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§  1 . Let 7r (t) be any Markov process in  an  r-dimensional
differentialble manifold M  with the transition probability :

(1.1) F(t, p ;  s, E) = P(7 r (s) E  E/7(t)=p).
As is well-known, the generating operator A , o f this process is
defined as follows :

(1.2) (A , f ) (p) f m [f(q) —f(p)1 F(t, p; t+ d q ) .

We shall consider here the process whose generating operator A,
is expressible in the form :

af a2f (1.3)( A ,  f )  ( x )  =  ( t ,  x ) (x) + (t, 1 ) (X ).
2

where x is the local coordinate and f  is a bounded function of class,
C1. ( 1 .3 )  is equivalent to the following (1.3'):

1 (y i— xi)F (t, x;  t+4 , dy) --oa' (t, x),
v

(1.3,) —

1 

(y1— xi) (yi— xi)F(t, ; t+ 4, dy)—, Btj (t, x), (4 ,  + 0)
1f u F(t, x; t+4, U c )--0.

We can easily see that (B 13)  is symmetric and positive-definite and
that a1 and B11 are transformed in the following way :

d'=ak a f . '  + 1  B"  "  a e  2 aea,c1

—13"
ax. ax7

(1.4')
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The purpose of the present paper is to find a continuous Markov
process whose generating operator is given by (1.3) when a  and

satisfy some regularity conditions. T h is  problem has been
discussed by K. Yosida [4] and S. Itô [6] by means o f parabolic
differential equations. We shall here make use of stochastic di-
fferential equations established in our previous paper [1].

We have shown in [1] that if HI is written in the form

-5) R.1= Ebt, bJ„

by a system of r  vectors b„= (b:,• • • ,b;), = 1, 2,•, r, having some
appropriate regularity properties, then such a process is determined
as the solution of the following stochastic differential equations :

(1 . 6) ck ' = (t, )d t+N (t, e )c l igv
where [3= ([9/(t),---, i3 '. ( 0 )  is an r-dimensional Wiener process.

(B 'i) being symmetric and positive-definite, it may be always
expressible in the form (5) in many different ways, but we cannot
always find the continuous vector system { b,} even if the tensor
(B1i)  satisfies regularity conditions. Such possibility depends on
the topological structure of the space M ; for example, it is possible
in the case of Brownian motions in Lie groups [2], while it is impos-
sible in the case of those on the surface of 3-sphere [3] [5]. At
first sight one may consider that this fact raises an essential dfficulty
in our method of stochastic differential equations, but, as is shown
in this paper, we can overcome it by considering the vector system
satisfying regularity conditions locally, whose existence is easily
verified.

§  2 .  THEOREM. Consider a  differential operator:

(2.1) (A , f) (x) = (x) + 1 gi (t, x) f   (x)
ax' 2 ax"

and put
(2.2) A i (t, x) =the (i, j)-com ponent o f  the  inv erse m atrix  of

x ) ) .  If a‘ (t, x), (t, x ) and B , i (t, x ) are all bounded' and
1) The boundedness of a i (t, x ) etc. is defined as follows.

By a canonical coordinate around p we understand a local coordinate which
maps a neighbourhood of p  onto the interior of the unit sphere in the r-dimensional
space I? ' and especially transforms p  to the centre of the sphere.

ai(t, x ) is called to be bounded in  0 1 5 1 , x E  M, if and only i f  there exist
a constant K  and a canonical coordinate (x ) around any point of M  satisfying

ai (t, 41 <1i; 0 t 1, Ir x I <1.



Stochastic Differential Equations in  a Differentiable Manifold (2) 83

continuous in  t f o r each x and of  class C, in  x for each t, then there
exists a  continuous Markov pr9cass 7r(t), 0 < t < 1, whose generating
operator is given by (2.1). T he initial distribution i.e. the distribution
of  7 r (o) is arbitrarily  assigned.

P R O O F . 1° .  By the assumption of the boundedness of a ',  B"
and B 1.1 we shall define a  canonical coordinate (x )  around any
point p  of M  with the canonical neighbourhood u (p )  such that

(2.3) la' (t, x)I, 11311 (t, 1)1, IBi i (t, x)I,<K, 0 t1 , 1411 <1,
j=1, 2,••,r,

K  being independent of p .  Firstly we shall show that there exist
a constant K, (0 <  K , < 1 ) independent of p  and a vector system
(b(t, x ) )  for 0 < t  < 1  and for 11 x 1 < K, which is continuous in
t for each x and of class C, in x for each t and satisfies

(2.4) E bt(t, x) .x) 1).
V - I

For brevity we shall write as

(2.5) B =B (t, x) = (t, 1)), B o = B (0, 0).

Since B , is symmetric and positive-definite we can express it as
follows :

(2.6) B0 = UD'U' , D=( 2
0

1\ s?), U=orthogonal matrix.

Put
(2.7) b0 =UDU'.

Then we have

bo =b 0 ', B 0 =b 0
2, and Ilbo- 1 11 11B0- 1 11.2)

Next we put
(2.8)C =  b 0

- 1  B  b0
- 1 —E=b0

- 1 (B—B0 ) b0
- 1 , E= unit matrix,

which satisfies

11C11. 11B011.11B—B0ll_ K211x11,

2 )  We define 11 Ail by
IA y =sup { Ii Ax 11;d x < 1},

fo r  which the following properties are easily verified:
m axia 0 i i S 1 1 .4 1 ]S i ja 0 l l  fo r A = (a ii) ,

ii
ri ii

U 11 = 1 for any orthogonal Up
A  

B
i i  A

D1 D2 1j = N D1 11 D2 II for diagonal D I , D2.



(2.10)

is convergent
that

m aC
c(k) = E ( 1 )n C  —

a x
-,- -

n = 0  n
in the above norm for 11x1I <  1, and so we easily see-

c=ni°0=  CI )c-f

84 Kiyosi

K, being a constant determined only by K, and so we obtain

(2.9) UCH < 1 for 11x11 <Ki =max (-
1  

1).

Therefore

(2.11)

in considering that Id'! < 11A11, i, 5=1, 2,• • •, r for A = (a 1'). Thus we
see that c1.1 are of class C, in  x  and continuous in t. W e have
clearly

c=e, e=E+ C=14' Bbo
- i i.e. B=b, c2b0= (b, c) (b 0 c)'.

We put
(2.12) (k)=b, c,

which satisfies the above-mentioned conditions.
2°. We shall define the subsets V, W  and Q  of l e - by the

following conditions :
1V :114 < K„ W : Ii.xi < 

2 
K, Q :  11x11 <-

33

and denote by V(p), W(p) and Q (p) the parts of the above assigned
canonical coordinate neighbourhood U(p) corresponding to V , W
and Q respectively.

Let 50(x) denote the function of x E

sa(x)=1 (x E W) , =0 (x E Ve),—  2K1-311x11
E  V— W).

K,

Then 9(x) satisfies the following conditions :

0 50(x). 1, 140(x) - - F(Y) I < -
3

11x—Y11.

Since ai(t, x) and 1),(t, x) depend on the neighbourhood u (p)
we shall denote them with ai (t, x; p )  and bf,(t, x; p )  respectively.
We put
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(t, x: p) =a°  x; p) io(x) (xE u(p)), o(x E U(P))
X; p) x; p ) v(x) (x E U(P) ), 0 (X E U(P))

and consider a  stochastic differential equation

de(t).iv(t, E; p) dt+ -fit,(t, e; P) d day (t), i=1, 2,• • •, r, t 0t 1,

where “ t e )  is any assigned point q in  Q (p ). A s is shown in [1],
this equation has a unique solution 7r(t; U (p ); t, q ) which lies in
V(p) for to < t < 1 with probability 1 and in W(p) for to < t < t+
with probabilty 1—o(4), o (4 ) being independent of p and q.

Let 0  denote the distribution assigned a s  th e  probability law
of r (0 ) .  We shall consider an M-valued random variable r which
is subject to 0  and  an  r-dimensional W iener process P(t)—
•-., fr(t)), o < t <1, independent of 7r • Since M satisfies the second
countability axiom, M  is covered by a  countable system of Q(P),
say Q(p1),

Let Q(p1 )  be the  first o f  IQ 001 that contains 7 . We shall
define

( t )  =  (t ; f ) ;  0 , 7r)
Next we shall define 72 (0  to be equal to 71 ( t )  as fa r as ni ( t )  re-
mains in W(p1 )  and  if  7r1 (t) attains the boundary of W(p 1 )  at
then we shall define 2 (t) (t t1 )  by

n 2 (t ) =  ( t  ;  U(P8); t„ 77 (t1 ))
where Q(p8)  is the  first o f  {Q (p ,)} that contains 27,(4). In the
same way we shall 7r „(t), n=1, 2,• • • recursively. We put

(t) rn(t) .
This limit process exists and satisfies the conditions of our theorem,
as is shown by the  same idea as our previous paper [1].
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