On the Whitney Characteristic classes of the Normal Bundle

By
Toshikazu Yagyu
(Recieved April 20, 1953)

1. It is the aim of this paper to establish a generalization of Chern's formula for the invariant of Whitney ([2], §4.), that is, to obtain the integral formula of the Whitney characteristic class of the normal bundle. We use the following notations.
R^{n+N}; $(n+N)$-dimensional orientable Riemannian manifold of the class $\geqq 3$.
$M^{n} ; n$-dimensional closed orientable submanifold of the same class imbedded in R^{n+N}.
$\boldsymbol{N}^{\eta-1}$; Bundle of the normal $(N-q+1)$-frame to R^{n+N} over M^{n}.
\boldsymbol{N}^{q}; Bundle of the normal $(N-q)$-frame to R^{n+N} over M^{n}.
\boldsymbol{T}^{0}; Bundle of the tangent n-frame to M^{n} over M^{n}.
\boldsymbol{B}^{0}; Bundle of the tangent $(n+N)$-frame to R^{n+N} over M^{n}.
The q-th Whitney characteristic class of the normal bundle is the cohomology class of the obstruction $c(F)$ where F is any cross-section to over the $(q-1)$-skeleton in the cellular decomposition of M^{n}, ([1], $p-190$) The bundle of coefficient of $N^{\eta-1}$ is the product bundle by the orientability of R^{n+N} and M^{n}, and the ($q-1$)th homotopy group of the fibre $V_{N, N-q+1}$. of \boldsymbol{N}^{q-1} is ∞ if $q-1$ is even or $N=q$, and 2 if $q-1$ is odd and $N \neq q$. Then our class is regrarded as the ordinary cohmology class with the coefficient of integer or integer mod. 2. Now, we represent $c(F)$ by the integral formula. In the special case, $N=n=q$, our formula is Chern's one.
2. Let Δ be an oriented q-cell in the cellular decomposion of M^{n}, \sum be its oriented boundary sphere and Δ be contained in a coordinate neighborhood. By the properties of the homotopy group of Stiefel manifold $V_{N, N-q}$ which is the fibre of \boldsymbol{N}^{q} ([1], $p-132$), there exists the expension E_{0} of $p F$ over Δ where p is the projection $\boldsymbol{N}^{q-1} \rightarrow N^{q}$. Now, \boldsymbol{N}^{q-1} being regarded as the bundle over \boldsymbol{N}^{q},
by the covering homotopy theorem ($[1], p-54$) there exists E_{0}^{\prime} in \boldsymbol{N}^{q-1} which is the cross-section to N^{q-1} over $\Delta-x_{0}$ for any fixed point $x_{0} \in \Delta$ and is equal to F on \sum. Each element of E_{0}^{\prime} over x_{0} is the $N-q+1$-frame whose $N-q$ vectors are constantly $E_{0} \mid x_{0}$ and the last vector runs on the oriented unit sphere S in the normtl space at x_{0}, where the orientation of S is determined uniquely by the orientability of R^{n+N} and M^{n} for each q-cell. Thus, we obtain the mapping $\sum \rightarrow S$ and let D be the degree of this mapping. Then

$$
\begin{aligned}
& c(F) \cdot \Delta=D, \quad \text { if } q \text { is odd or } q=N \text {. } \\
& \equiv D \text { mod. } 2 \text {, if } q \text { is even and } q \neq N \text {. }
\end{aligned}
$$

3. Let $\omega_{i}, \omega_{i j}$ be the coofficients of the connections induced in M^{n}. We make the following forms.

$$
\begin{aligned}
& \Phi_{i=n}=\sum_{i=N-q+2}^{n+N} \epsilon_{i_{1} \ldots i_{q-1}} \Omega_{i_{1 i} i_{2}} \cdots \Omega_{i_{2 k-1}} i_{2 k} \omega_{i_{2 k+1}}{ }^{n+N-q+1} \cdots \omega_{i_{q-1}}{ }^{n+N-q+1} . \\
& \Pi= \begin{cases}\frac{1}{\pi^{p}} \sum_{\lambda=0}^{p-1}(-1)^{\lambda} \frac{1}{1 \cdot 3 \cdots(2 p-2 \lambda-1) 2^{p+\lambda} \lambda!} \Phi_{\lambda}, & \text { if } q \text { is even } 2 p . \\
\frac{1}{2^{2 p+1} \pi^{p} p!} \sum_{\lambda=0}^{p}(-1)^{\lambda}\binom{p}{\lambda} \Phi_{\lambda}, & \text { if } q \text { is odd } 2 p+1 .\end{cases} \\
& \Omega= \begin{cases}(-1)^{p} \frac{1}{2^{2 q} \pi^{p} p!} \sum_{i=n+N-q+1}^{n+N} \epsilon_{i_{1} \ldots i q} \Omega_{i_{1} 1_{2}} \cdots \Omega_{i_{q-1} q}, & \text { if } q \text { is even } 2 p . \\
0, & \text { if } q \text { is odd. }\end{cases}
\end{aligned}
$$

where

$$
\Omega_{i j}=\theta_{i j}-\sum_{a=1}^{n+N-q} \omega_{i \alpha} \omega_{j \alpha}
$$

where $\theta_{i j}$ is the curvature form of R^{n+N}.
These forms are in \boldsymbol{B}^{0} generally but since we use the induced connection, they are forms in the product of bundles, $\boldsymbol{N}^{0} \times \boldsymbol{T}_{0}$. Moreover, it can be proved that Π is the form in N^{q-1} and Ω in $\boldsymbol{N}^{\prime \prime}$ by the same methods in Chern's paper, ([2]). And also, $d \Pi=-\Omega$.
4. Therefore, by Stokes' theoreem,

$$
\int_{E_{0}} \Omega=\int_{E_{0}} \Omega=-\int_{E_{0^{\prime}}^{\prime}} d \Pi=-\int_{\partial E_{0^{\prime}}} I=-\int_{F} \Pi+\int_{E_{0}{ }^{\prime} x_{0}} I I
$$

Now, if elements of $p F$ are equal to frames by vectors $\boldsymbol{e}_{1}, \cdots \boldsymbol{e}_{n+N-q}$ of "repere" defining $\omega_{i}, \omega_{i j}$ on \sum, E_{0} can be taken so on Δ. Then, $\Omega_{i j}$ is zero on $E_{0}{ }^{\prime} \mid x_{0}$ and Π becomes the following form on $E_{0}{ }^{\prime} \mid x_{0}$.

By Kronecker's formula,

$$
(-1)^{q} D(F)=\int_{E_{0} \mid x_{0}} \Pi
$$

Therefore

$$
(-1)^{q} D(F)=\int_{E_{0}} \Omega+\int_{F} F
$$

5. For the general cross-section F, there exists F^{\prime} such that $F \sim F^{\prime}$ and $p F^{\prime}$ has the property which we assumed in the above section for F. Let E be any extension of $p F$ over Δ.

Now, by the same method in Takizawa's paper ([3], §6)

$$
\begin{array}{rlrl}
\int_{E} \Omega+\int_{F_{0}} I & =\int_{E_{0}} \Omega+\int_{F^{\prime}} \Pi, & \mathrm{q} ; \text { odd or } \mathrm{q}=N \\
& \equiv \int_{E_{0}} \Omega+\int_{F^{\prime}} \Pi \bmod 2, \mathrm{q} ; \text { even and } \mathrm{q} \neq N
\end{array}
$$

and

$$
c(F)=c\left(F^{\prime}\right)
$$

Thus, we obtain the following theorem.
Theorem

$$
c(F) \cdot \Delta \begin{cases}-\int_{F} I /, & \text { if } \mathrm{q} \text { is odd } \\ =\int_{E} \Omega+\int_{F} I, & \text { if } \mathrm{q}=N \text { and even. } \\ \equiv \int_{E} \Omega+\int_{F} \pi \text { mod. } 2, & \text { if } \mathrm{q} \neq N \text { and even. }\end{cases}
$$

References

[^0]
[^0]: 1) N. Steenrod, The topology of fibre bundle. (Princeton Press 1951)
 2) S. Chern, On the curvatura integra in a K. M. (Ann. of Math. Vol. 46, 1945 674-684)
 3) S. Takizawa, On the Stiefel characteristic classes. (In this memoire)
