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Introduction. The author and his collaborator S. Mizohata” have
obtained a proof for the existence of the periodic solutions of the
non-linear differential equations of the following type under com-
paratively weak conditions,

E+f(x)i+gx) =p().

This problem has been raised from the researches of the non-linear
vibrations in the field of engineerings. In this report, we shall
discuss the wider class of problem which contains the so-called
“ Parametric. Excitation ”? which has not yet been rigorously dis-
cussed. For example, one case is expressed by the equation,”

i+ Bx+ (b + u, cos 2wt) x+ 7,8’ =p, cos (wt+¢)

on which we shall have the following conclusion in this report :
This equation has at least one periodic solution having such pro-
perty that

—a(O=x(t+") as B>0, 1>0.

We shall describe the obtained results as two theorems I, II
and add several examples. ‘
Now we shall consider the following differential equation

(1) itf(it+glx )=p®),

where the functions f(x), g(x, t) satisfy the Lipschitz condition® with
respect to x, and g(x, t) has a continuous partial derivative g(x, 1)
and g(x,t), p(¢) are continuous periodic functions of ¢ having the

w

period », and p(t) satisfies the condition jp(t)dt=0. We put the
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functions F(x), G(x, t), P(t) as follows:

mﬂ=fﬂ@w,‘cumwfa&oa, PO =|pwat.
0 . [1] 1]
Since the function P(t) is bounded by the assumption, we put
P,=max |P(t)|
(<243

THEOREM I Hypotheses :

() F(x)sgn x— as |x|—o0

B  gxt)sgnx=k,>0, for [x]|>¢,

, 1 G(x 1) !
D) F(x)|> - =22
I I k] g(x' t) |
where &, ¢, k,, ¢, are positive constants and 0 <k, <1.
Conclusion: For any x,, %, the solution x(f) of (1) for which x(0)

=z, x%(0)=x, satisfies _
x| <B, [#®OI<B  for >1,(x, %)

, for |x]>¢

where B is a constant independent of x, %, and there is at least

one periodic solution with period » among such solutions.

Proor (i) We arrange the constants ¢, m, &, F, and g, for

later use. When we suppose that y=i+ F(x) —P(t), we can write

(1) as follows: '
i=y—F(x)+P()

5)= _g(xr t)-
Next we define the function P(x,y,t) as follows:

(2)

(3) men=§+cmn.

Then we can say that the plane curve given by the equation (4)
below is simple on the plane t=t for sufficiently large value of C
(for example Czmax [G(x, 1))

1r1S%o0

ISt<w

4) P(x, 9, t)=C.

Let us consider the derivative -‘% along the trajectory of the

solution of (2).
d

®) —ﬁP(x(t),y(t), H=—gx ) {F(x)—P®)}+G(x, 1) .
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Put %=—¢(x, ). By the hypothesis («), we find a constant ¢,
(>max(é, ¢,)) that satisfies the condition (6)
(6) (1~k,)F(x)sgnx>P.,+% for |x)>¢,,

0
where ¢ is-an arbitrary positive constant.
On the other hand we may write ¢(x,¢) as follows:

o(x, ) =g(x, b {(1—k)F(x)—P(t)} +g(x, ) {kl Flx)— G&D }
gx, 1)

From (6) and (y) we have
le(x, )| > |gx, ) |{| (1—k) F(x)|— P} + |g(x, t)l{lk F(x)|— IG(x i)|}

1, 1) |
>k°?+0' or |x|>¢,
Therefore we can say _
(7 Pt),y(), ) <—e, for [x@#)|>¢ 0<t<o,
and we put '
8) m=max |P(x(), (1), 1)|
b
and we define ¢,
9) ¢q>(1+ )e
Now we put F,, g, as follows:
(10) F,= max |[F(x)—P() ], 11 8= max lg(x, 1) ]
osrsm 05¢<m
(ii) We shall consider several domains in (x, y, t)-space.
€: Osiso 2: en$
A xZE,, 0Zifo g eny
. < & — -
i,- . ll\'l;ﬁ:x, i) < 8+: 8+n§’B
& £
24» i?%xgiﬁy ”» g+: 8+n'§§
(12) 4 8- . '—cﬂéxg__cQ ’ ” E": 8_ n%
B G=ash, 2 : 8.n%P.
%—. ”Eﬂgxg_s‘.’., ” a
?i} . y> E} b
EB Cy< _El ’
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Next we denote by D, the domain contained in & enclosed by the
surface (4) which itself is denoted by S,, and denote by S.(f) the
section curve of S; by the plane t=¢ and denote by D,(f) the section
domain of 2 dimension of D, cut by the plane t=1.
Lemma 1. If we choose C of (4) sufficiently large, we can say
that the trajectory of the solution of (2) which entered in € after
the crossing of S, must pass through only £ (or £) so long as it
stays in €, and we may suppose that the time spent on this passing
of € may be as short as we hope.

Suppose that the trajectory (x(f), y(?),?) of (2) has entered in
crossing S, at ¢,, then we have from (2),

y(®)—y(t) =J‘:§’(1t= — j:og(x, t)th.

Since (x(8),y(t),1) €8, we have |y(H) —y () |<g,w, or
A3) ) —gesly@®|SlyM) |+, for (x(h),y(1),1) 8.

Because of the assumption that (x(f,),y(4))€ S¢(f,) N¢, we can
establish the following inequality by taking C sufficiently large:

Fﬂ < |y(to) | — &

and then we can suppose (x(2),y(?),1)e e (or &) for t,<t<w so
long as it stays in such domain & Obviously, from the first
equation of (2) we have :

{5;>y—FO>0, for (x(8),y(t),De¥

x<y+F, <0, for (x(H),y),)e Q.

Then the solution x(f) of (1) is monotone with respect to ¢ in such
domain. Suppose that the solution has entered in & at {=¢, and

it stays in € (ie. in € or &) until {,+7, then we have

(14)

*r{to+T)
(15) e e
(to) y(t)—F(x) +P(t)
Now we consider the only case where the solution passes through
¥. (Same discussion may be possible for ) By (13) we have

(th+7) dx < B 25“ B
z(ta) iy(t) [—‘R, - [y(tu) ]"‘gu(“_‘lro ’

@@, y®), el L,t<t+r.

16) X
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Then we conclude that ¢ may be supposed as small as we hope
by increasing C. (i.e. by increasing |y(f,)]|) Q.E.D.
Lemma 2. If we choose C of (4) sufficiently large, we can say
that P(x(f), y(1),1) decreases when the trajectory of (2) traverses
€, (or Q.) after the crossing of S¢ (or before the crossing).

As we have seen in the proof of lemma 1, the trajectory (2)
staying in €, (or £.) must pass through only £, or £, (or, &
or &..) Here we prove lemma 2 in the case where the trajectory
passes through €,. (The same discussion may be applied on the
other cases.) Now x(f) is monotone increasing with respect to ¢
while it stays in &, (as we have seen in the proof of lemma 1).

We shall denote by ¢ the time spent to pass A and denote by
<’ the time spent to pass ¥, and we assume that the trajectory
(x(f), y(t) ©) crosses S, at {={, and departs from L, at t=f++

g

o/ after traversing fh, then we have

_ ".z(!n+‘t) dx < “.n(lo{»?) dx < 25‘:

Yo & T YOI=FT Iyt | —og—F,
, j,-(zmu-. +1/) dx >j\r(tu+-.+-.:) dx > »’?3—- 5”

’

c(to+7) X (o +7) YD+ F,— |y(t) ] +wg,+F, )
Therefore

< 259 [y(to)|+(ugo+E) .
T 53’—5: ly(t) I—(’)go‘—E>

Since |y(4,)|—c when C—oo, we have

C
<

where 7 is small for large value of C. By the determination of
(9), we have

§,—¢, 2m

Putting pg% we have
T 3 e
17 <9.°f
17 =y

On the other hand, let us calculate the variation 6P of P(x(%),
y(t),t) during the passage of the trajectory from ¢, to f,+c+<'.
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sP— f’”?’)dmf””ﬂP dt

to o+7T
(18) . SP<mr—ed’ <—mc'- 5.
‘ o Am
Q.E.D.

(iii) Now we shall show that the trajectory (x(2),y(#),?) of (2)
started from S(0) at =0, must enter into Dg(w) at t=w. (Of
couirse we have to increase the value of C.) '
1° The trajectory of the solution of (2) started from Sc(0) Ng
must depart from £ within one period after passing £ because of
lemma 1. :
2" Such a trajectory must pass through only £ or £ because of
lemma 1. -
3" The value of P(x.y,t) along such a trajectory must decrease
when it has passed 8(:). (lemma 2) Therefore such a trajectory
started from S¢(0) N® must enter into the interior of D, after
passing £..
4" Therefore of all trajectories of the solutions of (2) started from
S-(0), there must be for each at least one time point at which
they enter into the part of D, belonging to the exterior of L.
5" Now we should suppose that one solution started from S.(0)
does not enter into the interior of D¢(w) at t=w. Of this solution,
t, is a time point assured by 4°. Then there is a time point r as
follows : '

h<t<w. (1().9())eSe(2).
(x(z+7), y(t+9))E€De(c+7%), »: small

(19)

If there are many such time points, we take the least one of them.
Therefore (x(#), y(#), #) must go out of D, at z, from that we have
P(x(z),y(s),7)>0
and this occurs only when |x(7)] <¢,, then we have

20) (x(2), (), ) € AN S(=).

Since (x{t,),y(t), t,) €L, then (x(t),y(t),!) passes through B, (or
B_) during the interval {, <t<r. Therefore by lemma 2, P decreases.
On the other hand, the value of P beforc its entering into B, (or
B.) is smaller or equal to C (¢ is the least time point which
satisfies (19)). Consequently it contradicts to (19) that along the
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trajectory P(x,y,t) decreases from the value of P at t,:
P(x(t), y(t), ty <C.

Hence all the solutions of (2) started from S¢(0) arrive at the
interior of D¢(w) at t=u.
6° Then also the solutions of (2) started from D.(0) arrive at the
interior D¢(w), where D.(0) is congruent to D¢(w). Considering
the mapping which maps D.(0) to D.(w), we conclude that there
is at least one fixed point in D¢(0), and this process is repeated
in all intervals (#w, (#+1)w). Then there is at least one periodic
solution of (2) of period w. This solution x(f) is a solution of
(1). Then also we can conclude, by similar discussion as in the
former paper”, that for all solutions, we have

x| <B, |x@®)|<B t>t1,'x(0), £(0))
Q.E.D.

THEOREM II If we add one more hypothesis (¢) below to (), (#),
(r) of theorem I, then the differential equation (1) has at least

one periodic solution of period » such that x(t)=——x(t+% .

Sx)=f(—x), —g(x, t)=g(—x,1),

@ g(x, t)=g(x, t+1;r), p(t)=—p(t+

w '\’

'E‘ .
Proor We shall write (1) as follows:

1) {56=y—F(x)+P(t)
y=—g(x, 1)
' 1 '
where (22) P(t) =P() _'EP(7)' ,

then P(t) satisfies P(t)=—P(t+%) by the last condition of ().
Now we shall consider the equation (21) with the time interval
o_gtgg only. The domain D¢(0) is congruent to Dc<%) by the
condition (4). Then we consider the mapping 7° which maps
w w P . .
(2(0), ¥(0)) on (x(E) y(—zf)) and T is supposed to be determined

by the following formula:
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(# ()=M@E©),50)

T: ‘
Iy(\»‘;):N(x(m,y(on.

Hence by the same discussion as in the proof of theorem I, we
can say

T(De(0)) « De('y )

here D.(0) is congruent to DL( ) (D¢(0) is the closure of D¢(0)).

Next we consider another mapping U:

(x(O) = —x(("

. 15(0) = ~y(‘,i)

and by the symmehy conditions () of S.(0) and Sc( "') we can
say that if ( ( (‘" )) GDC( ) then (x(0), y(O)) € Dc(w)

Then we con51der the product mapping UT. Since U and T
are topological, UT is a topological mapping by which (x(0),y(0))
is mapped to (%(0),7(0)), and we can say

(23) UT(De(0)) C De(%) .

’I_‘herefore we conclude that there is at least one fixed point in
D¢(0). Then there is a solution (x,({), y,(¢)) of (21) such that

%(0) =,(0) = —xo(z’)
(24) ,
| 5’5(0) =yo(0) = “‘.%(%) .

Next we consider the behaviour of (%, (z), ¥ (7)) in the interval
w

<< =5 instead of the behaviour of (x,(#), y,(f)) in the interval

E): ¥o() = “y0(7+—2‘

Since the behaviour of (xf,(t),yo(t)) is determined by (21) in

%g:g w, where x.?( T)= —x,,( T
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the interval %gtgw, then we obtain the following equation for
(%(8), %:(8))
1(@O=yO-FGEN+PE g <o
¥ =—g(E(), 9), 2
This system is the same one as (21) in the interval O<t§

Then (%,(z),3(c)) which is (%,(0),%,(0)) at ==0, arrives at
(—%,(0), —%,(0)) at < —5'21. In other words, the solution (x,(£), ¥,(?))

(25)

w

such as xo(%)=——xo(0), yo(:%\)z—yo(O) arrives at (x,(0), »,(0)) at

=wm. By the assumption of the periodicity, this mapping will be
repeated indefinitely. Consequently we can conclude that the system

has at least one periodic solution which satisfies x(t)———x(t-i—

QE.D.

w

ExXAMPLES
1. 2423+ (P +v,c0o8 200) x+ 7, 8*=p cos(wt+¢), £,>0, 1,>0,

There is at least one periodic solution x(t)——x( 1+ ) Because

N o

the conditions («), (8). (#) of theorem II are obviously satisfied by
this equation, and (y) is fulfilled as follows:

‘ G/(x,1) }< od,x -0
g ) T At — (B ) 2]
29 E4bi+x+ (a—ex)xcos 2+er=0, b>0, e>0, >0, —2%5».

We can say that the all solutions are bounded. Because the con-
ditions («), (f), are obviously satisfied, and (7) is satisfied as
follows ;

(|x]—> ).

4
o €
x —ax’ -2—
[
] —<b as |x]>x.
ex' —ex' —ax’—x* e—e¢ 2(e— €)

N/\

G,(x, D l
xg(x, 1) |

3V E+f(0x+g(x)=p(t), where f(x)=f(—2x), g(x) =—g(x), p(d
—~p(t+—7> and sgn x F(x) > as x—0, sgn. g(x) =k, >0, |x|><,.

There is as least one solution such that x(t)=-x(t+ “’) This is
a special case of theorem II.
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