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The mapping of bounded variation has been considered by
many authors since Banach has introduced it for the first time.
Also in our country the late Prof. Okamura has defined the sun'
face integral in  his last paper "O n  the surface integral and
Gauss-Green's theorem' )  Where he introduced a concept of the
mapping of bounded variation, and indicated that the surface area
may be defined by it for the surface represented in the paramet-
ric form.

Recently T .  Radb has developed a theory of the mapping of
bounded variation from which he has defined the surface area a(S)
of the surface represented in the parametric form and proved
that this area a(S ) is equal to Lebesgue's surface area A (S ) when
A (S) < C1 3 . On the other hand, we are told that L. Cesari had
obtained remarkable results showing that the area a (S ) is equal
to the area A (S ) even when A (S )=  co , hence a (S ) is geometri-
cally invariant. 'Vet this paper is not within our reach.

In the present paper, we intend to compare the mapping of
bounded variation in Okamura's sense with that of RadO's and we
shall proceed to prove that these two definitions are equivalent
under certain conditions and they give the equal value of the
surface areas.

I. BOunded variation in Rad6's sense
After Radb's treatise "Length and area " , we assume that a

continuous mapping t from the uv-plane (w-plane) to the xy-plane
(z-plane) is given by the formulae of the form

U : x=x(u,v), y y (u,v) ( u , v )
 

(1 )
or briefly : z= W (w ) WEJ
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where x(u, v), y(u, y )  are one valued continuous functions defined
in the bounded closed region J of the uv-plane.
i) The set `e(21, 4)

If E  is a set on the xy-plane, a - 1 (P) denotes the set of those
points wed for which 21 (w )(E . If E  reduces to a single point z,
then 21- 1 ( z )  is the set of those points wed for which 21(w)
Obviously 5,4(z) is a closed set relative to 4. There are two sorts
of components of a(2 ), the one are continua (it may be a single
point), and the other non-coutinua. The former of the components
will be termed the maximal model continua for z under a in 4.

Let z be a point in the xy-plane and ô  an open set in the
uy-plane, we shall denote the degree of mapping of l a t the point
'2  by A a (z, a) if ,g21(d—ii) and put A a (z,8) = 0  if 2E21(ô-8). A
region 0e4 will be called an indicator region for z when and only
when A a  (2, 0 )  0. Then we shall say that a maximal model
continum  mentioned above is an essential maximal model conti-
nuum for z under 21 in J  if the following conditions are satisfied :
(Lb- c J , p) If 0 is any open set which contains y, then there exists
at least one indicator region for z in O .  Next, for such a  map-
ping 21, we shall define a set c (a , 4 )  as follows :

A point wed is contained in E(a, 4 )  when and only when w,
taken by itself, is an essential maximal model for its image z=21(w)
under a in 4.

It is shown in  R ada 's treatise that €(21, 4 ) is a Borel set.
(see Rada loc. cit. p. 295, IV. 1. 58)
ii) Mapping of bounded variation in Rado's sense

Consider a set B  in the uv-plane for a continuous mapping a
defined above and we shall say that this set is  a base set if B
satisfies the following conditions :

a )  B  is a measurable set, 19) For any oriented rectangle R
(R ° 4 :  R ° is a set of all interior points ofR ), B ) being the
image of R°. B under the mapping .̀.)1 is measurable in the z-plane.

We shall define a function of rectangle G (R ) as follows :
G(R)=m [21(R°. B )] (m [ ] shows the Lebesgue measure)

where R  is an oriented rectangle which satisfies R° c 4. Then we
shall say that the mapping a is a mapping o f bounded variation
with respect to  B  i f  fo r  any sequence of closed oriented non-
overlapping squares si (s'i c ;  i==1, 2 , ...... ,  n ), there is a constant
M  which satisfies the following inequality -
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r G(s,) <M

We take the set E(1, J) =s as a base set. E satisfies the base set
conditions since e is a Borel set and a ( E  R ) is also a Borel set.
(see Kuratowski's Topologie I, Warsaw, 1933) we shall call the
mapping a " a mapping o f bounded variation of Rad6's sense"
and we shall say briefly that a is BV(R).
iii) N a (z, B)

Let z be a point on the z-plane and N w (z , 4 .B ) denotes the
number of points of A ' (z )  contained in 4•B. (Na (z,4-B) may be
infinite)

THEOREM I. In  order that the mapping a is a  mapping of
bounded variation with respect to B, it is necessary and sufficient
that N a (z ,4•B ) is summable on the z-plane.

(The proof of this theorem is given by Rad6 loc. cit. p. 311 IV,
2. 13)

II. Bounded variation in Okarnura's sense
Now we assume that a continuous mapping 'A is given by the

same fomulae as in  the preceding section, then we shall define
the variation v ,(a) o f th e mapping '21 on the open set ô in the
w-plane, as follows :

jA 91 (2, a)dm(z),

where the integral means the Lebesgue integral taken over the
whole z-plane and m  signifies the Lebesgu measure. Using this
notation, we shall say that the mapping s21 is a mapping of bound-
ed variation in Okamura's sense when and only when '.21 satisfies
the following two conditions A )  and B ) .  We shall say briefly
that this mapping % is BV(0).

A) We may divide J into the sum of a finite number of_
closed regions 731 (i=1, 2, ....... , n) (i.e., 4=V di , if i j a,(33 -=-o), which

may be however small, such that m[ T7.21(,-3,)]=0 is satisfied.
denote this subdivision by (a ) .

B) For every such subdivision ( a) ,  Vw (81)  is determinate,

and El Va (ai ) I is bounded. We call the upper bound sup EI(0,
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(ô,)i, the total variation on J of the mapping N.
THEOREM II. For the mapping :) t, le t  (a ) b e  a subdivision

satisfying the condition A )  and let a point z  be given on the
z-plane. If zÉ- VN(di— ai), we put a 0 (2 )— E IA 1 (2 ,  8 , ) I .  Otherwise
0„ (z) =0. A n d  we shall define a(2, %, 4) =sup 0 .(z ) .  Then the

( 0 )

condition B ) is equivalent to the fact that 0(2, N, J )  is summable
on the z-plane and moreover ja(z, J)dm (z) =total variation on
J. (For the proof see Okamura loc. cit. p. 7)

III. The relation between B  V (R ) and B V (0 )
Using the terminology of the preceding sections and assum-

ming that the mapping shall satisfy the condition A ), we may
conclude that N(z, J•s.) is equal to 0(z, t ,  J )  almost everywhere
on the z-plane.

We may suppose by the assumption A ) that the set of z for
which A '( z )  is a continuum, but not a single point, is the set of
measure zero on the xy-plane. This set of measure zero will be
denoted by N  and we shall suppose that z  does not belong to the
set N.

1 °  From .A,T21 (z, J•s)Lt va, it follows N21 (2 , • E) a (2, '21,
for almost everywhere on the z-plane.

Before entering into its proof, we shall introduce an important
notion. In this case the set N. - 1 (z) • s consists of a finite number of
single points. Hence if we take a point wEN- i(z ) and an arbitrary
open set ô containing w, then A 21 (z, 0 ) is constant for any ô having
sufficiently small diameter d (d )  (by  the property of the degree
of mapping). We write

lim ,4 '91 (z (3) = J (w ).-  

We call J (w ) after Rack), the essential local index of w .  It
is shown by Radà and Reichelderfer' ) that the set of w for which
V(w) I 2 is countable and the set K  of z's which are images of
these w's under '2t is of measure zero.

Now we shall proceed to prove the proposition 10 , assumming
z E K +N  (m [K ]=m [N ]=0). When we make the division (a ) suffici-
ently small, (Jo (z , 4 )  tends to  u(2, :)f , J), whereas the following
inequality holds
(2) a a (2, 4) = A w(z, (31)1 = L f ( tv i) 1--<N 2 i ( z ,i= i
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where w, (i=  1, 2, ................ , n ')  are the points of %(z) • s. We can
make ( a )  so small as we like ; whence clearly

0 ( 2 , 'A,  d)_<N„( z , d • s )  zEK + N.

On the other hand, we take a succession of subdivisions ( )

(1)=1, 2, ....... ) such that the diameters of divided parts tend to
zero with -

1  
 . T h u s b y  the definition o f  (a), i f  w e  put

co n _
TIT7(8 — )  =L , then m [L]=0.

y = l i= 1

We will suppose za . .  Then by N 21 (2, 4 .  ) c/o,  we may take
n  so large that each partial region a r  contains at most one point
belonging to ',4- 1 (z) • s. For such partial region (7;,n)  which contains
a point of A- 1 (z) • s, we have I A ,(z, (3n))1 0. Therefore

N w (z, s•d)L<E1A 21 (z, (3)1=a 0 . (z, d)<a.(z, t , d )J=1

holds and (2 ) and (3 ) give

Na ( Z ,  s • d)= a (z, i , d ) ,  2 -É- L + K - FN , m [L ]=m [K ]= rn [N ]=  0

20N 2 1  (z , s • d) c/3 yields a ( z ,  a, 4)

Because t 1 (z) -s consists of an infinite numbers of points, we can
select a sequence of points w„ w2, ........... Then we shall denote by
(6 1)1 ( 6 2), ............... the succession of divisions which are again
successively subdivided, and this sequence may be supposed to
satisfy the following condition. Let the partial regions of (a ,) be
denoted by ô  1, 2,  ,  n , )  and the number of 6
contains at least one w ;  by Ar, then co fo r  P•-- ,0

Take il> i  so large that we have

n "
I AW (2, a i t  < fie ( 2  4 )  < a ( 2 ,

 t ,  4 ) ;3 7

here we shall make i - +co, hence , T , then a (2, %, d) = c/J
Thus we may conclude by 1° and 2° that a(z, t , d) is summable
on the z-plane when and only when P4 (z, s d )  is  summable on
the z-plane. Q . E . D

'(3)
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IV. Surface area.
In the present section we shall apply the property of the

mapping o f bounded variation described above to the Jordan
surface and we will define the surface area.

Let the Jordan surface S  be represented by the following
expressions

S : x =x (u , y ) , y =y (u , y ) , z =z (u , y )  (u , v)Ed

where x, y, z  are space rectangular coordinates. Let the three
lx----x(u, y ) fy----y(u, v)(x=1(u,

mappings be denoted respectively
y =y (u, y ),1z =z (u, y )1z =z (u,

b y  x-ky, y*z, 2* X .  When all these mappings satisfy the assump-
tion A), then we can define two kinds of the area corresponding
to the concepts of B V (0 )  and BV (R).

Firstly in the case of B  V (0), the surface area A O(S ) is de-
fined, fo r a ll divisions (a) mentioned above, by the following
formula

A ,(S )=s u p E V [V ( ,) ]=+[ (di )]2 -i-LK :1,r (a1 )12

( 0 ) i = 1

For brevity we sahll write it A ,(S)=supE V E[K .,(eO r
( a )  i= i x**y

Secondly in the case of B V (R ) . we define the area A ,(S )
as follows:

A , (S )= supE  v [f a,)drn (MT
! a )  .1=1

*+ [jN y „..(p,di)dm(p)y+Lf/V.(pA)dm(p)12

For brevity, we write

A R (S )=supE V I. 1,[3N,;„,(p, dm(P)
(o)

Then we have, by the results of the preceding section,

AR (S. ) = SUPi] V E [ i fh (P, X * Y, ji)drn (P)]2*(o) i=1

Since .17 2 (d1 ) <Ça(p, xy ,  ai)dm (p), it is obvious that

A R(S)>A 0(S)
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By the definition o f  A ,(S ), there exists such a division (a)  that
for any e> 0, the following inequality holds

71

(4) A,2 (S) e
n V  Efla(p

7  

d1)dm(P)12
i= 1 X  ?I 7 

Now we subdivide this subdivision again  (and the subdivided
regions being denoted by 3,-; ) ,  s o  th a t  the following inequality
holds

71

(5) E'vEH-(P, ai)drn(p) 12
.e%Y

n 71

‹ V2 [ I aii)dm (Mr=, x 1 „ j = ,

N ext by Minkowski's inequality, we have

(6) E *y (P, aii )dm(p)
Z.¼5

M .* ,(p , a,,)dm(p) 1 2
 } -110(.9)1=11 =1 zA-y

B y  (4), (5), (6) , w e have

A „(S )--e_<A 0(S ).

Since e  is  a rb itra ry , A ,(S )_A o (S ),  hence  A,(S) = A o (S ) .  For
exam ple , w hen the Lebesgue a r e a  A ( S )  is  f in i te ,  th e n  the
assumption A )  is fulfilled" and therefore A „(S )=A ,(S )=-A (S ) .

This research has been done by the kind guidance of Profes-
s o r  Toshizo M atsumoto and by the advice of my friend Shigeru
Mizohata, I  express my sincere thanks to both of of them.
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