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1. Let D be a finitely connected domain in the z-plane which
contains the points z=0 and z=c, and bounded by # proper
continua. According to the well-known Grunsky’s theorem” in the
theory of conformal mapping of multiply-connected domains there
exists one and only one function which, in the neighborhood of
. z=o0, has a Laurent expansion of the form

w———su(z)=z+% 4oy (1)

and at the origin s,(0)=0 and s,(0) =a,, and which maps D con-
formally onto a whole plane slit along # arcs on a finite number
of logarithmic spirals having the same angle of inclination 6/2
and the same asymptotic point z=0.

In the present paper we shall derive an inequality involving
the coefficient a, appearing in (1) and the outer logarithmic area
L of the complement (with respsct to the whole plane) of the
domain D, namely :

| log a, | > L (2)
log(A/B) = 2z’

where A and B are constants which will be explained in the
section 3.

It suffices to prove the inequality (2) in the case when the
boundary continua of D are closed analytic curves C,, C,---,C,, for
it is known that D can be approximated by an increasing sequence
of domains having such boundaries for which the mapping
functions corresponding to (1) will converges to s,(2), so that (2)
will continue to hold in the limit, when L is interpreted in the
manner explained above.

Re(—e " log a,) —
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In the proof of the above theorem we utilize the following
lemma on Bergman kernel function® :
Lemma. Let K(z,t) =>)¢.(2) -¢.(t) be the Bergman kernel func-
k=1

tion of the domain D where every function ¢.(2) (k=1,2,---) is
single-valued analytic and possesses a uniform indefinite integral

Tu(2)=| p(2)dz.
Then there holds

L [ K bazdi=3 1 v.) 1

Therefore the right-hand side is determined independently of the
particular choice of the complete orthonormal system {¢,(2)}.

Remembering that the series ﬁ%(z) ¢.(t) may be termwise

k=1
integrated with respect to both variables z and 7 (z, te D) because of
the uniform boundedness of the partial sum 3 ¢.(2)¢.(2), the
k=1 .

lemma is easily proved.

2. Since the boundary of D is for the present assumed to
be consisted of analytic curves, it follows that s,(z) remains
analytic there as well as in the interior of D. Taking the form
of s,(z) in the neighborhoods of z=0 and 2=, and its behavior
on each boundary curve C;(i=1, 2,---,#) into acccount, we see

30()

that the function log 22" is single-valued analytic and has a

finite Dirichlet mtegral

U Ijzlog @) P (de—dady, z=x+iy).  (3)
I is real and non-negative, vanishing if and only if s,(z)= z, that
is, if and only if D is identical with the domain onto which it is
mapped. Now, by means of Green’s theorem, the Dirichlet inte-
gral (3) can be transformed into an integral taken along the
boundary curves of D, as follows;

1__2 J Su(:> -i(log—__s”(z) )dz

-1 {zj log 50(2) —log so(2)dz— j 108 5,(2) S92
2i =1 - 2
S d dz
- —_— .
ejgklogz - log s,(2) dz+§=j logz &% . }
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the sense of integration being positive with respect to the interior
of D.

On the other hand we observe that on each boundary curve
C. there holds an important relation for the mapping function
w:Se(Z)

logs,(z)=e"*"logs,(2) +¢c.  on Ci(k=1,--,n), (5)

¢. being constant. Now we shall calculate each term of (4) by
means of (5) in the following manner. At first we obtain

the 1st integral= Zj log s, (z)di log s, (2)dz
£ Jo, 2

—e““z,j Tog 54 (2) -4 1ogs.,(z)dz+v ckj dizlogso(z)dz (by (5))

&
o33 -Lqtogss, (z))f] +30 ¢ llog 5,(2)] ., (6)
("/c :
=0.
Next, being in the neighborhood of z=0

log222=2l So (2)

=loga,+0(z) and % logs,(z)=1 +0(1),
dz 2
we have

zj log 50(2)_ . @ 1op5.(2) -dz
® Jo, z dz

:emz; j log iz(i -dlog Sy (Z), (by (5)) (7)

“k
=e"(2miloga,) (by residue theorem).

From (6) and (7) we obtain

the 3rd integral=3" j log 2 Zd‘— log s,(z)dz
k ¥4

Cr
=¢". 277 log a,. (8)

Integrating the 2nd term of (4) by parts, we obtain
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the 2nd integral———E[ Hg—s@,dé
Lo ('k Va

=3 ([log (@ log e, |, log 2 L tog sz} @
2 (" dz

=¢ "27i-log a,, (—conjugate complex number of (8)).

Finally we obtain

the 4th integral=] | Togz-%2
 Jo, 2
=253 71| togzdio—pir. (19
r 21 Je, z
Putting (6), (7), (8), (9) and (10) in (4), we have
I=27Re(—e"loga,) —L (= 0)”. (11)

3. We now introduce two canonical mapping functions P(z)
and Q(z). P(z) effects the conformal mapping of D onto the
wholz plane slit along circular arcs centered at the origin
and satisfies the same normalized conditions with s,(2),1.e.
Iim P(z)/z=1, P(0)=0, and P’(0)=A. Q(z) effects the conformal

mapping of D onto the whole plane slit along radial segments
toward the origin and the same normalized conditions with

Se(2),i.e. lim Q(2)/2=1, Q(0)=0 and @' (0)=B. It is well-known

that the function log—g((z—)) is single-valued analytic and its Di-
V4

richlet integral 27 log(A/B)?(>0). Next we consider the follow-

ing two functions

—j;<log Sol2) iz) )

9(2) = (27Re(—e " log ay) — L|'"*’ (12)
and
d P(2)
—( log
h(z)= dz& Q@) 7 (13)

[27log(A/B)]*
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We can easily assert that“l)! 7(2) "= =1 (by (11)),“ JIe

and the uniform integrals of ¢(z) and k(z) are given by

log ﬁgi / [2nRe(—e " log a,) —L]" and log _g%/
(27 log (A/B)]":, respectively, i.e.
log_fg@.
DN = o (F) dt z 7o -
T =] g o s PP() =0,
(14)
() — — e -
7O (2) Lh(t}dt ronca By TIe)=0 (15)

Now let two different complete systems be constructed, begining
with the functions ¢(2) and h(z) respectively. At first we adopt
the function ¢(2) for ¢,(z) belonging to the system {¢.(z)}. Then
we get the relation

S TP (0) = | #,”(0) = | log a, . 16
1c=1| £ ( )l “_l ( )| ZWRE(—e‘iUIOgaU)_L ( )

where ¥ ;;’)(z)zfz 0. ()dt. Next we adopt the function %(z) for

¢,(z). Since ¢.(2) (k=2) belonging to the system {¢.(2)} is
orthogonal to %(z), we obtain

=[] p@r@d k=2

_ 2r{FP0) =P ()} ¥
[27 log(A/B)]"" ’

where 7 (2) :JZ ¢.(H)dt. Therefore P (0)=0 (k=2). Accor-
dingly

S TPO) °= | #2(0) = log(A/B)

k=1 AL

a7

By (16), (17) and the lemma we obtain

2 PO =372 0)[%
k=1 k=1
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and therefore

JoR(A/B) ~ gl (18)
on — 27Re(—e " log a,)—L .

Thus there holds the following

Theorem Let D be a finitely connected domain in the z-plane
which contains the points 2=0 and z=oco. Let s,(2), P(z) and Q(2)
be the above mentioned mapping functions. Then there holds the
Sfollowing inequality

Re(—e "log ay) — -1 102 a0 'L’»-g L
log(A/B) 27

where a,=s",(0), A=P'(0) and B=Q'(0).
4. We shall consider the special case where the domain D
is given by

|2—i|>+vi—gq, (0<g<1),

and confirm that in this case the equality holds in (2). In this
case we have, in the neighborhood of z=0,"

Py=z2=1 -1 .. 4=1
—-q q q
and
Q(2)=22"9 =gz2+-, B=q.
z2—1

Now we use the general relation obtained by Grunsky
se(2) =p(2) {¢(2)}', (t=e"),
where p(2)=+vP(2)Q(2) and q(2) =+vQ(2)/P(z). Then we get

log s,(2) = 1:—2—t log P(z2) +—l%t— log Q(2),
therefore
log a,= 1—1 log A+ iiz-t— log B

and in the special case
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log a,=—¢&* log —1—, (19)
q
therefore
Re(—elog ay) =log 1. (20)
q
By (19)
0 1y
| log a, ’=(log —) . (21)
= (ioe L)

Hence the left-hand side of (2) assumes the value % log(1/g). On
the other hand we shall calculate the logarithmic area of the

complement of D;

=LS logzié (C: |z—=1|=vi—q)
¢ z

2f
2” 1 Edr (_{r:dxdy,z =x+iy. )
7 z : D; complement of D. .
=H A% (4, e=E 4 iy, dey=didy)
) Tewtp
15| <Vi—q
=[] iy (e=re®)
| 14re?)?
1| <Vi—g
2 o Visy rdrdy
.oy 0<g<1
T L—'L so 1427 cos ¢+ 7 ( d )

Vicy, 2=

:JO U (1476 '(1+7e7*) ~'de} rdr

1 Vizo 1
:ulilog—lj:lo :ﬁlog q .
Therefore the right-hand sidz of (2) also takes the same wvalue
3log(1/q). Thus the exactness of the inequality (2) is shown.
At the end I wish to express my hearty thanks to Professor
T. Matsumoto for his kind guidances during my researches.

Kyoto University
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