A Note on the Riemann-Roch-Weil's Theorem

Bv

Ryoichiro KAWAI

(Received October 1, 1951)

The beautiful theory of hyperabelians functions through which A. Weil took the remarkable first step into the "non-abelian mathematics" is founded on the basis of the Riemann-Roch's theorem concerning with the generalized divisors which he introduced. He proved this theorem, using the abelian integrals of the 3rd kind, in a purely function-theoretical way. Under a remark of Mr. Igusa, that this theorem will be innerly related to the Riemann-Roch's theorem which E. Witt proved in the case of simple algebras over function-fields, in this note we shall show a relation between the above two theorems and prove the Weil's theorem in a purely algebraic way.

During my investigation I have received many kind advices from Mr. Igusa to whom I express my sincere gratitude.

§ 1. "Signature."

Let K=k(x,y) be an algebraic function-field of one variable over an algebraically closed constant-field k, and let S be the ring of all matrices of degree m whose elements belong to K. We shall now construct a certain kind of Riemann-Roch's theorem in S. The letter P always denotes a prime divisor of K, and K_P , S_P denote the P-adic completion of K, S respectively.

We shall associate a positive integer n=n(P) to each prime divisor P of K in the following way.

$$n(P) > 1$$
, $(n, p) = 1$ for finite number of $P \neq P_{\infty}$'s, $n(P) = 1$ for the other prime divisors,

where p is the characteristic of k. We shall call these integers n(P) given in this way the "Signatures" of S (or of K).

For eachone of finite number of P's for which n(P) > 1, we choose a galois-extension Z_P such that $[Z_P : K_P] = n(P)$. Then the prime divisor P is completely ramified and therefore $P = P^n$

in Z_P . The ramification theorem of Hilbert shows that Z_P/K_P is cyclic as n is relatively prime to the characteristic p of K.

Lemma 1. If (n, p) = 1, there exists a number II/P such that

$$\Pi^{\sigma} = \zeta \Pi$$

where σ is a generator of the galois-group of Z_P over K_P , and ζ is a primitive root of $x^*-1=0$.

Proof: Let II be a number in P such that, III/P, then we have

$$\Pi^{\sigma^i} = \varepsilon_i \Pi \quad (i=1, 2, ..., n-1, \varepsilon_0 = \varepsilon_n = 1.)$$

with a unit ε_i of K_P and $\varepsilon_i = \varepsilon_{i-1}^{\sigma} \varepsilon_i$. Hence if we put

then we have
$$\epsilon_i \equiv \eta \pmod{P}$$
, $\epsilon_i \equiv \eta^i \pmod{P} \ (i=1,2,...,n-1,n)$, therefore $\eta^n = 1$, that is $\eta = \zeta^i$,

where ζ is a primitive root of $x^n - 1 = 0$ and $1 \le s < n$.

Then a number

$$\bar{H} = \sum_{i=0}^{n-1} \zeta^{-si} H^{\sigma^i} = \left(\sum_{i=0}^{n-1} \zeta^{-si} \varepsilon_i\right) H$$

satisfies all the conditions of the Lemma 1. For

$$(\sum_{i=0}^{n-1} \zeta^{-si} \varepsilon_i) \equiv n \pmod{\boldsymbol{P}},$$

this shows that II/P, $II^o = \zeta^s II$ and that (s, n) = 1.

§ 2. Local divisors. (Canonical form.)

Let $P \cap k(x) = \mathfrak{p}$, and let \mathfrak{o}_P be the integral domain of K with respect to $k(x)_{\mathfrak{p}}$, then $I_P = (\mathfrak{o}_P)_m$, which is the set of all matrices of degree m over \mathfrak{o}_P is a "Maximalordnung" of S and the other "Maximalordnung" I_P of S_P are represented as

$$I_P' = \rho^{-1}I_P\rho$$

with a regular element ρ of S_P . I_P has only one two-sided prime ideal (P) and the other two-sided ideal of it are powers of (P).

In the case n(P)=1, all the left-ideals \mathfrak{A}_P of I_P are principal and are uniquely normalized as

$$\mathfrak{A}_{P} = I_{P} \theta_{P}$$

where

$$\boldsymbol{\theta}_{P} = \begin{pmatrix} \theta_{11} & \theta_{12}, \dots, & \theta_{1n} \\ 0 & \theta_{22} & \theta_{23}, \dots, & \theta_{2n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \dots, & 0, & \theta^{nn} \end{pmatrix}$$

and $\theta_{ik}(i < k)$ are determined uniquely modulo θ_{ik} (see Weil [1], Witt [2]). We shall call a left-ideal \mathfrak{A}_P , for which θ_P is regular, a *local leftdivisor* of S for n(P) = 1. If we restrict the elements of I_P to the set of all P-adic units, we get a Weil's divisor $U_P \theta_P$.

For n(P) > 1, if a left-ideal $\mathfrak{N}_P = I_P \theta_P$ of I_P in Z_P satisfies the following two conditions, then we shall call it a *local left-divisor* of S.

$$\theta_{\mathbf{P}}$$
 is regular in S , (1)

 $\mathfrak{A}_{P}^{\sigma} = \mathfrak{A}_{P}$ for all σ of the galois-group of Z_{P} over K_{P} .

We shall call this θ_P the representative of \mathfrak{A}_P .

Let θ be a representative of a local divisor and let $\theta^{\sigma} = V\theta$, then the other representative of the same divisor is given by $\theta' = U\theta$, where U is a modulo P unimodular matrix of S_P , and θ' satsfies $\theta'^{\sigma} = V'\theta'$. Clearly $V = U^{\sigma}VU^{-1}$. Now if we put

$$\begin{cases} V \equiv A \pmod{P} \\ V \equiv A' \pmod{P} \\ U \equiv U_0 \pmod{P}, \end{cases}$$

then we have $A' = U_0 A U_0^{-1}$. And if we assume $\theta^{\sigma^{\nu}} = V_{\nu} \theta$ $(\nu = 1, ..., n)$, then we have $V_{\nu} = V_{\nu-1}^{\sigma} V$, therefore $V_{\nu} \equiv A^{\nu} \pmod{P}$ $(V_0 = E_m)$. From $A^n = E_m$, there exists a regular constant matrix M such that

$$A = M^{-1}DM$$
, $D = (\partial_{ij}\zeta^{d_i})$,

where ζ is a primitive root of $x^n-1=0$ of Lemma 1., and d's are uniquely determined by

$$n-1 \ge d_1 \ge \dots \ge d_k \ge 0 > d_{k+1} \ge \dots \ge d_m \ge -(n-1), d_1 - d_m < n.$$

Clearly these d's are characteristic to θ . Replacing θ by $\theta' = M\theta$ we get a divisor θ satisfying (we write θ instead of θ')

$$\theta^{\sigma} = V\theta$$
, $V \equiv D \pmod{P}$, $V \equiv D^{\sigma} \pmod{P}$.

Then the divisor

$$\bar{\theta} = \sum_{\nu=0}^{n-1} D^{-\nu} \theta^{\sigma^{\nu}} = \left(\sum_{\nu=0}^{n-1} D^{-\nu} V_{\nu}\right) \theta$$

represents the same divisor as θ , since

$$\sum_{\nu=0}^{n-1} D^{-\nu} V_{\nu} \equiv n E_m \pmod{\mathbf{P}}$$

is modulo P unimodular, and clearly we have $\bar{\theta}^o = D\bar{\theta}$. From now on we always choose as a representative of a divisor such a θ that satisfies $\theta^o = D\theta$. Then if we take a matrix $\Delta = (\delta_{ij}\Pi^{ai})$, so the matrix $\theta_0 = \Delta^{-1}\theta$ satisfies $\theta_0^\sigma = \theta_0$, i.e., is a divisor of K_P . Hence we have proved

Lemma 2. For n(P) > 1, each local left-divisor θ_P is uniquely normalized in the following form

$$\theta_P = \mathcal{A}_P \cdot \theta_{0P}$$

where

and

$$\Delta_{P} = (\partial_{ij} H^{d_i}), n-1 \ge d_1 \ge \dots \ge d_m \ge -(n-1), d_1 - d_m < n.$$
and θ_{0P} is a local left-divisor of K_P .

§ 3. Divisors and their ideals.

If we were given a left-divisor $\mathfrak{A} = \prod_{n(P)=1}^{n} \mathfrak{A}_{P} \prod_{n(P)>1}^{n} \mathfrak{A}_{P}$, where \mathfrak{A}_{P} and \mathfrak{A}_{P} are all equal to E_{m} but a finite number of P, the set of the numbers of S

$$a = \prod_{n(P)=1}^{\infty} a_{P} \prod_{n(P)>1} a_{P}$$

which satisfy the conditions

$$u_P \in \mathfrak{A}_P$$
 for all $P \neq P_{\infty}$, $n(P) = 1$, $\mathfrak{A}_P \in \mathfrak{A}_P$ for all P . $n(P) > 1$.

form an I-ideal (\mathfrak{A}) . For (1°) if $\alpha, \beta \in \mathfrak{A}$, then it follows $\alpha_{P} \in \mathfrak{A}_{P}$, $\beta_{P} \in \mathfrak{A}_{P}$ for all $P \neq P_{\infty}$'s, n(P) = 1 and $\alpha_{P} \in \mathfrak{A}_{P}$, β_{P} , $\in \mathfrak{A}_{P}$ for all P, n(P) > 1, therefore $(\alpha \pm \beta)_{P} = \alpha_{P} \pm \beta_{P} \in \mathfrak{A}_{P}$ and $(\alpha \pm \beta)_{P} = \alpha_{P} \pm \beta_{P}$ i.e. $\alpha \pm \beta \in (\mathfrak{A})$. (2°) If $\alpha \in (\mathfrak{A})$, $o \in I$, it follows that $(o\alpha)_{P} = o\alpha_{P} \subset I_{P}\alpha_{P} \subset \mathfrak{A}_{P}$ and $(o\alpha)_{P} = o\alpha_{P} \subset I_{P}\alpha_{P} \subset \mathfrak{A}_{P}$ i.e. $o\alpha \in (\mathfrak{A})$. (3°) Because \mathfrak{A}_{P} is an I_{P} -ideal, there is a number μ_{P} such that $\mu_{P}\mathfrak{A}_{P} \subset I_{P}$ for each P, n(P) = 1 and $\mu_{P}\mathfrak{A}_{P} \subset I_{P}$ for n(P) > 1. But μ_{P} (or μ_{P}) = E_{m} all but a finite number of P(or P). Let

$$\mu_P = (\mu_{ij}^{(P)})$$
 and $\mu_{P} = (\mu_{ij}^{(P)})$ for $P = P_1, ..., P_i$, $P = P_1, ..., P_i'$

and

$$\mu_{ij}^{(P)} = \pi^{\nu_{ij}(P)} \varepsilon_{ij}^{(P)}$$
 and $\mu_{ij}^{(P)} = II^{\nu_{ij}(P)} \varepsilon_{ij}^{(P)}$ (π/P)

then there exists a matrix of S such that

$$\mu = (\mu_{ij}), \ \mu_{ij} = \pi^{\nu ij} \varepsilon_{ij}; \ \nu_{ij} \geq \nu_{ij}^{(P)} \text{ and } \nu_{ij} \geq \nu_{ij}^{(P)}$$

and clearly this μ satisfies $\mu(\mathfrak{A}) \subset I$.

From the above we can conclude that every left-divisor uniquely determins a left-ideal of I, and that, if \mathfrak{A}_P and \mathfrak{A}_P are normal, (\mathfrak{A}) is also normal and vice versa.

The above all things which we have proved about left-divisors and left-ideals are also true for any right-divisors and right-ideals. (See [2], [3]). If we are given a left-divisor $\mathfrak{A} = \Pi \mathfrak{A}_P \Pi \mathfrak{A}_P$, then the problem of finding an element of S which satisfies the conditions

$$\mathfrak{A}_{P} \phi \in I_{P}$$
 and $\mathfrak{A}_{P} \phi \in I_{P}$ for all P and P ,

is reduced to the problem of finding an element (of S) from the right-ideal (\mathfrak{A}^{-1}) such that

$$\Phi \in I_P$$
 for all P_{∞} 's

because of $\mathfrak{A}_{P}\mathfrak{A}_{P}^{-1}=I_{P}$ and $\mathfrak{A}_{P}\mathfrak{A}_{P}^{-1}=I_{P}$ for all P and P (Cf. [2], [3], [4]). The number of linearly independent θ satisfying (3), we shall call dim \mathfrak{A} . Let $\theta=(\varphi_{ij})$ (i,j=1,2,...,m) and assume that the given divisor $\mathfrak{A}=\prod_{n(P)=1}^{H}\theta_{P}\prod_{n(P)>1}^{H}\theta_{P}$ is normalized such that $\theta_{P}=\mathcal{A}_{P}\theta_{0P}$, \mathcal{A} and θ_{0P} means as before the fractional and integral part of the local divisor θ_{P} , then the second condition of (3) is transformed as follows:

If we put $\theta_0 \Phi = \Psi$

in
$$\Delta \theta_{\scriptscriptstyle 0} \cdot \phi \epsilon I_{P}$$
,

then we have $\Psi \in I_P$ and $\Theta_0 \Phi \in I_P$

therefore Φ must lie in the ideal (θ_0^{-1}) . And if we put $\Psi = (\psi_{ij})$, then we have

$$\Delta \Psi = (\psi_{ij} \Pi^{d_i}) \ (d_1 \ge d_2 \ge \dots \ge d_m, \ n-1 \ge d_i \ge -(n-1)),$$

and the condition $\Delta \Psi \in I_P$ insists that

$$\psi_{k+i,j} \equiv 0 \pmod{P} \quad {i=1, 2, ..., m-k \choose j=1, 2, ..., m}.$$

Therefore Ψ must satisfy the above m[m-k(P)] conditions and

$$\dim \mathfrak{A} = \dim \widetilde{\mathfrak{A}} - m \sum_{n(P)>1} [m - k(P)]$$
 (4)

where $\widetilde{\mathfrak{A}}$ denotes K-divisor

$$\widetilde{\mathfrak{A}} = \prod_{n(P)=1}^{n} \theta_{P} \prod_{n(P)>1}^{n} \theta_{0P}.$$

§ 4. Riemann-Roch-Witt's theorem for given "Signatures". Lemma 3. (Riemann-Roch-Witt's theorem).

$$\dim \widetilde{\mathfrak{A}}_{12} = \deg \widetilde{\mathfrak{A}}_{12} - G + 1 + \dim \widetilde{\mathfrak{A}}^{21}$$

where $\widetilde{\mathfrak{A}}_{12}\widetilde{\mathfrak{A}}^{21}=\mathbf{k}$ and \mathbf{k} denotes the canonical divisor of K, and G the genus of S, and we assume that $I_1=I$.

The proof is well known, so we shall not write it down (see [2]). A. Well introduced a symbol $I(\theta)$ by

$$I(\theta) = \sum_{n(P)=1} I(\theta) + \sum_{n(P)>1} I(\theta_P)$$

where $I(\theta_P)$ and $I(\theta_P)$ is defined for each P and P by

det
$$\theta_P = P^{I(\theta_P)}$$
 and det $\theta_P = P^{I(\theta_P)}$

The theorem 6 of Deuring's "Algebran" in VI § 4 (P. 82) (see [5]) shows that, if we put $P \cap k(x) = \mathfrak{p}$,

$$(\mathfrak{p}^{I(\theta_{0P})})^m = \mathfrak{p}^{\deg \theta_{0P}} (\theta_{0P} \epsilon S_P),$$

therefore we have

$$\deg \theta_{0P} = m I(\theta_{0P}). \tag{5}$$

Hence

$$\deg \theta_0 = \sum_{P} \deg \theta_{0P} = m \sum_{P} I(\theta_P) = m I(\theta_0),$$

therefore in lemma 3 we have

$$\operatorname{deg} \ \widetilde{\mathfrak{A}}_{12} = m \sum_{n(P)=1} I(\theta_P) + m \sum_{n(P)>1} I(\theta_{\theta P}).$$

According to the Weil's definition, if we put

$$\operatorname{deg} \mathfrak{A}_{12} = m \left[\sum_{n(P)=1} I(\theta_P) + \sum_{n(P)>1} I(\theta_P) \right],$$

so we have

$$\deg \mathfrak{A}_{12} = m \sum_{n(P)1} I(\theta_P) + m \sum_{n(P)>1}^m [I(\theta_{0P}) + \sum_{i=1}^m \frac{d_i}{n(P)}].$$

From Lemma 3, we have

$$\begin{split} \dim \ \mathfrak{A}_{12} &= \deg \widetilde{\mathfrak{A}}_{12} - G + 1 + \dim \, \widetilde{\mathfrak{A}}^{21} - m \sum_{n(P) > 1} \left[m - k(P) \right] \\ &= \deg \, \mathfrak{A}_{12} - G + 1 + \dim \, \mathfrak{A}^{21} - m \sum_{n(P) > 1} \left[\sum_{i=1}^{m} \frac{d_i}{n(P)} + m - k(P) \right] \\ &= \deg \, \mathfrak{A}_{12} - G + 1 + \dim \, \widetilde{\mathfrak{A}}^{21} - m \sum_{n(P) > 1} \left[\sum_{i=1}^{k(P)} \frac{d_i}{n(P)} + \sum_{i=k+1}^{m} (1 + \frac{d_i}{n(P)}) \right] \\ &= \deg \, \mathfrak{A}_{12} - G + 1 + \dim \, \widetilde{\mathfrak{A}}^{21} - m \sum_{P} \sum_{i=1}^{m} \left\langle \frac{d_i}{n(P)} \right\rangle. \end{split}$$

In this formula $\langle * \rangle$ denotes the fractional part of *, and dim $\mathfrak A$ denotes also the rank of the modul generated by the differntial matrices $d\Phi$ (Cf. [1]) satisfying

$$d\Phi \mathfrak{A}_{12}^{-1} \in I_P$$
 and $d\Phi \mathfrak{A}_{12}^{-1} \in I_P$ for all P and P .

For n(P)=1, from $d\theta = \theta k$, $\theta \mathfrak{A}_{12}^{-1} k \epsilon I_P$ and $d\theta \mathfrak{A}_{12}^{-1} \epsilon I_P$ are equivalent. And for n(P)>1, $\theta \theta_0^{-1} d^{-1} k \epsilon I_P$ and $d\theta = \theta k_P = \theta k P^{n-1}$ shows the equivalence of $d\theta \mathfrak{A}_{12}^{-1} \epsilon I_P$ and $\theta \mathfrak{A}_{12}^{-1} k \epsilon I_P$.

Theorem 1. (Witti's theorem for given "Signatures.")

$$\dim \mathfrak{A}_{12} = \deg \mathfrak{A}_{12} - G + 1 - m \sum_{P} \sum_{i=1}^{m} \left\langle \frac{d_i}{n(P)} \right\rangle + \dim \widetilde{\mathfrak{A}}^{21},$$

where $\mathfrak{A}^{\mathbb{P}_1}$ is reguarded as the dimension of $d\Phi$ which satisfies

$$d\Phi \mathfrak{A}_{12}^{-1} \in I_P$$
 and I_P for all P and P ,

Remark: In our case, the genus G of S is easily computed, and we have

$$G = m^2(g-1) + 1$$

where g is the genus of the function-field K.

§ 5. Relation to the Riemann-Roch-Weil's theorem.

If we are given two divisors θ and θ' of degree r and r' respectively, the rank of the modul generated by the following r by r' matrix θ of K which satisfies the condition

$$\theta_P \theta \theta_P'^{-1} \epsilon \, I_P^{(r,r')} \text{ and } \theta_P \theta \theta_P'^{-1} \epsilon \, I_P^{(r,r')} \text{ for all } P \text{ and} P,$$

is denoted by $N(\theta, \theta')$, where $I_P^{(r,r')}$ and $I_{P}^{(r,r')}$ denote the modul of all r by r' matrices of o_P and o_P respectively. (See [1] Chapitre I, Cf. [5]). Using theorem 1, this number $N(\theta, \theta')$ is easily computed.

The Kroneckerian product $\theta \times {}^{t}\theta'^{-1}$ i. e.

$$\theta \times {}^{t}\theta'^{-1} = \prod_{n(P)=1} \theta_{P} \times {}^{t}\theta'_{P}^{-1} \prod_{n(P)>1} \theta_{P} \times {}^{t}\theta'_{P}^{-1}$$

gives also a divisor of $K_{rr'}$ in our sense. If we denote by $\dim(\theta \times {}^t\theta'^{-1})$ the rank of the modul generated by the elements of $K_{rr'}$ which are determined by the conditions

$$\theta_P \times {}^t \theta_P'^{-1}$$
. $\theta \in I_P$ and $\theta_P \times {}^t \theta_P'^{-1} \cdot \theta \in I_P$ for all P and P .

So we can easily verify that

$$\dim (\theta \times {}^{t}\theta'^{-1}) = rr' N(\theta, \theta'). \tag{6}$$

On the other hand, by theorem 1

$$\begin{split} \dim \ (\theta \times {}^{t}\theta'^{-1}) = & \deg \ (\theta \times {}^{t}\theta^{-1}) - G + 1 \\ & - rr' \sum_{P} \sum_{i=1}^{r} \sum_{i'=1}^{r'} \left\langle \frac{d_{i} - d'_{i'}}{n(P)} \right\rangle \ + \dim \ ({}^{t}\tilde{\theta}' \times \tilde{\theta}^{-1} \cdot \boldsymbol{k}), \end{split}$$

where $\tilde{\theta} = \prod_{n(P)=1}^{n} \theta_{P} \prod_{n(P)>1}^{n} \theta_{0P}$ and $\tilde{\theta}' = \prod_{n(P)=1}^{n} \theta'_{P} \prod_{n(r)>1}^{n} \theta'_{0P}$.

But using (5) and the remark of theorem 1, we have

$$\dim (\theta \times {}^{t}\theta^{-1}) = rr' \left[r' I(\theta) - rI(\theta') \right] - (rr')^{2} (g-1)$$

$$-rr' \sum_{P} \sum_{i=1}^{r} \sum_{\nu=1}^{r'} \left\langle \frac{d_{i} - d_{i'}}{n(P)} \right\rangle + \dim ({}^{t}\tilde{\theta'} \times \tilde{\theta}^{-1} \cdot \mathbf{k}), \qquad (7)$$

and dim $({}^{\iota}\tilde{\theta^{\prime}} \times \tilde{\theta}^{-1} \cdot k)$ represents the number of linearly independent differential matrices $d\Phi$, which satisfies

$$d\Phi$$
. $^{\iota}\theta_{P}' \times \theta_{P}^{-1} \in I_{P}$ and $d\Phi$. $^{\iota}\theta_{P}' \times \theta_{P}^{-1} \in I_{P}$ for all P and P .

It is clear that this is rr'-times of the number $\sigma(\theta, \theta')$ of linearly independent r by r' differential matrices $d\Phi$ of K, which satisfies

$$\theta'_P d\theta \theta_P^{-1} \in I_P^{(r,r')}$$
 and $\theta'_P d\theta \theta_P^{-1} \in I_P^{(r,r')}$ for all P and P .

So we have proved, by dividing the both side of (7) by rr'.

Theorem 2. (Weil's theorem.)

$$N(\theta, \theta') = r'I(\theta) - rI(\theta') - rr'(g-1) + \sum_{P} \sum_{i=1}^{r} \sum_{i'=1}^{r'} \left\langle \frac{d_i - d'_{i'}}{n(P)} \right\rangle + \sigma(\theta, \theta')$$

where $\sigma(\theta, \theta')$ denotes the number of linearly independent r by

r' differential matrices $d\Phi$ of K.

Bibliography.

- A. Weil, Généralization des fonctions abéliennes. Journal de Mathématiques pures et appliquées XVII (1938).
- E. Witt, Riemann-Rochscher Satz und ζ-Funktion in Hyperkomplexen. Math. Ann. Bd 110. (1934).
- F. K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Zeitschr. Bd 33. (1931).
- F. K. Schmidt, Zur arithmetische Theorie der Algebraischen Funktionen. I. Math. Zeitschr. Bd 41. (1939).
- 5) M. Deuring, Algebren. Berlin. Ergebnis (1935).
- H. Toyama, Uber nicht-abelsche Theorie der algebraischen Funktionen. Bulletin of the Tokyo Institute of Technology. Series-B (1950).