k of the form
and as p varies in the set of all the prime divisors of P over k,
the totality of Wp is called the pencil on ¥V defined by the field
P over k.
DEFINITION. A pencil (W} defined by the field P is called
non-composite, if 3 is regular over the field P.
This definition implies that a pencil defined by the field P is



The Theovem of BERTINI on Linear Systems etc. 57

non-composite, if and only if P 1s maximally algebraic in 3} and
P q k(D7)

If a pencil {W{ defined by the field P is not non-composite,
we shall say that it is composite (composite with a certain other
pencil).

Assume that a pencil { W} defined by the field P is composite.
This implies that 3] is not regular over P.

(i) If P is not maximally algebraic in 3} and if 3] is regular
over the algebraic closure P’ of P in Y, then

W,=o,W,, +...+0.W,
where i{p! 1s a prime divisor of P over k and
p=pif...... pksin P’ (cf. (Z), §9),

and where { W’} is the pencil defined on ¥V by the field P’ over k.

(ii) Assume now that X' is not regular over the algebraic
closure P’ of P in 3. In this case, £ is imperfect by virtue of
cor. 2, th. 2.2. Let k, be the smallest perfect field containing %
and put

P'k=P/, 3,=3%k.

Since ¥ is regular over k, 3, is regular over k. Since 3 is not
regular over P’ and P’ is maximally algebraic in X}, it follows
that 3 is not separably generated over P’. This shows that

P’'c k(M?). (cf. cor. 1, th. 2.2).
Therefore
P/ C k (MP).

This shows that P/ is not maximally algebraic in 3}, since k%, is
perfect.

Let V, be a Subvariety of a projective space and such that it
is derived from ¥V by normalizatjon with reference to k,. Let {W,}
and {W,} be pencils on V,, defined respectively by the field P,= Pk,
and its algebraic closure P, in 3},. Since P, 2 P/ > P, we have,

by what have been proved already above,
"71p’=‘0] W% ot 0 Wy,

THEOREM 3.1 (Theorem of Bertini for pencils). If a pencil
{ W1, free from fixed components, is non-composite, then all but a
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finite number of members of the pencil arve irvreducible.

ProoF. For some representative V, of ¥V we take the
auxiliary fields X%, P} and kY ; for brevity let us omit to write
the suffix «; i.e. '

S*=>(u), P*=P(u,7) and k*=k(u,7),

then dimxP*=1. By th. 2.3, 31* is a separably algebraic extension
of P* and 3'* is separably generated over k&* since by our
assumption, 3 is regular over k.

Let ¢ be a primitive element of >1* with respect to P*, and let

F(u,7;0)=0 with F(U,Y;Z) «P[U,Y,Z]

be an irreducible equation for ¢ over P, of degree v, where v
=[31*: P*]. '

Since 3! is regular over P and since () is a set of independent
variables over Y, 3'* is regular over P. It follows that F is
absolutely irreducible.

Let @(u,%;¢) be the polynomial with general coefficients a,
b,... of the same degree as F, and let a,, b,,..., be the corresponding
coeflicients of F, i.e. a,, b,,..., are all in P. Then there exists a
finite number of finite sets of polynomials in a, b,... with rational
coefficients, say

{Giy(a, b...),..., Gy (a, b,..)t i=1,2,...,p

with the following property; if F'(u,%;¢) is a polynomial with
coefficients &', ¥,... in a certain field 7T, a necessary and sufficient
condition that F'’ be reducible in some extension of T is that, for
some i, ’
G, ,b,.)=0 for every j.
Since F is absolutely irreducible, at least one of
Gi;(aq b,---) 14£:4£350)
is not zero for every i. '
There exists only a finite number of prime divisors in P over
k, which maps at least one of ay, b,,... to . If we avoid more-
over, a finite number ot prime divisors in P over &, it follows that
th(ao, bOs"') 1 é ié j(i)

will not be mapped all to zero for every i.
"“Let p be one of such a prime divisor of P over %, and p* be
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its uniquely determined extension in P* over k*.
Let

p* = E;S;k»‘, . ,%th

be its decomposition in 3*. Take one of its components, say i
to which the prime divisor 3, in 3] corresponds. Denote by (—)
the P*-residues, where PF=P*.

If 4 is the residue field of p, then 4(u,7) is the residue field
of p*, by the condition that p*-residues of u,7 are # « and are
algebraically independent over 4.

By 4* we shall mean the residue field of ¥*. Then by what
we have already seen above,

F(u,7;)=0
is absolutely irreducible and in particular irreducible over 4.
If the additional finite number of prime divisors of P over k

is avoided, the degree of F in ¢ remains ». Assume that p is
already chosen in such a way. Then we may see easily

[4* : d(u, ) ]=v.
By the formula (1), we conclude that
p*=P* ie p="5.

This proves that Wp is prime rational over 2 and our theorem
is therefore proved.

THEOREM 3.2 If a pencil W1, defined by the field P over k,
with infinitely many elements, is rnon-composite and free from fixed
components, then a member W, of (W} is absolutely reducible if
the degree of that prime divisor v is greater than 1. While with a
finite number of exceptions, all Wp corresponding to p whose degree
are 1 are absolutely irveducible.

PrOOF. Let W=3.h!; be a member of {W}, corresponding
to the prime divisor p of degree >1. We shall show that even
when k=1, h,=...=h,=0, [, is absolutely reducible.

The field 4’ of rational functions on 77 is the residue field of
the prime divisor defined by [7,. Since 4’ contains the residue
field of the prime divisor p, which is a proper algebraic extension

of k, therefore 4’ is not regular over k. Thus I, is absolutely
reducible.
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Now assume that the degree of p is 1. Using the notations
in the proof of th. 3.2, 4=k and 4(u, ) =k* since the degree of
p is 1. Therefore avoiding a finite number of prime divisors in
P over k, 4* is regular over k, since F(u,7;¢) is absolutely ir-
reducible. But since the residue field 4* of $* contains the residue
field of B, it follows that the residue field of P is regular over k.
This shows that I, is absolutely irreducible. q.e.d. ,

THEOREM 3.3 Let V be defined and normal over a finite field
k with q=p" elements. Let (W} be a pencil defined on V by the
field P over k, and assume that it is non-composite and has no
fixed components. Then there exists a field k' which is an algebraic
extension of k, having the property ; theve exists at least one element
in the pencil defined by PR such that it is absolutely irreducible.

PROOF. In this case, ¥ has no multiple Subvariety of dimen-
sion »—1 by F-Appendix II prop. 2, since k is perfect. Therefore
V is absolutely normal by F-Appendix II, prop. 5.

Let & be the algebraic"closure of k. By our assumption, 3}
is regular over P. Therefore % is regular over 2 By th. 3.1,
and th. 3.2, there exist infinitely many W5 in the pencil defined
by Pk over k such that it is irreducible over k.

As 33 0P >k and X is regular over k, it follows that P is
regular over k. Therefore there exists a set of quantities (x, y,,-.-, ¥..)-
in P such that P=k(x,y) and the ring k[x, y] is integrally closed
in P, where x is a variable over k. Then Pk=Fk(x,y) and the
ring K[x, ¥] is integrally closed in Pk by F-Appendix II, prop. 5,
since P is a regular extension of a perfect field 2. 'We may assume,
without loss of generality, that (x,¥) has a finite p-residue (c,c;,---,
¢.), where ¢ and ¢ are in k.

Consider the field ¥ =k(c, ¢,,---, ), then k' is an extension of
-k and the ring £'[x,y] is integrally closed in Pk¥. (F-Appendix II,
prop. 5). Let p’ be the prime divisor which p induces in PkK.
Then it is clear that }’ is of degree 1 and as WF is irreducible
over k, W, which corresponds to p’ in the pencil defined on V
by PFK' is absolutely irreducible. q.e.d.

§ 4. Theorem of Bertini for linear systems.

Let 1, ¢,...,¢ be a set of functions on ¥V defined over k, and
assume _ that it is linearly independent over k. For arbitrary
constants ¢,..., ¢, in &, not all zero, let
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(CotCtit.-+61) =W /N wy
where 2, and ¥, are integral divisors of the first kind in 3
over k with respect to V and where ., is independent of the
choice of the c’s. As in §3, 9, determines on V a rational V-
divisor over k of the form
-Wo-) =>Nh!

As (c) varies freely in %, the totality of W, is called the linear
system of dimension 7 defined on ¥V by (1, t,...,%) over k. If
r=1, it is called the linear pencil. ‘

DEFINITION. A linear system |W| is said to be composite with
a pencil - {Z{ if each member of |W| decomposes into a certain
number of members of {Z1.

Let a linear system |W| be defined on ¥, by the set of func-
tions (1,¢,...,t) in 3. Let ¥ be a field containing %2 and
algebraic over k. Let V' be a Subvariety of a projective space
and such that it is derived from V by normalization with reference
to k. If a Point M’ of V is generic over K/, then k' (M’)=F ()
by the definition of normalization. When V is without multiple
Subvariety of dimension #—1 (this is the case in particular when
k is perfect), then it is also such over %, and therefore we may
assume that M=M', V=V (cf. F-Appendix II, prop. 5).

There exists the uniquely determined integer ¢ = 0 such that we
have for every i, t,ek(:M”") but for certain j, t;¢k(M ””“). Put #
=Fk"" and let #, be a function in ¥ (M) defined by (£)” = t.
Then (#) has the following property: t;€k'(M*)=Fk (M'?) for
certain j.

DEFINITION. A linear system |W| defined by (1,t,...,1) on
V over k is said to be reducible, if each member of the linear system
defined on V' by (1,t',t,...,1,) over k' is reducible over k', when
k has infinitely many elements. When k is a finite field, then |W|
is said to be reducible if the linear system defined by (1,t/,...,1")
on V is reducible over the algebraic closure k of k.

THEOREM 4.1 Let |W| be a linear system defined by the
Junctions (1, t,..., 1) over k and free from fixed components. If r >1
and dim,(t) =1, then |W| is composite with a pencil.

We omit the proof. Cf. (Z) §14.

TREOREM 4.2 (T heovem of Bertini for linear systems). Let
|W| be a linear system defined over a field k, which is free from
fixed components. Then if |W| is absolutely reducible, |W)| is
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composite with a peucil.

ProOF. Let |W| be defined by the functions (1,%,...,¢)
where each ¢ is an element of 3. We may assume, by the
definition of the reducibility that #ek(M) for all i, but #€k(M?)
for certain j®. After applying on (f) linear homogeneous trans-
formations, we may also assume that #,€2(M*) and (¢,) =,/ Y-

(i) k is not a finite field. Consider the linear pencil {W},
defined over k by (1, ¢ +ct;) contained in the linear system. Then
but for a finite number of constants ¢ in k%, it is free from fixed
components. Therefore it coincides with the pencil determined
by k(t;+ct;), but it contains only those which correspond to prime
divisors whose degrees are 1. Since |W]| is absolutely reducible,
members of { W are also absolutely reducible, and consequently,
by th. 3.1 and th. 3.2, 31=k(M) cannot be regular over k(t +ct,).
But by th. 2.4, since t,€¢k(M?) for non special constants ¢ in &,
3} is regular over k(t +ct,) if dim, (t,t)=2. Therefore ¢, must
be algebraic over k(t), i.e. dim, (f)=1. Our theorem then
follows from th. 4.1.

(i) kis a finite field. Replacing k by & in (i), we conclude
that dim; (#)=1 and a fortiori dim, (t)=1. Our theorem then
follows also from th. 4.1. q.e.d. :

7) When the characteristic p of % is zero, considerations whether ¢ is in k(M P)
or not is not necessary.



