Tangential vector bundle and Todd canonical systems of an algebraic variety

By

Shigeo NAKANO

(Received Dec. 20, 1954)

In a previous paper [2], the author considered complex analytic vector bundles over a non-singular algebraic variety immersed in a projective space, and proved that the Chern (homology) classes of these bundles contain algebraic cycles. Now we can get in general the

THEOREM For a non-singular algebraic variety in a projective space, the Chern classes of the tangential vector bundle coincide with Todd canonical systems.

This theorem was proved by W. V. D. Hodge [1] for a non-singular variety which is a complete intersection of hypersurfaces, but the proof for arbitrary non-singular varieties seems not to have been published.¹⁾

We shall make use of notations in [2].

1. Let V^r be a non-singular algebraic variety in a projective space L^N of complex dimension N. To every point P of V, we associate the tangential linear variety T(P), considered as a point of the Grassman variety H(r+1, N+1). Then we have an everywhere regular rational mapping Φ from V into H = H(r+1, N+1).

In H, there are r+1 subvarieties $\mathcal{Q}_{(p)}(p=1,\dots,r+1)$ which generate, together with $\mathcal{Q}_{(p)}=H$, the homology ring of H. $\mathcal{Q}_{(p)}$ represent the Chern classes of the universal bundle over H. We denote by X a generic hyperplane section of V, and by X^h the intersection product of h independent X's.

By Todd canonical systems, we understand the cycles

¹⁾ I learned from J. Igusa that K. Kodaira and J. P. Serre have this result already, but I would like to complete my paper [2] by this note.

(1)
$$t_{p}(\mathbf{V}) = \sum_{h=0}^{p} (-1)^{h} {r-p+1+h \choose r-p+1} \Phi^{-1}(\Omega_{(p-h)}) \cdot \mathbf{X}^{h}$$
 $(p=0, \dots, r),$

where \cdot denotes the intersection product on V. $t_p(V)$ are not defined uniquely, but the arbitrariness lies in that we may replace $\mathcal{Q}_{(p)}$ and X^h by linearly equivalent ones. (Here we say that two cycles are linearly equivalent on a variety, if they belong to an algebraic system on that variety, and if the parameter variety of the system is a rational variety.) Hence $t_p(V)$ are well defined as homology classes. We shall also define $t_{r+1}(V)$ to be equal to 0.

$$F(\lambda) = \lambda^{r+1} + c_1' \lambda^r + \dots + c'_{r+1}$$

is the characteristic polynomial of $\Phi^{-1}(\Re)$.

It is easy to see that

(2)
$$F(\lambda - X) = \lambda^{r+1} + t_1 \lambda^r + \dots + t_{r+1}$$

where $t_p = t_p(V)$. This suggests that $\theta^{-1}(\Re)$ will be a \otimes -product of a complex line bundle $\Re = \{-X\}$ and a vector bundle whose characteristic classes are t_p 's. (See [2], the end of § 1.)

3. We shall now seek for a system of transition functions of $\Phi^{-1}(\Re)$. Let (ξ_0, \dots, ξ_N) be homogeneous coordinate functions on V, and let P be a point on V such that $\xi_{i_0}(P) \neq 0$ and $(x_{i_1}, \dots, x_{i_r})$ form a system of local parameters at P. (Here we set $x_{\lambda} = \xi_{\lambda}/\xi_{i_0}$.) Then for a generic point (z_0, \dots, z_N) of the tangent linear variety T(P), we have

$$z_{\lambda}/z_{i_0}-x_{\lambda}(\mathbf{P})=\sum_{\alpha=1}^r(\partial x_{\lambda}/\partial x_{i_{\alpha}})_{\mathbf{P}}(z_{i_{\alpha}}/z_{i_0}-x_{i_{\alpha}}(\mathbf{P})),$$

or

$$z_{\lambda}\xi_{i_0}-z_{i_0}\xi_{\lambda}=\sum_{\alpha=1}^{r}(\partial x_{\lambda}/\partial x_{i_{\alpha}})_{P}(z_{i_{\alpha}}\xi_{i_0}-z_{i_0}\xi_{i_{\alpha}}).$$

Hence the homogeneous conrdinates (z_0, \dots, z_N) , which are now considered as a vector in the fiber over P, in the fiber bundle $\Phi^{-1}(\Re)$, are determined by r+1 components z_{i_0}, \dots, z_{i_r} among them.

If another set of indices j_0, \dots, j_r are such that $\hat{\xi}_{j_0}(P) \neq 0$ and $(y_{j_1}, \dots, y_{j_r})$ with $y_{\lambda} = \hat{\xi}_{\lambda}/\hat{\xi}_{j_0}$ form a system of local parameters at P, then the vector (z_0, \dots, z_N) can also be determined by $(z_{j_0}, \dots, z_{j_r})$

and we have the following relation between $(z_{i_0}, \dots, z_{i_r})$ and $(z_{j_0}, \dots, z_{j_r})$;

$$(z_{i_{\alpha}}\xi_{i_{0}}-z_{i_{0}}\xi_{j_{\alpha}})=\sum_{\beta}(\partial x_{j_{\alpha}}/\partial x_{i_{\beta}})_{P}(z_{i_{\beta}}\xi_{i_{0}}-z_{i_{0}}\xi_{i_{\beta}}),$$

or

Hence if we put

(4)
$$g_{(j_0, \dots, j_r)(i_1, \dots, i_r)} = \text{the matrix in (3)},$$

then $\{g_{(j)(i)}\}$ form a system of transition functions of $\Psi^{-1}(\Re)$. Here $\Psi^{-1}(\Re)$ is considered to be defined with respect to the open covering $\{U_{(i)}\}$, where $U_{(i)}=U_{i_0},...,i_r$ is the set of points $P \in V$ such that $\xi_{i_0}(P) \neq 0$ and $\chi_{i_0},...,\chi_{i_r}$ form a system of local parameters at P.

Put

$$h_{(i)} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ x_{i_1} & & & \\ \vdots & & & I_r \\ x_{i_r} & & & \end{pmatrix},$$

then $h_{(i)}$ is holomorphic and invertible on $U_{(i)}$, and we have

$$h_{(j)}^{-1}g_{(j)(i)}h_{(i)} = \begin{pmatrix} \hat{\xi}_{j_0}/\hat{\xi}_{i_0} & \frac{\partial x_{j_0}}{\partial x_{i_1}} & \dots & \frac{\partial x_{j_0}}{\partial x_{i_r}} \\ 0 & \frac{\partial x_{j_{\alpha}}}{\partial x_{i_3}} - \frac{\partial x_{j_0}}{\partial x_{i_3}}y_{j_{\alpha}} \end{pmatrix}$$

$$= (\hat{\xi}_{j_0}/\hat{\xi}_{i_0}) \otimes \begin{pmatrix} 1 & \frac{1}{x_{j_0}} & \frac{\partial x_{j_0}}{\partial x_{i_1}} & \dots & \frac{1}{x_{j_0}} & \frac{\partial x_{j_0}}{\partial x_{i_r}} \\ 0 & \frac{\partial y_{j_{\alpha}}}{\partial x_{i_3}} & \dots \end{pmatrix}.$$

4. The system $f_{(j)(i)} = \hat{\xi}_{j_0}/\hat{\xi}_{i_0}$ defines the complex line bundle $\mathfrak{B} = \{-X\}$, and the system

(5)
$$g'_{(j)(i)} = \begin{pmatrix} 1 & \frac{1}{x_{j_0}} \frac{\partial x_{j_0}}{\partial x_{i_1}} \cdots \frac{1}{x_{j_0}} \frac{\partial x_{j_0}}{\partial x_{i_r}} \\ 0 & & \\ \vdots & & \frac{\partial y_{j_\alpha}}{\partial x_{i_3}} \end{pmatrix}$$

defines a vector bundle which is topologically equivalent to the Whitney product of a trivial complex line bundle $\mathfrak R$ and the tangential vector bundle $\mathfrak F$ over V:

For characteristic polynomials, we have

(6)
$$\begin{cases} G(\lambda + X) = \lambda^{r+1} + c_1'\lambda^r + \dots + c'_{r+1} \\ G(\lambda) = \lambda(\lambda^r + c_1\lambda^{r-1} + \dots + c_r), \end{cases}$$

where c_p is the *p*-th characteristic class of the tangential bundle. Compared with (2) we have $c_p = t_p$, which proves our theorem announced.

5. If we stand on an analytical point of view instead of topological one, the bundle defined by (5) is not a Whitney product.

Consider the system $g''_{(\mathfrak{g})(i)}={}^{\iota}(g'_{(\mathfrak{g})(i)})^{-1}$, then just as in [3], we can associate to it an element of $H^1(V; \mathcal{Q}(\mathfrak{F}^{-1}))$, where ${}^{\iota}\mathfrak{F}^{-1}$ is the vector bundle defined by the transposed inverses of transition functions of \mathfrak{F} , and $\mathcal{Q}({}^{\iota}\mathfrak{F}^{-1})$ denotes the sheaf of germs of holomorphic cross sections of ${}^{\iota}\mathfrak{F}^{-1}$.

As we have indicated, $f'_{(i)(j)} = \hat{\xi}_{j_0}/\hat{\xi}_{i_0} = x_{j_0}$ may be interpreted as transition functions for $\{X\}$. We shall write λ , μ , \cdots instead of (i), (j), \cdots as indices for neighborhoods, and x_{λ}^{1} , \cdots , x_{λ}^{r} instead of x_{i_1}, \cdots, x_{i_r} . Then after re-ordering rows and columns of matrices, $g''_{(j)(i)}$ are rewritten as

$$g''_{\lambda\mu} = \begin{pmatrix} h_{\lambda\mu} & b_{\lambda\mu} \\ 0 & 1 \end{pmatrix},$$

with

$$h_{\lambda\mu} = \left(\frac{\partial x^{\alpha}_{\mu}}{\partial x^{\beta}_{\lambda}}\right), \quad b_{\lambda\mu} = \begin{pmatrix} -\frac{\partial}{\partial x^{1}_{\mu}} (\log f'_{\lambda\nu}) \\ \vdots \\ -\frac{\partial}{\partial x^{\mu}_{\mu}} (\log f'_{\lambda\mu}) \end{pmatrix}.$$

We put $\eta_{\lambda\mu}^{(\nu)} = h_{\nu\lambda}b_{\lambda\mu}$, then $\eta_{\lambda\mu}^{(\nu)} = h_{\nu\rho}\eta_{\lambda\mu}^{(\rho)}$ in $U_{\lambda} \cap U_{\mu} \cap U_{\nu} \cap U_{\rho}$, and

 $\eta_{\lambda\mu} = \{\eta_{\lambda\mu}^{(\nu)}\}\$ defines a holomorphic cross section of ${}^{\prime}\mathfrak{F}^{-1}$ on $U_{\lambda}\cap U_{\mu}$. In $U_{\kappa}\cap U_{\lambda}\cap U_{\mu}$, we have

$$\eta_{x\lambda} + \eta_{\lambda\mu} + \eta_{\mu x} = 0$$

and $(\eta_{\lambda\mu})$ defines a 1-cocycle of the nerve of the covering $\{U_{\lambda}\}$, with coefficients in $\mathcal{Q}({}^{\mu}\mathfrak{F}^{-1})$. This cocycle determines the cohomology class in question. (This was indicated by Y. Kawada [4], the note [3] contains this only implicitly.)

Now there is a canonical isomorphism between the sheaves $\mathcal{Q}({}^{\prime}\mathfrak{F}^{-1})$ and \mathcal{Q}^{\prime} (the sheaf of the germs of holomorphic 1-forms on V), which is defined by

$$\mathcal{Q}({}^{\prime}\mathfrak{F}^{-1})\ni\eta=\{\eta^{(\nu)}\}\longleftrightarrow\eta_{1}{}^{(\nu)}dx_{\nu}{}^{1}+\cdots+\eta_{r}{}^{(\nu)}dx_{\nu}{}^{r}=\omega\in\mathcal{Q}^{1}.$$

Hence we have

$$H^{1}(V; \mathcal{Q}(\mathcal{R}^{-1})) \cong H^{1}(V; \mathcal{Q}^{1}) \cong H^{1,1}(V, C),$$

the second isomorphism being that of Dolbeault.

It is easily seen that our cohomology class corresponds to the homology class of X by this isomorphism.

This describes the deviation of (5) from the Whitney product $\mathfrak{N}+\mathfrak{F}$ in analytical sense.

REFERENCES

- 1. Hodge, W. V. D.: Characteristic classes on algebraic varieties, Proc. Lond. Math. Soc., Ser. 3, Vol. 1, 1951.
- 2. Nakano, S.: On complex analytic vector bundles, J. Math. Soc. Japan, Vol. 7, 1955.
- 3. Nakano, S.: On a certain type of analytic fiber bundles, Proc. Jap. Acad., Vol. 33, 1954.
- 4. Kowada, Y.: On Analytic Line Bundles with the Affine Structural Groups, Sci. Papers, Coll. of Gen. Education, Univ. of Tokyo, Vol. 4, 1954.