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O. Zariskiw has clarified algebraically the proof of the so-called
theorem of Bertini concerning the reducible linear systems on
algebraic varieties in the projective space over the ground field of
characteristic zero. We wish to investigate it over general ground
field of any characteristic.

I  express my sincere gratitude to Prof. Y. Akizuki for his
kind directions and important advices throughout this work. I
also thank to Dr. K. Okugawa for his kind criticisms.

Following A. Weir', we fix once for all the universal domain
P, of the given characteristic p .  We understand under the "ex-
tension of a field k "  the subfield of Q which is finitely generated
over k  by a set of quantities.

§ I Preliminaries (I)

Let a field 11, be an extension of a field k ; the derivations of
\-1 over k  form a '-module and we denote it by Z(E/k). Since
E  is an extension of k , the rank of Z(E/k) with respect to E
is finite.

Let V '' be a Subvariety of a projective n-space (F-Appendix
I) and assume that it is everywhere relatively normal with
reference to some field of definition k  for J  (F -Appendix II).
Let I7c, be a representative of V and - I I  or MOE be a generic Point
of F  or 17„ respectively over k .  Then it holds E = k (M )---k (M c,)
and the ring kW.] is integrally closed in E .  It is well-known that
the (r-1)-dimensional irreducible Subvariety of 1' over k  (prime

1) 0. Zariski. Pencils on an algebraic variety and a new proof o f a  theorem of
Bertini. Trans. Amer. Math. Soc. 1941. We indicate this by (Z).

2) A. Weil. Foundations o f  algebraic geometry. We indicate this by F-..
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rational Vdivisor over k ) '"  defines in E  a prime divisor of the
first kind with respect to some representative V., corresponding
to the discrete (r—l)-dimensional valuation of rank 1 in v .

Conversely, to any prime divisor of the first kind with respect
to K, there corresponds the uniquely determined prime rational 17-
divisor 1', called the center of the valuation defined by that prime
divisor.

We fix one of the representatives, say Vœ. L e t  P  be a field
such that we have E  P  le, dim,, P=1 and (u l )a  L i L r - 1 :
1  4  j  L  n )  be (r — 1)n independent variables over the field E, and
put 22,,,=- E  u.V., (1 Z_ i r - 1 ) ,  where e n )  i s  a generic

i= o ,ta
point of V.. Then (WOE) , 72( a) )  is a set of algebraically independent
variables over P .  The field E : = E ( u )  is  of dimension 1 over
the field k :=k (u ( ") , >2(.)) and the field P : ) 2 ( . 0  is also of
dimension 1 over k :. Therefore E (u ( a) )/ P .*  is  an  algebraic
extension (cf. (Z) § 3). Heretofore, we omit to write the suffix a.

The prime divisor p of P  over k  is uniquely extended to the
prime divisor p* of P *  over k *, under the conditions that it does
map each u, into itself and so the p*-residues of them are
algebraically independent over the residue field of p.

If p*=43414...13*;',7 in E*,
then P - . 1 3 r  in E
where 43.;' induces in  E the prime divisor 43, and T i is a prime
divisor of the first kind with respect to some IT,. Thus we find
the mode of the decomposition o f p* into the power product of

is independent of the choice of the representative V .  (cf. (Z),
§ 4, § 5, and § 6).

By the degree o f p , we understand the degree [../ ( it, :
where hl is the residue field of p. 4  (u.02) is nothing but the
residue field of p*, since p* satisfies the above mentioned conditions.

By the degree of 13,, we understand the degree [4 : k*],  where
zip is the residue field of 13P. Since the prime divisor we consider
is of the first kind, the following formula holds :

(1) [E* : P* ] d e g  (p) = E L, h, d e g  ($,)( 4 )

3) We include in the V-cycles, multiple components.
4) By deg (p ) or deg ($), we m ean the degree of p  or q3 respectively.
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§ 2. Preliminaries (II).

We find in  Weil's book the following
LEMMA 1. L et a f ie ld  J  b e  an extension of a f ield k . If  rank

(Z (E/k ))=r, then w e can f ind elem ents u 1,..., u,. from  E  in  such
a  way that >2 /k(u) is separably algebraic. Moreover, r is the minimal
number having this property.

LEMMA 2. L et A =k (x ) be an ex tension of  a f ie ld  k . T hen if
uE.A, k(x.P), there exists at least one derivation D  in  ( A / k )  such
that Du=0 ( 5 ) . A nd rank (Z(A /k))— log„[A :k(xP)], here we assume
that the characteristic p  of  k  is dif ferent from zero.

THEOREM 2 . 1  If  a f ie ld  E  i s  an ex tension of  dim ension r
over a f ield k , then it is separably  generated over k  if  and  only if

rank  (3.1'(E/k ))=r.
REM ARK The first part of Lemma 2 does hold even when A

is not finitely generated over k. We can prove it by using Zorn's
lemma in the same way as in the ordinary case.

THEOREM 2 .  2  L et a f ie ld  E =k (M ) be  a  separably generated
extension of  a f ield k  an d  P an  intermediary f ield between E  and
k , having dim ension s ov er k . T hen  E/k is separably generated i f
and only if  [P(M P) : k (M P)1=p'. Here w e assum e that the aara-
cteristic p  of  k  is different from zero.

PROOF. Put rank (..1` (E / P)) =t. Then by Lemma 2 , [E  P(MP)]
=11 and [N- ' : k (M P)]=r where r=d im , E .  Since P  contains k,
we have

[P (MP) : k (MP)] =p' - e.

This proves that t= rank (Z (E/ P)) = r —  s and [P(Mr) : k (m r)]=
imply each other. Our theorem is thereby proved.

C )ROLLARY 1. L et a f ield y2 ,--k (M ) be a  separably generated
extension of a f ield k  an d  P an  intermediary f ield between E  and
k , hav ing dim ension 1 ov er k . T hen E /P  is separably generated
if  and only  if  P  4 k(M")

PROOF. By the above theorem, E / P  is separably generated
if and only if

[P(M "):k (M P)]=p.

5 )  This was f or the first time obtained by Baer. C f. R. Baer. Alvbraische
Theorie der differentiierbaren Funktionenkiirper. L Sitz. Heid. 1927.
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If P c  k(11/P), P(M r) c k(M P) and hence P (M P )=“M ')  since P
contains k. Therefore E /k is not separably generated. I f  P 4
k(M P), P(M P) contains k(M P) properly, and hence

[P(M "):k (M ")]=P" with 1.
But, by Lem m a 1 , [Y i P ( A P ) i -  ,  w here r = dinz This
implies that we have

[P(M P):k (M P)] p.

This completes our proof.
COROLLARY 2.'  L et a f ield E = k ( M )  b e  an ex tension of  a

perfect field k an d  P  an  intermediary f ield between j and k , having
dim ension 1 ov er k  such that there ex ists no  purely inseparable
element in E ov er P other than that o f  P .  T hen E/P is separably
generated.

PROOF. Since k  is  perfect, E /k is separably generated. By
our assumption on P, there exists an element u  in  P such that its
p-th root does not belong to E. Then u  cannot be an  element
of k(M P), since k  is  perfect. Consequently

P  4 k(MP).

By the above corollary, therefore, E /P  is separably generated.
THEOREM 2 .3  L et E, = k ( M  ) be a separably generated extension

of  a f ield k  of  dim ension r. L et tti i  ( 1  L  iL  r - 1 ;1 Z. j  n) be
(r —1)n independent variables over E , and M = 
(1 Z. i 4 r- 1 ) .  F u rth e r let P be an  intermediary field between E
and k , such that dim , P=1. T hen v (u) is separably  algebraic ov er
P ( u , 0  i f  E  is separably  generated ov er P .  A n d  E  is alw ays
separably generated over k(u,72).

PROOF. Since (u )  is free over k  with respect to E , it follows
that each of E (u) /k  (u), E (u) /P(u) and P(u ) /k (u )  is separably
generated. Moreover, E ( u )  and P ( u )  have dimensions r  and 1
respectively over k (u )  and hence rank (..T(E (u) / P(u))= Y — 1 .  Let
)D„..., be a  basis for the E (u)-module Z ( ( u ) / P ( u ) )  over

( u ) .  Since (E (u )/P(u , 7 )))  is contained in 2.,N (E (u) /P(u))
any element D of Z (E (u)/P(u, 72)) can be written in  th e  form

D =E;:1 a D i ,

6 )  This result is not new. Cf. MacLane. Modular fields I, Separating transcendence
basis. Duke Math. J. vol. 5. 1939.
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with aj EE ( u ) .  Since 221 — and since D  is a derivation over
P(u, 72), it follows that

;:71 ai (E it,u, ID IE,) ( 1  L  i L  Y - 1 ) .

Then I E,u,,D,e, I (u i i ) (D A )  I  (1 Z. i, iL  Y -1 ) .
As, by our assumption on D„..,, the rank of the matrix (DA)
is r - 1  and u's are independent variables over it follows that
the above determinant is not zero. This implies that ai = 0  for
every j ,  and consequently D must be a  trivial one. This proves
that E ( u )  is separably algebraic over P(u, O .  Since (u, 22) is
free over k  with respect to P  (cf. (Z ) § 3), and k(u,72) is a pure
transcendental extension of k , this implies that P and k(u,72) are
linearly disjoint over k  with respect to each other. A s E  is
separably generated over k , and E DP D k , E  is linearly disjoint
over k  with respect to for all integer m > O. Therefore P
is linearly disjoint over k  with respect to le —  for all integer m > O.
This shows that P  is separably generated over k. By the linear
disjointness o f P  and k ( u , 0  over k ,  it follows that P(u,72) is
separably generated over k(u,72).

But the field P  such that E  is separably generated over it,
surely exists by virtue of cor. 1, th. 2.2. This completes our proof.

THEOREM 2 .4  Let E  k (M )  be a regular extension of dimen-
sion 2 of a f ield k  with infinitely many elements. Let x  and y
be two algebraically independent elements of ,12 over k .  If x  or y is
not in k (M v), then but for a f inite number of constants c  in k,
is regular over k (x + c y ) . (If p = 0 , then this theorem holds for any
x  and y. This will be clear from the proof given below).

PROOF. By our assumption, x or y is not in k (Mv) , say y -E• k (M")
There exists at least one derivation D in  Z (E / k ) such that we
have

D y  O.

If D(x+cy)—  0, then D x +cD y =0 and therefore c= — Dx /Dy . This
shows that if x  or y is not in k(MP), there is at most one constant
c in k  such that we have x +cy  E k (M v ). Avoiding this special
constant, if necessary, we conclude that E  is separably generated
over A =k (x +cy ) (cf. cor. 1, th. 2.2), and hence E  is linearly
disjoint over A  with respect to A P - m  for every positive integer m.
Let T , be a field consisting of all algebraic elements o f E  over
k (x +c y ) . Then T , must be a separably algebraic extension of A
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since E  and hence T . is linearly disjoint over A  with respect to
AP — '  for every positive integer

Put Ec-=T,(y), then as y is an independent variable over T ,
it follows that E , is  a  separably algebraic extension of k(x ,y).
Let E , be the field consisting of all separable elements in E over
k (x ,y ) .  Then E c is contained in T h e r e  are only a  finite
number of intermediary fields between E, and k(x, y ) .  Therefore,
except for a finite number of constants in k, there exists a constant
d  c such that we have

E,— Ed

As we have yi D T  j  k  and E  is regular over k ,  it follows
that T , i§ regular over k .  Since x +cy  is linearly disjoint over k
with respect to  L , the field

Ed= T,(Y )=Td(x+ cY)
is regular over k (x +c y ) . As we have this proves that
T c =k (x +cy ) and so k (x +cy ) is algebraically closed in E . There-
fore our assertion is completely proved.

§ 3. Theorem of Bertini for Pencils.
Let -Ir• or VŒ be as stated in § 1, and let I i i  or /tfc, be its

generic Point over k .  Put
=k (M )=k (M ).

Let P  be a field such that E  D P D k  and dim, P = 1 .  I f  p  is a
prime divisor of P over k , it decomposes in E  in the following
way to the divisors

P=Vizi ....... $0,,T
where each 13, is of the first kind with respect to some K . As
we have seen in § 1, there corresponds to 43, on 1 7 a prime rational
17-divisor I", over k .  To each p we now associate the rational V
divisor over k  of the form

117
0 =

and as p varies in the set of all the prime divisors o f P  over k,
the totality of 117

p is called the pencil on  V defined by the field
P over k.

DEFINITION. A  pencil )1' n  def ined by  the f ield P is called
non-composite, if >LI is regular over the f ield P.

This definition implies that a pencil. defined by the field P  is
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non-composite, if and only if P  is maximally algebraic in  E  and
P  4 k(31P).

If a p en c il IV{ defined by the field P  is  n o t non-composite,
we shall say that it is composite (composite with a certain other
pencil).

Assume that a pencil ; FV# defined by the field P is composite.
This implies that E, is not regular over P.

(i) If P  is not maximally algebraic in E and if E is regular
over the algebraic closure P ' of P  in  E , then

= -Fp, W p,8

where )W is  a prime divisor of P  over k  and

p-p;Pr ....... p'» in P ' (cf. (Z), § 9),

and where ; 1V 1 is the pencil defined on V  by the field P ' over k.
(ii) Assume now  that E  is not regular over the algebraic

closure P ' of P  in E  . In this case, k  is imperfect by virtue of
cor. 2, th. 2 .2 . Let k , be the smallest perfect . field containing k
and put

P 'k, , E = E k , .
Since is regular over k , E , is regular over k .  Since E  is not
regular over P ' and P ' is maximally algebraic in  E , it follows
that E  is not separably generated over P ' .  This shows that

P ' c  k ( MP). (cf. cor. 1, th. 2.2).

Therefore
P,' c k,(211- P).

This shows that P,' is not maximally algebraic in j , ,  s ince k , is
perfect.

Let 17, be a Subvariety of a projective space and such that it
is derived from J 7  normalization with reference to k,. Let IW,
and ;IV2 1 be pencils on V„ defined respectively by the field P,=Pk ,
and its algebraic closure P, in E „ Since P2 P , '  D  P„ we have,
by what have been proved already above,

=p, . . . 1V202,

TH E O R E M  3.1 (Theorem of  B ertini f or pencils). I f  a  pencil
i t n ,  free from fixed components, is non-composite, then  all but a
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finite number of  members of the pencil are irreducible.
PROOF. F o r  some representative Vc,  o f  V  we take the

auxiliary fields E*, P.* and 1?:; for brevity le t u s om it to write
the  suffix a ; j .  e.

E*=E(u), P* =P(u, )2) and k* =k(u,

then dim k *P * =1. By th. 2.3, 1.;* is a separably algebraic extension
o f P * , a n d  E* is separably generated over k * , since by our
assumption, E is regular over k.

Let C be a  primitive element of E* with respect to P*, and let

F(u, ; C) = 0 with F(U, Y ;P [ U ,  Y , Z]

be a n  irreducible equation fo r  C over P ,  o f  degree 1), where
=-1E* : P*].

Since E is regular over P and since (u) is a  se t o f independent
variables over E, E* is regular 'over P .  It follows that F  is
absolutely irreducible.

L et (1)(u02 ; C) be the polynomial with general coefficients a,
b,... of the same degree as F, and let a0 , b0 ,..., be the corresponding
coefficients of F, j. e. (4, b„..., are all in  P .  Then there exists a
finite number of finite sets of polynomials in a, b,... with rational
coefficients, say

1G,-, (a, b...) G i j ( ,) (a, i=1, p

with the following property ; i f  F'(u ,)2 ;C ) is a polynomial with
coefficients i n  a  c e r t a i n  f i e l d  T , a  necessary and sufficient
condition that F ' be reducible in  some extension of T  is that, for
some i,

Gii(a',b',...)= 0 for every j.

Since F  is absolutely irreducible, at least one of

Gij (ao ,bo,...) 1 L  i
is not zero for every i.

There exists only a  finite number of prime divisors in  P  over
k , which maps at least one of ao , to c).. I f  we avoid more-
over, a  finite number ot prime divisors in  P over k, it follows that

GQ (ao , bo ,...) 1  Z. i (j)
not be mapped all to zero for every i.
L et D be one of such a prime divisor of P  over k , and II* be
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its uniquely determined extension in P *  over k*.

Let

be its decomposition in E *. Take one of its components, say VP
to which the prime divisor 43, in E  corresponds. Denote by (—)
the $*-residues, where 43;=

If 4 is the residue field of p, then 4 ( u , 0  is the residue field
of p*, by the condition that p*-residues of u,72 are 0 0  a n d  a re
algebraically independent over J.

By 4* we shall mean the residue field of 43*• Then by what
we have already seen above,

F(u,22;C)-=0

is absolutely irreducible and in particular irreducible over 4.
If the additional finite number of prime divisors of P  over k

is avoided, the degree o f F  in remains v. Assume that p  is
already chosen in such a way. Then we may see easily

[4 * ( u ,  ) ] = i .=

By the formula (1), we conclude that

P* = $ * i. e.

This proves that W prime rational over k  and our theorem
is therefore proved.

THEOREM 3.2 If a pencilif  T defined by the f ield P  ov er k,
with infinitely many elements, is non-composite and free from fixed
components, then a m em ber J V  of J V  is absolutely  reducible if
the degree of  that prime divisor p is greater than 1. W hile with a
f inite num ber of exceptions, all W t,  corresponding to p whose degree
are 1  are absolutely irreducible.

PROOF. Let W =E ; hi T , be a member of W, corresponding
to the prime divisor p  o f degree > 1. We shall show that even
when h1 =1 , h 0 =.. .=h ,=0 ,  V , is absolutely reducible.

The field 4 ' of rational functions on Pi is  the residue field of
the prime divisor defined by r1 . S in ce d '  contains the residue
field of the prime divisor p, which is a proper algebraic extension
of k , therefore 4 ' is not regular over k .  Thus T', is absolutely
reducible.
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Now assume that the degree of p is 1. Using the notations
in the proof of th. 3.2, 4 =k  a n d  (u, k *  since the degree of
p is 1. Therefore avoiding a finite number of prime divisors in
P  over k , 4 *  is regular over k , since F(ud2;C) is absolutely ir-
reducible. But since the residue field 4* of $* contains the residue
field of 3, it follows that the residue field of $ is regular over k.
This shows that P, is absolutely irreducible. q. e. d.

THEOREM 3.3 L et V  be defined and norm al over a finite field
k  w ith q=p" elem ents. L e t 1117 # be a pencil defined on F b y  the
field P  over k , and assum e th at it  is  non-composite and has no
fixed components. Then there exists a field k ' which is an algebraic
extension of k , having the property ; there exists at least one element
in the pencil defined by Pk' such that it is absolutely irreducible.

PROOF. In this case, V has no multiple Subvariety of dimen-
sion r-1 by F-Appendix II prop. 2, since k  is perfect. Therefore
V  is absolutely normal by F-Appendix II, prop. 5.

Let k be the algebraic 'closure o f k. By our assumption, E
is regular over P .  Therefore Ek is regular over k. By th. 3.1,
and th. 3.2, there exist infinitely many W in the pencil defined
by Pk  over k such that it is irreducible over k.

As E  DP D k  and E  is regular over k ,  it follows that P  is
regular over k .  Therefore there exists a set of quantities (x, y”,)
in P  such that P= k(x, y ) and the ring k[x, y] is integrally closed
in P, where x  is a variable over k .  Then Pk= k(x,y) and the
ring k[x, 31] is integrally closed in Pk  by F-Appendix II, prop. 5,
since P  is a regular extension of a perfect field k .  We may assume,
without loss of generality, that (x, y ) has a finite -1-71-residue (c, c1 ,...,
c„,), where c  and ci  are in k.

Consider the field k' = k(c, ,  c „ , ) ,  then k ' is an extension of
k  and the ring kIx , y ] is integrally closed in Pk' , (F-Appendix II,
prop. 5). Let p' be the prime divisor which fi induces in Pk'.
Then it is clear that p' is of degree 1 and as WIT is irreducible
over k, W' ,  which corresponds to p' in the pencil defined on
by Pk ' is absolutely irreducible. q. e. d.

§ 4. Theorem of Bertini for linear systems.

Let 1, t„..., t,. be a set of functions on F defined over k , and
assume , that it is linearly independent over k. For arbitrary
constants co ,..., c,. in k , not all zero, let
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(co + c, +... + c, t, ) ( . )
where 'A" and a (co  a r e  integral divisors of th e  first kind i n  E
over k  with respect to 1 ' a n d  where ',) I( . ) is independent of the
choice o f  th e  c's. A s in  § 3, I (,) determines o n  V a  rational Y-
divisor over k  of the form

W o =

A s (c) varies freely in  k , the totality o f 11/(0  is called the linear
system of dim ension r  defined o n  V  b y  (1, t1,..., t„) over k .  If
r=1, it is called the linear pencil.

DEFINITION. A  linear system  IW I is said to be composite with
a  pencil i f  each m em ber o f  IW I decom poses into a certain
num ber of members of

L et a  linear system I WI be defined o n  17 ,  by the set of func-
tions (1, t„..., t,) i n  E .  L e t  k ' b e  a  f ie ld  containing k  and
algebraic over k .  L e t Y ' be a  Subvariety of a  pro jec tive  space
and such that it is derived from V by normalization with reference
to k'. If a Point -11' o f  I' is generic over k', then k ' (11')=k ' (211)
by the definition o f  normalization. When V is without multiple
Subvariety of dimension r-1 (this is the case in particular when
k  is perfect), then it is also such over k', and therefore we may
assume that J r =  ,  P  (cf. F-Appendix II, prop. 5).

There exists the uniquely determined integer e 0 such that we
have for every i, ti E k CM-  b u t fo r  c e r ta in  j, yk (211- P' + 1 ) . P u t  k'
= le a n d  le t  t", be a  function in  k ' (Jr )  defined by (K)Pe= t,.
Then ( r )  has th e  following property :  ti -E- k '(J E P )= k '( i f lP )  for
certain j.

DEFINITION. A linear system 111 7 1 def ined by  (1, t„..., t,) on
I -  over k is said to be reducible, if  each member of the linear system
defined on  P  by (1, t,' t',) over k ' is reducible over k ', w hen
k  has inf initely  m any  elem ents. W hen k  i  a  finite field, then IW  I
is said to be reducible if the linear system defined by (1, t,',...,
o n  1" is reducible over the algebraic closure k of k.

T H E O R E M  4 .1  L e t IW I b e  a  linear sy stem  def ined by  the
functions (1, t„..., t,) over k and free from fixed components. 1f r > 1
and dim k (t) =1 , then IW I is  composite with a pencil.

We om it the proof. C f. (Z) § 14.
THEOREM 4 .2  (T heorem  of B ertini f or linear sy stem s). Let
be a linear system defined over a f ield k , w hich is free from

f ix ed com ponents. T hen i f  IW I i s  absolutely  reducible, I W I is
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composite with a peucil.
PROOF. L e t  I W I be defined by the functions (1,t„...,t,.)

where each t  is  an element o f  E .  W e may assume, by the
definition of the reducibility that ti Ek (M )  for all i, but y k  (Mr)
for certain j(7)• After applying on ( t )  linear homogeneous trans-
formations, we may also assume that tA ( M r)  and (t1) ='21[,,,/%,. ) .

(i) k  is not a  finite field. Consider the linear pencil W,
defined over k  by (1, t, +cti) contained in the linear system. Then
but for a finite number of constants c  in k , it is free from fixed
components. Therefore it coincides with the pencil determined
by k (t,+ct,), but it contains only those which correspond to prime
divisors whose degrees are 1. Since I WI is absolutely reducible,
members o f  f f q  are also absolutely reducible, and consequently,
by th. 3.1 and th. 3.2, E = k ('Jr) cannot be regular over k (t,+ct,).
But by th. 2.4, since t,* (M ry ) for non special constants c  in k,
E  is regular over k (t,+ct i )  if dim , (t 1 , t 1 ) = 2 .  Therefore t, must
be algebraic over k (t,) , j. e . d im k  ( t ) = 1 .  Our theorem then
follows from th. 4.1.

(ii) k  is a finite field. Replacing k  by k  in (i), we conclude
that dim i  ( t )  = 1  and a fortiori dimk (t) = 1 .  Our theorem then
follows also from th. 4.1. q. e. d.

7 )  When the characteristic p  of k  is zero, considerations whether t  is in k (M P )
or not is not necessary.


