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1 .  Let D  be a  finitely connected domain in the z-plane which
contains th e  p o in ts  z = 0  and z =  c o , a n d  bounded by n  proper
continua. According to the well-known G runsky's theorem' )  in the
theory of conformal mapping of multiply-connected domains there
exists one and only one function which, in  t h e  neighborhood of

. co, has a Laurent expansion of the form

iv=s o (z)=-- z+  +•• ., (1)

and a t the  origin s o (0 )= 0  and sio (0) =a o ,  and which maps D con-
formally onto a  whole plane slit along n  arcs on  a  finite number
of logarithmic spirals having th e  sam e angle of inclination 0/2
and the same asymptotic point z= O.

I n  t h e  present paper we shall derive an  inequality involving
the coefficient a„ appearing in  ( I )  and the outer logarithmic area
L of the complement (with respect t o  th e  w hole p lane) of the
domain D, namely :

2 LRe(—c" log a„ I log a, I
) — , (2)

log (A/B) 27r

w here  A  a n d  B  are  constan ts which will be explained in the
section 3.

It suffices to prove th e  inequality ( 2 )  in  th e  case  when the
boundary continua of D are  closed analytic curves C1, C2 •• • for
it is known that D can be approximated by an increasing sequence
o f  dom ains having  such  boundaries f o r  w h ich  t h e  mapping
functions corresponding to ( 1 )  will converges to s o (z), so that (2)
will continue to hold in  the  lim it, when L  is interpreted in  the
manner explained above.
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In the proof of the above theorem  we utilize the following
lemma on Bergman kernel function' )  :

Lemma. Let K(z,t)=->2,ç 0 ( z )  •  50 k (t ) be the Bergman kernel func-
tio n  o f  the dom ain D  where every function in (z ) (k = 1 ,2 ,- . ) is
single-valued analy tic and possesses a  uniform  indefinite integral

k(2 ) — ,f  so k(z) dz.
The: there holds

T herefore the right-hand side is determ ined independently  of the
particular choice of the complete orthonormal system  irk  (z)}.

Remembering that the series ;>_-; io,(2) 99, 5  m ay be termwise
k=1

integrated with respect to both variables z and i  (z,tED) because of
the uniform  boundedness of the partial sum ick (2 )o ,,,(t) , the

k=1

lemma is easily proved.
2 .  Since the boundary o f D  is for the present assumed to

be consisted o f ana ly tic  cu rves, it fo llow s tha t .9,, ( 2 )  remains
analytic there as well as in the interior of D .  Taking the form
of so ( z )  in the neighborhoods of z=  0  and 2= co, and its behavior
on each boundary curve C (i= 1, 2 , n )  in to  acccount, we see

 itha t the function log  s
0 ( z )

single-valued analytic and h a s  a

finite Dirichlet integral

fo E. •K (2  bd zd t— E  w k (2 )i-.
k=1

ff d log  s,(z ) 2
dr, (dz- dxdy, 2=-x+iy). (3)

    

/  is real and non-negative, vanishing if and only if s„(2).----  2 ,  that
is, if and only if D  is identical with the domain onto which it is
m apped. Now, by means of Green's theorem, the Dirichlet inte-
g ra l ( 3 )  can  be  transfo rm ed  in to  an integral taken along the
boundary curves of D , as follows ;

1 
/ = f log s ( z )   •  d   ( log  s ( 2 )   )d z

2 i  4 = 1 0 4, dz
1  log so (2) •

d  log so (2) dz—>.2,f log s0 (z) d z ( 4 )
21 1 d 2 k =  1  C L.k= k

l dog z log s o (2 ) -d 2 +E l o g 2   dz t
k = I J C L. dz k = 1  CL.
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the sense of integration being positive with respect to the interior
of D.

On the other hand we observe that on each boundary curve
Ck th ere  ho ld s an important relation for the mapping function
w-=s9 (z)

log so (2) =e - 1 " log s9 (z) +c,,o n  C k (k = 1 , ••• , n ) , (5)

c ,  being constant. Now we shall calculate each term o f  (4) by
means o f (5 )  in the following manner. At first we obtain

the 1st integral = log s„ (z)  d log s„ (z)dz
k t ' k dz

d=e -- i°1 1  log so (z) -

d  
 log s„ (2)dz+>: ck log sp(z)dz (by (5) )

k C dz k %S. C  dz

=e '" rE (log so(z ))] [log s„(z)] c k ( 6 )
k L  2 uk k

=0 .

Next, being in the neighborhood of z = 0

log  s e ( 2 )   —log a o +0(z ) and d  log s o (z) —  1  + 0(1),
dz

we have

log  s o ( 2 )  • —d— log so (z) • dz
k U Z

e" log  so (
2

)   •d  log s„ (2), (b y  (5)) (7)
k J U 2

= e ) (27ri log an) (by residue theorem).

From (6) and (7 ) we obtain

 dthe 3 rd  integral -=>_] log 2 - -  log s„ (z)cl2
k dz

=e". 27ri log an. (8)

Integrating the 2nd term o f (4) by parts, we obtain
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the 2nd integral => : f log s„ (2)
d z

-

= [ log s„ (2) • log - 1  l o g  • log s„ (z)dz } (9)
e

k
dz

=e - '27ri • log a„, (-conjugate complex number o f (8)).

Finally we obtain

d z  the  4th integra1=E i‘ l o g
k

k
2

-1= -2 i E  log z  dz = -2 iL.
k 2i ek 2

Putting (6 ), (7 ), (8 ), (9 ) and  (10) in  (4 ), we have

I=27rRe(-e - ° log ao ) - L . (11)

3 . We now introduce two canonical mapping functions P(z)
and Q (z ).  P (z ) effects th e  conformal mapping o f  D  onto the
w hole p la n e  slit a long c ircu lar a r c s  cen te red  a t t h e  origin
a n d  satisfies t h e  same normalized conditions w it h  sa (z),i. e.
lim P(z)/z =1, P(0)=0, and P' (0) = A .  Q(z) effects the conformal
mapping o f  D  onto th e  whole plane slit along radial segments
toward t h e  orig in  a n d  th e  sam e norm alized conditions with
4(2), i. e. lim Q(z)/z=1, Q(0)=0 a n d  Q' (0)=B. It is well-known

that the function log 
 P ( z )   is single-valued analytic a n d  its Di-
Q(z)

richlet integral 27r log (A/ B)" (> 0 ) .  Next we consider the  follow-
ing two functions

d
d

2 (log  s ° ( 2 )  )
z y (z ) — [27tRe(— cl" log ao )  -

and

d ( log   P ( 2 )   \
dz  Q (z )h (z) =

[27r log ( A/B)] 112• •

(10)

(12)

(13)
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We can easily assert that $J I y(z)rd -r =1 (by (11)), f  I h(2)1=d7=- 1,

a n d  th e  uniform integrals o f  y (z) an d  h (z )  a re  given by
l o g  s o (z) / [27rRe(-c- '° log a ) ) -L 1 1 2a n d lo g  P ( 2 )  i

2 Q (z) I
[2n log (A/B)]h/ 2 ,  respectively, i. e.

so (z)log - -----
T11 ) ( z ) = E y ( t ) d t =  

[2
,  1,1 1) (00) =0,
77.12e( a „ )-

(14)

log  P (2 ) 

?FP (2) = f  h (t) dt- Q ( 2 ) ,  q r r  ( 0 0 ) = 0 . (15)
[277 log(A/B)r 2

Now le t  two different complete systems be constructed, begining
with the functions y (2 ) and h (z ) respectively. At first we adopt
the function y (z ) for ço,(2) belonging to the system {59,,,(2)} . Then
we get the relation

I log a„I' 
>211

(

1 ) (0) -12( 0 ) 1 2 (16)
14=1 27rRe(-- c"log au) -  L

where TV (z) v , ( t )d t .  Next we adopt th e  function h (z ) for

50 1(z). Since sok(2) (k 2 ) belonging to th e  system Iso(z)} is
orthogonal to h (z ), we obtain

0=f (2) h(z)d-r (k 2)

27-ri n ) (0 ) - ( œ )} '5)
[27 log (A/B)] I2

where C:2 ) (2) = f ey, ( t )d t .  Therefore tre (0) =0 (k 2) Accor-
dingly

I C 2 ) (0) 12 =  I 'Pr (0) -1°g(A/13)2n

By (16), (17) and the lemma we obtain

I i" (0)1 2 =1 : r: ) (0 )12 ,
k=1 k=1

D

(17)
k=1
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and therefore
log(A/B)  > I  l o g  a912( 1 8 )

2ir 27rRe(—e-' log a,)— L .

Thus there holds the following
Theorem L et D be a f initely  connected dom ain in  the z-plane

which contains the points 2= 0 and z = c o .  Let s0 (2),P(z ) and Q(z)
be the above m entioned m aPPing functions. Then there holds the
following inequality

logR e (— e l- og ao) I ao
log ( A/B ) —

where a 0 =si 0 (0 ) ,A =P '(0 )  and B =Q '(0).
4 .  We shall consider the special case where the domain D

is given by

I I > '/1 — q , (0< qK 1) ,

and confirm that in this case the equality holds in ( 2 ) .  In this
case we have, in the neighborhood of z=0," )

P(z )=z   2 - 1   — 1 z + •••, A = 1

z—q q q
and

Q(z)=z   2 B = q .
z -1

Now we use the general relation obtained by Grunsky

(z) -=p(z) { q(z)} €, (1=e),

where p (z ) = P(2) Q(.2) and q(z )—  V Q (z )/P(z ). Then we get

1—t1 + ilog so (z)  log P(2)+ log Q(z),
2 2

therefore
1—t1 + t  log a0 — log A + log B

2 2

and in the special case
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log a,=—e" 1log ,

therefore
1Re(—e - '" log a0 ) = log --

By (19)

I log a„ (log  1  .

Hence the left-hand side of (2) assumes the value A log(1/q). On
the other hand we shall calculate the logarithmic area of the
complement of D;

d 2

L—  1  .1. log 2
2i c

  

(C ; I z-1 V1—q

1  2

d d =- dxdy, 2— r„.
;  complement of D . 1

(z=C +1, C=E:+ d.7,=d,;(by)
I C +112

rdrciço
(C=rei9)

L--=f 1
2= ry,__q rdrd

o Jo
io 

+ 2r cos so +
(0< q< 1)

—fo {Jo 1(1+re)-1dio}rdr

1 ] r i , 1 
-= 1-([ log 1 _ r , 0n -  log  q

Therefore the right-hand side o f (2 )  also takes the same value
log(1/q). Thus the exactness of the inequality (2) is shown.

At the end I wish to express my hearty thanks to Professor
T . Matsumoto for his kind guidances during my researches.

Kyoto University

(19)

(20)

(21)

=if

tt

dr,

I I + re"1 2
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