MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXX, Mathematics No. 2, 1957.

Corrections to the paper "On the arithmetic normality of hyperplane sections of algebraic varietes"

By

Yoshikazu NAKAI

(Received January 22, 1957)

The following corrections should be made in my paper which appeared in Vol. XXIX, No. 2 (1955) of this Memoirs.

Page 160, line 1, instead " $\mathfrak{P}: (l) = \mathfrak{P}$ " read " $(\mathfrak{P}+l)$ is a prime ideal". Page 160, line 7, instead" local rings of V" read "local rings of a normal variety V". Page 160, lines 31–32, instead " $h^1(o(n-1)) \leq h^1(o(n))$ " read " $h^1(\mathfrak{P}(C_{n-1})) \leq h^1(\mathfrak{P}(C_n))$ ". Page 160, line 32, instead " $h^1(o(n)) = 0$ " read " $h^1(\mathfrak{P}(C_n)) = 0$ ". Page 161, line 2, instead "for $n \geq 1$ " read "for $n \geq 0$ ". Page 161, line 2, take off "This proves the second assertion". Page 161, line 15, add the following "This proves the first assertion. Combining this with the results $h^1(\mathfrak{P}(C_n)) = 0$ for $n \geq 0$, we get immediately $h^1(o(n)) = 0$ for $n \geq 0$ ".

We would like to add one remark here that a part of our Theorem 1 *can be* generalized in the following form.

Theorem Let V be a projective variety defined over k, and C a generic hyperplane section of V with reference to k. Then if C is arithmetically normal, V is necessarily arithmetically normal.

M. Nishi showed the proof of this Theorem.