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Riemann Spaces of Recurrent and Separated
Curvature and their Imbedding.
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Makoto MATSUMOTO

Introduction

T. Y. Thomas [4] showed that a hypersurface V, of type
more than two in a euclidean space is intrinsically rigid and the
Codazzi equation of V, is automatically satisfied as consequence of
the Gauss equation, if V, is of type more than three; and hence,
in the case of type more than three, V, is of class one if and only
if the Gauss equation is satisfied, so the conditions (7.4), (8.4) and
(8.10) of his paper is necessary and sufficient. Beside if V, is of .
type three, the condition (10.2) of his paper must be imposed.
Also he remarked that the discussion of space of type two requires
essentially different methods than those of higher type number.
Thus he did not discuss such spaces and that the present author
does not know any research for such spaces after the paper of T.
Y. Thomas.

The similar circumstances arise in the case of class two [1]
and the author discussed a special type of such spaces of clas two
and of lower type number [2].

In the first section of this paper we give a condition that there
exists a solution H,; satisfying the Gauss equation for V, of type
two and define a interesting class of space, which is called to be
of separated curvature. The second section gives a number of
necessary conditions, that the Codazzi equation is satisfied for V,
of type two. Moreover, in the rest two sections we deal with V,
of type two and class one from various points of views. At first,
in the third section, we define a semi-covariantly-constant tensor
and prove a interesting theorem for Ruse’s space of recurrent
curvature. Finally, in the fourth section, we define a semi-Codazzi
tensor and give a explicit form of one of the conditions for space
with projective connection to be of class one, which we dealed with
in a recent paper [3].
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1. Spaces of type two.

Let R, be the curvature tensor of z#-dimensional Riemann
space V, of class one. V, is of class one if and only if V, does
not flat and be imbedded in a (#+1)-dimensional euclidean space.
Then there exists a system of functions H,,(=Hj) (i,j=1, -, n)
satisfying the Gauss equation

Rijklekajl—}IﬁHjb (1-1)
and the Codazzi equation '
’ Hz‘j.k_Hik,j=0- (1.2)
We call H,, usually the second fundamental tensor of V,. It was
shown by T. Y. Thomas that the rank r of the matrix || Hy| is
equal to that of the matrix
l Rnbrl I?alm? """"" R.nhm ’
(EE - (13)
Rypi Rppoenennnn.. Ron |
if = is more than one. This number is called by him the fype
number of V,. In the case of r being equal to zero or one we

know well that V, is flat.
Consider V, of class one and type two, i. e.,

Hag Haj Hak =O.
Hbl Hbj ku (14)
Hcl ch Hclc

The inverse determinant of (1.4) is accordingly of rank zero or
one and hence, by means of (1.1), we have

Ram Rabjk =0.
Rbc{j Rbcjlc

From this it follows immediately that
] Rabij Rabkl =0.
Rmﬁj Rcdkl

This means that the matrix || Ryl (@, b: row, i,j: column) is of
rank zero or one. Hence if V, is of class one, the condition

(1.5)
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Zd(Rabc‘(l) 2 > 0 (1 .6)

ab,ed

must be imposed, say, the matrix || R.q i has exactly rank one.

Conversely, we shall show that the conditions (1.5) and (1.6)
are sufficient that there exists a system of functions H,, satisfying
(1.1). At first we have as a particular case of (1.5)

RahahRijlj - (Rabij) 2=,

Hence, if all R... vanish, the curvature tensor is evidently equal
to zero, contradicting to (1.6). Thus, say Ry.. does not vanish
and then we define S,, and e(==+1) as follows:

Riz.=e(S:)?
and next define the other S;; as follows:
R.;;=eS::S;,.
We have immediately, by means of (1.5)
Riu=eSi; Su. 1.7

It is verified easily that these S;; are determined uniquely to within
algebraic sign. Moreover the skew-symmetric matrix || Sy| is of
rank two. In fact we have from (1.7)

S,'jSkl + Silcslj + Silsjk= 0, (18)

because of a property of the curvature tensor. From (1.1), (1.4)
and (1.7) we have .

H.uSy+ H.Si+ HuSiy=0. (1.9)

Now, say, if R, does not vanish, we choose three functions H,,,
H,(=H,) and H,, arbitrarily, except that these must satisfy

Rme:HnHm_' (H12)2s
and let us define the other H;, by
H‘lkSI2=— HS‘M_HIQSM’
H,, 2= —HyS;— HynSh, G, k=3, m),
ijS]‘z: “Hﬁszfc—HJzS/m

remembering (1.9). Then it is easily proved by substitution that
these quantities H(7,j=1,---, ) satisfy the equation (1.1). Con-
sequently we have the
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Theorem 1. If V, is of type two, there exists a system of func-
tions H;(i,j=1,---,n) salisfying the Gauss equation (1-1) if and
only if the rank of matrix || Ruy | (a,b: row, i,5: column) is equal
to one.

Further we must choose H,;, H;, and H,, satisfying the Codazzi
equation (1.2) for V, to be of class one.

Now we have a type of space V,, such that the curvature
tensor satisfies (1.7), whenever V, is of class one or not. We
call such a space a space of separated curvature and S;; defined
by (1.7) the separated curvature of V,. For eXample, a simple
K*-space, a kind of Ruse’s spaces of recurrent curvature, dealed
with H. S. Ruse and A. G. Walker [5], is of separated curvature.
We shall return to such spaces in the third section.

2. Further conditions for ¥V, of type two and class one

Covariant differentiation of (1.9) with respect to # and subtrac-
tion the equations obtained by interchanging the index [ and i,
! and j7, I and k&, give

H,,;S,-u—H[jSW— Haksjil ""Hazsju=0, (2-1)
in consequence of (1.2) ; where we put
» , Sin=Six+ Syri+ Sy ,
Multiplying (2.1) byr H,;, and subtracting from this the equation
obtained by interchanging ¢ and b, we have
S1sSie— SiySine— SieSiz — SuSi=0, 2.2)

on account of (1.1) and (1.7). This is necessary for V, to be of
class one. Next, differentiating (1.9) covariantly with respect to x°
and subtracting from this the equation obtained by interchanging
a and b, we have '

Huusj/c).b - Hb(isjk).a= 0. ) (2-3)

Moreover, multiplying .(2.3) by S.. and summing the equations
obtained by cyclic permutation of, b, ¢ and d, we have

Ha(isjlc),bs('d + Ha(fsjk).csab + Ha(isjk),dsbc = 0,

making use of (1.9) ; and finally, the equation gives
Sh(zsjlc),bscﬂ + SI‘(iSjk),cSlb + SIL(isjk),lleﬂ = 0, (2-4)
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by the similar process as we have (2.2) from (2.1). This is also
necessary for V, of type twe being of class one.

Thus we have necessary conditions (2.2) and (2.4) for the
Codazzi equation (1.2) to be satisfied, but the author is certain
that these conditions do not sufficient. In fact, we have imme-
diately from (2.3) a system of linear homogeneous equations in
terms of only three quantities H,,, H,, and H,, and hence we have
certain conditions, under which these equations are compatible.
From this, in general, we have the ratio H, :H,:H, and then
these quantities are given themselves uniquely from the equation
Ryw=H,H,,— (H,)>. But, the discussion is very complicated in
details. We return to this by the different point of view in the
end of this paper.

3. Spaces of recurrent and separated curvature

[A]. Let atensor X, of second order be given. If there exists
such a function ¢(x) (== constant) that Yi=o-X; satisfies the
equation

Y ,=0, 3.1)

but not X, itself, then X, is called a semi-covariantly-constant
tensor (for brevity by scc we show). For example, the Ricci
curvature tensor R,; of Einstein space is scc and the factur o(x)
is equal to #/R, if the scalar curvature R does not vanish. We
give a condition for a given X;; to be scc. (3.1) is written in the
form

iy _
5x7Xab+aXah.j‘—0,
and if we put

oc

Pl (3.2)

1
c

we have the fundamental equation
17} X+ Xab,j= 0. (3.3)

First, we find a condition that algebraic equation (3.3), in
which p; is unknown, has a solution. It follows evidently from
(3.3)
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Xaond,j_ Xcd ab,j = 0. (3.4)

Conversely if (3.4) is satisfied, we define p,(j=1, ---,z) by the
equations

l’lvaJ:_ 29, (G=1,...,m),

for suitable choice of non-vanishing X,, and we see easily that
these p; satisfy (3.3). Since X; itself does not satisfy (3.1), p;
above determined is not all vanishing. And also, we see that a
solution of (3.3) is uniquely determined.

Next, we find a condition of integrability of (3.2), i.e.

C3=P3— Pis=0.

According to above discussion, since p, is expressible in terms of
X,; and its derivatives of first order, the above equation contains
these quantities alone and hence is the implicit form of condition
of integrability. However, it is preferable to write this condition
explicitly and we can do so. In fact, differentiating (3.3) covariantly
with respect to x* and subtracting from this the equation obtained
by interchanging j and %k, we have

Panb,I:—' Panb,j + Xab,jk - Xzb,lcj =0. (3.5

This must be satisfied by p, above determined as the solution of
(3.3). Multiplying (3.5) by X, and making use of (3.3) we have

Xab,_1Xm,k"' Xab,chd,j + X (Xab,jk— Xab.kj) =0. 3.6)
This is equivalent to
Xn.b,jlc_ X:b,u: 0, (3-7,)

because of muitiplying (3.6) by X, and making use of (3.4). More-
over (3.7") is written in the form

XibRaijk"'Xa[Rhfj/c:O- (3.7)

Conversely, if (3.4) and (3.7) are satisfied, we have (3.6) and
hence (3.5) is satisfied by p, being the solution of (3.3). Con-
sequently we have all p;=0. Thus we prove the

Lemma. A given tensor X,; is scc if and only if the equations
(3-4) and (3-7) are satisfied.

[B]. We treat again with V, of separated curvature and
assume that the separated curvature S;; is scc. It is distinguishing
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property that this tensor S, satisfies always (3.7). In fact, we
have
SibRa-_‘jk + Sain-ijlc =S (SipSac+ SuiSse) & U= — Sjksab eiS “=0,

by means of (1.8). Accordingly the assumption for S;; to be scc
imposes upon this tensor a condition (3.4) alone, i. e.

SwSt;,m—Si3Sk,=0. (3.3)
Covariant differentiation of (1.7) gives '
Ryt =€(St; S+ SiSim) »
and it follows frem (3.8)
Rijum=2e€ Si;Sim
Then, owing to (3.3), that is —p,.Sy=Su,.., we have finally .
Riup=Rip K, (Kn=—2ep,). 3.9

Consequently V, is of recurrent curvature. Conversely if V, of
separated curvature is of recurrent curvature, we see

R $irdm = R ik " I{m =e Susld * Km =e (S(JS/cl,m + Su,msu) .

From this it follows
1 1
Sij<Skl,m - TKMSH) + Skl<sij,m - 7Km S[j) = 0-

Since the rank of matrix || S, || is equal to two, there exists such
a codrdinate that at the origin only one component S;. of separated
curvature does not vanish. Referring to such a coordinate, (3.10)
with i=k=1, j=I=2 gives

Slﬂm —%K,,Sm:() (m=11"'s n)'

Putting i=1, j=2, and (k,1)==(1,2) in (3.10) we now have

_1
M 2
Consequently there exist quantities p, satisfying

pjskl+skl,j=0 (j’ k’ l=1,"',n),

Su K..Su=0 (Wl=1,"-,n).

and that these p; satisfies ¢;,—p.,=0, since (3.7) is always satisfied.
Hence S;; is scc and thus we have the interesting
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Theorem 2. A space V, of separated curvature is of recur-
rent curvature if and only if the separated curvature temsor is scc.
[C]. From (3.3) we have

P Xan=—Xon " ;

where ¢’ is a vector and p=py’. We shall prove that there is
a similar property for the separated curvature, if V, is of class
one, independent that S, is scc or not, that is to say, V, is of
recurrent curvature or not. In fact, we take a non-trivial solution
o® of equation

H,.0*=0 (,a=1,-,n). (3.11)
Contraction (2.3) by ¢®* we have
H, ch+HajTlcx+HakTi_1=0; (3.12)

where we put T,,=S;,-¢". From (3.12) it follows that the skew-
symmetric || Ty, || is of rank two or zero. Multiplying (3.12) by
H,, and subtracting the equation obtained by interchanging ¢ and
b we have

S”T.‘k + SUTI:: + Sz/chj =0, (3.13)

by means of (1.1) and (1.7). Refer to a similar codrdinate with
respect to T, as in the above paragraph of Theorem 2, if T; has
the rank two. It is easily verified from (3.13) that only one com-
ponent T, does not equal to zero. Consequently there exists a
quantity x»(Z=0) satisfying
x i_1=TijE Sij,k'aka (314)
or otherwise we have
T{jE Sij,/c '(71‘:0. (3.15)
Thus we obtain the
Thorem 3. If V. of separated curvature is of class one, we
have (3-14) or (3-15) ; where o' is a non-trivial solution of (3-11).
There are (#—2) linearly independent solutions of (3.11), for

everyone of which the equations (3.14) or (3.15) are always sa-
tisfied.

4. The semi-Codazzi tensors

We remember the Codazzi equation (1.2) and know that the



Riemann Spaces of Recurrent and Separated Curvature etc. 183

second fundamental tensor of hypersurface in a euclidean space
satisfies a system of differential equations of the following type:

Yai‘j— Yaj,z'=0- (4.1)

Let us generalize such a property and define a certain class of
tensors. If a tensor Xj; is given and there exists such a function
a(x) (sF constant) that Yi;=o-X; satisfies (4.1), then we call X;,
a semi-Codazzi tensor. The present author met with such a tensor,
when he discussed the imbedding problem of space with projective
connection [3], and at that time a condition of integrability was
given in a implicit form, in the sense that we noted in [A] of the -
third section. We just now discuss this problem throughoutly and
give a explicit form of the condition. Also a similar circumstance
arises as we discuss a Riemannian V, of type two and class one;
that is, we have three independent solutions of (1.9) and hence
H,; satisfying (1.2) must be determined as a linear combination
of them. Our problem is eventually reduced to that of finding
three coefficients of such a combination.
From (4.1) we have

a’ani - dinuj + oXalj= 0- (Xu?j = Xai,j - Xaj,i) .
Defining quantities p: as (3.2) this equation is reducible to
Pqu"" ‘UiXaj + thj= 0. (42)

Suppose that the rank of the matrix || Xi;|| is more than one in
the following. We see easily that a solution p; of (4.2) is uniquely
determined, if (4.2) admits a solution. At first we give a condi-
tion for (4.2) having a solution. Multiplying (4.2) by X, and
making use of (4.2) give

01X avrs= Xavige 4.3)
where we put
Xois= XeiXo;— Xy X,y
Xovige= XaiXors— X Xowe— XonXui;.
It follows from (4.3) that we have as a necessary condition
XoisXeaime— XoarnXaniju=0, : (4.4)

since (4.2) and (4.3) must be compatible. Conversely if (4.4) is
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satisfied, then we have p,, a solution of (4.2). In fact, since there
exists X,; ==0, say X,..,, by means of our hypothesis on the rank
of || X, |, we define p.(k=1,---,n) by

(’kal:‘:Xl?]ik-

And it follows from (4.4) that these p, satisfy all equations of
(4.3). We now put

Da!j =|”jXrn'_PiXaj + Xal’jv

that is a left-hand member of (4.2). By the similar method as we
get (4.3), we obtain

XaiDbkj - Xathki— kaDatj =0. (4-5)
At first suppose | X, | 0. Contraction (4.5) with respect to X**
gives immediately D,;=0(b,i,j=1,---,#). Next suppose | X;|=0
and then the rank of || X,,| is equal to =(# >72>2). Refer to
such a coordinate that at the origin the matrix || Xi;|| has the form

: == 0.

’ Xn---Xn

Making ure of the same process as in the case of | X, | 40 we
have D,;=0(b,1,j=1,--r). (4.5) with a >7;b,k < ¢ gives D,,=0
(@>t;i,j=1,--,n) and with @, b,k <t ;i,j >t gives D;;=0@<r;
i,j>7). And finally, putting a, b,7,j < r;k >t we have

Xm‘-Dbkj - XaijH = 0,

from which we obtain easily D,;,=0(a,i<r;k>7). Thus we
conclude that all D,,;=0 and consequently we proved above
statement.

The functions p; so determined do not all vanish; since
otherwise we should have all X,,;=0 from (4.2), contradicting to
our hypothesis.

Moreover a condition must be impose that we have a function
o(x). This is equivalent to a condition of integrability

Py = Piy—p;:=0;

where p, is the solution of (4.2). For this purpose we differentiate
(4.2) covariantly with respect to #* and sum the equations obtained
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by cyclic permutting of i,7, # and it follows that
i X+ 03X+ P2Xati— Xatijn =0. (4.6)

On the other hand we multiply (4.2) by p, and sum the equations
obtained by cyclic permutting of 4,7, 2. Then we get

piXajk + Pan/ci + f’ani,= 0. (47)
Hence it follows from (4.6) X,u»=0. That is equivalent to
Xb‘Ra‘gk + ijRa-bkt + kaRa-bfj = 0 (4.8)

making use of Ricci identity. Since (4.7) is satisfied by the solution
p; of (4.2), we have

Kootms X+ XoomiXare + XoormiXary=0, (4.9)

multiplying (4.7) by Xsu. and making use of (4.3). Thus we get
necessary conditions (4.8) and (4.9). Conversely if these conditions
are satisfied and that || Xy, || is of rank more than two, then we
conclude that the solution p, of (4.2) satisfies the equation p;;=0.
In fact we have

Xa(ipjk) + Xa(m% — Aa(ijp = 0, (4-10)

differentiating (4.2) covariantly. On the other hand it follows
from (4.3), (4.8) and (4.9) Xa(tj‘flk)=0 and Xu(ij,k)=0’ so that (410)
gives

Xespsi+ Xajora+ Xarpiy=0.

From this it follows easily that, if the rank of || X;;|| is more than
than two, all p; is equal to zero and thus in this case we proved
the above mentioned. But, in case of the rank two, we can not
conclude this from the above relation. ) :

In this particular case, we discuss directly as follows. That
is, if we differentiate (4.3) covariantly with respect to x and
subtract the equation obtained by interchanging k and [/, then we
have, in virture of p,=0

PleXabsj,z—P:Xabtj,kz abijkl ~ Labijlk (4.11)

Since (4.11) must be satisfied by the solution p, of (4.2), i.e.,
(4.3), we have easily

Xcdhkaabu,z“'Xamszabij,lc= c:Mm.(Xabtjk.l_ aba’jl,k)- (4-12)
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It is evident that (4.12) is necessary and sufficient for p,;=0 in
case of the rank of ‘matrix || X; || being two.

Finally we obtain a factor ¢(x), integrating (3.2) and this
o(x) does not equal to constant; since otherwise p; would be all
equal to zero. Thus we obtain a factor ¢(x) and then general
factor has the form ¢s(x), where the quantity c¢ is a constant of
integration. Summarizing above discussions we have the

Theorem 4. A mnecessary and sufficient condition that a given
tensor Xi; is semi-Codazzi type, is as follows.

(A). If ‘the rank of || Xy|l is more than two, the equations
(4-4), (4-8) and (4-9) are satisfied.

(B). If the rank of | Xij| is equal to two, the equations (4-4),
and (4-12) are satisfied.

Then the factor o(x) is determined uniquely lo within constant
coefficient.

It is, of course, evident that if the rank of || X, is more than
one, the equations (4.4) and (4.12) are necessary and sufficient
for X;, to be semi-Codazzi. But the condition (4.12) contains
derivatives of X, of second order, but not (4.8) and (4.9).

This (A) of Theorem 4 can be applied to the problem for
space with projective connection, which we remarked at the begin-
ning of this section. ‘

Now we discuss a generalized case of the above problem.
Let us determine N function 7,(p=1,---, N), such that Y,;=3lo,
X7, where X/, are given, satisfies the Codazzi equation. In this
case the equation. by which the factor are determined, is the
following

GP.jXé;_aI"iX(S+apX£j=0. : (4.13)
It follows by the same method as we have (4.6)
op(XER S+ XHR S+ X R,5,) =0 (4.14)

By means of this equation, if there exists at least one of X7,
R,}.4 not vanishing, then a number of ¢, is determined by the
remaining ¢, and hence Y,; is written as the form

Yy=2X% (Q=1,--,N<N);

where X7, is linear combination in terms of X7 and its coefficients
is already known. Proceeding in this way we get in general Y7,
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=0-Z,; finally, where Z; is linear combination of X7, and its
coefficients are already known. Thus we may apply the above
Theorm in general. But, unfortunately it happens that this method
cannot be applied to our main problem of V, of type two to be of
class one, because of from (1.9)

H’(LR‘al jl:)—Hb(sz]c)S =0.

Hence the equation as (4.14) imposes nothing upon ap.

Finally we shall touch on a particular type of semi-Coazzi
tensor X, such that the rank of the matrix || X, || is equal to one.
It follows from (4.2) that we obtain easily the following condi-
tions

XlkXb i Xlk)(alj = 0»
Xuinm + Xa;)(bu + XakXb{j:: 0.

(4.15)

Conversely if these conditions are satisfied, we obtain p,, solution
of (4.2), as follows:

Pj‘Xll AHIX]J X]J (.7:2:7 7’l) 5 (416)

where p, is arbitrary function and we must choose X,; ==0. Thus
we meet with a similar problem that we remarked at the below
paragraph of Theorem I.

We know that independent equations of (4.2) is given by
(4.16), so that we must determine a function p satisfying (4.16),
a system of partial differential equations. We see from the theories
of differential equation that (4.16) is equivalent to

U,/=x, 2 —X,,l—xn,gf——o =2, -, m), (417)
1
that is, if we find a solution of (4.17), we have immediately a
solution of (4.16). Therefore if (4.2) has a solution not to be

constant, (4.17) must constitute a complete system. We have from
(4.17)

(UU,-U,00f
__{(X,, aX" - X 80X, \ 9 _ X, 0Xy _ aXn )_

Y

3x' / ax oy’ X, ax’

_(X “881‘:? X aa)—(-;i-F Xua;{” X 8)(”)
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(X aAan X aXnk+ X BXM X aX’nJ 8f}
ox* ox' op
G, k=2, ~--,n), (4.18)
And, substituting (4.17) and making use of (4.8), (4.15) and the
equations obtained by differentiating the second of (4.15) covari-
antly, we have finally all (U.U,—U,U,)f=0. Hence (4.17) is

Jacobi’s complete system and so integrable. Consequently we have
the :

Theorem 5. A necessary and sufficient condition that a given
tensor X;; is semi-Codazzi type, where the rank of the matrix || X, ||
is equal to one, is that the equations (4-15) and (4-8) are satisfied.
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