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Introduction. The author and his collaborator S. Mizohate have
obtained a proof for the existence of the periodic solutions of the
non-linear differential equations of the following type under com-
paratively weak conditions,

+ g(x) =p (t).

This problem has been raised from the researches of the non-linear
vibrations in the field of engineerings. In this report, we shall
discuss the wider class of problem which contains the so-called
"Parametric Excitation " 2'  which has not yet been rigorously dis-
cussed. For example, one case is expressed by the equation, 3 )

X + Po + (p0
2 + ao cos 2 NO x +  r„ =p, cos (04 + so)

on which we shall have the following conclusion in this report :
This equation has at least one periodic solution having such pro-
perty that

— x (0=x (t+ 7— )  as ,a„'> o, ro> 0.

We shall describe the obtained results as two theorems I, II
and add several examples.

Now we shall consider the following differential equation

(1) (x)i-Fg(x, t) = p (t),
where the functions f(x), g(x, t) satisfy the Lipschitz condition' ) with
respect to x , and g(x, t) has a continuous partial derivative g,(x, t)
and g(x, t), p ( t)  are continuous periodic functions of t  having the

10

period (0, and p ( t )  satisfies the condition fp (t)dt =O . W e put the0
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functions F(x ), G(x , t), P(t) as follows :

F(x) — rf(x)dx , G (x, t) = fog(1, t)dx , P ( t ) ( t ) dt

Since the function P(t) is bounded by the assumption, we put

pa = max I P(t)I0s, <co
T H E O R E M  I  Hypotheses :

(a ) F(x)sgn x—> co a s  I x

(9) g(x, t) sgn k„> 0, f o r  Ix >

1 G ,(x , t) (r) F(x)I> 
 k ,  g ( x ,  t )  1

, f o r  I >

where ko, $0, k1, E, are positive constants and 0 <k 1 <1.
Conclusion : For any x ), io the solution x (t) of (1) for which x(0)
=x,„ *(0) =z satisfies

Ix(t) I K B , I ic (t) I <Bf o r  t> t„(x ) ,
where B  is  a constant independent of xo, and there is at lea -it
one periodic solution with period ( 0  among such solutions.
PROOF (  i  )  W e arrange the constants $ 2, ni , ,  F o and g,; for
later use. When we suppose that y =i+F(x )— P(t), we can write
(1 ) as follows:

(i=y— F(x) + P(t)
(2)

Next we define the function P(x, y, t) as follows :

(3) P(x, y, t) =  Y + G(x, t).
2

Then w e can say that the plane curve given by the equation (4)
below is simple on the plane t= t for sufficiently large value of C
(for example C m a x  G (x, 0 I)1,Ist0

(4) P(x, y, t)=C .

L et us consider the derivative 
d P

along the trajectory of the
solution of (2). dt

d(5) P(x(t), y(t), t)= — g(x, { F(x)—  P(t)}  + G1 (x, t) .
dt
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Put 
d P  

 

—  çP(x ,t). By the hypothesis (a) ,  we find a constant 6 2dt
(> max($0 , $,)) that satisfies the condition (6)

(6) (1— k9 )F(x)sgn x> Po + for Ix' > 62,

where e is• an arbitrary positive constant.
On the other hand we may write io (x , t) as follows :

0(x, t) =g(x, t  { (1—  k i ) F(x) — P(t)} + g(x, t) {k, F(x) — G l(x ' t
g(x,, t)

From (6) and (y) we have
, I

I  (x, > Ig(x, 0 H I (1— ki)F(x) I —Po} + Ig(x, t)I F( G ( x ,  x)I
g(x ,t)

ko -1 + 0 .  o r  lxl>2

Therefore we can say

(7) P(x (t) ,y (t) , <—s ,f o r  lx(t)1 > E2
and we put

(8) m=max IP(x (1), (t)1, 1> 2
and we define

(e3 > 1+
4 m

6

Now we put F„ go as follows :

(10) Fo —max I F(x) — P(t)l, (11) g, — max Ig(x,t)I
a

(ii) We shall consider several domains in  (x, y, 0-space.

O : O t S 0 ) : n 13
: lxI C2, 0_<_t_S,(0 : n13

2 2+ : 2 +  n$
2 :  — $ 2 <x<E, , „ 2+: 2 + n$

(12)2 _ :  — s 'x S E 2 , „ 2 _ :  2 _  n v
• $, x<$ 3 , „ £L: 2 _  n13 .

„
4 3 : y >F „
• <  F o

(9 )
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Next we denote by Do the domain contained in e enclosed by the
surface (4) which itself is denoted by So  and denote by So(t) the
section curve of St , by the plane t= t and denote by De (t) the section
domain of 2 dimension of Do cut by the plane t= t.
Lemma 1. I f  we choose C o f (4 ) sufficiently large, we can say
that the trajectory of the solution of (2) which entered in 2 after
the crossing of So must pass through only 2- o r  2 ) so  long as it
stays in 2, and we may suppose that the time spent on this passing
of 2 may be as short as we hope.

Suppose that the trajectory (x(t), y(t), t) of (2 ) has entered in
crossing So  a t  to, then we have from (2),

y (t) —y(t) = j tj/dt= —  g(x, t)dt .
to

Since (x (t) , y(t) , t) E 2, we have ly (t) —y (t0) I w, or

(13) I y (tu)1 go o) - --.131(t)iS ly(t 0 )1+ gi, ,  for (x (t), y( t), E 2.

Because of the assumption that (x(t„), y (t ))) E So(tu) n2, we can
establish the following inequality by taking C sufficiently large :

Fo <1Y (to) I — go ("

and then we can suppose (x(t), y(t), t) E 2  (or 2) for t so
long as it stays in  such domain 2. Obviously, from the first
equation o f (2 ) we have

(X> y—  Fe > 0, f o r  (x (t), y(t), E
(14)

< y + Fo  < 0, for (x (t) , y (t) , t) E 2.

Then the solution x(t) of (1) is monotone with respect to t in such
domain. Suppose that the solution has entered in 2 at t= to and
it stays in 2 (i.e. in 2 or 2) until t„+ r, then we have

(io 4  t )

(15) 7 = dx
.r u n , y  (t) — F(x) + P (t)

Now we consider the only case where the solution passes through
2. (Sam e discussion may be possible for 2.) By (13) we have

d2 E(16) x , 
4.(t 0) iy (t) F„ ly (0 1  go (0 F o

(x(t), y(t), 0 E. 2, to<t<to +r .
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Then we conclude that 7  may be supposed as small as we hope
by increasing C .  (i.e. by increasing IY(to)I) Q.E.D.
Lemma 2. I f  we choose C  o f (4 ) sufficiently large, we can say
that P(x (t), y (t), t)  decreases when the trajectory o f (2) traverses
2 , (or 2_) after the crossing of S ,  (or before the crossing).

As we have seen in the proof of lemma 1, the trajectory (2)
staying in 2 , (or 2_) must pass through only g , or 2 , (or, L
or 2 _ .) Here we prove lemma 2 in the case where the trajectory
passes through 2 , .  (The same discussion may be applied on the
other cases.) Now x ( t )  is monotone increasing with respect to t
while it stays in 2 , (as we have seen in the proof of lemma 1).

We shall denote by 7 the time spent to pass t and denote by
7' the time spent to pass tl.;„ and we assume that the trajectory
( x ( t ) ,y ( t )  t )  crosses S c  at t=t o and departs from 2, at t= to+r+
7' after traversing g + , then we have

dxi ' " ( t°4- t) d x 2 $ o7  =
1 00) “t„) (t) I — Fo —  IY(to) I — — Fo •

r
o,+y ) d x

Therefore

d_.
>

.,(to+-c) IX° I +F0 — 131 ( 01+0)g-0+F0 •

- 2 ly (to ) + w Fo -‹
rfe 3  —  '

72 I Y ( t O )  I — mgo —  F o •

when C— > 00 , we have

7   < (1 +
)
,

== e3—
$2

where )2 is small for large value of C. By the determination of
(9), we have

2E%,
- 2m •

Putting — 1
2

we have

- 3 s<—  
4  m

•

Since IY(10) 1— >œ

(17)

On the other hand, let us calculate the variation 8P of P(x (t),
y ( t) , t)  during the passage of the trajectory from to to to + 7+ 7'.
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10+2 flO + T A -t/

P dt+ P dt
to to+ t

(18) 8P .<mr 7r < —  M r' .  6  

4m •
Q.E.D.

(iii) Now we shall show that the trajectory (x (t), y (t), 0  o f (2)
started from S0 (0 ) at t=0, must enter into /Ma)) at t= 0 ).  (Of
course we have to increase the value of C.)
1° The trajectory of the solution of (2 )  started from S 0 (0) n
must depart from 2 within one period after passing 2 because of
lemma 1.
2° Such a  trajectory must pass through only 2 or 2 because of
lemma 1.
3° The value of P(x. y, t )  along such a trajectory must decrease
when it has passed 2( 4-1. (lemma 2 )  Therefore such a trajectory
started from Sc(0) n  2  must enter into the interior of D , after
passing 2+ .
4 °  Therefore of all trajectories of the solutions o f (2 ) started from
.30(0), there must be for each at least one time point at which
they enter into the part of De  belonging to the exterior of 2.
5  Now we should suppose that one solution started from .90 (0)
does not enter into the interior of D c (w) at i =  N .  Of this solution,
to is a time point assured by 4°• Then there is a time point 7 as
follows :

(19)
to < , (x(7), y(7)) E Sc (r ).

(x( 7 + ) ,  Y (r + / ) )D c ( 7 + ) , :  small.

If there are many such time points, we take the least one of them.
Therefore WO, y(t), t) must go out of D , at 7, from that we have

P(x(7), y(7), 7)> 0

and this occurs only when lx(7) I <6,, then we have

(20) WO, y(7), E n Sa (7).

Since Cx (to) (to) , t,) 2, then (x(t), y ( t) , 0  passes through 0 ,  (or
0_) during the interval t0 t r .  Therefore by lemma 2, P decreases.
On the other hand, the value of P  before its entering into 0 + (or
0 .. )  is smaller or equal to C  (7  is the least time point which
satisfies (1 9 ) ) .  Consequently it contradicts to (19) that along the
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trajectory P(x , y , t) decreases from the value of P  at to

P(x (to), (to), t0) C .

Hence all the solutions of (2) started from S(0) arrive at the
interior of Do (co) at t=a).
6° Then also the solutions of (2 ) started from D0 (0 ) arrive at the
interior Do (w ), where Do(0) is congruent to Do ( w ) .  Considering
the mapping which maps Do (0) to D ( o ) ,  we conclude that there
is at least one fixed point in D0 (0) , and this process is repeated
in all intervals (no), (n +1) w) . Then there is at least one periodic
solution of (2 ) o f  period (0. This solution  x (  t)  is a  solution of
(1 ) .  Then also we can conclude, by similar discussion as in the
former paper", that for all solutions, we have

1.0 )1  B < B t > tx (0 ) , i(0 ))
Q.E.D.

THEOREM II I f  we add one more hypothesis (8) below to (a), (g),
( r )  o f  theorem L then th e  differential equation (1) has at least
one periodic solution of period a) such that x(t)=-- — x(t+ ) ) .

2

f(x) =f(—  x), —g(x, t) = g(— x, t),
(a) g(x, t) = g(x, t+ ) ,

2

PROOF We shall write (1) as follows :

(21)
i=y— F(x) +P(1)

Y-- - -g (x ,t)

where (22) P ( t)= P ( t) - -+P (-2,-.)

then P ( t)  satisfies P(t)= — P(t +!!!-) by the  last condition o f  (a).
2

Now we shall consider th e  equation (21) with the  time interval
0_<t_<  only. The domain Do(0) is congruent to Dc('-'-) by the2 2
condition (8). Then we consider th e  mapping T  which maps
(x(0), y(0)) on  (x ( - ) ,  y ( f ' - ) )  and T  is supposed to be determined

2 2
by the  following formula :
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T:

= M(x (0) , Y (0))

 y ( I ) - N ( x ( 0 ) ,  Y ( 0 ) ) .

Hence by the same discussion as in the proof of theorem I, we
can say

r ( D c  ( 0 )  )  Dc( (
2
v ) ;

here D ,(0) is congruent to Dc (--(`L ) (D (0) is the closure of D (0 ) ) .
2

Next We consider another mapping U:

U:
1 O ) =  _ y ( )

and by the symmetry conditions CO of Sc (0 ) and Se (--2- ) ,  we can

say that if (x(-"±), ) )  E 13,( w  ,  then (t(0), Y (0)) E D C (1 ) .
2 2 2

Then we consider the product mapping U T . Since U  and T
are topological, UT is a topological mapping by which (x(0), y(0))
is mapped to (-X(0),S7(0)), and we can say

(23) UT(D0(0)) c •

Therefore we conclude that there is at least one fixed point in
Dc, ( 0 ) .  Then there is a solution (xo (t) , yo ( t ) )  o f (21) such that

= x0(0) -=-- - x0( 12

5'0(0) =y0(0) = Y0( 42

Next we consider the behaviour of ( i 0 (7), "y0 (7)) in the interval
0 57,_<  (2') instead of the behaviour o f (x0(t),Y0(t)) in the interval

where -X0( 7) = x o (7 +  (2° ) , :90 (r) -  yo (1- +

Since the behaviour of (x 0 (t), yo(t)) is determined by (21) in

(24)
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the interval f---) t  < (0 then we obtain the following equation for
2 —

(M t), yo (t))

(25) — F((7)) + P(r)

j (7)= — (r ) ,  r ) ,

This system is the same one as (21) in the interval 0._<t_<
— 2

Then (7) , 5 /0 ( 7 )  )  which is (0), y o ( o ) )  a t 7 =0 , arrives at
- -y-  9 (0)) at 7 = In other words, the solution ( x o ( t ) ,  y0 (t))2

such as xo (fL)= —x 0 (0), yo ( )= —y„ (0) arrives at (x,,(0), yo (0) ) at
2 2

t=0 ) .  By the assumption of the periodicity, this mapping will be
repeated indefinitely. Consequently we can conclude that the system
has at least one periodic solution which satisfies x(t) = —x(t+  (2')

Q.E.D.
EXAMPLES

1.+ 2 i 9 + +u, cos 2(ot)x + To.x3 =p cos(wt + so) , 130>(), T 9 > 0,

There is at least one periodic solution x (t)-= — x(t+ Because

the conditions (0, ( 9), (a) of theorem II are obviously satisfied by
this equation, and (T ) is fulfilled as follows :

G,(x, < ioclox°
g(x, t) —  ri  x iI — (p0+1"01)1x1 — > 0  

(I x l —  c ° )

2» + bi + x + (a— ex) x cos 2t+ e x ' 0, b> 0, e> 0, e >  o . 2be
>  E .

1 ±  2b
We can say that the all solutions are bounded. Because the con-
ditions (0 ,  ( p ) ,  are obviously satisfied, an d  (r ) is satisfied as
follows :

4

G,(x, t) < 2- . 4  —2 e < b  as lx1 - - , c° .xg(x, t)  ,--- ex' —  ex' — a x2 — x2e  —  6 2 (e— e)

3»1 ) . i + f ( x 1 i + g(x) =p(t), where f (x ) =f(—x), g(x) — — g(x), P(t)
= —  p(t+ --) and sgn x F(x )-- co as x > co, sgn. g(x ) >14> 0, I xl> e 0.

2
There is as least one solution such that x (t) = œ x ( t + ) .  This is

2a special case of theorem II,

0
— 2



96 Masaya Y amaguti
1) S. Mizohata and M. Yamaguti " On the existence of periodic solutions of

the non-linear differential equation, F.+a(x) •;+yo (.%) = p (t) ."
Mein. Coll. Sci. Univ. Kyoto Ser. Vol. xxv Mat. No. 2, 1952.
2) N. Minorsky "Parametric Excitations"  Jour. Appl. Phy. Vol. 22 No. 1 P .  49.
3) Den Hartog "Mechanical Vibrations" 1946 3rd Ed. p. 408-411.
4) These conditions assure the unicity and the possibility of continuation of the

solutions of (1).
5 )  N. Minorsky "S u r  l'oscillateur non-linéaire de Mathieu."
Compt. Rend. des séances de L'Acad. Sc!. t. 232 p. 2179-2180.


