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Introduction

T. Y. Thomas L41 showed that a hypersurface V . of type
more than two in a euclidean space is intrinsically rigid and the
Codazzi equation o f V„ is automatically satisfied as consequence of
the Gauss equation, i f  V . is of type more than three ; and hence,
in the case of type more than three, V. is of class one if and only
if the Gauss equation is satisfied, so the conditions (7.4), (8.4) and
(8.10) of his paper is necessary and sufficient. Beside i f  V . is of
type three, the condition (10.2) of his paper must be imposed.
Also he remarked that the discussion of space of type two requires
essentially different methods than those o f higher type number.
Thus he did not discuss such spaces and that the present author
does not know any research for such spaces after the paper of T.
Y. Thomas.

The similar circumstances arise in the case of class two [1]
and the author discussed a special type of such spaces of clas two
and of lower type number L2].

In the first section of this paper we give a condition that there
exists a solution H11 satisfying the Gauss equation fo r V . of type
two and define a interesting class o f space, which is called to be
o f  separated curvature. The second section gives a  number of
necessary conditions, that the Codazzi equation is satisfied for V.
of type two. Moreover, in the rest two sections we deal with V.
of type two and class one from various points of views. At first,
in the third section, we define a semi-covariantly-constant tensor
and prove a  interesting theorem for Ruse's space o f recurrent
curvature. Finally, in the fourth section, we define a semi-Codazzi
tensor and give a explicit form of one of the conditions for space
with projective connection to be of class one, which we dealed with
in a recent paper [3].
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1 .  Spaces of type two.

Let R i p i  b e  the curvature tensor of n-dimensional Riemann
sp a c e  V . of class one. V . is  of class one if and only i f  V„ does
not flat and be imbedded in a (n+1)-dimensional euclidean space.
T hen  the re  ex ists  a  system of functions H,1 (=H j i ) (4=1, ••, n)
satisfying the Gauss equation

(1.1)

and the Codazzi equation
H ik , j= -  0. (1.2)

W e call H,5 usually  the second fundamental tensor o f V „. It was
shown by T. Y. Thomas tha t the ra n k  r  of the matrix II H,1 11 is
equal to that of the matrix

Rabe]

(1.3)
R , Rpqr2

 

,

 

i f  7  i s  more th a n  one. This number is called by him the type
number o f V „. In the case of r being  equal to  zero or one we
know  w ell that V„ is  flat.

Consider V, of class one and type two, i. e.,

H u Hai = 0.
H u Hid (1.4)
H„

The inverse determinant of (1 .4 ) is accordingly of rank zero or
one and hence, by means of (1.1), w e have

Rab i j  R a b jk

R b u j  &elk

From this it follows immediately that

R au l Rabk1 =0.
(1.5)

RaH5 & r a t

This means that the matrix 11 1?„„,5 11 (a, b: row, i, j: column) is of

= 0.

rank zero or one. Hence if if . is of class one, the condition
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(R,,,,,) 2 >0( 1 . 6 )

must be imposed, say, the matrix 11Ra i d i II has exactly rank one.
Conversely, we shall show that the conditions (1.5) and (1.6)

are  sufficient that there exists a  system of functions H satisfying
( 1 .1 ) .  A t first we have as a  particular case of (1.5)

k b e t b R ij i j
—

 ( R o b i l )  2 = 0.

Hence, if  all R a b a ? , vanish, th e  curvature tensor is evidently equal
to zero, contradicting to (1.6) . Thus, say R1212 does not vanish
and then we define S 1 2 a n d  e (= ±1) a s  follows :

and next define the  other S,;  a s  follows :

R 1 2 1 j =  eS12S71•

We have immediately, by means o f  (1.5)

e S i j (1.7)

It is verified easily that these S,i  a re  determined uniquely to within
algebraic s ig n . Moreover th e  skew-symmetric matrix f S f i  is of
rank two. In  fact we have from (1.7)

Sf i S k i + S,kSi + S i i S i k  0 , (1.8)

because of a  property of the curvature tensor. From (1.1), (1.4)
a n d  (1.7) we have

H a iSi k  + Hai S o  + H a k S,i = 0. (1.9)

N ow , say, if R1
2 1 2  does not vanish, we choose three functions H„,

H„(= 1121 )  and H ,  arbitrarily, except that these m ust satisfy

R 1,2= H„H22 ( H 1 2 )2 9

and let us define the other H , by

f i lk S 1 2 =
 1 - 1 1 1 S 2 k - 1 - 1 1 2 S k l ,

H 2k S32 =
 H21S2k —  H22 S k i ,

 ( j,k = 3,• • • , n),

H ik  S12 = — 11i2S*1

remembering (1 .9 ) .  Then it is easily proved by substitution that
these quantities H i , (i, j= 1,• • n )  satisfy the equation ( 1 .1 ) .  Con-
sequently we have the
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Theorem 1 .  I f  V„, is of  type two, there exists a system of func-
tions H i j (i, j=1,..., n) satisfy ing the Gauss equation (1.1) if  and
only if  the rank of  matrix 11 kbo (a, b: row, i , j :  column) is equal
to one.

Further w e must choose Hi ., H 12 and H „ satisfying the Codazzi
equation (1.2) for V„ to  be  of class one.

N o w  w e  have a type of space V„, such that the curvature
tensor satisfies (1.7), w henever V„ is  o f  class one or not. We
call such a s p a c e  a space o f  separated curvature and S  defined
b y  (1.7) the separated curvature of V .  For example, a simple
K*-space, a kind of Ruse's spaces of recurrent curvature, dealed
w ith H. S. Ruse and A. G. W alker [5], is  of separated curvature.
W e shall return to such spaces in the third section.

2 .  Further conditions for V„ of type two and class one

Covariant differentiation of (1.9) with respect to x ' and subtrac-
tio n  the equations obtained by interchanging the index 1 and i,
1 and j, 1 and k , give

H a l S i k l  — 14Si/a — (2.1)

in consequence of (1.2) ; where we put

S ijk
=

 S i j , k +  S i +  S k i p

Multiplying (2.1) by H2h and  subtracting from this the equation
obtained by interchanging a  and b , we have

S hiS jk l
—

S hjS ik i
—

S hk S jil S l a S j k i —  0, (2.2)

on account of (1.1) and (1.7). This is necessary for V„ to  be of
class one. Next, differentiating (1.9) covariantly with respect to  x'
and subtracting from this the equation obtained by interchanging
a  and b, w e have

Ha (iS i k) ,b 
1
7
1

1,(iS jk )a
— OE (2.3)

M oreover, multiplying (2.3) b y  SG,  and summing the equations
obtained by cyclic permutation of, b ,  c  and d , w e have

11
,,(iS k ) ,b S e d + H a( iS ik ) ,c S ab + 11„ ( iS i , ) ,,,Sbg= 0,

making use of (1.9) ; and finally, the equation gives

S h(tS f k L bS cd+ S h(iS jk ),cS ill+ S lc(iS jk ),r1S be
= 0

, (2.4)
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by the similar process as we have (2 .2 ) from ( 2 .1 ) .  This is also
necessary fo r  V„ of type tw e  being of class one.

Thus we h av e  necessary conditions (2 .2 )  and  (2 .4 )  for the
Codazzi equation (1 .2 )  to be satisfied, b u t  th e  author is certain
that these conditions do not sufficient. In  fa c t, we have  imme-
diately from ( 2 .3 )  a  system o f  linear homogeneous equations in
terms of only three quantities H„, H 12 and  11,„ and hence we have
certain conditions, under which these equations are compatible.
From this, in  general, we have the  ra tio  H, : H  :H1 —  1 2  - — 2 2  a n d  then
these quantities are  given themselves uniquely from the  equation
R1212=1/111/22— (H12) 2 . B ut, the discussion is very complicated in
details. We return to this by the different point of view in the
end of this paper.

3. Spaces o f recurrent and separated curvature

[ A ] .  Let a tensor X o  of second order be given. If there exists
such a  function a ( x )  ( +  constant) that ,Ki --.0.•X o  satisfies the
equation

(  3.1)

b u t  not K J  itself, then X o  is called a  semi- covariantly - constant
tensor ( fo r  brevity by scc we show). For example, th e  Ricci
curvature tensor R o  of Einstein space is scc and  th e  fac to r a(x)
is equal to n /R , if the  scalar curvature R  does not vanish. We
give a  condition fo r a  given X i  to be scc. (3 .1 ) is written in the
form

adtahj-= U,

and if we put

   

1 aa.

 

(3.2)
a axi

we have the fundamental equation

(3.3)

First, we find a  condition  that algebraic equation (3 .3 ) , in
which p, is unknown, has a  so lu tio n . It follows evidently from
(3.3)



180 M akoto Matsumoto

(3.4)

Conversely if (3 .4 )  is satisfied, we define pi (j-----1 ,••• ,n )  by the
equations

— X„,j (j= 1, ..., n),

for suitable choice o f non-vanishing .2G, and we see easily that
these pi  satisfy ( 3 .3 ) .  Since X i  itself does not satisfy (3 .1 ), pi

above determined is not all vanishing. And also, we see that a
solution of (3 .3 ) is uniquely determined.

Next, we find a condition of integrability o f (3.2), i. e.

Pk,i
=  0.

According to above discussion, since pi  is expressible in terms of
2C, and its derivatives of first order, the above equation contains
these quantities alone and hence is the implicit form of condition
of integrability. However, it is preferable to write this condition
explicitly and we can do so. In fact, differentiating (3.3) covariantly
with respect to e and subtracting from this the equation obtained
by interchanging j  and k , we have

Pi
X akk

—  PkXab,j+ Xab,j1t
—

 X,,,,,kj= 0. (3.5)

This must be satisfied by pl  above determined as the solution of
(3 .3 ) .  Multiplying (3 .5) by X h i and making use of (3 .3) we have

X„b ,i X„,,k — Xa N k Xcd ,i + Xc a (X a b ,j k — Xa b ,4 ) = 0. (3.6)

This is equivalent to

X:11,,kj
=  0, (3.7')

because of multiplying (3 .6) by Xh , and making use of (3 .4 ) . More-
over (3 .7 ') is written in the form

XibRa i
.jk +  X a c l?  ik =  0. (3.7)

Conversely, i f  (3 .4 )  and (3 .7 )  are satisfied, we have (3.6) and
hence (3 .5) is satisfied by pi ,  being the solution of (3 .3 ) .  Con-
sequently we have all pj k = 0 .  Thus we prove the

Lem m a. A given tensor .X0  is sec i f  and only if the equations
(3 .4 )  and (3 .7 )  are satisfied.

[13]. We treat again with V. o f separated curvature and
assume that the separated curvature S,1 is scc. It is distinguishing
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property that this tensor S o  satisfies always (3.7). In fact, we
have

S„Ra.fl k +SraRb.i
i k--S i k(S„S„,+S„iShc)ge i = — SikSabSeige'= 0,

by means of (1 .8 ). Accordingly the assumption for S, to be scc
imposes upon this tensor a condition (3.4) alone, i. e.

S k I Sj i , m O. (3.8)

Covariant differentiation of (1.7) gives

R ip a,m =

and it follows from (3.8)

=-. 2e Si,Ski,—

Then, owing to (3.3), that is we have finally
R

ijk l,n1 = R i i k i  • (Km =  2e iom) •

Consequently Vn is o f recurrent curvature. Conversely
separated curvature is of recurrent curvature, we see

Ripcion = R ijk j
. Km =  e So S,,,, • Km = e (S o

From this it follows

(3.9)

if V„ of

1 1S„(Ski,„, — 
 2  

& S k i) + Ski(S„,„,— K,„ SO= O.
2

Since the rank of matrix II S, is equal to two, there exists such
a coordinate that at the origin only one component S„ of separated
curvature does not vanish. Referring to such a coordinate, (3.10)
with i=k=1, j----1=2 gives

1  re. r
S i n » , is .,„ ,-7 1 2 — k.n /  — 1, • • n)•

2

Putting i=1, j=2, and (k, 1)+(1, 2) in (3. 10) we now have

1- —K ,Sk i = 0  (m=1, — , n).
2

Consequently there exist quantities p i  satisfying

(j,k,1=1,•••,n),

and that these pj  satisfies Pi,k
—

 Pkd =0, since (3.7) is always satisfied.
Hence So is scc and thus we have the interesting
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Theorem 2 .  A  space V. of  separated curvature is of  recur-
rent curvature if  and only if  the separated curvature tensor is sec.

[C ] .  From (3.3) we have

P '
C

ab
=

 X a b d i j  ;

where pi is a  vector and p = p '.  We shall prove that there is
a  similar property for the separated curvature, i f  V„ is of class
one, independent that S is sec or not, that is to s a y , V, is of
recurrent curvature or not. In fact, we take a non-trivial solut ion
0-  of equation

H1„,(74=0 (i,a=1,•-•,n). (3.11)
Contraction (2 .3) by ( l b we have

Ha,Tj k+ H aiT  k i+ (3.12)

where we put T i k=S i k ,b •e .  From (3.12) it follows that the skew-
symmetric II T‘ j  II is  of rank two or zero. M ultiplying (3 .12 ) by
11,,1 and subtracting the equation obtained by interchanging a  and
b we have

+SiiTki + = 0, (3.13)

by means of (1 .1) and (1 .7 ) .  Refer to a  similar coordinate with
respect to T1  in  the above paragraph of Theorem 2, if T 1 has
the rank two. It is easily verified from (3.13) that only one com-
ponent T 1,  does not equal to zero . Consequently there exists a
quantity x (+  0 )  satisfying

(3.14)

or otherwise we have
T i i =7  S ii,k• O. (3.15)

Thus we obtain the
Thorem 3. I f  V „ o f  separated curvature is of class one, we

hav e (3 .14 ) o r (3 .15) ; where af is a non-trivial solution of (3.11).
There a re  ( n - 2 )  linearly independent solutions of (3.11), for

everyone o f which the equations (3.14) o r (3.15) are always sa-
tisfied.

4 .  The semi-Codazzi tensors

We remember the Codazzi equation (1.2) and know that the
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second fundamental tensor o f hypersurface in a euclidean space
satisfies a system of differential equations of the following type:

Y at, j Y a j ,i
=  O. (4.1)

Let us generalize such a  property and define a certain class of
tensors. If a tensor X i  is given and there exists such a function
a ( x )  (-+  constant) that Yk, a • X i  satisfies (4.1), then we call X j

a semi- Codazzi tensor. The present author met with such a tensor,
when he discussed the imbedding problem of  space with Projective
connection [3], and at that time a condition of integrability was
given in a implicit form, in the sense that we noted in [A] of the
third section. We just now discuss this problem throughoutly and
give a explicit form of the condition. Also a similar circumstance
arises as we discuss a Riemannian V, of type two and class one ;
that is, we have three independent solutions o f  (1.9) and hence
H i,  satisfying (1.2) must be determined as a linear combination
of them. Our problem is eventually reduced to that of finding
three coefficients of such a combination.

From (4.1) we have

6
1.1

2 (a1
- 6 , i X a j +  

(
T X rd l

=  O.
 ( X l i j =  X a t , j —

 X a j , i )  •

Defining quantities p  as (3.2) this equation is reducible to

X a i i =  O. (4.2)

Suppose that the rank of the matrix 11 X i I! is  more than one in
the following. We see easily that a solution pi  of (4.2) is uniquely
determined, if (4.2) admits a solution. At first we give a  condi-
tion fo r  (4.2) having a solution. Multiplying (4.2) by and
making use of (4.2) give

(
)
J a b , j

=
 X a b i jk  ; (4.3)

where we put
X a b i j —

 X a iX b i —
 X a jX 1 d ,

X a b i jk = X a iX b k i—  X 1 4 .7 (
uf j•

It follows from (4.3) that we have as a necessary condition

K a h i jX c l& X e d in .X a b i jk œ  0, (4.4)

since (4.2) and (4.3) must be compatible. Conversely if (4.4) is
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satisfied, then we have p i ,  a solution of (4.2). In fact, since there
exists X 3 + 0, say X 1 2 1 2  by means of our hypothesis on the rank
o f  Xi, II, we define p k (k =1 , • • • , n) by

P k X 1 2 1 2  X 1 2 1 2 k •

And it follow s from  (4.4) tha t these  pk  sa tisfy  a ll equations of
(4 .3 ). W e now put

Dai i = p 3 X „,— piX „,+ •„,„,

tha t is  a left-hand member of (4.2). By the similar method as we
g e t  (4.3), we obtain

X a iD b k i
—

 X a j A k i
—

 X b k p a i j
=  0. (4.5)

At first suppose I Xi, I 0. Contraction (4.5) w ith respect to  Xak
gives immediately Dbii = 0 (b, j =1,• • • , n). Next suppose I X i, I =0
and th en  the ra n k  o f I! 2C,, II is  e q u a l to  7(n > 2 ) .  Refer to
such a coordinate that at the origin the m a tr ix  X i ,  has the form

X I I  • • • Xi

JCS' . ; C C
0 + 0.

• •

:.1 1TI• • • :kV;
0 O

Making ure of the same process as in the case of I Xi,I + 0  we
have Db1j =0(b, j, j = 1 , • • • 9 7 ) .  (4.5) with a > r ; b, k 5 7  gives Da ii =
(a> r ;i, j=1,• • • , n) and with a, b, k  _<r ; j > 7  gives D„,,-----0(a ;
i  , j >  r ) .  And finally, putting a, b ,i,j ; k > r  w e have

Xa ,A k i — X a j D b k i=

from  w hich  w e  ob ta in  easily  D,,,,=- 0(a,i_<_r ;k > r ) .  Thus we
c o n c lu d e  th a t  a ll Da ,,= 0  and consequently we proved above
statement.

The functions p , so  determ ined do not a ll vanish  ; since
otherwise we should have all X,„,=0 from  (4.2), contradicting to
our hypothesis.

Moreover a condition must be impose that we have a function
a (x ). This is equivalent to a condition of integrability

— Pm =0;
where p ,  is  the solution of (4.2). For this purpose we differentiate
(4.2) covariantly with respect to e  and sum  the equations obtained
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by cyclic permutting of 1, j, k  and it follows that

PiXajk+ PjXalci+ Xa(ii,k)-= 0. (4.6)

On the other hand we multiply (4 .2) by iok and sum  the equations
obtained by cyclic permutting of i , j , k .  Then we get

PiXaik+ PjXaki+ PkXadj
=  O. (4.7)

Hence it follows from (4.6) Xa ( ii ,k ) =  0 . That is equivalent to

XbiRa•bjk+ XbjRa,ki+ XuRa!ii =  0 (4.8)

making use of Ricci identity. Since (4.7) is satisfied by the solution
pi  o f (4 .2), w e have

X ba„,,X i j k+ Xbdm i Xaki+ X;„/,,,k X „i i = 0, (4.9)

multiplying (4 .7) by Xbc i m  and making use of ( 4 .3 ) .  Thus we get
necessary conditions (4.8) and (4 .9 ) .  Conversely if these conditions
are satisfied and that II X i j  II i s  o f ra n k  more than tw o, then w e
conclude that the solution pi  o f (4 .2) satisfies the equation pii =0.
In fact we have

X.(04)+ Xa(i1PC — Xaw,k)
=  0, (4.10)

differentiating (4 .2 ) covarian tly . On the other hand it follows
from (4.3), (4.8) and (4 .9) X ,w ,hok)=0 and X a(ii,k )-=0, so that (4.10)
gives

Xait) X a p k i +  X akPii= 0.

From this it follows easily that, if the rank of II Xij  H is  more than
than two, all p i k  is equal to  zero and thus in this case we proved
the above m entioned. But, in case of the rank two, we can not
conclude this from the above relation.

In this particular case, we discuss directly as follows. That
is, if we differentiate (4 .3) covariantly w ith  respect t o  x i and
subtract the equation obtained by interchanging k  and 1, then we
have, in virture of pi k =0

X a b i j k ,1 X a b i j i , k (4.11)

Since (4 .11) must be satisfied  by the solution pi  o f  (4.2), i. e.,
(4 .3), we have easily

— — Xam.„& (Xabok,, Xibi.o,k) • (4.12)
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It is evident that (4.12) is necessary and sufficient for pii = 0 in
case of the rank of m atrix II X  J being two.

F ina lly  w e  ob ta in  a factor a(x ) , integrating (3.2) and this
c (x ) does not equal to constant ; since otherwise pi  would be all
e q u a l to  zero. T h u s  w e  o b ta in  a factor a(x ) and then general
factor has the form  ca(x ), where the quantity c  is a constant of
integration. Summarizing above discussions w e have the

Theorem  4 .  A  necessary and sufficient condition that a given
tensor JC,j  is  semi-Codazzi type, is as follows.

( A ) .  If  th e  ran k  o f  I! Xii i! is m ore than tw o, the equations
(4 .4 ) , (4 .8 )  an d  (4 .9 ) are satisfied.

(B ) . If  the rank  of  11X,-1 is equal to two, the equations (4.4),
and  (4.12) are satisfied.

Then the factor a(x ) is determined uniquely to within constant
coefficient.

I t  is, of course, evident that if the rank of II Xi i  II is more than
one, the equations (4.4) and (4.12) are necessary and sufficient
for X  to  b e  s e m i- C o d a z z i .  But the condition (4.12) contains
derivatives of X,i  of second order, but not (4.8) and (4.9).

This (A )  o f Theorem  4 can be applied to  the problem for
space with projective connection, which we remarked at the begin-
ning of this section.

N ow  w e d iscuss a  generalized case of the above problem.
Let us determine N  function (7,, ( p =  , • • • ,  N ) ,  such  that Y l i =
xri , where X f; are given, satisfies the Codazzi equation. In this
case the equation. by  w hich the factor are determ ined, is the
following

(4.13)

It follows by the same method as w e have (4.6)

(4.14)

By m eans o f this equation, i f  the re  ex ists  a t least one of
R I .0 )  not vanishing, then a number of a p  is  de te rm ined  by  the
remaining a p  and hence Y i ;  is  w ritten  as the form

= ÀQ X:) .1 (Q 1, • • • , N <N);

where X (4 is linear combination in terms of X  and its coefficients
is already known. Proceeding in this w ay w e get in genera l r i
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finally, where Z ,  is linear com bination o f Xf; and its
coefficients are a lready  know n. T hus w e m ay  app ly  the above
Theorm in g en era l. But, unfortunately it happens that this method
cannot be applied to our main problem of V. of type two to be of
class one, because of from  (1.9)

ILy R laibqk) - =  IIN IS A S ab. =  O.

Hence the equation as (4.14) imposes nothing upon c p .

Finally w e shall touch on  a  particular type of semi-Coazzi
tensor X e,, such  tha t the rank of the m atrix  X i I II is equal to one.
It fo llo w s fro m  (4 .2 )  that we obtain easily the following condi-
tions

X t h X J  X bkX aii =  0,
(4.15)

X uiX bik+ X ajX ;M d:+ X akX bil =  O.

Conversely if these conditions are satisfied, we obtain p i ,  solution
of (4.2), as follows :

( j= 2 ,- - ,n ) ; (4.16)

where is  a rb it ra ry  fu n c t io n  and we must choose X11 +  O. T h u s
we meet with a sim ilar problem  that w e rem arked at the below
paragraph of Theorem I.

W e know  that independent equations o f  (4 .2 ) is given by
(4.16), so that w e must determine a function p satisfying (4.16),
a system of partial differential equations. We see from the theories
of differential equation that (4.16) is equivalent to

(j= 2, •••, n ),  (4.17)axj a x ' ap
tha t is, if w e fin d  a  solution o f (4 .17), w e  have immediately a
solution of (4 .1 6 ) . T h ere fo re  if  (4 .2 )  h a s  a solution not to be
constant, (4.17) must constitute a complete system. W e have from
(4.17)

(Uk Uj - -

{ (x  x — a:ci
_( ) ( f l a x ,  ) ( f l ax', j ax,,._ x k ax,i ) af

axk axi ax1 I axl
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a X i l k  +
axk axi axl axi ap

(4.18)

And, substituting (4.17) and making use of (4.8), (4.15) and the
equations obtained by differentiating the second of (4.15) covari-
antly, w e  have f in a lly  a ll ( Uk Ul —Uj Uk ) f= 0 .  H ence (4.17) is
Jacobi's complete system and so integrable. Consequently we have
the

Theorem 5 .  A necessary and sufficient condition that a given
tensor Xi j  is  semi-Codazzi type, where the rank  of the matrix
is equal to one, is that the equations (4.15) and (4.8) are satisfied.
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