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In  th e  present note we shall study the (sheaf-theoretical)
cohomology r in g s  o f non-singular algebraic varieties in  their
geometric aspects : their relation to birational transformations, the
birational invariance problem o f  arithmetic genus, the classes
defined by divisors or subvarieties, e tc . Our method is purely
algebraic and independent of the field characteristic. We do not
attempt to go deep into the questions related to the particular
phenomena which are presented by the case of positive characteristic.

Regarding the relation  to birational transformations, the
fundamental theorem is Proposition 5.2: "L e t V  a n d  V ' be non-
singular projective varieties and let T  be a birational transforma-
tion from V ' onto V which is regular o n  V '. Then T* : H*(V)

H*(17') is injective".
This proposition will be proved by means of spectral sequences

in the standard manner.
As for the theory of the classes corresponding to the sub-

varieties, our theory will be constructed on the basis o f Prop. 5. 2
and o f  Serre duality. If one admits Prop. 5. 2, one can read §7
and §11 without reading the rest except §1, §2 and Prop. 9.2.

In § 10 we shall study the monoidal transformation of a non-
singular projective variety with a non-singular subvariety as center,
and obtain a result similar to the one obtained by Denniston by
topological method. In particular, we shall prove that the numbers
h "  are invariant under such transformations. This is a generaliza-
tion o f  a  result of Muhly-Zariski [1] concerning the birational
invariance of the arithmetic genus p a . In fact, the invariance
problem o f p a w a s  the motive of this research. In this aspect,
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however, we do not essentially exceed Muhly-Zariski, though their
main results are all reproduced in the present note.

The result of § 6 is isolated ; we hope it will be o f some use
in future.

We shall make free use of the main results in Serre [2 ],
and our terminologies and notations concerning sheaf theory will
be borrowed from there, except that we shall use the word
"variety" in the sense o f  irreducible variety. As for the theory
of the cup-product and the Ktinneth relation in sheaves, refer to
the book of Godement. As for the terminologies of algebraic
geometry, such as local coordinates, the divisor of a differential
form, a prime d ivisor (=a  simple subvariety of codimension 1),
etc., we follow the usage in Lang's book "Introduction to Algebraic
Geometry ". We shall say "(o, ni) is a local ring" instead o f "o
is a local ring and ni is its maximal id ea l". The dimensions of
varieties U, V, W , ••• will be denoted usually by the corresponding
letters u, y, w, ••• .

The first manuscript of the present work was written and
presented to Kyoto University in February 1958. After that I
heard that a good part of my results had already been obtained by
others", such as A. Grothendieck and G. Washnitzer. As far as
I  know", my method is not entirely the same as theirs. I  hope
that the present work contains some new contributions.

I would like to express my heartfelt thanks to Y. Akizuki for
his constant encouragement, and to  S. Nakano fo r  his precious
advices and criticisms. I wish also to thank O. Zariski, whose
advices and encouragement at the beginning o f this research were
very helpful.

Contents

§ 1. The cohomology ring of a variety.
2 .  The class of type (1, 1) defined by a divisor.

§ 3. The spectral sequence attached to a refinement of a covering.
§ 4. Application to the study o f  T*.

1) Akizuki wrote me that A. Andreotti and J. P. Serre had kindly communicated
the informations to  h im  after reading a résumé o f my work.

2) T h e ir  re su lts  have not yet been  pub lished  in  a  form accessible for me, but
H. Hironaka of Harvard University wrote me about the situation.
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§5. The birational case.
§6. Application to the study o f tr y ,  U open.
§ 7. The class of type (y, y) defined by a point.
§ 8 .  Projective spaces.
§ 9. Projective bundles.

§ 10. Non-singular monoidal transformations.
§1 1 . The class c(W ) of type (w ', w ') defined by a non-singular

subvariety W of codimension w'.

§ 1 .  T h e  c o h o m o lo g y  r in g  o f  a  variety.

Let k  be an algebraically closed ground field. Everything of
our algebraic geometry will be defined over k  except when the
contrary is explicitly stated, and a variety will be considered as
the set of its k-rational points. Let V be an (abstract) variety.
Assuming that V is normal, we denote by s2T, (or S2P) the sheaf
o f germs o f differential forms of degree p without poles. Then
s-20, o • M ore  generally, when D  is a divisor on V, we denote by
sv(D) the sheaf of germs of p-forms co satisfying (c0)> —D locally.
These sheaves are algebraic coherent (see Appendix A ) .  I f  V  is
non-singular, then D P  is the sheaf o f germs o f  regular" p-forms,
and is locally isomorphic to 0"P, np ,-„C p .

W e  set HP' q ( V )=  H P ' g  H g (V , I -2 P )  a n d  H*(V )=Ep,,FP'q.
H*(V ) is a ring having the cup-product as the multiplication law,
and will be called the cohomology ring of V " .  An element of
lir"  will be called a class of type (p, q). The cup-product a` i ,d,
which we shall write simply a id, has the following properties':

E H P . , 9
 E P ' '  > ad E q+q/  a g = ( - 1)PP' - f q q '

The 1-1P.q(1/)'s are modules over H°°( V) ( = k  i f  V  is complete), a

1) In the terminology o f Lang's book, " holomorphic ". We avoid this word since
Zariski's holomorphic function has begun to enter into sheaf theory.

2) We shall be mainly concerned with non-singular varieties. When V  has sin-
gular points, I  am not certain that this definition is the adequate one ; at least, it
sometimes helps us to study H°. ( V, 0) (cf. 5 ) .

3 )  The cup-product for cochains with respect to a covering H is defined as fol-
lows : f E ut), gE  >

( f  U g ) i ( ) 1  •  •  • , q - q' . • =  f i o , • • • iq  A gi, , • • • iq  f-q •  •

Then
 d ( f g ) = d f g ± ( _ 1 ) Q f l J d g ,

 and this last formula enables us to define the
cup-product of cohomology classes. Passing to the limit, we obtain the cup-product
in H * (V ).
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fortiori over k ,  and their dimensions over k  will be denoted by
h ( V )  or hn.g.

Let W be a locally closed subset (i.e. intersection of an open
set and a closed set) of V, and assume that W is a normal variety
such that its prime divisors are all simple on V. Then one can
define the trace mapping t r  : H*(V )---.11*(W ) in an obvious way.
I f  W is open, tr. , is nothing but the restriction mapping.

Let T: V ' — > V  b e  an everywhere regular rational mapping
(briefly : regular mapping) from a normal variety V ' into a  non-
singular variety V .  Th en  T  determines in  a  natural way a
mapping T *  :H * (V )- .1 1 * (V ). Both trw  an d  T *  are ring homo-
morphisms.

Let now W  be an arbitrary subset o f  V .  We say that an
element a o f H *(V ) is locally  z ero a t  W  i f  there exists an open
neighborhood U  o f  W  such that tr u (a )= -0 . I f  is clear that the
elements which are locally zero at W make up an ideal o f H*(V ),
which we shall denote by N(W  , V ) or simply by N(W).

If the normal variety V  is  projective, then We have h "= 1
(v dim V ) .  (This proposition is perhaps due to  Serre. For a
proof, see Appendix B ) .  If moreover V is non-singular, then Serre
duality, which will be of prime importance in the sequel, holds in
H * (V ) . Namely :
"HP"q  and Hv - P•v- q  are dual :  given a  E HP 'q ,  a + 0 , one can find

E i i v - P ' q  such that a 0 + 0 .  In particular, we have

hP.q 

(More generally, Hq(V , 1-2"(D)) and Hv - a(V, f r - P(— D)) are dual for
any divisor D  o f V4 )).
We shall sometimes use Serre duality in the following form :

Lemma 1. 1. L et V  be a  non-singular projective variety  and let
p  b e  a ring hom onz orphism  of  H *(V ) into som e ring  R . I f  c p  is
injective on then p  is  injective on a l l  H " .

A  remark on the field of rationality. L e t V  and D  be as
above, and let K  be an algebraically closed field containing k.
One can consider V as the set of its K-rational points. Then

4) C f. S e rre  [3]. It is reported that a  more general duality theorem has been
obtained by Grothendieck.
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Hq(V, (2P(D)) i s  a  K  m odule. In calculating th e  cohomology,
however, one may use an affine covering U =  lU i l  consisting of
k open subsets, and then the modules r(U i , nP(D)) are spanned
over K  by p-form s defined over k since the U, are defined over
k and since D  is rational over k (see Appendix C ) .  Therefore it
is easy to see that the cohomology module constructed over K  is
obtained from the one over k  b y  the operation of coefficient
extension O k l i .  This remark shows that h "  are independent of
the choice o f k, and enables us to use, if convenient, general (or,
in Weil's terminology, generic) elements over k.

§ 2. T h e  class o f  t y p e  (1, 1) defined by a  divisor.

Let V be a non-singular variety, and let D  be a divisor on V.
Taking a sufficiently fine affine covering 11= 11/11, we can express
D  by its local equations f :

D =  (f,) in Ui .

Now, since f i / f i is regular in  Ui i , the logarithmic differentials

=
form a 1-cocycle of the sheaf f2'. Hence a class of type (1, 1) of
V, which we shall denote by c (D ). It is immediate from the defini-
tion that c(D) depends only on the linear equivalence class of D
and not on the choices o f 11 and of the local equations.

It is also clear that c(D) is linear in D , so that c(pD)= 0  if
k is o f characteristic p .  I f  V is  projective and k is the complex
number field, then it is known, by analytical method, that c(D)
depends only on the algebraic equivalence class o f D .  The same
is trivially true in the case of characteristic p, because we have
Ga (V )=G ,(V )+pG a (V ) by the divisibility of the P icard variety
Ga (V)IG,(V) o f V . T h is  proof is too accidental, and an algebraic
proof, depending on the theory o f specialization and independent
of the characteristic, is very desirable. We shall give later, in the
case of projective varieties, a  (rather geometric) proof which is
independent of the characteristic.

Proposition 2. 1. c(D)•N(Supp (D)) =  O.
Proof. Let a E N(Supp (D)) M -IP.q. Then there exists an open

neighborhood U  o f D  such that tr v (a) = O. Let LI' =  j Ua i c i i  be
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an affine covering o f  U  such that D  has a local equation f  in
each  U.;, a n d  le t  11" {tin  ie ,/, b e  a n  a ffin e  covering of
V—Supp (D ). Then 11= U 'u U "  is an affine covering o f  V .  Take
a representative cocycle a of a with respect to U . By the assump-
tion there exists a  (q -1 )-c o c h ain  b  with respect to U ' such that
a i o , ,  i g =(db) i o , ,  ( is ,  • •• , 1, E I ') .  Extending b  to a cochain of
U by b i o , ,  iq = 0  ( i f  some i ,  E I " ) ,  and replacing a  by 'a— db, we
see th a t we can assume a ; 0 ,..., ; ,= = 0  ( i • • •  , i g  E F L  Put
7 ;  d f i l f i  ,  and -= d f i / f i — df i l f i ,  where f i = 1 if i E r'. Then
w e have a =  d7 " - S ' a =  d(7 ' - j '  a). Though 7  is not a  cochain of
tr, 7u a is a cochain of 1-2P+ ' since (7u a), o , ,  i g = 0 (i 0 , •-• , i , G F).
This proves c(D) a =  O.

Corollary. Let D .  = 1 ,  2, •-• , s) be d ivisors such that
r\ Supp (D i ) = -  0 .  Then we have c(D1)•c(D2 ) • • • c(D ) =O.

Proof. W e proceed by induction on s. P u t U  V—
Supp (D,). T h e n  U  is an open neighborhood o f Supp (D 0 ) b y  the
assumption. On the other hand, since A i < - A S u p p  (D i ) r\U ) =  0 ,  we
have tru(c(D,) •• • c(1)0 -1)) -= 0  by the induction hypothesis. There-
fore c(D1) ••• c(D5 1)  belongs to N(Supp (D0 )).

Let D  be a non-singular prime divisor on a non-singular variety
V  of dimension v. The following well-known exact sequence

„  R  ,
0 — +  1 r2v (D) aztb - - - - >  O,

where R  denotes the Poincaré residue mapping, gives rise to the
cohomology sequence

a H v, v( v  ) H y ( v  s2 v(D ))

Proposition 2.2. L e t  a E H ' ( V ) .  Then we have

c(D) (tr p(“)) •

Proo f. Let 11=  {Ui } b e  a  sufficiently fine affine covering of
V, let f i  be  a local equation o f D  in  U , and let a = laio , •••
be a  representative cocycle o f  a  w ith  respect to  U .  Let 7 =  t7 i l
= { d f i l f i }  a n d  = d 7  have the same meaning as above. Then
w e  have d7u  a = d(7u  a ) ,  and ( 'y  u a)io ..... =  (d f a f i o )
ai 0 ,...,i„ . But R ((df i o / f i o ) a; 0 , • • • tr D(aio , ,i„_,)• Therefore
our assertion follows from the definition o f a.

If, moreover, V  is projective, then Serre duality permits us to
prove the following



Geometric structure of  the cohomology rings 39

Corollary. I f  V  is projective, then

(1) trp (a ) = 0   c(D )• a = 0 f o r  a E ,
(2) trp(a) = 0  c(D)-a = 0 f o r any  aE H * (V ).

Proof. W e have Hy( V, I- 2" (D)) H°(V, 0(—D))= 0 and hv•"(V)
= hy - 1 . ' 1 (D)-= 1 by Serre duality, so that the mapping 8 is bijective.
This proves (1). Let now  a be a  class of type (p, q ) such that
c(D) O. T h en  c(D) j9 = = 00 for some 3 of type (v-1 -  p ,  v - l -  q).
This means, by (1), that trD (are) -+ O. Therefore trda) cannot be
zero.

When does c(D) -= 0 hold? In order to investigate this problem,
it is  more appropriate to consider divisors with coefficients in k.
Such divisors will be called k-divisors. I f  D =  a , D ,  (a, E k,
D ,  prim e) is a  k-divisor, w e  d e fin e  c (D )  by linearity :
c(D )-=E  a, c (D ,).  I f  V  is  projective, then we can define the
k-degree o f D  by

deg(D )= a., deg (D,) (Eh),

where the deg (D ,) are to be taken mod p  i f  k is o f characteristic
p .  The Kronecker index

/k (D i -D,••• ( Ek)

of k-divisors D„••• ,D„ (v= dim V ) is defined similarly. Proposi-
tion 2. 1 and its corollary hold also for k-divisors.

Now, let D = E a, D , (a ,+ 0 ) be a  k-divisor with the prime

components D „•••  ,D ,. Let U= lU i l  be a  sufficiently fine affine
covering of V, and let f  b e  a local equation o f D , in U . T h e n

=  E —  a df1 , j f 1 ,v

is  a  cocycle o f  c (D ). Therefore c (D )= 0  is equivalent to the
existence of a 1-form 6) such that

-s  a,d f,,,If i ,„ is regular in  U., ( f o r all i ).

Clearly (df,,,I f ) + D ,> 0  in U . H en ce  w e  have (c0)+ E D, >O.
On the other hand, if D, + 0  and if P  is a simple point of
D,T\U ; not ly ing on the other components D ,  then f i ,, is  a
member o f a  regular system o f parameters of the local ring op
and hence (0)),„ , D ,  locally at P .  Therefore we have (c0),,, ,- E D .
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I f  V  is a  complete (non-singular) curve, then we have
resp(0) ,  a ,  and the existence of such an (0 is equivalent to
E a ,=  deg,(D) ,  0. Thus we have proved :

Proposition 2. 3. I f  c(D) ,  0, then there exists a  1-form  6) such
that its pole consists exactly  of  the prim e components o f  D  (taken
with multiplicity  1). I f  V  is  a  complete (non-singular) curve, then
we have c (D )-0  < > deg,(D) = 0.

Corollary 1. L et V  be projective, let C, be a  k-divisor and let
IC11, ••• ,IC„_,I be ample linear sy stem s. T hen w e have

c(C0 ) c(C 1 ) • •• c(C ) —  0 < >  /,(CO •C, • •• Cv ,) =  0  .

Proof. We proceed by induction on v , the case v = 1  being
the proposition above. We can choose a non-singular prime divisor
C  from  1C„_, I . Pu t C,.C.-=-C;. T h e n  IC ; (i =1, ••• , v - 2 )  are
ample linear systems o n  C, tr c (c(C i))-=c(C ;), an d  /k (Co  ••• Co_1)

•-• Co _2). Our assertion now follows from the cor. of prop.
2. 2 and from the induction hypothesis.

Corollary 2. L et V  be projective and let D be a k-divisor. Then

d e g (D )= h 0   >  c(D) 0  .

Proposition 2. 4. I f  V  is  projectiv e, and if  D is algebraically
equivalent to z ero on V , then c(D )=0.

Proof. B y Weil [3 ], §  1, Lemme 10, there exist a non-singular
projective curve r, a  divisor Z  on Vx r ,  divisors Di o n  V  and
points P i on F  (i =  1, 2), such that D =D ,— D . and Z.( V x P i ) ,

Di x P , (i= 1 , 2). We shall prove c(D1 ) = c (D 2 ). By Serre duality,
it is sufficient to prove that c(D 1 )a= c(D 2 )ce holds for any a E

V ) .  Now , Kiinneth relation shows that the cohomology
ring H*( Vx 1') is  the tensor product, over k, of the rings H *(V )
and H*(1'). Moreover, we have c(VxP /) =  1 0  c(P f ), c (D  x1 ')
= c (D 1 ) 0 1 .  On the other hand, since the divisors Z  and Di x 1'
have the same trace D i x P ,  on  V x P i ,  we have tr v xp,(c(D, x
=  tr v xp,(C(Z)) -= c (D ,x  P ,). Hence we have

c(D / )(Y O c(P,)- -.= c(V x P i)c(D, x -1-)(a 0  )  i(trvxp ,(c(D i  x 1')(a 0 1)))
=8 i (tr v xpi (c(Z)(a 01))) = c(Z)c( V x P i )(a 01) ,

where 8i  has the same meaning as in prop. 2. 2 with respect to
V  x  and V x P i . But c(P 1) = c (P 2 )  by prop. 2.3. Thus we obtain
c(D 1 )a =c (D 2 )a, completing the proof.
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A n application to birational transform ations. Let T :  V' ,  V be a
regular (but not biregular) birational transformation from a non-
singular variety V ' onto V .  We assume that V' is complete over
V  with respect to  T .  A prime divisor E  o f V ' will be called
exceptional with respect to T  i f  dim T(E)<dim E .  By a well-known
theorem, V' has one or more (and of course finitely many) ex-
ceptional prime divisors with respect to  T , and the union of their
images under T  is precisely the fundamental locus of o n  V .
Now we have

Proposition 2. 5. L et E„ E, be the exceptional prime divisors
o f  V ' w ith  respect t o  T .  Then c(E,), ,c(E e )  a re  linearly  in-
dependent in  II'l(V 1 )  mod T*H 1 .1 (V).

Proof. Suppose we have a non-trivial relation

a i c(E,)+ 4-a,c(EQ )+T * a =0  , ceE11 1 •1 (V ), a,E1?, a 1 ±  O.

Let U be an affin open subset o f  V  having common points with
T(E i ), and replace V  and V' b y  U  and T - 1 (U ) respectively (i.e.
operate tr u ) to everything). Since tr i - ' ( U ) ( T * ( f ) = -  T*(tr u a ) ,  0,
we now have c(a,E i + +a ,E ,) = 0 .  It follows that there exists

a  1-form (0 such that we have E i <((o),,< E ,  (on T - 1 (U ) ) . But

then w  can have no polar divisor in  U  when considered as a
differential form on U .  Therefore 0 )  must be regular on U, hence
also on T - 1 (U ) .  Contradiction.

Let 11={U 1}  be an affine covering of V, and denote by T - 1 11
the covering {T - 1 (U1)}  o f  V '.  Then 111 .1 (V )--- ,---IP(T aill, 1-2,;,) and
T* is essentially the mapping associated with a refinement of the
covering T 'I1  o f V ' by an affine covering (see the next section).
But it is well known, and can be easily proved, that the refinement
mappings of 1-dimensional cohomology groups are always injective.
Therefore :

Corollary. I f  h " (V )  is f inite, then w e have

hi. 1 (V )>h " (V )+e >h " (V )  .
In particular, an infinite descending chain of  birationally  equivalent
complete non-singular varieties cannot exist' ) .

5 )  The cohomology group of an algebraic coherent sheaf over a complete variety

is finite dimensional (Grothendieck [2 ] ) .
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The second part of this corollary shows the "existence of a
relatively minimal model", which was proved by Zariski by dif-
ferent methods. (Cf. Zariski [2], [3], [7].)

§ 3. Th e spectra l sequence attached to a  refinement o f  a
covering.

L e t C =  Cm." (m > 0 , n > 0 ) be a positive double complex,
with differentiations d ' and d" of degree (1, 0) and (0, 1) respectively.
We prefer the commutativity d' d" = d"d' to the anticommutitivity
of Cartan-Eilenberg [ 1 ]  (p. 60), so that the total differentiation is
d=d' + (-1) 7" d" on C "." . To C are attached two spectral sequences,
the first and the second, which we shall denote by 1 / 7 1  and
{//71 (as in C.-E. [ 1 ]  p. 3 3 1 ). Thus we have

I T ' n 1 1 1:/(H'/,(C)) , n > H(C) ,

n > H(C) .

Let X  be a topological space, let F  be a sheaf on X  and let
11, 11' be two open coverings o f X .  Let us consider the double
complex

C U', F)

which was defined in Serre [2 ] , p. 2206). Then we have

= Hm(U, HAV) , HT." = Hn(11! , H F ) ,

where 119

11
F  denotes the presheaf (Garbendatum) defined by

(H F)(U )  = 11"(U', F)

11'u b e in g  the covering o f  U  induced by U'. H F  is defined
sim ilarly. Since (HA T)(U)=1A U, F), we have /T.° ,  Hm(U, F), and
similarly /II" ,  Hn(11', F).

6 )  L et 11=4 U iliE r  and U'i},E.r . . W e s e t  C(j l, 1.1', F )= > 2,„ ,„C " (U ., , F ),
(U , F)=1 - 1'(usnu'l, F), where th e  product is extended to all the pairs ( s ,

s ' ) ,  where s  is an m-dimensional simplex of the nerve S ( / )  of IT and s '  is an n-dimen-
sio n a l simplex o f th e  nerve S ( J )  o f IV . Th u s an element of C'n , '  is a  system f =

fio • •• i772, :11:1 f i o  • • • , i0 • • • i n  E r ( U i o • • • n ,  F ) .of s e c t io n s The
differentiations are defined by

( d f  ) i o 1 + , , J o  • i n  = " % ‘1 ( —
1 Yfio

r= 0

(d"  f)1 0)io • • • io  • = 7 5 2 (  1 )1 ,
0 • • • In,

i r n + 1 , i0  • • •  i n ,

• • •  in -1 -1 .
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I f  1,1' is a  refinement o f U , then H•24 ." ,  0  fo r  m > 0 , hence
Hn(C) H "(11 ' , F), and we have

= Hm(U, .>  E H (1 1 ', F)  .

Moreover, the edge-homomorphism

P2r" H m (U , F) Hm(11', F )

is precisely the homomorphism induced by the refinement (see Serre
[ 2 ], N °2 9 ). I f  this homomorphism is injective, then
1. 7 "  are zero and /7. 0 = /7.° for all r > 2 .

Still under the assumption that U ' is  a  refinement o f 11, the
exact sequence for terms o f low degree (C.-E. [1 ], p. 332) reads :

0 ->H 1 (U, F ) - > , F ) - > H°(U, H2(U, F )-> H 2 (11', F) .

I f  F  is  a  sheaf of rings, then one can define in C  the cup-
product by

a E C " , b E C "  - b ECm - F 'n "

(au  b)i0.• • • . im+s ; io.• • • in+ t ai0.•••,im;i0,•••..in•bim.••••int-Fs ;  j n , • • •  in - F t  •

Then d '( a u  b ) = d 'a u  b + ( - 1 ) m a `  d i b ,  d " ( a u  b ) = d " a l  b + ( - 1 ) n a ` - )

d " b .  We introduce a  new multiplication a b  b y  a b  =  ( - 1 ) "  au b.
Then C  remains to be an associative ring, and this time we have

d(ab) = (da)b  + (-1)m  + a(db) .

This ring structure of C  induces ring structures on I, and on H(C).
In 4  w e  have

d r (ab )  = (d r a)b  +(-1 )m ± na(d r b) (a E b E .

A n application of  the m ultiplicativ e structure. Suppose that
the following conditions are satisfied :

(A) d 2 : -3- I F  is zero,
(B) P2'." = /7. 0  (n  I)" (for a fixed pair (m , n)) .

is a residue class module of a submodule of Cm+1 . "- ,  and;=0
from the conditions (A) and (B) it follows that each class o f /7.°
contains d-cocycles o f C m " " . Hence there is a natural homomor-
phism  from P2

3 .n onto and d r -=- 0  on 1 "  ( r > 2 ) .  I f  (B ) is
valid for a ll (m, n ) ,  then the spectral sequence is trivial in the
sence that we have 0  (r> 2 ),
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§4. A pp lica tion  t o  the s tu d y  o f  T*.

Lemma 4. 1. L et V  and V ' be algebraic varieties; le t T  be a
rational m apping from  V ' onto V; let U (resp. U') be an aff ine open
subset of V  (resp. V ') with affine ring A  (resp. A '). A ssum e that T
is regular in T - 1 (U ) r\U '.  Then T - '(U )r\U ' is an affine open subset
o f  V ', and  (af ter identif y ing the function f ield k (V ) of  V  w ith a
subfield of  k(V ') by  T ) its af f ine ring is  A [A '].

Proof. Let P ' be a point of T - '( U)rNU' and let (o', ni') be
the local ring of P ' o n  V '. By assumption the point T (P ')= P
is uniquely determined and belongs to U .  We denote the local
ring of P  on V  by (o, ni). Then o ' dominates o  (i.e. o' o  and
min o In). S in ce  o contains A  and since o ' is a quotient ring of
A', o' is a quotient ring of A [A '] with respect to the prime ideal
A[N ]r\

Conversely, let (o",111") be a quotient ring of A [N ]  with re-
spect to a prime ideal. Then o" dominates the local rings (o', in'),
(o, ni) of points P ', P  o f U ' and U  respectively. (0' =- 1r(Ainiiii , ),
o  =A c A n t r, ) ). But then P  and P ' correspond under T , so that
P'E  T - '( U )r■ U '. Hence o' is itself a quotient ring of A [N ]  with
respect to a prime ideal by what was just proved. Therefore o"
must coincide with o'.

Lemma 4. 2. L e t V  be an  algebraic variety  a n d  l e t  f  b e  a
regular function o n  V . Pu t V  if = {P E  f ( P ) * ( ) } .  L e t  F  be an
algebraic coherent sheaf o n  V .  Then:

(1) if  a' E Hg(V t -, F), then there ex ist a natural num ber n and
an  element a of  Ha(V , F) such that trv f (a)=--- f n a',

(2) if  a EHq(V , F ),  a n d  i f  tr y  f(a) =0 , th e n  th e re  e x is ts  a
natural num ber n such that Pa =0.

Proof. W e begin  w ith  the case q = 0 .  In  this case (2 ) is
proved in Serre [2], N°43, prop. 6, while (1 ) is proved in  N°55,
Lemme 1 of the same paper of Serre under the additional condition
that V is affine. I f  V is not affine, we cover V  by a finite number
of affines Ui . Then there exist a natural number m and sections
a i  E F )  such that a i --=f - a ' o n  Vf n U i . Applying (2 )  to
U1 r\ U3 ,  w e have r a i = f t a ,  on  Ui n U j  fo r la rge  t. Therefore
the section a E r(V ,F)  defined by a_— fia, o n  U , satisfies our
requirement : a=f m +ta' on Vf.
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The general case. Let 11= {U i }  b e  an affine covering of V.
It suffices to prove our assertion for the cohomology groups with
respect to  U . (1) Let be a cocycle of a'. T h e n  a'
E VI, F ) ,  therefore there exist a natural number n  and
a cochain a  on V  such that a = f a '  o n  Vf . Since da = 0  holds
on 171 , we can assume that da = 0 on the whole V by augmenting
the value of n  i f  necessary. Then the cohomology class deter-
m ined by the cocycle a  satisfies the requirement. (2 ) can be
proved similarly.

Let V, V' be algebraic varieties and let T : V '- -V  be a regular
mapping from V ' onto V . L e t F ' be an algebraic coherent sheaf
on V', and let 11=  W A. and U '=  {U'j } b e  affine coverings o f V
and V ' respectively such that U' is  a  refinement o f  T - 11. We
now apply the spectral sequence method to the double complex
C(7- 1 11, F').

Let us define presheaves H q F' and TR' F' (q  =0, 1, 2, ••-) on
V and V' by

(H qF')(U ') = (U ' F ') (U ' : open subset in V')
and b y  (T HqF')(U) = Hq(T - '( U), F') ( U :  open  subset in V)
and by the natural restriction mappings. Then it is clear that

1-1m(11, T H"F') = Hm (T - '11, H F ') .

On the other hand, Lemma 4. 1 implies that we can identify
f r ( T - '11, H"F') with Irn(T - '1,1, 111"1,F'). Thus the first spectral se-
quence takes the following form :

-= '(U., T H"F')   E Hq (V' , F') .

It is evident that T H 'F ' is a sheaf", which can be denoted also
by  T F ' according to a  general rule. We denote temporarily by
"F the sheaf on V associated with the presheaf T H "F' . The "F
are certainly algebraic sheaves (i.e. sheaves of O--modules). They
enjoy some of the properties of algebraic coherent sheaves").

Proposition 4. 1. L et U be a n  af f ine open subset o f  V .  Then
th e  canonical mappings (T H "F')(U )=H "(T - 1 (U), F') —si-(U , F)  a r e
b i je c t iv e  fo r  all n.

7) W e identify a sheaf F  with the presheaf (U , F ) as usual.
8) Graueit-Remmert Ill denotes them  by T , (F ') ,  and Grothendieck [2 )  b y  Rq

( F ' ) .  Grothendieck ([21) has proved that they are coherent i f  V ' is complete over V.
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Proof. Let us denote by .7, the mappings in question. Let a
be an element o f 11"(T - i(U ),F')  such that qv = O .  This amounts
to say that there is a  (finite) covering o f  U  such that
tr T -l u i (a) = 0 for each i. Taking a refinement if necessary, we can
assume that U. have the form U f i ,  f i  being regular functions on
U .  By Lemma 4. 2 we have f ra = 0  fo r  la rg e  m ') . Since the
functions f ',4 h a ve  n o  common zero points, there exist regular
functions g i o n  U  such that E g i f T = 1  (Hilbert Nullstellensatz

applied to the affine ring of U ) .  Hence a = E g i f r a = 0 .  The

proof of the surjectivity is similar. W e have to prove that, given
an open covering o f  U  and a system faa. of cohomology
classes a', E Hn(7 - '( U1) , F')  such that a', = a  in  7 - 1 (U15 ), we can
find an  element a  o f  H"(T - 1 (U ) , F ')  satisfying the relations
tr T -ic u o (a) , a .  We can assume, as above, that Ui =U f i  fo r  some
regular functions f i . Then, by Lemma 4. 2, there exist a natural
number m and elements a i  o f  H"(T - '( U ) ,F ')  satisfying ai =f 7a',
in T - 1 (U1). Since a j = ri a 'i =f ni 'd , holds in  T - 1 (Ui  f ' f a j ---.- f r w a;
holds in T i(U 1)  for sufficiently large m '. Let g i be regular func-
tions on U such that E g, f  = 1 .  Put E g 1f7 v  at =  a .  Then we

have tr T -iw o (a).= E g .

Proposition 4. 2. W ith the same notations as above, le t Ti3 be
an affine covering of the affine v ariety  U. T hen

fig(Ti3,"F) = 0 (q> 0 ,  n arbitrary). 10)

Proof. W e prove the proposition in the case V =  {U t } i c i ,
Ui =U f i , f i being regular functions on U .  I f  this case is settled,
then the proof of Serre [2], N°47, prop. 8 can be used, mutatis
mutandis, to prove the general case. Now, let a =  be a
q-cocycle of "F with respect to U. By Prop. 4. 1 and by Lemma
4. 2, there exist a (q-1)-cochain 0 , )  for each i E /, and a natural
number t ,  with the following property :

le( iq in

On the other hand, it follows from dce=0 that

9) Note that, identifying A with f i o T ,  we have T - ' (U ) f ,= T - I( Uf ).
10) In particular, H q (V ,'F )= 0  ( q > 0 )  i f  V is a f f in e . This implies that our èech

cohomology o f "F  coincides with the Grothendieck cohom ology o f F.
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i i , • • • . i q E r o(- 1 -)'t;,io, • •• . 1 r . • • • • 1 ,7

for any i E I. Hence we have

=  d(f r IT " )

provided that t '  is  large enough. Let g i be regular functions on
U  such that E  g i f 1. Then a -=d(E g, f r(3(i)), which was
to be proved.

Corollary. L et 5B be an  arbitrary  affine covering of  V . T h en
th e  canonical homomorphism lIgM,"F)—> II" (V , "F) i s  an  isomor-
phism (f or any  q, n).

Therefore our spectral sequence can be written as

=  fr  (V  ,"F ) >  E  
H ( / ,

 F') .

F rom  th is it fo llow s, by a  theorem o f th e theory of spectral
sequences, that our spectral sequence {41r>2 } is independent of
the choice of the affine coverings 11, 11'.

Ex am ple. Suppose that V is normal, that V' is complete over
V and that the function field k( V ) o f V  maximally algebraic in
k(17'). Under these conditions we have

r(U, 0 ) = r(7' - '(U), Ow)

for any open subset U  o f  1/1 1 ,  so  that TO v i = 0 v . Therefore, if
we put F' =0 v , in the spectral sequence considered above, we have

I r n (V , 0 v)

and the edge-homomorphism Hm(V1 , is p recisely the
homomorphism T*.

1 1 ) I f  w e assume only the condition that V ' is complete over V, then for each
point P  o f  V  we have

,

where Or denotes the integral closure of Or in k ( V ') .  Similarly we see that F ( T - I(U ),
Cc') contains T(U, 0 ,)(=  n o r ) and is contained in the integral closure in k (  V')

PE u
of the latter ring. These are direct consequences of the following general theorem of
Krull : if K  is a field and if R  is a subring of K , then the integral closure o f R  in K
is the intersection o f the valuation rings of K  containing R .  (See e.g. Akizuki-Nagata
DJ or W eil [11. C f. also Zariski [3], p. 49.) A lso it follows that, i f  V '  is  normal

instead o f  V , then we have /",°.=--.H (  O i-) for F '=01 , ,  where V denotes the nor-
malization o f V  in  k(V ').



48 Hideyuki M atsum ura

From now on we assume the following conditions :
(1) V ' is complete over V,
(2) V ' can be embedded in a projective space (as a locally

closed subset).
Put W =  {P IP E V , dim 7- 1 ( P ) > i l .  The W , are closed subsets
o f V (for a proof see Samuel [1 ] , p. 36).

Proposition 4. 3. "F is zero outside of W..

Proo f. Let P  be a point of V outside of W „ . Let V' be the
closure of V' in the ambient projective space, and let D„ ••• , D„ be
suitable hyperplane sections of V' such that D i n •-•(\ D.r. T l (P)=O.
Then T(V / nD i n ••• r\D„) does not contain P ,  hence there is an
affine neighborhood U  o f P  such that T(11' n D i n •-• r\D,g)nU = 0,
or equivalently A n  • •• n D„n 7 - 1 (U) By Lemma 4. 1 T '( U )
is thus covered by n  affine subsets, hence we have H"(T - 1 (U ),F')
,-----TH"F'(U)=--- O. S ince the same holds for any affine neighborhood
of P  contained in  U, the stalk o f "F at P  is zero, q.e.d.

(Remark. Our assumption (1) is essential to this proposition,
while we do not know whether or not (2) is indispensable.)

Therefore, " F  can be considered a s  a  sheaf on  W „ . The
cohomological dimension of W „ is <d im  W „ b y  a  theorem of
Grothendieck" ) . Hence :

Proposition 4. 4. We have Ir"=---H"'(V ,"F)--- 0  i f  m > dim W„.
Corollary. I f i.e. i f  T - 1 (P) consists of a finite number

of points for every point P  of V, then the homomorphism T* :11"i(V ,
F ')  is an isomorphism. If, moreover, V is affine, then

also V' is affine.
Proof. The first part is  an  immediate consequence of the

proposition, since we have /7 'n=  0 (n> 0). I f  V is affine, then it
follows from the first part and from Prop. 4. 2 that we have
11?"(V / , F')-=0 (m >0) for any algebraic coherent sheaf F ' .  By a
theorem of Serre [ 4 ]  this means that V' is affine.

Let F', G ', H ' be algebraic coherent sheaves on V' and let (p :
F' OG'— >H' be a  homomorphism. Then cp defines a cup-product
Hq (V' , F0x  Ha' (V', G') —> ( V' , H ') in the usual manner.

1 2 ) I f  V  is  pro jec tive , then W„ can be covered by 1±dim W„ affines a n d  hence
we can d o  without Grothendieck's theorem.
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Proposition 4. 5. Let U  be an open subset of  V  containing W 1 ,
and let a b e  an element of  Hq (V , T F ') such that tr u (ce) = 0 .  Then
fo r  each a' E Hq' (V ', G ') there ex ists an element 3 o f 114 ±q (V , TH')
satisfy ing tr u (3) =  0  and ce` ce' = T*,8.

Proo f. Let 111 = {U i } i  E A  b e  an affine covering o f  U  and let
=  lU il L E E  be an affine covering o f  V— W , .  P u t  11 =11, u  112 .

Let 11' ,  { (P } b e  an affine refinement o f T - '11. Let a (resp. a') be
a representative cocycle of a (resp. a ') with respect to U (resp. 11').
We can choose a in such a way that we have

a i o ...,, =  0  ( i o , • , E A).

Now consider the double complex C =C ( T 'l l ,  U'; H ') .  Setting

-= q  (a(1) 0 c( ; )) (  E
 r  (T 1( (J( 1 ) ) r\ U'c», IF))

d ° )  is  a  d-cocycle of and its cohomology class in lig+e(C)
corresponds to  a u  a ' under the canonical isomorphism between
H (C ) and H (V ', H ') .  We shall construct successively d-cocycles
dr) G C" " "  = 1, 2, • • • q ')  satisfying the following conditions :

(1) d r )  is  chomologous to
(2) = 0  ( i  0 , • • • , q „  E A).

Then d e )  will determine a  cohomology class 9 E 11"+"' (V , TH')
satisfying the requirements of the proposition.

Assume that a '  is already constructed. Now, since Ui r- W ,
-= --0  for i E B, is affine if some is is in B . In this case,
therefore, we can find (q' — r)-cochain b ={ b(l)J fa/ _r } ( i )

o f H ' over such that its coboundary (with respect
to  the indices ( j) )  is  {cira 7.1. ),g + r _,. cp • W e set bi ( ; ) = 0  if
io, .• • , q+r -1 E A .  Thus we get an element b = {bu m f ) }  o f C q + r - l ' e - r

satisfying d " b =d r - 1 ). Setting d r )  = ( -1 )"  r d 'b , w e  have d'a(r)
= d " d r) .  0 ,  d r - ') — d r ) =- d ((-1 )" 

r -
 ' b). Also it is clear that d r )

satisfies our condition (2). Thus the proof is completed.

§ 5. The b ira t io n a l case.

With the same notations as in the preceding section, we now
assume, besides the conditions (1) and (2) of p. 15, that T  is bira-
t io n a l .  Then it is clear that we have n+ dim W „ < v - 1  for n > 1
(principle of counting constants). Therefore it follows from Prop.
4. 4 that / -'2" .=  0  for m + n > v ( n > 0 ) .  Thus we get the following
proposition.
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Proposition 5. 1. The homomorphism  T * :  H "(V , T F ') (--=.1 . °)
F ')  is  surjective.

E x am ple . Suppose that T - 1  has only a finite number o f f und-
mental points (on V), say P„ •• • , P .  Then /7.'1 = 0  except 1 02'0 , ••• ,

and /2. 1 , ••• , and hence we have the following exact
sequence :

0 H° (V , TF') H° (V ', F') - - >  0

Hi (V , T F ') — 0- 1-11 ( V ' , F')
d2 H 2 (V  , TF') H2 (V ' , F') 112

1-1" (V , TF ') — 0- Hy (V' , F') 0,

where we know /S"=1-1,/. 1 HQ (T - 1 (11,), F'), U, being an affine neigh-
borhood of P i such  that U ,  P i  ( i +  j ) .  I f  V  is  a normal surface
then our hypothesis holds. I f  moreover all the modules in the
exact sequence hove finite dimensions over k  (which is the case
when V and V' are projective varieties and TF' is algebraic coher-
ent), then we have

X( V', F')---- X (V , TF')—  dim .A) .1 < X (V , TF') .

I f  we set then T F ' = O  and the above inequality reduces
to the inequality fia (V/) < p a (V ) which was proved by Muhly-Zariski
for normal projective surafaces by a different method.

I f  V  is non-singular, then TS21,/=_-_14 ho lds. In fact, a dif-
ferential form w o f k (V ) is regular at a simple point P  o f V  if
and only if it is regular along every prime divisor D o f V passing
through Pi"• B u t  i f  w  has no poles which intersect T - i(P ) , then
it  must be regular along D since T - 1 [D ]r\T - 1 (P)4-- 0. Hence co is
regular at P  if and only i f  it has no poles which intersect T - 1 (P),
and it follows that

F (7—  (U), ---- 11 (U

for any open set U o f V provided that V  is non-singular.
From now on we assume that V and V' are normal projective

varieties and that V  is even non-singular. Then it follows from

1 3 )  I f  P  is  a simple point, if ( t i  , , t , , )  is  a local coordinate system at P  and if
<0= d t „ . . . d t , p ,  then it is easy to see that ce is regular at P  (resp. along D)

i,<•••<i p

if and only i f  all the coefficients f ( i )  are in op  (resp . in u p ).  But Op=f1D3p119, hence
our assertion. (For a detail see K o izu m i [1 ] or Lang E11).
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Prop. 5 .1 that 
T * :

 H "  (V ) --qr.' (V ') i s  bijective since both
modules have dimension one. Then  w e see by Serre duality
(Lemma 1. 1.) that T * is injective on the whole ring H*(V).

Proposition 5. 2. L e t V  and V ' be normal projectiev varieties
and let T  be a birational transformation f ro m  V ' onto V  which is
regular on V '.  I f  V  is non-singular, then the homomorphism T * :

H*(V)—). H*(V') is injective. In particular, we have hP g(V)<hP•'(V/).
R em ark . It is conjectured that under the conditions of the pro-
position T *  is bijective on H " (V ) at least when also V ' is non-
singular. This is certainly true in the case of characteristic zero
by virtue of the equality = h' •O . We shall see later that this
is true also in the case where T - 1  is  a monoidal transformation
with a  non-singular subvariety as center. A s  th e  problem of
reduction of singularities is not yet solved in a satisfactory manner,
it is desirable to prove the above conjecture without the assumption
that V ' is non-singular"; i f  this is possible, then the birational
invariance of arithmetic genus (for non-singular projective models)
will be established most satisfactorily.

By virtue of the proposition we can identify H*( V) with the
subring T*H* ( V ) of H* (V/). Assuming henceforth that also V ' is
non-singular, denote by M "  o r  Mm(V, V ')  th e  subspace of
HP.' (V ') orthogonal to  H — n.v- q(V). Comparing the dimensions
we have the direct decomposition

=  H " (V )+ M " .

Setting M = E Mn", w e  ca n  ea s ily  s e e  th a t H* (V)•M M,
though M is not an ideal of H *(V/). Further we have the following
propositions.

Proposition 5. 3. Let W be a closed subset o f  V containing the
fundam ental locus W 1 o f  Then N(W  , V)• M=0. In particu-
lar, HP .' (V)•M--.---0 f o r q>  dim W,.

1 4 ) The normality o f  V ' may perhaps be necessary. It should be noticed that
we do not remove the assumption that V is non-singular. Therefore the conjecture
implies that the h° , q of a normal projective model o f  k( V) which dominates a  non-
singular projective model o f k( V ) are numerical invariants of the function field k (V ),
but not that all the normal models o f k( V )  have the same h° , q , which is evidently
false. In the case of dimension 2 our conjecture holds, since the normal surface V'
is dominated by a non-singular model V " , since P”(V):-.1--  P „( V ') > P ,( V " )  and since
V " is obtainad from V  by quadratic transformations.
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Proo f. Let us recall that N(W , V )  is  the ideal o f  H*(V)
formed by the classes of V locally zero at W .  Now prop. 4. 5
shows that N(W , V ) is also an ideal o f  H *(V / ). On the other
hand we have N (W ,V )•M C M  by what was just remarked.
Therefore N (W , V )• M C 1  H * (V )= 0 .

Proposition 5. 4. I f  E  is  an  exceptional prim e div isor of  V '
w ith respect to  T, then c(E) E

Proof. Since T(E ) is at most (v-2)--dimensional, we can cover
it by v-1 affine open subsets o f  V .  Denoting their union by  U,
w e have t r i - - ' c u ) ( T * H " " ( V ) ) =  T* (tr u (H ' ' ( V ) ) ) .= 0 . Hence
c(E)•T*H '(V )- - - -0  by prop. 2. 1, as was to be proved.

§ 6 . A p a lic a t io n  to  the study o f t r u  ( (1 open).

Proposition 6. 1. L et V be a norm al variety (complete or not),
and let W be closed subset o f  codimension w' o f  V .  P u t  U= V —W.
L et F  be an  algebraic coherent sheaf on  V locally isomorphic to 0".
I f  the unmixedness theorem (Ungemischtheitssatz) holds in every local
ring of  V , then the restriction mapping

tr y  : Ha (V , F) Ha (U, F)

is  bijective for q<w' —1, and injective for q= w '-1.
Before proving this theorem we note the following

Corollary. L e t V  be a  non-singular variety (complete or not),
le t V ' be a  variety  and  le t T  be a regular birational transformation
f rom  V ' onto V .  Assvme th at V ' is com plete over V. T hen T*
H"(V)— >11" (V ')  is  injective f o r q<codim W, where W denotes
the fundam ental locus of  T - 1 .

Proof of the corollary. Put U=V—W, U' =V ' — T - '( W ). Then
U and U' correspond biregularly under T .  Identifying them, we
have tr y = (tr y ,)0T*. Therefore our assertion follows from the
propositionl".

For the proof o f Prop. 6. 1 we need a  theorem of de Rham
(de Rham  [1 ]). We formulate it in the following slightly gene-
ralized form, this generalization being necessary later in § 10.

1 5 ) The unmixedness theorem holds in  any regu lar local ring (Cohen). See
Akizuki-Nagata [ 1], pp. 138-139 or Nagata : "T h e  th eory  o f  m ultiplicity in  general
local rings" (Proc. Intern. Symp. Algebraic Num ber Theory, Tokyo-N ikko 1955),
where the question is discussed in detail.
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Theorem of de R h a m . Let R be a commutative ring and let M
be an R -m o d u le . Let y „  •••  y „  be elements o f R and M o , , M „ _ ,
be subgroups of M  satisfying the following conditions :

(1) Ei ydvli (0  < i<  n),
(2) m E M i , y ,m  =  0  >  m  0  ( 0  <  j < n )  ,
(3) m  E M i, Yirn E > m E

(1< i < n , 0  < j <n )  .

We make the convention M n  =  M .  For each q, 0, 1, ••• , n , let
now N , be the additive group of the exterior q -fo rm s in  n  in-
determinates X 1 , ••• , X „ with coefficients in M g . Thus an element
a  o f N g  can be expressed as

a E  M i i •••i a X i i A ••• A X i q  ( M U )  E ,
i i < •••< iq

and we have N o = M o . Put 0) = E y i X i . Then the exterior product
4+1

(̀ ) A a =  E  ( E A • • • A X 1 Q -H11 <• ••<io + 1

is well defined and belongs to N q + ,. Now d e  R h a m 's  theorem
asserts that, i f  a eN g , 0 < q < n  and if wAa---=0, then there exists
an element of N q 1 such that A /3.

The following proof differs little from de Rham 's and is given
here only for the sake o f completeness.

We proceed by induction on n ,  the case n = 1  being trivial.
First we treat the case q < n - 1 .  Put a =  a,+ a,A X„, co = (D i + y„X,,,
where the forms a „  a ,  and co, do not contain X „.  Then we have

(0A a = 0) 1 A a, +  (0), A ce2 + (— 1) a y,,a ,) A X„ -=  O.

Hence co, A a, 0 , (01 A a, +  —  l r y n ce, = O . S in c e  q < n - 1  there
exists, by the induction hypothesis, a (q -1)-f orm  )(3, in X „ ,X „_ ,
with coefficients in M, such that a, -= 0), A 3 , .  Therefore we have

(* ) co, A (a2 + (-1)5,,R i ) = 0 .

Here a 2 + (-1 )g y „ 3 1 i s  a  (q -1) -form in  X , ••• , X „_, with coeffi-
cients in M .  I f  q > 1 ,  the induction hypothesis (with n  and
M0, ••• , M„_, replaced by n - 1  and M i, ••• M ,,_ ,)  shows the existence
of a  (q -2 )- f o rm  3 2 in  X „  , X „ _ ,  with coefficients in M a _ , such
that (0, A a ,+ ( - 1 ) g y , : $ 1 .  Setting 0=-- ,8, + f32 A X , , ,  we have

( 0 A / 3 ' (0, A 3,- - A 3, A X n 4-(-1)q - 1 y„3, A X ,,

=  a l+  az  A Xn =  a  •
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I f  q  = 1 ,  then (* )  implies y ,(a2 — Y .R ,)=0 , hence a,— y n g i = O.
Therefore we have a  a l + a, A  Xn =  col A S i  Y.X. A Si -=  c f )  A  S i •

The case n - 1  requires another procedure. For simplicity, let
us introduce the following notation (of "adjoint" forms) :

*(X i i  A  • •• A X i p ) & (
1 2 • • •

p ) x 1 ,  A •• • A X. .1„_ p

where 
{ j }  is  the complementary set of {i} in  {1, ••• ,n }. Th en  an

(n -1 )- f o rm  a  and an (n-2)--from can be written as

E a i *X i  ( a i  E  M n_1 ) =  b i ; *(X, A X j ) ( b i j  G  M n_2) •

By easy calculations we have

w A  = ( y iai) X , A ••• A X n ,  W AR 7= E ( E  yibij)*X i

(b11 =0 , b i r i-bi i = 0). Therefore we have only to prove the follow-
ing statement :  i f  t h e  elements a i E M ,_ , satisfy E Yiai 0 ,  then
there exist elements k J  c Afn _, satisfying the relations b i i = 0, b 1 1 i-b j i

= 0 ,  a i = E  y i bi j . We prove this statement again by induction

on n. I f  n = 1 ,  then the hypothesis implies 0 and we can take
b11 = 0 .  Suppose n > 1 .  Since E yiai 0  implies ynan E  E Yim,,i<n
there exist elements b 3  M ,  (1 < j < n )  such that a = , E Y ibni •
Set= ki n  — b n j .  Then  w e have a„ y ; b „,, and the
preceding relation E y i a i = 0 is transformed into E y i (ai —y„b i n )= 0.

1

B y the induction hypothesis, there exist elements b1 3 (1 < i < n ,
1 < j < n )  such that bi i =0 , b 3 a n d  such that a i —
= E y h i .. Thus we have obtained all the required elements bi j ."

Using this theorem of de Rham we prove the following lemma,
which is a special case of the proposition (except that we need not
the assumption o f normality here).

L e m m . L e t V  be an a ff in e  variety with af f ine ring A . A ssum e
that the unmixedness theorem holds in A " ) .  Let f,, • • • , f be elements
o f  A  such that we have rank (fI, • •• , f i )A  i  (1 < i  < n ) ,  and  le t W
be th e  closed subset o f  V  (o f codim ension n) defined by the ideal
( f , , . . .  , f ) A .  Then Hq (V  —  W , 0)=0 f or q  + 0 ,  + n - 1 .

1 6 )  It is clear that the unmixedness theorem holds in A  if and only i f  it holds
in every quotient ring (local ring) of A.
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Proof o f the Lemma. Pu t U1 =  {PIP E V, f  ( P ) + 0}  for i =
1, 2 , ••• , n .  Then 11=  IL/11 i s  an affine covering o f  V— W , and
the affine ring of U1 is  A [1/f i ]. Let us calculate FP (U , 0 ) . Note
that we can identify r(U io ... i g , 0 )  with the affine ring A [1/ f1 0 , ••• ,
1If i j .  Let now a  be an alternating q-cocycle . Then for suffi-
ciently large integer t the functions F i o .,. i g -=( f i o •••f i g )fai o ... / q  belong

to A , and we have the relations (— O. Since

rank (f  ,  •  ,  f  r,) A -= rank (f „ ••• , f i )A =i and since the unmixedness
theorem holds in A , ( f i, • • • , f )A : f ) A  for 1< i < n .
Setting therefore R = A, M o -=-- M ,= ••• = M = = A  and y 1 =  ( 1 < i
< n )  in the theorem of de Rham, the (q+1)-form

a E  F i c ...i g  xi ( ) A • • •  A X i g
i o < •••< i,

satisfies co A a  0, and consequently there exists a q-form

iS = E G1 0 ...1 _1 X; A  • • • A X i q _ i 0

such that a) A le=  a, provided that q <n  — 1. I f  0 <q <n  — 1  and
if we set bi o •••i g _i = ( f i o  • • •  f i q _1) t G i o • • • i g _ i  then we obtain a (q —1)-
cochain b  such that d b = a .  This proves H(11, 0)=-- 0  ( 0 <q <n - 1 ) ,
whence follows the lemma.

Proof of Proposition 6. 1. Since two sections of 0  which
coincide at a point coincide everywhere, tr u  is  injective at q
Therefore the proposition is  trivial if We shall assume
that w '> 1 .  In  that case tr u  is  e v en  bijective, for a rational
function which is not regular at a  normal point P  o f V  would
admit a polar divisor passing through P.

Let 1.1= {Ui } be an affine covering o f  V and let IL/in Ul
be the (non-affine) open covering o f  U  induced by 11. Let 11' ,
{U'i }  be an affine refinement o f i t  T h e n  r(U  , r ( U i  n  U, F)
by what has just been remarked (substituting U1 fo r  V ) .  There-
fo re  w e have Hq(V , F) F)=H q(11, F), and the mapping
tr u  reduces again to the mapping Hq (U, .1-P (11' , F)=H q(U , F)
induced by the refinement of the covering, to which the method
o f § 3 applies.

We proceed by induction on q (w ' fixed). Let q <w ' —1, and
assume that the bijectivity of the restriction mappings is proved
for any q' < q  (and for any V and W  satisfying the conditions).
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Consider the spectral sequence {/,.R.1  of the double complex
C(11, F ) .  We choose 11 so fine that F  may be isomorphic to 0"
in each Ui . Now we contend that /I.` =0 fo r 0 < t < q .  Since 11'
induces on each W  an affine covering, we have

l I t  =  1--P(U10 —  W , F)

and our contention will be proved if we can prove TP(V ' — W , 0)=0
for an arbitrary affine open subset V ' o f V . L e t A  be the affine
ring of V' and let a be the ideal o f W  in A .  Then rank a> w'.
Therefore we can choose elements f i, ••• i f . ,  o f a  such  that
(f 1 ,  • • • , f  i )A  has rank i  (hence is unmixed) for 1 < i <  w ' .  Let W'
be the closed subset o f  V ' defined by f i = ••• O. T h e n

W n V', and the restriction mapping Ht(V  — W  , 0)— .1P(V '
— W ', 0) is bijective (though we need only the injectivity) by the
induction hypothesis. But TP(V ' — W ' , 0)=0 by the lemma. Hence
we have .1-P(IP — W  , 0)=0, and our assertion i r  = 0  ( 0 < t < q )  is
proved. It follows that tr y  : 114(V, 

F ) — H ( ,
 F )  is injective. I f

q<w ' — 1, then, using the injectivity just proved for dimension q,
we can repeat the same argument to prove In = o . From this
we see that tr u  is bijective for dimension q. Thus the proposition
is proved completely.

E x a m p l e s .  I f  V  is an affine plane and W  is a point, then it
is easy to see H I(U , 0 )* 0  (in fact, this module is isomorphic to
the quotient module k[x , y] mod k[x , y, 11 x]+k[x , y, 11 y], where x
and y are independent variables). Therefore tr u  is not surjective
for q =1(= w ' — 1) in this case.

I f  V  is  a non-singular projective variety and U is a proper
open subset o f V , then liv.v(V) ,  H".v(U) is not injective (see § 7).
If V is an abelian variety, then tr u  is not injective also on H".”(V)
for all p  since H "(V )=H P.° (V )•H "(V ).

§ 7. The class o f typ e  (y , y ) defined by a point.

L e t  V  be a  non-singular projective variety o f  dimension y,
and let P  be a  p o in t o f V . We now propose to attach to P  a
cohomology class o f V  of type (y, y). In  order to get a  natural
and useful definition, however, we can not confine ourselves to
the consideration of the single model V, contrary to the case of
divisors.
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Let be the quadratic transformation of V  with center P.
Put V '=T - 1 (V ) , E =T - '(P ) .  Then V ' is again non-singular and
E  is (isomorphic to) a projective space of dim ension v-1 (see
Zariski [1]). It is well known, and can be easily proved by the
consideration of local equations, that E -E =— H , where H  denotes
the linear class of hyperplanes of the projective space E .  There-
fore I (E  • • •  E )=(-1 ) '.

Since trE (c(E))=-- c(E •E)= — c(H), w e  have, b y  the cor. of
prop. 2. 3,

trE(c(E)v-1) c(H)v-1 0.

Hence, by the cor. of prop. 2. 2, we see that c(Er  I  0. On the
other hand, we know T * :  H "(V ) , H "(17 ') is  bijective. These
observations lead u s  to th e  following definition : c(P)=-

( - 1 ) '( T * ) - i(c(E)'). Since c(P) is not zero, it is a generator of
the 1-dimensional vector space I r." (V ) . Sometimes we shall write
cv  instead o f c(P), which is justified by the following

Proposition 7. 1. The class c(P) is independent of  the choice of
the point P on V.

Proof. First we remark that, i f  v = 1 ,  then T  is biregular
and the class c(P) as defined here coincides with the class attached
to the divisor P  in  § 2 . Therefore our assertion follows from prop.
2. 3 in this case. We proceed by induction on v. Let P  and Q
be two points of V. Assuming v > 2 ,  one can find a non-singular
prime divisor S  o f V  passing through both P  and V " .  B y  the
induction hypothesis, P  and Q  determine the same class cs  of S
o f typ e  (v -1 , v -1 ). We shall prove c(P)=c(Q) by showing the
following formula :

1 7 )  Let L  be the linear system cut out on V by the hypersurfaces of order three
passing through P  and Q .  Then L  defines the monoidal transformation of V  with
center w h ic h  w e  d e n o t e  b y  T o . Let S be the general member o f L .  Then P
and Q are simple points S, because L  contains divisors of the form C +C H -C ", where
C  (r e sp . C ') is  a  hyperplane section of V containing P  (resp. Q ) as a simple point
and not containing Q (resp. P ) and  C "  is  hyperplane section of V  passing through
neither P  nor Q .  On the other hand, the proper transform T ,[S J  is non-singular since
it is the general hyperplane section o f the non-singular variety To (  V ) .  But the bira-
tional correspondence between S and To [S ]  is biregular at each point of S  except at
P  and Q .  Therefore S  is non-singular. By the standard specialization argument,
almost all (k-rational) members of L are irreducible and non-singular and hence satisfy
our requirements.
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c (P )=  8 (cs),

where 8 has the same meaning as in prop. 2. 2.
Let T - 1  be, as above, the quadratic transformation of V with

center P, and set S '== T - 1 [ S ] .  Then T induces a regular birational
transformation T 1 : S'—>S, and T T ' is  the quadratic transforma-
tion of S with center P .  Setting E 1 = T T '(P ),  we have E,=-S'•E,
and hence c(E,)=-tr s i (c (E )). Moreover, since S' T 1 ( S )  holds
and since there is a divisor S, such that S—S, P ,  it holds

(c(S') c (E ))•c (E ) =  c (T - 1 (S1))•c(E ) = 0

by the cor. of prop. 2. 1. Hence we have, by prop. 2. 2,

T*(8(c s )) = 8 ,(T t (c s )).= 1)' c (E 1)' ) ( — 1) 2c (S ')c (E )'
= ( - 1 ) ° - 1 c(E)v T*c(P),

where 8, has the same meaning fo r V ' and S' as 8 has for V and
S .  It follows c ( P ) = ( c ) .  Similarly we have c(Q) 8 (cs), hence
c (P )= c (Q ) as wanted").

In the course of this proof we have incidentally proved the
following

Proposition 7. 2. L et D be a  non-singular prim e div isor of  V .

Then c v  =  8 (c  ,

where 8 has the same meaning as in prop. 2.2.
Remark. When V  reduces to a point, we make the conven-

tion c v =  1( E k=--- H " (V ) ) .  Then it is easy to see that this proposi-
tion holds also in the case v = 1.

Let us now introduce a  new definition. Let V  an d  W  be
non-singular projective varieties. W e shall denote by 8„,  w  the
isomorphism between the k-modules H ( W )  and Hy."( V ) which
maps c w  t o  c i,. Then the proposition above implies that 8 v.D
coincides with the connecting homomorphism obtained from the
Poincaré residue exact sequence. This and prop. 2. 2 show c(D )•a=
8 V.D(trDa) (a E 1/' - '. " '(V ) ) ,  a relation which will be generalized to
non-singular subvarieties o f any dimension in § 11.

Proposition 7. 3. L et U and  V  be non-singular projective varie-
ties. T hen it holds

1 8 ) For the geometric properties of quadratic transformations used in  this proof,
see Zariski [1], [2].
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C u xy= - C u  0  C y  .

P roof. The statemant of the proposition depends on the Min-
n e th  relation H*( Ux  V) =  H * (U )O H * (V ), which implies in  par-
ticular Hur" .."v (U x  V)=-- H "( U ) O ff" (  V ) .  N ow , if V  reduces to
a point, the proposition i s  trivial by our convention c v = 1 .  We
proceed by induction on v. Let D be a non-singular prime divisor
o f  V .  T h e n  th e  connecting hom om orphism  property shows
8 ux y. UxD = 1

®  y ,  .  It fo llow s from  th is and the induction hypo-
thesis that

C U X  V  =  8 U x  V, U x D (C U X D )  C U  8V ,D (C D ) CU CV •

Proposition 7. 4. L et D „••• , D  b e  k -d iv iso rs  on V , and let
I k (D „•••  a. T h e n  c(D 1) •-• c(D„) = a • c v .

Proof. W hen v 1 ,  this is nothing but a restatement of prop.
7. 1 (or prop. 2. 3). We proceed by induction on v. Assume v > 2 .
B y linearity , one can  assume D , i s  a prime divisor. T h e n  one
can find tw o non-singular prime divisor S i  ( i = 1 ,  2 )  such that
D 1 — S 1 —S 2

1 9 . A gain by linearity, therefore, one m ay assume D,
is non-singular. T hen w e have, b y  prop. 2. 2, b y  the induction
hypothesis and b y  prop. 7. 2,

c(D 1) ••• c(13,) v  D ,(c(D ,D 2) • c(D ,D i)) = v ,D ,(a • c  --=--- a •cv •

Proposition 7. 5. L e t T  b e  a  regular m apping f rom  a  non-
singular projective v ariety  V ' onto V  such  that [V ': V ]= n < 0 0 .
Then we have

T *(cv )=-n -cv ,.

A s a consequence, T * :H*(V )---.1 -1*(V ') i s  injectiv e if  and only  if
n  is not divisible by  the f ield characteristic 2 0 .

P ro o f . I f  T  is inseparable, then any v-fold differential form
o f V vanishes when considered as a form on  V '. In  fact, an y  v
functions x„ • • • , x„ of k (V ) cannot form a separating transcendental

19) This is well known, and follows from the fact that, if IC„,1 denotes the com-
plete linear system cut out on V  by the hypersurfaces of sufficiently high order m, the
complete linear system I C,„-1--D1 I is ample. (See Matsusaka 1_11)•

20) J. P. Serre constructed an interesting example in  his paper [6]. There k is
o f characteristic p, p>5; V ' is a non-singular surface in a projective 3-space (hence
h' ,°(V ')=h° ,1 (V 9 = 0 );  n=p, but T  is separable (V' is even unramified over V ) ; and
V  has the pathological property h 1 ," (V )= 0 + W (V )= - 1 .  In this example T *  is not
injective, not only on H 2 ,2 (V ), bu t also on H V (V ).
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base of k (V ') and hence their differentials in k (V ') are not linearly
independent over k( V'). Therefore T *  is zero on H " (  V) for any
q , and in particular T*(c v ) =0 .

Now assume T  is separable. Then for almost every point P
of V, T '( P )  consists o f exactly n  distinct points. Let P  be such
a point and let P '1 ,••• , P.„'  be the points of T - '(P ) .  Denote by
(o, ni) and by (o s , Ind the local rings of P  and P ',  respectively.
Then it is well known that we have ino i =rn i (see e.g. Abhyankar
[1]). It follows easily that, if S - 1  : V—. V, is the quadratic trans-
formation o f V  with center P  and if we denote by V', the graph
of the algebraic correspondence S - 1 . T  between V ' and V „ then
V', is the monoidal transform o f V ' with center T - 1 (P).-=-Pi+ •••
+P„'P .  L e t  u s  denote the projections V', V ' and V', V ,  b y  S'
and T , respectively, so that the following diagram is commutative :

SV ' '  
center P +• • •  +

T,

V
center P  

—V,

S et S - 1 (P)=E , S ' - 1 ( P ) =  .  Then T i- 1 ( E ) = E E 'l . Since the
prime divisors E are pairwise disjoint, w e have, by  the cor. of
prop. 2. 1 and by the definitions,

Si* T*(c v ) = T tS *(c v )  = ( -1 ) 1(c(E'i ) + • + c(E'„))v
= ( -1 )" - '(c(E',.)v + ••• + c(E',)')
= S'* (n • c v i) .

Since S '*  is injective, this proves the first assertion. The second
assertion follows from the first and from Lemma 1. 1.

A t this juncture, we note the following elementary
Proposition 7. 6. L e t V  be a normal variety (complete or not),

let K ' be an algebraic extension field of the function f ield k (V ) of V,
and let V ' be the normalization o f  V  in  K '.  I f  [V ' : V ](=[K ' :
k (V )]) is not div isible by  the field characteristic, then

T* :  Hq(V , 0) Ha (V' , v
, )

(where T  denotes the natural regular m apping f rom  V ' onto V ) is
injective for all  q.
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Proo f. Let 11 be an affine covering o f  V .  Then  T '(U ) is  an
affine covering o f  V '.  L e t  f = { f 1 0 . b e  a cocycle of Ov  with
respect to 11, and assume that f ,  considered as a cocycle of O v ,
with respect to  T - '11, is a coboundary : f = d g .  Then g 0 ... 1 0

an element of the affine ring A' 10 ...1 0 _1 o f  which is
the integral closure, in  K ',  of the normal affine ring A 10 ... 1

1/10 ... 1 0 _1 . Taking trace from K ' to k(V), we obtain a (q — 1)- cochain

SP(g) of O v  with reapect to U such that f  = d ( 1  Sp(g))(n=[V ' : V ]).
This proves our proposition.

§ 8 .  Projective space.

Let 1? be an r-dimensional projective space, and let be
a hyperplane of L.

Proposition 8. 1. I n  LT we have the follow ing exact sequences:

0 f I ( m )  0(m—p) (Pr ) S 2 Z - 4 (m) 0  ( 0  < p  <r) .
Proo f. Let x„ ••• , x r  be inhomogeneous coordinates of L, and

let P o and C be, respectively, the origin and the plane at infinity
with respect to the coordinate system (x). We shall identify (l(m)
with nP(m C). Let K  be the function field of L , and let G be the
constant sheaf on L  determined by the Grassmann algebra over
the vector space K X,+•••+K X r ,  where X „•••  ,X , are indeter-
minates. We denote by G(m, p) the subsheaf E o ,o(ox i , A  • • •  A X j r _p

tr
of G .  G(m, p) is isomorphic to 0 ( m ) .  P u t  = E x i X,, and denote

by G the left multiplication by 0 . Then  the sequence o f sheaves

o o ... o
(1) 0 > G(m— r, r) = 0(m— r) — > G(m— r +1, r—  1) ---> ---->

a ,..„ o o „_, , , o ,
G(m— p, p) —). lr (M — p ± 1, p-1) --). - - ) .  Cr M I, U ) -- >  U

is exact on L—P o . For, if P is a point of L with local coordinates
y1 , ••• , Yr(Y, = xi/x.(i 4- a), Ya-=1/x,), th e n  e = y ; 1 (EY1x1 - f-Xa,), and

yo, is  a  loca l equation o f  C  in  a  neighborhood o f  P ,  while
E yi X, + X,„ is  a  member o f a  basis o f th e  op-module Eopxi .
,$ a

Hence the sequence is exact at P.
Let 6) be a fl-fold differential form on L .  Expressing 0.) by

dx,,••• ,dx r  as
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=  E ••• dx i p  ,
i i <•••<, p

we define 41 .(0 )) by

* ( 6 ) )  =  E  f 1 1 . . .  p  * ( X 11 A ••• A X i p ) ,
i,<•••<i

d

where the star denotes the adjoint operator defined in
Let P  be, as above, a  p o in t o f L  with local

Yi, ••• , y r . . Let the expression of co in terms o f dy„ ••

co = E  g 1 , . . . i p d y i ,  • • • dyi p ") .
„<•••<, p

§ 6.
coordinates
• , d y , be

Then, using the relations dx 1 -=(11y )dy 1 —(x 1 l ( i l c f )  and
dx,,, =(— x osl y,„)dy,,, we have

(A) lgai2...ip =---  —  Y ;" x  a f 8iz• • •i p (12, • • • , jp +  a)
0=1

g11- 1p =- -- -Y ,; f  ii• • • i P ( i t  , . . .  , i p +  a)

Solving these equations in f ,  we obtain

(B) = —  313( Y og812•••1p)

f ii•••iP = gii- • • iP

Finally, if p > 2 , we have for 13 , ••• ,i p +ce

f ip +  a)

( i „  • • • , i p c e )  .

E  x s f o . i , • • . i p = = E xofc,8i 3 •••ipp=i t3T .

=  —  E  —  E  Ygdygy81 3 ... p
13 4 a -Ycv

y r 1 E  E  X8Xygyfif 3 ... ip + E.Yog.pi,•••i p13 4 64 7* 0 1 3

yhE 3... i p

g=1

From these relations, it follows that

E f ( m ) p  <>  all g 1 . .  G y" — op

Ian f i i ... i p  E  y2,'„- mop

E  x s f o i 2 ••• ip  E Ycé—  "'OP
0= 1

 1, k(w) e G(m — p,
t011r(co) E G (m —  p , p -1 )p  .

(C)

2 1 )  In the following calculations, the f ' s  and the g 's  are supposed to be alternat-
ing in the indices.
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The first and the last conditions are equivalent also when P  is
the origin P c,  (proof is trivial). Thus we have shown :

(2) Jr maps Q (m )  into G(m— p, p),
(3) +(12P(m)) coincides with the kernel of the homomorphism

G(m—p, p)—).G(m—p +1, p-1)1G(m—p, p-1)
induced by 0.
Moreover, 0 + (a )), 0  implies g o,i 2 ... i p  . 0  (for all i,, ••• , i)  (b y  (A)),
and conversely (by (A) and (C )) . This proves

(4) G(m —p, p)r\Ker
where SVP(m) denotes the subsheaf of f l (m )  consisting of the p-
forms which are independent of the differential dy o f the loca l
equation y c,  o f C  when expressed by dy„ ••• It m ay be
remarked that, by the convention n"(m)=-42 0 (m )= 0 (m ), (4 ) holds
also for p= O.
From (2) and (3) it follows

G(m - - A f r(S 2 P(m ))  O G (m — p, P)/EG(m — — 1) n OG(m—  13,
Since G(m— p, p)1 ,0s2P(m)) is  zero outside C, we may henceforth
confine ourselves to L — P ,,. Then, by (1) and (4), we have

OG(m— p, p) G(m— p +1, p—i)r\ Ker 0 =11p(12/P - ')(0 )

G(m— p, p - 1)r\ OG(m—p, p) = G(m— p, p— 1) r\ Ker 0
= qr(S-2'P- 1 (m -1 )) .

Therefore

G(m — p, Ifr(D P (m)) + (f r P - 1 (m))1+(n' P - 1 (m - 1))
1(01 f2/P - 1 (m - 1) f 2 r  (In) .

This proves our proposition.
The exact sequences o f this proposition, together with Serre

duality, enable us to compute dim II' (I,r , fl(m)) rapidly, as we shall
show in the next proposition.

Proposition 8. 2. W e have
(0< p< r),

(m + r— p (m — i)
r — p  A  p

(—m+py—m—i)
P A r —p  )

in  all o ther cases.

(1)

(2)

(3)

(4)

dim HP(Lr n") = 1

dim Ir(L r  f 2 P (M)) -=

dim H '  (L ' , n P (M)) =

H q (L r  ( 2 P (M ))= 0

(m>P),

(p—r>m),
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Proof. We begin with the case p = - 0 .  It is easy to see that the
elements o f H ° (L r  0 (0 )  (m > 0 ) are in one-to-one cotrespondence
with the forms o f  degree m  in  th e  homogeneous coordinates.
Hence

dim H°(Lr ,0(m)) r+ r ) ( m >  0), =  0(m  < 0) .

By Serre duality and by  the fact that a canonical divisor o f L r

is —r— 1 times hyperplane, we obtain
dim H r , (Lr , 0 (0 ) =  dim H°(Lr r( m)) = dim H ° (L r  0 ( —  n2—  r —1))

= ( — m
r

- 1 ) (— r>m ) , =0  (otherwise). Ha(Lr, 0(m ))= 0 ( 0 < q < r)

can be proved by the method used in the proof of the lemma of
§ 6, i.e. essentially by the theorem o f d e  Rham (cf. Serre [2 ]
No. 7 8 ) . Thus (1)—(4) hold for p=o, and, by  Serre duality, for
p , r .

Therefore our proposition holds for r = 0, 1 .  We proceed by
induction on r ,  assuming henceforth that r> 2 .

Since H q (L r  , 0( — p)>=0 (o<p<r, o<p<r) by what was
already proved, th e  preceding proposition shows HP (Lr , (2,P)

nP - 1). This and the induction hypothesis prove (1).
Next we prove Hg(Lr, f2P(m)) ,  ( 0 < q < r ,  m + 0). I f  q> 1,

or if q =1  and m < p ,  then Hq 1(Lr - 1 , f2P - '(m ) )=0  by the induction
hypothesis. Since also H q (L r  , 0(m— p) ) = 0  holds, the preceding
proposition shows Hq(Lr, S2P(m)) ,  0. T h e remaining case (q =1
and m >p )  can be settled by Serre duality.

Now (2) follows from the exact sequence

0 H °(L r, f (m )) H°(Lr, 0(m— p)) ( ;)

H°(Lr - 1 , nP - 1 (m)) 0
by a  straightforward calculation. (3) is proved similarly (or can
be reduced to (2) by Serre duality). Thus our proof is completed.
Remark 1. When p = r, the exact sequence of prop. 8. 1 is nothing
but the exact sequence of the Poincaré residue.
Remark 2. Prop. 8. 2 is, of course, not new (see Hirzebruch [1]).
Remark 3. From h "  = " ( p ,  q < r )  it fo llow s that H * (Lr ) is
generated by c(C), C being the linear equivalence class o f hyper-
planes, and is isomorphic to k [X ]/ (X ') ,  where k [X ] is a polynomial
ring of one variable. In particular, the classes of H *(L ) are
invariant under the projective transformations of L.
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§ 9. Projective bundles.

Let V ' b e  a non-singular variety, and let E  be an algebraic
bundle, with base V, fibre L r  and structure group G P ( r) .  Accord-
ing to a  recent theorem o f Grothendieck"), the bundle structure
o f E  can be derived from a bundle with structure group GL (r+1).
In other words E  can be considered as the "projective realization"
o f  a  vector bundle. L e t  7 r: E—> V b e  the projection, and let
11= {U„} be a sufficiently fine affine covering o f  V . Then n- - '( U )
—U0, X L r  and we can introduce homogeneous coordinates Yo., Yi,,
•• ' Y r „ in each 7-c- 1 (U„) in such a way that we have

pY i . =  e ( x ) Y i s  ( p :  constant of proportionality)0
over x E r\ Uo ,  where the g 's  are regular functions on Ua n
such that the matrices Ga°-=-- (g 1 )  satisfy the usual cocycle condi-
tions. Denote by U, a  the affine open subset o f 7T- 1 (U ,) defined by
Y d = 0 .  Put f „ = --- E Yh o l Y i a ). Then the f ' s  define a  line

h

bundle over E ,  hence a  divisor class D , o f E ." )  D , is uniquely
determined by the bundle structure of E .  I f  resticted to 7r- i( U„),
it is nothing but the class o f  U„,>(C in the product representation
o f z '( U ,) ,  where C  denotes the class o f hyperplanes o f L.

Now it is easy to see that H q (71- 1 (U0), f2 P )= 1:(Ucé, nr)c(D0) 0

-,7r*H°(U., 12 0)c(D0)4  . For, the Künneth relation and prop. 8.2
show

H q (U .x  L , P) E H°(U., f2V 1 ) H g ( L ,

= H°(11„„ f27,',7q) Hq(L , S219 H °(U .„ f 2r) c(C )q ,

and c(Do )  corresponds to 1 Ø  c(C).
Let 11! be an affine refinement of 71-'11, and consider the spectral

sequence V 7 1  o f  C(n- - '11, 11', 12) (11= E f2P). A  representative

cocycle o f c(D0)  can be considered as a d- cocycle 7  of C " , that is,
an element 7  of Z " .  Then we have

22) Grothendieck [1 ] ,  Proposition 3. 4. 1. W e  d o  n ot use this theorem  in the
sequel, since the fact asserted by the theorem is evident for the particular cases which
we encounter.

23) Here we summarized a  part o f Washnitzer's lucid exposition in his paper [1],
to  w h ich  th e reader is  refferred fo r  a  d e ta il. But, since the correspondence between
line bundles and divisor classes given in  his paper, d iffers  by  s ign  from  ours which
is  the usual one, our f ,

i s  h i s  fu t,,0
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(2 ).7" (r > n)

( O( n  >  r) .

Hence follows P -=  / V •7 ". Thus we find ourselves in the situa-
tion described at the end of § 3, so that the spectral sequence
{/3 } is  triv ia l : - -=/ 2 . From this one can easily conclude the
following

Proposition 9. 1. Let V , E, 7r, Do b e  as  above. T hen w e have

H ' 0 (E) --=: 7r*H"--- " - '( V )•c(Do )i (direct sum).

Moreover, H*(V )--).7r*H*(V )•c(D 0) i  i s  bijectiv e for i < r .  In  other
words 7r* is  injective and 1, c(Do ), ••• ,c(Do r  are linearly independent
over 7r*H*(V ), while 1, c(D0), ••• ,c(Do )a r e  n o t .

From this proposition follows h"(E)=-- h"— ."- '( V ), in parti-,=0
cular hP.°(E)=-- h"(V ), le.g(E). he) . q (V ) .  I f  V has the property that

for all (p, q), then E  enjoys the same property.
I f  V is projective, then also E  is projective, as was proved by

Washnitzer. In fact, it is not difficult to verify that the complete
linear system I Do +1 -1„,1, where Hm  denotes the inverse image,
under 7r, of the linear system cut out on V by the hypersurfaces
of sufficiently high order m, satisfies the conditions of an ample
linear system given in Weil [2] 2 4 ).

Proposition 9. 2. I f  V  is projective, then w e have

c =  c(Do r • 7r*(c v ) .

Proo f. Let P  be a point of V and let be the quadratic
transformation of V with center P .  Set T 1(V )=V ', T - '(P)=-D „
and let E ' be the induced bundle T 'E  over V '.  Denote by T '
and b y  7 r ,  induced map E' --->E  and the projection E '  V'
respectively.

T'
E E '

V <  V'

Let Up be a sufficiently small neighborhood of P .  Put D;=7r/ - 1 (D,),

2 4 )  As regards these conditions, see also Nakai-Nagata [1],  p. 166, Th. 6.32.
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M ., --- T - 1 (D0). Then I :  and IX =  T - i(U p)x C  in a product
representation z ' - '( T - 1 (Up))---=7 - 1 (Up)x

 L .
 S in c e  D;, is contained

in 7r/ - 1 (T - 1 (Up)) and since RD,— D1)=- -- ( - 1 ) ' ,  we have
••• IX •Eq••• D3 - = - ( - 1 ) ' .  Therefore it follows from the de-
r y

finition of c v  and from prop. 7. 4 that

T'*(c(Do )r•z*(c v ))=---- c(D 0r(-1)''c(D 3"  

This proves the proposition since T '*  is injective.
This proposition provides us a second proof (for the case when

V  is projective) of the fact that H *(V )--.7r*H *(V )•c(a)i (i<r)
are bijective.

§ 1 0 .  Non - s in g u la r  m ono ida l transformations.

Let V ' be a non-singular variety, and let W be a non-singular
subvariety o f V o f cod im ension  w '> 1 . Let T - 1  b e  the monoidal
transformation (sometimes called dilatation) of V with center W.
(Such a monoidal transformation will be called non-singular.) Put

7- '( W)=-- E .  Then E  is a projective bundle with base
W  and fibre L w 1 ,  a s  we shall show presently. W e  sh a ll in -
vestigate the structure of H*(V ') by reducing the problem to that
o f E.

First we treat the problem locally. Let P  be a point of W.
Since P  is simple on W , the prime ideal o f  W  in the local ring
op of P on V is generated by w ' elements, say x „  , x „ ,/ , and one
can complete them to a regular system o f parameters {x„ ••• , x,,,,
••• , x„}  o f o p . Let U  be an affine neighborhood of P  with affine
ring A .  Taking U  sufficiently small, one may assume

a) x i EA  ( 1 <i<v ) ,
b) {x 1 , ...,x,} is a local coordinate system in U  (i.e. lx,—x i (Q),

••• , x y — x„(Q)}  is a  regular system of parameters o f  oo  at each
point Q o f U),

c) ( x „ • • •  x„, , )A =1) is the prime ideal o f  W  in A.

Then 1 - 1 (U )  is covered by w' affines U  ( 1 < i < w i )  with affine
rings ••• x w qx ,]. P u t  t ,  = x i lx , t1 =--x i .
Then {t ,,, ••• , x „,,, •••  ,x ,}  is a local coordinate system in
and t„(z=r x i )--=-, 0  is  a local equation o f E  in  V .  The local ring
op----(A;) x i A ii of E on V' is the valution ring of the in w -ad ic valuation
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vE ( )  o f k (V ), where (o m1 ,) is the local ring of W  on V. Let
trE (t i i )  be the image of t i i  i n  k(E) ,  oE /mE =  (the quotient

field of AW x i A ) .  k ( E )  contains k( W) ,  (the quotient field of A/p)
as a subfield, and u, i • • • ••• u ,„ i i  are algebraically independent
over k( W ) .  L e t  X , b e  a n  indeterminate over k (E ) , and put

1 1 X ,  (2 < i< w ') .  Then /if , =  Xi /Xi for j +  i. Since the affine
ring of E n  U , is A; I x ,A ;= (A / ) [u 11 , • • • , ii , •• uw /1], i =1, • , w ',
we see that E n T - 1 (U) is the product variety (W n U)x  I t '  where
L w 1 i s  the projective space with th e homogenepus coordinates
X„ ••• , Xt„,.

I f  {y„ ••• , y,} is another set o f generators o f p , then there
exist functions g o  c A  and f d  E A  such that

y , =  E  g d x ;  , x i  E  f a y ;  .

Since the images of y 1 ,  • • •  , y „ , /  in m0 / inL are linearly independent
over oQ/mQ for each QE U r W , th e  regular functions in-
duced on W n U  by g o  a re  uniquely determined. For a  similar
reason, we have (g")(7 0 ,) = the unit matrix. Let u  and ( Y )  (
• •• with Y„=--  X „ have the same meanings for (y) as 111 , and
(X ) have for (x). Then

=  tr ,(y i /y,)X,

trE(xi/Y1) trE(Yi/x1)X1
=  tr E (x i /y,) E .

Thus the homogeneous coordinate system (X ) and ( Y ) are related
by the projective transformation induced by the linear transforma-
tion ( ) E G L (u /) . Evidently, this local observation brings the
global conclusion that E  is a projective bundle with base W  and
fibre i t ' ,  and that the bundle structure is induced by a bundle
structure with group G L (w '). Moreover, it is easy to see, by
inducing o n  E  th e  line bundle defined by E  ove r  V ',  that
E. E = —Do ,  where the divisor class Do on  E  is defined as in § 9.

Resticting our consideration again to T - '( U ), we denote by
f2p (m E ) the subsheaf o f S2P(mE) consisting of the p-forms which,
when expressed by dx „ ••• ,dx ,„ contain only dx „ ••• , dx „,,. Then
we can write

flP(mE) s2p,(mE)dx1, • • • dx f p _p ,  .
i < •  •  •<J1,_pe
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Further, we denote by f2p ,,(mD o )  the subsheaf of 12(mD0 ) consist-
ing of the forms which contain only the differentials of the local
coordinates of L  in the product representation Er\ 7 -  l( U)-= U x L
given above.

Proposition 10. 1. I n  T - '( U )  w e have the f ollow ing ex act se-
quences.

(0 f2p (mE)—> 0((m+ M E ) "  — >f 2  E ( — mDo) - - -> 0  (0  <  <
Proo f. Let (0--= E f ;  . . . ;  dx ;  •••d x f p  be a p-form on V'p

and let P ' be a point of U',. Let the expression of co in  terms
of dt, i , — (tji = x i l x i  ( i+ j ) ,  t i i = x 1)  be

E dt11i •••
i i< • • • < jp

Then an easy calculation shows

g 1 1 2 , , , 1p x 2  E x k f k i 2 . • • i p
k= i

p X2 ; f i r  . . i p

(1 2 , • • • j,, =1=

( 1  •  •  •  )  i p  d=

f i j 2 . . . j p  -=--- x i P ( -  k
'

. . t k i g k j 2 . . . j p + X 1 g 1 1 2 , . . i p ) (12 , • • • , j p +  i){

f ; , . . . , , ,  = - x , Pg f i ... i p ( i i ,  • • • , j , ,  1 = 1 . )
,,,l I l l '

and E  x k f k i f 3 .• • ip P E  t k i g k i i , . . . . i p ( P >  2 ) .
1, - 1k - - - 1

Consequently we have

a) ES-2,
P  (mE)

i
,/  < 

This conclusion, in which the subscript i  plays no particular role,
holds for any point P ' o f T - '( U ) .  Now we may omit the rest of
the proof, since it is entirely similar to that of prop. 8. 1.

Next we must determine H q ('(U ) , 0 (m E )) .
Proposition 10. 2. W ith the sam e notations as above, we have

Hq(T - 1 (U), 0(m E))=-- 0 f o r (0  <q  <w ' — 1 , an y  m )
an d  f o r (q w ' — 1 , m <u 1 ) ,

H°(7 - 1 (U), 0(m E)) I-P(U , v ) =-- A (m >  0)

t m( m <  0) .

For the proof we need the following

E 0(M - +- P)p'

E E C(n +P - 2 )p,
k=1
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Lemma. L e t t  be an  arbitrary  but f ixed natural num ber, and
put

q1 =-- (x f ,••• ,x )A  , Pi( x , , • • •  ,  x i )A (1 < i  < 0 .

Then qi  i s  a prim ary  ideal belonging to pi . Moreover, we have for
i< i< w '

(k > t)
and qi (0  <  k  <t) .

Proof of the lemma. By the condition b )  imposed on  U  at
the beginning, x„ ••• , x i  are a part of a regular system of para-
meters of Do  for every point Q of U satisfying x l (Q)=- -- • • • x i (Q)=- O.
This implies that p i A m  i s  a prim e ideal o f  rank i  for every
maximal ideal n i  o f A  containing pi . Therefore pi i s  a prime
ideal o f rank i. But p 1 > i 1 O7 for large n. Consequently rank
q. =  rank  p i = i ,  and pi is  the only minimal prime of qi . On the
other hand, the unm ixedness theorem holds in the affine ring A
o f  U  since U  is non-singular. Therefore qi h a s  no  associated
primes other than pi . This proves our first assertion. It follows
qi : x4 1 =q 1 ,  so that q i pkj  : x , = q i  ( 0 < k < t )  is trivial. I n  order
to settle the remaining case k > t ,  we shall prove

(1) q i  p k i +t = q i pki  a n d  (2) Ol±t: x 1 = p ii  fo r  k > 0 .  Then it
will follow

(LP,: x f+ ,- - - (q in W t ) : x 4 i (q i: x, 1) r (P k» : x ; 1)

for k > t .  Our proofs o f  (1) and (2 ) are modelled on  Zariski's
proof in his paper Pa
Proof o f (1 ) :  we proceed by induction on k , the case k = 0  being
trivial. Let us assume qi npkyi - i =cl i piy'. Let f e  gi n p r .  Then,
b y  the induction hypothesis, f  belongs to T h e r e f o r e  w e
can write

f  E a,M, (a, E A ),

where /14.,  are the power products o f x„ ••• , x1 o f  degree k +t - 1
in  which at least one o f x„ ••• ,x 1 appears with exponent > t .
Set Al)i = o ,  p i o = n i .  Them (o , ni) is  a  regular local ring, and
{x„ ••• , x i }  is a regular system of parameters o f o . By a basic pro-
perty of the regular local rings, therefore, f  E pkj -k< iiik + t
implies that all the coefficients a, belong to in, hence to n irv A = p i.
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Consequently f  E q,pki . Also the proof of (2) is easy by a  similar
method (induction on k).

Proof of the proposition.
The case q = O. Let f  E H°(7- 1 (U ), 0(m E )). The rational func-

tion f  has no pole in 7- 1 (U) except possibly at E .  Hence it has no
pole in U, so that it is regular everywhere in U (and consequently
in 7- 1 (U )) . Therefore f  E A .  If n 2 =-m '<0 , then f  E  r / Allr\A=p - '
(this last equality is known an d  can be proved by the same
method as used in the proof of the lemma).

T he case q > 0 .  W e  u se  th e  affine covering {U;} i‹i‹„, ,  o f
T ( U ) .  T h en  [ (V o ... 0(mE))-=. xTo

n 'A [x ilx ,,,•••  ,
x„,,lx, q ]. Let f = { f1 0 .. ,,}  b e  a n  alternating cocycle o f  0(mE)
with respect to the covering. Each f  0 ,  is a  homogeneous function
in  x„  ••• , x , o f  degree - m  with coefficients in A .  Taking a
sufficiently large integer t  (w e assume, in particular, t › m ) ,  and
setting Fi g ... g =  (xi ° ,  • • ,

 1 f i o . . .  ,  w e  have F ( 1 ) E p"g+i) - -  and
,,+, ,  O . Now, the lemma above implies, among-0

others, the following :  setting R =A , M =A , n =w ',  y i = x  ( k < i
< w '), and M o -=A , (1< i< w ') ,  the assumptions of the
theorem of de Rham given in §6 are satisfied. It follows easily that
f  is a  coboundary provided that 1< q < w / - 2 .  On the other hand,
if  q = w '- 1  and m <w ',  then Ptw'-m -= (x, • • • m
since ( t - 1 ) w '< t w '- m .  This implies that f  is a  coboundary also
in this c a se . Thus our proof is completed.

Now put m  - 1  in prop. 10 . 1 . Then, if p > 1 , the associated
cohomology sequence shows H q(T '(U ), r2 p (- E ) ) = 0  ( q > 0 ) ,  since
H q ( T '( U ) ,  0 ( - E ) ) =0  ( q >0 )  by prop. 10.2 a n d  H q (T '(U )n E ,
n

p-i,E(Do))
=-1P (U ,  0 )®  ilq (L , n r(C ) )=0  (q> o , p > 1 )  b y  prop.

8.2. W h e n  p = i ,  a  similar consideration show s 1-1q(7- 1 (U),
21 (— E))=0 for q > 1 .  For q = 1 , we obtain the following exact

sequence :

H °(7-- t(U), H ° ( 7 - ' ( U ) ,  O r
- ->H ° (7 - 1 (U )r\E ,O E (D0 )) — >11 -1 (T - 1 (U), s21(—E)) —  0 .

It is not difficult to see that the mapping which is denoted here
b y  q ) is  surjective. For that purpose, le t  u s  recall that f p is
induced by the surjective homomorphism of sheaves
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Ow
'  D ( f , • , fa. , ) *  x i f, E 0 (-E )

followed by the isomorphism

0 (- E )1 0 (-2 E ) =  E( —  E• E) -= 0 E(D0) . (See p. 69 and p. 63).

T h e  m apping H°(7- '( U ), Ow') =- Aw ' ( f i  • • • E x i f i

H°(T - 1 (U ),  0 (-E )) is evidently surjective, and also the map-
p ing 1-1'( 7- 1 (U), O (-E ))  H ° (T - 1 (U), O E (D ))) i s  surjective since
H IT - 1 (U), 0 (-2 E ))=  0. Therefore cp, which is the composition
o f  these two mappings, is surjective. Consequently we have
Hi(T - '( U), (2 ,( -E ))= 0 . T h u s  w e  have seen FP (T - 1 (U )  f 1 ( - E ) )
= 0  for all q> 0 and for all p > 0 . It follows LP ( T - 1 (U), E ) )  =
(q> 0 , p>o).

Consider now the following well known exact sequences (of
Kodaira-Spencer) :

0 -> (2."P ->12P 0
0 & ( - E )  12'P E-  - E • E 0.

T h e  result above, combined with Ha (T - 1 (U) nr1( - E• E))

114 (( U  AW )x D7'(W x C))= H °(U  W , 1 -21„) ®Hq(L,-0
n r - s(C))= 0 ( q > 0 ) , shows Hq (T - l( U ), fl") ==O for q > 0 . Hence

Proposition 10. 3. The mappings

tr E : Hq(7' - '( U), SY) H q(T '(U )r\E , 121)
are bijective for q> 0 .

Now we are prepared for the global study. Let 11= {U,} be
a  sufficiently fine affine covering o f V , and let 11' be an affine
refinement of 7 '1 1 .  Besides the double complex C= C(7 - 1 11, 11', S2),
we consider another, C(E)=--- C(T - '11, nE ). L e t  U 7 '1  and
{/7."(E)} be the associated spectral sequences. The homomorphism
tr, : - >  s-2, induces homomorphisms C-->C(E), --->/ r (E )  which
commute with the differential operators d , dr . Now, prop. 10. 3
im plies that IT' n  —> IT' n (E )  is  b ijec tive  fo r  n > 0 .  Then, also

- ,-/T.n(E) is  bijective for n > 0  since d, does not change the
complementary degree, and Pr —> IT' n (E )  is  bijective for n > 1
since d, diminishes the complementary degree by one, and so on.

From now on, we suppose that T* : H*(V)-> H*(171)  is injective
(which we could prove only in the case when V  is  projective).
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Then dr  : Pr r 'r - 1  > 17.° is zero for any r > 2 .  Then same holds for
I r (E), as was seen in the preceding section. Therefore P,."."-->I7'n(E)
is bijective for n > 0  and for all r. But the spectral sequence
{/r (E )} was trivial. Hence also { I r } is trivial : / 2 .  On the
other hand we have Irn=.1 -7."(E)=E HP.m (W ) 0<n<w ' — 1), =0

(n>w /) , and /T.° --,-- Hm( V, f2). I f  we replace f2P for SI, we obtain
TT  ( 0 < n < u / - 1 ) ,  = 0  (n>w '), and Pr=H m (V , 12P).
Thus we have proved the following proposition.

Proposition 10. 4. Let :V  — > V ' be a  non-singular monoidal
transformation with center W , and let w ' =codim  W .  Then, assum-
ing that T* :H*(V )— >H*(V ') is injective, we have

h " ( V ')  =  " ( V ) + E
Remark 1. In  fact, w e  have obtained a  little more than this
formula. Among other things we have

Kernel o f  {trE  : 11*(V/)-->11*(E)} -= T*[K ernel o f  Itr w  : H*(V)
-->H*(W )}].
Remark 2. As a special case of this proposition, we have le.q(V')
=le .q (V ). More precisely, T*:Hq(V , 0)-->Ha(V ', 0,, , )  is bijective
for all q. This result, which generalizes one of the main results
o f M uh ly-Z arisk i [1 ] concerning th e  arithmetic genera o f  non-
singular projective varieties, is of course a direct consequence of
our prop. 10. 2 and Serre [ 2 ]  No. 29 prop. 5 , and so we need for
its proof neither the spectral sequences nor the assumption that
T *  is  injective. It may be remarked that, i f  v  = 2  (and hence
W ---= a  point), TP(7- 1 (U ) , 0 )=0  becomes almost trivial b y  the
simple fact A [t , 1 t] = A M +  A[11 a
Remark 3. The vanishing of Hq (T'(U), Ov )  for q > 0  (prop. 10. 2)
implies, not only the b ije c t iv ity  o f  T* :Hq(V, 0)—>Hq(V', O s,')
which was just remarked, but also the b ijectiv ity  of

T* :  Hq (V, 2(D)) [VW' , 2(T 1 (D)))

fo r  any divisor D  o f  V .  Similar invariance theorems hold also
for Witt vectors. Let W  1 ,17, )  be the sheaf of the germs
of regular Witt vectors o f length n  on V  (resp . on V') (cf. Serre
[6 ]). From  th e  ex a c t sequences 0 —> W', —> 0  it
follows, by induction on n ,  that Ha( 7- 1 (U), W ) = 0  f o r  q> 0 .
On the other hand, w e have T W ,',=W „ since M  and W „ are
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isomorphic to (Ow)" and (Ou)" respectively as far as the structure of
sheaves of sets is concerned. Hence we have natural isomorphisms

T* : Hq (V , W n) - - ÷  Ha (V' ,

for any q and n. Taking the projective limit with respect to n,
we obtain Hq(V, W').

§ 1 1 .  Th e class o f ty p e  (iv', iv') defined by a  non-singular sub-
variety o f  condimension

Let V ' be a  non-singular projective variety, and let W be a
non-singular subvariety of V of codimension w'. Let 7 - 1  be the
monoidal transformation of V with center W, and let T - 1 (V) =  V',
T - 1 (W )= E .  Then c (E r  E Hw'''' (V'). Using the direct decomposi-
tion Hui l 'w/(V/) ,  T* H w'''' (V) + 111'.' obtained in §5, we define a
class c( W ) of V of type (w ', w ') by the following formula : c (E r
== (— 1)""  * (c( W)) + m, m E Mw w '. I d e n t i f y in g  H*( V) with
T* H*(V), we can characterize the element c( W ) in H w "(V ) by
th e  following property : c ( E r  ( — 1)w ' c( W ) is  orthogonal to
H " (  V), where w=v— dim W . Another characterization is
given by the following

Pil oposition 11. 1. Let a b e  a  cohomology class o f  V  o f  type
(w , w ). Then

c( W)• a = 8 v , w (tr w (a)) .

P roo f. L e t T , V ', E  be as above, and let 7r : W be the
projection of the projective bundle E, namely the regular mapping
of E induced by T :  V ' V .  It is easy to see n-*(tr w a) = trE (T*a).
Put tr w a =  a- c w , a E k. Then we have

T*(c(W) a)
( -1 y - -  c(E)"" T*a (by the definition)

= 8 „ ,E (c(E• tr, T * a )  (by prop. 2.2 & 7. 2)
= (— 1)w' c((— 1)w ' c (D ' 7V*(tr w“))
=  8  E(c(Do) 7V*(a. cw))
=  8 17, ,E(a• cE) (by prop. 9. 2)
=-- a c v '

Hence c( W) • ce, a• c v =8 v , w (ac v w (tr w  a).
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Corollary 1.

(1) tr w a — 0 > c( W)•a =0 f o r a E Ilw.w(V),
(2) tr w a — 0  c( W)• a = 0 f o r any  a E H *(V ).

Proof. (1 ) is  an  immediate consequence of the proposition,
while (1) follows from (1) as in the cor. of Prop. 2. 2.

Corollary 2. I f  tr w : H*(V) H * (W ) is  surjective, then
tr w  =  0   c( W )•  =  0

holds f o r any  a e H*(V).
Proo f. If tr w a  0 ,  then, by Serre duality applied to W, one

can find 0E H *(V ) such that tr w (a /e) E H "( W ), tr w (a0)  I  O. B y
Cor. 1 we have c( W) a0+ 0, hence c( W) a+0.

As an application of Cor. 2, we have the following
Praposition 11. 2. L e t  V  a n d  V ' be non-singular projective

v arieties. L e t  T  be a  regular m apping f rom  V ' into V and let r
b e  i t s  g rap h . T h en  t h e  homomorphism T* :H*(V)—>H*(V') is
determined completely by the class c(r) E H""(1/' xV) o f  r.

P roo f. W e  h a v e  H*(V' x V) ,  H *(V ')O H *(V ) be Kiinneth
relation, and the biregularity of the correspondence between V'
and r implies that every class of H*(1') is of the form tr,(7 ® 1),
y E H *(V '). On the other hand, if a E H *(V ) a n d  E H*(17'), then
T * (a) =- 3  is equivalent to tr,(1 a—  /3 01) = . A p p ly in g  the
Cor. 2, we see that th e  last condition is equivalent to c(1- ')• (1 ®
a—(30 1) ,  O.

More precisely, we can prove directly the following

Proposition 11. 2 bis. L e t  IP . q)  (1< i<hP .q (V ))} a n d  V I" '
(1< i< h P .q (V ')} b e  bases o f  the  k-modules HP.q(V) and  HP.q(F)
respectively, and let

T * P . q )  

w ith dini .q) E k. L et (7, v - P 'v - g )  be the dual basis o f  W - P." - a(V) defined
by

q )  • 99 Z - P . v -  q )  =  8i.-cv•
Tnen we have

c(r) ' (-1)P+ 7 E P.,•") g - •
p --o  9= 0
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Proof. B y  K i i n n e t h  relation , g?.q) P'v-q) (0 <p  -<v,
0<q<v, i<i<hP i <i<hP g(vi)) constitu te a  b a s is  of
Hv 3" (V ' V ) . Therefore we can write

c(r) E E 01, q)  gjP. a) 0 (pP'œn'v - g)
p = o  q =0 j j

w ith  kV) E k. N ow, put p/ =vi —p, q' = v ' —  q, a n d  le t  f q r? " ' )

( 1 < j < h P . a(V '))}  be the dual basis of H P " i ( V ')  defined by

Then

c(r) (*JP"") O f " ) )
by ,i , 0) (0  •  a) (S) P*V"-"q))(1/6P', a ' ) O f1P.q ))

1) 7 / (P + q )V r ) e i P..7 )1piP / , q' ) f iP .q ) (e -P • V -  P)

(- 1 )V '
 ( P - q ) ( v

i 'q ) C V Ø c,

= ( - 1)v ' ( P ± q ) k Pi' g ) Cifix y .

On the other hand, we have

c(r) • (* ( P ' ' a ' ) & W . ' )  =  8  v,  x v ,r(trrevPiP' ® f PQ)))

=  8  x  v  ,r(tr r(a`ini g ) * (i i i  'q "  ei P 'q )  0 1 ) )
=  (— WY - E g g '  O r 8  x  v .r(trr(v  v ,  0 1 ) )

(-1 )v i ( P+q) +P+a v

It follows 
b

v ) , and the proof is completed.
Remark. W ith the same notations as above, le t  V'--- V, and let A
b e  the diagonal of V x  V . I f  w e replace f " )  with (pP3q) in the
proposition, th e n  w e  m ust use (-1)(v+ 1" + q ) f r - P3v- 7 )  in place of
(pr ' ' '" - q) s in c e  q).P. q) =  ( - 1 ) ( v + 1"± q) f  q )  q) P 3  q). Thus
we obtain

c(A ) E  E  - 1 ) " ` P + q )  E , f , P•q) O f v - " - q ) .
p = o  q

Let T  be a regular mapping from V  into itself with graph r, such
that

T * E e i g ) f , P . q ) .

Denote the square matrices (e j  q) ) by A(p, q). Then it follows
from the proposition that
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c(A).c(r) { E  E  (-1 )P - Fq Sp A(p, q)}
.P= 0  q=c1

In the classical case, where c(A) c(1') =/(A •1 ')•c y „ y , this formula
is nothing but the fixed point formula of Lefschetz. In the case
o f characteristic p ,  one is led to the following problem : to find a
cohomology ring of characteristic zero in which the geometric
properties considered in the present note remain valid so that the
Lefschetz fixed point theorem holds. (Cf. S erre  [6 ]). A s  is well
known, the investigation of this problem is a natural approach to
Weil's conjecture on the number o f rational points and the zeta
function o f a  variety defined over a finite field.

Proposition 11. 3. L e t  V  be a  non-singular projective variety,
and  le t W „ ••• , W r  be non-singular subv arieties o f  V , o f  th e  same
codimension s, which we assume to be pairw ise  disjo in t. L e t D ,,  •  ,
Ds b e  positive d isv iso rs  o f  V  such that D ,••• Ds = W , +  ••• + W r .
Then we have

c(D 1) ••• c(Ds ) =c (W ,)+ • • •  +c (W r ) .

Proo f. Let be the monoidal transformation of V with
center W=.- W, u ••• W r , and pu t T - 1 (V ) = V i ,  T '( W i )-=E i ,
E ,+ •••  +E r = E .  Then the exceptional prime divisors E„ •••
are mutually disjoint, and hence we have c (E )s = c (E,)' + • + c  (E r) '
b y  the cor. of prop. 2. 1. On the other hand, if T 17 '  is  the
monoidal transformation of V with center W, and if we denote
TT 1 (W1) --- =Ei, then c(W i ) a -=-- ( -1 ) c (E D s  a fo r any a  E H w 'w (V)
(w-=- V - s =  dim W,). Since EÇ is transformed to E ,  on the model
V', we have c( W i ) a c (E,) s in  H* (V ') (we identify H* (V)
w ith  T *H * (V )). Th ere fo re  w e have (c ( W,)+ ••• +c(W r ))ce
(- 1 ) ' - 'c(E) s  for any a E H "  (V ) . Since, by Serre duality, c ( D 1 ) • • •
c ( D )  is equal to E c (W ) if and only if c (D ,)•••  c (D ,)a,(E c (W d )c e
holds for any a E (V ), w e have only to prove the following :
c(D,) • • • c(D,) a= ( - 1 ) - 1 c(E )s a  for any a E IF."' (V).

Let D'j  b e  the proper transform T - '[D j ]  of D 3 , the proper
transform of a divisor being defined by linearity from the proper
transforms of the components. Then T - l(D i ).-=-D 'i + E  ( l <  j < s )
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and M • • • r \ D's =  02". Put c(D i ) , -- d , c (D'i ) c (E )= .- e. Then
w e  have d'i ••• 4 = 0  b y  the cor. of prop. 2.1. L e t a  b e  an
arbitrary element o f H " ( V ) .  Then ed3 ce=--0 b y  prop. 5. 3 and
prop. 5. 4. Therefore

0d • •  •  d's. a =, (d,— e) • • • (c1
cl5 a + (-1 )s e 5 a .

Hence d,•-• d5 ce---A-1r - les0e. E c(wi )a.
Corollary. L e t V  be a  non-singular projective variety and let

U„ ••• , U , be non-singular subvarieties o f  V  of  the  same condimen-
s ion  u '. L e t W„ ••• , TV ,. be non-singular subvarieties of  V , of  the
sam e codimension s+ u', w hich w e assum e to be pairwise disjoint.

L et D„••• ,D , be positive div isors o f  V  such  that (ÊU J ) D, ••• Ds
W i . Then we have

( c (U ; ))c (D i)•••c (D s )= -Ê. c (W i) .
1= 1

Proof. Since each W1 is contained in one and only one U »  we
may assume, by linearity, that t 1. Put U.-= U1 . Let ei  E  H s 's ( U )
be the cohomology class of U  corresponding to the subvariety

1, 2, ••• , r ,  and put b k ----- U-D k , 2, ••• , s. Then we have
for any a E H " ( V ) dim W i )

c(U)c(D 1) • • • c(D s)a =-- 8  v, u(tr u(c(Di) •  c (D )a ))

-- =  v  u (c(r) ,) • • • c(D,) tr u ce)
8 v, u(Er ci tr ua)

1= 1

-= 8 v. u( 8 uw,(tr i
a))

E (trwia) = E c(wi )a

2 5 )  These assertions being of local nature, we shall prove them locally. Let P
be a point of W = U  W r ,  say o f  W1 . Let U  be an affine  neighborhood o f  P
with affine r in g  A . We can take U  so small that ( 1 )  U n  W1 = 0 , , r  :  (2 )  each
D , has a local equation f, = 0  in  U, and f ,A  is a prime ideal o f A .  Then ( f i  • • •  ,f , )
A  is the prime ideal o f  W , in A, and T - 1 ( U )  is covered by s  a ffin es U' 5 ( 1 < j < s )
with affine rings A ' , = A [ f l i f ,  ••• t f , / 1 7 1 .  is a local equation o f E  (or, what is
the same thing, o f E 1 )  in  U' s . The local ring of D ',  (o r, strictly speaking, of the
unique component o f D ', which intersects with 7 - 1 ( U ) )  on  V ' is the local ring A f 5 4
o f D, on V .  Therefore D ',n  U' 5 =-0 since A1 5 1  A ' 5 . Hence n...n Dr, n U' 5 =0
fo r  any j .  On the other hand, if j + k ,  ( f i f k )A 'k  is a prime ideal o f A'1, and th e

•quotient ring of .N 1  with respect to it coincides with A (  A .  This shows that f ,/ f k =-0
is a local equation o f D ', in  U' k . Consequently, the local equation f , = 0  o f D , in  U
becomes the local equation ( f5 / fa k = 0  o f  D',H-E in  U'k, proving the relation T - 1

(D , )= D ',± E  in  (P k .
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This proves our assertion.
Discussion. Our theory is very incomplete as i t  stands. A

complete theory would contain the following propositions :
(1) orthogonality formula : i f  W, r \ W2 =--  0, c( W,)c(W2 )=-- 0 ;
(2) carrier formula : tr v _ w  (c ( W)) = 0 ;
(3) trace formula : if W„ W„ W, are non-singular subvarieties

o f  V  su ch  th a t W,• W ,, then tr w i (c( WM= c, ( W3 ), where
c1(W3)  is  the cohomology class o f W, corresponding to the sub-
variety W 3 ;

(4) intersection formula : with the same notations as above,
c( W, )c( W ,)  c( ;

(5) transformation formula : i f  W, and W, are non-singular
subvarieties o f V intersecting properly on V, if is the monoidal
transformation of V with center W,, and if WI.= T - '( W,) is non-
singular, then c( W;) ,-----  T*(c(W 1)).

B y our cor. of prop. 11. 1, the orthogonality formula i s  an
immediate consequence of the carrier formula. The intersection
formula follows easily from the trace formula or from the trans-
formation formula. Since we could not prove these formulae in
the general cases, and since it has been reported the Grothendieck
succeeded in establishing a satisfactory theory, we will not enter
into the d e ta il. The main defect o f our theory lies in the fact
that it depends too much on the global property of the cohomology
rings, i. e. on Serre d u a lity . Is  it possible to define c( W) on non-
complete varieties as we did in the case of divisors ? Is it possible
to define c( W ) also when W has singularities ?

It may be remarked that, if W, is such that c( W ,)=(-1) i c(D,)w! ,
where w'.= codim W, and E, is the image of W, under the monoidal
transformation o f  V  w ith  cen ter W „ then  the transformation
formula holds. This is the case, in particular, when the projective
bundle E, is  the product bundle. For example, if V is the product
o f  tw o non-singular projective varie ties V , an d  V2 , and if
W, = V, x P , PE V „  then E , i s  the product bundle, so that the
transformation formula (and hence the intersection formula) is
applicable. In this case c( W1) = -10c(P ) is clearly independent of
the choice of P  on V 2 , so that the following proposition holds :

Proposition 11. 4. L e t  V , and V . be  non-singular projective
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varieties and let Z  be a  non-singular subvariety  of  V ,x  V ,. Let W ,
and W , be non-singular subvarieties o f  V „ and P, and  P. be points
o f  V ,, su c h  th at W  P i =Z (V ,x P i ), i = 1, 2. Then c(W  ,)=c(W 2).

Corollary 1. Every member o f  an  algebraic fam ily  o f  regular
m appings induce the same homomorphism between the cohomology
rings. M ore precisely, let V 1 , V 2  V 3  be non-singular projective vari-
eties, le t Z  be a subvariety  of  V , X 17

2 x  V , such that Z . (V 1 X V2 X P)
= Z px  P is def ined f o r any  point P of  V ,, and suppose that Z , is
the graph o f  a  regular m apping T , f rom  V , in to  V , f o r any  P.
Then the homomorphism H * ( V , ) , H * ( V  2 )  is independent of  P.

Proof. S ince Z p  is irreducible and non-singular for a n y  P,
Z  is  itse lf non -singu lar. B y the proposition, therefore, c(Z ,x P)
=c ( Z ,)  c v 3  is independent of P .  Now our assertion follows from
prop. 11. 2'

This corollary is a kind of "homotopy theorem" (two continuous
mappings which are homotopic induce the sam e homomorphism
between the cohomology rings). T hough  w e have proved this
homotopy theorem only under a very restrictive condition, we can
apply it to  abelian varieties :

Corollary 2. The elements of the cohomology ring of an abelian
variety are inv ariant under the translations.

Finally, we add the following
Proposition 11. 5. L e t V  be a  non-singular projective variety,

let W  be a non-singular subvariety of V  and let be the monoidal
transf orm ation of  V  w ith center W . P u t  T - '( W)=--  E .  I n  order
th at the projective bundle E is the product bundle, it is necessary
that w e have tr w (c( W ) )  O.

P ro o f. I f  E  i s  the product bundle W xLa - 1 , codim W,
then trE (c(E))a = (1 c (H))° = 0, where H  denotes the linear class
of hyperplanes of L A I .  B y  the remark 1 of prop. 10. 4, this implies
c(E)°E T*Ha . '(V ), so that c(E)a ( - 1 ) a - i T*(C(W )) and tr w (c( W))
=0.

E xam ple. I f  V  is  the projective r-space L r  and W is a linear
subspace LS such  that 2 s> r, then  tr w  (c( W ))* 0  b y  prop. 11. 3,
so that E  is not the product bundle.
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Appendix.

A. Let V  be a normal variety and let D  be a divisor on V.
W e want to prove that the algebraic sheaf 12P(D) is coherent.
Since the question is  local, one may assume that V  is  affine.
Setting m=r(v, f2P(D)), A=F(v, 0), we have to prove (i) M  is a
finte A-module and (ii) nP(D)x-- -=-14-0A 0x  for every point x  of V.
Let Co enP(D), and let D„ ••• ,D, be the prime divisors which
appear in  —(w)—D with positive coefficients. Since D  x ,  the
prime ideal p i of Di  in A  contains a function s, such that st (x) -I= O.
Set s = (1151)N. Then  w e have sw E M  fo r  sufficiently large N.
Hence w emgo x , and (ii) is proved. Now, let f1, ••• , f ,  be a fixed
separating transcendental base of the function field k (V ) of V.
Let (0 be a p-form belonging to M , and write

E  g i ,... d f i i  A  • • • A df i p ., ------E c „,go ,df( i ) .
<•••< lp

We shall show that the coefficients g( i ) belong to a  fixed finite
A-module. Then M  is  a submodule of a  finite A  module, hence
is itself finite over A .  Now, if { j i • • • , j„_p } = {1, •• • , v} — {i„ ••• , i p } ,
then a) A d f ( i )  g ( I ) d f ,  A  • • • A df„ and hence we have

(g( ,) ) > (d f ( i ) )—D—(df, A • • • A df„).

Thus the problem is reduced to the case p = 0 , that is to say, it
suffices to prove [(V, 0 (D )) is fin ite over A .  Let D_,.--•=-- E n i D,
(n1 > 0 )  be the zero part of D  and Di  be its components. It is
easy to prove that there exists f  E  A  such that ordp,(f) ni  (Lang
[1 ],  p. 157, prop. 5). Then [(V, 0(D)) is a submodule of the finite
A-module A f ' ,  therefore is itself finite.

B. L e t V  be a normal projective variety. W e shall show
h"'v(V) ,  1 by induction on v (=  dim V). When v = 1 ,  V  is a non-
singular curve. In  this case one may begin with showing the
equality i(D)= dim FP( V, 0 (D )) and then apply the Riemann-Roch
theorem (cf. Serre [ 7 ]  C h . II). Another method is a s  follows.
Let F = P „ • • ,  P s b e  a  finite subset o f  V  and put U=V— F,
Ui =  U v  {P i } . Then 11=  {U , }  is an open covering o f V and such
a  covering is arbitrary fine. On the other hand, if P  is a point
of V , then the class c (P ) defined in  § 2 is not zero, so that we
have h " > 1 .  Therefore it suffices to show dimIP(11, [')=1 .  I f

{(01.1 } is  an (alternating) 1-cocycle, then a necessary and suf-
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ficient condition for a to be coboundary is the existence of a
1-form co, E r(U„ 1-2') such that w » — c o ,  is  regu la r a t P i ( j> 1 ).
This is equivalent (by the residue theorem and R.-R. theorem)
with E i > , Res (c0 1) =O.

When v>1, let C be a general hypersurface section of degree
m o f V . Then C is irreducible and normal. If 6

)  is a v-form on
V such that ord,(09 =-- —1, the "Poincaré residue" R(co) of (0 on C
is defined. If P is a point of C and if (0 E nv(c), then R((0) E (f2 1)1,
since every prime divisor o f C is simple on V. The sequence of
sheaves

( 1 ) o p 0 —÷ P 0 (C)
is exact, and R  is onto on V—S, where S  denotes the singular
locus of C .  Therefore, denoting the image of R  in (1) by F , we
have an exact sequence 0 ---.F—>Erc - - i-->F" —> 0  and dim Supp (F ")
< n - 3 .  Hence H '(V ,  From the exact sequence

0 12v(c) F 0

we obtain an exact sequence H'(V , (C))—> H'(V , F)—). H".° (V )
Hv(V, fr(C )), but if deg C = m is sufficiently large the extreme

terms vanish, so that we have 11"' 0 ( V)-_-:=-H" - " ' - ' (C ) .  This com-
pletes our induction step.

C . Let V  be a variety defined over a field ka ,  and let D  be
a k o-rational divisor on  V . Let (0  be a p-form on V such that
(0)) > — D . Then (0 can be written in the following form

=  Exco),
where (0x are  p-- forms defined over ka and the c  are constants
linearly independent over k 0 . When such expression is given, the
(0,'s satisfy ((0x ) >  —D.

In the case p=_-o, this proposition is "the last theorem of
Weil's Foundations" (see also Lang [1], pp. 170-178). It can easily be
generalized to the case p>o as follows. Take a separating trans-
cendental base f 1 ,  ••• , f „ o f  ko ( V ) ,  and write (0= E m gm df(1 ) .
Then, as in Appendix A, the g( 1 ) satisfy relations of the form
(g" ) ) >— D ' , where D ' is a ko-rational divisor. Therefore, applying
the case p=o to the gm ,  we obtain the first half of the proposi-
tion . For the second assertion, let A  b e  an  arbitrary divisor
(rational over ka or not), and recall the fact one can always take
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a local coordinate system (t„••• ,t„) at A  consisting of functions
defined over ko (in  fact, one can choose the t i 's from  the affine
coordinates at A ). I f  w, , E ( i ) g( i ) ,,dt( i ) , th en  w e  h ave ord,,
( c,g ( ,) ,,,) >ord,(—  D). I f  follows ord4(g(1 ) ,x ) >ord,, (  —  D ) since

are defined over ko ,  and hence (w)>  —D.

Department of Mathematics,
Faculty of Science,
Kyoto University.
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