MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 2, 1953.

On the convergence of solutions of the non-linear differential equation

By

Taro YOSHIZAWA

(Received October 14, 1953)

In the foregoing papar^{*} we have researched sufficient conditions for the *ultimate boundedness* of solutions of the system of differential equations,

(1)
$$\frac{dx}{dt} = f(t, x, y)$$
$$\frac{dy}{dt} = g(t, x, y),$$

and we have obtained an existence theorem of a periodic solution by aid of the boundedness theorem. Namely under some conditions, it is proved that there exist two positive numbers A and B independent of particular solutions such that

$$|\mathbf{x}(t)| < A, \qquad |\mathbf{y}(t)| < B$$

for $t \ge t_0$ (t_0 depending upon each particular solution), where (x(t), y(t)) is any solution of (1).

Let f(t, x, y) and g(t, x, y) be two *continuous functions* of (t, x, y) in the domain

$$J_1: \quad 0 \leq t < \infty, \quad -\infty < x < +\infty, \quad -\infty < y < +\infty.$$

Now we will show that under some conditions every solution of (1) converges to the periodic solution as $t \rightarrow \infty$ provided the solutions of (1) are ultimately bounded. At first, we shall prove two following lemmas.

Lemma 1. Let \underline{J}_2 be the 5-dimensional domain of (t, x, u, y, v) such as

$$t_0 \leq t < \infty, \ |x| \leq A, \ |u| \leq A, \ |y| \leq B, \ |v| \leq B,$$

where t_0 may be arbitrarily great, but it is a constant. Now suppose

^{*} These Memoirs, Series A, Mathematics, Vol. 28, pp. 133-141.

that there exists a continuous function $\Phi(x, u, y, v)$ satisfying the following conditions in Δ_2 ; namely

- 1° $\Phi(x, u, y, v) > 0$, provided |x-u| + |y-v| > 0,
- 2° $\Phi(x, u, y, v) = 0$, provided |x-u| + |y-v| = 0,
- 3° $\Phi(x, u, y, v)$ satisfies the Lipschitz condition with regard to (x, u, y, v) and for every point in the interior of this domain Δ_2 , we have

 $\overline{\lim_{h \to 0}} \frac{1}{h} \left\{ \vartheta(x + hf(t, x, y), u + hf(t, u, v), y + hg(t, x, y), v + hg(t, u, v)) - \vartheta(x, u, y, v) \right\} \leq 0,$

where for every $\lambda > 0$ (small λ 's alone being worth to consider), if $|x-u|+|y-v| \ge \lambda$, the left hand side of this inequality $\le x(\lambda) < 0$ ($x(\lambda)$ may be arbitrarily small, but it is a fixed constant for fixed λ).

Then choosing $\delta(>0)$ suitably for any $\varepsilon > 0$ (ε however small), if any two solutions of (1), (x(t), y(t)) and ($\bar{x}(t), \bar{y}(t)$), which satisfy |x| < A, |y| < B for $t \ge t_0$, satisfy the following inequality at t = T ($\ge t_0$) (T being arbitrary),

(2)
$$|x(T) - \bar{x}(T)| + |y(T) - \bar{y}(T)| < \delta,$$

then for t > T we have always

(3)
$$|x(t) - \bar{x}(t)| + |y(t) - \bar{y}(t)| < \varepsilon.$$

Proof. For a given ε , let δ' be the minimum of $\Psi(x, u, y, v)$ when $|x-u|+|y-v|=\varepsilon$. Then since $\Psi(x, u, y, v)$ is positive for |x-u|+|y-v|>0, it is clear that $\delta'>0$, and δ' is independent of t. Moreover since $\Psi(x, u, y, v)$ satisfies the Lipschitz condition, we have a positive constant K such as

 $|\varphi(x, u, y, v) - \varphi(x', u', y', v')| \leq K(|x - x'| + |u - u'| + |y - y'| + |v - v'|).$

Now we put

$$\delta = \min(\delta'/K, \epsilon).$$

Then it is proved as follows that for any two solutions (x(t), y(t))and $(\bar{x}(t), \bar{y}(t))$ satisfying (2) at an arbitrary t=T, the inequality (3) holds good: Namely if otherwise suppose that we have at some t=T' On the convergence of solutions of the non-linear. 145

$$|x(T')-\bar{x}(T')|+|y(T')-\bar{y}(T')|=\varepsilon.$$

Now consider the function $\Psi(x(t), \bar{x}(t), y(t), \bar{y}(t))$ for $T \leq t \leq T'$ and then $\Psi \geq \delta'$ at t = T', while we have

(4)
$$\Psi(\mathbf{x}(T), \ \bar{\mathbf{x}}(T), \ \mathbf{y}(T), \ \bar{\mathbf{y}}(T)) \geq \delta',$$

since this function is a non-increasing function of t by the condition 3° . Moreover we have

$$\begin{split} \varphi(\mathbf{x}(T), \, \bar{\mathbf{x}}(T), \, \mathbf{y}(T), \, \bar{\mathbf{y}}(T)) &= \varphi(\bar{\mathbf{x}}(T), \, \bar{\mathbf{x}}(T), \, \bar{\mathbf{y}}(T), \, \bar{\mathbf{y}}(T)) \\ & \leq \quad K(|\mathbf{x}(T) - \bar{\mathbf{x}}(T)| + |\mathbf{y}(T) - \bar{\mathbf{y}}(T)|) \\ & < \quad K\delta \\ & \leq \quad K \cdot \delta' / K = \delta'. \end{split}$$

Hence we have

$$\Psi(\mathbf{x}(T), \ \bar{\mathbf{x}}(T), \ \mathbf{y}(T), \ \bar{\mathbf{y}}(T)) < \delta',$$

for by the condition 2°

$$\Psi(\bar{x}(T), \bar{x}(T), \bar{y}(T), \bar{y}(T)) = 0.$$

This contradicts (4) and hence (3) holds good. Thus the proof is completed.

Lemma 2. Suppose that the same assumptions as those in Lemma 1 hold good. Then given any positive number ∂ (∂ may be sufficiently small), it for any two solutions of (1) (x(t), y(t)) and ($\bar{x}(t)$, $\bar{y}(t)$) which satisfy |x| < A, |y| < B for $t \ge t_0$, we have at some t=T ($\ge t_0$) (T being arbitrary, but fixed)

(5)
$$|x(T) - \bar{x}(T)| + |y(T) - \bar{y}(T)| \ge \delta,$$

then we have at some T' (>T)

(6)
$$|x(T') - \bar{x}(T')| + |y(T') - \bar{y}(T')| < \delta.$$

Proof. Let \mathcal{A}_3 and \mathcal{A}_4 be two domains such as

$$T \leq t < \infty, |x| \leq A, |u| \leq A, |y| \leq B, |v| \leq B$$

and

$$T \leq t < \infty, \quad |x-u| + |y-v| < \delta'$$

respectively, where $\partial' < \partial$. Now consider a function

$$\Psi(t, x, u, y, v) = e^{Nt} \Psi(x, u, y, v) \qquad (N > 0)$$

in $\mathcal{I}_3 - \mathcal{I}_4$ and then we have

Taro Yoshizawa

1°
$$\Psi(t, x, u, y, v) > 0$$
, since $|x-u| + |y-v| > 0$,

2° $\Psi(t, x, u, y, v)$ tends to infinity uniformly for (x, u, y, v)as $t \to \infty$.

And it is clear that $\Psi(t, x, u, y, v)$ satisfies locally for t the Lipschitz condition with regard to (x, u, y, v).

Moreover we have

.

$$\begin{split} \overline{\lim_{h \to 0}} & \frac{1}{h} \Big\{ \Psi(t+h, x+hf(t, x, y), u+hf(t, u, v), y+hg(t, x, y), \\ & v+hg(t, u, v)) - \Psi(t, x, u, y, v) \Big\} \\ = \overline{\lim_{h \to 0}} & \frac{1}{h} \Big\{ e^{N(t+h)} \Psi(x+hf, u+hf, y+hg, v+hg) - e^{Nt} \Psi(x, u, y, v) \Big\} \\ = \overline{\lim_{h \to 0}} & \frac{1}{h} \Big\{ e^{N(t+h)} \big[\Psi(x+hf, u+hf, y+hg, v+hg) - \Psi(x, u, y, v) \big] \\ & + (e^{N(t+h)} - e^{Nt}) \Psi(x, u, y, v) \Big\} \\ = e^{Nt} & \overline{\lim_{h \to 0}} & \frac{1}{h} \big[\Psi(x+hf, u+hf, y+hg, v+hg) - \Psi(x, u, y, v) \big] \\ & + N & e^{Nt} & \Psi(x, u, y, v) \Big\} \\ \le e^{Nt} \Big\{ x(\delta') + N\Psi(x, u, y, v) \Big\}. \end{split}$$

Now for ∂' , we can choose $N(\partial')$ so small that this expression becomes always non-positive in the interior of $\Delta_3 - \Delta_4$. Therefore

3° $\Psi(t, x, u, y, v)$ satisfies locally the Lipschitz condition with regard to (x, u, y, v) and for all points in the interior of $J_3 - J_4$ we have

$$\overline{\lim_{h \to 0}} \ \frac{1}{h} \Big\{ \Psi(t+h, x+hf(t, x, y), u+hf(t, u, v), y+hg(t, x, y), u+hg(t, u, v)) - \Psi(t, x, u, y, v) \Big\} \leq 0.$$

Now suppose that the assertion (6) is not true for δ . Let \mathcal{A}_5 and \mathcal{A}_6 be two domains such as

$$|\mathbf{x}| \leq A, |\mathbf{u}| \leq A, |\mathbf{y}| \leq B, |\mathbf{v}| \leq B$$

and

$$|x-u|+|y-v|<\delta$$

146

On the convergence of solutions of the non-linear. 147

respectively. Then we can choose T'' by 2° such that

(7)
$$\min_{\Delta_{0}-\Delta_{0}} e^{N(\delta')T''} \Phi(x, u, y, v) > \max_{\Delta_{0}-\Delta_{0}} e^{N(\delta')T} \Phi(x, u, y, v)$$

while by 3°

 $\Psi(T^{\prime\prime}, x(T^{\prime\prime}), \bar{x}(T^{\prime\prime}), y(T^{\prime\prime}), \bar{y}(T^{\prime\prime})) \leq \Psi(T, x(T), \bar{x}(T), y(T), \bar{y}(T)).$

This contradicts (7). Therefore the assertion is true. This T'' depends upon T and $N(\partial')$.

Now we can prove the following *convergence theorem* by aid of these lemmas.

Theorem 1. Suppose that the solutions of (1) are ultimately bounded for A and B and that the same assumptions as those in Lemma 1 hold good. Then for any two solutions of (1) (x(t), y(t))and $(\bar{x}(t), \bar{y}(t))$, we have

(8)
$$\begin{cases} \lim_{t \to \infty} (x(t) - \bar{x}(t)) = 0\\ \lim_{t \to \infty} (y(t) - \bar{y}(t)) = 0. \end{cases}$$

Proof Let (x(t), y(t)) and $(\bar{x}(t), \bar{y}(t))$ be any two solutions of (1). Then since these are ultimately bounded with the bounds A and B, there exist T_1 and T_2 such that

$$|\mathbf{x}(t)| < A, |\mathbf{y}(t)| < B \text{ for } t \ge T_1$$

and

$$|\bar{\mathbf{x}}(t)| < A, |\bar{\mathbf{y}}(t)| < B \text{ for } t \geq T_2$$

respectively. Now we put $T = \max(T_1, T_2, t_0)$. By Lemma 1, δ is chosen for an $\epsilon > 0$ (however small) and if, for this δ , we do not have

 $|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|<\delta,$

then we can choose T' such as

$$|x(T') - \bar{x}(T')| + |y(T') - \bar{y}(T')| < \delta$$

by Lemma 2, where T' > T. Then by Lemma 1 we have

$$|x(t)-\bar{x}(t)|+|y(t)-\bar{y}(t)|<\varepsilon,$$

for t > T'. Namely (8) holds good.

From this fact, it is easy to prove the following theorem.

Theorem 2. If the same assumptions as those in Theorem 1

Taro Yoshizawa

hold good and the system of differential equations (1) has a periodic solution of period ω , it is unique and the other solutions of (1) converge to that periodic solution as $t \rightarrow \infty$.

Remark. If $\Phi(x, u, y, v)$ in condition 3° be totally differentiable, then the inequality under 3° reduces to

$$\frac{\partial \Psi(x, u, y, v)}{\partial x} f(t, x, y) + \frac{\partial \Psi(x, u, y, v)}{\partial u} f(t, u, v)$$
$$+ \frac{\partial \Psi(x, u, y, v)}{\partial y} g(t, x, y) + \frac{\partial \Psi(x, u, y, v)}{\partial v} g(t, u, v) \leq 0.$$

Instead of sufficient conditions under which the results of Theorems 1 and 2 are concluded, we can modify the conditions in Lemma 1 and those in Lemma 2 *independently* as follows. Namely

Lemma 3. Suppose that there exists a continuous function of (t, x, u, y, v) $\Psi(t, x, u, y, v)$ in Δ_2 satisfying the following conditions; namely

- 1° $\Psi(t, x, u, y, v) = 0$, provided |x-u| + |y-v| = 0,
- 2° there exists a positive number $\delta(\varepsilon)$ such that $\Psi(t, x, u, y, v)$ > $\delta(\varepsilon) > 0$ when $|x-u| + |y-v| \ge \varepsilon$, where ε is an arbitrary positive number and δ depends on ε ,
- 3° $\Psi(t, x, u, y, v)$ satisfies the Lipschitz condition with regard to (x, u, y, v) and for a positive constant K, and in the interior of Δ_2 we have

$$\lim_{h \to 0} \frac{1}{h} \left\{ \Phi(t+h, x+hf(t, x, y), u+hf(t, u, v), y+hg(t, x, y), u+hf(t, u, v), u+hf(t$$

$$v + hg(t, u, v)) - \Phi(t, x, u, y, v) \} \leq 0.$$

Then for any two solutions of (1), (x(t), y(t)) and $(\bar{x}(t), \bar{y}(t))$ satisfying |x| < A, |y| < B for $t \ge t_0$, being given an arbitrary positive number ε (however small), there exists a positive number $\lambda(<\varepsilon)$ independent of T such that, if we have for an arbitrary $T(\ge t_0)$

(9)
$$|x(T)-\bar{x}(T)|+|y(T)-\bar{y}(T)|\leq \lambda(\varepsilon),$$

then

(10)
$$|x(t) - \bar{x}(t)| + |y(t) - \bar{y}(t)| < \varepsilon$$

holds for $t \ge T$.

Remark. Since the case where ε is small alone is worth to

consider, it is sufficient that the condition 3° is satisfied in the domain in A_2 such as

$$t_0 \leq t < \infty$$
, $|\mathbf{x} - \mathbf{u}| + |\mathbf{y} - \mathbf{v}| \leq \mathbf{x}$,

where x(>0) may be sufficiently small. Of course it is sufficient that φ exists in the domain where |x-u|+|y-v| is sufficiently small.

Proof. For an ϵ , choosing λ such as

$$\lambda(\epsilon) < \min(\partial/K, \epsilon),$$

this λ depends only on ϵ . Now suppose that, for any two solutions of (1) now considering (x(t), y(t)) and $(\bar{x}(t), \bar{y}(t))$ satisfying (9) at t=T, we have at some t(>T), say T',

(11)
$$|x(T') - \bar{x}(T')| + |y(T') - \bar{y}(T')| = \epsilon.$$

Then we can consider this T' as the first t where (11) holds by the continuity of the solutions. Hence by considering the function $\Psi(t, x(t), \bar{x}(t), y(t), \bar{y}(t))$ for $T \leq t \leq T'$, the conclusion of this lemma follows in the same way as in Lemma 1. This first T' is taken according to the fact mentioned in the above remark.

Lemma 4. For every $\partial > 0$ (δ may be sufficiently small), let Δ_{τ} be the domain such as

$$t_0 \leq t < \infty, |x-u| + |y-v| < \delta.$$

Suppose that there exists a continuous function of (t, x, u, yv), $\Psi_{\delta}(t, x, u, y, v) = \Psi(t, x, u, y, v)$, in $\Delta_2 - \Delta_7$ which satisfies the following conditions; namely

- 1° $\Psi(t, x, u, y, v)$ is positive in $\Delta_2 \Delta_7$,
- 2° $\Psi(t, x, u, y, v)$ tends to zero uniformly for (x, u, y, v) when $t \rightarrow \infty$ (or tends to infinity uniformly as $t \rightarrow \infty$),
- 3° $\Psi(t, x, u, y, v)$ satisfies locally the Lipschitz condition with regard to (x, u, y, v) and in the interior of this domain $\Delta_2 \Delta_7$, we have

$$\frac{\lim_{h \to 0} \frac{1}{h}}{h} \left\{ \Psi(t+h, x+hf(t, x, y), u+hf(t, u, v), y+hg(t, x, y), u+hg(t, u, v)) - \Psi(t, x, u, y, v) \right\} \ge 0$$

Taro Yoshizawa

(or
$$\overline{\lim_{h \to 0}} \frac{1}{h} \left\{ \Psi(t+h, x+hf, u+hf, y+hg, v+hg) - \Psi(t, x, u, y, v) \right\} \leq 0$$

Then for any two solutions of (1) $(\mathbf{x}(t), \mathbf{y}(t))$ and $(\bar{\mathbf{x}}(t), \bar{\mathbf{y}}(t))$ satisfying $|\mathbf{x}| < A$, $|\mathbf{y}| < B$ for $t \ge t_0$, if we have at some $t = T(\ge t_0)$

$$|x(T) - \bar{x}(T)| + |y(T) - \bar{y}(T)| > \delta,$$

then at some T' such as T' > T, we have

 $|x(T')-\bar{x}(T')|+|y(T')-\bar{y}(T')|\leq \delta.$

The proof is omitted, for it is the same with Lemma 2.

Theorem 3. If the solutions of (1) are ultimately bounded for A and B and the assumptions in Lemmas 3 and 4 hold good, then we have (8) for any two solutions of (1), (x(t), y(t)) and $(\bar{x}(t), \bar{y}(t))$.

Remark. Theorems 1, 2 and 3 can be generalized for the more general system of differential equations

$$\frac{dx_i}{dt}=f_i(t, x_1, x_2, \cdots, x_n) \qquad (i=1, 2, \cdots, n).$$

Example. Reuter has obtained a convergence theorem for the solutions of the differential equation of the second order

(12)
$$\ddot{x} + kf(x)\dot{x} + g(x) = kp(t)$$
 $(k > 0)$

in the Journal of the London Mathematical Society, Vol. 26 (1951). Together with conditions for the ultimate boundedness, he has supposed that g'(x) > 0 and that g''(x) exists and is bounded for $|x| \leq x_0$. Here x_0 corresponds to A in our theorems. And using his notations, we have $|x(t)| \leq x_0$ and $|\dot{x}(t)| \leq v_0$. Thus there exist positive constants a_1 , a_2 , a_3 , a_4 and $\gamma(x_0)$, independent of k, such that for $|x| \leq x_0$

$$\begin{cases} a_1 \leq f(x) \leq a_2 \\ a_3 \leq g'(x) \leq a_4 \\ |g''(x)| \leq \gamma(x_0), \end{cases}$$

by the assumptions for f(x), g'(x) and g''(x). And he concludes that, if $k > k_0 = v_0 \gamma(x_0) / a_1 a_2$, then for any two solutions of (12), $(x_1(t), \dot{x}_1(t))$ and $(x_2(t), \dot{x}_2(t))$, we have

150

On the convergence of solutions of the non-linear. 151

$$\mathbf{x}_2(t) - \mathbf{x}_1(t) \rightarrow 0$$
 and $\dot{\mathbf{x}}_2(t) - \dot{\mathbf{x}}_1(t) \rightarrow 0$ as $t \rightarrow \infty$.

For our part, instead of (12), we consider the system

(13)
$$\dot{x} = y - kF(x), \ \dot{y} = -g(x) + kp(t),$$

where $F(x) = \int_{0}^{x} f(x) dx$.

Then for $\Psi(x, u, y, v)$ in Theorem 1, we may take the expression

(14)
$$(g(x)-g(u))(x-u)+(y-v)^2-2c(x-u)(y-v)$$

which Reuter has denoted by Q and used it in his research, where c is a positive suitable constant and is chosen so small that (14) is positive definite with regard to (x-u) and (y-v).