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In the present note we shall study the (sheaf-theoretical)
cohomology rings of non-singular algebraic varieties in their
geometric aspects: their relation to birational transformations, the
birational invariance problem of arithmetic genus, the classes
defined by divisors or subvarieties, etc. Our method is purely
algebraic and independent of the field characteristicc. We do not
attempt to go deep into the questions related to the particular
phenomena which are presented by the case of positive characteristic.

Regarding the relation to birational transformations, the
fundamental theorem is Proposition 52: “Let V and V' be non-
singular projective varieties and let T be a birational transforma-
tion from V' onto V which is regular on V. Then T*:H*(V)
— H*(V’) is injective”.

This proposition will be proved by means of spectral sequences
in the standard manner.

As for the theory of the classes corresponding to the sub-
varieties, our theory will be constructed on the basis of Prop. 5.2
and of Serre duality. If one admits Prop. 5.2, one can read §7
and §11 without reading the rest except §1, §2 and Prop. 9. 2.

In §10 we shall study the monoidal transformation of a non-
singular projective variety with a non-singular subvariety as center,
and obtain a result similar to the one obtained by Denniston by
topological method. In particular, we shall prove that the numbers
/™7 are invariant under such transformations. This is a generaliza-
tion of a result of Muhly-Zariski [1] concerning the birational
invariance of the arithmetic genus p,. In fact, the invariance
problem of p, was the motive of this research. In this aspect,
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however, we do not essentially exceed Muhly-Zariski, though their
main results are all reproduced in the present note.

The result of §6 is isolated; we hope it will be of some use
in future.

We shall make free use of the main results in Serre [2],
and our terminologies and notations concerning sheaf theory will
be borrowed from there, except that we shall use the word
“variety” in the sense of irreducible variety. As for the theory
of the cup-product and the Kiinneth relation in sheaves, refer to
the book of Godement. As for the terminologies of algebraic
geometry, such as local coordinates, the divisor of a differential
form, a prime divisor (=a simple subvariety of codimension 1),
etc., we follow the usage in Lang’s book ‘“Introduction to Algebraic
Geometry”. We shall say “(o, m) is a local ring” instead of “p
is a local ring and m is its maximal ideal”. The dimensions of
varieties U, V, W, --- will be denoted usually by the corresponding
letters u, v, w, -+ .

The first manuscript of the present work was written and
presented to Kyoto University in February 1958. After that I
heard that a good part of my results had already been obtained by
others®, such as A. Grothendieck and G. Washnitzer. As far as
I know®, my method is not entirely the same as theirs. I hope
that the present work contains some new contributions.

I would like to express my heartfelt thanks to Y. Akizuki for
his constant encouragement, and to S. Nakano for his precious
advices and criticisms. I wish also to thank O. Zariski, whose
advices and encouragement at the beginning of this research were
very helpful.
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1) Akizuki wrote me that A. Andreotti and J.P. Serre had kindly communicated
the informations to him after reading a résumé of my work.

2) Their results have not yet been published in a form accessible for me, but
H. Hironaka of Harvard University wrote me about the situation.
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§1. The cohomology ring of a variety.

Let & be an algebraically closed ground field. Everything of
our algebraic geometry will be defined over k except when the
contrary is explicitly stated, and a variety will be considered as
the set of its k-rational points. Let V be an (abstract) variety.
Assuming that V is normal, we denote by Q% (or Q%) the sheaf
of germs of differential forms of degree p without poles. Then
0°=0. More generally, when D is a divisor on V, we denote by
0?(D) the sheaf of germs of p-forms o satisfying («)_> —D locally.
These sheaves are algebraic coherent (see Appendix A). If V is
non-singular, then 7 is the sheaf of germs of regular® p-forms,
and is locally isomorphic to 0"?, n,=,C,.

We set HPq(Vy=H??=H*V,Q? and H*V)=3Y),H".
H*(V) is a ring having the cup-product as the multiplication law,
and will be called the cohomology ring of V?». An element of
H*2 will be called a class of type (p, g). The cup-product @V j,
which we shall write simply @@, has the following properties® :

b.q . q a 40’ atd’ B —(—1)2? 99’ B
aeHre, BeH = af e H , aB=(—1) Ba.

The H?%(V)’s are modules over H*(V) (=Fk if V is complete), a

1) In the terminology of Lang’s book, ‘“holomorphic”. We avoid this word since
Zariski’s holomorphic function has begun to enter into sheaf theory.

2) We shall be mainly concerned with non-singular varieties. When V has sin-
gular points, I am not certain that this definition is the adequate one; at least, it
sometimes helps us to study H® ' =H(V, ®) (cf. §5).

3) The cup-product for cochains with respect to a covering 1l is defined as fol-
lows: feCU(II, W), geCr'(1l, W) —>

(ng)inr ceerigg! =fi0y eerig /\giq y e igpgl e

Then d( f1Jg)=df Ug+(-1)fUdg, and this last formula enables us to define the
cup-product of cohomology classes. Passing to the limit, we obtain the cup-product
in H*(V).
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fortiori over k, and their dimensions over k will be denoted by
(V) or h™.

Let W be a locally closed subset (i.e. intersection of an open
set and a closed set) of V, and assume that W is a normal variety
such that its prime divisors are all simple on V. Then one can
define the trace mapping try : H¥(V)—H*(W) in an obvious way.
If W is open, try is nothing but the restriction mapping.

Let T: V' =V be an everywhere regular rational mapping
(briefly : regular mapping) from a normal variety V’ into a non-
singular variety V. Then T determines in a natural way a
mapping T*: H¥(V)— H*(V’). Both tr, and T* are ring homo-
morphisms.

Let now W be an arbitrary subset of V. We say that an
element a of H*(V) is locally zero at W if there exists an open
neighborhood U of W such that try(@¢)=0. If is clear that the
elements which are locally zero at W make up an ideal of H*(V),
which we shall denote by N(W, V) or simply by N(W).

If the normal variety V is projective, then we have A"’'=1
(v=dim V). (This proposition is perhaps due to Serre. For a
proof, see Appendix B). If moreover V is non-singular, then Serre
duality, which will be of prime importance in the sequel, holds in
H*(V). Namely:

“H#7 and H*#*7? are dual: given a«e€ H?»9 «==0, one can find
Be H> #* 2 such that «B=0. In particular, we have

hoea = prpa

(More generally, H*(V, Q?(D)) and H" YV, Q*?(—D)) are dual for
any divisor D of V*®).
We shall sometimes use Serre duality in the following form :
Lemma 1.1. Let V be a non-singular projective variety and let
@ be a ring homomorphism of H*(V) into some ring R. If ¢ is
injective on H"", then @ is injective on all H??.
A remark on the field of rationality. Let V and D be as

above, and let K be an algebraically closed field containing k.
One can consider V as the set of its K-rational points. Then

4) Cf. Serre [3]. It is reported that a more general duality theorem has been
obtained by Grothendieck.
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HYV, QD)) is a K- module. In calculating the cohomology,
however, one may use an affine covering 1= {U;} consisting of
k-open subsets, and then the modules I'(U;, Q?(D)) are spanned
over K by p-forms defined over k since the U, are defined over
k and since D is rational over k (see Appendix C). Therefore it
is easy to see that the cohomology module constructed over K is
obtained from the one over k by the operation of coefficient
extension ®,K. This remark shows that 4#”? are independent of
the choice of k, and enables us to use, if convenient, general (or,
in Weil’s terminology, generic) elements over k.

§2. The class of type (1,1) defined by a divisor.

Let V be a non-singular variety, and let D be a divisor on V.
Taking a sufficiently fine affine covering 1= {U;}, we can express
D by its local equations f;:

D= (f;)in U;.
Now, since f/f; is regular in U;;, the logarithmic differentials

fij = d(f]/fz)/(f]/fz) = dfj/fj_dfi/fi

form a 1-cocycle of the sheaf Q'. Hence a class of type (1, 1) of
V, which we shall denote by ¢(D). It is immediate from the defini-
tion that ¢(D) depends only on the linear equivalence class of D
and not on the choices of 11 and of the local equations.

It is also clear that ¢(D) is linear in D, so that c¢(pD)=0 if
k is of characteristic p. If V is projective and k is the complex
number field, then it is known, by analytical method, that c(D)
depends only on the algebraic equivalence class of D. The same
is trivially true in the case of characteristic p, because we have
G,(V)=G[V)+pG,(V) by the divisibility of the Picard variety
G,(V)/GAV) of V. This proof is too accidental, and an algebraic
proof, depending on the theory of specialization and independent
of the characteristic, is very desirable. We shall give later, in the
case of projective varieties, a (rather geometric) proof which is
independent of the characteristic.

Proposition 2.1. ¢(D)+ N(Supp (D)) =0.

Proof. Let a € N(Supp (D))/\H?”?. Then there exists an open
neighborbood U of D such that try(@)=0. Let W= {U/};,., be
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an affine covering of U such that D has a local equation f; in
each U;, and let W/ ={U/},,» be an affine covering of
V—Supp (D). Then U=W V1" is an affine covering of V. Take
a representative cocycle ¢ of @ with respect to 1. By the assump-
tion there exists a (g—1)-cochain & with respect to 1 such that
Aigyrnrig=1db);,, ..., :, Gy, ,i,€I'). Extending b to a cochain of
u by b;,,...,;,=0 (if some 7, €I”), and replacing a by w—db, we
see that we can assume g;,..,;,;=0 (i, ,i,€l). Put
vi=df;/f:, and & ;=df;/f;—df;/f;, where f;=1 if i€I”. Then
we have éVa=dyVYa=d(yVYa). Though & is not a cochain of
@', yVYa is a cochain of Q" since (yVa),,,..,i;=0 (i, -, i, €T).
This proves ¢(D) a@=0.

Corollary. Let D; (i=1,2,---,s) be divisors such that
[i\Supp (D;))=0@. Then we have c(D,)-c(D,) --- ¢(D,) =0.

Proof. We proceed by induction on s. Put U=V—/\i,
Supp (D;). Then U is an open neighborhood of Supp (D,) by the
assumption. On the other hand, since /\;«(Supp (D;)\U)=0, we
have try(c(D,) --- ¢(D,_,))=0 by the induction hypothesis. There-
fore ¢(D,) -+ ¢(D,_,) belongs to N(Supp (D.)).

Let D be a non-singular prime divisor on a non-singular variety
V of dimension ». The following well-known exact sequence

0 —> 9 — > QD) -2 Q51— 0,

where R denotes the Poincaré residue mapping, gives rise to the
cohomology sequence

. — H*W D) —— H*(V) — H'(V, QD)) —> 0.
Proposition 2.2. Let a€ H* *""YV). Then we have
c(D) @ = 8(trp()) .

Proof. Let W= {U;} be a sufficiently fine affine covering of
V, let f; be a local equation of D in U; and let a={ai,,...,i,_,}
be a representative cocycle of « with respect to U. Let y={v;}
={df;/f;} and &=dy have the same meaning as above. Then
we have &Va=dyVYa=d(yVYa), and Va&)i,,.., i ,=df:/f:,)
Aiq,...,iy_,. But R((df; /f:) @i, ..., i) =trp (@i, ...,i,). Therefore
our assertion follows from the definition of 8.

If, moreover, V is projective, then Serre duality permits us to
prove the following
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Corollary. If V is projective, then

(1) trp@) = 0 = ¢D)-a=0 for ae H”-l,v—x(V) ,
(2) trp(@) =0 = c(D)-a=0 for any e H¥(V).

Proof. We have H*(V, Q" (D))=H(V, O(— D))=0 and ~2”"(V)
=h"""""Y(D)=1 by Serre duality, so that the mapping & is bijective.
This proves (1). Let now « be a class of type (p, g) such that
(D) a==0. Then c(D) aB==0 for some B of type (v—1—p, v—1—q).
This means, by (1), that tr,(«B)==0. Therefore trp() cannot be
Zero.

When does ¢(D)=0 hold? In order to investigate this problem,
it is more appropriate to consider divisors with coefficients in k.
Such divisors will be called k-divisors. If D= >Ya,D, (a, €k,
D, prime) is a k-divisor, we define ¢(D) by linearity:
cDy=>a,c(D,). If V is projective, then we can define the
k-degree of D by

degu(D) = 2] a,deg (D,)  (€k),
where the deg (D,) are to be taken mod p if £ is of characteristic
p. The Kronecker index
I(D,-D, D)  (€k)
of k-divisors D,, ---, D, (w=dim V) is defined similarly. Proposi-
tion 2.1 and its corollary hold also for k-divisors.
Now, let D=Z;}av D, (a,==0) be a k-divisor with the prime

components D,, -+, D,. Let W= {U;} be a sufficiently fine affine
covering of V, and let f;, be a local equation of D, in U;. Then

E,-j = Z avdfj,v/fj.v— zv: aydfi [ fin

is a cocycle of ¢(D). Therefore ¢(D)=0 is equivalent to the
existence of a 1-form ®» such that

(D——Z a,df; | fi is regular in U, (for all 7).

Clearly (df:v/fiv)+Dy,>0 in U;. Hence we have (o)+>)D,>0.
On the other hand, if D,N\U;==0 and if P is a simple point of
D,N\U; not lying on the other components D,, then f;, is a
member of a regular system of parameters of the local ring o,
and hence (»).,=D, locally at P. Therefore we have (®),= Z D,.
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If V is a complete (non-singular) curve, then we have
res, (®©)=a, and the existence of such an o is equivalent to
S'a,— deg,(D)=0. Thus we have proved:

Proposition 2.3. If ¢(D)=0, then there exists a 1-form o such
that its pole conmsists exactly of the prime components of D (taken
with multiplicity 1). If V is a complete (non-singular) curve, then
we have ¢(D)=0 <= deg,(D)=0.

Corollary 1. Let V be projective, let C, be a k-divisor and let
[Cil, -+ ,|C,_,| be ample linear systems. Then we have

C(Co)'c(cl) C(Cv—l) =0 = Ik(co'cl i Cu—l) =0.

Proof. We proceed by induction on », the case v=1 being
the proposition above. We can choose a non-singular prime divisor
C from |C,_,|. Put C,-C=C;. Then |C{| (=1, ,0v—2) are
ample linear systems on C, trg(c(C;))=c(C;), and I,(C,-C,.,)
=I,(C, --- C,_,). Our assertion now follows from the cor. of prop.
2.2 and from the induction hypothesis.

Corollary 2. Let V be projective and let D be a k-divisor. Then
deg, (D) ==0 == ¢(D)==0.

Proposition 2.4. If V is projective, and if D is algebraically
equivalent to zero on V, then ¢(D)=0.

Proof. By Weil [3], §1, Lemme 10, there exist a non-singular
projective curve I', a divisor Z on Vx1I', divisors D; on V and
points P; on I' (=1, 2), such that D=D,—D, and Z«(VxP;)=
D;x P; (i=1,2). We shall prove ¢(D,)=c(D,). By Serre duality,
it is sufficient to prove that c¢(D,)@=c(D,)¢ holds for any «a ¢
H*"**"Y(V). Now, Kiinneth relation shows that the cohomology
ring H*(VxY) is the tensor product, over k, of the rings H*(V)
and H*(I'). Moreover, we have c¢c(VxP,)=1Qc(P;), c(D;x])
=c¢(D;)®1. On the other hand, since the divisors Z and D;xI
have the same trace D;xP; on VxP;, we have try.p,(c(D;x1))
=1tryxp,(c(Z))=c(D; x P;). Hence we have

(DA c(P;) =c(Vx P)e(D; x ') @@ 1) = 8;(tryup (c(D; x ') (@ Q1))
=8,(tryxp(c(Z) @@ 1)) =c(Z)c(VXx P)a®1),
where 6; has the same meaning as in prop. 2.2 with respect to

VxI'and VxP;. But ¢(P,)=c(P,) by prop. 2.3. Thus we obtain
c(D,)a =c(D,)c, completing the proof.
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An application to birational transformations. Let T:V'—V be a
regular (but not biregular) birational transformation from a non-
singular variety V' onto V. We assume that V' is complete over
V with respect to 7. A prime divisor E of V' will be called
exceptional with respect to T if dim T(E)< dim E. By a well-known
theorem, V’ has one or more (and of course finitely many) ex-
ceptional prime divisors with respect to T, and the union of their
images under T is precisely the fundamental locus of 7' on V.
Now we have

Proposition 2.5. Let E,, ---, E, be the exceptional prime divisors
of V' with respect to T. Then c(E,), - ,c(E,) are linearly in-
dependent in H*(V’) mod T*H" (V).

Proof. Suppose we have a non-trivial relation
a,c(E)+ - +a,cE,)+T*a« =0, aeH"(V), a,€k, a,=+0.

Let U be an affin open subset of V having common points with
T(E,), and replace V and V' by U and T '(U) respectively (i.e.
operate try-i,, to everything). Since trp-iy, (T*a)=T*(tr,a)=0,
we now have c(a,E,+ --- +a,E,)=0. It follows that there exists

a 1-form o such that we have El<((o)m<2Ev (on T7Y(U)). But

then ® can have no polar divisor in U when considered as a
differential form on U. Therefore » must be regular on U, hence
also on T7'(U). Contradiction.

Let U={U;} be an affine covering of V, and denote by T7'UIl
the covering {T7'(U;)} of V'. Then H“NV)=HYT ', Qy) and
T* is essentially the mapping associated with a refinement of the
covering T7'1 of V' by an affine covering (see the next section).
But it is well known, and can be easily proved, that the refinement
mappings of 1-dimensional cohomology groups are always injective.
Therefore :

Corollary. If h**(V) is finite, then we have
YV > (V)+e > (V).

In particular, an infinite descending chain of birationally equivalent
complete non-singular varieties cannot exist®.

5) The cohomology group of an algebraic coherent sheaf over a complete variety
is finite dimensional (Grothendieck [2]).
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The second part of this corollary shows the “existence of a
relatively minimal model”, which was proved by Zariski by dif-
ferent methods. (Cf. Zariski [2], [3], [7].)

§3. The spectral sequence attached to a refinement of a
covering.

Let C=>1C"" (m>0, n>0) be a positive double complex,
with differentiations d’ and d” of degree (1, 0) and (0, 1) respectively.
We prefer the commutativity d’d”’ =d”d’ to the anticommutativity
of Cartan-Eilenberg [1] (p. 60), so that the total differentiation is
d=d +(—1)"d” on C™". To C are attached two spectral sequences,
the first and the second, which we shall denote by {/"} and
{II7"} (as in C.-E. [1] p. 331). Thus we have

I = H'y(Hy(C)) —> H(C),
113" = Hyn(H'3(C)) — H(C).
Let X be a topological space, let F' be a sheaf on X and let

U, W be two open coverings of X. Let us consider the double
complex

C=Ccu, 1, F)
which was defined in Serre [2], p. 220°. Then we have
I3"=H"W, HyF), 13"=H"W, HRF),
where Hﬁ/F denotes the presheaf (Garbendatum) defined by
(HyF)(U) = H" Uy, F)

1, being the covering of U induced by W. H ﬁF is defined
similarly. Since (HﬁzF)(U):F(U,F), we have Iy°=H™, F), and
similarly II}"=H"(W, F).

6) Let U={U}er and W={U';}jer. We set C(ll, V', F)=3,,,C""(, W, F),
QL W, F)=IITr(UNU’y, F), where the product is extended to all the pairs (s,
§’), where s is an m-dimensional simplex of the nerve S(I) of 11 and s’ is an n#-dimen-
sional simplex of the nerve S(J) of 11’. Thus an element of C”:" is a system f=
{fio -+ im, jo--- iny ©Of sections fi ...; i ;€ I'(Uyq...i, U’y ..,y F). The
differentiations are defined by

m+1
(d/f)io i1, 00t Jn =§b(—1)'f;° fee fg e im+1, JO *** in?

n+l
@"FDio e imy oo mar = Dy (D Fig iy s o Ty o i
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If W is a refinement of 1, then IIf"=0 for m >0, hence
H*(C)=IIY"=H"(V, F), and we have

[pr=H"W, HyF) —= 25 H'W, F).
Moreover, the edge-homomorphism
I3*=H"W, F) — H"(C)=H"(W, F)

is precisely the homomorphism induced by the refinement (see Serre
[2], N°29). If this homomorphism is injective, then d,: ™" "1—
I7° are zero and I3 °=I° for all »>2. '

Still under the assumption that W is a refinement of U, the
exact sequence for terms of low degree (C.-E. [1], p. 332) reads:

0—H'0, F)->H'W, F)->H'W, HyF)—>HW, F)—>HW, F).

If F is a sheaf of rings, then one can define in C the cup-
product by

aeC™” beCH —s aVbeCm
b

(aub)io ..... imast o jngt — Qigeeoeiimi joreeerjun Qimeeeiimyss jroeeer jnas *
Then d'(@Vb)=daVb+(—1)"aVdb, d'eVb)y=d’aVb+(—1)"aV
d”’b. We introduce a new multiplication ab by ab=(—1)"aVb.
Then C remains to be an associative ring, and this time we have

d(ab) = (da)b+(—1)"*"a(db) .

This ring structure of C induces ring structures on I, and on H(C).
In I, we have

d,(ab) = (d,@)b+(—1)"*"a(d,b)  (aelpr", bel}").

An application of the multiplicative structure. Suppose that
the following conditions are satisfied :

(A) d,: IY* —I3° is zero,
(B) Iyr=1Ip°I¥Y)* (for a fixed pair (m, n)).

I7™ is a residue class module of a submodule of >)C™"» ' and

from the conditions .(A) and (B) it follows that each class of I3"
contains d-cocycles of C™". Hence there is a natural homomor-
phism from 73" onto IZ", and d,=0 on I?" (r>2). If (B) is
valid for all (m, n), then the spectral sequence is trivial in the
sence that we have d,=0 (»>2), I,=1I..
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§4. Application to the study of T*.

Lemma 4.1. Let V and V' be algebraic varvieties; let T be a
rational mapping from V' onto V; let U (resp. U’) be an affine open
subset of 'V (resp. V') with affine ring A (resp. A’). Assume that T
is regular in T-U)NU’'. Then T (U)NU’ is an affine open subset
of V', and (after identifying the function field (V) of V with a
subfield of k(V’) by T) its affine ring is A[A"].

Proof. Let P’ be a point of T Y (U)NnU’ and let (0o, m’) be
the local ring of P’ on V’. By assumption the point T(P’)=P
is uniquely determined and belongs to U. We denote the local
ring of P on V by (o, m). Then o’ dominates o (i.e. 0’0 and
m’No=m). Since o contains A and since 0’ is a quotient ring of
A’, o’ is a quotient ring of A[A’] with respect to the prime ideal
A[A ] nm'.

Conversely, let (0, m”) be a quotient ring of A[A’] with re-
spect to a prime ideal. Then o” dominates the local rings (0/, m’),
(0, m) of points P, P of U’ and U respectively. (0'=A"ca’~m'"
0=Ac~m). But then P and P’ correspond under 7T, so that
P e T"(U)nU’. Hence 0’ isitself a quotient ring of A[A’] with
respect to a prime ideal by what was just proved. Therefore o”
must coincide with o’.

Lemma 4.2. Let V be an algebraic variety and let f be a
regular function on V. Put V,={Pe V|f(P)==0}. Let F be an
algebraic cohevent sheaf on V. Then:

(1) if a’€e H(V,, F), then there exist a natural number n and
an element a of H(V, F) such that trva) =1"a,

(2) if ae HY(V, F), and if trv{a)=0, then there exists a
natural number n such that f"a=0.

Proof. We begin with the case ¢=0. In this case (2) is
proved in Serre [2], N°43, prop. 6, while (1) is proved in N°55,
Lemme 1 of the same paper of Serre under the additional condition
that V is affine. If Vis not affine, we cover V by a finite number
of affines U;. Then there exist a natural number m and sections
a;€l(U;, F) such that a,=f"a’ on V,nU;. Applying (2) to
U;nU;, we have f'a;=f'a; on U;nU, for large t. Therefore
the section e €l'(V, F) defined by a=f'a; on U,; satisfies our
requirement : a=f"*'a’ on V,.
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The general case. Let U= {U;} be an affine covering of V.
It suffices to prove our assertion for the cohomology groups with
respect to U. (1) Let {a’; ...} bea cocycle of a’. Then &;,....;,
e (U,,,.....;,nV;, F), therefore there exist a natural number » and
a cochain @ on V such that a=f"a’ on V,. Since da=0 holds
on V,, we can assume that da=0 on the whole V by augmenting
the value of # if necessary. Then the cohomology class deter-
mined by the cocycle a satisfies the requirement. (2) can be
proved similarly.

Let V, V' be algebraic varieties and let T: V/—V be a regular
mapping from V' onto V. Let F’ be an algebraic coherent sheaf
on V’, and let U={U;} and W= {U;} be affine coverings of V
and V’ respectively such that W is a refinement of 77 'Ul. We
now apply the spectral sequence method to the double complex
T, w, F).

Let us define presheaves H?F’ and THF’ (¢=0,1, 2, --:) on
V and V' by

(HF"YU’Yy = HY (U, F") (U’ : open subset in V’)
and by (THF')U)= HYT U), F') (U: open subset in V)
and by the natural restriction mappings. Then it is clear that

H™, TH"F’) = H™(T™'1, H"F’).

On the other hand, Lemma 4.1 implies that we can identify
H™(T™W, H"F’) with H™(T™Q, HjyF’). Thus the first spectral se-
quence takes the following form :

Iy = H"U, TH"F') — HYV, F).

It is evident that TH°F’ is a sheaf”, which can be denoted also
by TF’ according to a general rule. We denote temporarily by
"F the sheaf on V associated with the presheaf TH"F’. The "F
are certainly algebraic sheaves (i.e. sheaves of ©-modules). They
enjoy some of the properties of algebraic coherent sheaves®.

Proposition 4.1. Let U be an affine open subset of V. Then
the canonical mappings (TH"F'WU)=H"(T *(U), F’)—V(U, "F) are
bijective for all n.

7) We identify a sheaf F with the presheaf U—I'(U, F) as usual.
8) Grauert-Remmert | 1] denotes them by T,(F’), and Grothendieck [2] by R4 T
(F"). Grothendieck ([2]]) has proved that they are coherent if V' is complete over V.
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Proof. Let us denote by @ the mappings in question. Let a
be an element of H*(T Y(U), F’) such that pa=0. This amounts
to say that there is a (finite) covering {U;} of U such that
trr-1y(a)=0 for each i. Taking a refinement if necessary, we can
assume that U; have the form Uy, f; being regular functions on
U. By Lemma 4.2 we have f7a=0 for large m®. Since the
functions f7? have no common zero points, there exist regular
functions g; on U such that >)g;f7=1 (Hilbert Nullstellensatz

applied to the affine ring of U). Hence a=3lg;ffa=0. The

proof of the surjectivity is similar. We have to prove that, given
an open covering {U;} of U and a system {a;} of cohomology
classes a; € H(17(U;), F’) such that a;=a) in T7'(U;;), we can
find an element a of H™T '(U), F’) satisfying the relations
trr-'ypl@) =a;. We can assume, as above, that U;=U,, for some
regular functions f;. Then, by Lemma 4.2, there exist a natural
number m and elements @; of H (T '(U), F’) satisfying a;=f"a,
in TY(U;). Since a;=f7a}=f7%a; holds in T™U;)), f}'a;=f7*"a,
holds in T7'(U;) for sufficiently large m’. Let g; be regular func-
tions on U such that 3 g.f7*™=1. Put g f¥a;=a. Then we

have try-iypla) = ; &; frim'e, =a;.

Proposition 4.2. With the same notations as above, let T be
an affine covering of the affine variety U. Then

HY B, "F) =0  (¢>0, n arbitrary).®

Proof. We prove the proposition in the case W= {U},,,
U, =Uy,, f; being regular functions on U. If this case is settled,
then the proof of Serre [2], N°47, prop. 8 can be used, mutatis
mutandis, to prove the general case. Now, let a={«; .., } be a
g-cocycle of "F with respect to . By Prop. 4.1 and by Lemma
4.2, there exist a (g—1)-cochain B for each i€, and a natural
number ¢, with the following property :

BYig =T,y in Ui,

On the other hand, it follows from da =0 that

9) Note that, identifying f; with f;oT, we have T-'(U)s, =T '(Us).
10) In particular, H(V, "F)=0 (¢>0) if V is affine. This implies that our Cech
cohomology of "F coincides with the Grothendieck cohomology of F.
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for any 7€1. Hence we have

fiYa=d(f{B®)

provided that # is large enough. Let g; be regular functions on
U such that 3 g.fi*"=1. Then a=d(X g f{B?), which was

to be proved.

Corollary. Let B be an arbitrary affine covering of V. Then
the canonical homomorphism HY(B, "F)— HV,"F) is an isomor-
phism (for any q, n). ’

Therefore our spectral sequence can be written as

Iy = H"™(V,"F) — 2YHYV, F').

From this it follows, by a theorem of the theory of spectral
sequences, that our spectral sequence {I,|r_>2} is independent of
the choice of the affine coverings U, W.

Example. Suppose that V is normal, that V’ is complete over
V and that the function field k(V) of V maximally algebraic in
k(V’). Under these conditions we have

LU, 0y) = (T (U), Oy)

for any open subset U of V' so that TO, =0O,. Therefore, if
we put F’=0, in the spectral sequence considered above, we have

I3° = H™(V, 0))

and the edge-homomorphism I3°— H™(V’, ©,/) is precisely the
homomorphism T*,

11) If we assume only the condition that V’ is complete over V, then for each
point P of V we have

or S N rer-10m0p SOp,
where Dp denotes the integral closure of 0p in k(V’). Similarly we see that I'( T-'(U),
O contains I'(U, Ov)(= () vp) and is contained in the integral closure in k(V’)
rPeU

of the latter ring. These are direct consequences of the following general theorem of
Krull : if K is a field and if R is a subring of K, then the integral closure of R in K
is the intersection of the valuation rings of K containing R. (See e.g. Akizuki-Nagata
[1] or Weil [1]. Cf. also Zariski [3], p. 49.) Also it follows that, if ¥V’ is normal

instead of V, then we have I"z’,°=H’”(‘7, O#) for F'=0, where V denotes the nor-
malization of V in k(V").
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From now on we assume the following conditions:
(1) V' is complete over V,

(2) V’ can be embedded in a projective space (as a locally
closed subset).

Put W;={P|PeV, dim T '(P)>i}. The W, are closed subsets
of V (for a proof see Samuel [1], p. 36).

Proposition 4.3. "F is zero outside of W,.

Proof. Let P be a point of V outside of W,. Let V' be the
closure of V' in the ambient projective space, and let D,, ---, D, be
suitable hyperplane sections of V’ such that D,N---nD,N T (P)=4.
Then T(V'AnD,n---nD,) does not contain P, hence there is an
affine neighborhood U of P such that T(V nD,n ---nD,)Yn U=,
or equivalently D,n - ND,NT(U)=¢. By Lemma 4.1 T (U)
is thus covered by » affine subsets, hence we have H*(T *(U), F’)
=TH"F’(U)=0. Since the same holds for any affine neighborhood
of P contained in U, the stalk of "F at P is zero, q.e.d.

(Remark. Our assumption (1) is essential to this proposition,
while we do not know whether or not (2) is indispensable.)

Therefore, "F can be considered as a sheaf on W,. The
cohomological dimension of W, is <{dim W, by a theorem of
Grothendieck'®. Hence :

Proposition 4.4. We have I3"=H™(V,"F)=0 if m_>dim W,.

Corollary. If W,=@0, i.e. if T (P) consists of a finite number
of points for every point P of V, then the homomorphism T*:H™(V,
TFy— H™(V', F') is an isomorphism. If, moreover, V is affine, then
also V' is affine.

Proof. The first part is an immediate consequence of the
proposition, since we have I3"=0 (n_>0). If V is affine, then it
follows from the first part and from Prop. 4.2 that we have
H™V’, F’)=0 (m_>0) for any algebraic coherent sheaf F’. By a
theorem of Serre [4] this means that V’ is affine.

Let F’, G, H' be algebraic coherent sheaves on V’ and let ¢:
F'®G' —H’ be a homomorphism. Then ¢ defines a cup-product
HY(V',F'yx H" (V’, G’y = H**"(V’, H’) in the usual manner.

12) If V is projective, then W, can be covered by 1+4-dim W, affines and hence
we can do without Grothendieck’s theorem.
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Proposition 4.5. Let U be an open subset of V containing W,
and let & be an element of H?(V, TF') such that tr {«)=0. Then
for each o’ € H (V', G’') there exists an element B of H***'(V, TH')
satisfying try(B) =0 and aVa' = T*p,

Proof. Let I,={U;};c, be an affine covering of U and let

N,={U;};cs be an affine covering of V—-W,. Put U=1,VY1,.
Let W= {U’%} be an affine refinement of T'Il. Let « (resp. @) be
a representative cocycle of « (resp. «’) with respect to U (resp. W).
We can choose ¢ in such a way that we have

igig=0 iy, =i € A).
Now consider the double complex C=C(T"1, W; H’). Setting
aig’ iguigig T 7’(0(;)®a:p) (e (T (Us) N UE,-), H)),

a® is a d-cocycle of C??, and its cohomology class in H?*’(C)

corresponds to a“Ya’ under the canonical isomorphism between

H(C) and H(V’, H’). We shall construct successively d-cocycles

a”eC* " (r=1, 2, -+ q') satisfying the following conditions :
(1) a™ is chomologous to a“™»,

2) @l igirigiadr =0 (o, i, €A).

Then «“” will determine a cohomology class B € H**?(V, TH’)
satisfying the requirements of the proposition.

Assume that ¢ ~? is already constructed. Now, since U; N W,
=@ forie B, T""(U,,...;,,,_, is affine if some i, is in B. In this case,
therefore, we can find (¢’—7)-cochain b;
of H over T '(Uj,,..

0 igar_1— {b<i>.jo---;‘q’_,}(j>
) such that its coboundary (with respect

cigyroa
to the indices (7)) is {a{;=%,,, .itep. We set by ip, = O/lf
fo,*y144,, €A. Thus we get an element b= {b;,,} of C**" "7~

satisfymg d’b=a""", Setting a”=(—1)"""d’b, we have d'a”
=d"a" =0, a" P—a"=d(—1)""""'b). Also it is clear that &
satisfies our condition (2). Thus the proof is completed.

§5. The birational case.

With the same notations as in the preceding section, we now
assume, besides the conditions (1) and (2) of p. 15, that T is bira-
tional. Then it is clear that we have #n+dim W,<v—1 for n>1
(principle of counting constants). Therefore it follows from Prop.
4.4 that I3"=0 for m+n_>v(n_>0). Thus we get the following
proposition.
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Proposition 5.1. The homomorphism T*: H*(V, TF') (=13"°)
—H*(V', F’) is surjective.

Example. Suppose that T7* has only a finite number of fund-
mental points (on V), say P,, -+, P,. Then I?"=0 except I3°, ---,
I3® and I%*,---,I3"', and hence we have the following exact
sequence :

0 —> HV, TF") —> H(V', F') — 0
— H'(V, TF) —> H'(V', F) —> I3
%, H\V. TF") — H*(V’, F') — I%?
&, H'(V. TF') — H*(V', F) — 0,

where we know I3/=11,5, H* (T Y(U,), F’), U; being an affine neigh-
borhood of P; such that U;$ P; (i==j). If V is a normal surface
then our hypothesis holds. If moreover all the modules in the
exact sequence hove finite dimensions over k (which is the case
when V and V’ are projective varieties and TF’ is algebraic coher-
ent), then we have

X(V', F)=X(V, TF')— dim I3"' < X(V, TF’).

If we set F"=0,s, then TF'=0, and the above inequality reduces
to the inequality p,(V")<p,(V) which was proved by Muhly-Zariski
for normal projective surafaces by a different method.

If V is non-singular, then TQ%,=Q% holds. In fact, a dif-
ferential form o of k(V) is regular at a simple point P of V if
and only if it is regular along every prime divisor D of V passing
through P'®. But if » has no poles which intersect 77'(P), then
it must be regular along D since T '[D]n T '(P)==¢. Hence o is
regular at P if and only if it has no poles which intersect T '(P),
and it follows that

(T (U), Q%) = 1(U, &)

for any open set U of V provided that V is non-singular.
From now on we assume that ¥V and V’ are normal projective
varieties and that V is even non-singular. Then it follows from

13) If P is a simple point, if (#,...,¢,) is a local coordinate system at P and if

w= 3 fi;...ip dti; ... dt;,, then it is easy to see that « is regular at P (resp. along D)
i\ <<y

if and only if all the coefficients f(;y are in pp (resp. in vp). But 0p=(\p5r0pn, hence
our assertion. (For a detail see Koizumi [1] or Lang [1]).
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Prop. 5.1 that T*:. H"”(V)—H""(V’) is bijective since both
modules have dimension one. Then we see by Serre duality
(Lemma 1.1.) that T* is injective on the whole ring H*(V).

Proposition 5.2. Let V and V' be normal projectiev varieties
and let T be a birational transformation from V' onto V which is
regular on V'. If V is non-singular, then the homomorphism T* :
H*(V)—H*(V’) is injective. In particular, we have h**(V)Y<h**(V').

Remark. It is conjectured that under the conditions of the pro-
position T* is bijective on H*?(V) at least when also V’ is non-
singular. This is certainly true in the case of characteristic zero
by virtue of the equality A*?=h?°. We shall see later that this
is true also in the case where 77! is a monoidal transformation
with a non-singular subvariety as center. As the problem of
reduction of singularities is not yet solved in a satisfactory manner,
it is desirable to prove the above conjecture without the assumption
that V’ is non-singular*®; if this is possible, then the birational
invariance of arithmetic genus (for non-singular projective models)
will be established most satisfactorily.

By virtue of the proposition we can identify H*(V) with the
subring T*H* (V) of H*(V’). Assuming henceforth that also V’ is
non-singular, denote by M?#? or M*?*(V, V’) the subspace of
H??(V’) orthogonal to H* " (V). Comparing the dimensions
we have the direct decomposition

H»* (V') = HP* (V) + M? .

Setting M=>)M?? we can easily see that H*(V)-MZM,
though M is not an ideal of H*(V’). Further we have the following
propositions.

Proposition 5.3. Let W be a closed subset of V containing the
fundamental locus W, of T™'. Then N(W, V)-M=0. In particu-
lar, H**(V)-M=0 for ¢_>dim W,.

14) The normality of V’ may perhaps be necessary. It should be noticed that
we do not remove the assumption that V is non-singular. Therefore the conjecture
implies that the A%¢ of a normal projective model of (V) which dominates a non-
singular projective model of k(V) are numerical invariants of the function field k(V),
but not that all the normal models of 2(V) have the same 4%% which is evidently
false. In the case of dimension 2 our conjecture holds, since the normal surface V’
is dominated by a non-singular model V”, since P,(V)Z>>P,(V’')>P,(V”) and since
V'’ is obtainad from V by quadratic transformations.
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Proof. Let us recall that N(W, V) is the ideal of H*(V)
formed by the classes of V locally zero at W. Now prop. 4.5
shows that N(W, V) is also an ideal of H*(V’). On the other
hand we have N(W, V)-M<M by what was just remarked.
Therefore N(W, V) MM n H*(V)=0.

Proposition 5.4. If E is an exceptional prime divisor of V’
with respect to T, then c(E) € M".

Proof. Since T(E) is at most (v—2)-dimensional, we can cover
it by v—1 affine open subsets of V. Denoting their union by U,
we have trpy-i gy (T*H" """ Y(V))=T*({try(H "' (V)))=0. Hence
c(E)- T*H""**"%(V)=0 by prop. 2.1, as was to be proved.

§6. Apalication to the study of tr, (U open).

Proposition 6.1. Let V be a normal variety (complete or not),
and let W be closed subset of codimension w’ of V. Put U=V —W.
Let F be an algebraic coherent sheaf on V locally isomorphic to O".
If the unmixedness theorem (Ungemischtheitssatz) holds in every local
ring of V, then the restriction mapping

try: H(V, F) — HY(U, F)

is bijective for q<w'—1, and injective for g=w'—1.
Before proving this theorem we note the following

Corollary. Let V be a non-singular variety (complete or not),
let 'V’ be a variety and let T be a regular birational transformation
from V' onto V. Assvme that V' is complete over V. Then T*:
H»9(V)—H?*?(V') is injective for q< codim W, where W denotes
the fundamental locus of T7'.

Proof of the corollary. Put U=V—-W, U=V'— T %(W). Then
U and U’ correspond biregularly under 7. Identifying them, we
have try=(trys)oT*. Therefore our assertion follows from the
proposition'.

For the proof of Prop. 6.1 we need a theorem of de Rham
(de Rham [17]). We formulate it in the following slightly gene-
ralized form, this generalization being necessary later in § 10.

15) The unmixedness theorem holds in any regular local ring (Cohen). See
Akizuki-Nagata [ 1], pp. 138-139 or Nagata: “The theory of multiplicity in general
local rings” (Proc. Intern. Symp. Algebraic Number Theory, Tokyo-Nikko 1955),
where the question is discussed in detail.
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Theorem of de Rham. Let R be a commutative ring and let M
be an R-module. Let y,, ---,y, be elements of R and M,, ---, M,_,
be subgroups of M satisfying the following conditions :

1) Zi yz‘Mf g Mj+1 © <]<n) ’
2) meM;, ym=0 — m=0 0<j<n),
(3) mEMj’ yimez_:<iyij = m62s<iyij—|
A<in, 0 j<n).
We make the convention M,=M. For each ¢q,¢=0,1,---,n, let
now N, be the additive group of the exterior g-forms in # in-
determinates X, ---, X, with coefficients in M,. Thus an element
a of N, can be expressed as
A= 3V My XinAXi, (my €M),

i <---<ig

and we have N,=M,. Put «=2)y;X;. Then the exterior product
q+1
OANQ= Z S (N7, i )Xy A A Kigy,
i< <ig4r =1
is well defined and belongs to N,.,. Now de Rham’s theorem
asserts that, if €€ N,, 0<qg<n and if o Na=0, then there exists
an element B of N,_, such that a=onp.
The following proof differs little from de Rham’s and is given
here only for the sake of completeness.
We proceed by induction on #, the case n=1 being trivial.
First we treat the case g< n—1. Puta=a,+a,AX,, o =0,+y,X,,
where the forms «,, «, and o, do not contain X,,. Then we have

oANAd=o, AN+ (o, A+ (—1)y,a)ANX,=0.

Hence o, Aa,=0, o,Ad,+ (—1)?y,0,=0. Since g<n—1 there

exists, by the induction hypothesis, a (¢—1)-form 8, in X, -+, X,,_,

with coefficients in M,_, such that @, =, A B,. Therefore we have
(*) “’1/\(“24'(—1)"}’"31):0-

Here «a,+(—1)?y,8, is a (¢g—1)-form in X,,---, X, , with coeffi-

cients in M,. If ¢_>1, the induction hypothesis (with » and
M,,---, M,_, replaced by n—1 and M,, ---, M,_,) shows the existence
of a (¢9—2)-form B, in X,, -+, X,,_, with coefficients in M,_, such
that o, A B,=a,+(—1)?y,8,. Setting 8=8,+8,A X,, we have

oAB=o,AB+o, ABANX,+(—1)""'y,B, AX,
=+ A X, =«.
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If ¢g=1, then (%) implies y,(a®,—y,8,)=0, hence «a,—y,B3,=0.
Therefore we have a=«a,+a, A X,= w0, A B, + 3, X, AB, =0 A B,.
The case g=n—1 requires another procedure. For simplicity, let
us introduce the following notation (of ‘“‘adjoint” forms) :

*(Xil ARARA X"P) - (S(il"'ip jl"'jn—ﬁ) Xj‘ A AX]nAP
where {j} is the complementary set of {/} in {1, :--,n}. Then an

(n—1)-form « and an (#—2)-from B can be written as
a= Z axX; (a;,¢M,.), B= Z_,"J b; (X;nX;) (b;;€M,.,).
By easy calculations we have
OANQ = (2,_} yia) X, AN-nX,, oAB= 2 (]_Z ybi ) X;

(b;;=0, b;;+b;;,=0). Therefore we have only to prove the follow-

ing statement: if the elements a;€ M,_, satisfy >)y,a;=0, then

there exist elements b;; € M, _, satisfying the relations b;;=0, b; ;+b ;

=0, a;,=>y;b;;. We prove this statement again by induction
J

on #. If n=1, then the hypothesis implies ¢; =0 and we can take
b,,=0. Suppose n_>1. Since > y;a;=0 implies y,a, € 3 y;M,_,,
i<n

there exist elements b,; € M,_,(1<j< #n) such that a,=>)yb,;.
j<n

Set b,,=0, b;,= —b,;. Then we have a,=3>'y,;, and the
preceding relation " y;a; =0 is transformed into >} y; (a;—¥,b;,) =0.
. i i<n

By the induction hypothesis, there exist elements b;;(1<i<n,
1<j<n) such that b;;=0, b;;+b,;=0 and such that a;—y,b;,
=213;b;;. Thus we have obtained all the required elements b, ;.

ji<n
Using this theorem of de Rham we prove the following lemma,
which is a special case of the proposition (except that we need not
the assumption of normality here).

Lemm. Let V be an affine variety with affine ring A. Assume
that the unmixedness theovem holds in A*. Let f,, --- , [, be elements
of A such that we have rank (f,, -+, f)A=1i A<i<n), and let W
be the closed subset of V (of codimension n) defined by the ideal
(f1, s fwA. Then H*(V—W, ©0)=0 for q==0, f=n—1.

16) It is clear that the unmixedness theorem holds in A if and only if it holds
in every quotient ring (local ring) of A.
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Proof of the Lemma. Put U;={P|PeV, f;(P)==0} for i=
1,2, ,n Then U= {U;} is an affine covering of V—W, and
the affine ring of U; is A[1/f;]. Let us calculate H?(11, ©). Note
that we can identify 1'(U;,...;,, O) with the affine ring A[1/f;,, -,
1/f:,]. Let now a be an alternating g-cocycle. Then for suffi-
ciently large integer ¢ the functions F; .., =(f; - f:)'a;,...;, belong

to A, and we have the relations qﬁ (=1fiF:..; =0. Since

fgreripeigyl
rank (f§, -, fH)A=rank (f,, -, f;)A=i and since the unmixedness
theorem holds in A, (f%, -, fOA: fi,=(ft, -, fHA for 1<i<n.
Setting therefore R=A, My=M,= -+ =M,=A and y,=f! A<
<n) in the theorem of de Rham, the (¢+1)-form
a= 3 Fi0~~-ini0/\ /\Xiq
i< <ig
satisfies @ A @=0, and consequently there exists a g-form
B: Z G,'O,,.,'q_lXiO/\"'/\ Xi
i<+ <ig_y
such that o A B=«, provided that ¢<n—1. If 0<¢g<»—1 and
if we set b, .., ,=(fi, - fi, ) 'Giy.iy_,» then we obtain a (¢g—1)-
cochain b such that db=a. This proves H'(1, 0)=0 (0< ¢<n—1),
whence follows the lemma.

g-1

Proof of Proposition 6.1. Since two sections of O which
coincide at a point coincide everywhere, tr, is injective at ¢=0.
Therefore the proposition is trivial if w'=1. We shall assume
that w’~>1. In that case try is even bijective, for a rational
function which is not regular at a normal point P of V would
admit a polar divisor passing through P.

Let U= {U,} be an affine covering of V and let U= {U;n U}
be the (non-affine) open covering of U induced by U. Let W=
{U’} be an affine refinement of U. Then IU;, F)=L(U;nU, F)
by what has just been remarked (substituting U; for V). There-
fore we have H%V, F)=H’1, F)=H’1, F), and the mapping
tr, reduces again to the mapping H'(W, F)— H'W, F) ~H%U, F)
induced by the refinement of the covering, to which the method
of §3 applies.

We proceed by induction on ¢ (w’ fixed). Let ¢<lw’—1, and
assume that the bijectivity of the restriction mappings is proved
for any ¢’< ¢ (and for any V and W satisfying the conditions).
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Consider the spectral sequence {/;’} of the double complex
C(n, W, F). We choose Ul so fine that F may be isomorphic to 0"
in each U;. Now we contend that I§{*=0 for 0<(¢< g. Since W
induces on each U, ...;,—W an affine covering, we have

It = 1I HY(U..;,— W, F)

i sis

and our contention will be proved if we can prove H(V'—W, 0)=0

for an arbitrary affine open subset V’ of V. Let A be the affine
ring of V’ and let a be the ideal of W in A. Then rank a>w'.

Therefore we can choose elements f,, -, f,, of a such that
(f,,,f)A has rank 7 (hence is unmixed) for 1<(i<lw’. Let W’
be the closed subset of V’ defined by f,=:-=f,=0. Then

W' 2>WnV’ and the restriction mapping H¥V'—W, 0)— HYV’
—W’, 0) is bijective (though we need only the injectivity) by the
induction hypothesis. But H(V'—W’, ©)=0 by the lemma. Hence
we have H(V'—W, 0)=0, and our assertion I{*=0 (0< t<q) is
proved. It follows that tr,: HY(V, F)— H%U, F) is injective. If
g<w’—1, then, using the injectivity just proved for dimension g,
we can repeat the same argument to prove I{*=0. From this
we see that try is bijective for dimension ¢q. Thus the proposition
is proved completely.

Examples. If V is an affine plane and W is a point, then it
is .easy to see HY(U, O)==0 (in fact, this module is isomorphic to
the quotient module k[ x, y] mod k[ x, y, 1/x]+k[x, », 1/¥], where x
and y are independent variables). Therefore tr, is not surjective
for g=1(=w’—1) in this case.

If V is a non-singular projective variety and U is a proper
open subset of V, then H”*(V)— H"*(U) is not injective (see §7).
If V is an abelian variety, then tr, is not injective also on H”"(V)
for all p since H»Y(V)=H?*(V)-H**(V).

§7. The class of type (v, v) defined by a point.

Let V be a non-singular projective variety of dimension v,
and let P be a point of V. We now propose to attach to P a
cohomology class of V of type (v, »). In order to get a natural
and useful definition, however, we can not confine ourselves to
the consideration of the single model V, contrary to the case of
divisors.
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Let T be the quadratic transformation of V with center P.
Put V'=T7"Y(V), E=T7%P). Then V’ is again non-singular and
E is (isomorphic to) a projective space of dimension v—1 (see
Zariski [1]). It is well known, and can be easily proved by the
consideration of local equations, that E-E=—H, where H denotes
the linear class of hyperplanes of the projective space E. There-
fore I(E --- E)=(—1)""\.

Since trp(c(E))=c(E-E)= —c(H), we have, by the cor. of
prop. 2.3,

trg(c(E)" ™) = + ¢(H)’ '==0.

Hence, by the cor. of prop. 2.2, we see that ¢(E)’==0. On the
other hand, we know T*: H""(V)— H”"(V’) is bijective. These
observations lead wus to the following definition: ¢(P)=
(=1)""Y(T*) Yc(E)"). Since c(P) is not zero, it is a generator of
the 1-dimensional vector space H"*(V). Sometimes we shall write
¢y instead of ¢(P), which is justified by the following

Proposition 7.1. The class ¢(P) is independent of the choice of
the point P on V.

Proof. First we remark that, if v=1, then T is biregular
and the class ¢(P) as defined here coincides with the class attached
to the divisor P in §2. Therefore our assertion follows from prop.
2.3 in this case. We proceed by induction on ». Let P and @
be two points of V. Assuming »>2, one can find a non-singular
prime divisor S of V passing through both P and Q. By the
induction hypothesis, P and @ determine the same class ¢g of S
of type (v—1, v—1). We shall prove ¢(P)=¢(Q) by showing the
following formula :

17) Let L be the linear system cut out on V by the hypersurfaces of order three
passing through P and Q. Then L defines the monoidal transformation of V with
center P+Q, which we denote by T,. Let S be the general member of L. Then P
and @ are simple points S, because L contains divisors of the form C+C’+C”, where
C (resp. C’) is a hyperplane section of V containing P (resp. @) as a simple point
and not containing @ (resp. P) and C” is hyperplane section of V passing through
neither P nor Q. On the other hand, the proper transform 7,[ S is non-singular since
it is the general hyperplane section of the non-singular variety T,(V). But the bira-
tional correspondence between S and T,[S] is biregular at each point of S except at
P and Q. Therefore S is non-singular. By the standard specialization argument,
almost all (k-rational) members of L are irreducible and non-singular and hence satisfy
our requirements.
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C(P) = B(CS) ’

where 6 has the same meaning as in prop. 2. 2.

Let T7! be, as above, the quadratic transformation of V with
center P, and set S’=T"'[S]. Then T induces a regular birational
transformation T,: S —S, and T71! is the quadratic transforma-
tion of S with center P. Setting E,= T7}(P), we have E,=S'-E,
and hence ¢(E,)=trg/(c(E)). Moreover, since S’+E=T"(S) holds
and since there is a divisor S, such that S~ S, # P, it holds

(c(S)+c(E))-c(E) = c(TYS))+c(E) =0
by the cor. of prop. 2.1. Hence we have, by prop. 2.2,
T*(8(cs)) = 8,(T¥(cs)) = 8,((—1)"*c(E)"™") = (—=1)"*c(S")c(E)™
= (=1)""c(E)’ = T*c(P),

where 8, has the same meaning for V’ and S’ as 8 has for V and
S. It follows c(P)=38(cs). Similarly we have c(Q)=25(cs), hence
c(P)=1¢(Q) as wanted™.

In the course of this proof we have incidentally proved the
following

Proposition 7.2. Let D be a non-singular prime divisor of V.
Then Cy— 3(cp) ,

where 6 has the same meaning as in prop. 2. 2.

Remark. When V reduces to a point, we make the conven-
tion c,=1(€ k= H"(V)). Then it is easy to see that this proposi-
tion holds also in the case v=1.

Let us now introduce a new definition. Let V and W be
non-singular projective varieties. We shall denote by 8, , the
isomorphism between the k-modules H*“(W)and H""(V) which
maps cw to cy. Then the proposition above implies that 8y,
coincides with the connecting homomorphism obtained from the
Poincaré residue exact sequence. This and prop. 2. 2 show ¢(D)-=
Sy pltrp®) (€ H*™*"%(V)), a relation which will be generalized to
non-singular subvarieties of any dimension in §11.

Proposition 7.3. Let U and V be non-singular projective varie-
ties. Then it holds

18) For the geometric properties of quadratic transformations used in this proof,
see Zariski [ 1], [2].
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Cuyxy=CyQcy.

Proof. The statemant of the proposition depends on the Kiin-
neth relation H*(Ux V)= H*(U)® H*(V), which implies in par-
ticular H**"**(Ux V)=H"*(U)® H"*(V). Now, if V reduces to
a point, the proposition is trivial by our convention ¢,=1. We
proceed by induction on ». Let D be a non-singular prime divisor
of V. Then the connecting homomorphism property shows
Syxv.uxp=1®38, . It follows from this and the induction hypo-
thesis that

Coxv="Suxv.uxplCuxp) = Cy @ 5V.D(CD) =cyQcCy.

Proposition 7.4. Let D,,---, D, be k-divisors on V, and let
I(D,,--,D)y=a. Then c(D,) - c(Dy=a-cy.

Proof. When v=1, this is nothing but a restatement of prop.
7.1 (or prop. 2.3). We proceed by induction on ». Assume v_>2.
By linearity, one can assume D, is a prime divisor. Then one
can find two non-singular prime divisor S; (=1, 2) such that
D,~S,—S,””. Again by linearity, therefore, one may assume D,
is non-singular. Then we have, by prop. 2.2, by the induction
hypothesis and by prop. 7.2,

C(Dl) C(Dv) = BV.Dl(C(DlDz) A C(D]Dll)) - BV.Dl(a'CDl) =da-Cy.

Proposition 7.5. Let T be a regular mapping from a non-
singular projective variety V' onto V such that [V': V]=n<oo.
Then we have

T*(cy) = n-cyr.

As a consequence, T* : H¥(V)— H¥(V') is injective if and only if
n is not divisible by the field characteristic™.

Proof. If T is inseparable, then any wv-fold differential form
of V vanishes when considered as a form on V’. In fact, any v
functions «,, ---, x, of (V') cannot form a separating transcendental

19) This is well known, and follows from the fact that, if |C,,| denotes the com-
plete linear system cut out on V by the hypersurfaces of sufficiently high order m, the
complete linear system |C,+D,| is ample. (See Matsusaka [1]).

20) J.P. Serre constructed an interesting example in his paper [6]. There k is
of characteristic p, p=>5; V’ is a non-singular surface in a projective 3-space (hence
BOA(V)=h(V")=0); n=p, but T is separable (V’ is even unramified over V); and
V has the pathological property AL0(V)=0==s%'(V)=1. In this example T* is not
injective, not only on H22(V), but also on H%'(V).
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base of k(V’) and hence their differentials in 2(V’) are not linearly
independent over k(V’). Therefore T* is zero on H”%(V) for any
g, and in particular T*(cy)=0.

Now assume T is separable. Then for almost every point P
of V, T™'(P) consists of exactly »n distinct points. Let P be such
a point and let Pj,---, P, be the points of T 'P). Denote by
(0, m) and by (v;, m;) the local rings of P and P; respectively.
Then it is well known that we have mp;=m; (see e.g. Abhyankar
[1]). It follows easily that, if S™': V— V, is the quadratic trans-
formation of V with center P and if we denote by V{ the graph
of the algebraic correspondence S~ 'oT between V’ and V,, then
V1 is the monoidal transform of V’ with center T '(P)=P; + ---
+P,. Let us denote the projections Vi—V’ and V-V, by &
and T, respectively, so that the following diagram is commutative :

V< S Vi
. center P} +---+P;

Ti T,
\Z S v
V< — =V,

center P

Set SYP)=E, S '(P})=E),. Then T{YE)=2E,. Since the
prime divisors E} are pairwise disjoint, we have, by the cor. of
prop. 2.1 and by the definitions,

S*T*(cy) = T¥S*(cy) = (— 1) (c(E]) + -+ + c(E))
= (=1 c(E1)" + -+ + c(E})")
= S*m-cy).
Since S’* is injective, this proves the first assertion. The second

assertion follows from the first and from Lemma 1. 1.
At this juncture, we note the following elementary

Proposition 7.6. Let V be a normal variety (complete or not),
let K’ be an algebraic extension field of the function field k(V) of V,
and let V' be the normalization of V in K. If [V': VI(=[K':
k(V)]) is not divisible by the field characteristic, then

T*:HYV,0)— HY(V’', Oy)

(where T denotes the natural regular mapping from V' onto V) is
injective for all q.
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Proof. Let Il be an affine covering of V. Then T '() is an
affine covering of V’. Let f={f;,...,} be a cocycle of O, with
respect to 1, and assume that f, considered as a cocycle of O
with respect to T7'U, is a coboundary: f=dg. Then g;,..;, , is
an element of the affine ring A’;..;,, of T7'(U;,..,, ), which is
the integral closure, in K’, of the normal affine ring A4;,..,,_, of
Ui,...;i, ,- Taking trace from K’ to k(V), we obtain a (¢—1)-cochain

Sp(g) of Oy with reapect to U such that f:d(% Sp(g))(n——_[V': V.
This proves our proposition.

§8. Projective space.
Let L” be an r-dimensional projective space, and let C”™* be
a hyperplane of L.

Proposition 8.1. In L™ we have the following exact sequences :

0 - Q2(m) > Om—p)? — Q& im) >0 (0 p<7).

Proof. Let x,, -+, x, be inhomogeneous coordinates of L, and
let P, and C be, respectively, the origin and the plane at infinity
with respect to the coordinate system (x). We shall identify Q?(m)
with Q?(mC). Let K be the function field of L, and let G be the
constant sheaf on L determined by the Grassmann algebra over
the vector space KX,+-:--+KX,, where X,, -, X, are indeter-
minates. We denote by G(m, p) the subsheaf >} ;;0m) X; A - A Xj,_,

of G. G(m, p) is isomorphic to O(m)(;’). Put ®=er,~X,-, and denote
1
by 6 the left multiplication by ®. Then the sequence of sheaves

(1) 0——Gim—r, r):O(m—r)—6>G(m_r+1, r—1) 8 aee 0

Gim—p, p) —— Gm—p+1, p—1) ——> . 5 G(m, 0) —>0

is exact on L—P,. For, if Pis a point of L with local coordinates
yl y U0 )yr(yi :xi/xd(i:l:a)) yai: 1/xa/)» then ®:yd—1(§yixi +Xm)’ and

¥s is a local equation of C in a neighborhood of P, while
M y:X;+X, is a member of a basis of the op-module >}0,X;.
i i

Hence the sequence is exact at P.
Let o be a p-fold differential form on L. Expressing o by
dx,, - ,dx, as
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W = 2 f,'l...,-pdx,-l b dx

i<y, >
we define (@) by
'\P'((O): 2 filn-ip *(Xil/\ o AXip);
ll<"'<lp
where the star denotes the adjoint operator defined in §6.
Let P be, as above, a point of L with local coordinates
Y., ,Y,. Let the expression of » in terms of dy,, ---, dy, be

= <_2<, &irip@Yiy Ay 70
f<eee<iy

Then, using the relations dx;=(1/y,)dy;—(x;/ys)dys (i==a) and
dxs=(—2%4/Ys)dys, We have

(A) {gm'gmip = — y;pﬂE:lxﬂfBig---ip (&, -, i,, =+ «)

gil---ipzyw—pfil---ip (il y *°° ,ip:t:a)

Solving these equations in f, we obtain

(B) {faig---ip =—J (21 Ye&Big..ip) (&, 1, )

fil-uip:yzgil-uip (l.],"',l.p #: a)-
Finally, if p>2, we have for i, - y 1R
;xﬂfﬂmiamip = — Exxsfmeia-.-i,,
—_— — n . qgn+l
= Zgwxe( ‘g;zydyyg')’l?iy--ip V&' "Basiy-ip)
=y >N 2 XoXyGypig...ip+ Y 2 Ye8ugiy.ip
Bx® V3@ Bfa

©) = J’Z‘gysgmaia---i,, .
From these relations, it follows that
w€Q¥(m)p = all g;,...;, € Y3 "0p
all f;...;, € ya ™0p
tglx”f“?“”’ € Yy ™0p

{‘l’(&’) € G(m—p, p)p
Or(w) € Glm—p, p—1)p.

21) In the following calculations, the f’s and the g’s are supposed to be alternat-
ing in the indices.
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The first and the last conditions are equivalent also when P is
the origin P, (proof is trivial). Thus we have shown:

(2) + maps Q2(m) into G(m—p, p),

(3) (Q2?(m)) coincides with the kernel of the homomorphism
induced by é.
Moreover, Oyr(w) =0 implies gg;,...;,=0 (for all 7,, -+, 7,) (by (A)),
and conversely (by (A) and (C)). This proves

(4) G(m—p, pynKer 0 =(Q2'?(m)),

where '?(m) denotes the subsheaf of Q2?(m) consisting of the p-
forms which are independent of the differential dy, of the local
equation y, of C when expressed by dy,,---,dy,. It may be
remarked that, by the convention °(m)=Q°(m)=0(m), (4) holds
also for p=0.

From (2) and (3) it follows

Gim—p, p)/¥(Q?(m)) = 0G(m—p, p)/[Gim—p, p—1)NOG(m—p, p)] .
Since G(m—p, p)/¥(Q*(m)) is zero outside C, we may henceforth
confine ourselves to L—P,. Then, by (1) and (4), we have

0G(m—p, p) = Gim—p+1, p—1)nKer 0 = (') (m)) ,
Gim—p, p—1)NOG(m—p, p) = Gm—p, p—1)nKer 6
= Y(Q?7(m—1)) .
Therefore
G(m—p, p)/¥(Q2(m)) = (227 (m)) [ Y(2"*7 (m—1))
= Q2" (m)/ QP (m—1) = Q& (m) .

This proves our proposition.

The exact sequences of this proposition, together with Serre
duality, enable us to compute dim H*(L", 2?(m)) rapidly, as we shall
show in the next proposition.

Proposition 8.2. We have
(1) dim H?(L", Q%)=1 0<p<r),

@ dim (L, @2Gm) =" PN () (m>p),
@ dim B, @m) =( ") () (b—r=>m),

(4) HYL, Q?(m))=0 in all other cases.
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Proof. We begin with the case p=0. It is easy to see that the
elements of H°L’, O(m)) (m>0) are in one-to-one coirespondence
with the forms of degree m in the homogeneous coordinates.
Hence

dim H(L",0(m) =<m;“ ") n>0, = 00m<0).

By Serre duality and by the fact that a canonical divisor of L’
is —»—1 times hyperplane, we obtain
dim H"(L”, O(m)) = dim H(L", Q" (—m)) = dim H(L", O(—m—r—1))

=<_7’;_1>(—r>m), =0 (otherwise). HYL’, O(m))=0 (0< qg<7)

can be proved by the method used in the proof of the lemma of
§6, i.e. essentially by the theorem of de Rham (cf. Serre [2]
No. 78). Thus (1)~(4) hold for p=0, and, by Serre duality, for
p=r.

Therefore our proposition holds for »=0, 1. We proceed by
induction on 7, assuming henceforth that »_>2.

Since HYL’, O(—p))=0 0<p<r, 0<p<r) by what was
already proved, the preceding proposition shows HZ#(L’, Q%)
~H?Y(L""', 2#7"), This and the induction hypothesis prove (1).

Next we prove HYL’, Q?*(m))=0 (0< g<r, m==0). If ¢>1,
or if ¢=1 and m< p, then H*" (L', Q? ' (m))=0 by the induction
hypothesis. Since also HYL’, O(m—p))=0 holds, the preceding
proposition shows HYL’, Q?(m))=0. The remaining case (g =1
and m>p) can be settled by Serre duality.

Now (2) follows from the exact sequence

0 — HAL', Q(m) — H'(L", Om—p)?
— HY(L"™Y, 9*7Y(m)) — O

by a straightforward calculation. (3) is proved similarly (or can
be reduced to (2) by Serre duality). Thus our proof is completed.
Remark 1. When p=r, the exact sequence of prop. 8.1 is nothing
but the exact sequence of the Poincaré residue.

Remark 2. Prop. 8.2 is, of course, not new (see Hirzebruch [17]).
Remark 3. From h??9=0629p, q<r) it follows that H*(L") is
generated by c¢(C), C being the linear equivalence class of hyper-
planes, and is isomorphic to k[ X ]/ (X"*"), where k[ X] is a polynomial

ring of one variable. In particular, the classes of H*(L) are
invariant under the projective transformations of L.



Geometric structure of the cohomology rings 65

§9. Projective bundles.

Let V” be a non-singular variety, and let E be an algebraic
bundle, with base V, fibre L”, and structure group GP(»). Accord-
ing to a recent theorem of Grothendieck?, the bundle structure
of E can be derived from a bundle with structure group GL(»+1).
In other words E can be considered as the “projective realization”
of a vector bundle. Let =: E—V be the projection, and let
U= {U,} be a sufficiently fine affine covering of V. Then = (U,)
~U,x L", and we can introduce homogeneous coordinates Y,,, Y,,,
.-, Y,, in each = '(U,) in such a way that we have

pY;= i]g?ﬁ’(x) Y,s (p: constant of proportionality)
0

over x € U,nUs, where the g’s are regular functions on U,N U,
such that the matrices G** = (g?}) satisfy the usual cocycle condi-
tions. Denote by U,, the affine open subset of = '(U,) defined by
Y;,==0. Put ij_,-wzggi’,‘f(YhB/ Y,). Then the f’s define a line

bundle over E, hence a divisor class D, of E® D, is uniquely
determined by the bundle structure of E. If resticted to = '(U,),
it is nothing but the class of U,xC in the product representation
of = '(U,), where C denotes the class of hyperplanes of L.

Now it is easy to see that H?(="(U,), Q*)=1(U,, Q%% c(D,)*
=z*H(U,, Qu %c(D,)’. For, the Kiinneth relation and prop. 8.2
show
H(Uyx L, Q%) = 33 H(U,, %)@ H(L, Q)

I3

= H(Us, %) Q H(L, ) = H(Uy, 257 Qc(C)7,

and c¢(D,) corresponds to 1® ¢(C).
Let W be an affine refinement of = ', and consider the spectral
sequence {I7"} of C(= 1, W, Q) (2=31Q%. A representative
»

cocycle of ¢(D,) can be considered as a d-cocycle y of C*', that is,
an element v of Z%'. Then we have

22) Grothendieck [1], Proposition 3.4.1. We do not use this theorem in the
sequel, since the fact asserted by the theorem is evident for the particular cases which
we encounter.

23) Here we summarized a part of Washnitzer’s lucid exposition in his paper [1],
to which the reader is refferred for a detail. But, since the correspondeuce between
line bundles and divisor classes given in his paper, differs by sign from ours which
is the usual one, our fig ;4 is his fia,i8
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ng.n — {gHm(Vv Q!’;)"yn (r> n)
0 (n>r).

Hence follows I3"=1I3"°-4". Thus we find ourselves in the situa-
tion described at the end of §3, so that the spectral sequence
{I} is trivial: I,=1I,. From this one can easily conclude the
following

Proposition 9.1. Let V, E, =, D, be as above. Then we have
H?»YE) = Z a*H?= 94 V) .c(D,)¢ (direct sum).

Moreover, H¥(V)—a*H*(V)-c(D,) is bijective for i<r. In other
words ©* is injective and 1, c(D,), -+, c(D,)” are linearly independent
over =*H*(V), while 1, c(D,), -+, c(D,)"** are not.

r

From this proposition follows A”9(E)= > "% V), in parti-

i=0
cular A?%E)=h?*(V), h*(E)=h"%(V). If V has the property that
h??=h?? for all (p, q), then E enjoys the same property.

If V is projective, then also E is projective, as was proved by
Washnitzer. In fact, it is not difficult to verify that the complete
linear system |D,+H,,|, where H,, denotes the inverse image,
under =, of the linear system cut out on V by the hypersurfaces
of sufficiently high order m, satisfies the conditions of an ample
linear system given in Weil [27]*.

Proposition 9.2. If V is projective, then we have
cg = c(Dy)"-m*(cy) .

Proof. Let P be a point of V and let 7' be the quadratic
transformation of V with center P. Set T V)=V, T"(P)=D,,
and let E’ be the induced bundle T7'E over V’. Denote by T’
and by =#’, the induced map E'—FE and the projection E'— V’

respectively.
Tl
E «——FE’

St
T

VeV
Let Up be a sufficiently small neighborhood of P. Put Di=='"%(D,),

24) As regards these conditions, see also Nakai-Nagata [1], p. 166, Th. 6.32.
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Dy=T""YD,). Then D{=D,xL" and D;= T (Up)xC in a product

representation #' (T Y(Up))=T "(Up)xL’. Since D; is contained

in 7”7 (Up)) and since I(D, --- D,)=(—1)""!, we have

I(D; -+« D{+D7{ -+- D))= (—1)""'. Therefore it follows from the de-
—

finition of ¢, and from prop. 7.4 that

T™(c(Dy) »m*(cy)) = (D) (— 1) e(D1)" = cpr = T"*(cp) -

This proves the proposition since 7’* is injective.

This proposition provides us a second proof (for the case when
V is projective) of the fact that H*(V)—=z*H*(V)-c(D,) (<r)
are bijective.

§10. Non-singular monoidal transformations.

Let V* be a non-singular variety, and let W be a non-singular
subvariety of V of codimension w’>1. Let T™' be the monoidal
transformation (sometimes called dilatation) of V with center W.
(Such a monoidal transformation will be called non-singular.) Put
T Y V)=V, T"{(W)=E. Then E is a projective bundle with base
W and fibre L', as we shall show presently. We shall in-
vestigate the structure of H*(V’) by reducing the problem to that
of E.

First we treat the problem locally. Let P be a point of W.
Since P is simple on W, the prime ideal of W in the local ring
opof Pon V is generated by w’ elements, say x,, -+, x,s, and one
can complete them to a regular system of parameters {x,, -:-, %,,
.-, x,} of op. Let U be an affine neighborhood of P with affine
ring A. Taking U sufficiently small, one may assume

a) x, €A 1<i<w),
by {x,,-,x,} is a local coordinate system in U (i.e. {x,—x,(Q),

-, x,—x,(Q)} is a regular system of parameters of o, at each
point @ of U),

¢) (%,,++,x,)A=p is the prime ideal of W in A.
Then T YU) is covered by w’ affines U; (1<(i< w’) with affine
rings Aj=Alx,/x;, -, x./x:]. Put ¢ :xj/xi (73=1), t;i=2x;.
Then {¢,;, -+, twi,s Xuis1, =+, x,} is a local coordinate system in U7,

and #;;(=x;)=0 is a local equation of E in U;. The local ring
0;=(A1),;4’; of E on V’is the valution ring of the my-adic valuation
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ve( ) of k(V), where (o,, my) is the local ring of W on V. Let
u;;=trg(t;) be the image of f; in k(E)=og/mg=(the quotient
field of A;/x;A]). k(E) contams k(W)——(the quotient field of A/p)
as a subfield, and u,;, -+, 4;;, -+, u,s; are algebraically independent
over k(W). Let X, be an indeterminate over k(E), and put
X,=u; X, 2</<w'). Then u;=X,/X, for j=Fi. Since the affine
ring of EnU; is Aj/x,A{= (AP uy;, -+, thisy s s ), 1=1, -+, 0,
we see that En T }(U) is the product variety (WnU)xL* ™ where
L' is the projective space with the homogenepus coordinates
X, X

If {».,,5.,} is another set of generators of p, then there
exist functions g,;€ A and f,;€ A such that

Zg,, i xizzf,'jyj-

Since the images of y,, -+, ¥, in mgy/md are linearly independent
over k=oq/mg, for each Q € Un W, the regular functions g;; in
duced on WnU by g;; are uniquely determined. For a similar
reason, we have (g,;)(f,,) = the unit matrix. Let «}, and (Y)=(Y,,

Y,n), with Y,=X,, have the same meanings for (y) as «;, and
(X) have for (x). Then

Yi = trE(yi/yl)Xl
= trg(r,/y,) tre(y;/2) X,
= trg(x,/y,) Z &:X; .

Thus the homogeneous coordinate system (X) and (Y) are related
by the projective transformation induced by the linear transforma-
tion (g;;) € GL(w’). Evidently, this local observation brings the
global conclusion that E is a projective bundle with base W and
fibre L*’7', and that the bundle structure is induced by a bundle
structure with group GL(w’). Moreover, it is easy to see, by
inducing on E the line bundle defined by E over V’, that
E-E=—D,, where the divisor class D, on E is defined as in §9.

Resticting our consideration again to 77 (U), we denote by
Q (mE) the subsheaf of O?(mE) consisting of the p-forms which,
when expressed by dx,, -+, dx,, contain only dx,, ---,dx,,. Then
we can write

Q*(mE) = Zﬁ M Q (mE)dxj, - dxj,_, .

P =0 "'/<1'l<"‘<fp_p!
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Further, we denote by Q, z(mD,) the subsheaf of Q%(mD,) consist-
ing of the forms which contain only the differentials of the local
coordinates of L in the product representation ENT Y (U)=UxL
given above.

Proposition 10.1. In T Y (U) we have the following exact se-
quences.
0— O, mE)— 0((m+pE)\* ) > Q, | (—mD)—~0 0 p<uw).
Proof. Let o= 3\ f;..j,dx; - dx;, be a p-form on V’
j1<...<)‘p§w’
and let P’ be a point of U/. Let the expression of ® in terms
of dtli! ot )dtw/z' (tj,'zxj/xi (lz*zj)’ tiizxi) be

® =,~1<-Z<jpgj""j‘° dtj; - dtj,; .
Then an easy calculation shows
{ Zijgdp =" ;,;21 XS rigip  (Jor et Jp=F1)
Eivip = X055y (> 00 7, 1)
{ Sidgidp=2x7"(— E Leilripip+Xiliigip)  (Jos ey J, = 1)
Sijip = X778 iy (71005 7, A1)
and St rsy = 2 B i (032,
Consequently we have
0 €Q (mE)p == ( fj...i, €O0m+p)ps
,,i:{ XS rigip € OM+p—2)ps .
This conclusion, in which the subscript 7 plays no particular role,
holds for any point P’ of T '(U). Now we may omit the rest of

the proof, since it is entirely similar to that of prop. 8. 1.
Next we must determine HY(T Y(U), O(mE)).

Proposition 10.2. With the same notations as above, we have
HYT X (U), OmE)) =0 for O<g<w'—1, any m)
and for (@=w'—1, m<w),
HY(T(U), O(mE))={H°(U, Oy=A (m > 0)
p~ (m<0).

For the proof we need the following
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Lemma. Let t be an arbitrary but fixed natural number, and
put
qi=(xi;"')x$)A, pi:(xu"')xi)A (1<Z<w,)'

Then q; is a primary ideal belonging to p;. Moreover, we have for
<g<w

QP xfy, = QP = q;Npj (k>1)
and qph:xi, =aq; O<ED).

Proof of the lemma. By the condition b) imposed on U at
the beginning, x,,---,x; are a part of a regular system of para-
meters of o, for every point @ of U satisfying x,(Q)= - =x,(Q)=0.
This implies that p,A, is a prime ideal of rank 7 for every
maximal ideal m of A containing p;. Therefore p; is a prime
ideal of rank /. But p,>q;,>p7 for large n. Consequently rank
q;=rank p,=i, and p; is the only minimal prime of q;. On the
other hand, the unmixedness theorem holds in the affine ring A
of U since U is non-singular. Therefore q; has no associated
primes other than p;. This proves our first assertion. It follows
q;:xi,,=q;, so that q,p}: x{,,=q; (0<Ck<¥) is trivial. In order
to settle the remaining case k_>t¢, we shall prove

(1) a;nPpiTr=q;p5 and (2) pi**: xi,,=p) for k>0. Then it
will follow

a:pf: xb, = (@NP5 rxly, = (@ xf )N xly)
=q;N\pj=q,pj*

for k2>¢. Our proofs of (1) and (2) are modelled on Zariski’s
proof in his paper [4],

Proof of (1): we proceed by induction on k, the case k=0 being
trivial. Let us assume q;Np4*"*7'=q;pt™". Let feq,npi*’. Then,
by the induction hypothesis, f belongs to q,p%"’. Therefore we
can write

f=$ava (aveA)>

where M, are the power products of x,, -, x; of degree k+#—1
in which at least one of x,,:--,x; appears with exponent >{.
Set Ap;=vo, p,o=m. Them (o, m) is a regular local ring, and
{x,, -+, x;} is a regular system of parameters of 0. By a basic pro-
perty of the regular local rings, therefore, f="3Ya,M, € p}** T m*+*!
implies that all the coefficients a, belong to m, hence to mnA=p,.
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Consequently feq;p5. Also the proof of (2) is easy by a similar
method (induction on k).

Proof of the proposition.

The case q=0. Let fe H(T *(U), ©(mE)). The rational func-
tion f has no pole in T*(U) except possibly at E. Hence it has no
pole in U, so that it is regular everywhere in U (and consequently
in T7'(U)). Therefore f€ A. If m=—m'<C0, then f € p" Apn A=p™
(this last equality is known and can be proved by the same
method as used in the proof of the lemma).

The case ¢>0. We use the affine covering {U.},<ic.’ Of
T™YU). Then (Ui .., OmE))=x;"Alx,/%;, ", Xu/%i, =,
Zu[%;,]. Let f={f: ..:;} be an alternating cocycle of O(mE)
with respect to the covering. Each f;, is a homogeneous function
in x,,-,x, of degree —m with coefficients in A. Taking a
sufficiently large integer ¢ (we assume, in particular, £ >m), and
setting Fy ..., = (X;), =+, %:))'fs,...;,» We have F,€p* ™™ and

q+1
Z]o (—=1)'x;F;,...;y...i0,,=0. Now, the lemma above implies, among

others, the following: setting R=A, M=A, n=w’, y;=x' (<4
<w'), and M,=A, M;=p"*" (1<i<w’), the assumptions of the
theorem of de Rham given in §6 are satisfied. It follows easily that
f is a coboundary provided that 1<q<Cw’—2. On the other hand,
if g=w'—1 and m<w’, then F,, .. €p™ "™ =(x}, -, x)pr/ o™
since (t—1)w’'< tw’—m. This implies that f is a coboundary also
in this case. Thus our proof is completed.

Now put m= —1 in prop. 10.1. Then, if p_>1, the associated
cohomology sequence shows HY(T'(U), Q,(—E))=0 (g>0), since
HYT(U), O(=E))=0 (¢g=>0) by prop. 10.2 and HY(T'(U)NE,
Q,_, g(Dy))=HU, 0,) @ H'(L, Q37 (C))=0 (¢=>0, p>>1) by prop.
8.2. When p=1, a similar consideration shows H(T (U),
Q,(—E))=0 for ¢ _>1. For g=1, we obtain the following exact
sequence :

0 — HYT-\(U), &,(—E)) —> H(T"(U), 0)"’
2 H(T(U)NE, 04D,)) —> H(T (U), Q,(—E)) —0.

It is not difficult to see that the mapping which is denoted here
by @ is surjective. For that purpose, let us recall that ¢ is
induced by the surjective homomorphism of sheaves
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0”3 (fy, -+ fur) — 21 2:f; €O(—E)
followed by the isomorphism
O(—E)/O(—2E) = Og(—E-E) = 0g(D,) . (See p. 69 and p. 63).

The mapping HYT Y(U), 0") = A" 3(f,, -, fu) = 2 %:f1 €D
=HYT(U), O(—E)) is evidently surjective, and also the map-
ping HYT (U), O(—E)) — H(T '(U), 0gxD,)) is surjective since
HYTY(U), O(—2E))=0. Therefore @, which is the composition
of these two mappings, is surjective. Consequently we have
HY(T\(U), Q,(—E))=0. Thus we have seen H/(T '(U), Q,(—E))
=0 for all ¢_>0 and for all p>0. It follows H*(T '(U), &*(—E))=0
(g>0, p=>0).

Consider now the following well known exact sequences (of
Kodaira-Spencer) :

0>Q? 50 00—
{ 0— Q/—FE) - Q? > Qr(—E-E) - 0.
The result above, combined with HYT U)N\E, Qg (—E-E))
=H(UNW)xL"™, @ (WxC)= 53 HWUNW, %)@ H (L,
Q1 %(C))=0 (¢g_>0), shows H"(T“(U),_ Q=0 for ¢ >0. Hence
Proposition 10.3. The mappings

trg: H(T(U), &) — HYT YU)N\E, O3)
are bijective for g >0.

Now we are prepared for the global study. Let U= {U,} be
a sufficiently fine affine covering of V, and let I be an affine
refinement of 77'U. Besides the double complex C=C(T'U, IV, O),
we consider another, C(E)=C(T'U, W, Qy. Let {I™"} and
{I™™(E)} be the associated spectral sequences. The homomorphism
trp: -0, induces homomorphisms C—C(E), I, —I(E) which
commute with the differential operators d, d,. Now, prop. 10.3
implies that IpP"—I?™E) is bijective for »_>0. Then, also
Iy —Iy™E) is bijective for n >0 since d, does not change the
complementary degree, and I3"—I3™(E) is bijective for n>1
since d, diminishes the complementary degree by one, and so on.

From now on, we suppose that T*: H¥*(V) —H*(V’) is injective
(which we could prove only in the case when V is projective).
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Then d,:I»"""'—I™° is zero for any r>2. Then same holds for
I(E), as was seen in the preceding section. Therefore I”" — [™"(E)
is bijective for »_>0 and for all ». But the spectral sequence
{I(E)} was trivial. Hence also {I,} is trivial: I.=~1I,. On the
other hand we have I3"=Iy"(E)=> H*"(W) 0<n<w'—1), =0

b
(n>w'), and I7°=H"(V, Q). If we replace Q? for Q, we obtain
I =Hr""(W) 0<n<w'—1), =0 (n>w’), and I}°=H™(V, Q?),
Thus we have proved the following proposition.
Proposition 10.4. Let T7': V-V’ be a non-singular monoidal
transformation with center W, and let w' =codim W. Then, assum-
ing that T*:H*(V)— H*(V’) is injective, we have

BP9V = WAV + 2 (W)

Remark 1. In fact, we have obtained a little more than this
formula. Among other things we have ’

Kernel of {trp: H¥*(V')—H*(E)} = T*[Kernel of {try : H*(V)
—H*(W)}].
Remark 2. As a special case of this proposition, we have h*>?(V’)
=h*%(V). More precisely, T*: HY(V, ©)—HYV’, Oy/) is bijective
for all ¢. This result, which generalizes one of the main results
of Muhly-Zariski [1] concerning the arithmetic genera of non-
singular projective varieties, is of course a direct consequence of
our prop. 10.2 and Serre [2] No. 29 prop. 5, and so we need for
its proof neither the spectral sequences nor the assumption that
T* is injective. It may be remarked that, if v=2 (and hence
W= a point), H(T*(U), ©)=0 becomes almost trivial by the
simple fact A[¢, 1/¢t]=A[¢t]+A[1/t].
Remark 3. The vanishing of HY(T (U), ©,+) for ¢ >0 (prop. 10. 2)
implies, not only the bijectivity of T*:H%V, O)—H* V', Oy)
which was just remarked, but also the bijectivity of

T*:H(V, ¥D)) — H'(V', ¥(T (D))

for any divisor D of V. Similar invariance theorems hold also
for Witt vectors. Let W, (resp. W)) be the sheaf of the germs
of regular Witt vectors of length # on V (resp. on V') (cf. Serre
[6]). From the exact sequences 0—0,— W,—- W, —0 it
follows, by induction on #, that HYT '(U), W,)=0 for ¢ >0.
On the other hand, we have TW/= W, since W/, and W, are
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isomorphic to (©,,)” and (©,)” respectively as far as the structure of
sheaves of sets is concerned. Hence we have natural isomorphisms

T*:HY(V, W,)— H*(V', W})

for any ¢ and »n. Taking the projective limit with respect to #,
we obtain HY(V, W)=~H*V’', W),

§11. The class of type (w’, w’) defined by a non-singular sub-
variety of condimension w/'.

Let V' be a non-singular projective variety, and let W be a
non-singular subvariety of V of codimension w’. Let T ' be the
monoidal transformation of V with center W, and let TY(V)=V’,
T (W)=E. Then c(E)” € H”* (V). Using the direct decomposi-
tion H*'(Vy=T*H""*'(V)+M"*" obtained in §5, we define a
class ¢(W) of V of type (w’, w’) by the following formula: ¢(E)"’
== '"T*(W)+m, me M *'. Identifying H*(V) with
T*H*(V), we can characterize the element ¢(W) in H*"*/(V) by
the following property: c(E)” +(—1)""¢(W) is orthogonal to
H*™*(V), where w=v—w'=dim W. Another characterization is
given by the following

Proposition 11.1. Let « be a cohomology class of V of type
(w, w). Then

c(W)ea = 8y yltry(@) .

Proof. Let T, V/, E be as above, and let #:E— W be the
projection of the projective bundle E, namely the regular mapping
of E induced by T:V'— V. Itiseasy to see #*(tryy @) =trg(T* ).
Put trpya=a-cy, a€k. Then we have
T*(c(W) )

= (=)' (E)” T*« (by the definition)

= (=18 o(c(E-E)” *try T*a) (by prop. 2.2 & 7.2)
= (=17 8y (= 1) (Do) w*(tr @)

= 8y, (c(D)"" " ¥ (a-c )

=8y gla-cy)  (by prop. 9.2)

== a-cv/

Hence c¢(W)-a=a-cy,=28y, ylacy)=2=0y, yltry ).
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Corollary 1.

1) trpya=0 = c(W)-a=0 for ae H"*(V),
2 trpa=0=— c(W)-a=0 for any ae H¥(V).

Proof. (1) is an immediate consequence of the proposition,
while (1) follows from (1) as in the cor. of Prop. 2. 2.

Corollary 2. If try: H¥(V) — H*(W) is surjective, then

trpa =0 <= ¢(W)a=0
holds for any ae H*¥(V).

Proof. If trya==0, then, by Serre duality applied to W, one
can find B8€ H*(V) such that try(aB)e H"*“(W), try(aB)==0. By
Cor. 1 we have (W) aB==0, hence c(W) a==0.

As an application of Cor. 2, we have the following

Praposition 11.2. Let V and V' be non-singular projective
varieties. Let T be a regular mapping from V' into V and let I’
be its graph. Then the homomorphism T*:H*(V)—H*(V') is
determined completely by the class c(1)Ye H"'(V'x V) of L.

Proof. We have H*(V'xV)=H*(V)QH*(V) be Kinneth
relation, and the biregularity of the correspondence between V’
and I' implies that every class of H*(') is of the form trp(y ®1),
vy € H¥(V’). On the other hand, if « € H¥*(V) and B¢€ H*(V’), then
T*(@)=p is equivalent to tr(l1®a—B®1)=0. Applying the
Cor. 2, we see that the last condition is equivalent to ¢(1)-(1®
a—BR1)=0.

More precisely, we can prove directly the following

Proposition 11.2 bis. Let {f{? A<i<h*%V)} and {g*?

A<i<<HUV)} be bases of the k-modules H? (V) and H?(V’)
respectively, and let

T*fil’.‘l) — Z aé];vq)gjﬁ'Q)
J
with a?%® €k. Let @ ?""® be the dual basis of H ”"" (V) defined
by
f/gﬂ.q).¢’"§v”—ﬂ,v—q) = Bim'cV .

Tnen we have

C(l‘) — é j (_1)p+q 2 Z af:’}“”g}‘"‘”®¢)§,”*1’-"“1> )

p=0 q=0 i
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Proof. By Kiinneth relation, g#»?® @ 2" (0<p<y,
0<q<w, 1ih?Y(V), 1< j<h* (V') constitute a basis of
H**(V'x V). Therefore we can write

o) =33 SISO gf @t
=0 ¢=0 7
with b2 €k. Now, put p'=v—p, ¢ =0v'—¢q, and let {«H""”"’
A< i< h*(V")} be the dual basis of H?"? (V") defined by
GO AP =800
Then

L)+ (P RF#0)
= bGP @ i P O R Fi )
= (— 1)1”c1>+‘1)b§1;.q>g§p.4) \Hp’,q’) Qf LDl »
= (=17 b ey @ cy

= (— 1)"’<p+a>b§:;.q>

CV,XV'

On the other hand, we have

c(1)+ (5" 7> @ F(#) = Byruy nltrnlrs? @ f17))
= Syrxv.rltro(@ly Py g P Q1)
= (=17 a0 8y, pltrrlcy @ 1))
= (— 1)v'<p+q>+p+qa POy
It follows 6% Y =(—1)*"?7a®®, and the proof is completed.

Remark. With the same notations as above, let V'=1V, and let A
be the diagonal of Vx V. If we replace f{*?® with % in the
proposition, then we must use (—1)@*TPP+HDFE=2"D 4n place of
PEPTTD gince @ D f,ITHITD — ()PP f O-p D 0.0 Thys
we obtain

c(A) = [{: z’: (—1)"P+0 SN b0 @ P20
p=0 ¢=0 i

Let T be a regular mapping from V into itself with graph I', such
that
T*f#0 =3 gno fp.0
j

Denote the square matrices (a®”) by A(p, ¢). Then it follows
from the proposition that
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c@)-el) = {33 33 (=1***Sp Ap, @)} cvxv -
In the classical case, where c¢(A) ¢(I')=I(A-1")-cyxy, this formula
is nothing but the fixed point formula of Lefschetz. In the case
of characteristic p, one is led to the following problem: to find a
cohomology ring of characteristic zero in which the geometric
properties considered in the present note remain valid so that the
Lefschetz fixed point theorem holds. (Cf. Serre [6]). As is well
known, the investigation of this problem is a natural approach to
Weil’s conjecture on the number of rational points and the zeta
function of a variety defined over a finite field.

Proposition 11.3. Let V be a non-singular projective variety,
and let W, ---, W, be non-singular subvarieties of V, of the same
codimension s, which we assume to be pairwise disjoint. Let D,, -,
D, be positive disvisors of V such that D,--- D.=W,+ --- +W,.
Then we have

c(D) -+ c(D,) =c(W)+ - +c(W,).

Proof. Let T ' be the monoidal transformation of V with
center W=wW, V...V W,, and put T (V)=V, T Y“(W;)=E;,
E,+ -+ +E,=E. Then the exceptional prime divisors E,, -, E,
are mutually disjoint, and hence we have ¢(E) =c(E,) "+ -+ + ¢(E,)’
by the cor. of prop. 2.1. On the other hand, if 7' is the
monoidal transformation of V with center W, and if we denote
T (W)=E/, then ¢(W)a=(—1)""c(E})’«a for any a e H**(V)
(w=v—s=dim W,). Since E! is transformed to E, on the model
V', we have ¢c(W)a=(—1)""c(E,)’ in H*(V’) (we identify H*(V)
with T*H*(V)). Therefore we have (c(W)+ -+ +c(W,)a=
(=1)°'c(E) for any o € H** (V). Since, by Serre duality, c¢(D,) ---
c(D,) is equal to X ¢(W,) if and only if ¢(D,) --- c(D)ya= 3] c(W)) @
holds for any a€ H”*(V), we have only to prove the following :
c(D) - c(D)ya=(—1)""c(E)Y’a for any ae H""(V).

Let D’ be the proper transform T '[D;] of D;, the proper
transform of a divisor being defined by linearity from the proper
transforms of the components. Then 7 '(D;)=Dj+E (1< j<s)
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and Din - AD;=0". Putc(D;)=d;, c(D})=d’, c(E)=e. Then
we have df---d;=0 by the cor. of prop. 2.1. Let a be an
arbitrary element of H**(V). Then ed;ax=0 by prop. 5.3 and
prop. 5.4. Therefore

O=d) - dia=(d,—e) - (d,—e)
=d, - d,a+ (=1 ca.
Hence d, --- d,a=(—1)"'ea= 3 c(W),) .

Corollary. Let V be a non-singular projective variety and let
U,, -, U, be non-singular subvarieties of V of the same condimen-
sion w'. Let W, -, W, be non-singular subvarieties of V, of the
same codimension s+u', which we assume to be pairwise disjoint.

Let D,, -+, D, be positive divisors of V such that (IZ U,)D, --- D
=2 W;. Then we have

(U e(D) -+ e(D) = 3 (W)).

Proof. Since each W; is contained in one and only one U 5 we
may assume, by linearity, that t=1. Put U=U,. Let ¢; € H**(U)
be the cohomology class of U corresponding to the subvariety W;,
i=12,--,7, and put D,=U-D,, k=1,2,---,s. Then we have
for any ae H"*(V) (w=dim W,)

c(U)e(D,) -+ c(D)a = 8y, y(tr y(c(D,) -+ c(D,)))
=8y, (c(D,) - ¢(D,) tr,)

=8y, U(Z; C; try«)

= Oy, (2] Sy (tr y,Q))
=218y, w{trw, @) = 23 c(W))a.

25) These assertions being of local nature, we shall prove them locally. Let P
be a point of W=W,J...\UW,, say of W;. Let U be an affine neighborhood of P
with affine ring A. We can take U so small that (1) UM W;=0,i=2, ...,7: (2) each
D; has a local equation f;=0 in U, and f;A is a prime ideal of A. Then (f;,...,f,)
A is the prime ideal of W, in A, and T-'(U) is covered by s affines U’;(1<j<s)
with affine rings A’;=A[ f1/f, ..., fs/fi]. fj=0 is a local equation of E (or, what is
the same thing, of E;) in U’;. The local ring of D’; (or, strictly speaking, of the
unique component of D’; which intersects with 7-1(U)) on V’ is the local ring A,jA
of D; on V. Therefore D’;(\ U’';=@ since A,-J.J P A';. Hence D';N..N\ DN U;=0
for any j. On the other hand, if j==k, (f;/fs)As is a prime ideal of A’;, and the
quotient ring of A’; with respect to it coincides with A,].A. This shows that f;/f,=0
is a local equation of D’; in U’;. Consequently, the local equation fi=0o0f D; in U
becomes the local equation (f;/fy)fr=0 of D’;+E in U’;, proving the relation 7-!
(Dj)ZD/j“‘E in U’k.
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This proves our assertion.

Discussion. Our theory is very incomplete as it stands. A
complete theory would contain the following propositions :

(1) orthogonality formula: if W, A W,=0, c(W,)c(W,)=0;

(2) carrier formula: try_, (c(W))=0;

(3) trace formula: if W,, W,, W, are non-singular subvarieties
of V such that W,-W,=W,, then try, (c(W,)=c,(W,), where
c,(W,) is the cohomology class of W, corresponding to the sub-
variety W,;

(4) intersection formula: with the same notations as above,
C(WI)C( Wz):C( Wa) N

(5) transformation formula: if W, and W, are non-singular
subvarieties of V intersecting properly on V, if 7' is the monoidal
transformation of V with center W,, and if Wi=T YW,) is non-
singular, then c¢(W?{)= T*(c(W))).

By our cor. of prop. 11.1, the orthogonality formula is an
immediate consequence of the carrier formula. The intersection
formula follows easily from the trace formula or from the trans-
formation formula. Since we could not prove these formulae in
the general cases, and since it has been reported the Grothendieck
succeeded in establishing a satisfactory theory, we will not enter
into the detail. The main defect of our theory lies in the fact
that it depends too much on the global property of the cohomology
rings, i.e. on Serre duality. Is it possible to define ¢(W) on non-
complete varieties as we did in the case of divisors? Is it possible
to define ¢(W) also when W has singularities ?

It may be remarked that, if W, is such that ¢(W,)=(—1)""¢(D,)"’,
where w’ = codim W, and E, is the image of W, under the monoidal
transformation of V with center W,, then the transformation
formula holds. This is the case, in particular, when the projective
bundle E, is the product bundle. For example, if V is the product
of two non-singular projective varieties V, and V,, and if
W,=V,xP, PeV,, then E, is the product bundle, so that the
transformation formula (and hence the intersection formula) is
applicable. In this case ¢(W,)=1Q c(P) is clearly independent of
the choice of P on V,, so that the following proposition holds:

Proposition 11.4. Let V, and V, be non-singular projective
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varieties and let Z be a non-singular subvariety of V,xV,. Let W,
and W, be non-singular subvarieties of V., and P, and P, be points
of V,, such that W;x P,=Z(V,xP;), i=1,2. Then c(W,)=c(W,).

Corollary 1. Ewvery member of an algebraic family of regular
mappings induce the same homomorphism between the cohomology
rings. More precisely, let V., V,, V, be non-singular projective vari-
eties, let Z be a subvariety of V,xV,xV, such that Z-(V,x V,x P)
=Zpx P is defined for any point P of V,, and suppose that Zp is
the graph of a regular mapping Tp from V, into V, for any P.
Then the homomorphism T%: H¥(V,)— H*(V,) is independent of P.

Proof. Since Z, is irreducible and non-singular for any P,
Z is itself non-singular. By the proposition, therefore, ¢(Zpx P)
=c¢(Zp) Qcy, is independent of P. Now our assertion follows from
prop. 11.2°

This corollary is a kind of “homotopy theorem” (two continuous
mappings which are homotopic induce the same homomorphism
between the cohomology rings). Though we have proved this
homotopy theorem only under a very restrictive condition, we can
apply it to abelian varieties :

Corollary 2. The elements of the cohomology ring of an abelian
variety are invariant under the translations.

Finally, we add the following

Proposition 11.5. Let V be a non-singular projective variety,
let W be a non-singular subvariety of V and let T be the monoidal
transformation of V with center W. Put T (W)=E. In order
that the projective bundle E is the product bundle, it is necessary
that we have try(c(W))y=0.

Proof. If E is the product bundle WxL*' a=codim W,
then trg(c(E)* =1 Qc(H))*=0, where H denotes the linear class
of hyperplanes of L*"'. By the remark 1 of prop. 10. 4, this implies
c(E)* € T*H**(V), so that c(E)"=(—1)*"'T*(c(W)) and tr, (c(W))
=0.

Example. If V is the projective 7-space L” and W is a linear
subspace L° such that 2s>r, then try, (c(W))==0 by prop. 11.3,
so that E is not the product bundle.



Geometric structure of the cohomology vings 81

Appendix.

A. Let V be a normal variety and let D be a divisor on V.
We want to prove that the algebraic sheaf 2?(D) is coherent.
Since the question is local, one may assume that V is affine.
Setting M=1'(V, Q?(D)), A=1(V, 0), we have to prove (i) M is a
finte A-module and (ii) 2?(D),=M®Q 40, for every point x of V.
Let w€Q?D),, and let D,, ---, D, be the prime divisors which
appear in —(w)—D with positive coefficients. Since D; % x, the
prime ideal p; of D; in A contains a function s; such that s;(x)==0.
Set s=(Ils;)”. Then we have so€M for sufficiently large N.
Hence o € M®RO,, and (ii) is proved. Now, let f,, .-, f, be a fixed
separating transcendental base of the function field (V) of V.
Let @ be a p-form belonging to M, and write

o= 3} pgiyuipdfil A NAf =2 8irdf s -

i< <i
We shall show that the coefficients g(;, belong to a fixed finite
A-module. Then M is a submodule of a finite A-module, hence
is itself finite over A. Now, if {j, -+, j,_,} = {1, =, 0} = {i,, -+, i,},
then o Adf ;= * gu»df, A+ ANdf, and hence we have

(8w =df )—D—@f, A+ ndf,) .

Thus the problem is reduced to the case p=0, that is to say, it
suffices to prove I'(V, O(D)) is finite over A. Let D.=3>n;D;
(n; >0) be the zero part of D and D; be its components. It is
easy to prove that there exists f€ A such that ord,,(f)=mn; (Lang
[1], p. 157, prop. 5). Then U'(V, O(D)) is a submodule of the finite
A-module Af ', therefore is itself finite.

B. Let V be a normal projective variety. We shall show
F*(V)=1 by induction on v(=dimV). When v=1, V is a non-
singular curve. In this case one may begin with showing the
equality #(D)=dim H'(V, O(D)) and then apply the Riemann-Roch
theorem (cf. Serre [7] Ch. II). Another method is as follows.
Let F=P,,---, P, be a finite subset of V and put U=V-F,
U;=Uv{P;}. Then U= {U,;} is an open covering of V and such
a covering is arbitrary fine. On the other hand, if P is a point
of V, then the class ¢(P) defined in §2 is not zero, so that we
have #"'>1. Therefore it suffices to show dimH'(ll, Q)=1. If
a={w;;} is an (alternating) 1-cocycle, then a necessary and suf-
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ficient condition for @ to be coboundary is the existence of a
1-form o, €l'(U,, ') such that o;—o, is regular at P,(j>1).
This is equivalent (by the residue theorem and R.-R. theorem)
with 2%;5, Resp;(w;,)=0.

When »>>1, let C be a general hypersurface section of degree
m of V. Then C is irreducible and normal. If o is a »-form on
V such that ordq(w)= —1, the “Poincaré residue” R(w) of o on C
is defined. If P is a point of C and if ® € Q°(C), then R(w)€ (2%,
since every prime divisor of C is simple on V. The sequence of
sheaves

(1) 0 —> 0 — O%C) —

is exact, and R is onto on V—S, where S denotes the singular
locus of C. Therefore, denoting the image of R in (1) by F, we
have an exact sequence 0—F—>Qg'—>F”—0 and dim Supp (F”)
<n—3. Hence H'(V, F)==H""*"Y(C). From the exact sequence

O——»Qv—>Q"(C)——-)F——\O

we obtain an exact sequence H" 'V, Q*(C))—H' 'V, F)— H"*(V)
— H*(V, Q°(C)), but if deg C=m is sufficiently large the extreme
terms vanish, so that we have H""(V)=H"“""YC). This com-
pletes our induction step.

C. Let V be a variety defined over a field k,, and let D be
a k,-rational divisor on V. Let o be a p-form on V such that
(w)>—D. Then » can be written in the following form

© = (0,
where o, are p-forms defined over k, and the ¢ are constants
linearly independent over k,. When such expression is given, the
w,’s satisfy (w,) > —D.

In the case p=0, this proposition is ‘“the last theorem of
Weil’s Foundations” (see also Lang [1], pp. 170-178). It can easily be
generalized to the case p_>0 as follows. Take a separating trans-
cendental base f,,---,f, of k(V), and write o=73 g dfu.
Then, as in Appendix A, the g, satisfy relations of the form
(g)>—D’, where D’ is a k,—rational divisor. Therefore, applying
the case p=0 to the g.,, we obtain the first half of the proposi-
tion. For the second assertion, let A be an arbitrary divisor
(rational over k, or not), and recall the fact one can always take



Geometric structure of the cohomology rings 83

a local coordinate system (¢,,---,%,) at A consisting of functions
defined over k, (in fact, one can choose the #/’s from the affine
coordinates at A). If o,= >\, & dli, then we have ord,
(Xaergana)=ord,(—D). If follows ord, (g, >ord,(—D) since
8. are defined over k,, and hence (w,)>—D.
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Faculty of Science,
Kyoto University.
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