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In the foregoing papar™ we have researched sufficient conditions
for the wultimate boundedness of solutions of the system of differ-
ential equations,

g%f (%9
¢)) dy
= t) x’ )
g8 »)
and we have obtained an existence theorem of a periodic solution
by aid of the boundedness theorem. Namely under some conditions,
it is proved that there exist two positive numbers A and B in-
dependent of particular solutions such that
lx(O[ <A, |y@D|<B
for t=1, (t, depending upon each particular solution), where (x(t),
y(t)) is any solution of (1).
Let f(t, x, ¥) and g(t, x, y) be two continuous functions of (t, x, y)
in the domain

Jii 0Zt<oo, —ow<x<4+00, —oo<y<+oo.

Now we will show that under some conditions every solution
of (1) converges to the periodic solution as f—co provided the
solutions of (1) are ultimately bounded. At first, we shall prove
two following lemmas.

Lemma 1. Let 4, be the 5-dimensional domain of (i, x,u,y,v)
such as

WL=t<oo, |x|ZA, [u|=A, |yI=B, [v|<B,

where 1, may be arbitrarily great, but it is a constant. Now suppose
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that theve exists a continuous function @®(x,u,y, v) satisfying the
Jollowing conditions in d,; namely

1° @(x,u,y,v)>0, provided |x—u|+|y—v|>0,
2° @(x,u,y,v)=0, provided |x—u|+|y—v|=0,

3°  @(x,u,y,v) satisfies the Lipschitz condition with regard
to (x,u,y,v) and for every point in the interior of this
domain d,, we have

lim }E{w(“hf(f, 0y), u+hf(tu,v), y+hg(t, x,), v+ hg(t, u,v))
—P(x,u,y, v)}go,

where for every A> 0 (small ¥'s alone being worth to consider),
if |x—u|+|y—v|=A4, the left hand side of this inequality
<x(A) <0 (x(X) may be arbitrarily small, but it is a fixed
constant for fixed 2).

Then choosing 6(> 0) suitably for any e>0 (e however small),
if any two solutions of (1), (x(8),y(t)) and (i(t), (1)), which satisfy
x| <A, |y| <B for t=t,, satisfy the following inequality at t=T (=t,)
(T being arbitrary),

(2) [2(T)—x(T) |+ |y(T)—y(T)| <9,
then for t>T we have always
3 lx() —x (D] + [y (D) =D | <e.

Proof. For a given ¢, let ¥ be the minimum of @(x, u, y, v)
when |x—u|+|y—v|=e. Then since P(x, u,y, v) is positive for
|x— |+ |y—v|> 0, it is clear that 4'>0, and ¢ is independent of ¢.
Moreover since @(x, u, y, v) satisfies the Lipschitz condition, we
have a positive constant K such as

|02, 4,9, 0)— O, 0, y/, V)| SK(|x— 2| + lu—o'| + |ly—y | + |[v—0']).
Now we put
d=min (V/K, ).

Then it is proved as foliows that for any two solutions (x(t), y(%))
and (x(¢), y(¥)) satisfying (2) at an arbitrary {=T, the inequality
(3) holds good: Namely if otherwise suppose that we have at
some t=T"
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lx(T") = 2(T") |+ 1y(T") —3(T") | =e.
Now consider the function @(x(t), x(t), y(t), y(t)) for T<t=T
and then @=4" at t=T', while we have
4) ¢ ((T), x(T), y(T), 3(T)) =7,

since this function is a non-increasing function of ¢ by the condi-
tion 3°. Moreover we have

O (x(T), %(T), y(T), (1)) = Px(T), (1), y(T), (1))
s K(x(T)—=x(D)|+1y(T)—y(T)HD
< Ko
< K-i'/K=7.
Hence we have
P ((T), x(T), y(T), 3(T)) <7,
for by the condition 2°
¢ (x(T), (T, y(T), y(T))=0.

This contradicts (4) and hence (3) holds good. Thus tke proof is
completed.

Lemma 2. Suppose that the same assumptions as those in
Lemma 1 hold good. Then given any positive number o6 (6 may
be sufficiently small), it for any two solutions of (1) (x(t), y(¢)) and
x(D), ¥(O)) which satisfy (x| <A, |y| <B for t=t, we have at some
t=T (=t,) (T being arbitrary, but fixed)

(5) |2(T)—x(T) |+ |y(T) —3(T) | =9,
then we have at some T’ (>T)
(6) [x(T") —=x(T) |+ |y(T") —=3(T")| <.

Proof. Let 4, and 4, be two domains such as
T<st<ow, |2|I=A, lu|<A, |y|<B, [v|<B
and
‘ T<t<oo, |x—ul+|y—v|<d
respectively, where o' <d. Now consider a function
T, xu,y v)=e" P(x,u,y,0v) (N>0)
in d;—4d, and then we have
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1° ¥ (t,x,u,y 0v)>0, since |a—u|+|y—v|>0,
2° ¥ (t x,u,y,v) tends to infinity uniformly for (x, «, y, v)
as f—oo,
And it is clear that 7(t, x, u, y, v) satisfies locally for t the Lips-
chitz condition with regard to (x, u, y,v).
Moreover we have
fim l{ar(t+h X+ Bt 2, 9), w+ hf(t, u, 0), y+hg(t %, 9),

h->0

v+hg(t, u, v))—=C (¢ x,u,y, v)}

=lim %{ S0P (34 f, kW, 3+ he, 0+ hg) —e" O (3, u, 3, )}
=¥1f1 }z{ eN [ D(x+hf,u+hf,y+hg, v+hg)—P(x,u,y, )]

+ (em'(nh)_e“)(]’(x, u,y, U)}

=g IlTn(r)x —}l—[ Px+hf,uthf,y+hg, v+hg)—P(x,u,9,0,)]
+N e @(x,u,y,v)

< e {x(ﬁ') +NO(x, u,y, v)}.

Now for o', we can choose N(4’) so small that this expression
becomes always non-positive in the interior of 4,—4,. Therefore
3° ¥(t x,u,y,v) satisfies locally the Lipschitz condition
with regard to (x, u, y, v) and for all points in the
interior of J,—dJ, we have
fim __{w(t+h X+ W (4 % 9), ut B (4w, v), y+ hg(, 1, ),

>0

v+hg(t,u, v))—¥(t xu,y, v)} =0.

Now suppose that the assertion (6) is not {rue for 4. Let 4,
and 4, be two domains such as
x| <A, [u|<A, |9I<B, [v|=B

and
|x—u| +ly—v| <9
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respectively. Then we can choose TV by 2° such that

(7) min &Y P (x,u,y,v)>max e"®" O(x,u,y,v),
As—As

while by 3°
(T, (T, %(T"), y(T"), 3(T")) P (T, x(T), 2(T), y(T), y(T)).

This contradicts (7). Therefore the assertion is true. This 77
depends upon T and N(d'). '

Now we can prove the following convergence theorem by aid of
these lemmas.

Theorem 1. Suppose that the solutions of (1) are ultimately
bounded for A and B and that the same assumptions as those in
Lemma 1 hold good. Then for any two solutions of (1) (x(), (1))
and (x(t), y(t)), we have
{lim (x(t)—x())=0

t>

lim (y(t)—¥(¢))=0.

> x®

(8)

Proof Let (x(?),y(t)) and (x(¢),y(?)) be any two solutions
of (1). Then since these are ultimately bounded with the bounds
A and B, there exist T, and T, such that

x| <A, ly(®)| <B for =T,
and
lx(t)| <A, |¥()| <B for t=T,

respectively. Now we put T=max (T}, T, t,). By Lemma 1, ¢ is
chosen for an e>0 (however small) and if, for this ¢, we do not
have

AT —E(D)] + 13D —5(D)] <,
then we can choose 7" such as
|2(T") =2(T") | + |y(T") —3(T") | <&
by Lemma 2, where 7'>T. Then by Lemma 1 we have
lx () —2(D |+ 1y —y (D) <e,

for t>77. Namely (8) holds good.
From this fact, it is easy to prove the following theorem.

Theorem 2. If the same assumptions as those in Theorem 1
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hold good and the system of differential equations (1) has a periodic
solution of period w, it is unique and the other solutions of (1) con-
verge to that periodic solution as t—co.

Remark. If @(x, u,y,v) in condition 3° be fotally differentiable,
then the inequality under 3° reduces to

odP(x,u,y,v) 0P (x,u,y, v)
== DDAt X, y) + - D By, v
» S, %, y) ™ S )

# 22D 100 g4, 3, y) 4 LUEIID) g4, 4, 0) <00
y

Instead of sufficient conditions under which the results of
Theorems 1 and 2 are concluded, we can modify the conditions in
Lemma 1 and those in Lemma 2 independently as follows. Namely

Lemma 3. Suppose that theve exists a continuous function of
tx,u,y,v) @, x,u,yv) in d, satisfying the following conditions;
namely

1° @(t %, u,y,v)=0, provided |x—u|+ |y—v|=0,

2° there exists a positive number 6 (e) such that ¢ (t, x,u,y,v)
>a(e) >0 when |x—u| +|y—v|=e, where ¢ is an arbitrary
positive number and o depends on e,

3° @t x u,y,v) satisfies the Lipschitz condition with regard
to (x,u,y,v) and for a positive constant K, and in the
interior of d, we have

lim %{¢(t+h, x+hf(t x,y), u+hf(t,u,v), y+hg(t, x,5),

>0

v+ ha(t u, 0))— Ot %, u, 9, v)}go.

Then for any two solutions of (1), (x(),y(t)) and (x(1),y())
satisfying |x| <A, |y| <B for t=t, being given an arbitrary positive
number ¢ (however small), there exists a positive number ( <e) in-
dependent of T such that, if we have for an arbitrary T(=1,)

9) |2(T)—x(T) |+ |y(T) —3(T)|=4(e),
then
(10) |2(t) =) |+ |y () =3 ()| <e

holds for t=T.
Remark. Since the case where ¢ is small alone is worth to
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consider, it is sufficient that the condition 3° is satisfied in the
domain in 4, such as

h<t<oco, |x—u|l+|y—v|=x,

where x(>0) may be sufficiently small. Of course it is sufficient
that @ exists in the domain where |x—u|+|y—v| is sufficiently
smalli.

Proof. For an ¢, choosing 4 such as

A(e) <min (0/K, ¢),

this 4 depends only on e. Now suppose that, for any two solutions
of (1) now considering (x(¢), y(f)) and (x(¢), ¥(#)) satisfying (9)
at t=T, we have at some (>T), say T,

11 [x(T) =2(T) |+ 9(T") =3(T") | =e.

Then we can consider this 7" as the first ¢+ where (11) holds by
the continuity of the solutions. Hence by considering the function
P, x(t), x(t), y(1),y()) for TSt<T’, the conclusion of this lemma
follows in the same way as in Lemma 1. This first 7 is taken
according to the fact mentioned in the above remark.

Lemma 4. For every 6> 0 (6 may be sufficiently small), let 4.
be the domain such as

LSt<oo, |x—u|+|y—v| <d.

Suppose that theve exists a continuous function of (1, x,u,yv),
Vst x,u,y,0)=¥ (L, x,u,y,v), in d,— 4, which satisfies the following
conditions ; namely

1° ¥, % u,y,v) is positive in 4,—4,,

2° ¥ (tx,u,y,v) tends to zero uniformly for (x, u,y, v) when
t—oo (o7 tends to infinity uniformly as t— ),

3° W(t x, u,y,v) satisfies locally the Lipschitz condition with
regard to (x,u,y,v) and in the interior of this domain
d,—d., we have

lim% {'F(t+h,x+hf(t Ly), u+hf(t,u,v), y+hg(t x ),

h»0

v+hg(t,u,v)) —F(t x,u,y, v)} =0
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(or T:?n; %{IF(H h, x+hf, u+hf, y+ hg, v+ hg)

—¥ (53,0} <0).

Then for any two solutions of (1) (x(t),y()) and (x(t),y(t))
satisfying |x| <A, |y| <B for t=t, if we have at some t=T(=t,)

I#(T) =&(T)| +19(T)=3(T)| >4,
then at some T' such as T'> T, we have
|2(T") —2(T") |+ |y(T")—y(T") | <é.
The proof is omitted, for it is the same with Lemma 2.
Theorem 3. If the solutions of (1) are ultimately bounded for
A and B and the assumptions in Lemmas 3 and 4 hold good, then
we have (8) for any two solutions of (1), (x(t),y(t)) and (x(1),
y(@®).
Remark. Theorems 1, 2 and 3 can be generalized for the
more general system of differential equations

%': f(t) xly x'Z’ """" y xn) (i:lv 2) """" ) 72)'
Example. Reuter has obtained a convergence theorem for the

solutions of the differential equation of the second order
12) X+kf(x)x+g(x)=kp(t) (k> 0)

in the Journal of the London Mathematical Society, Vol. 26 (1951).
Together with conditions for the ultimate boundedness, he has
supposed that g’(x)>0 and that g’’(x) exists and is bounded for
|x|<x,, Here x, corresponds to A in our theorems. And using his
notations, we have |x(?)|<x, and |x(¢)]<<v,. Thus there exist posi-
tive constants a,, a. a., a, and y(x,), independent of k, such that
for |x|=x,

a,<f(x)=a.

a.=g' (x)=a,

lg” (x) |=7 (%),
by the assumptions for f(x), g'(x) and g”’(x). And he concludes
that, if k>k,=vy(x)/a, a, then for any two solutions of (12),
(x (), () and (x,(8), x.(#)), we have
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%(1) —x,(1)—>0 and x,(f) —x,(¢)—0 as {—>oo.
For our part, instead of (12), we consider the system
(13) x=y—kF(x), y=—g(x) +kp(1),
where F(x) =j:f(x) dx.

Then for @(x, u,y,v) in Theorem 1, we may take the expres-
sion
(14) (g(x)—g(w)) (x—u)+ (y—v)*—2c(x—u) (y—v)
which Reuter has denoted by @ and used it in his research, where

¢ is a positive suitable constant and is chosen so small that (14)
is positive definite with regard to (x—u) and (y—v).



