Memoirs of the College of Science, Untversity of Kyoto, Series A Vol. XXVIII, Mathematics No. 2, 1953.

# On some properties of the non-linear differential equations of the "Parametric excitation" 

By<br>Masaya Yamaguti<br>To my Teacher, Toshizô Matsumoto on the occasion of his 63rd birthday

(Received July 8, 1953)

Introduction. The author and his collaborator S. Mizohatal have obtained a proof for the existence of the periodic solutions of the non-linear differential equations of the following type under comparatively weak conditions,

$$
\ddot{x}+f(x) \dot{x}+g(x)=p(t) .
$$

This problem has been raised from the researches of the non-linear vibrations in the field of engineerings. In this report, we shall discuss the wider class of problem which contains the so-called " Parametric Excitation") which has not yet been rigorously discussed. For example, one case is expressed by the equation, ${ }^{3}$

$$
\ddot{x}+\beta_{0} \dot{x}+\left(p_{0}{ }^{2}+\mu_{0} \cos 2 \omega t\right) x+r_{0} x^{3}=p_{0} \cos (\omega t+\varphi)
$$

on which we shall have the following conclusion in this report: This equation has at least one periodic solution having such property that

$$
-x(t)=x\left(t+\frac{\pi}{\omega}\right) \quad \text { as } \quad \beta_{0}>0, \quad r_{0}>0 .
$$

We shall describe the obtained results as two theorems I, II and add several examples.

Now we shall consider the following differential equation

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}+g(x, t)=p(t), \tag{1}
\end{equation*}
$$

where the functions $f(x), g(x, t)$ satisfy the Lipschitz condition ${ }^{4}$ with respect to $x$, and $g(x, t)$ has a continuous partial derivative $g_{l}(x, t)$ and $g(x, t), p(t)$ are continuous periodic functions of $t$ having the period $\omega$, and $p(t)$ satisfies the condition $\int_{0}^{\omega} p(t) d t=0$. We put the
functions $F(x), G(x, t), P(t)$ as follows:

$$
F(x)=\int_{0}^{x} f(x) d x, \quad G(x, t)=\int_{0}^{x} g(x, t) d x, \quad P(t)=\int_{0}^{t} p(t) d t .
$$

Since the function $P(t)$ is bounded by the assumption, we put

$$
P_{0}=\max _{v \leq i<\infty}|P(t)|
$$

Theorem I Hypotheses:
(u) $\quad F(x) \operatorname{sgn} x \rightarrow \infty \quad$ as $|x| \rightarrow \infty$
( $\beta$ ) $g(x, t) \operatorname{sgn} x \geq k_{0}>0$, for $|x|>\hat{\xi}_{0}$
(r) $\left.|F(x)|>\frac{1}{k_{1}} \frac{G_{t}(x, t)}{g(x, t)} \right\rvert\,$, for $|x|>\dot{\xi}_{1}$
where $k_{0}, \hat{\xi}_{0}, k_{1}, \hat{\xi}_{1}$ are positive constants and $0<k_{1}<1$.
Conclusion: For any $x_{0}, \dot{x}_{0}$ the solution $x(t)$ of (1) for which $x(0)$ $=x_{u}, \dot{x}(0)=\dot{x}_{0}$ satisfies

$$
|x(t)|<B, \quad|\dot{x}(t)|<B \quad \text { for } \quad t>t_{0}\left(x_{0}, \dot{x}_{o}\right)
$$

where $B$ is a constant independent of $x_{0}, \dot{x}_{1}$ and there is at least one periodic solution with period $\omega$ among such solutions.
Proof (i) We arrange the constants $\xi_{2}, m, \xi_{3}, F_{0}$ and $g_{0}$ for later use. When we suppose that $y=\dot{x}+F(x)-P(t)$, we can write (1) as follows:

$$
\left\{\begin{array}{l}
\dot{x}=y-F(x)+P(t)  \tag{2}\\
\dot{y}=-g(x, t) .
\end{array}\right.
$$

Next we define the function $P(x, y, t)$ as follows:

$$
\begin{equation*}
P(x, y, t)=\frac{y^{0}}{2}+G(x, t) . \tag{3}
\end{equation*}
$$

Then we can say that the plane curve given by the equation (4) below is simple on the plane $t=t$ for sufficiently large value of $C$


$$
\begin{equation*}
P(x, y, t)=C . \tag{4}
\end{equation*}
$$

Let us consider the derivative $\frac{d P}{d t}$ along the trajectory of the solution of (2).

$$
\begin{equation*}
\frac{d}{d t} P(x(t), y(t), t)=-g(x, t)\{F(x)-P(t)\}+G_{l}(x, t) . \tag{5}
\end{equation*}
$$

Put $\frac{d P}{d t}=-\varphi(x, t)$. By the hypothesis ( $\left.\alpha\right)$, we find a constant $\xi_{2}$ ( $>\max \left(\xi_{0}, \xi_{1}\right)$ ) that satisfies the condition (6)

$$
\begin{equation*}
\left(1-k_{1}\right) F(x) \operatorname{sgn} x>P_{0}+\frac{\varepsilon}{k_{0}} \quad \text { for } \quad|x|>\xi_{2}, \tag{6}
\end{equation*}
$$

where $\varepsilon$ is an arbitrary positive constant.
On the other hand we may write $\varphi(x, t)$ as follows :

$$
\varphi(x, t)=\mathrm{g}(x, t)\left\{\left(1-k_{1}\right) F(x)-P(t)\right\}+g(x, t)\left\{k_{1} F(x)-\frac{G_{t}(x, t)}{g(x ; t)}\right\}
$$

From (6) and ( $\gamma$ ) we have

$$
\begin{aligned}
|\varphi(x, t)| & >|g(x, t)|\left\{\left|\left(1-k_{1}\right) F(x)\right|-P_{0}\right\}+|g(x, t)|\left\{\left|k_{1} F(x)\right|-\left|\frac{G_{i}(x, t)}{g(x, t)}\right|\right\} \\
& >k_{0} \frac{\varepsilon}{k_{0}}+0 . \text { or }|x|>\xi_{2}
\end{aligned}
$$

Therefore we can say
(7) $\dot{P}(x(t), y(t), t)<-\varepsilon, \quad$ for $\quad|x(t)|>\xi_{2} \quad 0 \leqq t \leqq(1)$,
and we put

$$
\begin{equation*}
m=\max _{\substack{1 \\ 0 \leq l i z=\\ 0 \leq t \leq i \leq w}}|\dot{P}(x(t), y(t), t)| \tag{8}
\end{equation*}
$$

and we define $\hat{5}_{3}$

$$
\begin{equation*}
\xi_{3}>\left(1+\frac{4 m}{\varepsilon}\right) \xi_{2} \tag{9}
\end{equation*}
$$

Now we put $F_{0}, g_{0}$ as follows:

$$
\begin{align*}
& g_{0}=\max _{\substack{t \cdot x \\
t \leq s=9 \\
u \leq s i v}}|g(x, t)| \tag{10}
\end{align*}
$$

(ii) We shall consider several domains in ( $x, y, t$ ) -space.

Next we denote by $D_{C}$ the domain contained in 5 enclosed by the surface (4) which itself is denoted by $S_{o}$, and denote by $S_{o}(t)$ the section curve of $S_{c}$ by the plane $t=t$ and denote by $D_{c}(t)$ the section domain of 2 dimension of $D_{c}$ cut by the plane $t=t$.
Lemma 1. If we choose $C$ of (4) sufficiently large, we can say that the trajectory of the solution of (2) which entered in $\mathbb{R}$ after the crossing of $S_{o}$ must pass through only $\overline{\mathfrak{E}}$ (or $\mathfrak{Z}$ ) so long as it stays in $\mathbb{R}$, and we may suppose that the time spent on this passing of $£$ may be as short as we hope.

Suppose that the trajectory $(x(t), y(t), t)$ of (2) has entered in crossing $S_{c}$ at $t_{0}$, then we have from (2),

$$
y(t)-y\left(t_{0}\right)=\int_{t_{0}}^{t} \dot{y} d t=-\int_{t_{0}}^{t} g(x, t) d t
$$

Since $(x(t), y(t), t) \in \mathbb{R}$, we have $\left|y(t)-y\left(t_{0}\right)\right| \leqq g_{0}(\omega$, or

$$
\begin{equation*}
\left|y\left(t_{0}\right)\right|-g_{0} \omega \leqq|y(t)| \leqq\left|y\left(t_{0}\right)\right|+g_{0} \omega, \quad \text { for } \quad(x(t), y(t), t) \in \mathbb{R} \tag{13}
\end{equation*}
$$

Because of the assumption that $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \in S_{c}\left(t_{0}\right) \cap \mathfrak{Q}$, we can establish the following inequality by taking $C$ sufficiently large:

$$
F_{0}<\left|y\left(t_{0}\right)\right|-g_{0}(\prime)
$$

and then we can suppose $(x(t), y(t), t) \in \overline{\mathfrak{Z}}$ (or $\underline{\mathfrak{Q}}$ ) for $t_{0} \leqq t \leqq \omega$ so long as it stays in such domain $\mathfrak{Q}$. Obviously, from the first equation of (2) we have

$$
\left\{\begin{array}{lll}
\dot{x}>y-F_{0}>0, & \text { for } & (x(t), y(t), t) \in \mathbb{Z}  \tag{14}\\
\dot{x}<y+F_{0}<0, & \text { for } & (x(t), y(t), t) \in \underline{\mathbb{Z}} .
\end{array}\right.
$$

Then the solution $x(t)$ of (1) is monotone with respect to $t$ in such domain. Suppose that the solution has entered in $\mathfrak{L}$ at $t=t_{0}$ and it stays in $\mathfrak{Q}$ (i.e. in $\overline{\mathbb{Q}}$ or $\mathbb{Q}$ ) until $t_{0}+\tau$, then we have

$$
\begin{equation*}
==\int_{x\left(t_{0}\right)}^{r\left(t_{n}+\tau\right)} \frac{d x}{y(t)-F(x)+P(t)} . \tag{15}
\end{equation*}
$$

Now we consider the only case where the solution passes through $\overline{\mathbf{z}}$. (Same discussion may be possible for ㅇ.) By (13) we have

$$
\begin{array}{r}
\tau \leqq \int_{\tau\left(t_{0}\right)}^{\tau\left(t_{0}+\tau\right)} \frac{d x}{|y(t)|-F_{0}} \leqq \frac{2 \xi_{3}}{\left|y\left(t_{0}\right)\right|-g_{0}\left(v-F_{0}\right.}  \tag{16}\\
\quad(x(t), y(t), t) \in \overline{\mathcal{B}}, t_{0} \leqq t \leqq t_{0}+\tau .
\end{array}
$$

Then we conclude that ז may be supposed as small as we hope by increasing $C$. (i.e. by increasing $\left|y\left(t_{0}\right)\right|$ ) Q.E.D.
Lemma 2. If we choose $C$ of (4) sufficiently large, we can say that $P(x(t), y(t), t)$ decreases when the trajectory of (2) traverses $\mathfrak{Z}_{+}$(or $\mathfrak{Z}_{-}$) after the crossing of $S_{c}$ (or before the crossing).

As we have seen in the proof of lemma 1, the trajectory (2) staying in $\mathbb{Z}_{+}$(or $\mathbb{Z}_{-}$) must pass through only $\overline{\mathbb{Z}}_{+}$or $\underline{Z}_{+}$(or, $\overline{\mathbb{Z}}_{-}$ or $\underline{\mathbb{Z}}_{-}$.) Here we prove lemma 2 in the case where the trajectory passes through $\mathbb{B}_{+}$. (The same discussion may be applied on the other cases.) Now $x(t)$ is monotone increasing with respect to $t$ while it stays in $\mathfrak{Z}_{+}$(as we have seen in the proof of lemma 1 ).

We shall denote by $\mathfrak{z}$ the time spent to pass $\mathfrak{H}$ and denote by $\tau^{\prime}$ the time spent to pass $\mathbb{R}_{+}$and we assume that the trajectory $(x(t), y(t) t)$ crosses $S_{c}$ at $t=t_{0}$ and departs from $\overline{\mathbb{Z}}_{+}$at $t=t_{0}+\tau+$ $\tau^{\prime}$ after traversing $\overline{\mathbf{L}}_{+}$, then we have

$$
\begin{aligned}
& \tau=\int_{x\left(t_{0}\right)}^{x\left(t_{0}+\tau\right)} \frac{d x}{\dot{x}} \leqq \int_{r\left(t_{0}\right)}^{x\left(t_{0}+\tau\right)} \frac{d x}{|y(t)|-F_{0}} \leqq \frac{2 \hat{\xi}_{0}}{\left|y\left(t_{0}\right)\right|-\omega g_{0}-F_{0}}, \\
& \tau^{\prime}=\int_{r\left(t_{0}+\tau\right)}^{x\left(t_{0}+\tau+\tau\right)} \frac{d x}{\dot{x}} \geqq \int_{x\left(t_{0}+\tau\right)}^{x\left(t_{0}+\tau+\tau\right)} \frac{d x}{|y(t)|+F_{0}} \geqq \frac{\xi_{3}-\xi_{2}}{\left|y\left(t_{0}\right)\right|+\omega g_{0}+F_{0}} .
\end{aligned}
$$

Therefore

$$
\frac{\tau}{\tau^{\prime}} \leqq \frac{2 \xi_{2}}{\xi_{3}-\xi_{0}} \cdot \frac{\left|y\left(t_{n}\right)\right|+\omega g_{0}+F_{0}}{\left|y\left(t_{0}\right)\right|-\omega g_{0}-F_{0}} .
$$

Since $\left|y\left(t_{0}\right)\right| \rightarrow \infty$ when $C \rightarrow \infty$, we have

$$
\frac{\tau}{\tau^{\prime}} \equiv \frac{2 \xi_{2}}{\xi_{3}-\xi_{2}}(1+\eta),
$$

where $\eta$ is small for large value of $C$. By the determination of (9), we have

$$
\frac{2 \xi_{2}}{\xi_{3}-\xi_{9}}<\frac{\varepsilon}{2 m} .
$$

Putting $\eta \leqq \frac{1}{2}$ we have

$$
\begin{equation*}
\frac{\tau}{\tau^{\prime}} \leqq \frac{3}{4} \cdot \frac{\varepsilon}{m} \tag{17}
\end{equation*}
$$

On the other hand, let us calculate the variation $\delta P$ of $P(x(t)$, $y(t), t)$ during the passage of the trajectory from $t_{0}$ to $t_{0}+\tau+\tau^{\prime}$.

$$
\begin{gathered}
\delta P=\int_{t_{0}}^{t_{0}+\tau} \dot{P} d t+\int_{t_{0}+\tau}^{t_{0}+\tau+\tau \prime} \dot{P} d t \\
\delta P \leqq m \tau-\varepsilon \tau^{\prime}<-m \tau^{\prime} \cdot \frac{\varepsilon}{4 m} .
\end{gathered}
$$

Q.E.D.

(iii) Now we shall show that the trajectory $(x(t), y(t), t)$ of (2) started from $S_{c}(0)$ at $t=0$, must enter into $D_{c}(\omega)$ at $t=\omega$. (Of course we have to increase the value of $C$.)
$1^{\circ}$ The trajectory of the solution of (2) started from $S_{c}(0) \cap$ Q must depart from $\mathbb{E}$ within one period after passing $\mathbb{Z}$ because of lemma 1.
2. Such a trajectory must pass through only $\mathfrak{E}$ or $\underline{\mathbb{Z}}$ because of lemma 1.
$3^{\circ}$ The value of $P(x, y, t)$ along such a trajectory must decrease when it has passed ${\underset{\sim}{(-)}}_{+}$. (lemma 2) Therefore such a trajectory started from $S_{c}(0) \cap \mathbb{Z}$ must enter into the interior of $D_{c}$ after passing $\mathfrak{L}_{+}$.
$4^{\circ}$ Therefore of all trajectories of the solutions of (2) started from $S_{c}(0)$, there must be for each at least one time point at which they enter into the part of $D_{c}$ belonging to the exterior of $\mathbb{L}$.
$5^{\circ}$ Now we should suppose that one solution started from $S_{c}(0)$ does not enter into the interior of $D_{C}(\omega)$ at $t=\omega$. Of this solution, $t_{0}$ is a time point assured by $4^{\circ}$. Then there is a time point $\tau$ as follows:

$$
\begin{align*}
& t_{0}<\tau \leqq \omega, \quad(x(\tau), y(\tau)) \in S_{c}(\tau),  \tag{19}\\
& (x(\tau+\eta), y(\tau+\eta)) \bar{\epsilon} D_{c}(\tau+\eta), \quad \eta: \text { small. }
\end{align*}
$$

If there are many such time points, we take the least one of them. Therefore $(x(t), y(t), t)$ must go out of $D_{c}$ at $\tau$, from that we have

$$
\dot{P}(x(\tau), y(\tau), \tau)>0
$$

and this occurs only when $|x(\tau)|<\xi_{2}$, then we have

$$
\begin{equation*}
(x(\tau), y(\tau), \tau) \in \mathfrak{N} \cap S_{c}(\tau) \tag{20}
\end{equation*}
$$

Since $\left(x\left(t_{0}\right), y\left(t_{0}\right), t_{0}\right) \in \mathbb{Z}$, then $(x(t), y(t), t)$ passes through $\mathfrak{B}_{+}$(or $\mathfrak{B}_{-}$) during the interval $t_{0} \leqq t \leqq \tau$. Therefore by lemma $2, P$ decreases. On the other hand, the value of $P$ before its entering into $\mathfrak{B}_{+}$(or $\mathfrak{B}_{-}$) is smaller or equal to $C$ ( $\tau$ is the least time point which satisfies (19)). Consequently it contradicts to (19) that along the

On some properties of the non-liuear differential equations.
trajectory $P(x, y, t)$ decreases from the value of $P$ at $t_{0}$ :

$$
P\left(x\left(t_{0}\right), y\left(t_{0}\right), t_{0}\right) \leqq C .
$$

Hence all the solutions of (2) started from $S_{c}(0)$ arrive at the interior of $D_{c}(\omega)$ at $t=(\omega$.
$6^{\circ}$ Then also the solutions of (2) started from $D_{c}(0)$ arrive at the interior $D_{c}(\omega)$, where $D_{c}(0)$ is congruent to $D_{c}(\omega)$. Considering the mapping which maps $D_{C}(0)$ to $D_{C}(\omega)$, we conclude that there is at least one fixed point in $D_{c}(0)$, and this process is repeated in all intervals $(n \omega,(n+1) \omega)$. Then there is at least one periodic solution of (2) of period $\omega$. This solution $x(t)$ is a solution of (1). Then also we can conclude, by similar discussion as in the former paper ${ }^{1)}$, that for all solutions, we have

$$
\left.|x(t)|<B, \quad|\dot{x}(t)|<B \quad t>t_{0}{ }^{\prime} x(0), \dot{x}(0)\right)
$$

## Q.E.D.

Theorem II If we add one more hypothesis ( $\delta$ ) below to ( $\mu$ ), ( $\beta$ ), $(\gamma)$ of theorem I, then the differential equation (1) has at least one periodic solution of period $\omega$ such that $x(t)=-x\left(t+\frac{\omega}{2}\right)$.

$$
f(x)=f(-x), \quad-g(x, t)=g(-x, t)
$$

$$
g(x, t)=g\left(x, t+\frac{\omega}{2}\right), \quad p(t)=-p\left(t+\frac{\omega}{2}\right) .
$$

Proof We shall write (1) as follows:

$$
\left\{\begin{array}{l}
\dot{x}=y-F(x)+\tilde{P}(t)  \tag{21}\\
\dot{y}=-g(x, t)
\end{array}\right.
$$

where (22)

$$
\ddot{P}(t)=P(t)-\frac{1}{2} P\left(\frac{\omega}{2}\right) .
$$

then $\ddot{P}(t)$ satisfies $\ddot{P}(t)=-\ddot{P}\left(t+\frac{\omega}{2}\right)$ by the last condition of ( $\left.\grave{\delta}\right)$. Now we shall consider the equation (21) with the time interval $0 \leqq t \leqq \frac{(\prime)}{2}$ only. The domain $D_{o}(0)$ is congruent to $D_{c}\left(\frac{\omega}{2}\right)$ by the condition (o). Then we consider the mapping $T$ which maps ( $x(0), y(0)$ ) on $\left(x\left(\frac{(\prime)}{2}\right), y\left(\frac{(\prime)}{2}\right)\right)$ and $T$ is supposed to be determined by the following formula:

$$
T:\left\{\begin{array}{l}
x\left(\frac{(1}{2}\right)=M(x(0), y(0)) \\
y\left(\frac{\omega}{2}\right)=N(x(0), y(0))
\end{array}\right.
$$

Hence by the same discussion as in the proof of theorem I, we can say

$$
T\left(\bar{D}_{c}(0)\right) \in D_{c}\left(\frac{\omega}{2}\right)
$$

here $D_{c}(0)$ is congruent to $D_{c}\left(\frac{\omega}{2}\right)\left(\bar{D}_{c}(0)\right.$ is the closure of $\left.D_{c}(0)\right)$. Next we consider another mapping $U$ :

$$
U:\left\{\begin{array}{l}
\bar{x}(0)=-x\left(\frac{\omega}{2}\right) \\
\bar{y}(0)=-y\left(\frac{\omega}{2}\right)
\end{array}\right.
$$

and by the symmetry conditions $(\dot{\delta})$ of $S_{c}(0)$ and $S_{c}\left(\frac{(1)}{2}\right)$, we can say that if $\left(x\left(\frac{\omega}{2}\right), y\left(\frac{\omega}{2}\right)\right) \in D_{c}\left(\frac{\sigma}{2}\right)$, then $(\bar{x}(0), \bar{y}(0)) \in D_{c}\left(\frac{(\prime)}{2}\right)$.

Then we consider the product mapping $U T$. Since $U$ and $T$ are topological, $U T$ is a topological mapping by which $(x(0), y(0))$ is mapped to $(\bar{x}(0), \bar{y}(0))$, and we can say

$$
\begin{equation*}
U T\left(\bar{D}_{c}(0)\right) \subset D_{c}\left(\frac{(1)}{2}\right) . \tag{23}
\end{equation*}
$$

Therefore we conclude that there is at least one fixed point in $\bar{D}_{c}(0)$. Then there is a solution $\left(x_{0}(t), y_{0}(t)\right)$ of (21) such that

$$
\left\{\begin{array}{l}
\bar{x}_{0}(0)=x_{0}(0)=-x_{0}\left(\frac{\omega}{2}\right)  \tag{24}\\
\bar{y}_{0}(0)=y_{0}(0)=-y_{0}\left(\frac{\omega}{2}\right)
\end{array}\right.
$$

Next we consider the behaviour of ( $\left.\bar{x}_{0}(\tau), \bar{y}_{0}(\tau)\right)$ in the interval $0 \leqq \tau \leqq \frac{(\theta)}{2}$ instead of the behaviour of $\left(x_{0}(t), y_{0}(t)\right)$ in the interval $\frac{\omega}{2} \leqq t \leqq \omega$, where $\bar{x}_{0}(\tau)=-x_{0}\left(\tau+\frac{\omega}{2}\right), \bar{y}_{0}(\tau)=-y_{0}\left(\tau+\frac{\omega}{2}\right)$.

Since the behaviour of $\left(x_{0}(t), y_{0}(t)\right)$ is determined by (21) in

On some properties of the non-linear differential equations. the interval $\frac{\omega}{2} \leqq t \leqq \omega$, then we obtain the following equation for $\left(\bar{x}_{0}(t), \bar{y}_{0}(t)\right)$

$$
\begin{cases}\dot{\bar{x}}(\tau)=y(\tau)-F(\bar{x}(\tau))+\widetilde{P}(\tau)  \tag{25}\\ \dot{\bar{y}}(\tau)=-g(\bar{x}(\tau), \tau), & 0 \leqq \tau \leqq \frac{(\prime)}{2} .\end{cases}
$$

This system is the same one as (21) in the interval $0 \leqq t \leqq \frac{(1)}{2}$. Then $\left(\bar{x}_{0}(\tau), \bar{y}_{0}(\tau)\right)$ which is $\left(\bar{x}_{0}(0), \bar{y}_{0}(0)\right)$ at $\tau=0$, arrives at $\left(-\bar{x}_{0}(0),-\bar{y}_{0}(0)\right)$ at $\tau=\frac{(\prime)}{2}$. In other words, the solution $\left(x_{0}(t), y_{0}(t)\right)$ such as $x_{0}\left(\frac{\omega}{2}\right)=-x_{0}(0), y_{0}\left(\frac{\omega}{2}\right)=-y_{0}(0)$ arrives at $\left(x_{0}(0), y_{0}(0)\right)$ at $t=\omega$. By the assumption of the periodicity, this mapping will be repeated indefinitely. Consequently we can conclude that the system has at least one periodic solution which satisfies $x(t)=-x\left(t+\frac{(1)}{2}\right)$.
Q.E.D.

Examples

1. $\ddot{x}+2 \beta_{0} \dot{x}+\left(p_{0}^{2}+\mu_{0} \cos 2 \omega t\right) x+\gamma_{0} x^{3}=p \cos (\omega t+\varphi), \quad \beta_{0}>0, \gamma_{0}>0$, There is at least one periodic solution $x(t)=-x\left(t+\frac{\pi}{\omega}\right)$. Because the conditions ( $\%$ ), ( $\beta$ ), ( $\delta$ ) of theorem II are obviously satisfied by this equation, and ( $\gamma$ ) is fulfilled as follows:

$$
\left|\frac{G_{t}(x, t)}{g(x, t)}\right| \leqq \frac{\omega d_{0} x^{2}}{r_{0}\left|\lambda^{3}\right|-\left(p_{0}+\left|\mu_{0}\right|\right)|x|} \rightarrow 0 \quad(|x| \rightarrow \infty) .
$$

2. ${ }^{5)} \ddot{x}+b \dot{x}+x+(a-\varepsilon x) x \cos 2 t+e x^{3}=0, b>0, e>0, \varepsilon>0, \frac{2 b e}{1+2 b}>\varepsilon$.

We can say that the all solutions are bounded. Because the conditions ( $\mu$ ), ( $\beta$ ), are obviously satisfied, and ( $\gamma$ ) is satisfied as follows:

$$
\left|\frac{G_{t}(x, t)}{x g(x, t)}\right| \leqq \frac{\varepsilon \frac{x^{4}}{2}-a x^{2}}{e x^{4}-\varepsilon x^{4}-a x^{2}-x^{2}} \rightarrow \frac{\frac{\varepsilon}{2}}{e-\varepsilon}=\frac{\varepsilon}{2(e-\varepsilon)}<b \quad \text { as }|x| \rightarrow \infty .
$$

3. ${ }^{1)} \quad \ddot{x}+f(x) \dot{x}+g(x)=p(t)$, where $f(x)=f(-x), g(x)=-g(x), p(t)$ $=-p\left(t+\frac{(\prime)}{2}\right)$ and $\operatorname{sgn} x F(x) \rightarrow \infty$ as $x \rightarrow \infty$, sgn. $g(x) \geqq k_{0}>0,|x|>\tilde{\xi}_{0}$. There is as least one solution such that $x(t)=-x\left(t+\frac{(\prime)}{2}\right)$. This is a special case of theorem II.
1) S. Mizohata and M. Yamaguti "On the existence of periodic solutions of the non-linear differential equation, $\ddot{j}+a(x) \cdot \dot{x}+\varphi(x)=p(t)$."

Mem. Coll. Sci. Univ. Kyoto Ser. Vol. xxv Mat. No. 2, 1952.
2) N. Minorsky " Parametric Excitations" Jour. Appl. Phy. Vol. 22 No. 1 p. 49.
3) Den Hartog " Mechanical Vibrations" 1946 3rd Ed. p. 408-411.
4) These conditions assure the unicity and the possibility of continuation of the solutions of (1).
5) N. Minorsky "Sur l'oscillateur non-linéaire de Mathieu."

Compt. Rend. des séances de L'Acad. Sci. t. 232 p. 2179-2180.

