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The late Prof. Okamura discovered a remarkable function®
concerning the uniqueness of the solution of Cauchy-problem of
the system of differential equations. In this paper we extend it
so as to fit to more general problems. )

1. Extended definition. Consider a system of differential
equations

(1) % =ﬁ(x’y1’y2""’yn) (Z=12,%),
X

where f; are continuous for simplicity in the domain
G: Oéxéa’ bféyféb:’ (£=1, 2;"';”)~

Let H., be a hyperplane defined by x=« (0=<u=<a) in G,
and S an arbitrary sub-space in H.. S, may be a single point or
H, itself. Besides S, is considered as regular property in this
paper ; S, is supposed a closed set and hence among distances
from a point P of H, to any point in S,, the minimum exists,
which is called the distance from P to S, denoted by PS, or S,P.

Now let S; and S., be two sub-spaces in G such as x=¢ and
x=¢ (6<X¢&) respectively. Divide the interval [£,%] in » parts
such as

=556 5. K48,=F.
Take a point @, in G on the hyperplane H,, and through it
draw the straight line, having the angular coefficients given by

the values of f; at the point ;. This line cuts the hyperplane
H., , at a point, say Pi.. (k=0,1,...,»—1). Put

A=Son+P1Q1+ ------ +PyS§u
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For two given sub-spaces S. and S.,, consider all the possible
values of 4. Tending all the differences §.—§,_, (k=1,2,...... ,v)
to zero, take the least of the limits of 4. We designate it by
D(S,, S.)). Then a very broad extension of Okamura’s function
is made. When S: and S, signify points P and @ respectively,
it becomes Okamura’s function D(P, Q).

D(S,, S;/) has the same properties as D(P, @), which run as
follows ;

a) For that a solution of (1) shall exist so as to pass through
S: and S, (0<¢§< ¢ <a), it is necessary and sufficient that

(2) D(S,, Ssl) =0.

The condition is necessary, for if a solution say C of (1)
passes through S: and S.,, then 4, formed by points @, on C such

as x=$+%(5'—5) (=0, 1,...,v—1), tends to zero with % by the

continuity of f;; hence D(S;, S:)) =0. Conversely, let D(S;, S;/)=0,
then there is a sequence of values of J,

AW =S,Q® + PWQ®™ +...... +P,®S,, (2=1,2,...... ),

tending to zero with l. The x-coordinates of the points P and

) are &P ($=$§,“)§lg‘f“’§ ...... gé‘v;”:f’), while P,* (or Q.8
is the point of S; (or S.) which gives the distance S.Q%® (or
P.,;“’SE,). Let »=Y® &) (G=12,...... ,n) represent the segment
QWP® for sW <x<é®, (k=0,1,......,,—1) and the points P{¥
and Q‘v’;’ for x=¢ and & respectively. These functions are dis-
continuous at most at x=§® and we represent by ¢ (x) the sum
of discontinuities of Y™ (x) for [§, x]. Then the differences
Y™ (x) —e®™ (x) are continuous in ¢ £ x < ¢. Evidently we have
o (x) | < 4%,

Therefore we have, for § < x < ¢,

Y (3) — o () =Y ) — o @) + [ T(s)ds,

H

where  f(8) =flfs, Vi (€)oo, Y (60)] for §.<'s < &,

Consequently the sequence of the functions Y (x) —a* (x) is
equally continuous. Hence we can select a uniformly convergent
sequence, and we have in the limit
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Y0 =YA&) + [ £t V@), VoD ] dt
13
for o (x) tend to zero uniformly. Therefore we have obtained a
solution y,=Y;(x) of (1), passing through S. and S..
b) Consider a point P in G such as x=¢. For : <& < ¢/,
we have
(3) DS, Su)<D(S,P)+D(P,S..,).

For three points P(<, 7;; 7g------ s, QE, 9/, 7 eeenn ,7.) and
RE, 5", 5. .. 7."), where ¢ <& < §”, we have

{D<Ss, Q) <D(S, R) + MG —) + ~ (7 =9V -+ (=705
D(Q, Su)<D(P, Su) + M(Z = &)+ ~ o/ =7+ 1+ a7

M being the upper bound of /7423 "5/ in G. The proof
may be done easily from the definition of D(S,, S./).

¢c) D(S,, P) is a continuous function of P, and satisfies the
Lipschitz condition with regard to the (y,, ¥s,...... , ¥»)-coordinates
of P. This is evident by b).

2. Uniqueness theorems. Consider a system of differential
equations

(5) %=f,-<x,y,,y2, ...... ) (=120, ),
X

where f; are continuous in a domain
G:Oéxéa, b,;=<:y,;§bgl, (i=1,2, ------ , N, bzéo, b/;O),
and f;(%,0,......,00=0 for 0<x<gq, (i=1,2,......,n),

which means that x-axis is at least a solution.
We denote the sub-space S,, which contains the point 0O(0,0,...,
0), by S,; also S, containing the point A(a,0,...... ,0) by S..
Theorem 1. In order that the solution of (5), starting from
a point in S, and arriving at a point in S, should be unique, it
is necessary and sufficient that there exist two functions ¢(x,y;,
Yayerene ,¥n). and ¢ (%, ¥y, Yoyeoree- , ¥») continuous in G and

(L, Y1y Yorevenees Ya) 2 0, (%, 31, Yopeneees V) 2 0,
and zero for all points of S, respectively S, i.e.,
¢ (So) =0, ¢(SH=0,
and for 0= x < q,
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¢(x,0,...... ,0) +¢(x,0,...... ,0)=0,
50(-75, yl:yﬂr """ ’ yn)+‘)‘lj(x;y1’yﬂ’ """ !y")>0
provided |y;|+ [ye|+-..... + |ya| =<0,

and moreover both functions satisfy in G the Lipschitz condition
with regard to (¥, ¥s...... ,¥s), and for all points (&, ¥1, V... Vo)
in G, we have

@ %§¢(x+t,;v,+tf,, ------ s Iat ) =0 (% Yypeen o, ¥2) F S0,

l_iLn_%{¢(x+ t, n+ 7 P JYH) — (%, Yryeennnn ) = 0.9

t>0
Proof. If the solution is unique, put
P (%, Y15 Yoyeo-ee25 ¥a) =D(So, P),
¢(x’y17y21 """ ’yn)=D(R SA))

where P is the point (x, y,, ¥o,-----. ,¥). Then ¢ and ¢ satisfy
these conditions; e.g., D(S,, P) is a continuous function of P,
non negative, and zero only when P is on a solution passing
through S,. For two points P and @ on a same hyperplane H,,
we have

|D(So, P) —D(So, Q)| < D(P, Q)=PQ,

and the function D(S,, P) does not increase with x on any solution
of (6). If P, and P, are two points on one solution, P, on the
right of P, then

D(So, P;) = D(So, P)) +D(P,, P,),

where D(P,, P,)=0. Finally D(S,, P)+D(P, S,) is zero when and
only when P is on one solution passing through S, and S, i.e. on
x-axis.

Conversely, if there exist such two functions, ¢ and ¢, it is
easy to prove that ¢+¢ is zero on a solution passing through S,
and S,. In fact, let the solution intersect S, at P, and S, at P.
Then D(S,, P,)=0, since P, belongs to S,. D(S,, P) being non
increasing with x on the solution, D(Se, P) must always be zero
on it. Similarly D(P, S,) must always be zero on the same solution.
Hence the solution must be x-axis itself. Q. E. D.

Choosing S, and S, in Theorem 1 conveniently, we shall have
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the necessary and sufficient uniqueness conditions in Fukuhara’s
problem®, boundary problems of the differential equation of the
second order and others.
Now consider
dy _ d
(6) dx2 '_f<x: J’, d—i),
where f(x,y,5') is continuous in a domain 0= x<a, b<y=V,
B0, =20), |y <], and f(x,0,0)=0 for 0 < x < a.
Consider the solution of (6) which vanishes at x=0 and xr=a.
In the case of |y'| < C<, our problem becomes to search the
conditions for that the solution of the system

y=z,

z’=f(x, Y, Z)’

G:0=x=a, bZy=V, 2| £C ‘
passing through a point of the segment (x=0, y=0, |z]| < C) and
a point on the segment (x=a, y=0, |z| < C), shall be unique. As
a special case of the Theorem 1, we have

Theorem 2. If we restrict to the solutions such as |y| < C,
in order that the solution of (6), for which y=0 at x=0 and x=a,
should be unique, it is necessary and sufficient that there should

exist two continuous functions in G, ¢(x,y,2) and ¢(x,y, z), such
that

¢(x,3,2) 20, ¢(xy 2 =0,

¢(0,0, 2) =0, ¢(a,0,2)=0 for |2|=C,
and for 0 x<a

¢(x,0,0) +¢(x,0,0)=0,

o(x,3,2) +¢(x,5,2)>0 provided |y]+|2|%0,
and both functions verify in G the Lipschi;z condition with regard
to (3, 2), and, for all points (x,,2) in G, we have

@%W(xﬂ,yﬂz,2+U)—sﬂ(x,y, 2)} X0,

lti_r_?%g¢(x+t,y+tz, 2+1)—¢(x,9,2)§ = 0.9

Theorem 3. If the restriction |y'| < C in Theorem 2 is taken
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away, we may enunciate as follows: Take an arbitrary positive
number L(0< L< ) (i.e.; C in the above) and let ¢ and ¢, in
Theorem 2, be denoted by ¢, and ¢,. Then for the uniqueness
it is necessary and sufficient that there should exist ¢, and ¢;,
stated above, however great L may be.

Theorem 4. When |z| < C is replaced by |z| <o, if the
functions ¢ and ¢ with the properties stated in Theorem 2 exist,
then the solution of (6) passing through (x=0, y=0) and (x=a,
y=0) is unique (only sufficient conditions).

Analogous theorems for theorem 2, 3 and 4 may easily be
concluded also, when |y| <oo:

3. Further extention. In this case, to form 4, let us divide
the segment [¢,7] (0L« < B <y=<a) in v parts as follow:

5 <8 <6< <8 <8< <4,

where &,=q, §,=f and ¢,=7r are taken into the dividing points.
Now put

4=5,0,+PQ,+...... +P,Q.+...... +P,S;+P,S;+S,0,.
So we obtain a function D(Sa, Ss, S;) extending D(P, Q). Further
than that, we may for
(IR 7 R
also define D(S,,, S,,,------ »S.,). These generalized functions have
the same properties as D(P, Q); namely

a) In order that there should exist a solution of (1), passing
through all the given sub-spaces S,,, S........ v Se, (S <. <u),

it is necessary and sufficient that we shall have
D<Sa1, Sm’ ...... , S%) =0.

b) Consider a point Pin G such as x=£§, If «, ;< &< o,
(2=p=v), then

D(Scm Sa-z;"' Teey Sa,) é D(Scu Sav """ 8 SG,,,_,v P)

For two points P(%, 7., 7,) and Q(Z, 5/ yeeeeery 7)), if @y S EZ &
=< «, then

D(Syy Saeevvees Say P) < D(Suy Supvevo, Sy @) +M(E—5)

+ Y@ =0 e+ (= 7a)
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and also, if 0 £ ¢§ < ¢ < ¢, then

D(@,S.,,...... »Ss,) = D(P, S, +Sa,) +M(@E -9
+ ‘/(771/”‘71)2‘*' """ + (77;.-_77:)2’
M being the upper bound of vfP+f*+;.....+f. in G.
c) D(Ss---es Soy P), (peHy, u, < § < ) is continuous with
respect to P in [¢,<x<aq, b;<y, <b, (i=1,2,..... ,n)] and it
satisfies the Lipschitz condition with regard to the (y;, ¥s...-.. s Yn)—

coordinates of P.
Remark 1. D(S,,,...... v Sa,_y Hiy S, voeeen ,Se)
=D(Sup--ieery Su. . Sa e ,S.), 2<iZv-1).

i—1y %41y
4. Uniqueness theorems. Theorem 5. Consider a system of
differential equations (5). For the points O(0, 0,...... ,0), A(a,0,...
...,O) and A4;(a,,0,...... ,0) [(5=1, 2,...... ,v—1), 0=a,< a, < @, <...
..<a,=a] let certain sub-spaces S, S, and S, containing the
omts O, A; and A respectively, be denoted by S, SA (7=1,2,..

.,v—1) and S, respectively. When S,, S, and S, are given, in
order that the solution of (5), passing through all the sub-spaces

So, S,, g=1,2,...... ,v—1) and S, should be unique, it is necessary
and sufficient that there shall exist 2v functions, @;(x, ¥5,eee---\¥n)
and ¢,(%, ¥1,eeee0s ¥) G=1,2,......,v), as follows: At first let
Gj: aj 1<x_§dj, bté—yzéb: (i=1:2y """ :n),
[]:1’ 2, ...... , XJ]
L : x-axis,
and P (% Y05 Yoreeeeeer Yu)-

Then ¢,(P) and ¢,(P) are continuous functions defined in G; and
always

9;(P) =20, ¢;(P)=0 (j=1,2,.....,v),
¢, (P)=0 for PeL+S,, .
¢,(P)=0 for PeL (j=2,3,......,v)

and, for the point P such as ¢,(P)=0 (PeSA) v, (P)=0(=1,
2eeennn ,v—1) and also

¢, (P)=0. for PeL+S,,
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and, for the point P such as ¢,(P)=0 (PeS,,H), bia(PY=0 (5
=2,3,...... ,¥) and, for PeG,,

¢;(P) +¢,(P)=0 (PeL),
@,(P)+¢,(P)>0  (Pel),

both functions ¢, and ¢, satisfying in G, the Lipschitz condition
with regard to (3, ¥s,------ ,¥a), and, for all points (x,y;, ¥s-ee--. y Yn)
in G;, we have

@%§¢,(x+t,yl+ U.], ------ ,yn+t.fn) —¢j(x) yv"":"’yﬂ) } é 0
lzi—fnflt{%(xﬂ,y,ﬂfn ------ s Yut tfa) = (%, Yy ) § 209
Gg=1,2,...... V)

The proof is omitted.

According to the suitable choice of S,, SAj(j= 1,2,...... ,v—1)
and S, in Theorem 5, we may obtain the necessary and sufficient
conditions for the uniqueness in Fukuhara’s problem (loc. cit.),
- boundary problems of a differential equation of n-th order, gene-
ralized Fukuhara’s problem and various other kinds of problems.

Let us e.g., consider the differential equation

@y _ oy, BTy

@ gF =I5 g g

where f(x,5,5, ") is continuous in the domain [0 < x <0, |[y|=C,
ly'| < oo, |y’ <] and f(x,0,0,0)=0 for 0 < x=<b5. Consider the
solution of (7) for which y=0 at x=0, x=a¢ and x=b, where
0<a<b. Now we consider only the solution such as |y, ||
< d< . Then our problem is reduced to search the uniqueness
condition for the solution of the system

y'=u,
u=v,
v'=f(x,5,u,v)

G:0=x=0 y|=C [ul=d, v|=d,

which passes through a point of S,(x=0, y=0, || <d, [v| =<d),
a point of S,(x=a, y=0, |u| <d, |v]| £d) and a point of S;(x=b,
y=0, |lu| =d, |v| £d). By the above theorem we have

Theorem 6. If we restrict solutions such as |y|<d and
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|| = d, in order that the solution of (7), for which y=0 at x=0,
x=a and x=b5, shall be unique, it is necessary and sufficient that
there exist four functions, ¢,(x, ¥, u,v), @.(x,y,u,v), 9!'] (x,y,u,v)
and ¢.(x,y, u,v) such as follows: At first let

G :0=x=a PP =c¢ lul=d v|=d,
G.:a=x=b y|ZcJJul =d, [v] =d.
Then ¢, and ¢; are continuous functions defined in G,(j=1,2)
and always
$=20, ¢$;,=20, =0, ¢ =0,
and for |[#|=<d and |v|=d
¢,(0,0, %#,v)=0
&. (b, 0, u, v) =0,

and, ¢.(a,0,%,v)=0 for # and v such as ¢,(aq,0,u, v)=0,
and, ¢,(e,0,u,v)=0 for » and v such as ¢.(a,0,u,v)=0,
and for 0Zx<Za

¢,(%,0,0,0) +¢,(x,0,0,0)=0,
¢, (%, 9, 4,0) +¢;(%, 5, u,9)>0 provided |y|+ |u|+|v]=0,
fora<x=<b
¢.(x,0,0,0) +¢.(x,0,0,0) =0,
@o (2,3, %4, v) + &, (%, ¥, u,v) >0 provided |y|+ |u|+ |v]|=0.
1, ¢,y ¢, and ¢, satisfy the Lipschitz condition with regard to

(y,u,v), and for all points (x,,%,v) in G, we have

@%{%(xﬂ,yﬂu, u+tv, v+1f)—¢,(%,3,u,0)} <0,

hﬁ%“”j(x*‘t,y'*m, u+t1), v+ t.f)_sbj(x) y, u, v)g ; Oy(s)
>0

(=12 |
Theorems analogous to the theorems 3 and 4 may easily be

concluded. For Fukuhara’s problem such as y,(0)=y.(a) =y,(b) =0
(0< a< b) of the system
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g (1,9, 90 ¥,

dx
4 Z_-z?= g(x) Vi Vo y‘I) ’
gyj— S(xyyp y2: y3)’

G:0=x2x=5bb=»=<b (1=1,2,3) (b:<0, b;:=0),

where f;(x,0,0,0)=0 (i=1,2,3,), So, S4 and S; are (*=0, y,=0,
b,=9%=b/, b=y =b/), (x=a, by <y, Zb/, 3=0, b= y; =by)
and (x=bd, b, <y, b/, b,< y, < b/, y,=0) respectively.

Remark 2. The Okamura’s work (1942)® can be generalized.

Remark 3. ¢ and ¢ etc. may be modified as follows :
They become continuous in the domain (closed) and their partial
derivatives continuous in the domain (open) and the remaining
properties are the same as the original ones. For instance, the
condition

8) hm— ALY Ao, Yut ) =&, Ve, ) F S0
will be replaced by the condition
© 224395 <q,
ox i=1 09y,
In (8) put
Sp(x: yl: y?: """ ’ yn)e_z'=¢(x: y1>y2) """ ’ yﬂ):

then

T (B (14 £ 30+ oo Ja ) =B S 92) | S =B, i 30)

where (%, y1, Yo----+-, Yu) iS positive or zero with @(x, ¥5,ecee-v) ¥u).
Therefore we have to prove the following theorem in which we
represent for convenience (¥, ¥a.---.- , ¥a) etc. by vector-symbol ¥ etc..
Theorem 7. i) Let ¢(x,¥) be continuous and positive or
zero in the closed domain G[0 =< x < a, b < 5. < b; (i=1,2,...... )]
and it satisfies Lipschitz condition, i.e., there exists a positive
~ constant K such as in G

o, ) —9 ()| < K(¥—1]+ |y ~v)
ii) At each point (x,¥) in G, let ¢(x, ¥) satisfy the inequality



On the Uniqueness of Solutions of a System elc. 29
l}@%%¢(x+t,y+ﬂ)—¢(x, NI —e(ny) (£20),

where fi(x,¥) (i=1,2,...... ,n) are continuous in G.

Then there exists a continuous function @(x,¥) in G such as
follows: According as ¢(x, ¥) is positive or zero, &(x,¥) is posi-
ti\le or zero. It has the bounded continuous partial derivatives
%,3—9’, ...... R 2_50 in the inside of G which satisfy
'Vn

0% Y) | 5209 Y) £ (1 4y < 0,
8x i=1 3y1 = '

This remark we owe to Prof. Nagumo. The proof is omitted.
And also it is the same with ¢.

Thus we have succeeded in developing the profound idea of
the late Prof. Hiroshi Okamura much regretted by his early death.
At the end we express heartily thanks to Prof. Toshizo Matsumoto,
to whom we owe a great debt for his guidance in our researches.

September 1949, Mathematical Institute,
Kyoto University.
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