On the convergence of solutions of the non-linear differential equation

By
Taro Yoshizawa

(Received October 14, 1953)
In the foregoing papar* we have researched sufficient conditions for the ultimate boundedness of solutions of the system of differential equations,

$$
\begin{align*}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y), \tag{1}
\end{align*}
$$

and we have obtained an existence theorem of a periodic solution by aid of the boundedness theorem. Namely under some conditions, it is proved that there exist two positive numbers A and B independent of particular solutions such that

$$
|x(t)|<A, \quad|y(t)|<B
$$

for $t \geqq t_{0}$ (t_{0} depending upon each particular solution), where ($x(t)$, $y(t)$) is any solution of (1).

Let $f(t, x, y)$ and $g(t, x, y)$ be two continuous functions of (t, x, y) in the domain

$$
\lrcorner_{1}: \quad 0 \leqq t<\infty, \quad-\infty<x<+\infty, \quad-\infty<y<+\infty \text {. }
$$

Now we will show that under some conditions every solution of (1) converges to the periodic solution as $t \rightarrow \infty$ provided the solutions of (1) are ultimately bounded. At first, we shall prove two following lemmas.

Lemma 1. Let \rfloor be the 5 -dimensional domain of (t, x, u, y, v) such as

$$
t_{0} \leqq t<\infty,|x| \leqq A,|u| \leqq A,|y| \leqq B,|v| \leqq B,
$$

where t_{0} may be arbitrarily great, but it is a constant. Now suppose

[^0]that there exists a continuous function $\Phi(x, u, y, v)$ satisfying the following conditions in J_{2}; namely
\[

$$
\begin{aligned}
& 1^{\circ} \quad \Phi(x, u, y, v)>0, \text { provided }|x-u|+|y-v|>0 \\
& 2^{\circ} \quad \Phi(x, u, y, v)=0, \text { provided }|x-u|+|y-v|=0
\end{aligned}
$$
\]

$3^{\circ} \Phi(x, u, y, v)$ satisfies the Lipschitz condition with regard to (x, u, y, v) and for every point in the interior of this domain \lrcorner_{2}, we have

$$
\begin{gathered}
\varlimsup_{h \rightarrow 0} \frac{1}{h}\{\Phi(x+h f(t, x, y), u+h f(t, u, v), y+h g(t, x, y), v+h g(t, u, v)) \\
-\Phi(x, u, y, v)\} \leqq 0
\end{gathered}
$$

where for every $\lambda>0$ (small λ 's alone being worth to consider), if $|x-u|+|y-v| \geqq \lambda$, the left hand side of this inequality $\leqq x(\lambda)<0 \quad(x(\lambda)$ may be arbitravily small, but it is a fixed constant for fixed λ).
Then choosing $\delta(>O)$ suitably for any $\varepsilon>O$ (ε however small), if any two solutions of (1), $(x(t), y(t))$ and $(\bar{x}(t), \bar{y}(t))$, which satisfy $|x|<A,|y|<B$ for $t \geqq t_{0}$, satisfy the following inequality at $t=T\left(\geqq t_{0}\right)$ (T being arbitrary),

$$
\begin{equation*}
|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|<\delta, \tag{2}
\end{equation*}
$$

then for $t>T$ we have always

$$
\begin{equation*}
|x(t)-\bar{x}(t)|+|y(t)-\bar{y}(t)|<\varepsilon . \tag{3}
\end{equation*}
$$

Proof. For a given ε, let $\dot{\rho}^{\prime}$ be the minimum of $\Phi(x, u, y, v)$ when $|x-u|+|y-v|=\varepsilon$. Then since $\phi(x, u, y, v)$ is positive for $|x-u|+|y-v|>O$, it is clear that $\delta^{\prime}>0$, and δ^{\prime} is independent of t. Moreover since $\Phi(x, u, y, v)$ satisfies the Lipschitz condition, we have a positive constant K such as

$$
\left|\Phi(x, u, y, v)-\Phi\left(x^{\prime}, u^{\prime}, y^{\prime}, v^{\prime}\right)\right| \leqq K\left(\left|x-x^{\prime}\right|+\left|u-u^{\prime}\right|+\left|y-y^{\prime}\right|+\left|v-v^{\prime}\right|\right)
$$

Now we put

$$
\delta=\min \left(\grave{o}^{\prime} / K, \varepsilon\right) .
$$

Then it is proved as follows that for any two solutions $(x(t), y(t))$ and ($\bar{x}(t), \bar{y}(t)$) satisfying (2) at an arbitrary $t=T$, the inequality (3) holds good: Namely if otherwise suppose that we have at some $t=T^{\prime}$

$$
\left|x\left(T^{\prime}\right)-\bar{x}\left(T^{\prime}\right)\right|+\left|y\left(T^{\prime}\right)-\bar{y}\left(T^{\prime}\right)\right|=\varepsilon .
$$

Now consider the function $\Phi(x(t), \bar{x}(t), y(t), \bar{y}(t))$ for $T \leqq t \leqq T^{\prime}$ and then $\Phi \geqq \dot{o}^{\prime}$ at $t=T^{\prime}$, while we have

$$
\begin{equation*}
\Phi(x(T), \bar{x}(T), y(T), \bar{y}(T)) \geqq \bar{o}^{\prime} \tag{4}
\end{equation*}
$$

since this function is a non-increasing function of t by the condition 3°. Moreover we have

$$
\begin{aligned}
& \Phi(x(T), \bar{x}(T), y(T), \bar{y}(T))-\Phi(\bar{x}(T), \bar{x}(T), \bar{y}(T), \bar{y}(T)) \\
& \leqq K(|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|) \\
&<K \grave{o} \\
& \leqq K \cdot \bar{o}^{\prime} / K=\grave{o}^{\prime} .
\end{aligned}
$$

Hence we have

$$
\Phi(x(T), \bar{x}(T), y(T), \bar{y}(T))<\delta^{\prime}
$$

for by the condition 2°

$$
W(\bar{x}(T), \bar{x}(T), \bar{y}(T), \bar{y}(T))=0
$$

This contradicts (4) and hence (3) holds good. Thus the proof is completed.

Lemma 2. Suppose that the same assumptions as those in Lemma 1 hold good. Then given any positive number ò (o may be sufficiently small), it for any two solutions of (1) $(x(t), y(t))$ and ($\bar{x}(t), \bar{y}(t)$) which satisfy $|x|<A,|y|<B$ for $t \geqq t_{0}$, we have at some $t=T\left(\geqq t_{0}\right) \quad$ (T being arbitrary, but fixed)

$$
\begin{equation*}
|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)| \geqq \delta, \tag{5}
\end{equation*}
$$

then we have at some $T^{\prime}(>T)$

$$
\begin{equation*}
\left|x\left(T^{\prime}\right)-\bar{x}\left(T^{\prime}\right)\right|+\left|y\left(T^{\prime}\right)-\bar{y}\left(T^{\prime}\right)\right|<\dot{\delta} . \tag{6}
\end{equation*}
$$

Proof. Let J_{3} and J_{4} be two domains such as

$$
T \leqq t<\infty,|x| \leqq A,|u| \leqq A,|y| \leqq B,|v| \leqq B
$$

and

$$
T \leqq t<\infty, \quad|x-u|+|y-v|<\boldsymbol{o}^{\prime}
$$

respectively, where $\dot{\sigma}^{\prime}<\boldsymbol{\delta}$. Now consider a function

$$
\Psi(t, x, u, y, v)=e^{N t} \Phi(x, u, y, v) \quad(N>0)
$$

in $J_{3}-J_{4}$ and then we have
$1^{\circ} \quad \Psi(t, x, u, y, v)>0$, since $|x-u|+|y-v|>0$,
$2^{\circ} \quad \Psi(t, x, u, y, v)$ tends to infinity uniformly for (x, u, y, v) as $t \rightarrow \infty$.

And it is clear that $T(t, x, u, y, v)$ satisfies locally for t the Lipschitz condition with regard to (x, u, y, v).

Moreover we have

$$
\begin{aligned}
& \varlimsup_{h \rightarrow 0} \frac{1}{h}\{F(t+h, x+h f(t, x, y), u+h f(t, u, v), y+h g(t, x, y) \text {, } \\
& v+h g(t, u, v))-\Psi(t, x, u, y, v)\} \\
& =\varlimsup_{h \rightarrow 0} \frac{1}{h}\left\{e^{v(t+h)} \Phi(x+h f, u+h f, y+h g, v+h g)-e^{v i} \Phi(x, u, y, v)\right\} \\
& =\varlimsup_{h \rightarrow 0} \frac{1}{h}\left\{e^{v(t+h)}[\Phi(x+h f, u+h f, y+h g, v+h g)-\Phi(x, u, y, v)]\right. \\
& \left.+\left(e^{v(t+h)}-e^{\Delta t}\right) \Phi(x, u, y, v)\right\} \\
& =e^{v t} \varlimsup_{h \rightarrow 0} \frac{1}{h}[\Phi(x+h f, u+h f, y+h g, v+h g)-\Phi(x, u, y, v,)] \\
& +N e^{v i} \boldsymbol{J}(x, u, y, v) \\
& \leqq e^{N_{t}}\left\{x\left(\partial^{\prime}\right)+N \Phi(x, u, y, v)\right\} .
\end{aligned}
$$

Now for j^{\prime}, we can choose $N\left(j^{\prime}\right)$ so small that this expression becomes always non-positive in the interior of $\Delta_{3}-\Delta_{4}$. Therefore
$3^{\circ} \Psi(t, x, u, y, v)$ satisfies locally the Lipschitz condition with regard to (x, u, y, v) and for all points in the interior of $J_{3}-J_{4}$ we have

$$
\begin{aligned}
& \overline{\lim }_{h \rightarrow 0} \frac{1}{h}\{\Psi(t+h, x+h f(t, x, y), u+h f(t, u, v), y+h g(t, x, y) \\
&v+h g(t, u, v))-\Psi(t, x, u, y, v)\} \leqq 0
\end{aligned}
$$

Now suppose that the assertion (6) is not true for δ. Let d; and $J_{6 i}$ be two domains such as

$$
|x| \leqq A,|u| \leqq A,|y| \leqq B,|v| \leqq B
$$

and

$$
|x-u|+|y-v|<0
$$

respectively. Then we can choose $T^{\prime \prime}$ by 2° such that
(7) $\min _{\Delta_{s}-\Delta_{s}} e^{N\left(\delta^{\prime}\right) \times r^{\prime \prime}} \Phi(x, u, y, v)>\max _{\Delta_{q}-\Delta_{g}} e^{N\left(\delta^{\prime}\right) T} \Phi(x, u, y, v)$,
while by 3°

$$
\Psi\left(T^{\prime \prime}, x\left(T^{\prime \prime}\right), \bar{x}\left(T^{\prime \prime}\right), y\left(T^{\prime \prime}\right), \bar{y}\left(T^{\prime \prime}\right)\right) \leqq T(T, x(T), \bar{x}(T), y(T), \bar{y}(T))
$$

This contradicts (7). Therefore the assertion is true. This $T^{\prime \prime}$ depends upon T and $N\left(\partial^{\prime}\right)$.

Now we can prove the following convergence theorem by aid of these lemmas.

Theorem 1. Suppose that the solutions of (1) are ultimately bounded for A and B and that the same assumptions as those in Lemma 1 hold good. Then for any two solutions of (1) $(x(t), y(t))$ and $(\bar{x}(t), \bar{y}(t))$, we have

$$
\left\{\begin{array}{l}
\lim _{t \rightarrow \infty}(x(t)-\bar{x}(t))=0 \tag{8}\\
\lim _{t \rightarrow \infty}(y(t)-\bar{y}(t))=0 .
\end{array}\right.
$$

Proof Let $(x(t), y(t))$ and $(\bar{x}(t), \bar{y}(t))$ be any two solutions of (1). Then since these are ultimately bounded with the bounds A and B, there exist T_{1} and T_{2} such that

$$
|x(t)|<A,|y(t)|<B \text { for } t \geqq T_{1}
$$

and

$$
|\bar{x}(t)|<A, \quad|\bar{y}(t)|<B \text { for } t \geqq T_{2}
$$

respectively. Now we put $T=\max \left(T_{1}, T_{2}, t_{0}\right)$. By Lemma $1, \grave{o}$ is chosen for an $\varepsilon>0$ (however small) and if, for this δ, we do not have

$$
|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|<\grave{o},
$$

then we can choose T^{\prime} such as

$$
\left|x\left(T^{y}\right)-\bar{x}\left(T^{\prime}\right)\right|+\left|y\left(T^{\prime}\right)-\bar{y}\left(T^{\prime}\right)\right|<\grave{o}
$$

by Lemma 2, where $T^{\prime}>T$. Then by Lemma 1 we have

$$
|x(t)-\bar{x}(t)|+|y(t)-\bar{y}(t)|<\varepsilon,
$$

for $t>T^{\prime}$. Namely (8) holds good.
From this fact, it is easy to prove the following theorem.
Theorem 2. If the same assumptions as those in Theorem 1
hold good and the system of differential equations (1) has a periodic solution of period (1), it is unique and the other solutions of (1) converge to that periodic solution as $t \rightarrow \infty$.

Remark. If $\mathscr{D}(x, u, y, v)$ in condition 3° be totally differentiable, then the inequality under 3° reduces to

$$
\begin{aligned}
& \frac{\partial \Phi(x, u, y, v)}{\partial x} f(t, x, y)+\frac{\partial \Phi(x, u, y, v)}{\partial u} f(t, u, v) \\
+ & \frac{\partial \Phi(x, u, y, v)}{\partial y} g(t, x, y)+\frac{\partial \Phi(x, u, y, v)}{\partial v} g(t, u, v) \leqq 0 .
\end{aligned}
$$

Instead of sufficient conditions under which the results of Theorems 1 and 2 are concluded, we can modify the conditions in Lemma 1 and those in Lemma 2 independently as follows. Namely

Lemma 3. Suppose that there exists a continuous function of ($t, x, u, y, v) \Phi(t, x, u, y, v)$ in Δ_{2} satisfying the following conditions; namely
$1^{\circ} \quad I(t, x, u, y, v)=0$, provided $|x-u|+|y-v|=0$,
2° there exists a positive number o (ε) such that $\phi_{(}(t, x, u, y, v)$ $>\delta(\varepsilon)>0$ when $|x-u|+|y-v| \geqq \varepsilon$, where ε is an arbitrary positive number and $\stackrel{\circ}{ }$ depends on ε,
$3^{\circ} \mathscr{J}(t, x, u, y, v)$ satisfies the Lipschitz condition with regard to (x, u, y, v) and for a positive constant K, and in the interior of J_{2} we have

$$
\begin{array}{r}
\varlimsup_{h \rightarrow 0} \frac{1}{h}\{\Phi(t+h, x+h f(t, x, y), u+h f(t, u, v), y+h g(t, x, y) \\
v+h g(t, u, v))-\Phi(t, x, u, y, v)\} \leqq 0 .
\end{array}
$$

Then for any two solutions of (1), $(x(t), y(t))$ and $(\bar{x}(t), \bar{y}(t))$ satisfying $|x|<A,|y|<B$ for $t \geqq t_{0}$, being given an arbitrary positive number ε (however small), there exists a positive number $\lambda(<\varepsilon)$ in. dependent of T such that, if we have for an arbitrary $T\left(\geqq t_{0}\right)$

$$
\begin{equation*}
|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)| \leqq \lambda(\varepsilon) \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
|x(t)-\bar{x}(t)|+|y(t)-\bar{y}(t)|<\varepsilon \tag{10}
\end{equation*}
$$

holds for $t \geqq T$.
Remark. Since the case where ε is small alone is worth to
consider, it is sufficient that the condition 3° is satisfied in the domain in Δ_{2} such as

$$
t_{0} \leqq t<\infty, \quad|x-u|+|y-v| \leqq x,
$$

where $x(>0)$ may be sufficiently small. Of course it is sufficient that Φ exists in the domain where $|x-u|+|y-v|$ is sufficiently smali.

Proof. For an ε, choosing λ such as

$$
\lambda(\varepsilon)<\min (\partial / K, \varepsilon),
$$

this λ depends only on ε. Now suppose that, for any two solutions of (1) now considering ($x(t), y(t)$) and ($\bar{x}(t), \bar{y}(t)$) satisfying (9) at $t=T$, we have at some $t(>T)$, say T^{\prime},

$$
\begin{equation*}
\left|x\left(T^{\prime}\right)-\bar{x}\left(T^{\prime}\right)\right|+\left|y\left(T^{\prime}\right)-\bar{y}\left(T^{\prime}\right)\right|=\varepsilon . \tag{11}
\end{equation*}
$$

Then we can consider this T^{\prime} as the first t where (11) holds by the continuity of the solutions. Hence by considering the function $\Phi(t, x(t), \bar{x}(t), y(t), \bar{y}(t))$ for $T \leqq t \leqq T^{\prime}$, the conclusion of this lemma follows in the same way as in Lemma 1. This first T^{\prime} is taken according to the fact mentioned in the above remark.

Lemma 4. For every $\delta>0$ (δ may be sufficiently small), let Δ_{7} be the domain such as

$$
t_{0} \leqq t<\infty, \quad|x-u|+|y-v|<\delta .
$$

Suppose that there exists a continuous function of $(t, x, u, y v)$, $\Psi_{\delta}(t, x, u, y, v)=\Psi(t, x, u, y, v)$, in $\Delta_{2}-\Delta_{7}$ which satisfies the following conditions; namely

$$
\left.\begin{array}{rl}
1^{\circ} & \Psi(t, x, u, y, v) \text { is positive in } \Delta_{2}-\Delta_{7}, \\
2^{\circ} & \Psi(t, x, u, y, v) \text { tends to zero uniformly for }(x, u, y, v) \text { when } \\
t \rightarrow \infty \text { (or tends to infinity uniformly as } t \rightarrow \infty), \\
3^{\circ} \Psi(t, x, u, y, v) \text { satisfies locally the Lipschitz condition with } \\
& \text { regard to }(x, u, y, v) \text { and in the interior of this domain } \\
\Delta_{v}-\Delta_{7}, \text { we have }
\end{array}\right] \begin{aligned}
& \frac{\lim }{h \rightarrow 0} \frac{1}{h}\{\Psi(t+h, x+h f(t, x, y), u+h f(t, u, v), y+h g(t, x, y), \\
& \\
& \quad v+h g(t, u, v))-\Psi(t, x, u, y, v)\} \geqq 0
\end{aligned}
$$

$$
\begin{aligned}
\left(\text { or } \varlimsup_{h \rightarrow 0}\right. & \frac{1}{h}\{\Psi(t+h, x+h f, u+h f, y+h g, v+h g) \\
& -\Psi(t, x, u, y, v)\} \leqq 0)
\end{aligned}
$$

Then for any two solutions of (1) $(x(t), y(t))$ and $(\bar{x}(t), \bar{y}(t))$ satisfying $|x|<A,|y|<B$ for $t \geqq t_{0}$, if we have at some $t=T\left(\geqq t_{0}\right)$

$$
|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|>\grave{o},
$$

then at some T^{\prime} such as $T^{\prime}>T$, we have

$$
\left|x\left(T^{\prime}\right)-\bar{x}\left(T^{\prime}\right)\right|+\left|y\left(T^{\prime}\right)-\bar{y}\left(T^{\prime}\right)\right| \leqq \bar{\delta} .
$$

The proof is omitted, for it is the same with Lemma 2.
Theorem 3. If the solutions of (1) are ultimately bounded for A and B and the assumptions in Lemmas 3 and 4 hold good, then we have (8) for any two solutions of (1), $(x(t), y(t))$ and $(\bar{x}(t)$, $\bar{y}(t))$.

Remark. Theorems 1, 2 and 3 can be generalized for the more general system of differential equations

$$
\frac{d x_{i}}{d t}=f_{i}\left(t, x_{1}, x_{2}, \cdots \cdots, x_{n}\right) \quad(i=1,2, \cdots \cdots, n)
$$

Example. Reuter has obtained a convergence theorem for the solutions of the differential equation of the second order

$$
\begin{equation*}
\ddot{x}+k f(x) \dot{x}+g(x)=k p(t) \quad(k>0) \tag{12}
\end{equation*}
$$

in the Journal of the London Mathematical Society, Vol. 26 (1951). Together with conditions for the ultimate boundedness, he has supposed that $g^{\prime}(x)>0$ and that $g^{\prime \prime}(x)$ exists and is bounded for $|x| \leqq x_{0}$. Here x_{0} corresponds to A in our theorems. And using his notations, we have $|x(t)| \leqq x_{0}$ and $|\dot{x}(t)| \leqq v_{0}$. Thus there exist positive constants $a_{1}, a_{2}, a_{3}, a_{4}$ and $\gamma\left(x_{0}\right)$, independent of k, such that for $|x| \leqq x_{0}$

$$
\left\{\begin{array}{l}
a_{1} \leqq f(x) \leqq a_{0} \\
a_{3} \leqq g^{\prime}(x) \leqq a_{4} \\
\left|g^{\prime \prime}(x)\right| \leqq r\left(x_{0}\right)
\end{array}\right.
$$

by the assumptions for $f(x), g^{\prime}(x)$ and $g^{\prime \prime}(x)$. And he concludes that, if $k>k_{0}=v_{0} r\left(x_{0}\right) / a_{1} a_{0}$, then for any two solutions of (12), $\left(x_{1}(t), \dot{x}_{1}(t)\right)$ and $\left(x_{2}(t), \dot{x}_{2}(t)\right)$, we have

On the convergence of solutions of the non-linear.

$$
x_{2}(t)-x_{1}(t) \rightarrow 0 \text { and } \dot{x}_{2}(t)-\dot{x}_{1}(t) \rightarrow 0 \text { as } t \rightarrow \infty .
$$

For our part, instead of (12), we consider the system

$$
\begin{equation*}
\dot{x}=y-k F(x), \dot{y}=-g(x)+k p(t), \tag{13}
\end{equation*}
$$

where $F(x)=\int_{0}^{x} f(x) d x$.
Then for $\Phi(x, u, y, v)$ in Theorem 1, we may take the expression
(14) $\quad(g(x)-g(u))(x-u)+(y-v)^{2}-2 c(x-u)(y-v)$
which Reuter has denoted by Q and used it in his research, where c is a positive suitable constant and is chosen so small that (14) is positive definite with regard to $(x-u)$ and $(y-v)$.

[^0]: * These Memoirs, Series A, Mathematics, Vol. 28, pp. 133-141.

